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On the distributional Jacobian of
maps from SN into SN in fractional

Sobolev and Hölder spaces

By Häım Brezis and Hoai-Minh Nguyen

Abstract

H. Brezis and L. Nirenberg proved that if (gk) ⊂ C0(SN , SN ) and g ∈
C0(SN , SN ) (N ≥ 1) are such that gk → g in BMO(SN ), then deg gk →
deg g. On the other hand, if g ∈ C1(SN , SN ), then Kronecker’s formula

asserts that deg g = 1
|SN |

∫
SN det(∇g) dσ. Consequently,

∫
SN det(∇gk) dσ

converges to
∫
SN det(∇g) dσ provided gk → g in BMO(SN ). In the same

spirit, we consider the quantity J(g, ψ) :=
∫
SN ψ det(∇g) dσ, for all ψ ∈

C1(SN ,R) and study the convergence of J(gk, ψ). In particular, we prove

that J(gk, ψ) converges to J(g, ψ) for any ψ ∈ C1(SN ,R) if gk converges

to g in C0,α(SN ) for some α > N−1
N

. Surprisingly, this result is “optimal”

when N > 1. In the case N = 1 we prove that if gk → g almost everywhere

and lim supk→∞ |gk − g|BMO is sufficiently small, then J(gk, ψ) → J(g, ψ)

for any ψ ∈ C1(S1,R). We also establish bounds for J(g, ψ) which are

motivated by the works of J. Bourgain, H. Brezis, and H.-M. Nguyen and

H.-M. Nguyen. We pay special attention to the case N = 1.
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1142 HAÏM BREZIS and HOAI-MINH NGUYEN

6. Definition and properties of g∗ω for g ∈ (W ∩VMO)(SN ,SN ) 1163

7. The case N=1 1165

7.1. Proofs of Theorems 4 and 3 1165

Proofs of Theorems 4 and 3 1166

7.2. Definition and properties of g∗ω for g ∈ VMO(S1, S1) 1166

7.3. An improvement of Theorem 3: A partial answer to Open

Question 2 1167

Appendix A. A basic estimate for the lifting: Proof of Theorem 6 1170

References 1179

1. Introduction

H. Brezis and L. Nirenberg [20] proved that if (gk) ⊂ C0(SN , SN ) and

g ∈ C0(SN , SN ) (N ≥ 1) are such that limk→0 |gk − g|BMO = 0, then

(1.1) lim
k→∞

deg gk = deg g.

Hereafter in this paper, we use the following BMO-semi-norm:

|f |BMO(Ω) := sup
B(x,r)⊂⊂Ω

∫
B(x,r)

∣∣∣∣f(ξ)−
∫
B(x,r)

f(η) dη

∣∣∣∣ dξ, ∀ f ∈ BMO(Ω),

where B(x, r) denotes the ball in Ω of radius r centered at x and | | denotes

the Euclidean norm. In fact we will establish a slightly better result (see §4.2,

Prop. 4), namely if lim supk→∞ |gk − g|BMO < 1 and gk converges to g a.e.,

then (1.1) holds. On the other hand, the well-known Kronecker formula asserts

that

(1.2) deg g =
1

|SN |

∫
SN

det(∇g) dσ,

for any g ∈ C1(SN ,SN ). In this integral “ det ” denotes the determinant of an

N ×N matrix, once an orientation has been chosen on SN . Note that one has

(1.3) det(∇g) = det(∇g, g) on SN ,

where “ det ” in the right-hand side denotes the determinant of an (N + 1) ×
(N + 1) matrix and g is considered as a map with values into RN+1. Equal-

ity (1.3) holds provided we choose an orientation on SN such that at every

point ξ ∈ SN , (Bξ, nξ) is a direct basis of RN+1, where Bξ is a direct basis

in the tangent hyperplane to SN at ξ with the orientation inherited from the

one of SN and nξ is the outward normal at ξ. Consequently,
∫
SN det(∇gk) dσ

converges to
∫
SN det(∇g) dσ provided gk → g in BMO(SN ).

In the same spirit we consider the quantity

J(g, ψ) :=

∫
SN
ψ det(∇g) dσ, ∀ψ ∈ C1(SN ,R)
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and study the convergence of J(gk, ψ) for fixed ψ ∈ C∞(SN ,R) under various

assumptions on the convergence of (gk). As a consequence, we will be able

to give a “robust” meaning to the quantity J(g, ψ) even in the case where

g : SN 7→ SN is not differentiable but ψ ∈ C∞(SN ,R). Roughly speaking,

the main assumptions will be that g belongs to VMO ∩W s,p(SN , SN ) with

s = N−1
N and p = N . It is convenient to present our results first in the case

g ∈ C1(SN , SN ). We will explain in Sections 6 and 7 how to weaken this

assumption. In view of the results mentioned above one may ask whether

J(gk, ψ)→ J(g, ψ) if gk → g for example in C0. This is not true even if gk → g

in C0,α for any α < N−1
N (see Proposition 1 below). To present our result, we

first introduce the following notation.

Notation 1. Let N ≥ 1 and Ω be an N -dimensional smooth manifold of

RN+1 or an open subset of RN , and g : Ω→ Rk (k ≥ 1) be a measurable map.

Define

(1.4) |g|NW :=

∫
Ω

∫
Ω

|g(x)− g(y)|N

|x− y|2N−1
dx dy.

It is clear that

(1.5) W (Ω) := {g ∈ L1(Ω); |g|W <∞}

is a normed space with the following norm:

‖g‖W := |g|W + ‖g‖L1 , ∀ g ∈W (Ω).

When N ≥ 2, the semi-norm | |W corresponds to the semi-norm in the

fractional Sobolev space W s,p with s = N−1
N and p = N (also called the

Slobodeckij semi-norm; see e.g. [58]).

We recall that for 0 < s < 1 and p > 1,

|g|pW s,p(Ω) :=

∫
Ω

∫
Ω

|g(x)− g(y)|p

|x− y|N+sp
dx dy, ∀ g ∈W s,p(Ω).

We have

Theorem 1. Let N ≥ 1, (gk) ⊂ C1(SN , SN ), and g ∈ C1(SN ,SN ) be such

that

i) lim sup
k→∞

‖gk − g‖BMO(SN ) < 1

and

ii) limk→∞ ‖gk − g‖W = 0.

Then

lim
k→∞

J(gk, ψ) = J(g, ψ), ∀ψ ∈ C1(SN ,R).
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Remark 1. The proof of Theorem 1 is inspired from the work of J. Bour-

gain, H. Brezis, and P. Mironescu [9], [10], J. Bourgain, H. Brezis, and H.-M.

Nguyen [7], and H.-M. Nguyen [54].

Remark 2. If one of the assumptions of Theorem 1 fails, the conclusion

need not be true. More precisely, one can construct the following examples

(see §§5.2 and 5.1):

a) There exists a sequence (gk) ⊂ C1(SN , SN ) (N ≥ 1) such that gk →
g := (0, . . . , 0, 1) in W (SN ), gk → g almost everywhere, supk ‖∇gk‖LN
< +∞, limk→∞ ‖gk−g‖BMO = 1, and for all k, deg gk = 1 > 0 = deg g.

b) There exists a sequence (gk) ⊂ C1(SN ,SN ) (N ≥ 2) such that gk →
g := (0, . . . , 0, 1) weakly in W (SN ), (gk) → g uniformly on SN , and

lim infk→∞ J(gk, xN+1) > 0 = J(g, xN+1).

As a consequence of Theorem 1 one has

Corollary 1. Let N ≥ 3, (gk) ⊂ C1(SN , SN ), and g ∈ C1(SN ,SN ) be

such that

i) limk→∞ ‖gk − g‖BMO = 0

and

ii) supk ‖∇gk‖LN−1 <∞.

Then

lim
k→∞

J(gk, ψ) = J(g, ψ), ∀ψ ∈ C1(SN ,R).

Proof. We have (see [18]), for N ≥ 3,

‖gk − g‖W ≤ C‖gk − g‖
N−1
N

W 1,N−1‖gk − g‖
1
N
BMO → 0 as k →∞.

The conclusion now follows from Theorem 1. �

Open question 1. We do not know whether Corollary 1 holds when N = 2

even if condition i) is replaced by the stronger assumption lim
k→∞

‖gk−g‖L∞ = 0.

Another consequence of Theorem 1 is

Corollary 2. Let N ≥ 2, N−1
N < α < 1, (gk) ⊂ C1(SN , SN ), and

g ∈ C1(SN , SN ) be such that gk converges to g in C0,α(SN ). Then

lim
k→∞

J(gk, ψ) = J(g, ψ), ∀ψ ∈ C1(SN ,R).

Proof of Corollary 2. Since (gk) converges to g in C0,α(SN ) and α > N−1
N ,

it follows that (gk) and g satisfy conditions i) and ii) of Theorem 1. �

Corollary 2 is optimal in the following sense.
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Proposition 1. Let N ≥ 2. There exist a sequence (gk) ⊂ C1(SN ,SN )

and ψ ∈ C1(SN ,R) such that gk converges to g := (0, . . . , 0, 1) in C0,N−1
N (SN ),

supk ‖gk‖W < +∞, and

lim inf
k→∞

J(gk, ψ) > 0 = J(g, ψ).

Hereafter | |0,α denotes the usual semi-norm in the Hölder space C0,α.

There is a natural quantity which appears in the study of N -forms. Con-

sider a smooth N -form on SN

ω := F (y) dy.

The pullback g∗ω of ω under a smooth map g : SN → SN is given by

g∗ω = F (g(x)) det∇g(x) dx.

Recall (see e.g. [55]) that

deg g =

∫
SN
g∗ω if

∫
SN
ω = 1.

Using Theorem 1, in Section 4.1 we will establish the following convergence

result for the quantity

g 7→
∫
SN
F (g(x)) det∇g(x)ψ(x) dx,

where ψ ∈ C1(SN ,R).

Corollary 3. Let N ≥ 1, F ∈ C0,α(SN ,R) (0 < α < 1), (gk) ⊂
C1(SN ,SN ), and g ∈ C1(SN ,SN ) be such that

i) limk→∞ |gk − g|BMO(SN ) = 0

and

ii) limk→∞ |gk − g|W (SN ) = 0.

Then

lim
k→∞

∫
SN
F (gk(x)) det(∇gk)(x)ψ(x) dx =

∫
SN
F (g(x)) det(∇g)(x)ψ(x) dx,

for all ψ ∈ C1(SN ,R).

We next establish bounds for J(g, ψ) which are motivated by the works

of J. Bourgain, H. Brezis, and H.-M. Nguyen [7] and H.-M. Nguyen [54]. We

first recall a new estimate for the topological degree of maps from SN into SN
established by J. Bourgain, H. Brezis, and H.-M. Nguyen in [7].

Proposition 2. Let g : SN → SN be a continuous map. Then, for every

0 < δ <
√

2, there exists a constant C = C(δ,N), independent of g, such that

|deg g| ≤ C
∫
SN

∫
SN

|g(x)−g(y)|>δ

1

|x− y|2N
dx dy.
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Subsequently, H.-M. Nguyen improved this result and showed in [54] that

Proposition 3. There exists a positive constant C = C(N), depending

only on N , such that

(1.6) |deg g| ≤ C
∫
SN

∫
SN

|g(x)−g(y)|≥`N

1

|x− y|2N
dx dy, ∀ g ∈ C(SN ,SN ),

where

(1.7) `N =

 
2 +

2

N + 1
.

Moreover, this estimate is optimal in the sense that there exists a sequence of

maps (gk) ⊂ C(SN ,SN ) such that

deg gk = 1

and

lim
k→∞

∫
SN

∫
SN

|gk(x)−gk(y)|>`N

1

|x− y|2N
dx dy = 0.

