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Monodromy and irreducibility of leaves

By Ching-Li Chai and Frans Oort

1. Introduction

Let p be a prime number, fixed throughout this article. Let n, d be positive

integers with gcd(n, dp) = 1. Denote by Ag,d,n the moduli space over Fp of

g-dimensional abelian varieties with a polarization of degree d2 and with a

symplectic level-n structure in characteristic p. The moduli space Ag,d,n has a

stratification

{W0
ξ(Ag,d,n) | ξ}

which is indexed by symmetric Newton polygons ξ of height 2g. Every stra-

tum W0
ξ(Ag,d,n) is a reduced locally closed subscheme of Ag,d,n whose geometric

points correspond to g-dimensional principally polarized abelian varieties with

Newton polygon equal to ξ; see Section 2.5. The smallest among the New-

ton polygon strata is the supersingular stratum W0
σ(Ag,d,n), corresponding to

supersingular polarized abelian varieties, i.e. those with Newton polygon iso-

clinic of slope 1/2, or equivalently, geometrically isogenous to a product of

supersingular elliptic curves.

In this paper we prove three global properties of nonsupersingular Newton

polygon strata and leaves in Ag,d,n.

Theorem A. For ξ 6= σ, the Newton stratum W 0
ξ := W0

ξ(Ag,1,n) is geo-

metrically irreducible. See Theorem 3.1.

Theorem B. For any geometric point x ∈ Ag,d,n(k) not contained in

the supersingular stratum W0
σ(Ag,d,n) = Wσ(Ag,d,n), the leaf C(x) in Ag,d,n is

irreducible. See Theorem 4.1.

Theorem C. For any geometric point x ∈ Ag,d,n(k) not contained in the

supersingular stratum Wσ(Ag,d,n), the p-adic monodromy for the leaf C(x) is

maximal. See Theorem 5.6.

The definition of the leaf C(x) in Ag,d,n passing through x is recalled

in Section 2.2. Let η̄
C(x)

be a geometric generic point of the leaf C(x). In
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Theorem C the p-adic monodromy for C(x) refers to the action of the Ga-

lois group of the function field of C(x) on the polarized p-divisible group

(Aη̄
C(x)

[p∞], λη
C(x)

[p∞]) attached to the polarized abelian variety (Aη̄
C(x)

, λη
C(x)

)

over the generic point of C(x); see Definition 5.1 and Section 5.4 for the def-

inition. The assertion in Theorem C is that the image of the monodromy

action, regarded as a subgroup of the group Aut(Aη̄
C(x)

[p∞], λη
C(x)

[p∞]) of au-

tomorphisms of the polarized p-divisible group (Aη̄
C(x)

[p∞], λη
C(x)

[p∞]), is equal

to the whole group Aut(Aη̄
C(x)

[p∞], λη
C(x)

[p∞]). Note that the number of ir-

reducible components of Wσ(Ag,d,n) is a suitable class number, which is large

when p is large. Similarly, every leaf in the supersingular locus is 0-dimensional

whose cardinality is a class number. So the nonsupersingularity assumptions

in Theorems A, B, and C are necessary.

Note that the conclusion of Theorem A is not correct for W0
ξ(Ag,d,n) for

arbitrary d. However in Theorems B and C we need not restrict to the princi-

pally polarized case. Note that all p-adic invariants are constant on C(x), in

the sense that the geometric isomorphism class of polarized p-divisible groups

(Ay, λy)[p
∞] attached to points y on C(x) is fixed.

Questions on global topological properties of subvarieties of moduli spaces

in characteristic p are often challenging. Subvarieties such as W0
ξ(Ag,1,n) ⊂

Ag,1,n and C(x) ⊂ Ag,d,n are stable under all prime-to-pd Hecke correspon-

dences. One knows from [4] that such a subvariety Z ⊂ Ag,d,n is irreducible

if Z is not contained in the supersingular locus and the prime-to-pd Hecke

correspondences operate transitively on the set of geometrically irreducible

components of Z; this is the first “reduction step” in the proof of A and B.

Although this reduction step offers a general strategy for proving irreducibil-

ity statements of subvarieties of modular varieties of PEL-type, some special

properties are used in each example that has been worked out.

The reader will find another reduction method that allows us to deduce B

from the irreducibility statement in A. That method is based on the notion of

hypersymmetric points introduced in [3] and [6]. These points in Ag,d,n corre-

spond to abelian varieties whose endomorphism rings are “as large as allowed

by their geometric p-divisible groups”, or equivalently, “maximal under the

given slope constraint”; for hypersymmetric abelian varieties, see Section 2.7.

The idea of the proof of B is to use the irreducibility in A to produce hyper-

symmetric points on every irreducible components of the leaf C(x), and then

connect these points by suitable prime-to-p Hecke correspondences with the

help from group theory.

The existence of hypersymmetric points on the leaf C(x) allows us to

apply the third method in [5] and deduce the maximality statement in C. For

technical reasons it is more convenient to deduce Theorems B and C by proving
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first the case when d is a power of p. To make the logical structure of the proof

as clear as possible, we first prove Theorem 5.6 in the special case when the

p-divisible group Ax[p∞] is completely slope divisible; see Theorem 5.9. The

general case is proved by the same method in the proof of 5.9, but with some

additional technical components; see 5.13. In 5.14 we indicate how Theorem 5.6

can be deduced from its special case, Theorem 5.9.

Methods in this article are developed for the Hecke orbit conjecture, first

formulated in [25] in the case of Siegel modular varieties; see also [3] for a sketch

of a proof. Implicit in the proof sketched in [3] is a proof of the irreducibility

statement in Theorem B. That proof depends on the irreducibility of central

leaves in Hilbert modular varieties proved by C.-F. Yu in [34], as well as the

“Hilbert trick” and the trick of “splitting at supersingular points”. The older

proof of Theorem B is more involved in terms of the complexity of the logical

structure than the proof here.

Acknowledgment. We thank J-P. Serre for a helpful discussion on weak

approximation.

2. Prerequisites

2.1. Some notation to be used below. Let p be a prime number, fixed in

this article. All abelian varieties and p-divisible groups are defined over a field

or a base scheme of characteristic p. We write F for an algebraic closure of Fp.
For an abelian variety A we write X = A[p∞] for its p-divisible group.

We write k and Ω for an algebraically closed field of characteristic p. All

base fields and base schemes considered will be in characteristic p.

For a group scheme G over a field K we write a(G) for the dimension of

the L-vector space Hom(αp,L, GL), where L ⊃ K is a perfect field. Note that

End(αp,L) = L; hence the right-L-module Hom(αp,L, GL) is a vector space

over L. Suppose L ⊂ L′ are both perfect fields containing K; then the natural

map

Hom(αp,L, GL)⊗L L′
∼−→ Hom(αp,L′ , GL′)

is an isomorphism. In particular, the number a(G) is independent of the choice

of the perfect field L containing K.

For a scheme W over a field K we write Π0(W ) for the set of geometrically

irreducible components of W ; i.e., we choose K ⊂ k, and we consider the set

of irreducible components of W×Spec(K)Spec(k).

We write σ = σg for the supersingular Newton polygon (i.e. all slopes are

equal to 1/2).

We write Ag,d,n for the moduli space of polarized abelian varieties in char-

acteristic p, with degree of polarization equal to d2, and with symplectic level-n

structure; here g, d, n ∈ Z>0 and gcd(n, dp) = 1. This moduli space should be
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denoted by Ag,d,n×Spec(Z)Spec(Fp), but we abbreviate notation. In most cases

we assume n ≥ 3. We write Ag,d as an abbreviation for Ag,d,1. When working

over a field K ⊃ Fp we still write Ag,d instead of Ag,d×Spec(Fp)Spec(K).

We write ` for a prime number different from p, sometimes also not divid-

ing d.

2.2. Central leaves (main reference: [25]). Work over an algebraically

closed field k ⊃ Fp. Recall that for each geometric point x = [(A, λ, ιA)] ∈
Ag,d,n(k), there is a locally closed, reduced k-subscheme C(x) of Ag,d,n, called

the central leaf passing through x, characterized by the property that

C(x)(Ω) =
{

(B,µ, ιB) ∈ Ag,d,n(Ω) | (B,µ)[p∞]

∼= (A, λ)[p∞]⊗ Ω, type(p)(µ) = type(p)(λ)
}

for every algebraically closed field Ω ⊃ k; see [25]. Here ιA is a symplectic

level-n structure of the polarized abelian variety (A, λ), where (A, λ)[p∞] is

the quasi-polarized p-divisible group attached to (A, λ), and type(p)(λ) is the

sequence of elementary divisors of the alternating pairing on
∏
` 6=p H1(A,Z`)

induced by the polarization λ; similarly for (B,µ, ιB). For n ≥ 3 we have that

C(x) is smooth over k. The sequence type(p)(λ) of elementary divisors has the

form (d1, . . . , dg), where d1, . . . , dg are positive integers such that d1 |d2| · · · | dg
and d =

∏g
i=1 di. It is known that the leaf C(x) is closed in the open Newton

stratum W0
ξ(Ag,1,n) containing C(x); see [25, Th. 3.3]. See Section 2.5 for the

notation and properties of Newton strata. We will shorten “central leaf” to

“leaf” if confusion (with “isogeny leaf”) is unlikely.

The above definition of the leaf C(x) in Ag,d,n is slightly different from

the definition in [25] because of the extra condition that we require here that

the discrete invariant type(p)(µ) is constant on C(x). This condition enables

us to announce Theorems B and C in the present short form.

2.3. Newton polygons. Newton polygons with slopes between 0 and 1 will

be denoted by a symbol like ζ or ξ. By ζ =
∑
i (mi, ni), we intend to say that

the (lower convex) Newton polygon starting from the origin of the plane, such

that the multiplicity of a slope ν in ζ is equal to
∑
ν=mi/(mi+ni)(mi + ni). In

the above, it is understood that mi, ni ∈ Z≥0 and gcd(mi, ni) = 1 for all i;

“lower convex” means that ζ is the graph of a convex piecewise linear function

defined on [0, h], where h =
∑
i (mi + ni). A Newton polygon ζ =

∑
i (mi, ni)

can be specified by its slope sequence (ν1, . . . , νh), where 0 ≤ ν1 ≤ · · · νh ≤ 1,

and for every ν ∈ Q ∩ [0, 1], the multiplicity of ν in the slope sequence above,

defined as Card{j | µj = ν, 1 ≤ j ≤ h} , is equal to the multiplicity of ν in ζ.

A Newton polygon ξ is said to be symmetric if the multiplicity of ν in

ξ is equal to the multiplicity of 1 − ν in ξ for every slope ν. We say that
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two Newton polygons are disjoint if they have no slopes in common. Every

symmetric Newton polygon ξ can be written as a sum of disjoint symmetric

Newton polygons, each having at most two slopes.

Every symmetric Newton polygon ξ can be written in a unique way in the

following standard form

ξ = (γ0·((1, 0) + (0, 1))) +

Ç ∑
1≤i≤t

γi·((mi, ni) + (ni,mi))

å
+ (γt+1·(1, 1)),

where f = γ0 ∈ Z≥0, t ∈ Z≥0, γ1, . . . , γt, γt+1 ∈ Z>0 and mi > ni ≥ 0

for 1 ≤ i ≤ t, and (mi, ni) 6= (mj , nj) if 1 ≤ i 6= j ≤ t. The coefficients

γ0, γ1, . . . , γt+1 are called the multiplicities of the simple parts of ξ. Define

g(ξ) = γ0 +
∑

1≤i≤t γi·(mi + ni) + γt+1.

2.4. According to the Dieudonné-Manin classification of p-divisible groups

over an algebraically closed field (see [15, p. 35]), every p-divisible group X

over an algebraically closed field k ⊃ Fp is isogenous to a direct product of

isoclinic p-divisible groups Gm,n, with m,n ∈ Z≥0 and gcd(m,n) = 1, with

dim(Gm,n) = m; in this case Gm,n has height m + n and is isoclinic of

slope m/(m + n). The Newton polygon of a p-divisible group X isogenous

to
∏
i Gmi,ni is ∑

i

(mi, ni) =: N(X) .

For an abelian variety A over a field K ⊃ Fp, the Newton polygon attached

to A[p∞] is a symmetric Newton polygon N(A), and it can be written in

standard form as above. Then we have dim(A) = g(ξ). We hope there will be

no confusion caused by the formal sum expressing ξ and the summation as in

the formula for g.

