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Convex solutions to the
mean curvature flow

By Xu-Jia Wang

Abstract

In this paper we study the classification of ancient convex solutions to

the mean curvature flow in Rn+1. An open problem related to the classi-

fication of type II singularities is whether a convex translating solution is

k-rotationally symmetric for some integer 2 ≤ k ≤ n, namely whether its

level set is a sphere or cylinder Sk−1 ×Rn−k. In this paper we give an af-

firmative answer for entire solutions in dimension 2. In high dimensions we

prove that there exist nonrotationally symmetric, entire convex translat-

ing solutions, but the blow-down in space of any entire convex translating

solution is k-rotationally symmetric. We also prove that the blow-down

in space-time of an ancient convex solution which sweeps the whole space

Rn+1 is a shrinking sphere or cylinder.

1. Introduction

Convex solutions arise in the study of singularities of the mean curvature

flow. To study the geometric behavior at singularities one needs to classify

such solutions. In this paper1 we study the classification, or more precisely the

geometric asymptotic behavior, of general ancient convex solutions, including

the convex translating solutions arising at type II singularities [12], [11] and

the ancient convex solutions arising at general singularities [27].

It was proved by Huisken-Sinestrari [12], [11] that if M is a mean con-

vex flow, namely a mean curvature flow with mean convex solution, in the

Euclidean space Rn+1, then the limit flow obtained by a proper blow-up pro-

cedure near type II singular points is a convex translating solution (also called

soliton), that is, in an appropriate coordinate system, a mean curvature flow of

This work was supported by the Australian Research Council.
1This is a revised version of the paper arXiv:math.DG/0404326. All results and the ideas

of proofs are the same. The main change is the proof of the growth estimate (1.5) in Section 2.

In this new version we divide it into two parts. We first prove it for dimension 2, then prove

it for high dimensions.
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the form M′ = {(x, u(x) + t) ∈ Rn+1 : x ∈ Rn, t ∈ R}, where u is a complete

convex solution to the mean curvature equation

(1.1) div

Ñ
Du»

1 + |Du|2

é
=

1»
1 + |Du|2

.

Translating solutions play a similar role for the investigation of asymptotic

behavior of type II singularities as self-similar solutions for type I singularities.

It is known that a convex self-similar solution must be a shrinking sphere or

cylinder [10]. For convex translating solutions there is a well-known conjecture

among researchers in this area, which is explicitly formulated, for example in

[27], which asserts that if u is a complete convex solution of (1.1), then the

level sets {u = const} are spheres or cylinders. This Bernstein type problem

attracted attention in recent years, as it is crucial for a classification of type II

singularities of the mean convex flow. In this paper we prove the conjecture

is true for entire solutions in dimension 2 (Theorem 1.1) and false in higher

dimensions (Theorem 1.2).

In this paper we also study the classification of general ancient convex

solutions to the mean curvature flow. In [27] White proved that any limit

flow to the mean convex flow in Rn+1 for n < 7, or any special limit flow,

namely a blow-up solution before first time singularity for n ≥ 7, is an ancient

convex solution, namely at any time the solution is a convex hypersurface. We

prove that an ancient convex solution is convex in space-time (Proposition 4.1),

and that the parabolic blow-down in space-time of any entire, ancient convex

solution, and the blow-down in space of any entire convex translating solution,

is a shrinking sphere or cylinder (Theorem 1.3). This result corresponds to

Perelman’s classification of ancient κ-noncollapsing solutions with nonnegative

sectional curvature to the three-dimensional Ricci flow [20]; see Section 6.

To study the above two problems, we will consider the following more

general equation

(1.2) Lσ[u] =:
n∑

i,j=1

Ç
δij −

uiuj
σ + |Du|2

å
uij = 1,

where σ ∈ [0, 1] is a constant. If u is a convex solution of (1.2), then u+ t, as

a function of (x, t) ∈ Rn ×R, is a translating solution to the flow

(1.3) ut =
»
σ + |Du|2div

Ñ
Du»

σ + |Du|2

é
.

When σ = 1, equation (1.2) is exactly the mean curvature equation (1.1), and

(1.3) is the nonparametrized mean curvature flow. When σ = 0, (1.3) is the

level set flow. That is, if u is a solution of (1.2) with σ = 0, the level set

{u = −t}, where −∞ < t < − inf u, evolves by mean curvature.



CONVEX SOLUTIONS TO THE MEAN CURVATURE FLOW 1187

Conversely, if a family of convex hypersurfacesM = {Mt}, with time slice

Mt, evolves by mean curvature, thenM can be represented as a graph of u in

the space-time Rn+1 ×R1 with xn+2 = −t, and the function u satisfies (1.2)

with σ = 0. We will show that the function u itself is convex (Proposition 4.1).

Therefore for both problems it suffices to study the classification of convex

solutions to equation (1.2).

We say a solution to the mean curvature flow is ancient if it exists from

time −∞. We say a solution u of (1.2) is complete if its graph is a complete hy-

persurface in Rn+1, and u is an entire solution if it is defined in the whole space

Rn. Accordingly, an ancient convex solutionM to the mean curvature flow in

Rn+1 is an entire solution if M is an entire graph in space-time Rn+1×R1,

which is equivalent to saying that the flow M sweeps the whole space Rn+1.

We say u is k-rotationally symmetric if there exists an integer 1 ≤ k ≤ n such

that in an appropriate coordinate system, u is rotationally symmetric with

respect to x1, . . . , xk and is independent of xk+1, . . . , xn. Therefore a function

u is k-rotationally symmetric if and only if its level sets are spheres (k = n)

or cylinders (k < n). For other related terminologies we refer the reader to

[11], [27]. For any 1 ≤ k ≤ n, there is a k-rotationally symmetric convex solu-

tion of (1.1), which is unique up to orthogonal transformations. When n = 1,

the unique complete convex solution of (1.1) is the “grim reaper”, given by

u(x) = log secx1. To exclude hyperplanes in this paper we always consider

convex solutions with positive mean curvature.

The results in this paper can be summarized in the following theorems.

Theorem 1.1. If n = 2, then any entire convex solution to (1.2) must be

rotationally symmetric in an appropriate coordinate system.

From Theorem 1.1 we obtain

Corollary 1.1. A convex translating solution to the mean curvature

flow must be rotationally symmetric if it is a limit flow to a mean convex flow

in R3.

Theorem 1.2. For any dimension n ≥ 2 and 1 ≤ k ≤ n, there exist

complete convex solutions, defined in strip regions, to equation (1.2) which are

not k-rotationally symmetric. If n ≥ 3, there exist entire convex solutions to

(1.2) which are not k-rotationally symmetric.

Theorems 1.1 and 1.2 reflect a typical phenomenon; namely, the Bernstein

theorem is in general true in low dimensions and false in higher dimensions.

See [25] for a brief discussion.

Theorem 1.3. Let u be an entire convex solution of (1.2). Let uh(x) =

h−1u
√
hx). Then there is an integer 2 ≤ k ≤ n such that after a rotation of
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the coordinate system for each h, uh converges to

(1.4) ηk(x) =
1

2(k − 1)

k∑
i=1

x2
i .

The case σ = 0 of Theorems 1.1–1.3 describes the geometry of ancient

convex solutions to the mean curvature flow, while the case σ = 1 of Theo-

rems 1.1–1.3 resolves the problem on convex translating solutions. Note that

if u is a convex solution which is not defined in the whole space, then u is

defined in a convex strip region (Corollaries 2.1 and 2.2), and it cannot be a

blow-up solution to the mean convex flow in general (Corollary 6.1). We also

remark that in Theorem 1.3 we did not rule out the possibility that the axis

of the cylinder-like level set {uh = 1} may rotate slowly as h → ∞, as the

convergence uh → ηk is uniform only on any compact sets.

As a limit flow at the first time singularity is convex, by Brakke’s regularity

theorem, a blow-up sequence converges smoothly on any compact sets to an

ancient convex solution [27]. Therefore by the above classifications one may

infer that if M = {Mt} is a mean convex flow in Rn+1, n ≥ 2, then Mt

satisfies a canonical neighborhood condition, similar to the assertion in [21] for

the Ricci flow, at any point xt ∈Mt with large mean curvature before the first

time singularity. In particular if the mean curvature at xt converges to infinity,

then a proper scaling of M at xt converges along subsequences to shrinking

spheres or cylinders. See the discussion in Section 6.

Our proofs of the above theorems rely heavily on the convexity of solutions.

To prove these theorems it suffices to consider the cases σ = 0 and σ = 1, as for

any σ > 0, one can make the transform û(x) = 1
σu(
√
σx) to change equation

(1.2) to the case σ = 1. A key estimate for the proof of Theorem 1.3 is that for

any entire convex solution u of (1.2), there exists a positive constant C such

that

(1.5) u(x) ≤ C(1 + |x|2) ∀ x ∈ Rn.

The constant C depends only on n and the upper bound of u(0) and |Du(0)|.
Note that (1.5) implies the compactness of the set of entire convex solutions

to (1.2); see Corollary 2.3.

By Theorem 1.3 and estimate (1.5) we have, if n = 2,

C1|x|2 ≤ u(x) ≤ C2|x|2

for large |x|. Hence the case σ = 0 of Theorem 1.1 follows immediately from

the asymptotic estimates in [7]. For the case σ = 1 we will prove furthermore,

by an iteration argument, that

(1.6) |u(x)− u0(x)| = o(|x|) as |x| → ∞,
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where u0 is the radial solution of (1.1). We then conclude u = u0 by a Liouville

type theorem of Bernstein [1], [2], which asserts that an entire solution w to

an elliptic equation in R2 must be a constant if |w(x)| = o(|x|) at infinity [23].

The proof of Theorem 1.2 is different for the cases σ = 0 and σ = 1. For

the case σ = 0, we consider the Dirichlet problem

(1.7)

L0[u] = 1 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded convex domain in Rn (n ≥ 2). The existence and

uniqueness of viscosity solutions to (1.7) can be found in [3] and [6]. We

prove that there exists a sequence of bounded convex domains {Ωk} such that

uk + | infΩk uk|, where uk is the solution of (1.7) with Ω = Ωk, converges to

a complete convex solution u of L0[u] = 1 of which the level set {x ∈ Rn :

u(x) = 1} is not a sphere. To prove that u is a complete convex solution we

need the concavity of the function log(−u) (Lemma 4.1).

The concavity of log(−u) is still an open problem for the mean curvature

equation (1.1). To construct a similar sequence of solutions (uk) for equation

(1.1), we use the Legendre transform to convert the mean curvature equation

(1.1) to a fully nonlinear equation for which the convexity is a natural condition

for the ellipticity of the equation. Let u be a smooth, uniformly convex function

defined in a convex domain Ω ⊂ Rn. The Legendre transform of u, u∗, is a

smooth, uniformly convex function defined in Ω∗ = Du(Ω), given by

(1.8) u∗(y) = sup{x · y − u(x) : x ∈ Ω}.

The supremum is attained at the unique point x such that y = Du(x), and u

can be recovered from u∗ by the same Legendre transform. If u is a convex

solution of (1.1), u∗ satisfies the fully nonlinear equation

(1.9) detD2u∗ =
∑Ç

δij −
yiyj

1 + |y|2

å
F ij [u∗],

where δij = 1 if i = j and δij = 0 otherwise, and

F ij [u∗] =
∂

∂rij
det r at r = D2u∗.

It is known that for any uniformly convex domain Ω and any smooth function ϕ

on ∂Ω, (1.9) has a unique convex solution u∗ in Ω satisfying u∗ = ϕ on ∂Ω; see

Theorem 5.2. By Theorem 5.2 we can construct a sequence of convex solutions

(u∗k) to (1.9), such that (uk), the Legendre transform of (u∗k), converges to a

complete convex solution u of (1.1) and the level set {x ∈ Rn : u(x) = 1+inf u}
is not a sphere.

This paper is arranged as follows. In Section 2 we prove estimate (1.5)

and Theorem 1.3. In Section 3 we prove Theorem 1.1. In Section 4 we prove
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the case σ = 0 of Theorem 1.2. The case σ = 1 of Theorem 1.2 will be proved

in Section 5. The final Section 6 contains some applications. We first prove

Corollary 1.1, then discuss implications of Theorem 1.3, and finally mention a

few unsolved problems related to our Theorems 1.1–1.3.

Recent developments. A major advance, after the paper was finished in

early 2003, has been made by Huisken and Sinestrari [13], in which they studied

the mean curvature flow with surgeries of 2-convex hypersurfaces in Rn+1 for

n ≥ 3. They proved that at any point with large curvature, the hypersurface

after normalization must be very close to the cylinder Sn−1 ×R1 or a convex

cap. Very recently, in another development, the author, together with Weimin

Sheng [22], found a new proof for the following result of White [26], [27]; that

is, for the mean convex flow up to the first time singularity, a blow-up sequence

converges along a subsequence to a convex mean curvature flow, and the grim

reaper is not a blow-up solution. This proof is based on the curvature pinching

of Huisken and Sinestrari [12], [11].

Acknowledgement. The author would like to thank Gerhard Huisken for

bringing the problem to his attention. He also wishes to thank his colleagues

Ben Andrews for helpful discussions, Neil Trudinger for pointing out Proposi-

tion 3.1 to him, and in particular John Urbas for discussions on the proof of

Theorem 5.2.

2. Level set estimates and proof of Theorem 1.3

In this section we prove estimate (1.5) and Theorem 1.3. Our proof of

(1.5) involves elementary, but delicate analysis. To illustrate our idea, we first

prove it in the dimension-two case, then prove it for higher dimensions. For

clarity we divide this section into three subsections. In Section 2.1 we prove

(1.5) for n = 2. In Section 2.2 we prove (1.5) for n > 2. In Section 2.3 we

prove Theorem 1.3.

Let u be a complete convex solution of (1.2). For any constant h > 0 we

denote

Γh = Γh,u = {x ∈ Rn : u(x) = h},(2.1)

Ωh = Ωh,u = {x ∈ Rn : u(x) < h}.

Then Ωh ⊂ Ωh+ε for any ε > 0. Let κ denote the mean curvature of the level

set Γh. We have

(2.2) Lσ[u] = κuγ +
σuγγ
σ + u2

γ

≥ κuγ = L0[u],

where γ is the unit outward normal to Ωh,u, and uγγ = γiγjuij .

We may assume that Ωh does not contain a straight line. For if Ωh0

contains a straight line, then for all h ≥ h0, by convexity we have the splitting
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Ωh = Ω′h×R1 for some convex set Ω′h ⊂ Rn−1. The convexity implies that u is a

function of x1, . . . , xn−1 if the straight line is parallel to the xn-axis. Therefore

the problem reduces to a lower dimension case. Furthermore, the graph of u,

Mu, does not contain any line segment. For if it does, the analyticity of u

when σ > 0, or the constant ranking of (D2u) when σ = 0 ([12], [11]), implies

that Mu contains a straight line.

We also remark that our proof of (1.5) works for general convex solutions

of (1.2). When σ = 0 and the solution is a limit flow (blow-up solution) to a

mean convex flow, one may also use the noncollapsing result in [22], [26], [27]

to give an alternative proof; see Remark 2.1 below.

2.1. Proof of (1.5) for n = 2. Let u be a complete convex solution of

(1.2) satisfying u(0) = 0. We first prove that if Ω1 ∩ {x1 = 0} is contained in

{|x2| ≤ β} for some small β > 0, then Ωh is contained in a strip region for any

h > 0. We prove the result in three lemmas. In the first one we assume that

σ = 0 and u is symmetric in x2. In the second one we remove the symmetry

assumption. In the third one we remove the condition σ = 0.

Lemma 2.1. Let u be a complete convex solution of (1.2). Suppose n = 2,

σ = 0, u(0) = 0, and u is symmetric in x2, namely u(x1, x2) = u(x1,−x2).

Suppose there is a sufficiently small β > 0 such that u(0, β) ≥ 1. Then u is

defined in a strip region {|x2| < C}.

Proof. Let M+
u denote the graph of u in the half-space {x2 ≥ 0}, and D

the projection ofM+
u on the plane {x2 = 0}. ThenM+

u can be represented as

the graph of a function g in the formM+
u = {(x1, x2, x3) : x2 = g(x1, x3)}, and

g is positive, concave, monotone increasing in x3, defined in D, and vanishes

on ∂D. In the following we also regard the height parameter h as a variable

and use h instead of x3.

For any h > 0, we denote gh(x1) = g(x1, h) and Dh = {x1 : (x1, h) ∈ D}.
So gh is a positive, concave function of one variable, and Dh is an interval in

R1 containing the origin, Dh = (−ah, ah) (here ah or ah might be equal to

infinity). Denote bh = gh(0).

Claim 1. For any given h > 0, if ah, ah ≥ bh, then ahbh ≥ π
32h.

To prove the claim, we assume ah ≤ ah, otherwise we make the change

x1 → −x1. Denote Uh = Ωh ∩ {x1 > 0}. When σ = 0, the level set Γh is

evolving at the velocity equal to its curvature (with time t = −h). By the

convexity of Uh and the assumption ah, ah ≥ bh, we have as, as ≥ 1
2bs for

all s ∈ (1
2h, h). Hence by the concavity of g we have the gradient estimate

| ddx1 gs(0)| ≤ 2 for s ∈ (1
2h, h). Note that d

ds |Us|H2 is equal to the arc-length

of the set of the unit normals to Γs ∩ {x1 > 0}. Hence d
ds |Us|H2 ≥ π

4 for
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s ∈ (1
2h, h), which implies |Uh|H2 ≥ π

8h. Here and below we use |E|Hk to

denote the k-dim Hausdorff measure of the set E. By the convexity of Ωh and

the assumption ah ≥ ah, one sees that Uh is contained in (0, ah)× (−2bh, 2bh).