Remark 3. `N is the edge of an (N + 1)-dimensional regular simplex in-

scribed in SN , i.e., an equilateral triangle when N = 1, a regular tetrahedron

when N = 2, etc.

The following notation will be useful.

Notation 2. Let N ≥ 1 and Ω be an N -dimensional smooth manifold of

RN+1 or an open subset of RN , and g : Ω→ Rk (k ≥ 1) be a measurable map.

Define

(1.8) Tδ(g) :=

∫
Ω

∫
Ω

|g(x)−g(y)|≥δ

1

|x− y|2N
dx dy, ∀ δ > 0.

The following result provides an estimate for J(g, ψ).

Theorem 2. Let N ≥ 1, g ∈ C1(SN ,SN ), and ψ ∈ C1(SN ,R). Then

(1.9) |J(g, ψ)| ≤ C
Ä
‖ψ‖L∞T`N (g) + ‖∇ψ‖L∞ |g|NW

ä
,

for some positive constant C = C(N).

Here `N is defined by (1.7), T`N (g) is defined by (1.8) with δ = `N , and

| |W is defined in (1.4). Clearly, Theorem 2 implies Proposition 3. One cannot

deduce Theorem 2 from Proposition 3 (see Remark 5 below). However, the

proof of Theorem 2 borrows many ideas from the proof of Proposition 3 in [54]

and also from the earlier papers of J. Bourgain, H. Brezis, and P. Mironescu

[9], [10], and J. Bourgain, H. Brezis, and H.-M. Nguyen [7].
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Remark 4. Obviously, from the definition of J(g, ψ), we have

(1.10) |J(g, ψ)| ≤ ‖∇g‖NLN ‖ψ‖L∞ .

Therefore, for fixed ψ ∈ C1(SN ), J(g, ψ) is controlled when ‖g‖W 1,N ≤ C.

Similarly, J(gk, ψ) → J(g, ψ) for ψ ∈ C1(SN ,R) if gk → g in W 1,N (SN ). In

some sense these facts are optimal in the scale of the Sobolev spaces W 1,p: there

exists a sequence (gk) ⊂ C1(SN , SN ) (N ≥ 2) such that limk→∞ ‖∇gk‖Lp = 0,

for all p < N and |deg gk| → +∞ as k → +∞. This is proved in Section 3.1.

Remark 5. In view of Proposition 3 one may wonder whether it is possible

to replace T`N (g) by deg g in (1.9). The answer is negative. More precisely: Let

N ≥ 1. Then there exists a sequence (gk) ⊂ C1(SN ,SN ) and ψ ∈ C1(SN ,R)

such that limk→∞(| deg gk| + |gk|W + |gk|W 1,p) = 0 for all p < N , gk → g :=

(0, . . . , 0, 1) a.e., while

lim
k→∞

J(gk, ψ) = +∞.

This will be proved in Section 3.2.

An immediate consequence of Theorem 2 is

Corollary 4. Let N ≥ 1, N−1
N < α < 1, g ∈ C1(SN ,SN ), and ψ ∈

C1(SN ,R). Then

|J(g, ψ)| ≤ C
Å
‖ψ‖L∞ |g|

N
α
0,α + ‖∇ψ‖L∞ |g|N0,α

ã
,

for some positive constant C = C(α,N), depending only on α and N .

Proof of Corollary 4. Since α > N−1
N , it follows that

|g|W ≤ Cα,N |g|0,α.

On the other hand, by a direct computation, one has

T`N (g) ≤ CN |g|
N
α
0,α. �

Remark 6. Corollary 4 is optimal in the following sense: Let N ≥ 2 and

g = (0, . . . , 0, 1) ∈ SN . There exist a sequence (gk) ⊂ C1(SN , SN ) and ψ ∈
C1(SN ,R) such that limk→∞ ‖gk − g‖0,N−1

N
= 0 and

lim
k→∞

J(gk, ψ) = +∞.

This will be proved in Section 3.3.

Using Theorem 2, we will establish in Section 2

Corollary 5. Let N ≥ 1, F ∈C0,α(SN ,R) (0<α< 1), g ∈ C1(SN , SN ),

and ψ ∈ C1(SN ,R). Then there exists δ > 0, depending only on ‖F‖C0,α , such
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that ∣∣∣∣ ∫
SN
F (g(x)) det(∇g)(x)ψ(x) dx

∣∣∣∣ ≤ C Ä‖ψ‖L∞Tδ(g) + ‖∇ψ‖L∞ |g|NW
ä
,

for some positive constant C = C(N, ‖F‖C0,α).

Remark 7. Assume N ≥ 3; then W 1,N−1(SN , SN ) ⊂W (SN , SN ). Indeed

W 1,N−1(SN , SN ) ⊂W 1,N−1(SN ) ∩ L∞(SN ) ⊂W (SN ),

with the corresponding inequality

(1.11) ‖g‖NW . ‖g‖N−1
W 1,N−1‖g‖L∞

(here we use the fact that N − 1 > 1). This is a special case of the following

more general case

(1.12) ‖g‖W s,q . ‖g‖sW 1,p‖g‖1−sL∞ ,

with p = sq, p > 1, 0 < s < 1; see [16, Cor. 2] (see also [47]). Therefore,

in Theorem 2 and Corollary 5 we may replace |g|NW by ‖∇g‖N−1
LN−1 . Inequal-

ity (1.11) fails when N = 2. However, we do not know whether the following

inequality

|J(g, ψ)| .
Ä
‖ψ‖L∞T`N (g) + ‖∇ψ‖L∞ |g|N−1

W 1,N−1

ä
∀ψ ∈ C1(SN ,R)

holds when N = 2.

On the other hand, for every N ≥ 1, we have trivially

Tδ(g) ≤ δ−p|g|pW s,p ∀ 0 < s < 1 and sp = N,

and thus, in Theorem 2 and Corollary 5, we may replace Tδ(g) by δ−p|g|pW s,p .

When ψ ≡ 1 we obtain an estimate for | deg g| originally due to J. Bourgain,

H. Brezis, and P. Mironescu [10].

We can give a meaning to det(∇g) as a distribution assuming only that g ∈
(W∩VMO)(SN , SN ) (whenN = 1, it suffices to assume that g ∈ VMO(S1, S1)).

More generally, F (g) det(∇g) is also well-defined if in addition F ∈ C0,α(SN ,R)

for some α > 0 (resp. F ∈ C0(S1,R)) when N ≥ 2 (resp. N = 1). In particular

the pullback g∗ω is well-defined as a distribution when ω is a (smooth) N -form

on SN and g ∈ (W ∩VMO)(SN ,SN ). All the preceding results remain valid in

this framework (see §§6 and 7).

Remark 8. In a subsequent paper [18], we will define det(∇h) for any

h ∈ W (RN ,RN ); or more generally, for maps h ∈ W (Ω,RN ), where Ω is an

open subset of RN . A major difference is that VMO is irrelevant there but the

space W will play a crucial role. When g ∈W (SN ,SN )∩C0(SN , SN ) we could

use the result of [18] to define directly the distribution det(∇g) as follows.

Given a point x0 ∈ SN , fix small spherical caps Σr(x0) and ΣR(g(x0)) centered

at x0 and g(x0) such that g(Σr(x0)) ⊂ ΣR(g(x0)). Then choose r′ > 0, R′ > 0,
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and smooth maps π1 : Br′(0) → Σr(x0) and π2 : ΣR(g(x0)) → BR′(0), where

Bρ(0) denotes the ball in RN of radius ρ, centered at 0, such that

det(∇π1) ≡ 1 and det(∇π2) ≡ 1.

Set h = π2 ◦ g ◦ π1 : Br′(0)→ BR′(0), so that

det(∇g) = (det∇h) ◦ π−1
1 on Σr(x0).

We conclude that det(∇g) is a well-defined distribution on SN using a partition

of unity. We do not know how to adapt this argument if g ∈W∩VMO(SN ,SN ).

Remark 9. F. Hang and F. Lin [36] considered a notion of distributional

Jacobian for maps g ∈ W
N
N+1

,N+1(Rm, SN ) for m ≥ N + 1 ≥ 2 (see also an

earlier work of R. Jerrard and M. Soner [40]). In their work the condition

g ∈ VMO is not necessary. They also proved that if this distribution has finite

total mass, then it is an integer multiplicity rectifiable current. In the case m =

N + 1, this result was improved by J. Bourgain, H. Brezis, and P. Mironescu

[10]. They proved that, for every g ∈ W s,p(SN+1, SN ) with sp = N for any

0 < s < 1, det(∇g) is a distribution of the form ωN+1
∑
i(δPi − δNi) in SN+1

such that ∑
i

|Pi −Ni| ≤ C|g|pW s,p

(ωN+1 = |SN+1|). In the special case N = 1, this result had been previously

established by J. Bourgain, H. Brezis, and P. Mironescu in [9] for maps in H
1
2 .

In the same esprit, H. Brezis, P. Mironescu, and A. Ponce [17] studied the

distributional Jacobian for maps g ∈ W 1,1(Ω,S1), where Ω is the boundary

of a simply connected domain of R3 and they obtained similar results. Our

situation in this paper is completely different: we handle the case m = N ≥ 1.

In our framework, we need the two conditions: g must belong to VMO(SN ,SN )

and to W = W
N−1
N

,N (SN , SN ). The reader may also wonder whether our

condition g ∈ W = W
N−1
N

,N could be replaced by W s,p with sp = N − 1 and

0 < s < N−1
N . However this is not true (see Proposition 1). Finally, let us

mention that the case g : RN+1 → SN could be considered as a special case

of the situation where g : RN+1 → RN+1. In this general setting, we are able

to define the distributional Jacobian provided g ∈W
N
N+1

,N+1(RN+1) (which is

the same space as in [36]) and this condition is optimal (see [18]).

Finally, we present further properties in the case N = 1. Here we have

(1.13) det(∇g) = det(g, g′) = g ∧ g′ = ϕ′,

provided we choose the standard positive orientation on S1 and a locally smooth

lifting ϕ of g (g = eiϕ). We have variants of the above results, which do not

involve the space W .
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Theorem 3. Let F ∈ C0(S1,R), (gk) ⊂ C1(S1,S1), g ∈ C1(S1,S1) be

such that

lim
k→∞

|gk − g|BMO = 0.

Then

lim
k→∞

∫
S1
F (gk(x)) det(∇gk)(x)ψ(x) dx

=

∫
S1
F (g(x)) det(∇g)(x)ψ(x) dx, ∀ψ ∈ C1(S1,R).

When F ≡ 1, we still have an open problem motivated by Theorems 1

and 3:

Open question 2. Let (gk) ⊂ C1(S1,S1) and g ∈ C1(S1,S1) be such that

i) lim supk→∞ |gk − g|BMO(S1) < 1

and

ii) gk converges to g a.e. on S1.

Is it true that

(1.14) lim
k→∞

∫
S1

det(∇gk)ψ dx =

∫
S1

det(∇g)ψ dx, ∀ψ ∈ C1(S1,R)?

Remark 10. We can prove that (1.14) holds in two cases:

a) if ψ ≡ 1 (see Proposition 4 in §4.2),

b) if the constant 1 in i) is replaced by some small (universal) constant

(see Proposition 10 in §7.3).

Concerning the bound, we have

Theorem 4. Let F ∈ C0(S1,R). Then there exist constants δ > 0 and

C depending only on ‖F‖C0 such that for all g ∈ C1(S1,S1) and for all ψ ∈
C1(S1,R),∣∣∣∣ ∫

S1
F (g(x)) det(∇g)(x)ψ(x) dx

∣∣∣∣ ≤ C‖ψ‖W 1,∞

(
Tδ(g) + 1

)
.

Other types of results concerning SN -valued maps can be found in e.g.