Working over a field K ⊃ Fp, if no confusion can arise, we write Gm,n
instead of Gm,n ⊗Fp K. The result is that there is a bijection between the set

of k-isogeny classes of p-divisible groups over k and the set of Newton polygons:

Theorem (Dieudonné and Manin; see [15, p. 35, “Classification theo-

rem”]).

{X}/ ∼k
∼−→ {Newton polygon}.

2.5. Newton polygon strata. The set of Newton polygons is partially or-

dered; we write γ ≺ β if no point of γ is below β:

γ ≺ β ⇐⇒ γ is “above” β.

If (ν1, . . . , νh) and (µ1, . . . , µh′) are the slope sequence of γ and β respectively,

with 0 ≤ ν1 ≤ · · · ≤ νh ≤ 1 and 0 ≤ µ1 ≤ · · · ≤ µh′ ≤ 1, then γ ≺ β if and

only if

h = h′,
m∑
j=1

νj ≥
m∑
j=1

µj for m = 1, . . . , h− 1 and
h∑
j=1

νj =
h∑
j=1

µj .
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An abelian variety A is isogenous with its dual At. Using the duality theorem

(see [20, 19.1]), we conclude that X ∼ Xt; hence N(A) =: ξ is symmetric.

For a symmetric Newton polygon ξ we write:

Wξ(Ag,d,n) := {[(A, λ)] | N(A) ≺ ξ},

W0
ξ(Ag,d,n) := {[(A, λ)] | N(A) = ξ}.

Grothendieck-Katz:

Wξ(Ag,d,n) ⊂ Ag,d,n is closed

(see [12, pp. 149–159], [13, Th. 2.3.1, p. 143]); hence

W0
ξ(Ag,d,n) ⊂ Ag,d,n is locally closed.

These are called the Newton polygon strata. We write

Wξ = Wξ(Ag,1), W 0
ξ = W0

ξ(Ag,1).

2.6. Theorem (Oort; see [25, Th. 3.3]). Every leaf

C(y) ⊂W0
ξ(Ag,d,n)

is a closed subset of the open Newton polygon stratum W0
ξ(Ag,d,n).

2.7. Hypersymmetric abelian varieties (main reference: [6]).

Definition. Let B be an abelian variety over a field K ⊃ Fp. We say that

B is hypersymmetric if one (or all) of the following equivalent conditions are

satisfied:

(1) The natural map

End
Ä
B×Spec(K)Spec(K)

ä
⊗Z Zp

∼−→ End
Ä
B[p∞]×Spec(K)Spec(K)

ä
is an isomorphism.

(2) The natural map

End
Ä
B×Spec(K)Spec(K)

ä
⊗Z Qp

∼−→ End
Ä
B[p∞]×Spec(K)Spec(K)

ä
⊗Zp Qp

is an isomorphism.

(3) There exist an abelian variety A defined over F and an isogeny

B×Spec(K)Spec(K) ∼ A×Spec(F)Spec(K) ,

such that the natural map

End(A)⊗Z Zp
∼−→ End(A[p∞])

is an isomorphism.
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Remark. Tate proved that for an abelian variety A defined over a finite

field Fq, the natural homomorphism

End(A)⊗Z Zp
∼−→ End(A[p∞])

is an isomorphism; see [33, Th. 1, p. 60]. This shows that End(A) ⊗Z Zp is

identified with the Gal(F/Fq)-invariant endomorphisms of

End
Ä
A[p∞]×Spec(Fq) Spec(F)

ä
.

Suppose that

End(A)
∼−→ End

Ä
A×Spec(Fq)Spec(F)

ä
.

Then A is hypersymmetric if and only if every element of the ring of endo-

morphisms of the p-divisible group A[p∞]×Spec(Fq) Spec(F) is invariant under

every element of Gal(F/Fq). From this we see that there are “many” abelian

varieties over a finite field which are not hypersymmetric. Also we see that for

a hypersymmetric abelian variety this Galois action is “in diagonal form” for

every isoclinic part of A[p∞]. This can be made precise as follows:

Let K be a finite field and let B be an abelian variety over K .

Then B is hypersymmetric if and only if there exists a pos-

itive integer n such that the n-th power of the Frobenius πB
of B lies in the center of End0

Ä
B[p∞]×Spec(K) Spec(F)

ä
. In

other words, any two eigenvalues of the action of πB on the

Dieudonné module of B[p∞] ×Spec(K) Spec(F) which have the

same p-adic absolute value, differ by a root of unity.

Remark. In [6] we showed that for any symmetric Newton polygon ξ there

exists a hypersymmetric point in the Newton stratum W 0
ξ . This statement

does not hold for general modular varieties of PEL-type, where a point is

said to be hypersymmetric if the underlying abelian variety with prescribed

endomorphism ring is hypersymmetric in the sense of [6, Def. 6.4]. Therefore

the methods in this article do not apply to all leaves in a modular variety of

PEL-type. Explicit conditions for the existence of hypersymmetric points on

a Newton stratum can be found in [36].

2.8. Hecke orbits. Suppose we are given a field K, and a polarized abelian

variety (A, λ) over K. We define the Hecke orbit of the moduli point x :=

[(A, λ)] to be the set of points y = [(B,µ)] over some field L such that there

exist a field Ω containing K and L, and a quasi-isogeny ϕ : A→ B such that

ϕ∗(µ) = λ.

Notation. We write y ∈ H(x). The set H(x) is called the Hecke orbit of x.

Recall that a quasi-isogeny ϕ : A→ B is an equivalence class of diagrams

A
u←− C

v−→ B, where u and v are isogenies between abelian varieties. We
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write ϕ = v ◦u−1 when ϕ is represented by such a diagram. By definition, two

diagrams
A

u←− C v−→ B and A
u′←− C ′ v′−→ B

are equivalent if there exists an abelian variety D and isogenies w : D → C

and w′ : D → C ′ such that u ◦ w = u′ ◦ w′ and v ◦ w = v′ ◦ w′. Let N be an

non-zero integer and let ` be a prime number different from p. A quasi-isogeny

ϕ is said to be relatively prime to N (resp. `-primary) if ϕ can be represented

as v ◦ u−1 such that the degrees of the isogenies u and v are both relatively

prime to N (resp. the degrees of u and v are powers of `).

Hecke-prime-to-N -orbits. Let N ∈ Z>0. If in the definition of the Hecke

orbit of a moduli point x = [(A, λ)] the isogeny ϕ is relatively prime to N , we

say that [(B,µ)] = y is in the Hecke-prime-to-N -orbit of x.

Notation. y ∈ H(N)(x).

Hecke-`-orbits. Fix a prime number ` different from p. We say that

[(B,µ)] = y is in the Hecke-`-orbit of x if the quasi-isogeny ϕ is `-primary in

the previous definition.

Notation. y ∈ H`(x).

Remark. We have given the definition of the so-called Sp2g(Af )-Hecke

orbit, because, for every positive integer multiple N of pd, the prime-to-N

Hecke orbit H(N)(x) of a geometric point x ∈ Ag,d,n(k) can be described as

follows. Consider the tower of moduli spaces (Ag,d,m) , where m runs through

all multiples of n which are prime to pd. The group Sp2g(A
(N)
f ) operates on

the tower, where A(N)
f =

∏′
gcd(`,dp)=1Q` . Let x̃ be a k-point of the projec-

tive limit lim←−Ag,d,m lying above x. Then H(N)(x) is the image in Ag,d,n of

Sp2g(A
(N)
f ) · x̃, the orbit of x̃ under the action of Sp2g(A

(N)
f ). See [7, §1] for a

further discussion.

Hecke stable. We say a set T ⊂ Ag is H`-stable if for every x := [(A, λ)] ∈
T we have H`(x) ⊂ T , and analogously for H(p)-stable. Note that Newton

polygon strata are Hecke-stable, and EO-strata and central leaves are H(p)-

stable.

The Hα-orbit. By considering Hecke correspondences where all isogenies

involved are geometrically successive extensions of αp, we define the Hecke-α-

orbit of a moduli point. If in the notation just used the kernels of ϕ1 and of

ϕ2 are successive extensions of αp over an algebraically closed field, we write

[(B,µ)] = y ∈ Hα(x).

We define I(y) ⊂ Ag, a maximal Hα-set, by taking the union of all ir-

reducible components of the Hα-orbit of y containing y. This is called the

isogeny leaf passing through y = [(B,µ)]. We give this the induced reduced

scheme structure.
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The completion of Ag,d,n over k along an isogeny leaf, in the sense of [25],

is étale locally isomorphic to the reduction modulo p of a suitable Rapoport-

Zink space; see [31, Th. 6.2.3] for a more precise statement. This implies that

the formal completion I(y)/y of an isogeny leaf at a k-point y ∈ Ag,d,n(k) is

isomorphic to the formal completion at a suitable k-point of the reduction

modulo p of a Rapoport-Zink space with reduced structure.

2.9. Theorem (Oort) (“central leaves and isogeny leaves almost give a

product structure on an irreducible component of a Newton polygon stra-

tum”); see [25, Th. 5.3]). Work over an algebraically closed field k. Choose

a symmetric Newton polygon ξ, an irreducible component W of W0
ξ(Ag), an

irreducible component C of a central leaf, and an irreducible component I of

an isogeny leaf. There exist finite surjective morphisms f : T � C , g : J � I ,

a finite surjective morphism

Φ : T × J �W,

and a polarization-preserving quasi-isogeny

Θ: f∗(A, λ) −→ Φ∗(B,µ)

such that for every u ∈ J ,

Φ(T × {u}) is a component of a central leaf

and for every t ∈ T ,

Φ({t} × J) is a component of an isogeny leaf.

2.10. Minimal p-divisible groups (main reference: [26]; also see [8]). For a

pair (m,n) of coprime nonnegative integers we define Hm,n to be a p-divisible

group of dimension m, of height m + n, of slope m/(m + n) such that over

k the endomorphism ring End(Hm,n) is the maximal order in End0(Hm,n) :=

End(Hm,n) ⊗Zp Qp. This defines this group uniquely up to isomorphism over

an algebraically closed field; the group can be constructed over Fp. For ζ =∑
i (mi, ni) we write H(ζ) =

∏
i Hmi,ni . This p-divisible group is defined over

Fp; if no confusion can arise we write H(ζ) over any field K ⊃ Fp, meaning

H(ζ)⊗Fp K.

Definition. We say a p-divisible group X is minimal if there exists an

isomorphism XΩ
∼= H(ζ).

2.11. Theorem (Oort; see [26, Th. 1.2]). Work over an algebraically

closed field k. Let X be a p-divisible group, and let ζ be some Newton polygon.

Suppose there exists an isomorphism X[p] ∼= H(ζ)[p]. Then there exists an

isomorphism X ∼= H(ζ).

Suppose [(A, λ)] = x, where A[p∞] is minimal and λ is a principal po-

larization. In this case the central leaf C(x) is denoted by Zξ = C(x), where
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ξ = N(A[p∞]), and it is called the central stream inside W 0
ξ . Note that a

principal quasi-polarization on the minimal p-divisible A[p∞] is unique up to

pre-composing the given principal quasi-polarization λ[p∞] with an element of

Aut(A[p∞]) which is fixed under the Rosati involution ∗λ[p∞] attached λ[p∞];

see [25, 3.7].

Results on ` and prime-to-p monodromy and irreducibility (main refer-

ence: [4]).

2.12. Theorem (Chai). Work over an algebraically closed field k. Suppose

n ∈ Z≥3 is relatively prime with pd. Let Z ⊂ Ag,d,n be a locally closed nonsingu-

lar subset not contained in the supersingular locus. Suppose Z is H
(pd)
Sp -stable.

Assume that H
(pd)
Sp acts transitively on Π0(Z). Then Z is irreducible and the

prime-to-pd monodromy representation on Z equals

Sp2g(Ẑ(pd))(n) := {γ ∈ Sp2g(Ẑ(pd)) | γ ≡ 1 (mod n)}.

See [4, Prop. 4.5.4] for a proof. More precisely, in [4] the degree of the

polarization is assumed to be 1, but the proof there gives a proof of Theo-

rem 2.12.

Note that Theorem 2.12 implies that the image of the `-adic monodromy

homomorphism for any leaf not contained in the supersingular stratum Ag,d,n

is maximal for ` not dividing pdn.

We will need a slightly more general version of the irreducibility part in

Theorem 2.12.