Hence ahbh ≥ 1
4 |Uh|H2 . We obtain ahbh ≥ π

32h.

Claim 1 is also true when σ > 0. Indeed, by equation (2.2) and the

convexity we have L0[u] ≤ 1, which means Γh is moving at a velocity greater

than or equal to its curvature. Therefore we also have d
ds |Us|H2 ≥ π

4 for

s ∈ (1
2h, h), and so it also follows ahbh ≥ π

32h.

In particular, the proof implies Claim 1 holds for convex functions u sat-

isfying L0[u] ≤ C1 for some positive constant C1. That is, if L0[u] ≤ C1, then

ahbh ≥ C2h, where C2 depends on C1.

Claim 2. Denote hk = 2k, ak = ahk , bk = bhk , gk = ghk , and Dk = Dhk .

Then

(2.3) gk(0) ≤ gk−1(0) + 2−k/8 ∀ k ≥ 1.

Note that Lemma 2.1 follows from Claim 2 immediately. Indeed, let Ω∞ =⋃
h>0 Ωh be the domain of definition of u. By (2.3), bk is uniformly bounded.

Hence by Claim 1, Ω∞ is a convex set containing the whole x1-axis. Hence

Ω∞ = I ×R1 for some interval I in the x2 axis. Estimate (2.3) implies that

I ⊂ (−2, 2) (see (2.5) below). Hence Ω∞ must be a strip region.

To prove (2.3) we observe that, since g is positive and concave, gk(0) ≤
hkg0(0) ≤ 2kβ. Hence we may assume that gk0(0) ≤ 1 for some sufficiently

large k0. By Claim 1, we have

(2.4) ak ≥ C0hk

for k ≤ k0 with C0 = π
32 . We prove (2.3) by induction, starting at k = k0.

Suppose by induction that (2.3) holds up to k. Then by induction,

(2.5) gk(0) ≤ gk0(0) +
k∑

j=k0

2−j/8 ≤ 2.

By the concavity of g and since g ≥ 0, we have gk+1(0) ≤ 2gk(0) ≤ 4. By

Claim 1, ak+1 ≥ π
128hk. Hence (2.4) holds at k + 1 with C0 = π

128 .

To prove (2.3) at k + 1, denote

Lk =

ß
x1 ∈ R1 : −C0

4
hk < x1 <

C0

4
hk

™
, Qk = Lk × [hk, hk+1] ⊂ D,

where C0 is given as in (2.4). Since g > 0, g is concave, and g(x1, h) is defined

in 2Lk for h ≥ 1
2hk, we have

sup{g(x1, h) : (x1, h) ∈ Qk} ≤ 2 sup{g(x1, hk) : x1 ∈ Lk}(2.6)

≤ 4g(0, hk) = 4gk(0) ≤ 8.
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Moreover, for any (x1, h) ∈ Qk,

(2.7) |∂hg(x1, h)| ≤ g(x1, h)− g(x1, hk−1)

h− hk−1
<

g(x1, h)

hk − hk−1
≤ 16

hk
.

Similarly,

(2.8) |∂x1g(x1, h)| ≤ g(x1, h)

ah − |x1|
≤ 2g(x1, h)

hk
≤ 16

hk
∀ (x1, h) ∈ Qk.

From the above gradient estimates and the concavity of g, the average in Qk
of the second derivative satisfies

(∗) |∂2
x1g(x1, h)| ≈ sup

x1∈Lk
|∂x1g(x1, h)|/|Lk|H1 ≈ h−2

k .

Here a ≈ b means a ≤ Cb and b ≤ Ca for some constant C. This simple

observation is critical for the proof of (2.3), and actually the following weaker

version is sufficient,

(2.9) |∂2
x1g(x1, h)| ≤ Ch−5/4

k (x1, h) ∈ Qk
for some fixed constant C. Indeed, by equation (2.2), we have κuγ = 1 (when

σ = 0). Note that uγ ≈ (∂hg)−1 and κ ≈ ∂x1x1g when (x1, h) ∈ Qk. Hence if

(2.9) holds, we have

(2.10) |∂hg(0, h)| ≤ Ch−5/4
k for h ∈ (hk, hk+1).

It follows that

(2.11) ghk+1
(0)− ghk(0) = g(0, hk+1)− g(0, hk) ≤ Ch

−1/4
k ≤ h−1/8

k

when k is large. We obtain (2.3).

However we have not proved the estimate (2.9) pointwise, even in the

special case σ = 0. But we observe that the set where g does not satisfy (2.9)

is very small, and the concavity of g ensures that this small set does not harm

the estimate (2.3).

Denote

χ = {(x1, h) ∈ Qk : |∂2
x1g(x1, h)| ≥ h−5/4

k }.
If χ is empty, (2.3) is proved in (2.11) above. If χ 6= ∅, we proceed as fol-

lows (the argument also applies to the case where χ is empty). For any

h ∈ (hk, hk+1), by the gradient estimates and the concavity of g, an integration

by parts gives

|{x1 ∈ Lk : (x1, h) ∈ χ}|H1h
−5/4
k ≤

∣∣∣ ∫
Lk

∂x1x1g
∣∣∣ ≤ 2 supLk |∂x1g| ≤ Ch

−1
k .

Taking integration from h = hk to h = hk+1 we obtain |χ|H2h
−5/4
k ≤ C, namely

(2.12) |χ|H2 ≤ Ch5/4
k .

We say χ is a small set as the ratio |χ|H2/|Qk|H2 = O(h
−3/4
k ) is small.
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For any given y1 ∈ Lk we denote χy1 = χ ∩ {x1 = y1}. From (2.12) and

by the Fubini Theorem, there is a set L̃ ⊂ Lk with measure |L̃|H1 < h
1/2
k such

that for any y1 ∈ Lk − L̃,

(2.13) |χy1 |H1 ≤ Ch3/4
k .

For any y1 ∈ Lk − L̃, we have

g(y1, hk+1)− g(y1, hk) =

∫
χy1

∂hg(y1, h)dh+

Ç∫ hk+1

hk

−
∫
χy1

å
∂hg(y1, h)dh.

By (2.13) and the gradient estimate (2.7), the first integral is bounded by

Ch
−1/4
k . For the second one, similarly, as in (2.10), we have ∂hg ≤ Ch

−5/4
k for

any point (x1, h) 6∈ χ. Hence the second integral is also bounded by Ch
−1/4
k .

Therefore we obtain

(2.14) g(y1, hk+1)− g(y1, hk) ≤ Ch
−1/4
k .

From (2.14) we get (2.3) immediately. Indeed, replacing x1 by −x1 if

necessary, we assume that ∂x1g(0, hk) ≤ 0, so that g(x1, hk) ≤ g(0, hk) for all

x1 ≥ 0. Since |L̃| < h
1/2
k , the set [0, h

1/2
k ]−L̃ is not empty. Let y1 ∈ [0, h

1/2
k ]−L̃.

By (2.14) we obtain

(2.15) g(y1, hk+1) ≤ g(y1, hk) + Ch
−1/4
k ≤ g(0, hk) + Ch

−1/4
k .

Note that g is positive and concave, and that g is defined on the interval

[0, ak+1] with ak+1 ≥ Chk+1 (C = π
128 as established before). We have

gk+1(0)

gk+1(y1)
≤ ak+1

ak+1 − |y1|
= 1 + Ch

−1/2
k+1 .

By (2.15) it follows (recall our notation, g(y1, hk+1) = gk+1(y1)) that

gk+1(0) ≤ gk(0) + Ch
−1/4
k .

We obtain (2.3). Lemma 2.1 is proved. �

In Lemma 2.1, we do not need to assume that the sublevel set Ωh is

compact, nor need we assume the whole sublevel set Ωh |h=1 is contained in

a strip region. The assumption that u(0, β) ≥ 1 for sufficiently small β > 0

implies that Ω1 ∩ {x1 > 0} if ux1(0, β) > 0, or Ω1 ∩ {x1 < 0} if ux1(0, β) < 0,

is contained in a strip {|x2| ≤ β}. Next we remove the assumption that u is

symmetric in x2.

Lemma 2.2. Let u be a complete convex solution of (1.2). Suppose n = 2,

σ = 0, u(0) = 0, and there is a sufficiently small β > 0 such that u(0, β) ≥ 1

and u(0,−β) ≥ 1. Then u is defined in a strip region.
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Note that the assumption u(0, β) ≥ 1 and u(0,−β) ≥ 1 is equivalent to

the fact that Ω1 ∩{x1 = 0} ⊂ {|x2| < β}. Before proving Lemma 2.2, we state

a property of convex domains, due to F. John [19], which is frequently used in

the study of convex bodies and Monge-Ampère equations.

Proposition 2.1. Let Ω be a bounded, convex domain in Rn, n ≥ 2.

Then among all (solid) ellipsoids containing Ω, there is a unique ellipsoid E

of smallest volume such that

(2.16)
1

n
E ⊂ Ω ⊂ E,

where αE is the α-dilation of E with respect to its center.

We call E the minimum ellipsoid of Ω (it is a (solid) ellipse when n = 2).

By a rotation of the coordinates, we may assume that E is given by E =¶∑n
i=1

Ä
xi−x0,i
ri

ä2
< 1
©

, where x0 = (x0,1, . . . , x0,n) is the center of E. We can

make the linear transform yi = (xi − x0,i)/ri + x0,i, i = 1, . . . , n, such that E

becomes the unit ball B1(x0) and B1/n(x0) ⊂ T (Ω) ⊂ B1(x0).

Proof of Lemma 2.2. Let R = 103 and let E be the minimum ellipsoid of

Ω1 ∩BR(0). By a rotation of coordinates we assume the axial directions of E

coincide with those of the coordinate system (we do not need to assume the

center of E is at the origin).

The proof is similar to that of Lemma 2.1. We indicate the necessary

changes. Let Mu be the graph of u, which consists of two parts, Mu =

M+ ∪ M−, where M+ = {(x, u(x)) ∈ R3 : ∂x2u(x) ≥ 0} and M− =

{(x, u(x)) ∈ R3 : ∂x2u(x) ≤ 0}. Then M± can be represented as graphs

of functions g± in the form x2 = g±(x1, x3), (x1, x3) ∈ D and D is the projec-

tion of Mu on the plane {x2 = 0}. The functions g+ and g− are respectively

concave and convex, and we have x3 = u(x1, g
±(x1, x3)). Denote

(2.17) g = g+ − g−.

Then g is a positive, concave function in D, vanishing on ∂D. For any h > 0

we also denote gh(x1) = g(x1, h), g±h (x1) = g±(x1, h), and Dh = {x1 ∈ R1 :

(x1, h) ∈ D}. Then gh is a positive, concave function in Dh, vanishing on ∂Dh,

and Dh = (−ah, ah) is an interval containing the origin. As before we denote

bh = gh(0).

Claim 1. Suppose ah, ah ≥ bh. Then ahbh ≥ π
32h.

The claim can be proved in the same way as in Lemma 2.1, by observing

that the gradient estimate | ddx1 gs(0)| ≤ 2 also implies that the arc-length of

the set of the unit normals to Γs ∩ {x1 > 0} is greater than π
4 . Hence we also

have d
ds |Us|H2 ≥ π

4 for s ∈ (1
2h, h).
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Claim 2. Denote hk = 2k, ak = ahk , bk = bhk , gk = ghk , and Dk = Dhk .

We have

(2.18) gk(0) ≤ gk−1(0) + 2−k/8 ∀ k ≥ 1.

Lemma 2.2 follows from Claim 2 immediately. Indeed, let P be the projection

of the graph Mg on the plane {x3 = 0}. Then P is a convex set containing

the x1-axis. Hence P = I ×R1 for some interval I. Estimate (2.18) implies

that g(0, h) ≤ 2 for all h (due to (2.5)), so we have I ⊂ [0, 2]. Hence Mg is

contained in the strip {(x1, x2, x3) ∈ R3 : 0 ≤ x2 ≤ 2}. By (2.17), Mu is also

contained in a strip region {|a1x1 +a2x2| < 2}, where (a1, a2, 0) is a unit vector

in R3 with a1 small and a2 close to 1. We can make a1 as small as we want,

provided the constant R at the beginning of the proof is sufficiently large.

The proof of (2.18) is similar to that of (2.3). But for the argument from

(2.9) to (2.10), one needs to use the equation (2.2). Therefore we need to

consider g+ and g− instead of g.

First we establish (2.4)–(2.8) in the same way as in Lemma 2.1. Let Lk, Qk
and χ be as in Lemma 2.1. We also denote

χ± = {(x1, h) ∈ Qk : |∂2
x1g
±(x1, h)| ≥ h−5/4

k }.

Then both χ+ and χ− are subsets of χ. For any h ∈ (hk, hk+1), by (2.8) and

recalling that Lk = (−1
4C0hk,

1
4C0hk), we have

|{x1 ∈ Lk : (x1, h) ∈ χ+}|H1h
−5/4
k ≤

∣∣∣∣ ∫
Lk

∂x1x1g
+
∣∣∣∣

=

∣∣∣∣∂x1g+
Å

1

4
C0hk, h

ã
− ∂x1g+

Å
−1

4
C0hk, h

ã∣∣∣∣ ≤ 2 supLk |∂x1g| ≤ Ch
−1
k ,

where the second inequality is due to the fact that g = g+− g−, g+ is concave

and g− is convex. Hence |χ+|H2 ≤ Ch5/4
k . Similarly we have |χ−|H2 ≤ Ch5/4

k .

For any given y1 ∈ Lk, denote χ±y1 = χ± ∩ {x1 = y1}. Then there is a set

L̃± ⊂ Lk with measure |L̃±|H1 < h
1/2
k such that for any y1 ∈ Lk− L̃±, we have

|χ±y1 |H1 ≤ Ch3/4
k .

For any given y1 ∈ Lk − (L̃+ ∪ L̃−), we have

g(y1, hk+1)−g(y1, hk) = g+(y1, hk+1)−g+(y1, hk)+ |g−(y1, hk+1)−g−(y1, hk)|.

In the following we estimate g+(y1, hk+1)− g+(y1, hk). The estimate also

applies to |g−(y1, hk+1)− g−(y1, hk)|. We have

g+(y1, hk+1)− g+(y1, hk) =

∫ hk+1

hk

∂hg
+(y1, h)dh(2.19)

=

∫
χ+
y1

∂hg
+(y1, h)dh+

Ç∫ hk+1

hk

−
∫
χ+
y1

å
∂hg

+(y1, h)dh.



CONVEX SOLUTIONS TO THE MEAN CURVATURE FLOW 1197

For the first integral on the right-hand side, note that g = g+ − g−,

g+(y1, h) is concave and increasing in h, and g− is convex and decreasing in

h. Hence ∂hg
+ ≤ ∂hg. By the gradient estimate (2.7) and recalling that

|χ+
y1 |H1 ≤ Ch3/4

k , we have∫
χ+
y1

∂hg
+(y1, h)dh ≤ Ch−1/4

k .

To estimate the second integration, we first introduce a mapping T : p → q

as follows. For a point p = (x1, h) ∈ D, there is a corresponding point

P = (x1, x2, h) on the level set Γh, where x2 = g+(x1, h), such that p is

the projection of P on the plane {x2 = 0}. Let q = (x1, x2) be the projection

of P on the plane {x3 = 0}.
By equation (2.2), we have κuγ = 1. Note that when p = (x1, h) ∈ Qk,

the normal γ of the level set Γh ⊂ R2 at the point q = T (p) ∈ Γh satisfies

(2.20) |γ − e2| < ε

for some small constant ε > 0, where e2 = (0, 1). This is because by induction,

Ωhk ∩ BR is contained in a strip region (see discussion after (2.18)), and the

axial directions of the minimum ellipsoid of Ωhk ∩BR are a small perturbation

of the axial directions of the coordinates, where R is the constant introduced

at the beginning of the proof. Therefore we have

(2.21)

(∂hg
+)−1 = (1 + ε1)uγ ,

∂x1x1g
+ = (1 + ε2)κ,

where ε1, ε2 are small constants provided R is sufficiently large. Hence

(2.22) |∂hg+(y1, h)| ≤ C|∂x1x1g+| ≤ Ch−5/4
k ∀ (y1, h) 6∈ χ+.

It follows that Ç∫ hk+1

hk

−
∫
χ+
y1

å
∂hg

+(y1, h)dh ≤ Ch−1/4
k .

Combining the above two estimates we obtain

g+(y1, hk+1)− g+(y1, hk) ≤ Ch
−1/4
k .

Similarly we have |g−(y1, hk+1) − g−(y1, hk)| ≤ Ch
−1/4
k . Therefore we obtain

(2.18) just as we prove (2.3) from (2.14). �

Next we remove the condition σ = 0 in Lemma 2.2.

Lemma 2.3. Let u be a complete convex solution of (1.2). Suppose n = 2,

u(0) = 0, and there is a sufficiently small β > 0 such that u(0, β) ≥ 1 and

u(0,−β) ≥ 1. Then u is defined in a strip region.
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Proof. We can follow the proof of Lemma 2.2 until (2.19) without any

change. The estimate for the second integral on the right-hand side of (2.19)

used the equation κuγ = 1. But when σ 6= 0, equation (2.2) contains an extra

term
σuγγ
σ+u2γ

. To handle this extra term, we need to divide the integral (2.19)

into three parts,

g+(y1, hk+1)− g+(y1, hk) =

∫
I
∂hg

+(y1, h)dh(2.23)

=

Ç∫
I1

+

∫
I2

+

∫
I3

å
∂hg

+(y1, h)dh,

where I = (hk, hk+1),

I1 = χ+
y1 ,

I2 =

®
h ∈ I − I1 :

σuγγ(q)

σ + u2
γ(q)

≤ 1

2

´
,

I3 = I − (I1 ∪ I2),

where q = T (p), p = (y1, h), and T is the mapping introduced after (2.19).