[13], [26], [27], [5], [31], [20], [32], [33], [15], [36], [40], [42], [41], [2], [12], [9],

[44], [1], [29], [6], [11], [45], [46], and [48].

The Jacobian determinant of maps from RN into RN has been extensively

studied in the literature; see e.g. [49], [56], [3], [4], [51], [52], [24], [39], [14],

[21], [53], [35], [37], [32], [33], [38], [28], and [30].

We first present the proof of Theorem 2 which is inspired by the works

of J. Bourgain, H. Brezis, and P. Mironescu [9], [10], J. Bourgain, H. Brezis,

and H.-M. Nguyen [7], and H.-M. Nguyen [54] related to an estimate for the
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topological degree. We then turn to the proof of Theorem 1 which uses a

similar device.

2. The main bounds: Proofs of Theorem 2 and Corollary 5

We first give another representation of J(g, .). This representation is in-

spired by the work of J. Bourgain, H. Brezis, and P. Mironescu in [9, Lemma 3].

Their idea is also used in [36].

Hereafter in this paper, B denotes the unit ball in RN+1.

Lemma 1. Let N ≥ 1. Assume that g ∈ W 1,N (SN ,SN ) (and in addition

g ∈ H
1
2 (S1) if N = 1), ψ ∈ C1(SN ,R), u ∈ W 1,N+1(B,RN+1) ∩ L∞(B), and

ϕ ∈ C1(B̄,R). Suppose that

u|SN = g and ϕ|SN = ψ.

Then

(2.1) J(g, ψ) = (N + 1)

∫
B
ϕdet(∇u) dx+

N+1∑
i=1

∫
B
∂iϕDi(u) dx,

where Di(v) is given by

Di(v) = det (∂1v, . . . , ∂i−1v, v, ∂i+1v, . . . , ∂N+1v) ,

∀ v ∈W 1,N+1(B,RN+1) ∩ L∞(B),

for 1 ≤ i ≤ N + 1.

Proof. Case 1: g ∈ C2(SN ,SN ) and u ∈ C2(B̄). We first note that

(N + 1) det(∇u) = div D.

Hence by Green’s formula, one has∫
B

(N + 1)ϕdet(∇u) dx = −
∫
B

N+1∑
i=1

∂iϕDi(u) dx+

∫
SN

N+1∑
i=1

ϕDi(u)ni dx.

However,
∑N+1
i=1 Dini = det(∇g, g) on SN , and the conclusion follows.

Case 2: The general case. Let (gk) ⊂ C∞(SN , SN ) be a sequence con-

verging to g in W 1,N (SN ). Let ũ and ũk be the harmonic extensions of g

and gk on B. From (1.12), we have g ∈ W
N
N+1

,N+1(SN ) when N ≥ 2 since

g ∈ W 1,N ∩ L∞. This implies ũ ∈ W 1,N+1(B) and ũk → ũ in W 1,N+1(B).

Let (vk) be a sequence of C∞c (B,RN+1), such that (vk) converges to u − ũ

in W 1,N+1(B) and supk ‖vk‖L∞(B) < ∞. Since u − ũ ∈ W 1,N+1
0 (B) and

u − ũ ∈ L∞(B) such a sequence exists. Set uk = vk + ũk for k ≥ 1. Then

uk |SN = gk, uk converges to u in W 1,N+1(B), and supk ‖uk‖L∞(B) <∞. From

Case 1, one has

J(gk, ψ) = (N + 1)

∫
B
ϕdet(∇uk) dx+

N+1∑
i=1

∫
B
∂iϕDi(uk) dx.
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Letting k go to infinity yields

J(g, ψ) = (N + 1)

∫
B
ϕdet(∇u) dx+

N+1∑
i=1

∫
B
∂iϕDi(u) dx. �

We are ready to present the

Proof of Theorem 2. Let ũ : B 7→ RN+1 be the extension by average of g,

i.e.,

ũ(rx) =

∫
B(x,2(1−r))∩SN

g(y) dy, ∀x ∈ SN , r ∈ (0, 1),

and ϕ ∈ C1(B̄) be an extension of ψ such that

‖ϕ‖L∞(B) . ‖ψ‖L∞(SN ) and ‖∇ϕ‖L∞(B) . ‖∇ψ‖L∞(SN ).

Hereafter in this proof B(x, r) := {y ∈ SN ; |y − x| ≤ r}. The notation

a . b means that there exists a constant C depending only on N such that

a ≤ Cb. The notation a & b means that b . a.

It is well-known that the mapping g 7→ ũ is a bounded linear operator

from W (SN ) into W 1,N (B) and

(2.2) |∇ũ(ry)| . 1

1− r
∀ y ∈ SN , r ∈ (0, 1).

Set α = 1
250(N+1) . Define u : B → RN+1 as follows:

(2.3) u(X) =


ũ(X)

|ũ(X)|
if |ũ(X)| ≥ α,

1

α
ũ(X) otherwise.

From Lemma 1, we have

(2.4) |J(g, ψ)| . ‖ψ‖L∞(SN )

∫
B
|det(∇u)| dx+ ‖∇ψ‖L∞(SN )

∫
B
|∇u(x)|N dx.

Since det(∇u) = 0 if |ũ| ≥ α, it follows from (2.2) that∫
B
| det(∇u)| dx .

∫
SN

∫ 1−ρ(y)

0

1

(1− r)N+1
dr dy,

where ρ : SN 7→ R is defined by

ρ(y) = sup{r; |ũ((1− s)y)| ≥ α for all 0 < s < r}.

This implies, as in [10] (see also [7] and [54]),

(2.5)

∫
B
| det(∇u)| dx .

∫
SN

ρ(y)<1

1

ρ(y)N
dy.
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Using the idea in the proof of [54, Lemma 6] (see also [7] when T`N is replaced

by Tδ, for the case 0 < δ <
√

2), one has

(2.6)

∫
SN

ρ(y)<1

1

ρ(y)N
dx . T`N (g).

Thus it follows from (2.5) and (2.6) that

(2.7)

∫
B
| det(∇u)| dx . T`N (g).

On the other hand, from (2.3), one has

(2.8)

∫
B
|∇u|N dx .

∫
B
|∇ũ|N dx

and, since ũ is the extension by average of g,∫
B
|∇ũ(x)|N dx . |g|NW .

Thus

(2.9)

∫
B
|∇u(x)|N dx . |g|NW .

The conclusion follows from (2.4), (2.7), and (2.9). �

Remark 11. By the same proof, we can also obtain that

|J(g, ψ)| .
Ä
‖ψ‖L∞T`N (g) + |ψ|

W
1− 1

q ,q
|g|N

W
1− 1

Np
,Np

ä
,

where 1
q + 1

p = 1, 1 ≤ p <∞ (the case p = 1 corresponds to Theorem 2). Thus

|J(g, ψ)| .
Ä
‖ψ‖L∞T`N (g) + |ψ|0,β|g|N0,α

ä
,

for any α > N−1
N and 1 > β > N(1− α).

We next turn to

Proof of Corollary 5. We first recall the fact, due to B. Dacorogna and

J. Moser [23] (see also [50] and [34]), that if G ∈ C0,α(SN ,R) (0 < α < 1) is

such that G > 0 on SN and
∫
SN G = 1, then there exists G ∈ C1,α(SN ,SN )

such that det(∇G) = G with a bound for ‖G‖C1,α depending only on ‖G‖C0,α .

Define

G = c1(F + c2),

where c1 > 0 and c2 > 0, depending only on ‖F‖C0 , are chosen such that

G > 0 and
∫
SN G = 1. Hence there exists G : SN 7→ SN such that det(∇G) = G

(with a bound for ‖G‖C1,α depending only on ‖F‖C0,α). This implies

G(g) det(∇g) = det∇G(g).
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Next, applying Theorem 2 to G(g), one has

|J(G(g), ψ)| . T`N (G(g))‖ψ‖L∞ + |G(g)|NW ‖∇ψ‖L∞ .

However,

T`N (G(g)) ≤ Tδ(g),

for some δ > 0, e.g., δ = `N/(‖∇G‖L∞ + 1), and

|G(g)|W ≤ C|g|W ,

for some C > 0. Hence

(2.10) |J(G(g), ψ)| . Tδ(g)‖ψ‖L∞ + |g|NW ‖∇ψ‖L∞ .

On the other hand, from the definition of G,∣∣∣∣ ∫
SN
F (g) det(∇g)ψ

∣∣∣∣ ≤ 1

c1

∣∣∣∣ ∫
SN
G(g) det(∇g)ψ

∣∣∣∣+ c2

∣∣∣∣ ∫
SN

det(∇g)ψ

∣∣∣∣
=

1

c1

∣∣∣∣J(G(g), ψ)

∣∣∣∣+ c2

∣∣∣∣ ∫
SN

det(∇g)ψ

∣∣∣∣.
Applying Theorem 2 to g and using (2.10), one has∣∣∣∣ ∫

SN
F (g) det(∇g)ψ

∣∣∣∣ . Tδ(g)‖ψ‖L∞ + |g|NW ‖∇ψ‖L∞ . �

3. Optimality of the bounds:

Proofs of the statements in Remarks 4, 5, and 6

3.1. Proof of the statement in Remark 4. Let N and S be the north pole

and the south pole of SN ; i.e., N = (0, . . . , 0, 1), S = (0, . . . , 0,−1). Let exp

be the exponential map on SN (see e.g. [25]). For k � 1, take m ∈ N such that

m ≈ ln k. Consider gk ∈W 1,∞(SN ) such that gk(x) = N for x 6= expN (tv) for

v ∈ RN , |v| = 1 and t ∈ [0, 2m/k], and satisfying (a) and (b) below:

(a) gk(expN (tv))=expN (kπ(t−i/k)wi) if v∈RN , |v|=1, t∈ [i/k, (i+1)/k],

for 0 ≤ i ≤ 2m−1 and i even, where wi is chosen in the set {(v′, vN ), (v′,−vN )}
(v = (v′, vN ) ∈ RN−1 × R) such that

sign det(∇gk(expN (tiv))) = 1

with ti = i/k + 1/(4k).

(b) gk(expN (tv)) = expS(kπ(t− i/k)wi) if |v| = 1, t ∈ [i/k, (i+ 1)/k], for

0 ≤ i ≤ 2m − 1 and i odd, where wi is chosen in the set {(v′, vN ), (v′,−vN )}
(v = (v′, vN ) ∈ RN−1 × R) such that

sign det∇gk((expN (tiv))) = 1

with ti = i/k + 1/(4k).

Then

deg gk = 2m,
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and

|∇gk| .

 k if x ∈ A,

0 otherwise,

where

A =
¶

expN (tv) with t ∈ [0, 2m/k] and |v| = 1
©
⊂ SN .

Since |A| . (m/k)N and m ≈ ln k, we obtain

lim
k→∞

∫
SN
|∇gk|p dx . lim

k→∞
(ln k/k)Nkp = 0.

The conclusion follows by a standard regularization argument. �

3.2. Proof of the statement in Remark 5. We use the same notations as

above for S, N , and exp. For k � 1, take m ∈ N such that m ≈ ln k. Define

gk ∈W 1,∞(SN ,SN ) as follows:

(i) For x 6= expN (tv) and x 6= expS(tv), where v ∈ RN , |v| = 1, and

t ∈ [0, 2m/k], gk(x) := N .