2.13. Theorem (Chai). Let k ⊃ Fp be an algebraically closed field. Let

n, d be positive integers with gcd(n, pd) = 1 and n ≥ 3. Let Z ⊂ Ag,d,n be a

locally closed subscheme over k smooth over k, not contained in the supersingu-

lar locus and stable under all prime-to-pd Hecke correspondences. Let W → Z

be a finite étale scheme over Z , and let

W̃ :=
Ä
W ×Ag,d,n Ag,d,m : n|m, gcd(m, pd) = 1

ä
be the fiber product of Z with the prime-to-pd tower‹Ag,d = (Ag,d,m : n|m, gcd(m, pd) = 1)

above Ag,d,n, indexed by positive integers m which are relatively prime to pd.

Assume that the prime-to-pd Hecke correspondences lift to W in the sense that

the action of the group Sp2g(A
(pd)
f ) on the restriction to Z of the prime-to-

pd tower ‹Ag,d lifts to an action on the tower W̃ . Assume, moreover, that

the prime-to-pd Hecke correspondences on W induced by the Hecke action on

the tower W̃ operate transitively on the set Π0(W ) of irreducible components

of W . Then W is irreducible. Moreover, the prime-to-pdn monodromy of Z

is maximal.
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The situation of Theorem 2.13 is different from that of [4, Prop. 4.4]. In

[4], the variety in question is a subvariety of the moduli space Ag,1,n, while in

Theorem 2.13 the variety in question is a cover of subvariety of Ag,d,n. However

the proof of [4, Prop. 4.4] gives a proof of Theorem 2.13; see also the proof of

Proposition 5.5 in [5]. The key point of this argument is the fact that the group

Sp(H1(A0,A
(pd)
f ), 〈 , 〉) has no proper subgroup of finite index; see [4, Lemma

3.1]. The assumption in Theorem 2.13 implies that Π0(Z) is a surjective image

of a quotient of the group Sp(H1(A0,A
(pd)
f ), 〈 , 〉) by a subgroup of finite index.

Since every such quotient of Sp(H1(A0,A
(pd)
f ), 〈 , 〉) is a one-point set, Π0(Z)

has only one element; i.e., Z is irreducible.

2.14. Unwinding a finite level over a leaf (main reference: [25, Th. 1.3]).

We say that a p-divisible group X → S is geometrically fiberwise constant,

abbreviated gfc, if fibers are mutually geometrically isomorphic; see [25, 1.1] for

more details. In [25, Th. 1.3], we show that if S satisfies reasonable finiteness

conditions, X → S is gfc, and i ∈ Z>0, then there exists a finite surjective

morphism Ti = T � S such that X[pi] ×S T is constant over T . We need a

part of the proof of this theorem which is contained in [29]. And actually we

need the part of the proof which goes back to Hasse and Witt, to Dieudonné,

and which was described by Zink in [35, §2]; also see [29, 1.6].

2.15. Completely slope divisible p-divisible groups. Let t ≥ r1 > r2 >

· · · > rm ≥ 0 be natural numbers. Let q = pt, and let S be a scheme over Fq.
A p-divisible group Y → S is said to be completely slope divisible with respect

to the numbers t ≥ r1 > r2 > · · · > rm ≥ 0 if there exist a filtration

0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = Y

of Y by p-divisible subgroups over S such that

• each Yi/Yi−1 is a p-divisible group for i = 1, . . . ,m,

• the quasi-isogenies p−riFrt : Yi → Y
(pt)
i are isogenies for i = 1, . . . ,m,

• the induced homomorphisms p−riFrt : (Yi/Yi−1) → (Yi/Yi−1)(pt) are

isomorphisms for i = 1, . . . ,m.

See [29, 1.1].

Let 0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = Y be the slope filtration of a completely

slope divisible p-divisible group Y → S as above. Let Gi = Yi/Yi−1 for i =

1, . . . ,m. Let q = pt. By the theory of Φ-étale part of a Frobenius module

in [35, §1], for each b ≥ 1 there exist fppf sheaves of commutative Fq-algebras

Γi,b = Γi,b,q on S which are representable by finite étale schemes over S, and

natural isomorphisms OS ⊗Fq Γi,b
∼−→ OGi[pb]. The sheaf Γi,b is subsheaf of

the structure sheaf of Gi[p
b] for the fppf topology fixed under the FrobtS-linear

map Φi : OGi[pb] → OGi[pb] induced by the composition of the isomorphism
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p−riFrt : Gi[p
b]→ Gi[p

b](p
t) and the map Ws : Gi[p

b](p
t) → Gi[p

b] coming from

the base change by the absolute Frobenius FrobtS : S → S. The group law on

Gi[p
b] induces a comultiplication on Γi,b, making Γi,b a sheaf of commutative

cocommutative bialgebras over Fq. The inclusion maps Gi[p
b] ↪→ Gi[p

b+1]

induces surjective homomorphism Γi,b+1 → Γi,b between sheaves of bialgebras

over Fq.

2.16. Remarks. (1) A p-divisible group Y over a fieldK ⊃ Fp is completely

slope divisible if and only if Y ×Spec(K)Spec(Ka) is.

(2) Let Y be a p-divisible group over a perfect K ⊃ Fp. Then Y is

completely slope divisible if and only if there exists a finite field Fq ⊂ k and

isoclinic p-divisible groups Z1, . . . , Zm over Fq with distinct slopes such that Y

is isomorphic to

Z1×Spec(Fq) · · · ×Spec(Fq)Zm×Spec(Fq)Spec(k) .

2.17. Remark. Let Y be a p-divisible group over a field K ⊃ Fp. By

[35, Cor. 13], Y has a slope filtration; i.e., there exist p-divisible subgroups

0 ⊂ Y1 ⊂ Y2 ⊂ · · · ⊂ Ym = Y over K such that each quotient Zi := Yi/Yi−1 is

an isoclinic p-divisible group of slope µi over K and µ1 > µ2 > · · · > µm. We

have a natural inclusion

End(Y ) ↪→ End(Z1)× · · · × End(Zm) = End(Z1 × · · · × Zm) .

This inclusion is an equality if and only if Y is isomorphic to Z1 × · · · × Zm.

The “if” direction is obvious. For the “only if” part, it suffices to note that

the Zp-span of

(Z×p · IdZ1)× · · · × (Z×p · IdZm)

in the algebra End(Z1)×· · ·×End(Zm) is equal to (Zp ·IdZ1)×· · ·×(Zp ·IdZm).

In particular this Zp-span contains the m idempotents corresponding to the

m factors in the product Z1 × · · · × Zm.

Several notations and prerequisites, perhaps not sufficiently well explained

here, are to be found in [7] and [27].

3. Irreducibility of Newton polygon strata

In order to start the proof of irreducibility of leaves, we first show the

irreducibility of Newton polygon strata in the principally polarized case. Note

however that supersingular Newton polygon strata are reducible (for p large).

For the case of elliptic curves in characteristic p this is classical. By Hasse,

Deuring, and Igusa we know that∑
j(E) is ss

1

#(Aut(E))
=
p− 1

24
;
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this implies that the number of supersingular j-invariants is asymptotically

p/12 for p→∞.

For fixed g and large p the supersingular locus has “many components”

(see [14, 4.9]):

#(Π0(Wσ)) = Hg(p, 1) if g is odd,

#(Π0(Wσ)) = Hg(1, p) if g is even.

Note that for g fixed and p→∞, indeed #(Π0(Wσ))→∞.

3.1. Theorem. Let ξ be a symmetric Newton polygon which is not super-

singular. The stratum Wξ := Wξ(Ag,1) is geometrically irreducible.

A sketch of the proof below can be found in [19].

Step 1. The moduli scheme Ag,1 ⊗ Fp is geometrically irreducible. This

was proved by Faltings; see [10, Kor., p. 364]. In [1], it was proved by Chai

for the case p > 2. See also [11, Chap. IV, Cor. 6.8]. For a pure characteristic

p proof, see [24, Cor. 1.4].

Step 2. Deformation to a ≤ 1. Let (A, λ) be a principally polarized abelian

variety. There exists a deformation to a principally polarized abelian variety

(B,µ) with N(A) = N(B) and a(B) ≤ 1.

This is a difficult theorem. For the proof we use deformation to a≤1

for simple p-divisible groups and purity; see [8, Cor. 5.12]. Once this is

established the general result follows by considering deformation of filtered

p-divisible groups; see [23, §3].

Corollary. W 0
ξ (a ≤ 1) is dense in W 0

ξ .

Step 3. The Cayley-Hamilton theorem. In [22] we study deformations of

(polarized) p-divisible groups with a-number equal to 1. As a corollary, using

the corollary in Step 2, we show that the strata {W 0
ξ (a ≤ 1) | ξ} are ordered by

inclusion-in-the-boundary exactly as prescribed by the NP-graph. Moreover,

we compute the dimension of these strata; see [22, Th. 3.4].

Step 4. Corollary. For symmetric Newton polygons ξ1 ≺ ξ2 and for an

irreducible component P1 of W 0
ξ1

, there exists an irreducible component P2 of

W 0
ξ2

such that P1 ⊂ (P2)Zar and P2 is unique.

Corollary. W 0
ξ (a ≤ 1) is dense in Wξ .

Corollary. ∪ξ′�ξW 0
ξ′ is contained in (W 0

ξ )Zar.

Step 5. Using the facts

• every nonsupersingular Hecke-` orbit is nonfinite (see [2, Prop. 1, p. 448]),

• EO-strata are Hecke-` stable,
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• EO-strata are quasi-affine (see [24, Th. 1.2]),

we show

for every symmetric nonsupersingular Newton polygon ξ2 and

every irreducible component P2 of W 0
ξ2

there exists ξ1 � ξ2 such

that W 0
ξ1
∩ (P2)Zar 6= ∅.

Proof. Fix P2 ⊂W 0
ξ2

. Let P be a union of irreducible components of W 0
ξ2

,

the union taken over the Hecke-`-orbit of [P2] in Π0(W 0
ξ2

).

Consider all elementary sequences, in the sense of [25], which appear on

P2. This is a finite set Γ(P2). On the set of elementary sequences we have a

partial ordering, denoted by ⊂ in [25, 14.3]; i.e., we write ϕ′ ⊂ ϕ if and only

if Sϕ′ is contained in the closure of Sϕ. Indeed, this defines a partial ordering

by [25, 12.5]. Let ϕ be a minimal element in Γ(P2). Let x ∈W 0
ξ2
∩ Sϕ.

Claim. Sϕ ∩ P2 is not a finite set.

Consider H`. Note that H`(x) ⊂ P. This follows because any Hecke-

` correspondence is étale and finite-to-finite. As x is not contained in the

supersingular locus, it follows from [2, Prop. 1, p. 448] that this Hecke orbit

H`(x) is nonfinite. Note that Sϕ and P are Hecke-`-stable. Hence H`(x) ⊂
(Sϕ∩P). The Zariski closure H of H`(x) is not finite. It contains an irreducible

component of positive dimension. As Hecke-` correspondences are étale and

finite-to-finite, this shows that there is an irreducible component H ⊂ (Sϕ∩P2)

of positive dimension containing x.

Consider the stratum Tϕ ⊂ A∗g as defined [24, 6.1]; this consists of Sϕ
and all boundary points in A∗g corresponding with the elementary sequence ϕ.

The stratum Tϕ, in the minimal compactification A∗g, is quasi-affine (see [24,

6.5]) and ϕ is also minimal on Tϕ; see [24, 6.3]. Hence there is a point y′ in

the closure of Tϕ not contained in Tϕ itself. If y′ ∈ Ag, we write y = y′. If

y′ 6∈ Ag, using [24, 6.3], we conclude there exists a point y ∈ Ag,1 with y 6∈ Tϕ.

This shows that the Zariski closure of H ⊂ Ag,1 considered above contains a

point y ∈ Ag,1 with y 6∈ Tϕ; hence y 6∈ Sϕ . Let ϕ′ be the elementary sequence

defined by y. Let ξ1 be the Newton polygon defined by y. As y 6∈ Sϕ we have

ϕ′ $ ϕ. Because the minimality assumption on ϕ, we see that y 6∈ W 0
ξ1

and

ξ1 � ξ2. This proves Step 5:

W 0
ξ1 ∩ (P2)Zar 6= ∅. �

Remark. Instead of the argument above, a variant of a method indicated

in [2] can be used. If ξ is ordinary, then the conclusion of Step 5 follows from

the fact that the ordinary locus is dense: either use that Ag,1 is irreducible, or

use [17]. Suppose ξ is not ordinary (and not supersingular). Choose a point

x with minimal EO-type on P as above, which, moreover, is defined over a
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finite field. Consider a Hilbert modular variety M such that its image in Ag

contains x. On a Hilbert modular variety the Hecke orbit of a nonsupersingular

is nonfinite. Using [24] we see that EO-strata on M are quasi-affine. Moreover,

any nonordinary Newton polygon stratum does not contain a boundary point

in the minimal compactification of M. Hence the Zariski closure of H ⊂ Ag,1

considered above contains a point y ∈ Ag,1 with y 6∈ Sϕ, and we conclude as

above.