Similarly as in Lemma 2.2, we have ∂hg
+ ≤ ∂hg ≤ C/h for h ∈ (hk, hk+1)

and the first integral
∫
I1
∂hg

+(y1, h)dh ≤ Ch−1/4
k .

For the second one, noting that when
σuγγ
σ+u2γ

< 1
2 , we have, by (2.21),

(∂hg
+)−1∂x1x1g

+ ≈ κuγ ≥
1

2
.

Hence ∂hg
+ ≤ C∂x1x1g+ and we obtain

∫
I2
∂hg

+(y1, h)dh ≤ Ch−1/4
k .

To estimate the third integral in (2.23), note that for any point p = (y1, h)

with h ∈ I3, we have

(2.24)

 uγ(q) = ux2(q)(1 + ε1),

uγγ(q) = ux2x2(q)(1 + ε2) + o(ux2)

at the point q = T (p), for some small constants ε1 and ε2. The first formula

is due to (2.20). To verify the second one in (2.24), one chooses a coordinate

system (z1, z2) such that q is the origin, γ is in the z2-axis and Γh is locally

given by z2 = η(z1). One then differentiates u(z1, η(z1)) = h twice to obtain

uz1z1 +uz2κ = 0. Recall that when p = (y1, h) with h ∈ I3, κ ≤ Ch−5/4
k . Hence

uz1z1 = o(uz2), from which one easily obtains (2.24).

Since for any p ∈ {y1} × I3,
σuγγ(q)
σ+u2γ(q)

≥ 1
2 . Therefore by (2.24) we have

σux2x2(q)

σ + u2
x2(q)

≥ 1

3
.

Notice that 0 ≤ σ ≤ 1. Hence

(2.25) ux2x2 ≥
1

4
(σ + u2

x2) ≥ 1

4
u2
x2 .
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Now by the relation h = u(y1, x2) and x2 = g+(y1, h), we have h =

u(y1, g
+(y1, h)). As y1 is fixed, we can regard u and g+ as functions of one

variable. Differentiating in h gives 1 = u′(g+)′; differentiating twice we get

0 = u′′(g+)′
2

+ u′(g+)′′. Hence

(g+)′′ = −u
′′

u′
(g+)′

2
= −u′′(g+)′

3
.

By (2.25) we then obtain

(2.26) (g+)′′ ≤ −ϕ(h)(g+)′,

where ϕ(h) = 1
4 if h ∈ I3 and ϕ(h) = 0 otherwise. Observing that (g+)′ > 0,

we obtain ∫ h

hk

(g+)′′

(g+)′
≤ −

∫ h

hk

ϕ = −1

4
|I3,h| ∀ h ∈ (hk, hk+1);

namely

log(g+)′(h) ≤ log(g+)′(hk)−
1

4
|I3,h|,

or equivalently

(2.27) (g+)′(h) ≤ (g+)′(hk)e
−|I3,h|/4,

where I3,h = I3∩[hk, h]. Since I3 = ∪k(ak, bk) is the union of intervals, and g+ is

increasing, the third integral in (2.23) is equal to oscI3g
+ =

∑
k g

+(bk)−g+(ak).

We have

oscI3g
+ ≤ (g+)′(hk)

∫
I3

e−|I3,h|/4(2.28)

≤ (g+)′(hk)

∫ hk+1

hk

e−(h−hk)/4

≤ 2(g+)′(hk) ≤
C

hk
.

This completes the proof. �

Next we prove an auxiliary lemma.

Lemma 2.4. Let u be a complete convex solution of (1.2). Suppose n = 2,

u(0) = 0, δ := inf{|x| : x ∈ Γ1} is attained at x0 = (0,−δ) ∈ Γ1, and δ > 0 is

sufficiently small. Then D1 contains the interval (−R,R) with

(2.29) R ≥ (− log δ − C)1/2,

where C > 0 is independent of δ and Dh is the set introduced in the proof of

Lemma 2.2.
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Proof. Suppose near x0, Γ1 is given by

x2 = g(x1).

Then g is a convex function, g(0) = −δ, and g′(0) = 0. Let a, b > 0 be two

constants such that g(a) = 0 and g′(b) = 1. To prove (2.29) it suffices to prove

(2.30) b ≥ (− log δ − C)1/2.

For any y = (y1, y2) ∈ Γ1, where y1 ∈ [0, b], let ξ = y/|y|. By the convexity

of u,

uξ(y) ≥ u(y)− u(0)

|y|
=

1

|y|
.

Let θ denote the angle between ξ and the tangential vector 1√
1+g′2

(1, g′) of Γ1

at y. Then

cos θ =
ξ1 + ξ2g

′(y1)»
1 + g′2

, sin θ =
√

1− cos2 θ =
ξ1g
′ − ξ2»

1 + g′2
.

Hence

uγ(y) = uξ(y)/sin θ ≥

»
1 + g′2

y1g′ − y2
,

where γ is the normal of the sublevel set Ω1 = {u < 1}. By L0[u] ≤ 1, we

obtain,

g′′

(1 + g′2)3/2

»
1 + g′2

y1g′ − y2
≤ κuγ(y) ≤ 1,

where κ is the curvature of the level set Γ1 = {u = 1}. Hence

g′′(y1) ≤ (1 + g′
2
)(y1g

′ − y2)(2.31)

≤

2(y1g
′ + δ) if y2 ≤ 0,

2y1g
′ if y2 ≥ 0,

where y2 = g(y1) and g′(y1) ≤ 1 for y1 ∈ (0, b). We consider the equation

ρ′′(t) =

2(tρ′(t) + δ) if ρ(t) ≤ 0,

2tρ′(t) if ρ(t) ≥ 0

with the initial condition ρ(0) = −δ and ρ′(0) = 0. Let α > 0 be such that

ρ(α) = 0. Then for t ∈ (0, α) we have

ρ′(t) = 2δet
2
∫ t

0
e−s

2
ds.

Hence we have C1 ≤ α ≤ C2 and ρ′(α) ≤ C2δ for some constants C1, C2. Let

β > α be such that ρ′(β) = 1. Consider the equation

ρ′′ = 2tρ′
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in the interval (α, β). Then from log ρ′
∣∣∣β
α

= t2
∣∣∣β
α
, we obtain

β2 ≥ | log δ| − C.

By the comparison principle we have g ≤ ρ. Hence (2.30) holds. �

Theorem 2.1. Let u be an entire convex solution of (1.2) in R2. Then

(2.32) u(x) ≤ C(1 + |x|2),

where the constant C depends only on the upper bound for u(0) and |Du(0)|.

Proof. By adding a constant to u we may suppose u(0) = 0. To prove

(2.32) it suffices to prove that dist(0,Γh) ≥ Ch1/2 for all large h. By the

rescaling uh(x) = 1
hu(h1/2x) it suffices to prove dist(0,Γ1,uh) ≥ C. Note that

|Duh(0)| = h−1/2|Du(0)| ≤ |Du(0)|. Hence by convexity, infB1(0) uh is uni-

formly bounded from below. Note also that uh satisfies equation (1.2) with

σ → 0 as h→∞.

Denote δ =: inf{|x| : x ∈ Γ1,uh}. Suppose the infimum is attained at

x0 = (0,−δ). If δ > 0 is sufficiently small, by Lemma 2.4, D1 = D1,uh contains

the interval (−R,R), where R = (− log δ − C)1/2. Let δ∗ > 0 be such that

uh(0, δ∗) = 1. Then δ∗ must also be very small, for otherwise by convexity the

ellipse

E =

®
(x1, x2) ∈ R2 :

x2
1

(R/4)2
+
|x2 − (δ∗ − δ)/2|2

[(δ∗ + δ)/8]2
< 1

´
is contained in sublevel set Ω1,uh .

When σ = 0, the level set Γ−t,uh is a solution to the curve-shortening flow

(for time t starting at −1). Let E−t be the solution to the curve-shortening flow

with initial condition E−1 = E, where E is the ellipse given above. Therefore

we have the inclusion E−t ⊂ Ω−t,uh for all t > −1. It takes the time T = |E|H2

for the solution E−t to shrink to a point. Hence we have infB1(0) uh ≤ 1 − T .

But when δ is small and δ∗ has a positive lower bound (independent of δ),

T = |E|H2 becomes sufficiently large, which contradicts the assertion that

infB1(0) uh is uniformly bounded from below.

When σ ∈ (0, 1], uh is a solution of (1.2) with σ ≤ 1/h. If there is a

sequence hk → ∞ and δ∗k ≥ δ∗ for some δ∗ > 0 such that uhk(0, δ∗k) = 1, we

define E as above. Now let vσ be the solution of Lσ(v) = 1 in E and v = 1

on ∂E. Then for any given δ, δ∗ > 0 and R > 1, the solution vσ converges to

v0, the solution to L0(v0) = 1 in E and v0 = 1 on ∂E. The level set of v0 is

a solution to the curve-shortening flow. Hence inf vσ → −∞ as δ, σ → 0. We

also reach a contradiction. �

Corollary 2.1. Let u be a complete convex solution of (1.2). Then u

is either an entire solution, or is defined in a strip region. In particular, there

is no complete convex solution of (1.2) defined in a half-space.
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Proof. Let us assume u(0) = 0. If u is not an entire solution, then for

any M > 1, there exists x0 ∈ Rn such that u(x0) > M |x0|2. Let uh(x) =

h−1u(h1/2x), where h = u(x0). Then the distance from the origin to the level

set Γ1 = {uh = 1} is less than M−1. The proof of Theorem 2.1 then implies

that u is defined in a strip region. �

Note that in the above proof we have used the following lemma.

Lemma 2.5. Let uk be a sequence of convex solutions of (1.2) with σ =

σk ∈ [0, 1]. Suppose σk → σ and uk → u. Then u is a convex solution of (1.2).

Proof. Lemma 2.5 is well known if σk ≡ 0 or σk ≡ 1. If σk → σ > 0,

replacing uk by 1
σk
u(
√
σkx) we may suppose σk ≡ 1. We need only to consider

the case when σk → 0.

In this case we show that u is a viscosity solution of L0[u] = 0. Indeed,

since Lσk [uk] = 1, by convexity we have L0[uk] ≤ 1 and so L0[u] ≤ 1. On the

other hand, for any fixed σ̂ > 0, by convexity we have Lσ̂[uk] ≥ Lσk [uk] = 1 if

k is sufficiently large such that σk < σ̂. Hence Lσ̂[u] ≥ 1. As σ̂ > 0 is arbitrary,

we have L0[u] ≥ 1. �

Remark 2.1. When σ = 0 and u is a blow-up solution (limit flow) to a given

mean convex flow, by a compactness argument, together with Lemma 2.4 and

the proof of Theorem 2.1, one sees that (1.5) also follows from the noncollapsing

in [22], [26], [27]. That is, if (1.5) is not true, there exists a sequence of blow-

up solutions uk to a given mean convex flow such that wk(x) := k−1uk(k
1/2x)

converges to a multiplicity-two plane. But a multiplicity-two plane does not

occur as a blow-up solution [22], [26], [27].

2.2. Proof of (1.5) for n > 2. In this subsection we extend the results in

Section 2.1 to high dimensions.

Let u be a complete convex solution of (1.2). Let Mu denote the graph

of u, and D the projection of Mu on the plane {xn = 0}. We divide Mu into

two parts, Mu =M+ ∪M−, where M± = {(x, u(x)) ∈ Rn+1 : ∂xnu(x) R 0}.
ThenM+ andM− can be represented respectively as graphs of the form xn =

g+(x′, xn+1) and xn = g−(x′, xn+1), where x′ = (x1, . . . , xn−1), (x′, xn+1) ∈ D.

The functions g+ and g− are respectively concave and convex, and satisfy the

relation xn+1 = u(x′, g±(x′, xn+1)). As before we denote g = g+ − g−. Then g

is a positive, concave function in D, vanishing on ∂D.

For any h > 0 we also denote gh(x′) = g(x′, h), g±h (x′) = g±(x′, h), and

Dh = {x′ ∈ Rn−1 : (x′, h) ∈ D}. Then gh is a positive, concave function in Dh,

vanishing on ∂Dh, and Dh is a convex domain in Rn−1 containing the origin.

Hence ∂Dh can be represented as a radial graph of a positive function ah on

Sn−2, ∂Dh = {p · ah(p) : p ∈ Sn−2}, where

ah(p) = sup{t : tp ∈ Dh}, p ∈ Sn−2.



CONVEX SOLUTIONS TO THE MEAN CURVATURE FLOW 1203

Denote

ah = inf{ah(p) : p ∈ Sn−2}, bh = gh(0).

We want to extend Lemma 2.3 to high dimensions, that is if b1(0) is small,

then u is defined in a strip region. First we prove a lemma which corresponds

to Claim 1 in the proof of Lemmas 2.1 and 2.2.

Lemma 2.6. Let u be a complete convex solution of (1.2) satisfying u(0)

= 0. Suppose ah ≥ bh. Then there is a positive constant Cn, depending only

on n, such that

(2.33) ahbh ≥ Cnh.

Proof. When n = 2, (2.33) was proved in Claim 1 in Lemmas 2.1 and 2.2.

When n ≥ 3, we reduce (2.33) to the case n = 2.

Assume that ah = ah(p) for p = (1, 0, . . . , 0). Observing that ahbh is

proportional to the area of the section {x ∈ Ωh : x1 > 0, x2 = · · · = xn−1 = 0},
we can prove (2.33) by making a rotation of coordinates. For a given h > 0, by

a rotation of the coordinates we assume that inf{|x| : x ∈ Γh,u} is attained at

b∗en, where b∗ ∈ (0, bh] and ek is the unit vector in the xk-axis, k = 1, . . . , n.

Then it suffices to prove (2.33) for ah, bh defined in this new coordinate system.

Since ah ≥ bh, by the convexity of Γh,u we have

(2.34) Γh,u ∩ {|x| < ah} ⊂ {|xn| ≤ 2bh}.

Let û be the restriction of u on the 2-plane spanned by the x1 and xn
axes. From the proof for the case n = 2 in Lemma 2.1, we see that (2.33) holds

if one can verify that L0[û] ≤ C for some constant C depending only on n,

where L0 is the operator in (2.2).

For any given point y = (y1, 0, . . . , 0, yn) ∈ Γh,û, let κ be the mean curva-

ture of Γh,u, and κ̂ be the curvature of Γh,û at y. Let γ = (γ1, γ2, . . . , γn) be the

unit normal of Γh,u at y, and γ̂ = (γ̂1, 0, . . . , 0, γ̂n) be the unit normal of Γh,û
at y in the 2-plane spanned by the x1 and xn axes. Suppose for a moment that

(2.35) γ · γ̂ = γ1γ̂1 + γnγ̂n ≥ C1

for some positive constant C1. Then by the convexity of Γh,u we have κ̂ ≤ C2κ

and ûγ̂ ≤ C2uγ . By (2.2), we have κuγ ≤ 1. Hence L0[û] = κ̂ûγ̂ ≤ C and so

(2.33) holds.

Let P = {x ∈ Rn : γ · (x − y) = 0} be the tangent plane of Γh,u at the

point y. Let pk = zkek, k = 1, . . . , n, be the intersection of P with the xk-axis.

Then by γ · (x− y) = 0 at x = pk, we have

γkzk = γ1y1 + γnyn ∀ k = 2, . . . , n− 1.

Hence if for all k = 2, . . . , n− 1, |zk| ≥ C
»
y2

1 + y2
n, we have |γk| ≤

»
γ2

1 + γ2
n,

which implies
»
γ2

1 + γ2
n ≥ C1 > 0 as γ is a unit vector. Observe that the vector
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(γ1, 0, . . . , 0, γn) is parallel to the unit vector γ̂ = (γ̂1, 0, . . . , 0, γ̂n). Hence we

obtain (2.35).

To prove |zk| ≥ C
»
y2

1 + y2
n, notice that γ and γ̂ are invariant if we trans-

late the level set Γh,u. Without loss of generality let us assume that γn > 0.

The case γn < 0 can be treated similarly. We translate Γh,u in the xn-direction

by a distance 2bh, so that Γh,u ∩ {|x| < ah} is contained in {xn > 0}. Since

P is a tangent plane of Γh,u lying above the set Γh,u, we must have |zk| ≥ ah.

On the other hand, |y1| ≤ ah and |yn| ≤ 4bh (after the translation). Hence by

the assumption bh ≤ ah, we have |zk| ≥ 1
5

»
y2

1 + y2
n. �

Lemma 2.7.Let u be a complete convex solution of (1.2). Suppose u(0)=0

and u(βen) ≥ 1, u(−βen) ≥ 1 for some sufficiently small β > 0, where en =

(0, . . . , 0, 1). Then u is defined in a strip region.

Note that the level set Γh,u = {u = h} may not be compact. Note also

that the strip region in Lemma 2.7 may not take the form {x ∈ Rn : −C1 ≤
xn ≤ C2}, except in some special cases such as when u is symmetric in xn. But

as in Lemmas 2.2 and 2.3, the axes of the minimum ellipsoid of Ωh ∩BR(0) is

a small perturbation of axes of the coordinates.

To prove Lemma 2.7 we will prove that the graph of g,Mg = {(x, xn+1) :

xn = g(x′, xn+1), (x′, xn+1) ∈ D}, is contained in a strip {(x, xn+1) ∈ Rn+1 :

0 ≤ xn ≤ C}. By convexity it suffices to prove bh = gh(0) is uniformly

bounded. The idea of our proof is very similar to the two-dimensional case

given in Section 2.1, where we divided the proof into three lemmas. Here we

present it in a single lemma.