(ii) For x = expN (tv) with t ∈ [0, 2m/k] and |v| = 1, we define gk as

follows:

gk(expN (tv)) = expN (kπ(t− i/k)wi) if v ∈ RN , |v| = 1, t ∈ [i/k, (i+ 1)/k],

for 0 ≤ i ≤ 2m−1 and i even, where wi is chosen in the set {(v′, vN ), (v′,−vN )}
(v = (v′, vN ) ∈ RN−1 × R) such that

sign det(∇gk(expN (tiv))) = 1

with ti = i/k + 1/(4k), and

gk(expN (tv)) = expS(kπ(t− i/k)wi) if |v| = 1, t ∈ [i/k, (i+ 1)/k],

for 0 ≤ i ≤ 2m−1 and i odd, where wi is chosen in the set {(v′, vN ), (v′,−vN )}
(v = (v′, vN ) ∈ RN−1 × R) such that

sign det∇gk((expN (tiv))) = 1

with ti = i/k + 1/(4k).

(iii) For x = expS(tv) with t ∈ [0, 2m/k] and |v| = 1, we define gk as

follows:

gk(expS(tv)) = expN (kπ(t− i/k)wi) if v ∈ RN , |v| = 1, t ∈ [i/k, (i+ 1)/k],

for 0 ≤ i ≤ 2m−1 and i even, where wi is chosen in the set {(v′, vN ), (v′,−vN )}
(v = (v′, vN ) ∈ RN−1 × R) such that

(3.1) sign det∇gk((expS(tiv))) = −1

with ti = i/k + 1/(4k), and

gk(expS(tv)) = expS(kπ(t− i/k)wi) if |v| = 1, t ∈ [i/k, (i+ 1)/k],
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for 0 ≤ i ≤ 2m−1 and i odd, where wi is chosen in the set {(v′, vN ), (v′,−vN )}
(v = (v′, vN ) ∈ RN−1 × R) such that

(3.2) sign det∇gk((expS(tiv))) = −1

with ti = i/k + 1/(4k).

From the definition of gk, we have

deg gk = 0

and gk → g := (0, . . . , 0, 1) a.e.

Define hk ∈W 1,∞(SN ,SN ) similarly as gk, however in the right-hand side

of (3.1) and (3.2), we take +1 instead of −1. Fix ψ ∈ C1(SN ,R) such that

ψ = −1 if xN+1 ≤ −1/2 and ψ = 1 if xN+1 > 1/2. Then

1

|SN |
J(gk, ψ) =

1

|SN |
J(hk, 1) = deg(hk) = 2m.

On the other hand, since gk is Lipschitz with Lip (gk) . k and m ≈ ln k,

it follows from the construction of gk that, for 1 ≤ p < N ,∫
SN
|∇gk|p . kp

(m
k

)N
. lnp k/kN−p → 0 as k →∞.

Therefore, since ‖gk‖L∞ = 1 it follows from interpolation inequalities that

limk→∞ |gk|W = 0.

By a standard regularization argument, we may construct a sequence in

C1(SN ,SN ) with similar properties. �

3.3. Proof of the statement in Remark 6. We only prove here that there

exist (gk) ⊂ C1(SN , SN ) and ψ ∈ C1(SN ,R) such that supk ‖gk‖0,α < +∞ for

all 0 < α < N−1
N , gk → g uniformly on SN , and

lim
k→∞

J(gk, ψ) = +∞.

The proof in the general case, which is more involved, uses the same technique

as in [18, Prop. 4].

Let vk = (v1,k, . . . , vN,k) : RN → RN (k ≥ 1) be defined as follows:

vi,k(x) = k−α sin(kxi), ∀ 1 ≤ i ≤ N − 1

and

vN,k(x) = k−αxN

N−1∏
i=1

cos(kxi).

We have

(3.3) det∇vk = k(N−1)(1−α)−α
N−1∏
i=1

cos2(kxi) ≥ 0.

Set

Gk = ϕvk,
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where ϕ ∈ C1(RN ) is such that suppϕ ⊂ BN
1/2 and ϕ = 1 in BN

1/4. Hereafter in

this proof BN
r denotes the open ball of RN of radius r centered at the origin.

Since ‖Gk‖L∞ . k−α and ‖∇Gk‖L∞ . k1−α, it is clear that

(3.4) ‖Gk‖0,α . 1.

Set

Σ = {x ∈ SN ; |x′| < 1/2 and xN+1 > 0},
where x = (x′, xN+1) ∈ RN × R. Let φ : BN

1/2 → Σ be defined by φ(x′) =

(x′,
»

1− |x′|2). Clearly φ is bijective, φ, φ−1 are smooth, and det(∇φ) & 1,

det∇φ−1 & 1.

Define gk : SN → SN (for k large) as follows:

gk(x) =


φ ◦Gk ◦ φ−1(x) if x ∈ Σ,

(0, . . . , 0, 1) otherwise.

Let ψ ∈ C1(SN ) be such that suppψ ⊂ φ(BN
1/4), 0 ≤ ψ ≤ 1, and ψ = 1 in

φ(BN
1/8). Then∫

SN
det(∇gk)ψ

=

∫
SN

det(∇φ)(Gk ◦ φ−1(x)) det(∇Gk)(φ−1(x)) det(∇φ−1)(x)ψ(x) dx

=

∫
BN

1/4

det(∇φ)(Gk(y)) det(∇Gk)(y)ψ(φ(y)) dy.

Thus from the definition of gk, vk, ψ, ϕ, and (3.3) we have

(3.5)

∫
SN

det(∇gk)ψ &
∫
BN

1/8

det(∇vk) & k(N−1)(1−α)−α.

Since 0 < α < N−1
N , the conclusion follows from (3.4) and the definition of gk.

�

4. The main convergence results:

Proofs of Theorem 1 and Corollary 3

4.1. Proofs of Theorem 1 and Corollary 3.

Proof of Theorem 1. Set

a = lim sup
k→∞

|gk − g|BMO(SN ) < 1

and define

ε0 =
1− a

4
.



1158 HAÏM BREZIS and HOAI-MINH NGUYEN

Let ũ and ũk be the extensions by average of g, as in the proof of Theorem 2,

and gk (k ∈ N) respectively. Fix α ∈ (ε0, 2ε0) and let u and uk be the functions

defined on B as follows:

u(X) =


ũ(X)

|ũ(X)|
if |ũ(X)| ≥ α,

1

α
ũ(X) otherwise

and

uk(X) =


ũk(X)

|ũk(X)|
if |ũk(X)| ≥ α,

1

α
ũk(X) otherwise,

for all k ≥ 1. Let ϕ ∈ C1(B̄) be an extension of ψ in B̄. Then by Lemma 1,

one has

(4.1) J(g, ψ) = (N + 1)

∫
B
ϕdet∇u dx+

N+1∑
i=1

∫
B
∂iϕDi(u) dx

and

(4.2) J(gk, ψ) = (N + 1)

∫
B
ϕdet∇uk dx+

N+1∑
i=1

∫
B
∂iϕDi(uk) dx.

We claim that

(4.3) lim
k→∞

∫
B
ϕdet∇uk dx =

∫
B
ϕdet∇u dx.

Indeed, since g ∈ VMO(SN ,SN ), there exists d > 0 such that∫
B(y,r)

∣∣∣∣∣g(ξ)−
∫
B(y,r)

g(η) dη

∣∣∣∣∣ d ξ ≤ ε0, ∀ y ∈ SN , ∀ r ∈ (0, 2d).

Thus

|ũ(ry)| ≥ 1− ε0 > α, ∀ y ∈ SN , ∀ r ∈ (1− d, 1),

which shows that

(4.4) det∇u(ry) = 0, ∀ y ∈ SN , ∀ r ∈ (1− d, 1).

Moreover, since lim supk→∞ |gk − g|BMO(SN ) = a, there exists m ∈ N such that∫
B(y,r)

∣∣∣∣gk(ξ)− ∫
B(y,r)

gk(η) dη

∣∣∣∣ dξ
≤ |gk − g|BMO +

∫
B(y,r)

∣∣∣∣g(ξ)−
∫
B(y,r)

g(η) dη

∣∣∣∣ dξ ≤ a+ 2ε0

for all y ∈ SN , r ∈ (0, 2d), and for all k ≥ m. Thus

|ũk(ry)| ≥ 1− a− 2ε0 = 2ε0 > α, ∀ y ∈ SN , ∀ r ∈ (1− d, 1), ∀ k ≥ m,
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which shows that

(4.5) det∇uk(ry) = 0, ∀ y ∈ SN , ∀ r ∈ (1− d, 1), ∀ k ≥ m.

Combining (4.4) and (4.5) yields

(4.6) lim
k→∞

∫
|x|≥1−d

ϕdet∇uk dx =

∫
|x|≥1−d

ϕdet∇u dx = 0.

On the other hand, since gk converges to g in L1(SN ), we may assume

(passing to a subsequence still denoted (gk)) that gk → g a.e. on SN . This

implies

lim
k→∞

∇uk(x) = ∇u(x), for a.e. x ∈ B.

Moreover, since ũk is the extension by average of gk,

|∇uk(ry)| . 1/(1− r), ∀ y ∈ SN , ∀ r ∈ (0, 1).

Thus applying the Lebesgue dominated convergence theorem, one gets

(4.7) lim
k→∞

∫
|x|≤1−d

ϕdet∇uk dx =

∫
|x|≤1−d

ϕdet∇u dx, ∀ d ∈ (0, 1).

Combining (4.6) and (4.7) yields

lim
k→∞

∫
B
ϕdet∇uk dx =

∫
B
ϕdet∇u dx.

Thus (4.3) is established.

Next, we claim that

(4.8) lim
k→∞

∫
B
∂iϕDi(uk) dx =

∫
B
∂iϕDi(u) dx, ∀ 1 ≤ i ≤ N + 1.

This is obvious since uk → u in W 1,N (B), |uk| ≤ 1 and uk → u a.e. in B.

Combining (4.1), (4.2), (4.3), and (4.8), we obtain

lim
k→∞

∫
SN
ψ det(gk,∇gk) dy =

∫
SN
ψ det(g,∇g) dy. �

Proof of Corollary 3. Corollary 3 is a consequence of Theorem 1. Indeed,

it suffices to prove that any subsequence of gk (still denoted by gk) there exists

a subsequence gnk such that

lim
k→∞

∫
SN
F (gk(x)) det(∇gk)(x)ψ(x) dx =

∫
SN
F (g(x)) det(∇g)(x)ψ(x) dx,

for all ψ ∈ C1(SN ,R). Since limk→∞ |gk − g|BMO = 0, there exists a subse-

quence (gnk) of gk and c ∈ RN+1 such that gnk converges to g + c in L1(SN ).

It is clear that g + c ∈ SN for almost every x ∈ SN . Hence either c = 0, or

c 6= 0 and g · c = constant.



1160 HAÏM BREZIS and HOAI-MINH NGUYEN

Case 1: c = 0. Then gk converges to g in W . Let G be the function

defined as in the proof of Corollary 5. Since

lim
k→∞

|gk − g|BMO = 0 and lim
k→∞

‖gk − g‖W = 0,

it follows that limk→∞ |G(gk)−G(g)|BMO = 0 and limk→∞ ‖G(gk)−G(g)‖W = 0.

Thus one can apply Theorem 1 and the conclusion follows.

Case 2: c 6= 0 and g · c = constant. Then det(∇g) = 0, which implies∫
SN
F (g(x)) det(∇g)(x)ψ(x) dx = 0

and, as in the case c = 0,

lim
k→∞

∫
SN
F (gk(x)) det(∇gk)(x)ψ(x) dx

=

∫
SN
F (g(x) + c) det(∇(g + c))(x)ψ(x) dx = 0.

The conclusion follows. �

4.2. A remark on the degree. Motivated by Theorem 1 we prove

Proposition 4. Let (gk) ⊂ C(SN , SN ) and g ∈ C(SN , SN ). Suppose that

gk converges to g for almost every x ∈ SN and

lim sup
k→∞

|gk − g|BMO(SN ) < 1.

Then

lim
k→∞

deg gk = deg g.