Step 6. For ξ1 ≺ ξ2 define iξ1ξ2 : Π0(Wξ1)→ Π0(Wξ2) by

iξ1ξ2(P1) = P2 ⇐⇒ P1 ⊂ (P2)Zar.

Using Steps 3, 4, and 5 we conclude:

Corollary. This map is well-defined.

Corollary. The map iσξ : Π0(Wσ)� Π0(Wξ) is surjective for every ξ.

Note that this map is H
Sp
` -equivariant.

Corollary. The map iξ1ξ2 is surjective.

Step 7. Notation. For g ∈ Z>1 and j ∈ Z≥0 we write Λg,j for the set

of isomorphism classes of polarizations µ on the superspecial abelian variety

A = Eg ×Spec(Fp) Spec(k) such that Ker(µ) = A[F j ]; here E is a supersingular

elliptic curve defined over Fp. Note that Λg,j
∼−→ Λg,j+2 under µ 7→ F t·µ·F .

Fact. Characterization of components of Wσ. There is a canonical bijec-

tive map

Π0(Wσ)
∼−→ Λg,g−1.

See [14, 3.6 and 4.2]; this uses [18, 2.2 and 3.1].

Step 8. Transitivity. The action of HSp
` on Λg,g−1 is transitive.

Proof. Consider [(A1, µ1)], [(A2, µ2)] ∈ Λg,g−1. Let Gi be the unitary

group over Q defined by the semisimple algebra with involution ( End0(Ai), ∗i ),

where ∗i is the Rosati involution attached to µi. In other words,

Gi(R) =
¶
y ∈ (End0(Ai)⊗Q R)× | y · ∗i(y) = 1 = ∗i(y) · y

©
for every commutative Q-algebra R. Denote by T the affine scheme of finite

type over Q such that

T(R) =
¶
φ ∈ Hom(A2, A1)⊗Z R | φ∗(λ1) = λ2 in Hom(A1, A

t
1)⊗Z R

©
for all commutative Q-algebra R. It is clear that T has a natural structure

as a left G1-torsor and also a right G2-torsor; moreover, the left G1-action

commutes with the right G2-action. We claim that this torsor T is trivial; i.e.,

it has a Q-rational point.
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We use the left G1-torsor structure of T. It is clear that T(Q`) 6= ∅ for all

prime numbers ` 6= p. We see that T(R) 6= ∅ because the Rosati involutions

∗1 and ∗2 are positive definite. The set T(Qp) of Qp-points of T is not empty

because (A1, λ1)[p∞] ∼= (A2, λ2)[p∞] by assumption. Since the group G1 is

connected and simply connected, the Hasse principle applies; see [30, Th. 6.6].

We conclude that T(Q) 6= ∅.
As the torsor T over Q is trivial, the weak approximation theorem for

semisimple simply connected algebraic groups applies; see [30, Th. 7.8, p. 415],

or Lemma 4.6 for a direct proof of weak approximation for unitary groups.

In particular, there exists a quasi-isogeny φ from A2 to A1 which induces

an isomorphism from (A2, λ2)[p∞] to (A1, λ1)[p∞]. The is prime-to-p quasi-

isogeny φ defines a prime-to-p Hecke correspondence connecting the two ele-

ments [(A1, µ1)], [(A2, µ2)] of Λg,g−1. �

Corollary. The action of HSp
` on Π0(Wσ) is transitive.

This follows using Step 7.

Step 9. End of the proof of Theorem 3.1. We have seen that the map

iσξ : Π0(Wσ) → Π0(Wξ) is surjective and H
Sp
` equivariant for every ξ; by the

previous step this implies that the action of HSp
` on Π0(Wξ) is transitive. By

Theorem 2.12 this implies that Wξ is geometrically irreducible for ξ 6= σ. This

finishes a proof of Theorem 3.1. �

Remark. The same proof shows that Wξ(Ag,1,n) is geometrically irre-

ducible for every n 6= p.
3.2. Remark. We have seen that the strata W 0

ξ := W0
ξ(Ag,1), in the (prin-

cipally polarized case), form a stratification of Ag,1; in particular for ξ1 � ξ2

the stratum W 0
ξ1

is contained in the closure of W 0
ξ2

.

However there are many cases where ξ1 � ξ2 such that a component of

W0
ξ1

(Ag,d) is not contained in the closure of W0
ξ2

(Ag,d) for an appropriate choice

of d; this has been worked out in [28, §3].

Note the definition of Wξ(Ag,d) is not given as the closure of W0
ξ(Ag,d).

We know that the dimension of a central leaf is determined by the related

Newton polygon: all leaves in one Newton polygon stratum have the same di-

mension, independent of the degrees of the polarizations considered. However,

different irreducible components of W0
ξ(Ag,d) for varying d can have different

dimension. All this has been computed and discussed in [28].

4. Irreducibility of leaves

4.1. Theorem.Let g, n, and d be positive integers with n≥3 and gcd(pd, n)

= 1. Let k ⊃ Fp be an algebraically closed field. Let x = [(A, λ, ι)] ∈ Ag,d,n(k)

be a geometric point of Ag,d,n not contained in the supersingular stratum. The

central leaf C(x) ⊂ Ag,d,n passing through x is irreducible.
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Write d = d′·m, where p does not divide m and d′ is a power of p. Sup-

pose that this theorem has been proved with polarizations of degree (d′)2 with

gcd(pd′, n) = 1. The theorem follows using Proposition 2.12 and the remark fol-

lowing that proposition. Consider the finite étale morphism πg,d,n;d′ : Ag,d,n →
Ag,d′,n. Let y := πg,d,n;d′(x) and let C(y) be the leaf in Ag,d′,n passing through y.

The morphism πg,d,n;d′ induces a finite étale morphism f : C(x)→ C(y), which

is dominated by the profinite étale Galois cover over C(y) given by m∞-level

structures. If C(y) has been shown to be irreducible, then it follows from

Proposition 2.12 that C(x) is irreducible as well. From now on in this section

we suppose that d is a power of p.

The starting point of our proof of Theorem 4.1 is that the irreducibil-

ity nonsupersingular Newton polygon strata in Ag,1,n implies the existence of

points in any irreducible component of a central leaf C in Ag,1,n which belongs

to a specified isogeny class in the Newton polygon stratum containing C.

4.2. Proposition. Let g, n, d be positive integers as in Theorem 4.1. Let

k ⊃ Fp be an algebraically closed field. Let C be a central leaf in Ag,d,n over

k, and let ξ be the symmetric Newton polygon attached to C . Let W 0
ξ be

the open Newton polygon stratum in Ag,1,n with symmetric Newton polygon ξ.

Let C ′ be an irreducible component of C . For any point y = [(By, µy, ιy)] ∈
W 0
ξ (k), there exists a point x = [(Ax, λx, ιx)] ∈ C ′(k) and a quasi-isogeny

θ ∈ Hom(Ax, By)⊗Z Q such that θ∗(µy) = λx.

Proof. If C is contained in the supersingular locus, this statement is clear.

For the rest of the proof we assume C is not contained in the supersingular

locus. By the almost product structure explained in Theorem 2.9, we obtain

finite surjective morphisms f : T � C and g : J � I over the central leaf C

and the isogeny leaf I respectively, a finite surjective morphism Φ : T × J �
W 0
ξ , and a quasi-isogeny

Θ ∈ Hom
(
AT×J , BW 0

ξ
×W 0

ξ
,Φ(T × J)

)
⊗Z Q

such that Θ∗(λAT×J ) = µBT×J . Here (AT×J , λT×J ) is the pull-back to T × J of

the universal polarized abelian scheme over the central leaf C in Ag,d,n and

(BW 0
ξ
×W 0

ξ
,Φ (T × J), µBT×J ) is the pull-back by Φ of the universal principally

polarized abelian scheme over the open Newton polygon stratum W 0
ξ in Ag,1,n.

Let T ′ = f−1(C ′), an open subscheme of T . The image Φ(T ′ × J) of

T ′ × J under Φ is a union of irreducible components of W 0
ξ , hence equal to

W 0
ξ because W 0

ξ is irreducible by Theorem 3.1. Let (t, u) ∈ (T ′ × J)(k) be a

k-point of the pre-image f−1(y) of y under Φ and let x = f(t) = (Ax, λx, ιx)

be the image of t in C ′. Let θ = Θt, the fiber of the quasi-isogeny Θ at t,

which is a quasi-isogeny from Ax to By such that θ∗(µy) = λx. �
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Remark. A special case of Proposition 4.2 is the following claim in the

introduction: For any hypersymmetric point y = (By, µy, ιy) in an open New-

ton polygon W 0
ξ and any irreducible component C of a leaf contained in W 0

ξ ,

there exists a hypersymmetric point x = (Ax, λx, ιx) such that Ax is isogenous

to By.

4.3. Proposition. Let g, d, n be positive integers as in Theorem 4.1. Let

C be a leaf in Ag,d,n over an algebraically closed field k ⊃ Fp, and let x1 =

[(B1, µ1, ι1)], x2 = [(B2, µ2, ι2)] ∈ C(k) be two hypersymmetric k-points C

such that there exists a quasi-isogeny θ from B2 to B1 with θ∗(µ2) = µ1.

Then x2 belongs to the prime-to-p Hecke orbit of x1; i.e., there exists a quasi-

isogeny ψ ∈ Hom(B2, B1)⊗ZQ such that ψ∗(µ1) = µ2 and the homomorphism

ψ[p∞] : B2[p∞]→ B1[p∞] induced by ψ is an isomorphism.

Reduction of Theorem 4.1 to Proposition 4.3. Let ξ be the symmetric

Newton polygon attached to C . By [6, Prop. 4.1], there exists a hypersym-

metric point y ∈ Wξ(k). Apply Proposition 4.2 to a hypersymmetric point

y ∈ Wξ(k). One sees that every irreducible component of C contains a k-

point x such that there exists a quasi-isogeny θ : Bx → Ay with θ∗(λy) = µx.

Proposition 4.3 tells us that the prime-to-p Hecke correspondences operate

transitively on the set of irreducible components of C . By Theorem 2.12 this

implies Theorem 4.1 .

4.4. We set up notation for a proof of Proposition 4.3 by group theory.

Suppose we have a polarized abelian variety (A, λ) over a field K. Let ∗λ :

End0(A) → End0(A) be the Rosati involution attached to the polarization λ.

We define a linear algebraic group G = G(A) = G(A,λ) over Q by

G(R) = U (End(A)⊗R, ∗) := {x | x· ∗ (x) = 1 = ∗(x)·x}

for every commutative Q-algebra R. In other words, G(A,λ) is the unitary

group attached to the semisimple Q-algebra with involution (End0(A), ∗λ).

Clearly a quasi-isogeny β : B → A induces an isomorphism between G(A,λA)

and G(B,β∗λA).

4.5. Lemma. Let (A, λ) be a polarized abelian variety over an algebraically

closed field k ⊃ F. Assume that there is an abelian variety B over F such that

B ×Spec(F) Spec(k) is isogenous to A. The group G = G(A,λ) is a connected

reductive linear algebraic group, isomorphic to a product
∏a
i=1 Gi, where each

Gi is a reductive algebraic group over Q such that Gi ×Spec(Q) Spec(Q) is iso-

morphic to Spb2m or GLbN for suitable integers b,m,N .