Proof of Lemma 2.7. Let R = 103 and let E be the minimum ellipsoid of

Ω1 ∩BR(0). By a rotation of coordinates we assume the axial directions of E

coincide with those of the coordinate system.

Denote hk = 2k, ak = ahk , bk = bhk , gk = ghk , and Dk = Dhk . As in

Section 2.1 we use an induction argument to prove

(2.36) gk(0) ≤ gk−1(0) + 2−k/4n ∀ k ≥ 1.

As shown in Section 2.1, (2.36) implies that u is defined in a strip region.

The proof of (2.36) is similar to (2.3), we point out the difference here. As

in Section 2.1, when β is sufficiently small, by convexity we have bk ≤ hkb0 ≤
2kβ ≤ 1 when k ≤ k0 and our induction argument starts at k = k0.

Suppose by induction that (2.36) holds up to k. By the induction assump-

tion, gk(0) ≤ gk0(0) +
∑k
j=k0

2−j/4n ≤ 2. By the concavity, bk+1 = gk+1(0) ≤
2gk(0) ≤ 4. Hence by Lemma 2.6 we have

(2.37) ak+1 ≥ C0hk+1.
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Next we prove (2.36) at k + 1. Rotate the axes such that ∂igk(0) ≤ 0 for

all i = 1, . . . , n− 1. By the concavity of g we have

(2.38) gk(0) = sup{gk(x′) : x1 > 0, . . . , xn−1 > 0}.

Denote

Lk =

ß
x′ ∈ Rn−1 : −C0

2n
hk < xi <

C0

2n
hk, i = 1, . . . , n− 1

™
,

and Qk = Lk × [hk, hk+1] ⊂ D, where C0 is the constant in (2.37). Then

similarly to (2.6),

sup{g(x′, h) : (x′, h) ∈ Qk} ≤ 2 sup{g(x′, hk) : x′ ∈ Lk} ≤ 4g(0, hk) ≤ 8.

Observing that 2Lk ⊂ Dk, by the convexity of u we have Lk ⊂ Dk−1. Hence

by the concavity of g and (2.38) we have, for any (x′, h) ∈ Qk,

|∂hg(x′, h)| ≤ g(x′, h)− g(x′, hk−1)

h− hk−1
(2.39)

≤ g(x′, h)

hk − hk−1
≤ 2g(x′, hk)

hk − hk−1
≤ 2g(0, hk)

hk − hk−1
≤ 8

hk
.

By (2.37) and (2.38), the concavity of g, and since g ≥ 0, we also have,

(2.40) |Dx′g(x′, h)| ≤ C/hk ∀ (x′, h) ∈ Qk.

From the above gradient estimates and the concavity of g, the average in

Qk of the second order derivatives |∂2g| ≤ Ch−2
k ≤ h

−5/4
k . But we have not

proved this estimate pointwise. We need to treat the sets {|∂2g| < h
−5/4
k } and

{|∂2g| ≥ h−5/4
k } separately. Denote

χ = {(x′, h) ∈ Qk : |Σn−1
i=1 ∂

2
i gh(x′)| ≥ h−5/4

k },(2.41)

χ+ = {(x′, h) ∈ Qk : |Σn−1
i=1 ∂

2
i g

+
h (x′)| ≥ h−5/4

k }.

Obviously χ+ ⊂ χ. By the gradient estimates, we have

|χ|Hnh−5/4
k ≤

∣∣∣ ∫
Qk

∆x′g
∣∣∣ ≤ ∫

∂Lk×[hk,hk+1]
|Dx′g| ≤ Chn−2

k .

In the above formula g is a function of (x′, h). Hence we obtain

(2.42) |χ+|Hn ≤ |χ|Hn ≤ Chn−3/4
k .

From (2.42) and by the Fubini Theorem, there is a set L̃ ⊂ Lk with

measure |L̃|Hn−1 < h
n−3/2
k such that for any y′ ∈ Lk − L̃,

(2.43) |χ+
y′ |H1 ≤ Ch3/4

k ,

where χ+
y′ = χ+ ∩ {x′ = y′}.
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For any given y′ ∈ Lk − L̃, we want to prove

(2.44) g+
k+1(y′)− g+

k (y′) ≤ Ch−1/4
k .

Similarly we can estimate |g−k+1(y′) − g−k (y′)|. Hence if (2.44) is proved, we

have

gk+1(y′)− gk(y′) ≤ Ch
−1/4
k ,

which corresponds to (2.14). As in the argument after (2.14), we can choose a

point y1 ∈ Lk−L̃ with |y1| ≤ Ch1−1/2(n−1)
k such that gk+1(y1) ≤ gk(0)+Ch

−1/4
k .

But now
gk+1(0)

gk+1(y1)
≤ ak+1

ak+1 − |y1|
≤ 1 + Ch

−1/2(n−1)
k .

Therefore we obtain (2.36).

To prove (2.44), we have

(2.45)

g+
k+1(y′)− g+

k (y′) =

∫
I
∂hg

+(y′, h)dh =

Ç∫
I1

+

∫
I2

+

∫
I3

å
∂hg

+(y′, h)dh,

where as in (2.23), I = (hk, hk+1), I1 = χ+ ∩ {x′ = y′}, I2 = {h ∈ I − I1 :
σuγγ(q)
σ+u2γ(q)

≤ 1
2}, and I3 = I − (I1 ∪ I2), where q = T (p) with p = (y′, h), and

T : p→ q is the mapping introduced before (2.20).

For the first integral in (2.45), by (2.39) and (2.43) we have∫
I1

∂hg
+(y′, h)dh ≤ Ch−1/4

k .

Note that in I2, similarly to (2.22), we have

|∂hg+(y1, h)| ≤ C|∂x1x1g+| ≤ Ch−5/4
k ∀ (y1, h) 6∈ χ+.

Hence we have the estimate for the second integral in (2.45),∫
I2

∂hg
+(y′, h)dh ≤ Ch−1/4

k .

For the third one, the argument between (2.24) and (2.28) applies and we also

have the estimate oscI3g
+ ≤ C/hk. Hence (2.44) holds. �

The next lemma corresponds to Lemma 2.4 in Section 2.1.

Lemma 2.8.Let u be a complete convex solution of (1.2). Suppose u(0)=0

and the infimum inf{|x| : x ∈ Γ1} is attained at x0 = (0, . . . , 0,−δ) ∈ Γ1 for

some δ > 0 sufficiently small. As above let D1 be the projection of Γ1 on the

plane Rn ∩ {xn = 0}. Then D1 ⊃ {x′ ∈ Rn−1 : |x′| < R} with

(2.46) R ≥ 1

Cn
(− log δ − C)1/2,

where Cn is a constant depending only on n, and C > 0 is a constant indepen-

dent of δ.
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Proof. Estimate (2.46) is equivalent to a1(p) ≥ 1
Cn

(− log δ−C)1/2 for any

p ∈ Sn−2. Suppose inf a1(p) is attained at p = (1, 0, . . . , 0). By restricting

u to the 2-plane {x2 = · · · = xn−1 = 0}, we reduce the proof to the two-

dimensional case in Lemma 2.4, as we have shown, in the proof of Lemma 2.6,

that L0[u] ≤ Cn. �

With Lemmas 2.7 and 2.8, we extend Theorem 2.1 to high dimensions.

Theorem 2.2. Let u be an entire convex solution of (1.2) in Rn. Then

there exists a positive constant C such that for any x ∈ Rn,

(2.47) u(x) ≤ C(1 + |x|2),

where C depends on n and the upper bound of u(0) and |Du(0)|.

Proof. The proof is very similar to that of Theorem 2.1. Let δ, δ∗ and

uh be as in the proof of Theorem 2.1. Instead of an ellipse, here we use the

ellipsoid

E =

®
x ∈ R2 :

∑n−1

i=1

x2
i

(R/2n)2
+
|x2 − (δ∗ − δ)/2|2

[(δ∗ + δ)/8]2
< 1

´
.

When σ = 0, the level set Γ−t,uh is a solution to the mean curvature

flow. Let E−t be the solution to the mean curvature flow with initial condition

E−1 = E, so that E−t ⊂ Ω−t,uh for all t > −1. Suppose it takes time T for

E−t to shrink to a point. Then we have infB1(0) uh ≤ 1 − T . Observe that

for any fixed δ∗, E−t converges to a pair of parallel planes, and so T → ∞ as

R→∞ (or δ → 0). Hence when δ is small, we reach a contradiction with the

assertion that infB1(0) uh is uniformly bounded from below. The case σ > 0

can be proved in the same way as in Theorem 2.1. �

From Theorem 2.2, we have accordingly

Corollary 2.2. Let u be a complete convex solution of (1.2). Then u is

either an entire solution, or is defined in a strip region. There is no complete

convex solution of (1.2) defined in a half-space.

Note that estimate (2.47) also implies the follows compactness result. This

compactness result is not just for the set of blow-up solutions to mean convex

flow but for all entire convex solutions of (1.2). We do not know whether an

entire convex solution to (1.2) must be a blow-up solution to mean convex flow.

Corollary 2.3. For any constant C > 0, the set of all entire convex

solutions u to (1.2) satisfying u(0) = 0 and |Du(0)| ≤ C is compact.

2.3. Proof of Theorem 1.3. First we prove a lemma.
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Lemma 2.9. Let u be an entire convex solution of (1.2). Suppose u ≥ 0

and u(0) = 0. Then the convex set {u = 0} is either a single point or it is a

linear subspace of Rn.

Proof. If σ > 0, u is analytic. As the set {u = 0} is convex, it must be a

single point or a linear subspace of Rn. In the following we consider the case

σ = 0.

If the set {u = 0} is bounded, then Γh,u is a closed, bounded convex

hypersurface. As Γh,u evolves by mean curvature (with time t = −h), from [7],

[9] it follows that {u = 0} is a single point.

If the set {u = 0} contains a straight line, say the line ` = (t, 0, . . . , 0)

(t ∈ R), then by convexity u is independent of x1. Hence to prove Lemma 2.9,

we need only to rule out the possibility that {u = 0} contains a ray but no

straight line lies in it.

Suppose the ray r = (t, 0, . . . , 0) (t > 0) is contained in {u = 0}. We

may also suppose that {u = 0} contains no straight lines and the asymptotical

cone of {u = 0} is contained in {x1 > 0}. Then u is decreasing in x1. Denote

um(x1, x2, . . . , xn) = u(x1 + m,x2, . . . , xn), where m > 0 is a constant. Then

um is nonnegative and decreasing in m. By choosing a subsequence we suppose

um → û as m→∞. Then the straight line ` = (t, 0, . . . , 0) (t ∈ R) is contained

in the graph of û. By convexity, û is independent of x1. Since L0[û] = 1, û

does not vanish completely, and so we must have n ≥ 3. Moreover, we have

û < u except on the set {u = û = 0}.
Since u and û are both solutions to L0[u] = 1, the level sets {u = −t} and

{û = −t} evolve by mean curvature (with time t). Denote Mt = {u = −t}
∩{x1 = 0} and ”Mt = {û = −t} ∩ {x1 = 0}. Then M̂t evolves by mean

curvature as û is independent of x1. We assert that Mt evolves at a velocity

greater than its mean curvature. Indeed, for any given point p ∈ Mt, we

assume the hypersurface {u = −t} is locally given by xn = ψ(x1, . . . , xn−1),

and locallyMt is given by xn = ψ(0, x2, . . . , xn−1). By choosing the coordinate

system properly we also assume that ∂xiψ = 0 for i = 2, . . . , n− 1 at p. Then

Mt evolves at the velocity
»

1 + |Dψ|2 div Dψ√
1+|Dψ|2

, by convexity which is

greater than
∑n−1
i=2 ∂

2
xiψ, the mean curvature of Mt at p.

On the other hand, since û < u,Mt is strictly contained in the interior of”Mt for any t < 0. Moreover Mt is a bounded, closed convex hypersurface, as

the asymptotical cone of {u = 0} is contained in {x1 > 0}. By the comparison

principle,Mt is strictly contained in the interior of ”Mt for all t ≤ 0. We reach

a contradiction as û = u = 0 at the origin. �

Therefore [9, Lemma 2.9] implies that the singularity set of a mean cur-

vature flow of convex, noncompact hypersurfaces in Rn+1 must be a subspace

Rn−k for some 1 ≤ k ≤ n. But then by convexity, u is a function of k variables.
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Proof of Theorem 1.3. Step 1. First we prove that there is a subsequence

of uh, where uh(x) = h−1u(h1/2x), which converges to ηk for some 2 ≤ k ≤ n,

where ηk is the function given in (1.4).

By adding a constant we may suppose u(0) = 0. Let T = {xn+1 = a(x)}
be the tangent plane of u at the origin. By Theorems 2.1 and 2.2 and the

convexity of u we have

a(x) ≤ u(x) ≤ C(1 + |x|2).

Hence
1√
h
a(x) ≤ uh(x) ≤ C

Ç
1√
h

+ |x|2
å
.

By convexity it follows that Duh is locally uniformly bounded. Hence uh sub-

converges to a convex function u0 which satisfies u0(0) = 0,

(2.48) 0 ≤ u0(x) ≤ C|x|2.

By Lemma 2.5, u0 is an entire convex solution of L0[u] = 1.

Case 1. the set {x ∈ Rn : u0(x) = 0} is bounded. Then by convexity the

level set Γ1,u0 = {x ∈ Rn : u0(x) = 1} is a bounded convex hypersurface. Since

the level set {u0 = −t}, with time t ∈ (−∞, 0), evolves by mean curvature, by

the asymptotic estimates in [7] and [9],

(2.49) u0(x) =
1

2(n− 1)
|x|2 + ϕ(x),

where ϕ(x) = o(|x|2) for x 6= 0 near the origin. Hence for any ε > 0, there is a

sufficiently small h′ > 0, such that

B(1−ε)r(0) ⊂ Ωh′,u0 ⊂ B(1+ε)r(0),

where r =
»

2(n− 1)h′. Hence there is a sequence hm →∞ such that

(2.50) B(1− 1
m

)rm
(0) ⊂ Ωhm,u ⊂ B(1+ 1

m
)rm

(0),

where rm =
»

2(n− 1)hm. Let uhm(x) = 1
hm
u(
√
hm x). Then uhm sub-

converges to û0 which satisfies L0[û0] = 1. From (2.50), the level set Γ1,û0

is a sphere. Hence û0(x) = 1
2(n−1) |x|

2.

Case 2. The set {u0 = 0} is unbounded. Then by Lemma 2.9, the set

{u0 = 0} is a linear subspace of Rn. Suppose

{u0 = 0} = {x ∈ Rn : xk+1 = · · · = xn = 0}.

We must have k ≥ 2, as the level set {u0 = −t} evolves by its mean curvature.

It follows that u0 is a convex function depending only on x̂ = (x1, . . . , xk).

Similarly, as above,

(2.51) u0(x) =
1

2(k − 1)
|x̂|2 + o(|x̂|2)
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near the origin. Hence for any ε > 0,“B(1−ε)r(0) ⊂ “Ωh′,u0 ⊂ “B(1+ε)r(0)

provided h′ is sufficiently small, where r=
»

2(k − 1)h′, “Br(0)=Br(0)∩{x̃=0}
and “Ωh′,u = Ωh′,u ∩{x̃ = 0}, x̃ = (xk+1, . . . , xn). It follows that for any R > 0,

{x ∈ Rn : |x̂| < (1− ε)r} ∩ {|x̃| < R} ⊂ Ωh′,uhm
∩ {|x̃| < R}

⊂ {x ∈ Rn : |x̂| < (1 + ε)r} ∩ {|x̃| < R}

if hm is sufficiently large. Hence there exist τm →∞ and (a different sequence)

hm →∞ such that®
x ∈ Rn : |x̂| <

Ç
1− 1

m

å
rm

´
(2.52)

∩ {|x̃| < τmrm} ⊂ Ωhm,u ∩ {|x̃| < τmrm}

⊂
®
x ∈ Rn : |x̂| <

Ç
1 +

1

m

å
rm

´
∩ {|x̃| < τmrm},

where rm =
»

2(k − 1)hm. Hence uhm → 1
2(k−1) |x̂|

2.

Step 2. Now we prove that uh itself, after a rotation of axes, converges to

the function ηk.

In Step 1 we proved that uhm converges to ηk for some 2 ≤ k ≤ n. Let

us choose the sequence {hm} properly such that k is the largest such integer,

namely if uh′m converges to ηk′ , then k′ ≤ k. From the above proof we can also

choose hm such that (2.50) or (2.52) holds.

Case 1: k = n. We prove that for any constant ε > 0,

(2.53) B(1−ε)r(0) ⊂ Ωh,u ⊂ B(1+ε)r(0)

if h > 0 is sufficiently large, where r =
»

2(n− 1)h. Suppose (2.53) is not true.

Let hm →∞ be a sequence such that (2.50) holds. Let

(2.54) ĥm = inf{h′ ≤ hm : (2.53) holds for any h ∈ (h′, hm)}.

Since uhm → 1
2(n−1) |x|

2, we have hm/ĥm → ∞ as m → ∞. Let α > 1 be a

fixed constant which will be determined below. Then the sequence uαĥm sub-

converges to a convex function u0 satisfying u0(0) = 0, u0 ≥ 0 and L0[u] = 1.

By our choice of ĥm, the level set Ω1,u0 satisfies

B(1−ε)r(0) ⊂ Ω1,u0 ⊂ B(1+ε)r(0)

with r =
»

2(n− 1). Hence from [7], [9], the level set Ωh,u0 satisfies

B(1−δ)r(0) ⊂ Ωh,u0 ⊂ B(1+δ)r(0)
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with δ → 0 as h→ 0, where r =
»

2(n− 1)h. Hence we have

B(1−2δ)r(0) ⊂ Ωh,uαĥm
⊂ B(1+2δ)r(0)

if m is sufficiently large. Choose h sufficiently small such that δ ≤ 1
3ε and let

α = h−1. Then scaling back we find that Ωĥm,u
satisfies

B(1−2δ)rm(0) ⊂ Ωĥm,u
⊂ B(1+2δ)rm(0)

with r =
»

2(n− 1)ĥm. When δ < 1
2ε, this is in contradiction with our choice

of ĥm.