Proof. We could prove Proposition 4 by using the same method as in the

proof of Theorem 1. Nevertheless, we present here a direct argument.

Since lim supk→∞ |gk − g|BMO(SN ) < 1 and g ∈ C(SN , SN ), there exist

r0 > 0, k0 > 0, and ε0 > 0 such that
∣∣∣∫B(x,r) gk dσ

∣∣∣ > ε0 and
∣∣∣∫B(x,r) g dσ

∣∣∣ > ε0,

for all r ≤ r0 and k > k0. Set

gk,r0(x) =

∫
B(x,r0)

gk dσ∣∣∣∣∣
∫
B(x,r0)

gk dσ

∣∣∣∣∣
and gr0(x) =

∫
B(x,r0)

g dσ∣∣∣∣∣
∫
B(x,r0)

g dσ

∣∣∣∣∣
,

where B(x, r) = {y ∈ SN ; |y − x| < r}. Then deg gk,r0 = deg gk, deg gr0 =

deg g, and gk,r0 converges uniformly to gr0 in SN . This implies

lim
k→∞

deg gk = deg g. �

Remark 12. Proposition 4 is a slight improvement of the result of H. Brezis

and L. Nirenberg [20] which asserts that if limk→∞ |gk − g|BMO = 0, then

limk→∞ deg gk = deg g.
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5. Proofs of Proposition 1 and Remark 2

5.1. Proof of Proposition 1. We only prove here that there exist (gk) ⊂
C1(SN ,SN ) and ψ ∈ C1(SN ,R) such that limk→∞ ‖gk − g‖0,α < +∞ for all

0 < α < N−1
N , supk ‖gk‖0,N−1

N
< +∞, supk ‖gk‖

W
N−1
N

,N
< +∞, and

lim
k→∞

J(gk, ψ) = +∞.

The proof in the general case, which is more involved, uses the same technique

as in [18, Prop. 4].

Define (gk) and ψ as in the proof of the statement in Remark 6 (see §3.3)

with α = N−1
N . Then

sup
k
‖gk‖0,N−1

N
<∞,

gk converges uniformly to g := (0, . . . , 0, 1), and

lim inf
k→∞

J(gk, ψ) > 0 = J(g, ψ),

by (3.5).

It remains to check that supk∈N |gk|W < ∞. Indeed, from the definition

of gk, it suffices to prove that, with x = (x′, xN ) ∈ RN−1 × R,

sup
k

(
|k−

N−1
N sin(kxN )|W ([−1,1]N ) + |k−

N−1
N cos(kxN )|W ([−1,1]N )

)
< +∞.

A standard computation yields∫
[−1,1]N−1

∫
[−1,1]N−1

1

|x− y|2N−1
dx′ dy′ .

1

|xN − yN |N
,

where x = (x′, xN ) ∈ RN−1 × R and y = (y′, yN ) ∈ RN−1 × R. This implies

(5.1)

|k−
N−1
N sin(kxN )|NW ([−1,1]N ) .

∫ 1

−1

∫ 1

−1

k−(N−1)| sin(kt)− sin(ks)|N

|t− s|N
ds dt.

On the other hand,∫ 1

−1

∫ 1

−1

k−(N−1)| sin(kt)− sin(ks)|N

|t− s|N
ds dt =

1

k

∫ k

−k

∫ k

−k

| sin(t)− sin(s)|N

|t− s|N
ds dt.

Since
| sin(t)− sin(s)|N

|t− s|N
.

1

(1 + |t− s|)N
, ∀ t, s ∈ (−k, k)

and ∫ k

−k

∫ k

−k

ds dt

(1 + |t− s|)N
. k,

it follows that ∫ 1

−1

∫ 1

−1

k−(N−1)| sin(kt)− sin(ks)|N

|t− s|N
ds dt . 1.
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Thus from (5.1),

|k−
N−1
N sin(kxN )|W ([−1,1]N ) . 1.

Similarly,

|k−
N−1
N cos(kxN )|W ([−1,1]N ) . 1. �

5.2. Proof of Remark 2: Optimality of Theorem 1. It suffices to prove

that condition i) is necessary since the importance of condition ii) was already

discussed in Proposition 1.

Proposition 5. Let N ≥ 1. There exists a sequence (gk) ⊂ C1(SN ,SN )

(N ≥ 1) such that gk → g := (0, . . . , 0, 1) in W (SN , SN ), gk → g a.e.,

supk ‖∇gk‖LN < +∞, limk→∞ |gk − g|BMO = 1, and deg gk = 1 > 0 = deg g.

Proof. For k ≥ 1, define

gk(x) =

 (0, . . . , 0, 1) if xN+1 > −1 + 1
k ,

(z′, zN+1) otherwise,

where x=(x′, xN+1) ∈ RN×R, zN+1 =2kxN+1+2k−1 and z′=
»

1− z2
N+1

x′

|x′|
.

It is clear that gk is Lipschitz with ‖gk‖Lip .
√
k. Hence, since gk(x) =

(0, . . . , 0, 1) if xN+1 > −1 + 1
k , it follows that

|gk|pW 1,p . k
p
2

∣∣∣∣{x;xN+1 ≤ −1 +
1

k
}
∣∣∣∣ . k p−N2 .

Therefore supk ‖∇gk‖LN < +∞ and limk→∞ ‖∇gk‖Lp = 0 for all 1 ≤ p < N .

By interpolation, we obtain

lim
k→∞

|gk|W = 0.

On the other hand, from the construction of g and gk, one has

deg g = 0 and deg gk = 1, ∀ k ≥ 1.

It remains to prove that |gk|BMO = 1. We first note that∫
B(x,r)

∣∣∣∣gk(y)−
∫
B(x,r)

gk

∣∣∣∣2 dy =

∫
B(x,r)

|gk|2 dy −
∣∣∣∣∫
B(x,r)

gk dy

∣∣∣∣2 ≤ 1,

for any ball B(x, r) ⊂ SN . Thus |gk|BMO ≤ 1. Next, we recall that for any

h ∈ C1(SN , SN ) if deg h 6= 0, then for any v ∈ C1(B̄) extension of h, there

exists a point X ∈ B such that v(X) = 0. Thus, since deg gk = 1, there exist

B(x0, r0) for some x0 ∈ SN and r0 > 0 such that
∫
B(x0,r0) gk dy = 0. This

implies that
∫
B(x0,r0) |gk(y) −

∫
B(x0,r0) gk|2 dy = 1 for such a ball. Therefore

|gk|BMO ≥ 1. Consequently, |gk|BMO = 1. �
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6. Definition and properties of g∗ω for g ∈ (W ∩VMO)(SN ,SN )

In this section we extend the previous results to the case g ∈ VMO(SN , SN )

∩W (SN , SN ); VMO(SN ,SN )∩W (SN ,SN ) is denoted by (VMO∩W )(SN ,SN )

or (W∩VMO)(SN ,SN ), and VMO(SN )∩W (SN ) is denoted by (VMO∩W )(SN )

or (W ∩VMO)(SN ).

We begin with

Lemma 2. Let N ≥ 1 and g ∈ (VMO ∩W )(SN , SN ). Then there exists a

sequence (gk) ⊂ C1(SN ,SN ) such that gk → g in W (SN ) and BMO(SN ).

Proof. For k � 1, define

ḡk(x) =

∫
B(x,1/k)

gk(s) ds

and

gk(x) = ḡk(x)/|ḡk(x)|.

Since g ∈ VMO(SN , SN ), gk is well-defined when k is large enough. In addition

gk → g in BMO(SN ) (see e.g. [20, Cor. 4]). Moreover, gk = F (ḡk), where

F (ξ) = ξ/|ξ| is a Lipschitz map on {ξ ∈ RN+1; |ξ| ≥ 1/2}. We conclude (see

e.g. [9, Claim (5.43)]) that gk = F (ḡk)→ F (ḡ) = g in W (SN ) since ḡk → ḡ in

W (SN ). �

Lemma 3. Let (gk)⊂C1(SN, SN) be a Cauchy sequence in (W∩VMO)(SN).

Then J(gk, ψ) is a Cauchy sequence for any ψ ∈ C1(SN ,R).

Proof. Let uk be the extension of gk as in the proof of Theorem 1. Then

J(gk, ψ) = (N + 1)

∫
B
ϕdet∇uk dx+

N+1∑
i=1

∫
B
∂iϕDi(uk) dx,

where ϕ ∈ C1(B) is an extension of ψ. Applying the method used in the proof

of Theorem 4, one can show that det∇uk is a Cauchy sequence in L1(B). Here

we only use the fact that gk is a Cauchy sequence in VMO. Next we see that

Di(uk) is a Cauchy sequence in L1(B) for 1 ≤ i ≤ N +1. Here we only use the

fact that gk is a Cauchy sequence in W (SN ) so that uk is Cauchy in W 1,N (B).

The conclusion follows. �

Definition 1. Let N ≥ 1 and g ∈ (VMO ∩ W )(SN ,SN ). Then for any

ψ ∈ C1(SN ,R), we can define J(g, ψ) as the limit of J(gk, ψ) for any sequence

(gk) ⊂ C1(SN ,SN ) such that gk → g in (W ∩ VMO)(SN ). This object is

well-defined according to Lemmas 2 and 3.

Remark 13. Let g ∈ (W ∩VMO)(SN , SN ) and let u be the extension of g

as in the proof of Theorem 1. Then det∇u ∈ L∞(B) since g ∈ VMO(SN , SN )
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and u ∈W 1,N (B) since g ∈W (SN ). Moreover,

(6.1)

J(g, ψ) = (N + 1)

∫
B
ϕdet∇u dx+

N+1∑
i=1

∫
B
∂iϕDi(u) dx, ∀ψ ∈ C1(SN ,R),

where ϕ ∈ C1(B̄,R) is any extension of ψ.

Similarly, the quantity ∫
SN
F (g) det(∇g)ψ dx

is well-defined in the distributional sense when F ∈ C0,α(SN ,R), g ∈ (VMO ∩
W )(SN ,SN ), and ψ ∈ C1(SN ,R) (see the proof of Corollary 5). Moreover, if

(gk) ⊂ (VMO∩W )(SN ,SN ) and g ∈ (VMO∩W )(SN , SN ) are such that gk → g

in (VMO ∩W )(SN ), then

lim
k→∞

∫
SN
F (gk) det(∇gk)ψ dx =

∫
SN
F (g) det(∇g)ψ dx.

We next state some properties of J(g, ψ) (resp.
∫
SN F (g) det(∇g)ψ dx)

in the case g ∈ (W ∩ VMO)(SN ,SN ) (resp. g ∈ (W ∩ VMO)(SN , SN ) and

F ∈ C0,α(SN ,R), for some α > 0). The proofs are left to the reader.

Proposition 6. Let N ≥ 1, g ∈ W (SN ,SN ) ∩ C0(SN ,SN ), and ψ ∈
C1(SN ,R). Then

|J(g, ψ)| ≤ C
Ä
‖ψ‖L∞T`N (g) + ‖∇ψ‖L∞ |g|NW

ä
,

for some positive constant C = C(N).

As a consequence of Proposition 6, we have

Proposition 7. Let N≥1, g ∈W (SN ,SN )∩C0(SN , SN ), F ∈C0,α(SN ,R)

for some α > 0, and ψ ∈ C1(SN ,R). Then

(6.2)

∣∣∣∣∫
SN
F (g) det(∇g)ψ dx

∣∣∣∣ ≤ C Ä‖ψ‖L∞Tδ(g) + ‖∇ψ‖L∞ |g|NW
ä
,

for some positive constants C = C(N, ‖F‖0,α) and δ = δ(N, ‖F‖0,α).