Proof. Let α be a quasi-isogeny from B×Spec(F) Spec(k) to A and let µ

be a polarization on B which is a multiple of α∗(λ). Then α induces an iso-

morphism between the two semisimple algebras with involution, (End0(A), ∗λ)
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and (End0(B), ∗µ). So we may and do assume that k = F. Changing A by

an isogeny, we may assume that A ∼=
∏

1≤j≤r C
mj
j , where each Cj is a simple

abelian variety over F, each mj is a positive integer, and Hom(Cj , Cj′) = (0)

if j 6= j′. There exist polarizations λ1, λr on C1, . . . , Cr such that λ is equal

to the product polarization λ1 × · · · × λr on A = Cm1
1 × · · · × Amrr . Let ∗j

be the Rosati involution on End0(Cj) attached to λj . We have a product

decomposition (End0(A), ∗A) =
∏

1≤j≤r(End0(C
mj
j ), ∗j) of the semisimple al-

gebra with involution End0(A), ∗A), which induces a product decomposition

G(A,λ) =
∏

1≤j≤rG(C
mj
j ,λj)

. So we may and do assume that A ∼= Cm for a sim-

ple abelian variety C over F. The group G is isomorphic to the unitary group

attached to the semisimple algebra with positive involution (Mm(D), ∗), where

D = End0(C) is a division algebra which has a positive definite involution. A

Q-algebra of finite rank with a positive definite involution is called an Albert

algebra. For the classification by Albert, for more information and notation,

and for references see [16, §21], [21], and [7, 10.12–10.14].

According to Albert’s classification, there are four possible types for the

division algebra D = End0(A), the endomorphism algebra of an abelian variety

A, simple over a field K. In every characteristic all four types do occur for

some abelian variety over some field (Albert, Shimura, Gerritzen). However,

as Tate proved, over a finite field only two types can appear:

(III) D is a totally definite quaternion division algebra over a totally real

number field F , unramified at all finite places of F away from p.

(IV) D is a central division algebra over a totally imaginary quadratic exten-

sion L of a totally real number field F , D is unramified at every place

of F not lying above p, and K/F is split at all places of F above p.

See [32]. For further results and references see [27, §5].

Write GQ := G×SpecQ SpecQ. We list some of the basic properties of G

below. The proofs are straight forward.

• In case (III) above, GQ is isomorphic to Sp
[F :Q]
2m . So G is connected and

simply connected.

• In case (IV) above, the group GQ is isomorphic to GL
[F :Q]
N , where

N = m ·
»

dimL(D). The algebraic group G over Q is connected; its

center is the kernel of the norm homomorphism NmL/F : ResL/QGm →
ResF/QGm. The derived group Gder of G is simply connected. The

quotient torus G/Gder is isomorphic to the torus Ker
Ä
NmL/F

ä
above.

We have shown that the groupG in Lemma 4.5 is a product of a finite number of

algebraic groups over Q of type (III) or (IV) above. Clearly G is connected. �

We need the weak approximation property for the reductive group G over

Q for the prime p.
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4.6. Lemma. Let G be the unitary group attached to a semisimple al-

gebra with positive definite involution (S, ∗) over Q. Suppose that (S, ∗) =∏a
i=1 (Si, ∗i) and each Si is a matrix algebra over a division algebra Di of type

(III) or (IV) as in the proof of Lemma 4.5. Then the connected reductive linear

algebraic group G is a Q-rational variety. Especially weak approximation holds

for G.

Proof. Let S− be the Q-vector subspace of S consisting of all elements

x ∈ S satisfying x+ ∗(x) = 0; it is naturally identified with the Lie algebra of

G. Let S be the ring scheme over Q attached to S; we see that S is isomorphic

to G[S:Q]
a as a vector scheme over Q and S(Q) is naturally identified with S.

Moreover, G is a closed subscheme of S. Let S− be the vector subscheme of S

over Q such that S−(Q) = S−. The standard formulas

u = (1− a) · (1 + a)−1, a = (1− u) · (1 + u)−1a ∈ S−1, u ∈ G

for the Cayley transform define a Q-birational map f : S− 99K G; i.e., the

Cayley transform induces an isomorphism between an open dense subscheme

of S−S and an open dense subscheme ofG. We have shown thatG isQ-rational.

It follows that weak approximation holds for G; see [30, Prop. 7.3]. �

4.7. We explain the definition of a quasi-bitorsor to be used in the proof

of Proposition 4.3. Let (A, λ) and (B,µ) be polarized abelian varieties over a

field K (eventually we will assume all endomorphisms are defined over K, the

polarizations are principal, and the polarized abelian varieties are in the same

Hecke orbit).

For a commutative Q-algebra R, a symplectic R-isogeny from (A, λ) to

(B,µ) is, by definition, an element of Hom(A,B) ⊗Z R which has an inverse

in Hom(B,A) ⊗Z R and which respects the polarizations. Define a functor

T = T(A,B) = T((A,λ),(B,µ))) on the category of all commutative Q-algebras by

requiring that T(R) is the set of symplectic R-isogenies from (A, λ) to (B,µ),

for every commutative Q-algebra R. (We should not confuse the notions of an

R-isogeny and of an isogeny defined over R.) The linear group G(A,λ) operates

naturally on T on the right by composing arrows in the following pattern

A → A → B. Similarly, the linear group G(B,µ) operates on T on the left by

composing arrows in the pattern A → B → B, compatible with the previous

right action by G(A,λ). This functor T is representable, either by the empty

scheme, or by a (G(B,µ), G(A,λ))-bitorsor over Q.

Proof of Proposition 4.3. Let G1 = G(B1,µ1), G2 = G(B2,µ2), and T =

T((B2,µ2),(B1,µ1). We know from Lemma 4.5 that G1 and G2 are connected

reductive linear algebraic groups. We also know that T(Q) 6= ∅ by assumption,

so T is a trivial (G1, G2)-bi-torsor over Q. By Lemma 4.6, G1 satisfies weak

approximation, so the G1-torsor T also satisfies weak approximation. In other
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words, the image of T(Q) in T(Qp) is dense for the p-adic topology. Since x1 and

x2 are on the same leaf C, there exists an isomorphism ψp : (B2, µ2)[p∞]
∼−→

(B1, µ1)[p∞]). Because B1 and B2 are hypersymmetric, Hom(B2, B1)⊗ZQp
∼−→

Hom(B2[p∞], B1[p∞]) and ψp corresponds to a Qp-point tp of T under the

above isomorphism. Let Up be the open subset of T(Qp) consisting of all

elements t′p ∈ T(Qp) such that t′p induces an isomorphism from (B2, µ2)[p∞]

to (B1, µ1)[p∞]; it is not empty because tp ∈ Up. By the weak approximation

property of T, there exists an element t ∈ T(Q)∩U under the natural injection

T(Q) ↪→ T(Qp). The quasi-isogeny ψ from B2 to B1 corresponding to t satisfies

the required properties. We have proved Proposition 4.3 and Theorem 4.1. �

Remark. The assumption that x1, x2 are hypersymmetric is used in the

proof above to guarantee that Up is not empty.

The next theorem is a special case of Theorem 4.1. We state this special

case explicitly because the proof below is completely different from the proof

of Theorem 4.1 given above.

4.8. Theorem. Let (A, λ) be a principally polarized abelian variety which

is not supersingular. Suppose A[p∞] is a minimal p-divisible group. The central

stream Zξ passing through [(A, λ)] =: x ∈ Ag,1 is geometrically irreducible.

The proof of Theorem 4.8 is divided into three steps.

Step 1. For every Newton polygon ξ the central stream Zξ ⊂ Ag,1 is an

EO-stratum: Zξ := C(x) = Sϕ, where ϕ := ((A, λ)[p] mod ∼=).

Proof of Step 1. The central stream is defined by the fact that it is the

central leaf where the p-divisible groups are minimal. For a minimal p-divisible

group X over k, we know that X[p] determines the isomorphism class of X;

see [26, 1.2] and Theorem 2.11. Moreover, a principal quasi-polarization on a

minimal p-divisible group is unique; see [25, 3.7]. This proves that the usual

inclusion C(x) ⊂ Sϕ in this case is an equality. �

Step 2. Use notation as in [24]. Let ϕ = {ϕ(1), · · · , ϕ(g)} be an elemen-

tary sequence and let Sϕ ⊂ Ag,1 be the corresponding EO-stratum. Write

g = 2r, respectively g = 2r − 1; i.e., r = dg/2e. Then

ϕ(r) = 0⇐⇒ Sϕ ⊂Wσ.

Proof of Step 2. Let N1 ⊂ · · · ⊂ N2g = N = X[p] be a final filtration.

Suppose ϕ(r) = 0; we see that Ng+r/Nr is annihilated by F and by V . Hence

X/Nr is superspecial. Thus X is supersingular. We conclude Sϕ ⊂Wσ.

Define u(ξ) to be the elementary sequence of the minimal p-divisible group

with Newton polygon equal to ξ. Suppose ξ is “almost supersingular; i.e., either

ξ = (r, r−1)+(1, 1)+(r−1, 1) or ξ = (r, r−1)+(r−1, r). Direct computation
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shows that

u(ξ) := ES(H(ξ)[p]) = {0, . . . , ϕ(r − 1) = 0, ϕ(r) = 1, . . . , 1}.

In this case Su(ξ) 6⊂Wσ. For every ϕ with ϕ(r) 6= 0 we have ϕ � ES(H(ξ)[p]).

Using [24, Th. 1.3], we conclude

ϕ(r) 6= 0 =⇒ Su(ξ) ⊂ Sϕ; hence Sϕ 6⊂Wσ. �

Step 3. End of the proof of Theorem 4.8. In [9, Th. 11.5], we see that cer-

tain EO-strata are geometrically irreducible. By Step 2 we see that these are

exactly the EO-strata not contained in the supersingular locus. Moreover, us-

ing Step 1 we conclude that Zξ = Su(ξ) is geometrically irreducible for every

ξ 6= σ and u(ξ) := ES(H(ξ)[p]). This proves Theorem 4.8. �

5. Monodromy

In this section we show that the p-adic monodromy of a leaf is maximal

using the method in [5, §5] as indicated in [5, 6.3].

Maximality of monodromy is an irreducibility statement relative to the

base. We have already seen that every nonsupersingular leaf C is irreducible,

so the maximality of p-adic monodromy means that certain profinite étale

cover S of C is irreducible, or equivalently every finite quotient cover Sb of

C is irreducible. The covers Sb are described in Theorem 5.13. The point of

the proof is to show that the fiber in Sb above a hypersymmetric point of the

leaf C belongs to the same prime-to-pd Hecke orbit, so Sb is irreducible by

Theorem 2.13.

This phenomenon that the p-adic monodromy is related to the prime-to-p

Hecke correspondences is reminiscent of the product formula as envisioned by

H. Hida.

5.1. Definition. Let K be a field of characteristic p > 0, let K be an

algebraic closure of K, and let Kperf be the perfection of K in K. Let GalK :=

Gal(K/Kperf), naturally isomorphic to Gal(Ksep/K). Let X be a p-divisible

group over K. Let X0 be a p-divisible group over a finite subfield Fq ⊂ K such

that

(i) There exists a quasi-isogeny

ψ0 : X0×Spec(Fq)Spec(K) −→ X×Spec(K)Spec(K).

(ii) The natural map canq in the diagram

End0(X0)
canq−→ End0

Ä
X0×Spec(Fq)Spec(F)

ä ∼−→ End0
Ä
X0×Spec(Fq)Spec(K)

ä
is an isomorphism.
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Consider the set

QIsog[X0, X] := QIsog
Ä
X0×Spec(Fq)Spec(K), X×Spec(K)Spec(K)

ä
of quasi-isogenies, which has the following properties:

• QIsog[X0, X] has a natural structure as a right End0(X0)×-torsor and

a natural continuous left action by GalK .

• The right action of End0(X0)× on QIsog[X0, X] is compatible with

the left Galois action, i.e. σ(ψ · u) = (σψ) · u for all σ ∈ GalK , all

ψ ∈ QIsog[X0, X], and all u ∈ End0(X0)×.

Define a continuous homomorphism ρX,ψ0 : GalK −→ End0(X0)× by

σψ0 = ψ0 · ρX,ψ0(σ)∀σ ∈ GalK .

We call ρX,ψ0 the p-adic monodromy homomorphism of X with respect to ψ0.

5.2. Remarks. (1) Suppose that t is a positive integer which is a common

multiple of the denominators of the slopes of X. Then for q = pt, there

exists a decent p-divisible group X0 over the finite field Fq which satisfies the

requirements (i) and (ii); see Remark 5.3.

(2) It is not difficult to see that if X0, X1 are two p-divisible groups over

Fq satisfying (i) and (ii), then X1 is up to isogeny a Galois twist of X0 via a

continuous homomorphism

χ : Gal(F/Fq) −→ Z
Ä
End0(X0)

ä×
,

where Z
Ä
End0(X0)

ä
is the center of End0(X0). In other words the Galois group

Gal(F/Fq) acts on QIsog[X0, X1] via a character χ as above. If, in addition,

X0 and X1 are decent, then the character χ has finite image; see Remark 5.3.