Case 2. k < n. For any given small ε > 0, by (2.52), Γhm,u is ε-close to

the cylinder Sk−1 ×Rn−k if m is sufficiently large, namely

{x ∈ Rn : |x̂| < (1− ε)r} ∩ {|x̃| < ε−1r} ⊂ Ωhm,u ∩ {|x̃| < ε−1r}(2.55)

⊂ {x ∈ Rn : |x̂| < (1 + ε)r} ∩ {|x̃| < ε−1r},

where r =
»

2(k − 1)hm. Let ĥm < hm be the least number such that Γh,u
is ε-close to the cylinder Sk−1 × Rn−k (the axes of the cylinder may vary as

h varies) for any h ∈ [ĥm, hm]. Then by our assumption that k is the largest

possible integer, we have, due to (2.51), that uαĥm = 1
2(k−1) |x̂|

2 + o(|x̂|2) for

any given α > 1. Here we regard uαĥm as a function of x̂ = (x1, . . . , xk) by

letting xk+1 = · · · = xn = 0. Similar to Case 1, we can choose α > 1 such that

Γĥm,u is 1
2ε-close to the cylinder Sk−1 ×Rn−k, which is a contradiction to our

choice of ĥm. Hence Theorem 1.3 is proved. �

Note that Case 2 in Step 2 follows readily from Step 1 and the fact that

k is an integer. In Step 1 it is shown that uh converges along a subsequence

to the function ηk but k is an integer so it must be the same integer for all

subsequences.

Remark 2.2. Theorem 1.3 asserts that uh, which is the blow-down of u

with respect to the origin in space-time, subconverges to a self-similar solution.

We point out that for ancient convex solutions w to the level set flow (1.2) (with

σ = 0), under some very mild conditions the corresponding level set {w = h},
after proper translation, subconverges as h → ∞ to a translating solution.

In particular, if w is a complete convex solution of (1.2) defined in a strip

region in R2, then after proper translation, the level set must converge along

a subsequence to the grim reaper.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 and throughout we suppose the

dimension n = 2.
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Let u be an entire convex solution of (1.2). By Theorem 1.3 we have

(3.1) u(x) =
1

2
|x|2 + ϕ(x)

with |ϕ(x)| = o(|x|2) as |x| → ∞. To prove Theorem 1.1, we first consider the

case σ = 0.

Theorem 3.1. Let u be an entire convex solution of (1.2) with σ = 0.

Then u(x) = 1
2 |x|

2 in a proper coordinate system.

Proof. By a translation of the graph of u, we may suppose u ≥ 0, u(0) = 0,

and (3.1) holds. For any constant h > 1, denote uh(y) = u(h1/2y)/h. Then uh
is also an entire convex solution of (1.2) and by (3.1), the sublevel set Ω1/2,uh

satisfies

(3.2) B1−ε(0) ⊂ Ω1/2,uh ⊂ B1+ε(0)

with ε→ 0 as h→∞. By Gage-Hamilton [7], we have

(3.3) uh(y) =
1

2
|y|2 + ϕ(y)

with

|ϕ(y)| ≤ C|y|2+α

for some α ∈ (0, 1), and C is a constant independent of h. Rescaling back to

the x-coordinate we obtain

u(x) =
1

2
|x|2 + h2ϕ(x/h),

where for any fixed x, h2ϕ(x/h)→ 0 as h→∞. Hence u(x) ≡ 1
2 |x|

2. �

Remark 3.1. . By the asymptotic estimates in [9], Theorem 3.1 also holds

in high dimensions if the solution u satisfies

(3.4) C1|x|2 ≤ u(x) ≤ C2|x|2.

Indeed, if u satisfies (3.4), we have u(x) = 1
2(n−1) |x|

2 +o(|x|2) by Theorem 1.3.

Next we consider the case σ = 1 of Theorem 1.1.

Theorem 3.2. Let u be an entire convex solution of the mean curvature

equation (1.1). Then u is rotationally symmetric in an appropriate coordinate

system.

To prove Theorem 3.2 we need a few lemmas.

Lemma 3.1. Let Ω be a bounded convex domain in R2. Let u0 and uσ be

respectively solutions of L0[u] = 1 and Lσ[u] = 1 in Ω, vanishing on ∂Ω, where

σ ∈ (0, 1]. Suppose uσ is convex. Then for any constant a > 0, there exists a
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constant C > 0, depending on a and the upper and lower bounds of |Duσ| on

the set {x ∈ Ω : inf uσ+a ≤ uσ(x) < 0}, such that for any 0 > h > a+infΩ uσ ,

(3.5) 0 ≤ |Ωh,u0 | − |Ωh,uσ | ≤ Cσ.

Note that the constant C in (3.5) is large when the lower bound of |Duσ|
is small. We do not impose conditions on Ω but it is convex and its shape is

controlled by the lower bound of |Duσ|.
For the proof of Theorem 1.1, the solution u satisfies (3.1) and Ω is a small

perturbation of the unit disc. In this case (3.5) can be proved easily. In fact,

the difference |Ωh,u0 | − |Ωh,uσ | is controlled by
σuγγ
σ+u2γ

= O(σ); see (3.6) below.

Proof. Denote u = uσ and suppose without loss of generality that u(0) =

infΩ u = −1. By convexity we have L0[u] ≤ 1. By the comparison principle

we have u ≥ u0. Hence Ωh,u ⊂ Ωh,u0 and |Ωh,u0 | ≥ |Ωh,u|.
Write the equation Lσ[u] = 1 in the form

(3.6) κuγ = 1− σuγγ
σ + u2

γ

,

where κ is the curvature of the level set Γh,u, and γ is the unit outward normal

to Ωh,u. Now, (3.6) implies that the level set Γh,u is moving with the velocity

(regard t = −h as the time)

v = u−1
γ =

κ

1− σuγγ
σ+u2γ

.

Let w = w(·, h) ∈ C(S1) denote the supporting function of Γh,u. That is,

w(p) = w(p, h) = sup{〈p, x〉 : x ∈ Γh,u}, p ∈ S1.

The supremum is attained at the point x at which the unit outer normal

γ(x) = p, and the curvature κ at x is given by

κ(x) =
1

(w′′ + w)(p)
,

where S1 is parametrized by p = (cos θ, sin θ) and w′ = d
dθw. The area of the

domain Ωh,u is given by

|Ωh,u| =
1

2

∫
S1
w(w′′ + w).

Observing that ∂hw = v = u−1
γ , we have

d

dh
|Ωh,u| =

d

dh

∫
S1

1

2
w(w′′ + w) =

∫
S1
∂hw(w′′ + w)(3.7)

=

∫
S1

κ

1− σuγγ
σ+u2γ

(w′′ + w).
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For any h ∈ (a + infΩ u, 0), denote D = S1 × (h, 0). Let G denote the

diffeomorphism fromMu,h =:Mu∩{h < u < 0} to D, whereMu is the graph

of u, such that for any point (x, t) ∈Mu,h, G(x, t) = (Gt(x), t) ∈ D, where Gt
is the Gauss mapping from the level set Γt,u to S1.

We divide D into two parts, D = D1 ∪D2, such that

D1 =

®
1− σuγγ

σ + u2
γ

≥ 1

2

´
and D2 = D −D1. Observing that κ(w′′ + w) = 1, from (3.7) we have

|Ω0,u| − |Ωh,u| =
∫
D1

1

1− σuγγ
σ+u2γ

+

∫
D2

κ

1− σuγγ
σ+u2γ

(w′′ + w).

On D1 we have Ç
1− σuγγ

σ + u2
γ

å−1

≤ 1 +
2σuγγ
σ + u2

γ

≤ 1 + C1σuγγ

and on D2 we have

(3.8)
κ

1− σuγγ
σ+u2γ

= u−1
γ ≤ C−1

2 ,

where both constants C1 and C2 depend on the lower bound of |Du| on the

set {u > a+ inf u}. Hence

|Ω0,u| − |Ωh,u| ≤
∫ 0

h

∫
S1

(1 + Cσuγγ) + C

∫
D2

(w′′ + w)(3.9)

= 2π|h|+ Cσ

∫ 0

h

∫
S1
uγγ + C|G−1(D2)|

≤ 2π|h|+ Cσ + C|G−1(D2)|.

To estimate |G−1(D2)| we suppose inf u is attained at the origin. For any

unit vector τ in the plane {x3 = 0} starting at the origin, let Pτ be the plane

in R3 containing τ and the x3-axis and let Eτ denote the intersection of Pτ
with G−1(D2). On Eτ we have, by our definition of D2, uγγ ≥ C

σ . Noting that

by equation, uξξ ≤ C in G−1(D2) for any unit vector tangential to Γh,u and

that the inner product 〈γ, τ〉 ≥ C ′ for some constants C,C ′ > 0 depending on

the upper and lower bounds of |Du| on the set {x ∈ Ω : inf u+ a ≤ u(x) < 0}
(which also determine the geometric shape of Ω), we have uττ ≥ C

σ for a

different C (for small σ > 0). It follows that the one-dimensional Lebesgue

measure |Eτ |H1 ≤ Cσ for some C depending on the upper bound of |Du|.
Hence the two-dimensional Lebesgue measure |G−1(D2)|H2 ≤ Cσ.

Observing that the level set Γh,u0 is moving by its curvature (with time

t = −h), we have

|Ω0,u0 | − |Ωh,u0 | = 2π|h|.
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Hence by (3.9),

|Ωh,u0 | − |Ωh,u| ≤ Cσ + C|G−1(D2)| ≤ Cσ.

We obtain (3.5). �

Lemma 3.2. Let {`t} be a convex solution to the curve-shortening flow.

Suppose `0 is in the δ0-neighborhood of a unit circle S1 and {`t} shrinks to a

point (the origin) at t = 1
2 . Let ˆ̀

t = 1√
1−2t

`t be the normalization of `t. Then

ˆ̀
t is in the δt-neighborhood of the unit circle centered at the origin,

(3.10) ˆ̀
t ⊂ Nδt(S

1),

with

δt ≤ Cδ0

Å
1

2
− t
ãα

,

where α ∈ (0, 1) is a positive constant.

Proof. First observe, by the comparison principle, that when t ≤ 1
4 , `t is

pinched between two concentrated circles with Hausdorff distance Cδ0. By the

Schauder estimate, for t ∈ (1
8 ,

1
4) the Ck norm of ˆ̀

t is in the Cδ0-neighborhood

of the unit circle; that is,

(3.11) ‖ˆ̀t − S1‖Ck ≤ Cδ0.

With estimate (3.11) we obtain (3.10) from [7, §§5.7.10–5.7.15]. �

Remark 3.2. (i) By the Schauder estimate one can simplify some estimates

in [7, §§5.1–5.6]. In [7, §§5.7.10–5.7.15], it was proved that for any α > 0 small,

there exists δ0 > 0 such that if (3.11) holds at t = 0, then

(3.12)

∫
S1

[κ′(τ)]2 ≤ e−ατ
∫
S1

[κ′(0)]2,

where τ = 1
2 log(1

2 − t), and κ′ denotes the derivative of the curvature κ with

respect to the are-length parameter. Similar inequalities for high order deriva-

tives of κ were also proved there.

(ii) Let u be a convex solution of L0[u] = 0 which attains its minimum

0 at y1 (namely u(y1) = inf u = 0). Suppose the level set Γ1/2 ⊂ Nδ0(S1)

for some small δ0 > 0. Then |y1| < Cδ0 for some C > 0 independent of δ0.

Therefore by a translation we may assume that u attains its minimum at 0

and Γ1/2,u ⊂ NC∗δ0(S1) for a different constant C∗.

To prove |y1| < Cδ0, let û = 1
2 |x|

2 be the rotationally symmetric solu-

tion to L0[u] = 0. As in the proof of Lemma 3.2, let w(p, h) and ŵ(p, h) be

respectively the support functions of Γh,u and Γh,û, where p = (cos θ, sin θ).
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Denote t = −h (regard t ∈ (−1
2 , 0) as the time). Then wt(w

′′ + w) = −1,

ŵt(ŵ
′′ + ŵ) = −1. Denote ϕ = w − ŵ. Direct computation shows that

(w′′ + w + ŵ′′ + ŵ)ϕt = −(wt + ŵt)(ϕ
′′ + ϕ).

Hence ϕ satisfies the equation

ϕt = (wtŵt)(ϕ
′′ + ϕ).

We have ŵt = − 1√
|t|

and by estimate (3.12) (for higher order derivatives),

wt = −1+o(1)√
|t|

, as t → 0. We obtain wtŵt = 1+o(1)
|t| . The estimate (3.12)

also implies that the curvature of Γu,h is equal to that of Γû,h up to a lower

order perturbation, namely ϕ′′ + ϕ ≤ Cδ0|t|α for some α > 0. We obtain

|ϕt| ≤ Cδ0|t|α−1 and so |y1| ≤ sup |ϕ| ≤ Cδ0.

Next we need a refinement of (3.1).

Lemma 3.3. Let u be an entire convex solution of (1.1) with inf u = 0.

Then in an appropriate coordinate system, we have (3.1) with

(3.13) |ϕ(x)| = O(|x|2/3) as |x| → ∞.

Proof. Let uh(x) = h−1u(h1/2x). Then uh satisfies the equation Lσ[u] = 1

in R2 with σ = h−1. By Theorem 1.3, uh converges to the function u∗ = 1
2 |x|

2,

and the level set Γ1/2,uh converges to the unit circle S1 as h→∞.

For any given sufficiently small constant δ0 > 0, let h > 0 sufficiently large

such that

(3.14) Γ1/2,uh ⊂ Nδ0(S1)

for some unit circle S1. We claim that for any τ > τ0, where τ0 > 3 max(δ0, σ),

(3.15) Γτ,uh ⊂
√

2τ(Nδτ (S1))

with

δτ ≤ C1(τ)σ2/3 + C2δ0τ
α,

where α(Nδ(S
1)) = Nαδ(αS

1), and αS1 is the α-dilation of S1 with the same

center, the constants C1 and C2 are independent of δ0 and h, and C2 is also

independent of τ . The center of the S1 in (3.15) is the minimum point of u0,

the solution of L0[u] = 1 in Ω 1
2
,uh

satisfying u0 = uh = 1
2 on ∂Ω 1

2
,uh

.

To prove (3.15), by Lemma 3.2 we have, for any τ > 0,

(3.16) Γτ,u0 ⊂
»

2(τ + a0)(Nδ1(S1))

with δ1 ≤ Cδ0(τ + a0)α, where a0 = − inf u0 ≥ 0. By the comparison principle

we have u0 ≤ uh in Ω 1
2
,uh

. By (3.14) we also have

u0 ≥
1

2
(|x|2 − (1 + δ0)2) +

1

2
in Ω1/2,uh .

Hence a0 ≤ 3δ0.
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We will use the following simple result: Let Ω be a convex domain con-

tained in BR. If the area |BR − Ω| ≤ ε, then

(3.17) dist(∂BR, ∂Ω) ≤ Cε2/3R−1/3,

where dist(A,B) denotes the least constant δ > 0 such that A ⊂ Nδ(B) and

B ⊂ Nδ(A).

We use (3.17) to prove (3.15). Let ` be the largest circle, with center at

the minimum point of u0, contained in Ωτ,u0 . Let ‹Ωτ,u be the common area

enclosed by Ωτ,u and `, and denote Γ̃τ,u = ∂‹Ωτ,u. Since Ωτ,u ⊂ Ωτ,u0 , we have

(3.18) dist(Γτ,u,Γτ,u0) ≤ dist(Γ̃τ,u, `) + dist(`,Γτ,u0).

Since L0[u0] = 1, we have d
dt |Ωt,u0 | = −2π. Hence |Ωτ,u0 | = 2π(τ + a0).

By (3.16), Γτ,u0 is in the
»

2(τ + a0)δ1 = Cδ0(τ + a0)1/2+α neighborhood of»
2(τ + a0)S1. Hence

dist(`,Γτ,u0) ≤ Cδ0(τ + a0)1/2+α,

where C > 0 is independent of δ0, h, and τ . Recall that Ωτ,u ⊂ Ωτ,u0 and

|Ωτ,u0 − Ωτ,u| ≤ Cσ by (3.5). Hence by (3.17) we have

dist(Γ̃τ,u, `) ≤ Cσ2/3(τ + a0)−1/6.

Combining (3.16) and (3.18), and noting that a0 ≤ 3δ0 < τ , we obtain (3.15).

Now we fix a τ0 > 0 small such that C2τ
α
0 < 1/4. From (3.15) we obtain

(3.19) Γτ0,uh ⊂
√

2τ0(Nδ(S
1))

with δ ≤ Cσ2/3 + δ0/4, where C is independent of δ0 and h.

Now Lemma 3.3 follows from (3.19) by iteration. We start at the level

τ−k0 for some sufficiently large k. Denote Ωk =
»

2τk0 Ωτ−k0 ,u and Γk = ∂Ωk.

By (3.1), Γk converges to the unit circle as k → ∞. Suppose Γk is in the

δk-neighborhood of S1, where δk → 0 as k →∞. Let yk denote the minimum

point of the solution of L0[u] = 1 in Ωk+1 and u = 1
2 on Γk+1. By (3.19), Γk−1

is in the δk−1-neighborhood of a unit circle S1 centered at yk−1 with

δk−1 ≤ Cτ
2(k−1)/3
0 + δk/4.