Propositions 6 and 7 are still valid for g ∈ (W ∩ VMO)(SN , SN ). For the

proofs we go back to the formula (6.1) and use the same method as in the one

of Theorem 2. It would be natural to construct a sequence (gk) ⊂ C1(SN ,SN )

such that gk → g in (W ∩ VMO)(SN ) and then use (6.2). The left-hand side

in (6.2) converges to the desired quantity. However, we do not know whether

lim infk→∞ Tδ(gk) . Tδ(g), even for a particular sequence (see Remark 16 at

the end of the appendix). We warn the reader that the corresponding estimates

are sometimes useless. More precisely, there exists g ∈ (W ∩ VMO)(SN ,SN )

such that Tδ(g) =∞ for every 0 < δ < 1 (see [19]).
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7. The case N=1

7.1. Proofs of Theorems 4 and 3. We continue our study of J(g, ψ) and

establish further properties valid when N = 1. Our main estimate is

Theorem 5. Let g ∈ C1(S1,S1) and ψ ∈ C1(S1,R). Then for all 0 < δ <

`1 =
√

3, there exists a constant Cδ > 0, depending only on δ, such that

|J(g, ψ)| ≤ Cδ‖ψ‖W 1,∞ (Tδ(g) + 1) .

The limiting case δ =
√

3 in Theorem 5 is open (this is in contrast with

Theorem 2).

Open question 3. Is it true that

|J(g, ψ)| ≤ C‖ψ‖W 1,∞
Ä
T√3(g) + 1

ä
∀ g ∈ C1(S1, S1),

for some positive constant C?

Our main ingredient in the proof of Theorem 5 is the following:

Theorem 6. For each δ ∈ (0,
√

3), there exists a positive constant Cδ
such that∫ 1

0

∫ 1

0
|ϕ(x)− ϕ(y)| dx dy ≤ Cδ

î
Tδ(e

iϕ) + 1
ó
, ∀ϕ ∈ VMO((0, 1),R).

Theorem 6 was first established when δ is very small and ϕ is continuous

by J. Bourgain, H. Brezis, and P. Mironescu [8]. Their (unpublished) proof

is quite involved. Our proof is also very technical and totally different from

theirs. We will present it in the appendix. We will also prove there that
√

3 is

optimal in the sense that for any δ >
√

3, the conclusion fails.

Proof of Theorem 5. Fix P a point of S1. Let ϕ ∈ C1(S1 \ {P},R) be a

lifting of g; i.e., g = eiϕ on S1 \ {P}. Then, by (1.13),

J(g, ψ) = −
∫
S1
ϕ(s)ψ′(s) ds+ 2πψ(P ) deg g.

It follows that

(7.1) |J(g, ψ)| ≤
∣∣∣∣ ∫

S1
ϕ(s)ψ′(s) ds

∣∣∣∣+ 2π|deg g||ψ(P )|.

We have, since
∫
S1 ψ

′(s) ds = 0,∫
S1
ϕ(s)ψ′(s) ds =

∫
S1

(
ϕ(s)−

∫
S1
ϕ(t) dt

)
ψ′(s) ds =

∫
S1

∫
S1

[ϕ(s)−ϕ(t)]ψ′(s) ds.

This implies∣∣∣∣ ∫
S1
ϕ(s)ψ′(s) ds

∣∣∣∣ ≤ ‖ψ′‖L∞ ∫
S1

∫
S1
|ϕ(s)− ϕ(t)| ds dt.
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Applying Theorem 6, one has, for any 0 < δ <
√

3,∣∣∣∣ ∫
S1
ϕ(s)ψ′(s) ds

∣∣∣∣ ≤ Cδ‖ψ′‖L∞(Tδ(g) + 1),

for some positive constant Cδ. On the other hand, by Proposition 3,

| deg g||ψ(P )| ≤ ‖ψ‖L∞Tδ(g).

The conclusion follows from (7.1). �

Theorem 7. Let (gk) ⊂ C1(S1, S1) and g ∈ C1(S1, S1). Suppose that

lim
k→∞

‖gk − g‖BMO = 0. Then

lim
k→∞

J(gk, ψ) = J(g, ψ), ∀ψ ∈ C1(S1,R).

Proof. Fix P ∈ S1. Since gk, g ∈ C1(S1,S1) and gk → g in BMO(S1,S1),

there exist ϕk, ϕ ∈ C1(S1 \ {P}) such that eiϕk = gk, e
iϕ = g on S1 \ {P}, and

ϕk → ϕ in BMO(S1 \ {P}) by [20, Th. 3]. Thus since

J(gk, ψ) = −
∫
S1
ϕk(s)ψ

′(s) ds+ 2πψ(P ) deg gk

and
J(g, ψ) = −

∫
S1
ϕ(s)ψ′(s) ds+ 2πψ(P ) deg gk,

the conclusion follows. Here we use the fact that if (gk) ⊂ C1(S1, S1) con-

verges to g ∈ C1(S1, S1) in BMO(S1), then limk→∞ deg gk = deg g according

to Proposition 4 (see also [20]). �

Proofs of Theorems 4 and 3. Theorems 4 and 3 are consequences of The-

orems 5 and 7 respectively (see the proofs of Corollaries 5 and 3).

7.2. Definition and properties of g∗ω for g ∈ VMO(S1, S1). In this section

we will extend the result in Section 7.1 to g ∈ VMO(S1, S1). We begin with

(see e.g. [20, Cor. 4])

Lemma 4. Let g ∈ VMO(S1, S1). There exists (gk) ⊂ C1(S1,S1) such that

gk → g in BMO(S1).

We also have

Lemma 5. Let (gk) ⊂ C1(S1,S1) be such that (gk) is a Cauchy sequence

in BMO(S1). Then for any ψ ∈ C1(S1,R), J(gk, ψ) is a Cauchy sequence.

Proof. Fix P ∈ S1. Since (gk) ⊂ C1(S1,S1) and (gk) is a Cauchy sequence

in BMO(S1), there exists ϕk ∈ C1(S1 \ {P},R) such that ϕk is a Cauchy

sequence in BMO(S1 \ {P},R) (see [20, Th. 3]). Thus since

J(gk, ψ) = −
∫
S1
ϕk(s)ψ

′(s) ds+ 2πψ(P ) deg gk, ∀ψ ∈ C1(S1,R),

the conclusion follows. �



ON THE DISTRIBUTIONAL JACOBIAN OF MAPS 1167

Definition 2. Let g ∈VMO(S1,S1). Then for any ψ ∈ C1(S1,R), we can

define J(g, ψ) as the limit of J(gk, ψ) for any sequence (gk) ⊂ C1(S1,S1) such

that gk → g in VMO(S1). This object is well-defined according to Lemmas 4

and 5.

Remark 14. Let g ∈ VMO(S1, S1). Then

(7.2) J(g, ψ) = −
∫
S1
ϕ(s)ψ′(s) ds+ 2πψ(P ) deg g,

for any P ∈ S1 and for any ϕ ∈ VMO(S1 \ {P},R) such that eiϕ = g on

S1 \ {P}.

Similarly, the quantity, ∫
S1
F (g) det(∇g)ψ ds

is well-defined in the distributional sense when F ∈ C(S1,R), g ∈ VMO(S1, S1),

and ψ ∈ C1(S1,R) (see the proof of Corollary 5).

Moreover, if (gk) ⊂ VMO(S1,S1) and g ∈ VMO(S1, S1) are such that

gk → g in BMO(S1), then

lim
k→∞

∫
S1
F (gk) det(∇gk)ψ ds =

∫
S1
F (g) det(∇g)ψ ds.

We next state some properties of J(g, ψ) (resp.
∫
SN F (g) det(∇g)ψ dx) in

the case g ∈ VMO(S1,S1) (resp. g ∈ VMO(S1, S1) and F ∈ C(S1,R)).

Proposition 8. Let g ∈ VMO(S1, S1) and ψ ∈ C1(S1,R). Then for all

0 < δ < `1 =
√

3, there exists a constant Cδ > 0 depending only on δ such that

|J(g, ψ)| ≤ Cδ‖ψ‖W 1,∞ (Tδ(g) + 1) .

Proof. The proof is the same as that of Theorem 5 by using Theorem 6. �

As a consequence of Proposition 8, we have

Proposition 9. Let g ∈ VMO(S1,S1), F ∈ C(S1,R), and ψ ∈ C1(S1,R).

Then ∣∣∣∣ ∫
S1
F (g) det(∇g)ψ dx

∣∣∣∣ ≤ C‖ψ‖W 1,∞ (Tδ(g) + 1) ,

for some positive positive constants C and δ depending only on ‖F‖L∞ .

7.3. An improvement of Theorem 3: A partial answer to Open Question 2.

In this section, we prove

Proposition 10. There exists a constant c > 0 such that if (gk) ⊂
C1(S1, S1), g ∈ C1(S1, S1), gk converges to g a.e. in S1, and

lim sup
k→∞

|gk − g|BMO(S1) < c,

then
lim
k→∞

∫
S1

det(∇gk)ψ dx =

∫
S1

det(∇g)ψ dx.
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This proposition is a consequence of

Proposition 11. There exists a constant c > 0 such that if (gk) ⊂
C1((0, 1),S1), g ∈ C1((0, 1),S1), gk converges to g a.e. in (0, 1), and

lim sup
k→∞

|gk − g|BMO < c,

then

lim
k→∞

∫ 1

0

∫ 1

0
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]| dx dy = 0.

Here ϕk and ϕ ∈ C1((0, 1),R) are respectively liftings of gk and g.

We first accept Proposition 11 and turn to the

Proof of Proposition 10. Fix P ∈ S1. Let ψ, ψk ∈ C1(S1 \ {P},R) be

liftings of g and gk. Then

J(gk, ψ) = −
∫
S1
ϕkψ

′ ds+ 2π deg gk ψ(P ).

From the assumption of Proposition 10, by Proposition 4,

lim
k→∞

deg gk = deg g.

It suffices to prove that

lim
k→∞

∫
S1
ϕkψ

′ ds =

∫
S1
ϕψ′ dx.

We have ∫
S1
ϕkψ

′ dx =

∫
S1

∫
S1

[ϕk(x)− ϕk(y)]ψ′(x) dx dy

and ∫
S1
ϕψ′ dx =

∫
S1

∫
S1

[ϕ(x)− ϕ(y)]ψ′(x) dx dy.

It follows from Proposition 11 that

lim
k→∞

∫
S1
ϕkψ

′ ds =

∫
S1
ϕψ′ dx. �

We now return to

Proof of Proposition 11. In this proof I denotes the interval (0, 1). For all

x, y ∈ I, one has

|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]| . | exp(i[ϕk(x)−ϕ(x)]− i[ϕk(y)−ϕ(y)])− 1|

+ |[ϕk(x)−ϕ(x)]− [ϕk(y)−ϕ(y)]|2.
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However,

| exp(i[ϕk(x)− ϕ(x)]− i[ϕk(y)− ϕ(y)])− 1| = |gk(x)/g(x)− gk(y)/g(y)|

≤ |gk(x)− g(x)|+ |gk(y)− g(y)|.

Hence

|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]|

. |gk(x)− g(x)|+ |gk(y)− g(y)|+ |[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]|2.

This implies∫
I

∫
I
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]| dx dy

.
∫
I
|gk(x)− g(x)| dx+

∫
I

∫
I
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]|2 dx dy.

On the other hand, as a consequence of inequality (2)′ in F. John and

L. Nirenberg [43] we have∫
I

∫
I
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]|2 dx dy

. |ϕk − ϕ|BMO

∫
I

∫
I
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]| dx dy.

Thus∫
I

∫
I
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]| dx dy

.
∫
I
|gk(x)−g(x)| dx+|ϕk−ϕ|BMO

∫
I

∫
I
|[ϕk(x)−ϕ(x)]−[ϕk(y)−ϕ(y)]| dx dy.