(3) Suppose that µ is a polarization on X and µ0 is a polarization on X0,

and ψ∗0(µ) = µ0 as polarizations on X0×Spec(Fq) Spec(K). Denote by U the

subgroup of End0(X0)× consisting of all quasi-isogenies from X0 to itself which

preserve the polarization µ0. Let

UQIsog[X0, X] := UQIsog
Ä
X0 ×Spec(Fq) Spec(K), X ×Spec(K) Spec(K)

ä
be the set of all elements ψ in QIsog(X0×Spec(Fq)Spec(K), X×Spec(K)Spec(K))

such that ψ∗(µ) = µ0. Then UQIsog[X0, X] is stable under both the left action

by GalK and the right action by the subgroup U of End0(X0)×. So the p-adic

monodromy homomorphism ρX,ψ0 : GalK → End0(X0)× factors through the

subgroup U ⊂ End0(X0)×.

(4) If ψ0 is an isomorphism

ψ0 : X0×Spec(Fq) Spec(K)
∼−→ X×Spec(K) Spec(K),

then

ρX,ψ0(GalK) ⊆ Aut(X0).
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Similarly to the situation of (2) above, if ψ0 is an isomorphism

ψ0 : (X0, µ0)×Spec(Fq)Spec(K)
∼−→ (X,µ)×Spec(K)Spec(K),

then ρX,ψ0(GalK) ⊆ Aut(X0, µ0).

(5) Suppose that X2 is a p-divisible group over Fq, ψ2 is an element of

QIsog[X2,X], and δ is the quasi-isogeny from

X2 ×Spec(Fq) Spec(F) to X0 ×Spec(Fq) Spec(F)

such that ψ0 ◦ δ = ψ2. Then

(†) ρX,ψ2(σ) = δ−1 ◦ ρX,ψ0(σ) ◦ σδ ∀σ ∈ GalK ,

where ψ2 = ψ0 ◦ δ. In particular, if ψ1 = ψ ◦ γ for an element γ ∈ End0(X0)×,

then

ρX,ψ1(σ) = γ−1 · ρX,ψ0(σ) · γ ∀σ ∈ GalK .

The formula (†) also shows that if K ⊃ F, then the p-adic monodromy homo-

morphism for a p-divisible group X is unique up to conjugation.

(6) Suppose that β : X → X ′ is a quasi-isogeny of p-divisible groups over

K and that ψ′ = β ◦ ψ. Then ρX′,ψ′ = ρX,ψ.

(7) From (1) and (4) above, we see that the p-adic monodromy homomor-

phism ρX attached to a p-divisible group is unique up to

(a) conjugation, and

(b) multiplication by a continuous homomorphism

χ : GalK −→ Z(End0(X))×.

5.3. Remarks. (1) Recall that a p-divisible group Y over a perfect field

L ⊃ Fp is said to be decent for if its associated isocrystal is generated by

elements vi satisfying an equation of the form F tv = priv with t, ri ∈ Z>0; see

[31, 2.13]. The group Gm,n in Section 2.4 is a decent p-divisible group over Fp;
its base change to Fpm+n satisfies requirement (i) in Definition 5.1.

(2) If Y1, Y2 are decent p-divisible groups over a perfect field K ⊃ Fp, then

there exists a finite extension field L of K such that the canonical map

Hom(Y1×Spec(K)Spec(L), Y2×Spec(K)Spec(L))
∼−→ Hom(Y1×Spec(K)Spec(K), Y2×Spec(K)Spec(K))

is an isomorphism.

(3) From (2) above and Remarks 5.2(1) and (4), we see that if we require

the “base quasi-isogeny” ψ0 in Definition 5.1 to be decent, then the p-adic

monodromy homomorphism attached to a p-divisible group X is unique up to

(a) conjugation, and

(b) multiplication by a homomorphism χ : GalK −→ Z(End0(X))× with

finite image.
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5.4. We discuss a variant of Definition 5.1 on p-adic monodromy in the

case of a completely slope divisible p-divisible group over an integral base

Fp-scheme and also in the case of a p-divisible group with constant Newton

polygon over a noetherian normal integral Fp-scheme.

Let 0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = Y be the slope filtration of a completely

slope divisible p-divisible group Y → S with respect to natural numbers t ≥
r1 > r2 > · · · > rm ≥ 0 as in Section 2.15, where S is an integral Fq scheme,

q = pt. We will show that

The p-adic monodromy homomorphism for Y → S factors

through the fundamental group π1(S) of S and can be computed

via a projective system of finite étale coverings of S.

We follow the notation in Section 2.15.

For every geometric point s̄ of S, we get homomorphisms

ρGi,b,s̄ : π1(S, s̄) −→ Aut
Ä
(Γi,b)s̄

ä
from the fundamental group of S to the group of automorphisms of the com-

mutative bialgebra (Γi,b)s̄ over Fq. The homomorphisms ρGi,b,s̄ are compatible

if we fix i and let b vary. Taking the limit, we get homomorphisms

ρGi,s̄ : π1(S, s̄) −→ lim←−
b

Aut
Ä
(Γi,b)s̄

ä
.

Notice that the target lim←−b Aut((Γi,b)s̄) of the homomorphism ρGi,s̄ is naturally

isomorphic to the opposite of the group of automorphisms of Gi ×S s̄. Let

ρY,s̄ : π1(S, s̄) −→
m∏
i=1

lim←−
b

Aut
Ä
(Γi,b)s̄

ä
be the product of the homomorphisms ρGi,s̄. The composition of ρY,s̄ with

the inverse map on π1(S, s̄) can be regarded as a homomorphism from π1(S, s̄)

to the group of automorphisms Aut(Ys̄) of the geometric fiber Ys̄ of Y ; see

Remarks 2.16 and 2.17. We denote the composition also by ρY,s̄ if no confusion

is possible.

Suppose that X → S is a p-divisible group with constant Newton polygon

over a noetherian normal integral Fp-scheme S. By [29, Th. 2.1], there exists a

completely slope divisible p-divisible group Y → S and a quasi-isogeny φ : Y →
X over S. Let s̄ be a geometric point of S. The quasi-isogeny φs̄ induces an

injection from jφ,s̄ : Aut(Ys̄) to End0(Xs̄)
×. Let ρX,φ,s̄ be the composition of

ρY,s̄ with jφ,s̄; we call it the p-adic monodromy attached to Y
φ−→ X → S with

base point s̄. It is not difficult to check that the homomorphism

ρX,φ,s : π1(X, s̄)→ End0(Xs̄)
×

is independent of the choice of quasi-isogeny φ, so the subscript “φ” can be

dropped from the notation ρX,φ,s.
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5.5. Remarks. (1) The construction/definition of ρY,s̄ is independent of

the choice of q = pt in the following sense. Suppose that OS contains Fqa for

some positive integer a. Then Ci,b,qa = Ci,b,q ⊗Fq Fqa for all i = 1, . . . ,m and

all b ≥ 1. Consequently the homomorphisms ρY,q,s̄ and ρY,qa,s̄ defined using q

and qa respectively are equal, as homomorphisms from π1(S, s̄) to Aut(Ys̄).

(2) The construction/definition of the p-adic monodromy homomorphism

in Section 5.4 coincides with Definition 5.1 up to conjugation. Let S be an

integral scheme with function field K. Let η be the generic point of S and let

η̄ be the geometric generic point of S. Let Y → S be a completely p-divisible

group as in Section 5.4. For i = 1, . . . ,m, let Xi be the p-divisible group over

Fq with Xi[p
b] = Spec

Ä
(Γi,b)η̄

ä
over Fq; each Xi is decent by construction. Let

X = X1 ×Spec(Fq) · · · ×Spec(Fq) Xm. The theory of Φ-étale part in [35] defines

an isomorphism

ψ : X ×SpecFq η̄
∼−→ Yη̄.

The p-adic monodromy homomorphism

ρYη ,ψ0 : Gal(Ka/Kperf) −→ End0(X)× = End0(X1)× × · · · × End0(Xm)×

defined in Definition 5.1 is compatible with the homomorphism

ρYη ,ψ : π1(S, η̄)→ Aut(X) = Aut(X1)× · · · ×Aut(Xm)

via the natural surjection Gal(Ka/Kperf)� π1(S, η̄) and the inclusion Aut(X)

↪→ End0(X)×. To see this, it suffices to check for the case when m = 1, because

Yη̄ splits canonically into a product (Y1)η̄ × (Y2/Y1)η̄ · · · × (Ym/Ym−1)η̄, which

induces a splitting of ψ as a product ψ1×· · ·ψm. Furthermore, the ρYη ,ψ is the

product of the p-adic monodromy homomorphisms ρ(Yi/Yi−1)η,ψi
. Assume that

Y is isoclinic and completely p-divisible; let C(b) be the étale sheaf commuta-

tive Fq-bialgebras over S attached to Y [pb] as before. The theory of Φ-étale

part shows that the projective system lim←−b Isom (C(b), C(b)η̄ × S) of sheaves on

Sfppf is isomorphic to the projective system lim←−b Isom
Ä
X[pb]×Spec(Fq) S, Y [pb]

ä
of sheaves. The claim on compatibility follows.

5.6. Theorem. Let k ⊃ Fp be an algebraically closed field. Let n be

a positive integers with n ≥ 3 with gcd(n, pd) = 1. Let C be a leaf over

k in Ag,d,n, and let x = [(Ax, λx, ηx)] be a k-point on C . Then the p-adic

monodromy homomorphism

ρ(A,λ)[p∞]/C,x : π1(C, x) −→ Aut ((Ax, λx)[p∞])

for the polarized p-divisible group attached to the universal polarized abelian

scheme (A, λ) over C is surjective.

Write d = d′·m, where p does not divide m and d′ is a power of p. Suppose

that this theorem has been proved with polarizations of degree (d′)2. Then
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the theorem follows using Proposition 2.13 and the remarks following that

proposition, as in the paragraph after the statement of Theorem 4.1. From

now on we suppose that d is a power of p.

Remark. It suffices to prove Theorem 5.6 for one k-point x ∈ C(k). In

the following we will take a hypersymmetric point x0 ∈ C(k) and prove Theo-

rem 5.6 in the case x = x0.

We will first prove Theorem 5.6 in the special case Theorem 5.9, when

A0[p∞] is completely slope divisible. The basic argument is more transparent

and not burdened with extra technical complications such as Proposition 5.11.

5.7. Let k be an algebraically closed field as before. Let C ⊂ Ag,d,n be a

leaf over k such that the restriction to C of the p-divisible group attached to

the universal abelian scheme is completely slope divisible, or equivalently there

exists a point x = [(Ax, λx, ιx)] on C such that Ax[p∞] is completely slope

divisible. Assume in addition that C is not contained in the supersingular

locus. By Theorem 4.1, the leaf C contains a k-point x0 = [(A0, λ0, ι0)] which

is hypersymmetric. Moreover, C is smooth and irreducible. It is convenient to

use the definition of p-adic monodromy explained in Section 5.4, because the

p-divisible group A[p∞]→ C is completely slope divisible. Let

0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = A[p∞]

be the slope filtration of A[p∞] over C. Let

ρA[p∞]/C,x0 : π1(C, x0) −→ Aut((A0, λ0)[p∞])

be the p-adic monodromy homomorphism explained in Section 5.4. Here the

polarization λ of the abelian scheme A → C induces a polarization of the

p-divisible group A[p∞]→ C, again denoted by λ, which is compatible with the

slope filtrations onA[p∞]→ C and on the dual ofA[p∞]→ C. Hence the p-adic

monodromy homomorphism factors through the subgroup Aut((A0, λ0)[p∞])

of Aut(A0[p∞]).

Let LZp := Aut((A0, λ0)[p∞]) and denote by LZ/pbZ the finite image of

LZp in the quotient group Aut((A0, λ0)[pb]) for every positive integer b. Note

that the group Aut((A0, λ0)[pb]) can be infinite, while LZp/pbZ is finite for all b.