By induction, we obtain

δk−2 ≤ Cτ
2(k−2)/3
0 + δk−1/4.

Hence we have

δj ≤ 2Cτ
2j/3
0 + δk ∀ j < k.

Letting k →∞ we obtain

(3.20) Γj ⊂ Nδj (S
1)
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with δj ≤ 2Cτ
2j/3
0 , where S1 is centered at yj . It follows that for h = τ−j0

sufficiently large,

(3.20′) Γh,u ⊂ Nδ(
√

2hS1)

with δ ≤ 2Ch−1/6, where S1 is centered at zj = h1/2yj .

Next we estimate |zj − zj−1|. Let uj(x) = τ j0u(τ
−j/2
0 x). Let v1 and v0

be the solutions of L0[v] = 1 which satisfy respectively v1 = 1 on {uj = 1}
and v0 = τ0 on {uj = τ0}. By (3.20) we have {v0 = τ0} ⊂ Nδ(

√
2τ0S

1
p0)

and {v1 = τ0} ⊂ Nδ(
√

2τ0S
1
p1) with δ < Cτ

2j/3
0 for some points p0 and p1.

As remarked before Lemma 3.3, we may assume p0 and p1 are the minimum

points of v0 and v1, so that zj = τ
−j/2
0 p1 and zj−1 = τ

−j/2
0 p0. By Lemma 3.1

and (3.17) we also have {v0 = τ0} ⊂ Nδ({v1 = τ0}). Hence |p0− p1| ≤ Cδ. We

obtain |zj − zj−1| ≤ Cτ j/60 .

From the above estimate, the sequence {zj} is convergent. Assume that

zj → 0. Then the above estimate implies that |zj | ≤ Cτ
j/6
0 for any large j.

Hence for h = τ−j0 ,

Γh,u ⊂ Nδ(
√

2hS1),

where δ ≤ Ch−1/6 and S1 is centered at the origin. It is easy to see the estimate

also holds for all h > 1. Hence Lemma 3.3 is proved. �

To finish the proof we need the following fundamental Liouville Theorem

by Bernstein [1], [2]; see also [23, p. 245].

Proposition 3.1. Let u be an entire solution to the elliptic equation

(3.21)
2∑

i,j=1

aij(x)uij = 0 in R2.

If u satisfies the asymptotic estimate

(3.22) |u(x)| = o(|x|) as |x| → ∞,

then u is a constant.

We remark that the operator in the above proposition need not be uni-

formly elliptic. Condition (3.21) can be replaced by a weaker condition that

u11u22 − u2
12 ≤ 0 and 6≡ 0.

Proof of Theorem 3.2. Assume u is locally uniformly convex, namely the

Hessian matrix (D2u) > 0 pointwise, which will be proved below. Let u∗ be

the Legendre transform of u. Then u∗ satisfies equation (1.9). First we have

(3.23) u∗(x) =
1

2
|x|2 +O(|x|2/3).
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Indeed, for any h > 1, let uh(x) = h−1u(h1/2x). Then by Lemma 3.3,

uh(x) =
1

2
|x|2 +O(h−2/3)

in B1(0). Denote u∗h the Legendre transforms of uh. Then

u∗h(x) =
1

2
|x|2 +O(h−2/3)

in B1(0). Observing that u∗h(x) = h−1u∗(h1/2x), we obtain (3.23).

Let u0 be the unique radial solution of (1.1) satisfying u(0) = 0, and let

u∗0 denote the Legendre transform of u0. Similar to (3.23) we have

(3.24) u∗0(x) =
1

2
|x|2 +O(|x|2/3).

Write equation (1.9) in the form

(3.25) G[x,D2u∗] =:
detD2u∗∑(

δij − xixj
1+|x|2

)
F ij [u∗]

= 1.

Since both u∗ and u∗0 satisfy equation (1.9), v = u∗ − u∗0 satisfies equation

(3.21) in the entire R2 with coefficients

aij =

∫ 1

0
Gij [x,D2u∗0 + t(D2u∗ −D2u∗0)]dt,

where Gij [x, r] = ∂
∂rij

G[x, r] for any symmetric matrix r. By (3.23) and (3.24),

|v(x)| = O(|x|2/3) as |x| → ∞. By the above proposition we conclude that v

is a constant. �

Remark 3.3. When using the Legendre transform we have implicitly used

the local uniform convexity of u, namely the Hessian matrix {D2u} > 0. In

dimension 2, this was proved in [12] by Hamilton’s maximum principle; for

high dimensions, see [11]. We also note that the reason for using the Legendre

transform in the above proof is that equation (3.21) does not involve the first

order derivatives.

4. Translating solutions to the level set flow

In this section we prove the case σ = 0 of Theorem 1.2 and that an ancient

convex (in space) solution to the mean curvature flow is convex in space-time.

We point out that when n ≥ 4, the proof is simpler; see Remark 4.1.

Theorem 4.1. For any n ≥ 2 and 1 ≤ k ≤ n, there exist complete convex

solutions, defined in strip regions, to the equation

(4.1)
n∑

i,j=1

Ç
δij −

uiuj
|Du|2

å
uij = 1
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which are not k-rotationally symmetric. If n ≥ 3, there exist entire convex

solutions to (4.1) which are not k-rotationally symmetric.

By our definition, a function u is k-rotationally symmetric if u(x) = ϕ(|x̂|)
in an appropriate coordinate system, where x̂ = (x1, . . . , xk). To prove Theo-

rem 4.1 we will need the following logarithm concavity of solutions to (4.1).

Lemma 4.1. Let Ω be a smooth, bounded, convex domain in Rn. Let u be

the solution of (4.1) in Ω, vanishing on ∂Ω. Then for any constant h satisfying

infΩ u < h < 0, the level set Γh,u = {u = h} is convex. Moreover, log(−u) is

a concave function.

Proof. Since u is a solution of (4.1), ψ = − log(−u) satisfies

(4.2)

Ç
δij −

ψiψj
|Dψ|2

å
ψij = eψ.

Since ψ(x)→ +∞ as x→ ∂Ω, the results in [15] (see Section III.12) implies ψ

is convex. �

Denote

(4.3) Ωr,t =

®
x ∈ Rn :

|x′|2

r2
+
x2
n

t2
< 1

´
,

where r, t are positive constants, x′ = (x1, . . . , xn−1). Let ur,t denote the

solution of (4.1) in Ωr,t, vanishing on ∂Ωr,t. Denote Mr,t = − inf ur,t and

Γr,t = {ur,t = −Mr,t + 1}. Obviously Mr,t →∞ as r, t→∞.

The following lemma plays a key role for our construction of nonradial

convex solutions. A similar idea was used in [4], where we proved that for

any ellipsoid E, there exists an entire convex solution u to the Monge-Ampère

equation detD2u = f such that u(0) = 0, u ≥ 0, and the minimum ellipsoid

of the sublevel set {u < 1} is similar to E.

Lemma 4.2. For any θ > 0 and K > 1, there exist r = r(θ,K) and

t = t(θ,K) such that Mr,t = K and

(4.4) sup{|x′| : x ∈ Γr,t} = θ sup{xn : x ∈ Γr,t}.

Proof. The solution ur,t depends continuously on r and t, and Mr,t is

monotone increasing in r and t. For any K > 1, we have Mr,t = K when

r = t =
»

2(n− 1)K.

It is easy to see that for any fixed r > 0, Mr,t → 0 as t → 0. Hence for

any given r >
»

2(n− 1)K, there exists a unique t = tr <
»

2(n− 1)K such

that Mr,t = K. Moreover we have tr → 0 as r → ∞. Similarly for any fixed

t > 0, we have Mr,t → 0 as r → 0. Hence for any given t >
»

2(n− 1)K, there

exists a unique r = rt <
»

2(n− 1)K such that Mr,t = K.
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Observe that for any fixed K, sup{xn : x ∈ Γr,t} → 0 as t → 0 and

by convexity sup{xn : x ∈ Γr,t} → ∞ as t → ∞, where r = rt is such that

Mr,t = K. By the continuity of ur,t in r and t, there exist r > 0 and t = tr
such that (4.4) holds. �

For any fixed θ 6= 1, by Lemma 4.2 there exist r = rk and t = tk such that

Mrk,tk = k and (4.4) holds. From the proof of Lemma 4.2 we also have

(4.5) tk > rk if θ < 1.

Hence as k → ∞ we have tk → ∞ if θ < 1 or rk → ∞ if θ > 1. Denote

wk = urk,tk + k. Then wk ≥ wk(0) = 0. We want to prove wk converges to a

complete solution of (4.1).

We say that a sequence of (embedded) convex hypersurfaces {Mk} locally

converges toM if for any R > 1 and δ > 0, there exists k0 > 1 such that when

k ≥ k0, Mk ∩ BR(0) ⊂ Nδ(M∩ BR(0)) and M∩ BR(0) ⊂ Nδ(Mk ∩ BR(0)),

where BR denotes the ball of radius R and Nδ denotes the δ-neighborhood.

For any fixed integer j, by Lemma 4.1, ϕj,k = log j− log(j−wk) (k ≥ j) is

an even, convex function. LetMj,k denote the graph of ϕj,k. Observe that for

any fixed j and h, by (4.4) the setsMj,k∩{xn+1 < h} are uniformly bounded in

k, and can be represented as radial graphs with center at the point (0, . . . , 0, 1
2).

Hence we may suppose by choosing subsequences that Mj,k converges locally

to a complete, convex hypersurface Mj . Let Dj denote the projection of Mj

on {xn+1 = 0} and Dj denote the interior of Dj . Then Dj is a convex domain

and as k → ∞, ϕj,k converges locally in Dj to a function ϕj . It follows that

wk converges locally in Dj to a function w. Obviously w is a viscosity solution

of (4.1) in Dj . Repeating the procedure for j = 1, 2, . . ., by the Arzela-Ascoli

lemma we obtain a sequence of domains D1 ⊂ D2 ⊂ · · · such that wk sub-

converges locally to w in all Dj , j = 1, 2, . . . . Let D = ∪Dj . Then D is a

convex domain and wk converges locally to w in D.

By (4.4), w is not rotationally symmetric. To prove Theorem 4.1, we will

prove w is convex and w(x)→∞ as x→ ∂D.

Lemma 4.3. For any x0 ∈ ∂D, we have

(4.6) lim
x→x0

w(x) =∞.

Proof. For any fixed k, the level set {wk = −t} is a convex solution to the

mean curvature flow (with time t ∈ (−k, 0)). For any fixed t, by the discussion

above we see that {wk = −t} converges to the level set {w = −t} as k → ∞.

Hence, when −∞ < t < 0, {w = −t} is also a convex solution to the mean

curvature flow. It follows that for any t ∈ (−∞, 0), {w = −t} is smooth and

locally uniformly convex. Hence at any time t ∈ (−∞, 0), the hypersurface

{w = −t} is moving at positive velocity. Hence w(x)→∞ as x→ ∂D. �
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We can also write the graph of wk locally in the form xn = vk(x
′, t), where

t = −xn+1. Then vk satisfies the nonparametric mean curvature flow equation

(4.7) vt =
»

1 + |Dv|2 div
Dv»

1 + |Dv|2
,

where Dv = (vx1 , . . . , vxn−1). Hence if v is convex in x′ and if vt > 0 at some

point, then vt > 0 everywhere by the Harnack inequality. Using this property

one also easily obtain (4.6). We remark that Lemmas 4.2 and 4.3 were also

observed by White; see [27].

Lemma 4.4. The solution w is convex.

Proof. Since the level set of wk is convex, so is the level set of w. For any

point y ∈ D and any positive constant δ < min(1, 1
2dy), where dy = dist(y, ∂D),

there exists a constant M0 > 0 depending on δ such that sup{w(x) : x ∈
Bδ(y)} ≤ M0 and sup{|Dw(x)| : x ∈ Bδ(y)} ≤ M0. Denote vk = log(k − w).

By the concavity of vk we have

|Dvk(y)| ≤ sup
x∈∂Bδ(y)

1

δ
(|vk(x)− vk(y)|)

≤ C(log(k +M0)− log(k −M0)) ≤ C/k,

where C > 0 depends on M0 and δ, but is independent of k.

By the concavity of vk, we have, furthermore,

{∂i∂jwk(y)} = −evk{∂i∂jvk + ∂ivk∂jvk}

≥ −evk{∂ivk∂jvk} ≥ −
C

k
I,

where I is the unit matrix. Sending k →∞ we obtain {∂i∂jw(y)} ≥ 0. Hence

w is convex. �

From [9] we know that {w = −t} shrinks to a round point as t → 0.

Hence w > 0 for any x 6= 0 and so w is not k-rotationally symmetric for any

1 ≤ k ≤ n. If we choose θ > 1 sufficiently large, then w must be defined in a

strip region by Lemma 2.7. We have thus proved the first part of Theorem 4.1.

We would like to point out that, from the proof of Theorems 1.1 and 1.3,

the function w is defined in a strip region for any θ > 1. If n = 2, then by

Theorem 1.1, w is defined in a strip for any θ 6= 1.

Next we prove the second part of Theorem 4.1. We will prove the solution

w obtained above is an entire solution if n ≥ 3 and θ < 1. Denote

rh = rh,w = sup{|x′| : (x′, xn) ∈ Ωh,w},
th = th,w = sup{xn : (x′, xn) ∈ Ωh,w}.
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Lemma 4.5. Suppose th ≥ δrh for some positive constant δ > 0. Then

(4.8)
(δrh)2

4(n− 1)
≤ h ≤ r2

h

2(n− 2)
.

Proof. Let

ϕ =
1

2(n− 1)

Å
|x|2 − 1

2
(δrh)2

ã
.

Then L0[ϕ] = 1 in Ωh,w = {w < h} and ϕ ≥ 0 on ∂Ωh,w. By the comparison

principle it follows that w − h ≤ ϕ in Ωh,w. Hence

h ≥ − inf ϕ =
(δrh)2

4(n− 1)
.

To prove the second inequality of (4.8), let

ϕ =
1

2(n− 2)
(|x′|2 − r2

h).

Then L0[ϕ] = 1 in Ωh,w and ϕ ≤ 0 on ∂Ωh,w. It follows w − h ≥ ϕ in Ωh,w.

Hence

h ≤ −ϕ(0) =
r2
h

2(n− 2)
.

This completes the proof. �

Therefore to prove the second part of Theorem 4.1 it suffices to prove that

there exists δ > 0 such that

(4.9) sup{xn : x ∈ Γh,w} ≥ δ sup{|x′| : x ∈ Γh,w}

for any h > 0, where Γh,w = {w = h}. Denote

rh,k = sup{|x′| : x ∈ Γh,wk},
th,k = sup{xn : x ∈ Γh,wk}.

Then rh,k |h=k = rk and th,k |h=k = tk, where tk and rk satisfy (4.5). If there is

a subsequence of {k} such that

(4.10) th,k ≥ rh,k ∀ h ∈ (0, k),

then (4.9) holds with δ = 1 for all h > 0. Hence w is defined in the entire

space Rn.

If (4.10) is not true, let

hk = sup{h > 0 : th,k < rh,k}.

By (4.5) we have hk < k. If the sequence {hk} is uniformly bounded, w is

defined in the entire space Rn.

If hk → ∞, we denote ‹wk(x) = h−1
k wk(h

1/2
k x). Then L0[‹wk] = 1 in

{‹wk < 1} and

(4.11) sup{|x′| : x ∈ {‹wk < 1}} = sup{xn : x ∈ {‹wk < 1}}.
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Observe that the level set {‹wk = −t} is a convex solution to the mean curvature

flow (with time t ∈ (−1, 0)). From [9] we see that {‹wk = h} shrinks to a round

point at h→ 0. Hence by (4.11) we have, for any h ∈ (0, 1),

(4.12) sup{xn : x ∈ {‹wk = h}} ≥ δ sup{|x′| : x ∈ {‹wk = h}}
for some δ > 0 independent of h and k. Rescaling back we obtain (4.9). This

completes the proof of Theorem 4.1.

Remark 4.1. When n ≥ 4, we can also construct entire convex solutions

of (4.1) as follows. Denote x̂ = (x1, . . . , xn−2), x̃ = (xn−1, xn). Let Ωr,t = {x ∈
Rn : |x̂|

2

r2
+ |x̃|2

t2
= 1}. Let ur,t be the solution of (4.1) with Ω = Ωr,t, which

vanishes on ∂Ω. As before we choose rk and tk such that inf urk,tk = −k and

(4.13) sup{|x̂| : x ∈ Γr,t} = θ sup{|x̃| : x ∈ Γr,t},
where Γr,t = {ur,t = −k + 1}, and θ 6= 1 is any given positive constant.

Denote wk = urk,tk + k. Then wk is nonnegative and wk(0) = 0. Observe that

the function ϕ = 1
2 |x̃|

2 satisfies the equation L0[ϕ] = 1. By the comparison

principle we have

(4.14) wk(x) ≤ 1

2
|x|2.

Let w = limk→∞wk. Then w satisfies (4.14). Hence by Lemma 4.4, w is an

entire convex solution of (4.1). Obviously w is not k-rotationally symmetric

for any 1 ≤ k ≤ n.

Remark 4.2. In Lemma 4.4 we showed that a solution to (4.1) is convex

if the level set Γh = {u = h} is bounded and convex for all large h > 0. This

assertion is true even if Γh is unbounded.

Proposition 4.1. Let u be a solution to (4.1) whose graph is a complete

hypersurface. Suppose that the level set Γh,u is convex for any h. Then u is

convex.

Proof. If the sublevel sets Ωh,u are bounded, Proposition 4.1 is proved in

Lemma 4.4. If Ωh,u is unbounded, from the proof of Lemma 4.4 it suffices to

show that log(h − u) is concave for any large constant h. By Lemma 4.1, it

suffices to show that for any given h > 0, u can be approximated locally in Ωh,u

by a sequence of solutions to (4.1) whose level sets are bounded and convex.