Finally, we use an inequality of R. Coifman and Y. Meyer [22] (see also [20,

Th. 4]):

|ϕk − ϕ|BMO ≤ 4|gk − g|BMO

when |gk − g|BMO is sufficiently small. Hence, there exists a positive constant

c such that if |gk − g|BMO < c, then∫
I

∫
I
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]| dx dy .

∫
I
|gk(x)− g(x)| dx.

Since gk converges to g for almost every x ∈ I,

lim
k→∞

∫
I

∫
I
|[ϕk(x)− ϕ(x)]− [ϕk(y)− ϕ(y)]| dx dy = 0. �
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Appendix A. A basic estimate for the lifting: Proof of Theorem 6

This section is devoted to the proof of the following fundamental estimate

in Theorem 6:

(A.1)∫ 1

0

∫ 1

0
|ϕ(x)−ϕ(y)| dx dy ≤ Cδ

î
Tδ(e

iϕ)+1
ó
, ∀ϕ ∈ VMO((0, 1),R),∀ δ <

√
3.

We recall that

Tδ(e
iϕ) =

∫ 1

0

∫ 1

0
|eiϕ(x)−eiϕ(y)|≥δ

1

|x− y|2
dx dy, ∀ δ > 0.

The constant
√

3 in estimate (A.1) is optimal in the sense that for any

δ >
√

3, the conclusion fails. Indeed, one can construct as in [54] a sequence

(ϕk) ⊂ C1([0, 1],R) such that ϕk is increasing, ϕk(0) = 0, ϕk(1/k) = 2π

ϕk(x+ 1/k) = ϕk(x) + 2π,∀x ∈ [0, 1− 1/k],

and

lim
k→∞

∫ 1

0

∫ 1

0
|eiϕk(x)−eiϕk(y)|>

√
3

1

|x− y|2
dx dy = 0.

It is easy to see that |ϕk|BMO ≈ k.

The limiting case δ =
√

3 is open:

Open question 4. Is it true that∫ 1

0

∫ 1

0
|ϕ(x)− ϕ(y)| dx dy ≤ C

î
T√3(eiϕ) + 1

ó
, ∀ϕ ∈ VMO((0, 1),R),

for some positive constant C?

Proof of (A.1). We follow the strategy of J. Bourgain, H. Brezis, and

P. Mironescu in the proof of [10, Th. 0.1] and use ideas inspired from [7] and

[54].

In this proof the notation a . b means that there exists a positive constant

Cδ such that a ≤ Cδb. The notation a & b means that b . a and I denotes the

unit open interval (0, 1).

Set g = eiϕ. Extending g by symmetry to the interval (−1, 0), and then

by periodicity to all of R, one may assume, without loss of generality, that

g ∈ VMO(R,S1), and it suffices to prove that

(A.2)

∫ 1

0

∫ 1

0
|ϕ(x)− ϕ(y)| dx dy . Tδ(g) + 1, ∀ δ ∈ (0,

√
3),

where

Tδ(g) :=

∫ 3

−2

∫ 3

−2
|g(x)−g(y)|>δ

1

|x− y|2
dx dy.
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We only need to prove (A.2) for δ <
√

3 and δ is close to
√

3 . Hereafter, we

assume this.

Step 1: Proof of (A.1) when g is continuous. Let u : I2 → R2 be the

extension by average of g, i.e.

u(x, r) =

∫ x+r

x−r
g(z) dz,

and set α = δ2−2
2 > 0.

For each x ∈ I, define ρ(x) by

ρ(x) = sup{r; |u(x, s)| ≥ α for all 0 < s < r}.

We adapt here the ideas used in the proof of [10, Theorem 0.1]. Set

G = {X = (x, r); x ∈ I and r ∈ (ρ(x), 1)}.

Since |∇u(x, r)| ≤ 1/r for (x, r) ∈ I2, one has

(A.3)

∫
G
|∇u(x, r)|2 dr dx .

∫
ρ(x)<1

1

ρ(x)
dx.

To obtain an estimate for the right-hand side of (A.3), we follow the same

argument as in the proof of [54, Th. 1]. Recall that if J is a nonempty set and

(Aj)j∈J is a collection of points in S1 such that dist(conv ({Aj ; j ∈ J}), O) ≤
1/2, then there exist j1, j2 ∈ J such that |Aj1 − Aj2 | ≥

√
3 (see [54, Cor. 4]).

Here O = (0, 0) ∈ R2 and conv (.) denotes the convex hull of a subset of R2.

Thus, since α < 1/2, if ρ(x) < 1,∣∣∣∣∫ x+ρ(x)

x−ρ(x)
g(s) ds

∣∣∣∣ < α,

which implies, as in the proof of [54, Lemma 6],

(A.4)
∣∣∣{(ξ, η) ∈ (x− ρ(x), x+ ρ(x))2; |g(ξ)− g(η)| ≥ δ}

∣∣∣ & ρ(x)2.

Hence, for some positive constant τ , independent of g and x, one has∫ x+ρ(x)

x−ρ(x)

∫ x+ρ(x)

x−ρ(x)
|g(ξ)−g(η)|≥δ
|ξ−η|≥τρ(x)

1

|ξ − η|2
dξ dη & 1.

It follows that∫
ρ(x)<1

1

ρ(x)
dx .

∫
ρ(x)<1

1

ρ(x)

∫ x+ρ(x)

x−ρ(x)

∫ x+ρ(x)

x−ρ(x)
|g(ξ)−g(η)|≥δ
|ξ−η|≥τρ(x)

1

|ξ − η|2
dξ dη dx.
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A simple computation gives

(A.5)

∫
ρ(x)<1

1

ρ(x)
dx . Tδ(g).

Combining (A.3) and (A.5) yields

(A.6)

∫
G
|∇u|2 dX . Tδ(g).

Using the co-area formula, one has

(A.7)

∫ α

1/4

∫
{σ∈I2; |u(σ)|=β}

|∇u| dσ dβ =

∫
{X∈I2; 1/4<|u(X)|<α}

|∇u||∇|u|| dX.

However, from the definition of G and ρ it is clear that

(A.8) {X ∈ I2; 1/4 < |u(X)| < α} ⊂ G.

Combining (A.6), (A.7), and (A.8) yields∫ α

1/4

∫
{σ∈I2; |u(σ)|=β}

|∇u| dσ dβ . Tδ(g).

Thus, by Sard’s theorem, there exists a regular value β of |u| (1/4 < β < α)

such that

(A.9)

∫
Γ
|∇u| dσ . Tδ(g),

where Γ = {X ∈ B; |u(X)| = β}.
Fix x and y in I ( x < y). Set

U = {(z, r) ∈ [x, y]× I; |u(z, r)| > β}.

Let W be the connected component of U such that [x, y] × {0} ⊂ ∂W and γ

be the connected component of ∂W such that [x, y]× {0} ⊂ γ (see Figure 1).

Set

h =
u

|u|
onW.

Let ψ ∈ C(γ − {y},R) be such that h = eiψ on γ and ψ = ϕ on (x, y) × {0}.
Then

(A.10)
∣∣∣ψ(y, 0+)− ψ(y−, 0)

∣∣∣ ≤ ∫
Γ\γ
|∇u| dσ,

where ψ(y, 0+) = limr→0+ ψ(y, r) and ψ(y−, 0) = limz→y− ψ(z, 0). Hence

from (A.10) one has

(A.11) |ϕ(x)−ϕ(y)| = |ψ(x, 0)−ψ(y−, 0)| ≤
∣∣∣ψ(y, 0+)−ψ(x, 0)

∣∣∣+∫
Γ
|∇u| dσ.
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(x, 0) (y, 0)γ1

|u| < β

Γ\γ

W (y, ρ(y))

(y, 1)

(x, ρ(x))

γ

(x, 1)

Figure 1.

However,∣∣∣ψ(y, 0+)− ψ(x, 0)
∣∣∣ ≤ ∣∣∣ψ(y, 0+)− ψ(y, ρ(y))

∣∣∣
+
∣∣∣ψ(y, ρ(y))− ψ(x, ρ(x))

∣∣∣+ ∣∣∣ψ(x, ρ(x))− ψ(x, 0)
∣∣∣

and, with γ1 := ([x, y]× {0}) ∪ ({x} × [0, ρ(x)]) ∪ ({y} × [0, ρ(y)]),∣∣∣ψ(y, ρ(y))− ψ(x, ρ(x))
∣∣∣ ≤ ∫

γ\γ1
|∇h| dσ .

∫
Γ
|∇u| dσ +

1

ρ(x)
+

1

ρ(y)
.

It follows from (A.11) that

|ϕ(x)− ϕ(y)| .
∫

Γ
|∇u| dy +

1

ρ(x)
+

1

ρ(y)
(A.12)

+ |ψ(x, ρ(x))− ψ(x, 0)|+ |ψ(y, ρ(y))− ψ(y, 0+)|.

We claim that

(A.13) |ψ(x, ρ(x))− ψ(x, 0+)| .
∫

|g(z)−g(x)|>δ

1

|z − x|2
dz + 1

and

(A.14) |ψ(y, ρ(y))− ψ(y, 0+)| .
∫

|g(z)−g(y)|≥δ

1

|z − y|2
dz + 1.

To prove the claim, we proceed as follows (this is inspired from [7] and [54]):

Let k ∈ Z be such that

(A.15) 2kπ ≤ ψ(x, ρ(x))− ψ(x, 0) < 2kπ + 2π.
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Without loss of generality, one may assume that k ≥ 0 and ψ(x, 0) = 0. It

follows from (A.15) that there exist 0 < t1 < t2 < · · · < t2k−1 < t2k ≤ ρ(x)

such that

(A.16)

 ψ(x, t2m−1) = 2mπ − π,

ψ(x, t2m) = 2mπ,
∀ 1 ≤ m ≤ k.

Set

Ax,m = {z ∈ R; t2m < |z − x| < t2m+1 } , ∀m ≥ 1

and

Bx,m = {z ∈ R; |z − x| < tm } , ∀m ≥ 1.

Since |u| > α on {x} × [0, ρ(x)], with the notation g = (g1, g2), it follows

from (A.16) that

(A.17)

∫
Bx,2m

g1 dz ≥ α and

∫
Bx,2m+1

g1 dz ≤ −α.

However,

(A.18)

∫
Bx,2m+1

g1 dz =
|Bx,2m|
|Bx,2m+1|

∫
Bx,2m

g1 dz +
|Ax,m|
|Bx,2m+1|

∫
Ax,m

g1 dz.

Combining (A.17) and (A.18) yields

(A.19) |Ax,m| & |Bx,2m+1| ≥ t2m+1

and

(A.20)

∫
Ax,m

g1 dz ≤ −α.

From (A.20), one has

|{z ∈ Ax,m; g1(z) ≤ −α}| & |Ax,m|,

which implies, since 2 + 2α = δ2 and g(x) = (1, 0),

(A.21) |{z ∈ Ax,m; |g(z)− g(x)| ≥ δ}| & |Ax,m|.

Using (A.19), (A.20), and (A.21) we obtain

|{z ∈ Ax,m; |g(z)− g(x)| ≥ δ}| & t2m+1.

This implies, since |z − x| ≤ t2m+1 for z ∈ Ax,m,∫
Ax,m∩{z; |g(z)−g(x)|≥δ}

1

|z − x|2
dz & 1.

Consequently,∫
|g(z)−g(x)|≥δ

1

|z − x|2
dz &

k−1∑
m=1

∫
Ax,m∩{z; |g(z)−g(x)|≥δ}

1

|z − x|2
dz & k − 1.
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This shows that

|ψ(x, ρ(x))− ψ(x, 0+)| .
∫

|g(z)−g(x)|≥δ

1

|z − x|2
dz + 1.