Clearly we have

LZp = lim←−
b

LZ/pbZ,

the projective limit of the finite groups LZ/bZ, where the transition maps in the

projective system are all surjective. The p-adic monodromy homomorphism

ρA[p∞]/C,x0 : π1(C, x0) −→ Aut((A0, λ0)[p∞])
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comes from a right étale LZp-torsor T over C, constructed from the projective

system (
m∏
i=1

Γi,b

)
b

of étale covers of C, analogous to the “reduction of the structural group”

procedure. Stated differently, we have a projective system of finite étale LZ/pbZ-

torsors Tb over C such that T = lim←−b Tb and
∏m
i=1 Γi,b is the contraction product

Tb ×
LZ/pbZ (Γi,b)x0 , i.e., the finite étale cover of C attached to the LZ/pbZ-

torsor Tb and the natural action of Tb on the fiber (Γi,b)x0 of Γi,b at x0. By

construction, for each b ≥ 1 the composition of the homomorphism π1(C, x0)→
LZ/pbnZ associated to the LZ/pbZ and the inclusions

LZ/pbZ ↪→ Aut(A0[pb]) =
m∏
i=1

Aut ((Γi,b)x0)

is equal to the homomorphism from π1(C, x0) to
∏m
i=1 Aut((Γi,b)x0) attached

to the family of étale covers (Γi,b)i=1,...,m. The inverse limit of the image in

Aut(A0[pb]) of this homomorphism π1(C, x0) → Aut(A0[pb]), as b goes to ∞,

is equal to the image of the p-adic monodromy homomorphism ρ(A,λ)[p∞]/C,x0 .

The natural projections Tb+1 → Tb are surjective and T is the projective limit

of the Tb’s.

The set of k-points of the LZp-torsor T can be canonically identified with

the set of isomorphism classes of quadruples (B, λB, ι, ψ), where [(B, λB, ψ)]

is an k-point of C, in particular ι is a symplectic level-n structure of the

principally polarized abelian variety (B, λ), and

ψ : (A0, λ0)[p∞]
∼−→ (B, λB)[p∞]

is an isomorphism. The set of k-points of the LZ/pbZ-torsor Tb is the set of iso-

morphism classes of quadruples [(B, λB, ι, ψb)], where [(B, λB, ι)] is a k-point

of C and ψb : (A0, λ0)[pb]
∼−→ (B, λB)[pb] is an isomorphism which can be lifted

to an isomorphism ψ : (A0, λ0)[p∞]
∼−→ (B, λB)[p∞] of polarized p-divisible

groups.

More generally, for a k-scheme S, the set of S-points of the LZ/pbZ-torsor

Tb can be described similarly. It is the set of isomorphism classes of quadruples

[(B, λB, ι, ψb)], where [(B, λB, ι)] is an S-point of C as before, so that B → S is

a g-dimensional abelian scheme, λB is a polarization on B → S of degree d, ι is

a level-n structure for B → S, and all geometric fibers of (B, λB)[p∞]→ S are

isomorphic to (A0, λ0)[p∞] after suitable extension of base fields. The fourth

element ψb in the above quadruple is an isomorphism

ψb :
m∏
i=1

(Xi/Xi−1)[pb]×Spec(k) S
∼−→

m∏
i=1

(Yi/Yi−1)[pb]×C S,
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which respects the polarizations induced by λ0 and λB respectively, such that

for each N ≥ b the isomorphism ψb over S can be lifted étale locally to a

polarization-preserving isomorphism

ψN :
m∏
i=1

(Xi/Xi−1)[pN ]×Spec(k) S
∼−→

m∏
i=1

(Yi/Yi−1)[pN ]×C S.

In the above, 0 ⊂ X1 ⊂ · · · ⊂ Xm = A0[p∞] denotes the slope filtration on

A0[p∞] and 0 ⊂ Y1 ⊂ · · · ⊂ Ym = A[p∞] is the slope filtration on the completely

slope divisible p-divisible group A[p∞]→ C. Notice that the base change to S

of the slope filtration for A[p∞]→ C is the slope filtration for B[p∞]→ S.

Our goal is to prove a strong version of the maximality of the p-adic

monodromy homomorphism ρA[p∞]/C,x0 which asserts that its image is equal

to Aut ((A0, λ0)[p∞]). This is equivalent to the statement that the LZ/pbZ-

torsor Tb is geometrically irreducible for every b ≥ 1.

5.8. (notation as in §5.7). To prove that LZ/pbZ-torsor Tb is irreducible, we

will use the prime-to-pHecke correspondences on LZ/pb . These correspondences

come from the action of the locally compact group Sp2g(A
(p)
f ) on the prime-to-

p tower (Tb;c)c defined below, where c runs through all positive multiples of n

such that gcd(c, p) = 1. For each positive integer multiple c of n not dividing

p, let Cc := C ×Ag,d,n Ag,d,c and let Tb;c := Tb ×C Cc. Thus Tb;c is a torsor

over Tb for the group Sp2g(Z/cZ)(n), the group of all elements of Sp2g(Z/cZ)

which are congruent to Id modulo n. Let T∼b be the projective limit of the

tower (Tb;c)c.

The action of the group Sp2g(A
(p)
f ) on the prime-to-p tower

C∼ :=
Ä
C ×Ag,d,n Ag,d,c

ä
c

lifts to an action on T∼b , described below.

First we describe the set of S-valued points of T∼b for any k-scheme S. It

consists of isomorphism classes of all quadruples (B, λB, ι̃, ψb), where

• (B, λB)→ S is a g-dimensional polarized abelian scheme over S up to

prime-to-p quasi-isogenies, deg(λB) = d2;

• ι̃ : H1(A0,A
(p)
f )×S ∼−→ H1(B/S,A(p)

f ) is a symplectic isomorphism such

that the image of [(B, λB, ι̃)] in Ag,d,n factors through C ↪→ Ag,d,n; and

• ψb = (ψb,i)1≤i≤m is a family of isomorphisms ψb,i, i = 1, . . . ,m as in

Section 5.7, so that each ψb,i is an isomorphism (Xi/Xi−1)[pb]×Spec(k)

S
∼−→ (Yi/Yi−1)[pb] ×C S such that for each N ≥ b ψb,i can be extend

étale locally to an isomorphism

(Xi/Xi−1)[pN ]×Spec(k) S
∼−→ (Yi/Yi−1)[pN ]×C S.
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An isomorphism between two quadruples (B, λB, ι̃, ψb) and (B′, λB′ , ι̃
′, ψ′b) is a

prime-to-p isogeny β from B to B′ which sends ι̃ to ι̃′ and ψb to ψ′b
Under the above description of points of the projective limit T∼b , the sym-

plectic group Sp(H1(A0,A
(p)
f ), 〈, 〉) operates on the right of T∼b . Suppose that γ

is an element of the symplectic group Sp(H1(A0,A
(p)
f ), 〈, 〉) and [(B, λB, ι

∼, ψb)]

is a point of T∼b ; then

[(B, λB, ι̃, ψb)] · γ = [B, λB, ι̃ ◦ γ, ψb)].

As usual, the action of the group Sp(H1(A0,A
(p)
f ), 〈, 〉) on T∼b induces a fam-

ily of algebraic correspondences on Tb. Recall that A0 is a hypersymmetric

abelian variety; hence the natural map End(A0) ⊗Z Zp → End(A0[p∞]) is an

isomorphism. Let ∗0 be the Rosati involution attached to the polarization λ0

of A0. Let H be the unitary group over Q attached to the semisimple algebra

End0(A0) with involution ∗0; it is the linear algebra group over Q such that for

every commutative Q-algebra R the set H(R) of R-valued points of H consists

of all elements x ∈ (End0(A0) ⊗Q R)× such that ∗0(x) · x = x · ∗0(x) = 1 in

(End0(A0) ⊗Q R)×. In other words H(R) is the group of symplectic R-iso-

genies from A0 to A0. We abuse the notation and denote by H(Zp) the

subgroup of H(Qp) consisting of symplectic Qp-isogenies which are automor-

phisms of A0[p∞]. Note that H(Zp) is a compact open subgroup of H(Qp).
Since A0 is hypersymmetric, the group H(Zp) is canonically isomorphic to the

group Aut((A0, λ)[p∞]) of automorphisms of the polarized p-divisible group

(A0, λ0)[p∞].

5.9. Theorem (notation as in §§5.7 and 5.8). In particular, k ⊃ Fp is an

algebraically closed field, gcd(n, p) = 1, n ≥ 3, and C is a leaf in Ag,d,n over k

such that the p-divisible of the universal abelian scheme A → C is completely

slope divisible.

(i) For any two k-points y1, y2 of Tb above x0, there exists an element δ

in the group Sp(H1(A0,A
(p)
f ), 〈, 〉) such that y1 belongs to the image

of y2 under the algebraic correspondence induced by δ. In particular,

the Hecke correspondences induced by elements of Sp(H1(A0,A
(p)
f ), 〈, 〉)

operates transitively on the set Π0(Tb) of irreducible components of Tb
for every positive integer b.

(ii) The LZ/pnZ-torsor Tb over k is irreducible for every b ≥ 1. Therefore

the p-adic monodromy homomorphism

ρ(A,λ)[p∞]/C,x0 : π1(C, x0) −→ Aut((A0, λ0)[p∞]

attached to the leaf C in Ag,d,n over k is surjective.
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Proof. The first assertion in statement (ii) follows from (i) as in Theo-

rem 2.13 by the argument of [4, Prop. 4.4]; see also the proof of Proposition

5.5 in [5]. The second part of (ii) follows from the first part.

As indicated in [5, 6.3.5], the methods in [5, §5] can be used to give a proof

of statement (i). Write y1 = [(A0, λ0, ι, ψb)] y2 = [(A0, λ0, ι, ψ
′
b)] in the notation

of Section 5.7, where the ι and ι′ are symplectic level-n structures on (A0, λ0)

and ψb, ψ
′
b are automorphisms of (A0, λ0)[pb] induced by automorphisms of

(A0, λ0)[p∞]. Pick a point z = [(A0, λ0, ι̃, ψb)] of T∼ above y1. Then z′ =

[(A0, λ0, ι̃, ψ
′
b)] is a point above y2. Denote by H(Z(p)) the intersection H(Q)∩

H(Zp) in H(Qp). Each element γ ∈ H(Z(p)) can be regarded as a prime-to-p

symplectic isogeny from A0 to itself. Moreover, γ induces an isomorphism from

(A0, λ0, ι̃, ψb) to (A0, λ0, γ
(p) ◦ ι̃, γp,b ◦ ψb), where γ(p) is the automorphism of

H1(A0,A
(p)
f ) induced by γ and γp,b is the automorphism of (A0, λ0)[pb] induced

by γ. The weak approximation theorem holds for the reductive group H over

Q; see Lemma 4.6. In particular there exists an element ξ ∈ H(Z(p)) such

that ξp,b ◦ ψb = ψ′b. Let δ be the element of Sp(H1(A0,A
(p)
f ), 〈, 〉) such that

ξ(p) ◦ ι̃ = ι̃ ◦ δ. Then we have

z = [(A0, λ0, ξ
(p) ◦ ι̃, ψ′b)] = z′ · δ,

so y1 is an image of y2 under the prime-to-p Hecke correspondence induced

by δ. We have proved that the image of the p-adic monodromy for C is equal

to LZ. �

We formulate Proposition 5.11 and the related Lemma 5.10, convenient

for the exposition of the proof of Theorem 5.6.

5.10. Lemma (Zink). Let Y be a p-divisible group over a field K ⊃ Fp
and let L be a field containing K . Then there exist isogenies α : X → Y and

β : Y → Z with X,Z completely slope divisible, with the following properties :

(1) Every isogeny α′ : X ′ → Y of p-divisible groups with X ′ completely slope

divisible factors through α; i.e., there exist an isogeny δ : X ′ → X such

that α′ = α◦δ. Similarly, every isogeny β′ : Y → Z ′ with Z ′ completely

slope divisible factors through β; i.e., there exists an isogeny ε : Z → Z ′

such that β′ = ε◦β. These properties characterize α and β respectively.

Moreover, these properties hold after extension of base fields K → L.

(2) The isogeny α induces an inclusion

End(X×Spec(K)Spec(L)) ⊃ End(Y ×Spec(K)Spec(L));

the isogeny β induces an inclusion

End(Y ×Spec(K)Spec(L)) ⊂ End(Z×Spec(K)Spec(L)).

Proof. The construction of β : Y → X is implicit in the proof of [35, Th. 7];

it is given by an inductive procedure. We recall briefly the construction. In
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Lemma 9 of [35], a “formula” for β is given in terms of Dieudonné modules

when the base field K is perfect and Y is isoclinic. This construction in terms

of Dieudonné modules can be reformulated in terms of the “small image” of

a suitable homomorphism between p-divisible groups, which settles the case

when Y is isoclinic. An induction on the length of the slope filtration finishes

the proof. See [35] for details. �

5.11. Proposition (Zink) (notation as in Theorem 5.6). There exists an

abelian scheme B over the leaf C and a p-primary isogeny β : A → B over C

with the following properties :

(i) The p-divisible group B[p∞]→ C is completely slope divisible.