Let {Dk} be a sequence of convex domains in Rn satisfying D1 ⊂ D2

⊂ · · · , such that ∪Dk = Ωh,u for some fixed h. Let wk be the solution of (4.1)

in Dk satisfying wk = h on ∂Dk. Then wk ≥ u in Dk and wk is decreasing

in k. Hence wk converges as k →∞ to a solution w of (4.1) in Ωh, satisfying

w = h on ∂Ωh,u and w ≥ u in Ωh,u.

To prove w = u, we need to prove that for any h′ < h (h fixed), the level

set Γh′,w is sufficiently close to Γh′,u. Note that both Γh′,w and Γh′,u evolves by
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mean curvature (with time t = −h′), so it suffices to prove Γh′,w is sufficiently

close to Γh′,u at infinity.

Let {xk} be a sequence on Γh,u with |xk| → ∞. By the convexity of

Γh,u, the normal of Γh,u (regarded as a hypersurface in Rn = {xn+1 = h}) at

xk converges along a subsequence to a boundary point of the Gauss mapping

image of Γh,u. Hence after translation, the convex hypersurface Γkh,u = {x−xk :

x ∈ Γh,u} converges to a convex hypersurface which can be split as R1×Σh,u.

Similarly for any h′ < h, Γkh′,u = {x − xk : x ∈ Γh′,u} converges to a convex

hypersurface R1 × Σh′,u, and Γkh′,w = {x − xk : x ∈ Γh′,w} converges to R1 ×
Σh′,w, and both Σh′,u and Σh′,w evolve by mean curvature (with t = −h′) with

initial hypersurface Σh,u. By an induction argument on dimension we conclude

that Σh′,u = Σh′,w for any h′ < h. Namely Γh′,w is sufficiently close to Γh′,u at

infinity. �

5. Translating solutions to the mean curvature flow

In this section we prove the case σ = 1 of Theorem 1.2. That is

Theorem 5.1. For any dimension n ≥ 2 and 1 ≤ k ≤ n, there exist

complete convex solutions to equation (1.1), defined in strip regions, which are

not k-rotationally symmetric. If n ≥ 3, there are entire convex solutions to

(1.1) which are not k-rotationally symmetric.

The argument in Section 4 cannot be extended to the mean curvature

equation (1.1), as the logarithm concavity in Lemma 4.1 is still an open problem

for equation (1.1). To prove Theorem 5.1 we will use the Legendre transform.

The purpose is to introduce the Legendre transform to obtain convex solutions

to the mean curvature equation (1.1). As remarked at the end of Section 3,

we can always assume that a convex solution is locally uniformly convex.

For clarity we divide this section into three subsections. But similarly as

in Section 4, the argument is much simpler in the case n ≥ 4; see discussions

at the beginning of Section 5.3.

5.1. The Legendre transform. For a smooth, uniformly convex function

u defined in a convex domain Ω ⊂ Rn. The Legendre transform of u, u∗,

is a smooth, uniformly convex function defined in the domain Ω∗ = Du(Ω),

given by

(5.1) u∗(x) = sup{x · y − u(y) : y ∈ Ω}.

For example, if u(x) = a|x|2, then u∗(y) = 1
4a |y|

2; and if u(x) = a|x|1+β,

then u∗(y) = c|y|1+1/β with c = aβ/[a(1 + β)]1+1/β. The function u can be

recovered from u∗ by the same Legendre transform, namely u(y) = sup{x ·
y − u∗(x) : x ∈ Ω∗}. The supremum is attained at the unique point y which
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satisfies

x = Du(y) and y = Du∗(x).

It follows that the Hessian matrix (D2u) at y is the inverse of the Hessian

matrix (D2u∗) at x. That is

(5.2) (D2u) = (D2u∗)−1 = (F ij [u∗])/ detD2u∗,

where F ij [u∗] is the (i, j)-entry of the cofactor matrix of (D2u∗),

F ij [u∗] =
∂

∂rij
det r at r = D2u∗.

Hence if u is a uniformly convex solution of (1.2), u∗ is a solution of L∗σ[u∗] = 1,

where

L∗σ[u∗] = detD2u∗
¿∑Ç

δij −
xixj

σ + |x|2

å
F ij [u∗]

is a fully nonlinear partial differential equation, which is elliptic at convex

functions. In particular equation (1.1) is equivalent to the equation

(5.3) L∗1[u∗] = 1.

We have the following classical solvability for the Dirichlet problem of equation

(5.3).

Theorem 5.2. Let Ω∗ be a smooth, uniformly convex domain in Rn and

ϕ be a smooth function defined on ∂Ω∗. Then there is a unique, smooth,

uniformly convex solution u∗ ∈ C∞(Ω
∗
) to (5.3) such that u∗ = ϕ on ∂Ω∗.

For the proof of Theorem 5.2, we observe that the uniqueness of convex

solutions follows from the comparison principle. For the existence of smooth

convex solutions, by the continuity method it suffices to establish the global

regularity estimates. By Evans and Krylov’s elliptic regularity theory (see,

e.g., [5], [8], [16]), it suffices to establish the global second order derivative

estimates.

Different proofs for the global second order derivative estimates are avail-

able [17], [18], [24]. In [17] Krylov provided a probabilistic proof for (degen-

erate) Bellman equations. An analytic proof was later given in [18]. Krylov’s

estimation covers equation (5.3) as it is equivalent to a concave equation (5.4)

below and so can be expressed as a Bellman equation. For Hessian equations

(such as (5.4)) the proof in [18] was simplified in [14].

To apply the a priori estimates in [24] we need to write equation (5.3) as

a Hessian quotient equation, namely

(5.4)
Fn[w]

Fn−1[w]
=
−1

pn+1
, p ∈ S∗,
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where S∗ = { (x,−1)

(1+|x|2)1/2
∈ Sn : x ∈ Ω∗}, Sn is the unit sphere,

w(p) = (1 + |x|2)−1/2u∗(x), p =
(x,−1)

(1 + |x|2)1/2
, x ∈ Ω∗.

If u∗ is the Legendre transform of u, the function w is indeed the support

function of Mu (the graph of u), which can also be defined by

(5.5) w(p) = sup{p ·X : X ∈Mu}.

Moreover, Mu can be recovered from w by Mu = ∂K with K = {X ∈ Rn+1 :

p ·X ≤ w(p) ∀ p ∈ S∗}.
In (5.4) we denote by Fk[w] the kth elementary symmetric polynomial of

the eigenvalues λ = (λ1, . . . , λn) of the matrix {∇2w + wI}(p),

(5.6) Fk[w] =
∑

1≤i1<···<ik≤n
λi1 · · ·λik , 1 ≤ k ≤ n,

where ∇ denotes the covariant derivative with respect to a local orthonormal

basis on Sn, and I is the unit matrix. As the supremum in (5.5) is attained at

the unique point Xp ∈Mu with normal p, the principal radii ofMu are equal

to the eigenvalues of the Hessian matrix {∇2w+wI} (which also follows from

(5.2)). Hence by equation (1.1), w satisfies equation (5.4).

The global second order derivative estimates for Hessian quotient equa-

tions in Euclidean domains were established by Trudinger [24]. It is not hard

to extend the argument in [24] to equation (5.4) with domains on the unit

sphere.

5.2. Complete convex solutions. With Theorem 5.2 we can now construct

a sequence of convex solutions (wk) of (1.1), such that wk converges to a

complete convex solution of (1.1) which is not k-rotationally symmetric for

any 1 ≤ k ≤ n.

For any positive constants r, t, denote

Ω∗r,t =

®
x ∈ Rn :

|x′|2

r2
+
x2
n

t2
< 1

´
,

where n ≥ 2, x′ = (x1, . . . , xn−1). By Theorem 5.2, the Dirichlet problem

(5.7)

L∗1[v] = 1 in Ω∗r,t,

v = 0 on ∂Ω∗r,t

has a unique smooth convex solution u∗r,t. Denote M∗r,t = − inf u∗r,t and Γ∗r,t =

{x ∈ Rn : u∗r,t(x) = −M∗r,t + 1}. Then M∗r,t →∞ as r, t→∞. Similarly to the

proof of Lemma 4.2 we have
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Lemma 5.1. For any constants θ > 0 and K > 1, there exist r = r(θ,K)

and t = t(θ,K) such that M∗r,t = K and

(5.8) sup{|x′| : x ∈ Γ∗r,t} = θ sup{xn : x ∈ Γ∗r,t}.

Now we fix a positive constant θ 6= 1. By Lemma 5.1 there exist positive

constants r = rk and t = tk such that M∗rk,tk = k and (5.8) holds. Similar

to (4.5) (after the Legendre transform the case θ > 1 here corresponds to the

case θ < 1 in §4) we have

(5.9) rk > tk if θ > 1.

Denote w∗k = u∗rk,tk + k, Ω∗k = Ω∗rk,tk . Then w∗k ≥ w∗k(0) = 0.

Now we use the Legendre transform to change back to equation (1.1). Let

wk be the Legendre transform of w∗k. Then wk is a convex function defined in

the domain Ωk =: Dw∗k(Ω
∗
k) and satisfies the mean curvature equation (1.1)

in Ωk. By (5.8), there exists a constant R0 > 0, depending only on n and

θ, such that w∗k ≥ 1 on ∂BR0(0). Hence |Dw∗k| ≥ 1/R0 on ∂BR0(0) and so

BR−1
0

(0) ⊂ Ωk for any large k.

Lemma 5.2.Let u∈C2(Ω) be a convex solution of (1.1). Suppose u(0)=0,

u ≥ 0, and u is an even function. Then for any M > 0, there exists a constant

C > 0 such that for any y ∈ Ω, if u(y) < M , we have

(5.10) |Du(y)| ≤ C.

Proof. Write equation (1.1) in the form

(5.11) κuγ +
uγγ

1 + u2
γ

= 1,

where κ is the mean curvature of the level set {u = const} and γ is the unit

outer normal to the level set. The normal γ(x) is a smooth vector field in

Ω − {O}. Hence for any point y ∈ Ω, there is a smooth curve `y connecting

the origin O to y such that γ(x) is tangential to the curve at any point x ∈
`y. Since u is an even function, we may suppose y is in the positive cone

{x = (x1, . . . , xn) : xi ≥ 0}. It follows by the convexity of u that `y lies in

the positive cone and for any x ∈ `y, γ(x) is also a point in the positive cone.

Hence the arclength L of `y is less than n|y|.
Let ψ be the restriction of u on the curve `y, and let `y be parametrized

by the arclength t. Then we have ψ′ = uγ and ψ′′ = uγγ . Hence

ψ′′

1 + ψ′2
= g(t),

where g(t) = 1− κψ′ ≤ 1. It follows that

arctgψ′(t) = G(t) =:

∫ t

0
g(s)ds;
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thus, ψ′(t) = tgG(t). Hence G(L) < π
2 and G(L) ≥ π

4 if ψ′(L) ≥ 1. Integrating,

we have

ψ(L) =

∫ L

0
tgG(t)dt.

Denote L0 = inf{t : G(t) ≥ π
4 }. Then

u(y) = ψ(L) ≥
√

2

2

∫ L

L0

1

cosG(t)
.

If |Du(y)| = ψ′(L) is sufficiently large, then G(L) must be very close to π
2 .

This means ψ(L) must be very large since G′(t) < g(t) < 1. Hence Lemma 5.2

is proved. �

Note that for the relation ψ′′ = uγγ we have used the fact that γ is a

normal to the level set {u = const}. If `y is replaced by an arbitrary curve `,

then we have

ψ′′ = uγγ + κuη,

where γ is a unit vector tangential to `, κ is the curvature of `, and η is a unit

normal to `.

Note that by the convexity of u, to prove (5.10) it suffices to consider

boundary points. The estimate (5.10) on the boundary of a convex domain

can also be obtained by constructing proper subsolutions (more precisely, a

solution of utt
1+u2t

= 1 with one variable t).

Lemma 5.3. We have

(5.12) mk = inf{wk(x) : x ∈ ∂Ωk} → ∞ as k →∞.

Proof. First observe that for any constant h > 0, there exists Rh > 0

(independent of k) such that for any x ∈ Ωk with |x| > Rh, we have the

estimate

(5.13) wk(x) ≥ h.

In fact this estimate results from the following geometric property of the Le-

gendre transform: Let Ph denote the set of linear functions g such that g < w∗k
and g(0) = −h. Let g(x) = sup{g(x) : g ∈ Ph}. Then the graph of g is

a convex cone and Dg(Rn) = {wk ≤ h}, where Dg(Rn) is the image of the

subgradient mapping,

Dg(Rn) = Dg({0}) = {p ∈ Rn : g(x) ≥ p · x+ g(0) ∀ x ∈ Rn}.

By (5.8) we have |Dg| < C. Namely for any h > 0, the set {wk < h} is

uniformly bounded. Hence (5.13) holds.

By convexity it follows that for any boundary point xk ∈ ∂Ωk, we have

wk(xk)→∞ if |xk| → ∞. Therefore to prove (5.12) we need only to consider
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any bounded sequence xk ∈ ∂Ωk. However, if |xk| and wk(xk) are both uni-

formly bounded, then by Lemma 5.2, yk = Dwk(xk) ∈ ∂Ω∗k are also uniformly

bounded. Hence by the Legendre transform,

k = w∗k(yk) = xk · yk − wk(xk)

are also uniformly bounded, a contradiction. �

Lemma 5.4. There is a subsequence of {wk} which converges to a complete

convex solution w of (1.1).

Proof. For any constant h > 0, by (5.13) the sets Mwk ∩ {xn+1 < h}
are uniformly bounded in k, where Mwk denotes the graph of wk. Hence we

may suppose by choosing subsequences that Mwk converges locally to a convex

hypersurface M, which is complete by Lemmas 5.2 and 5.3. Let D be the

projection of M on the plane {xn+1 = 0} and D the interior of D. Then D is

a convex domain and wk converges locally in D to a convex function w, and

w is a convex solution of (1.1) in D. We claim that w(x) → ∞ as x → ∂D.

Indeed, if this is not true, then there is a point p ∈ M at which the tangent

plane ofM is perpendicular to the plane {xn+1 = 0}. Hence there is a sequence

pk = (xk, wk(xk)) ∈Mwk , pk → p, such that wk(xk) is uniformly bounded but

|Dwk(xk)| → ∞. This is in contradiction to Lemma 5.2. Consequently w is a

complete convex solution of (1.1). By (5.8), w is not rotationally symmetric.

�

Now we can prove the first part of Theorem 5.1. Indeed, let P denote the

set of linear functions g such that g < w and g(0) = −1. Let g(x) = sup{g(x) :

g ∈ P}. Then the graph of g is a convex cone and Dg(Rn) = {w∗ ≤ 1}, where

w∗ = limk→∞w
∗
k is the Legendre transform of w. Hence if the constant θ > 0

in Lemma 5.1 is chosen sufficiently small, then the level set Γg = {x ∈ Rn :

g(x) = 1} satisfies

sup{|x′| : x ∈ Γg} = θ′ sup{xn : x ∈ Γg}

for some θ′ > 1 sufficiently large. Hence by Lemma 2.7, w is defined in a strip

region.

5.3. Entire convex solutions. Next we prove the second part of Theo-

rem 5.1. We prove that if n ≥ 3 and θ > 1, the solution w obtained in

Lemma 5.4 is defined in the entire space Rn. The following proof is nec-

essary only when n = 3, since if n ≥ 4, one can construct a sequence of

functions w∗k as above such that wk, the Legendre transform of w∗k, takes the

form wk(x) = wk(|x̂|, |x̃|) (where x̂ = (x1, . . . , xn−2), x̃ = (xn−1, xn); see Re-

mark 4.1). Then wk(x) ≤ 1
2 |x|

2 and so {wk} subconverges to an entire convex

solution of (1.1).
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For any h > 0, denote

(5.14) ah,k = sup{|x′| : x ∈ Γh,k}, bh,k = sup{xn : x ∈ Γh,k},

where Γh,k = {wk = h}. Letting

ŵ =
1

2(n− 2)
(|x′|2 − a2

h,k) + h,

we have L1[ŵ] ≥ 1. By the comparison principle, wk ≥ ŵ and so ŵ(0) ≤ 0.

We obtain ah,k ≥ (2(n− 2)h)1/2. When k →∞,

(5.15) ah ≥ (2(n− 2)h)1/2,

where we denote

ah = sup{|x′| : x ∈ Γh}, bh = sup{xn : x ∈ Γh},

where Γh = {w = h}. To prove that w is an entire solution, it suffices to prove

(5.16) bh →∞ as h→∞.

To prove (5.16) we use Lemma 2.7. That is, if there exist h0 > 1 and

β > 0 sufficiently small, such that bh0,k ≤ βh
1/2
0 , then there exists a constant

C > 0 independent of k, such that bh,k ≤ C for all h ∈ (1,mk); that is, wk is

defined in the strip {|xn| < C}, where mk is the constant in (5.12).

It follows that if bĥ,k ≥ βĥ
1/2 for some large ĥ > 1, then there exists δ > 0,

independent of ĥ and k, such that bh,k ≥ δh1/2 for all 1 < h < ĥ. Therefore to

prove w is an entire solution, it suffices to prove that there exists a constant

β > 0 independent of k, and a sequence τk, where τk ≤ mk and τk → ∞ as

k →∞, such that

(5.17) bτk,k ≥ βτ
1/2
k .

Denote

(5.18) rh,k = sup{|x′| : x ∈ Γ∗h,k}, th,k = sup{xn : x ∈ Γ∗h,k},

where Γ∗h,k = {w∗k = h}.