Similarly,

|ψ(y, ρ(y))− ψ(y, 0+)| .
∫

|g(z)−g(y)|≥δ

1

|z − y|2
dz + 1.

Thus (A.13) and (A.14) are proved.

Combining (A.9), (A.12), (A.13), and (A.14) yields

|ϕ(x)− ϕ(y)| .Tδ(g) +
1

ρ(x)
+

1

ρ(y)
+

∫
|g(z)−g(x)|≥δ

1

|z − x|2
dη

+

∫
|g(z)−g(y)|≥δ

1

|z − y|2
dz + 1.

Integrating the above inequality with respect to (x, y) over I × I, one has∫
I

∫
I
|ϕ(x)− ϕ(y)| dx dy .Tδ(g) +

∫
ρ(x)<1

1

ρ(x)
dx+

∫
ρ(y)<1

1

ρ(y)
dy + 1.

It follows from (A.5) that∫
I

∫
I
|ϕ(x)− ϕ(y)| dx dy . Tδ(g) + 1.

Remark 15. Inequality (A.4) is equivalent to the existence of a constant

Cδ > 0 such that

(A.22)
∣∣∣{(ξ, η) ∈ (x− ρ(x), x+ ρ(x)); |g(ξ)− g(η)| ≥ δ}

∣∣∣ ≥ Cδρ(x)2.

One cannot deduce from the assumptions g ∈ L1((a, b),S1) and |
∫ b
a g(z) dz| =

α < 1/2, that there exists a universal positive constant C such that∣∣∣{(ξ, η) ∈ (x− r, x+ r); |g(ξ)− g(η)| ≥
√

3}
∣∣∣ ≥ Cr2.

Here is an example. Assume a = 0 and b = 2. Let A = (1, 0), B = ei(2π/3+τ),

and C = ei(4π/3−τ) where τ > 0 (small) is chosen such that |O − B+C
2 | =

1− α > 1/2. Let g be a function defined on (0, 2) such that |{y; g(y) = B}| =
|{y; g(y) = C}| = 1+α

2−α , and |{y; g(y) = A}| = 2−4α
2−α . Then∣∣∣{(ξ, η) ∈ (0, 2); |g(ξ)− g(η)| ≥

√
3}
∣∣∣ = 2

2− 4α

2− α
1 + α

2− α
→ 0 as α→ 1/2.

This is the reason why we cannot establish estimate (A.1) for δ =
√

3 using

this method.



1176 HAÏM BREZIS and HOAI-MINH NGUYEN

Step 2: The general case. Define gε : [−1, 2] 7→ S1 (ε small) as follows:

gε(x) =

∫ x+ε

x−ε
g(s) ds

¬∣∣∣∣∣∫ x+ε

x−ε
g(s) ds

∣∣∣∣∣ .
Let ϕε ∈ VMO(I,R) be the lifting of gε such that ϕε converges to ϕ in L1, let

uε be the extension by average of gε as in Step 1, and let 0 < λ < 1
2 be such

that 2 + 2λ = (3 + δ2)/2. Then, since 2 + 2α = δ2 < 3, one has α < λ < 1/2.

For each x ∈ I, define ρε(x) by

ρε(x) = sup{r; |uε(x, s)| ≥ λ for all 0 < s < r}.

If ρε(x) < 1, then

(A.23)

∣∣∣∣∣
∫ x+ρε(x)

x−ρε(x)
gε(z) dz

∣∣∣∣∣ = λ.

We claim that ρε(x) ≥ r0 for some r0 > 0 independent of ε and x as ε is small.

In fact, from (A.23), ε . ρε(x). Since∫ x+ρε(x)

x−ρε(x)
|gε(r)− g(r)| dr ≤

∫ x+ρε(x)

x−ρε(x)

∫ r+ε

r−ε
|g(ξ)− g(r)| dξ dr

+

∫ x+ρε(x)

x−ρε(x)

∣∣∣∣∫ r+ε

r−ε
g(ξ)

∣∣∣∣( 1∣∣∣∣∫ r+εr−ε g

∣∣∣∣ − 1
)
dξ dr,

it follows that ∫ x+ρε(x)

x−ρε(x)
|gε(r)− g(r)| dr ≤ 1/8,(A.24)

when ε small (by g ∈ VMO). On the other hand,∫ x+ρε(x)

x−ρε(x)
gε(r) dr =

∫ x+ρε(x)

x−ρε(x)
(gε(r)− g(r)) dr +

∫ x+ρε(x)

x−ρε(x)
g(r) dr

and
∣∣∣∫ y+s
y−s g(r) dr

∣∣∣ converges to 1 uniformly in [0, 1] as s goes to 0. It follows

from (A.23) and (A.24) that ρε(x) ≥ r0 for some r0 > 0 independent of ε

and x.

Since ρε ≥ r0, there exists ε1 such that for all ε ≤ ε1,∣∣∣∣∣
∫ x+ρε(x)

x−ρε(x)
g(y) dy

∣∣∣∣∣ ≤ 1

2

Å
λ+

1

2

ã
< 1/2.

Hence, as in the proof of Step 1, one has

(A.25)

∫
ρε(x)<1

1

ρε(x)
dx . Tδ(g),

for ε ≤ ε1.
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Let r1 > 0 be such that

(A.26)

∫∫
D
|ϕ(x)− ϕ(y)| dx dy ≤ 1

10

∫
I

∫
I
|ϕ(x)− ϕ(y)| dx dy,

for every measurable subset D of I2 such that |D| ≤ r2
1.

Set τ0 = (λ− α)/2 > 0. We have

(A.27)

if

∫ x+r

x−r
|gε(z)− g(z)| dz≤τ0 and

∣∣∣∣∣
∫ x+r

x−r
gε(z) dz

∣∣∣∣∣≥λ, then

∣∣∣∣∣
∫ x+r

x−r
g(z) dz

∣∣∣∣∣≥α.
Define

(A.28) Aε =

®
x ∈ I;

∫ x+r

x−r
|gε(z)− g(z)| dz ≥ τ0 for some r ∈ (0, 1)

´
.

From the theory of maximal functions (see e.g. [57, Th. 1, p. 5]), we infer that

|Aε| .
1

τ0

∫ 2

−1
|gε(s)− g(s)| ds.

Thus, since gε converges to g in L1, there exists ε2 > 0 such that

(A.29) |Aε| ≤ r2
1/2, ∀ ε ≤ ε2.

Since ϕε converges to ϕ in L1(I), there exists ε3 > 0 such that

(A.30) |Bε| ≤ r2
1/2, ∀ ε ≤ ε3,

where

(A.31) Bε =

ß
x ∈ I; |ϕε(x)− ϕ(x)| ≥ 1

4

™
.

Set Cε = I \ Aε. We claim that, for ε < min{ε1, ε2, ε3},

(A.32)

∫
Cε

∫
Cε
|ϕε(x)− ϕε(y)| dx dy . Tδ(g) + 1.

Indeed, fix ε < min{ε1, ε2, ε3}. As in Step 1, it follows from (A.25) that

there exists βε ∈ (1/4, λ) such that

(A.33)

∫
Γε

|∇uε|dσ . Tδ(g),

where Γε = {X ∈ I2; |uε(X)| = β}.
Set

Uε = {(z, r) ∈ [x, y]× I; |uε(z, r)| > β}.
Let Wε be the connected component of Uε such that [x, y] × {0} ⊂ ∂Wε and

γε be the connected component of ∂Wε such that [x, y]× {0} ⊂ γε. Set

hε =
uε
|uε|

onWε.
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Let ψε ∈ C(γε−{y},R) be such that hε = eiψε on γε and ψε = ϕε on (x, y)×{0}
(we recall that ϕε is a lifting of gε). As in the proof of (A.12), one has

|ϕε(x)− ϕε(y)| .
∫

Γε

|∇uε| dy +
1

ρε(x)
+

1

ρε(y)

+ |ψε(x, ρε(x))− ψε(x, 0+)|+ |ψε(y, ρε(y))− ψε(y, 0+)|.(A.34)

We claim that

(A.35) |ψε(x, ρ(x))− ψε(x, 0)| .
∫

|g(z)−g(x)|≥δ

1

|z − x|2
dz + 1

and

(A.36) |ψε(y, ρ(x))− ψε(y, 0+)| .
∫

|g(z)−g(y)|≥δ

1

|z − y|2
dz + 1.

We follow the strategy presented in Step 1. Take x, y ∈ Cε and let k ∈ Z
such that

(A.37) 2kπ ≤ ψε(x, ρ(x))− ψε(x, 0) < 2kπ + 2π.

Let ψ ∈ C({x} × [0, ρε(x)]) be such that eiψ = u/|u| on {x} × [0, ρε(x)] (u is

the extension by average of g as in Step 1). From (A.28), ψ is well-defined

since x 6∈ Aε. Without loss of generality, one may assume that k ≥ 0 and

ψ(x, 0) = 0 and ψε(x, 0) ∈ [−π, π]. It follows from (A.37) that there exist

0 < t1 < t2 < · · · < t2k−1 < t2k ≤ ρε(x) such that ψε(x, t2m−1) = 2mπ − π,

ψε(x, t2m) = 2mπ,
∀ 1 ≤ m ≤ k − 1.

Since x 6∈ Aε, it follows from (A.28) that there exist s1, . . . , s2k−2 such that

0 < t1 < s1 < s2 · · · < s2k−2 < ρε(x) and ψ(x, s2m−1) = 2mπ − π,

ψ(x, s2m) = 2mπ,
∀ 1 ≤ m ≤ k − 1.

Thus since x 6∈ Aε, according to (A.27) and (A.28), one has∫ x+s2m

x−s2m
g1(z) dz ≥ α and

∫ x+s2m

x−s2m
g1(z) dz ≤ −α.

Applying the same method used to obtain (A.13) in Step 1, one has

|ψε(x, ρ(x))− ψε(x, 0)| .
∫

|g(z)−g(x)|≥δ

1

|z − x|2
dz + 1.
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Similarly,

|ψε(y, ρ(x))− ψε(y, 0+)| .
∫

|g(z)−g(y)|≥δ

1

|z − y|2
dz + 1.

Thus (A.35) and (A.36) are proved.

Integrating (A.34) with respect to x and y on I2 and using (A.25) and

(A.33), one obtains (A.32).

Combining (A.29), (A.30), (A.31), and (A.32) yields∫
Cε\Bε

∫
Cε\Bε

|ϕ(x)− ϕ(y)| dx dy . Tδ(g) + 1.

Therefore, the conclusion follows from (A.26). �

Remark 16. A natural strategy for Step 2 would be to construct, for any

given g ∈ VMO(S1,S1), a sequence (gk) ⊂ C(S1,S1) such that gk → g in

BMO(S1) and

(A.38) lim
k→∞

Tδ(gk) = Tδ(g).

We warn the reader that there exist g ∈ C([0, 1],R) and a sequence (gk) ⊂
C([0, 1],R) such that gk → g in BMO and

lim
k→∞

Tδ(gk) = +∞, ∀ δ > 0.

(see [19]). However, it might be true that (A.38) holds for a special sequence

(gk); this is an open problem (see [19]).
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sur l’intégrale de Cauchy, in Fourier Analysis, Asoc. Mat. Espa nola 1, Asoc.

Mat. Espa nola, Madrid, 1980, pp. 87–116. MR 0582251. Zbl 0541.42008.

[23] B. Dacorogna and J. Moser, On a partial differential equation involving the

Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 1–26.
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[56] J. G. Rešetnjak, The weak convergence of completely additive vector-valued

set functions, Sibirsk. Mat. Z̆. 9 (1968), 1386–1394. MR 0240274.

[57] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,

Princeton Math. Series 30, Princeton Univ. Press, Princeton, N.J., 1970.

MR 0290095. Zbl 0207.13501.

[58] H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel,
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