(ii) For every geometric point x ∈ C(Ω), the isogeny βx : Ax → Bx induces an

inclusion
End(Ax[p∞]) ⊆ End(Bx[p∞]).

In particular, βx induces an inclusion End(Ax)⊗ZZ(p) ⊆ End(Bx)⊗ZZ(p).

Proof. Clearly it suffices to establish the existence of an isogeny

β[p∞] : A[p∞]→ B[p∞]

between p-divisible groups satisfying (i) and (ii). Applying Lemma 5.10 to

the generic fiber of A[p∞] → C, one obtains the desired p-primary isogeny

βK(C) : A[p∞]K(C) → B[p∞]K(C) over the spectrum of the function field K(C)

of C, which satisfies the properties in Lemma 5.10. Proposition 14 in [35] and

the proof of Theorem 7 in [35] show that the p-divisible group B[p∞] over

K(C) extends to a completely slope divisible p-divisible group B[p∞] over C

and the isogeny over K(C) extends to C.

We know that the p-divisible groups A[p∞] over C is geometrically fiber-

wise constant by assumption, while the p-divisible group B[p∞] over C is geo-

metrically fiberwise constant because it is completely slope divisible. Because

C is irreducible, we conclude that any isogeny between A[p∞] and B[p∞] is also

geometrically fiberwise constant. This implies that the same procedure, which

produced the isogeny βK(C) over the function field K(C) from the p-divisible

group A[p∞] over K(C), also produces the fiber βy of β at y when applied to

the fiber A[p∞]y of A[p∞], for every geometric point y ∈ C(k). �

5.12. (choose notation as in §§5.7 and 5.8). Let β : A→ B be as in Propo-

sition 5.11 and let β0 : A0 → B0 be the fiber of β over x0. Let µ be a polariza-

tion of B over C such that β∗(µ) is a multiple of λ. Let µ0 be the fiber of µ

at x0, a polarization of B0, and let ι′0 be the level-n structure on B0 induced

by β0. Write x0 = (A0, λ0, ι0), y0 = (B0, λ
′
0, ι
′
0). Let

ρ(B,λ′)[p∞] : π1(C, x0)→ Aut((B0, λ
′
0)[p∞])

be the p-adic monodromy homomorphism attached to (B, λ′)→ C.
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We use the definition of p-adic monodromy in Section 5.4. By the property

of β stated in Proposition 5.11, the isogeny β0 identifies Aut((A0, λ0)[p∞]) with

a subgroup of Aut(B0, µ0). We know that the image of ρ(B,µ) is contained in

the subgroup Aut((A0, λ0)[p∞]) of Aut(B0, µ0). We must show that image of

ρ(B,µ) is equal to Aut((A0, λ0)[p∞]).

Let H be the unitary group over Q attached to

(End0(A0), ∗λ0) = (End0(B0), ∗µ0).

Let

LZp = L(A0, λ0)Zp := Aut((A0, λ0)[p∞]

and

L′Zp := L(B0, µ0)Zp := Aut((B0, µ0)[p∞].

Let L′Z/bZ be the image of L′Zp in Aut((B0, µ)[pb]) and let LZ/bZ be the image

of LZp in Aut((B0, µ)[pb]). So LZp and L′Zp are both compact open subgroups

of H(Qp).

5.13. The p-adic monodromy representation attached to the polarized

p-divisible group (B[p∞], µ) → C comes from a right L′Zp-torsor T over C

defined the same way as before. As before, the right L′Zp-torsor T → C is the

projective of a tower of right L′Z/bZ-torsors Tb and the transition morphisms

Tb1 → Tb are finite étale surjective if b|b1.

The set of k-points T can be described as follows. It consists of all iso-

morphism classes of quadruples (Ax, λx, ιx, ψ), where [(Ax, λx, ιx)] =: x is a

k-point of C and

ψ : (B0, µ0)[p∞]
∼−→ (Bx, µx)[p∞]

is an isomorphism. In the above Bx (resp. µx) denotes the fiber of B (resp. µ)

above the point x ∈ C. The set of k-points of Tb and the set of S-points of Tb
of a k-scheme S can be described explicitly in a similar way as in Sections 5.7

and 5.8.

We know that the image of the p-adic monodromy representation is con-

tained in LZp , so the right L′Zp-torsor T over C is of the form S×LZp L′Zp , the

push-forward via LZp → L′Zp of a right LZp-torsor S over C. As before, the

LZp-torsor S → C is a projective limit of LZ/bZ-torsors Sb → C. Below are

explicit descriptions of S.

(I) k-points of S.

The set of k-points of the LZp-torsor S→ C is the set of isomorphism

classes of quadruples (Ax, λx, ιx, ψ), where

– [(Ax, λx, ιx)] =: x is a k-point of C, and

– ψ : (B0, µ0)[p∞]
∼−→ (Bx, µx)[p∞] is an isomorphism of polarized

p-divisible groups which induces an isomorphism (A0, λ0)[p∞]
∼−→

(Ax, λx)[p∞].
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(II) D-points of S for a k-scheme D.

It is more convenient to describe the set Sb(D) of D-points for mem-

bers Sb in the tower (Sb)b≥1 whose limit is S. The set Sb(D) consists of

all isomorphism classes of quadruples

(AD → D,λD, ιD, ψb),

where (A→ D,λD, ιD) defines a D-point of the leaf C and

ψb :
m∏
i=1

(Xi/Xi−1)[pb])×Spec(Fq) D
∼−→

m∏
i=1

(Zi/Zi−1)[pb]×C D

is an isomorphism over D satisfying the following properties:

(1) The isomorphism ψb respects the polarizations induced by µ0 and

µD respectively.

(2) For every geometric point y ∈ D, there exist isomorphisms

ψy : (B0, µ0)[p∞]
∼−→ (By, µy)[p

∞] and φy : (A0, λ0)[p∞]
∼−→ (Ay, µy)[p

∞]

such that ψy ◦ β0 = βy ◦ φy and the fiber of ψb at y is induced

by ψy.

(3) For every integer N > b, there exists an isomorphism

ψN :
m∏
i=1

(Xi/Xi−1)[pN ])×Spec(Fq) D
∼−→

m∏
i=1

(Zi/Zi−1)[pN ]×C D

such that properties (1) and (2) hold with b replaced by N .

The following notation is used in the above.

– β : A→ B is the isogeny over the leaf C in Proposition 5.11,

– (BD, µD) is the pull-back to D of the polarized abelian scheme

(B,µ) as in Proposition 5.11,

– 0 = Z0 ⊂ Z1 ⊂ · · ·Zm = B[p∞] is the slope filtration of the

completely slope divisible p-divisible group B[p∞] over C,

– 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = B0[p∞] is the slope filtration of the

completely slope divisible p-divisible group B0[p∞].

Write L′Zp =
∐m
i=1(LZp · ζi), where ζ1 = 1, . . . , ζm is a system of represen-

tatives of LZp\L′Zp , with ζ1 = 1. Then

L′Zp =
m∐
i=1

S×LZp (LZp · ζi),

a disjoint union of contraction products, and S is equal to S×LZp (LZp · ζ1).

Proof of Theorem 5.6. We need to show that the LZp-torsor S is irre-

ducible, or equivalently each of the LZ/bZ-torsors Sb → C is irreducible.

The group Sp(H1(A0,A
(p)
f ), 〈, 〉) ∼= Sp(H1(B0,A

(p)
f ), 〈, 〉) operates on the

torsor S = lim←− Sb, inducing prime-to-p Hecke correspondences on each Sb.
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The argument of Theorem 5.9 applies to the present situation and shows

that any two points y1, y2 of Sb lying above the hypersymmetric point x0 belong

to the same prime-to-p Hecke orbit. Suppose that yi = [(A0, λ0, ι0, ψi,b)], i =

1, 2, where ψi,b : (B0, µ0)[pb]
∼−→ (B0, µ0)[pb] is the image of an element ψi ∈

LZp , and ψ2 ∈ LZp ·ψ1. Let ι̃ be a prime-to-p symplectic level structure of

(A0, λ0) above ι0. Let Ub be the open subset of LZp consisting of all elements

of γp ∈ LZp such that the image of γp ◦ ψ1 in L′Z/bZ is ψ2,b. By the weak

approximation theorem applied to the connected Q-group H, there exists an

element γ ∈ H(Q) such that the image of γ ∈ H(Qp) belongs to Ub. Let δ be the

element of Sp(H1(A0,A
(p)
f ), 〈, 〉) such that γ(p)◦ ι̃ = ι̃◦δ. Then y1 is an image of

y2 under the prime-to-p Hecke correspondence induced by δ. By Theorem 2.13,

we conclude that Sb is irreducible for every b ≥ 1. Therefore S is irreducible

and the image of the p-adic monodromy homomorphism ρ(A,λ)[p∞]/C,x0 is equal

to Aut((A0, λ0)[p∞]). This finishes the proof of Theorem 5.6. �

5.14. Remark. As an alternative proof of Theorem 5.6, we indicate how

5.6 can be deduced from its special case, Theorem 5.9. Let α : B → A be a

p-primary isogeny which is a multiple of the quasi-isogeny β−1 and let µ′ :=

α∗(λ). Let d′ > 0 be the square root of the degree of µ′. Let µ′0 be the fiber of

µ′ at x0 ∈ C and let ι′0 be the symplectic level-n structure on B0 corresponding

to the level-n structure on A0 under the p-primary isogeny α. Let y0 be the

k-point [(B0, µ
′
0, ι
′
0)] in Ag,d′,n, and let C ′ = C(y0) be the leaf in Ag,d′,n passing

through y0. Let (B′, ν) → C ′ be the universal polarized abelian scheme over

the leaf C ′ in Ag,d′,n and let (B′, ν)[p∞] → C ′ be the associated polarized

p-divisible group. Let C ′perf be the perfection of C ′.

We know from Theorem 4.1 that the leaf C ′ is (geometrically) irreducible.

By [29, Prop. 1.3], the completely slope divisible group B′[p∞]×C′C ′perf → C ′perf

over C ′perf splits into a direct sum of isoclinic completely slope divisible groups

with distinct slopes. From Theorem 5.9 we know that the p-adic monodromy

for (B′, µ′)[p∞] → C ′ is equal to L′Zp = Aut((B′0, µ
′
0)[p∞]). According to the

theory of Φ-étale part, there exists an irreducible profinite étale Galois cover Z

of C ′perf with group L′Zp such that (B′, µ′)[p∞]×C′
perf

Z is a constant polarized

p-divisible group over Z.

By Proposition 5.11, the kernel of the isogeny α0 : B0 → A0 is stable

under the subgroup LZp = Aut((A0, λ0)[p∞]) of LZp . Let D = Z/LZp be the

finite étale cover of C ′perf corresponding to the subgroup LZp . On D we have

a p-primary isogeny α′ : B′ ×C′ D → A′ such that the fiber α′y0 of α′ at y0 is

equal to αx0 . Moreover, the polarization ν on B′ ×C′ D → D descends to a

polarization λ′ on A′ → D such that (α′)∗(λ′) = ν and the fiber of λ′ at y0 is

equal to λ′0.
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The polarized abelian scheme (A′, λ′)→ D defines a morphismD → Ag,d,n

which factorizes as D → C ↪→ Ag,d,n by construction, such that (A′, λ′) is

the pull-back to D of the universal polarized abelian scheme over C. By

functoriality of the fundamental group, the p-adic monodromy for the leaf C

contains the p-adic monodromy attached to the polarized p-divisible group

(A′, λ′)[p∞] over D. Since the latter is equal to LZp by construction, the image

of the p-adic monodromy representation for C contains LZp , hence is equal LZp .

References

[1] C.-L. Chai, Compactification of Siegel Moduli Schemes, London Math. Soc.

Lect. Note Series 107, Cambridge Univ. Press, Cambridge, 1985. MR 0853543.

Zbl 0578.14009.

[2] , Every ordinary symplectic isogeny class in positive characteristic is dense

in the moduli, Invent. Math. 121 (1995), 439–479. MR 1353306. Zbl 0990.11039.

doi: 10.1007/BF01884309.

[3] , Hecke orbits on Siegel modular varieties, in Geometric Methods in Al-

gebra and Number Theory, Progr. Math. 235, Birkhäuser, Boston, MA, 2005,
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