Lemma 5.5. Suppose rh,k ≥ th,k. Then we have the estimates

(5.19)
»
h/n ≤ rh,k ≤

√
2h.

Proof. The function

v = h+
n

2
(|x|2 − 2r2

h,k)

is a subsolution of (5.3), namely L∗1[v] ≥ 1. Moreover, since rh,k ≥ th,k, we

have v ≤ h on {w∗k = h}. Hence by the comparison principle, v ≤ w∗k. In

particular 0 = w∗k(0) ≥ v(0) = h − nr2
h,k. The first inequality of (5.19) is

proved.
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Next observe that when n ≥ 3, the function

v = h+
1

2
(|x′|2 − r2

h,k) +Kx2
n

is a super-solution of (5.3), namely L∗1[v] ≤ 1, for any K > 1. For any ε > 0

we can choose K sufficiently large such that v > w∗k − ε on {w∗k = h}. Hence

v(0) ≥ w∗k(0) = 0 and we obtain the second inequality. �

Note that L∗1[u∗] ≥ 1 (≤ 1, resp.) is equivalent to L1[u] ≤ 1 (≥ 1, resp.),

where u∗ is the Legendre transform of u.

Proof of Theorem 5.1. The first part of Theorem 5.1 has been proved in

Section 5.2. We need only to prove that when n ≥ 3 and θ > 1, w is an entire

solution. It suffices to prove (5.17).

By (5.9) we have rh,k ≥ th,k when h is close to k. If rh,k ≥ th,k for all

h < k, then by (5.19),

(5.20)
1

2
|x′|2 ≤ w∗k(x′, 0) ≤ n|x′|2.

By the Legendre transform,

1

4n
|x′|2 ≤ wk(x′, 0) ≤ 1

2
|x′|2.

Sending k →∞ we obtain

(5.21)
1

4n
|x′|2 ≤ w(x′, 0) ≤ 1

2
|x′|2.

Hence

ah ≤ (4nh)1/2 ∀ h > 1.

By Lemma 2.6, ahbh ≥ Ch (ah and bh here correspond to ah and bh in

Lemma 2.6). Hence bh → ∞ as h → ∞, and w is defined in the whole

space Rn.

If there exists h > 0 such that rh,k < th,k, we denote

(5.22) hk = inf{h : rh′,k ≥ th′,k ∀ h < h′ < k}.

If {hk} is uniformly bounded, or contains a uniformly bounded subsequence,

then (5.20), and so also (5.21), holds for |x′| large. Hence w is also an entire

solution.

Finally we consider the case hk →∞ as k →∞. Denote G∗k = {w∗k < hk}
and Gk = Dw∗k(G

∗
k) and consider the solution wk in the domain Gk. Denote

(5.23) τk =: inf{wk(x) : x ∈ ∂Gk}.

Since hk → ∞, similarly to Lemma 5.3 we have τk → ∞ as k → ∞. Denote“G∗k = 1√
hk
G∗k,

“Gk = 1√
hk
Gk, and

(5.24) ŵ∗k(x) =
1

hk
w∗k(

√
hkx), ŵk(x) =

1

hk
wk(

√
hkx).
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Then ŵk is the Legendre transform of ŵ∗k, and

(5.25) ck =: inf{ŵk(x) : x ∈ ∂“Gk} = τk/hk.

We claim

(5.26) ck ≤ 4n ∀ k.

Indeed, by (5.22), “G∗k has a good shape, namely

(5.27) sup{|x′| : x ∈ “G∗k} = sup{xn : x ∈ “G∗k}.
As the domain “G∗k is rotationally symmetric with respect to x′, by Lemma 5.5

and (5.27) we have “G∗k ⊂ B2(0). Note that ŵ∗k is the Legendre transform of

ŵk; now, Dŵk(“Gk) = “G∗k. Hence

(5.28) |Dŵk| ≤ 2 in “Gk.
Since “G∗k ⊂ B2(0), there exists r ≤ 2 such that “G∗k ⊂ Br(0), and ∂“G∗k and

∂Br(0) have a common boundary point x0. Observe that v = 1+n
2 (|x|2−r2) is a

subsolution of (5.3) and v ≤ ŵ∗k = 1 on ∂“G∗k. Also, |Dŵ∗k(x0)| ≤ |Dv(x0)| ≤ 2n.

By the Legendre transform, y0 = Dŵ∗k(x0) is a boundary point of “Gk. Since

ŵ∗k is constant on ∂“G∗k, one easily verifies that the domain “Gk = Dŵ∗k(Ĝ
∗
k) is

star-shaped. By (5.28) we obtain

ŵk(y0) ≤ |y0| sup |Dŵk| ≤ 4n;

that is, (5.26) holds.

Denote

εk = inf{xn > 0 : ŵk(0, . . . , 0, xn) ≥ ck} = sup{xn : ŵk(x
′, xn) ≤ ck}.

Then by (5.26) and the rescaling (5.24), to prove (5.17) it suffices to prove that

εk has a uniform positive lower bound, namely

(5.29) εk ≥ ε0 > 0 ∀ k.

We prove (5.29) as follows. Observing that ŵ∗k(0) = 0, ŵ∗k = 1 on ∂“G∗k,
and “G∗k ⊂ B2(0), we see that |Dŵ∗k| ≥ 1/2 on ∂“G∗k. That is, “Gk ⊃ B1/2(0) for

all k. By (5.28) we may suppose ŵk → ŵ in B1/2(0). Then ŵ ≥ 0, ŵ(0) = 0

and |Dŵ| ≤ 2 in B1/2(0) since ŵk satisfies the equation Lσ[v] = 1 in “Gk, where

σ = 1/hk, and Lσ is the operator in (1.2). By Lemma 2.5, ŵ is a solution of

(5.30) L0[v] = 1 in B1/2(0).

If ŵ(x) > 0 for any x 6= 0, then c = inf{ŵ(x) : |x| = 1/2} > 0. Hence

ck ≥ 1
2c for sufficiently large k. By (5.28) we then have εk ≥ ck/2 ≥ c/4 for

large k. Hence (5.29) holds.

If the convex set {ŵ = 0} contains a line segment `, then ` is either con-

tained in the xn-axis, or in the plane {xn = 0}, as the function ŵ is rotationally
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symmetric with respect to x′ and symmetric in xn. Furthermore, by the com-

parison principle, the set {ŵ = 0} contains no interior points, i.e. the Lebesgue

measure |{ŵ = 0}| = 0. Note that the origin is the middle point of ` as ŵ is

an even function.

In the former case, namely if ` is contained in the xn-axis, we have ŵ(x)>0

for any point x ∈ ∂B1/2(0) not lying on the xn-axis, for otherwise ŵ = 0 on a

set with interior points. Hence

ck ≥ inf
∂Q

ŵk(x) = ŵk

Å
0, . . . , 0,

d

2

ã
,

where Q = {x ∈ Rn : |x′| < d
2 , |xn| <

d
2}, where d is the arclength of `. Hence

we have εk ≥ d
2 and (5.29) holds.

We claim the latter case, namely the case when the line segment ` is

contained in the plane {xn = 0}, does not occur. Indeed, if ` ⊂ {xn = 0},
then {ŵ = 0} is a disc type set D = {x ∈ B1/2(0) : |x′| < d, xn = 0} for

some d > 0. Since the set {ŵ = 0} contains no interior points, the level

set {x ∈ Rn : ŵ(x) = h} is contained in a strip {|xn| < δ} with δ → 0 as

h → 0. Therefore if h > 0 is sufficiently small, there exist points on the level

set {ŵ = h} at which the mean curvature κ of {ŵ = h} is sufficiently small.

Writing equation (5.30) in the form κ |Dŵ| = 1 (see (2.2) with σ = 0), we

find that |Dŵ| is very large. On the other hand we have |Dŵ| ≤ 2 by (5.28),

reaching a contradiction. Hence the latter case does not occur. This completes

the proof. �

6. Applications to the mean curvature flow

First we consider applications of Theorem 1.1. For a mean convex flow

M = ∪t∈[0,T )Mt in Rn+1, let F denote the set of all limit flows (namely blow-

up solutions) to M before first time singularity. A key result in [26] is that

a limit flow in F cannot be a hyperplane of multiplicity-two, from which it

follows that the “grim reaper” xn+1 = log secx1 cannot be a limit flow in F ;

see [22] and [27]. As indicated in the introduction, we will consider solutions

with positive mean curvature only.

Corollary 6.1. A flow M′ ∈ F (with positive mean curvature at some

point) must sweep the whole space Rn+1.

Proof. By Proposition 4.1, M′ is a graph in space-time (with xn+2 = −t)
of a convex function u on a convex domain in Rn+1, and u is a complete

convex solution of (1.2) with σ = 0. If u is not defined in the entire Rn+1, by

Corollaries 2.1 and 2.2, u is defined in a strip region of the form {x ∈ Rn+1 :

|xn+1| < C} (in appropriate coordinates). By Lemma 2.6, the projection of

{u = h} on the x′ = (x1, . . . , xn) plane contains the ball {|x′| < Ch} for some
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C > 0 independent of h ≥ 1. It follows that the tangent flow at infinity to the

solution u (more precisely, there is a limit flow to the original mean convex

flow which) is a multiplicity-two plane; see Corollary 12.5 in [26] or Corollary 4

in [27]. But a multiplicity-two plane does not occur as a limit flow in F . Hence

u must be defined in the whole Rn+1. �

If a convex translating solution M′ is a limit flow to a mean convex flow

in R3, then M′ is the graph of a convex function u satisfying (1.1). By

Corollary 6.1, u is defined in the whole R2. By Theorem 1.1, u is rotationally

symmetric. We obtain Corollary 1.1.

From the case σ = 0 in Theorem 1.1, we also have the following:

Corollary 6.2. A convex solution to the curve shortening flow which

sweeps the whole space R2 must be a shrinking circle.

From Theorem 1.2, there exist closed convex solutions to the curve short-

ening flow which are not the shrinking circle.

Next we consider applications of Theorem 1.3. First we have

Corollary 6.3. Let M = {Mt} be an ancient convex solution to the

mean curvature flow. Let M′t = {x ∈ Rn+1 : (−t)1/2x ∈ Mt} be a dilation of

Mt. Then M′t, after a proper rotation of coordinates, converges as t → −∞
to one of the following :

(i) an n-sphere of radius
√

2n;

(ii) a cylinder Sk ×Rn−k, where Sk is a k-sphere of radius
√

2k;

(iii) the plane Rn of multiplicity-two.

Proof. By Proposition 4.1,M is the graph in space-time of a convex func-

tion u in Rn+1 satisfying equation (1.2) with σ = 0. If u is an entire solution,

(iii) does not occur and Corollary 6.3 is equivalent to Theorem 1.3. If u is not

an entire solution, by Corollaries 2.1 and 2.2, u is defined in a strip region. As

in the proof of Corollary 6.1, the projection ofMt = {u = −t} on the x′-plane

contains the ball {|x′| < C|t|}; by convexity we see that M′t converges to a

plane. �

From Theorem 1.3 (the case σ = 0) we also obtain

Corollary 6.4. Let M =
⋃
t∈[0,T )Mt be a mean convex flow in Rn+1.

Suppose hi →∞ and pi ∈Mti such that the blow-up sequence

Mi = {(hi(p− pi), h2
i (t− ti)) : (p, t) ∈M}

converges to an ancient convex solution. Then there exist h′i → ∞ such that

the corresponding blow-up sequenceM′i = {(h′i(p−pi), h′
2
i (t−ti)) : (p, t) ∈M},

converges along a subsequence to a shrinking sphere or cylinder.
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At type II singularity, from Theorem 1.3 (the case σ = 1) we have

Corollary 6.5. Let Mi be as in Corollary 6.4. If Mi converges to

a convex translating solution, then there is a sequence of positive constants

λi → 0 such that, in a proper coordinate system, the blow-up sequence ›Mi =

{(λix1, . . . , λixn, λ
2
ixn+1, λ

2
i t) : (x1, . . . , xn+1, t) ∈ Mi} converges to the flow

M′ = {(x, ηk(x) + t) ∈ Rn+1 : x ∈ Rn, t ∈ R}, where ηk is as given in (1.4).

In Corollaries 6.4–6.5, we need not restrict ourselves to limit flows in F .

As indicated in the introduction, our Theorem 1.3 corresponds to Perel-

man’s classification of ancient κ-noncollapsing solutions with nonnegative sec-

tional curvature to the three-dimensional Ricci flow [20]. Indeed, Theorems 2.1

and 2.2 imply that the set of entire, ancient convex solutions in Rn+1, which

includes all limit flows in F by Corollary 6.1, is compact if one normalizes the

solutions such that their mean curvature equals one at some fixed point, say

the origin. To see this, letM = {Mt} be an ancient convex solution. ThenM
is the graph in space-time of an entire convex function u. If the mean curva-

ture of M equals one at the origin, then |Du(0)| = 1, and so the compactness

follows from Theorems 2.1 and 2.2.

For ancient convex solutions in R3, we have the following

Corollary 6.6. Let M = {Mt} be an ancient convex solutions which is

a limit flow to a mean convex flow in R3. Suppose at time t = 0, the time slice

M0 = {u = 0} is noncompact. Then for all ε > 0, there is a compact set G

such that any point inM0\G has a neighborhood which is, after normalization,

ε-close (see (2.55)) to the cylinder S1 ×R1.

Proof. As indicated above, M is the graph in space-time of a convex

function u defined in the whole R3. If the level set {u = h} is a cylinder,

then u is a convex function of two variables and Corollary 6.6 follows from

Theorem 1.1. In this case the set G = ∅. Otherwise by convexity we may

assume by choosing an appropriate coordinate system that u(0) = 0, u ≥ 0

in {x1 ≤ 0}, and u ≤ 0 on the positive x1-axis. For a ∈ (0,∞), let xa be

the point such that u(xa) = inf{u(x) : x1 = a}. If inf u is bounded, let

ua(x) = u(x + xa) − u(xa). By the convexity of u, |Du(xa)| is decreasing

as a → ∞, so it is uniformly bounded. By the above mentioned compactness

result (Theorem 2.1), ua subconverges to a convex function u0. By our choice of

coordinates, we have u0 ≤ 0 on the positive x1-axis. But since inf u is bounded,

we have u0 = 0 on the positive x1-axis. By Lemma 2.9 it follows that u0 is

independent of x1. That is u0 is a function of x2 and x3. By Theorem 1.1, u0

is rotationally symmetric in x2 and x3.

If inf u = −∞, then u(xa) → −∞ as a → ∞. By the compactness

Theorem 2.1, the sequence ua(x) = 1
ha

[u(
√
hax + xa) − u(xa)], where ha =

|u(xa)| converges along a subsequence to a convex solution u0 of (4.1). Since
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|Du(xa)| is uniformly bounded, we see that u0 = 0 on the positive x1-axis; see

(2.48). By Lemma 2.9 it follows that u0 is independent of x1. By Theorem 1.1,

u0 is rotationally symmetric in x2 and x3. �

By a compactness argument, one easily sees that the diameter of G is

uniformly bounded if the maximum of the mean curvature ofM0 is equal to 1.

We remark that by Theorem 1.2, Corollary 6.6 is not true for convex solutions

in Rn for n ≥ 4. But in high dimensions we have, accordingly, Corollary 6.3,

which says that an ancient convex solution behaves asymptotically as t→ −∞
like a sphere or cylinder. Note that for any dimension n ≥ 2, the set F
contains all blow-up solutions before the first time singularity, and that the

blow-up sequence converges smoothly on any compact sets to an ancient convex

solution [27]. Therefore, similar to [21], one may infer that if M = {Mt} is a

mean convex flow, then at any point xt ∈Mt with large mean curvature before

the first time singularity, Mt satisfies a canonical neighborhood condition. If

n = 2, the condition is very similar to that in [21]. In high dimensions, the

condition is more complicated. We will not get into details in this direction.

Concerning the geometry of the singularity set it would be more interesting if

one could prove the following:

Conjecture. Let K be a smooth and compact domain in Rn+1. Suppose

the boundary ∂K has positive mean curvature. Let M = ∪tMt be the solution

to the mean curvature flow with initial condition ∂K . Then

(i) singularity occurs only at finitely many times ;

(ii) at each singular time the singularity set consists of finitely many con-

nected components ;

(iii) each connected component is contained in a C1 smooth (n − 1)-sub-

manifold (with or without boundary). If n = 2, each component is

either a single point or a C1 curve.

One may wish to assume n < 7, but the conjecture is likely to be true for

all n ≥ 2, as the second order derivative estimates for (4.1) may hold for any

n ≥ 2.

We conclude this paper with some interesting questions related to our

Theorems 1.1–1.3. For Theorem 1.1 a question is whether an entire solution of

(1.1) in R2 is convex. For Theorem 1.2 a question is whether a convex solution

u of (1.1) is rotationally symmetric if |Du(x)| → ∞ as |x| → ∞. We expect

affirmative answers to both questions.

For Theorem 1.3, an interesting question is whether a nonrotationally

symmetric ancient convex solution can occur as a limit flow in Rn. We believe

that any limit flow to a mean convex flow at isolated singularities in space-

time is rotationally symmetric, otherwise nonrotationally symmetric convex

limit flow may occur if the following situations arise: (a) if there exists a
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mean convex flow in Rn (n ≥ 4) which develops first-time type II singularities

simultaneously on a nonsmooth curve (say a polygon) in a 2-plane; (b) if a

mean curvature flow in Rn (n ≥ 4) develops a first-time singularity on a

smooth curve, and the singularity is type I, except one type II singular point.

In case (a) we expect a nonrotationally symmetric convex translating solution

at the vertices of the polygon. In case (b) a blow-up solution near the type II

singular point may not be rotationally symmetric.
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