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Abstract

We give a soft geometric proof of the classical result due to Conn stating

that a Poisson structure is linearizable around a singular point (zero) at

which the isotropy Lie algebra is compact and semisimple.

Introduction

Recall that a Poisson bracket on a manifold M is a Lie bracket {·, ·} on the

space C∞(M) of smooth functions on M , satisfying the derivation property

{fg, h} = f{g, h}+ g{f, h}, f, g, h ∈ C∞(M).

Let us fix a zero of the Poisson bracket, i.e., a point x0 ∈M where {f, g}(x0)

= 0, for all functions f, g ∈ C∞(M). Then T ∗x0M becomes a Lie algebra with

the Lie bracket:

[dx0f, dx0g] := dx0{f, g}.
This Lie algebra is called the isotropy Lie algebra at x0 and will be denoted

by gx0 . Equivalently, the tangent space Tx0M = g∗x0 carries a canonical lin-

ear Poisson bracket called the linear approximation at x0. The linearization

problem for (M, {·, ·}) around x0 is the following:

• Is there a Poisson diffeomorphism φ : U → V from a neighborhood

U ⊂M of x0 to a neighborhood V ⊂ Tx0M of 0?

When φ exists, one says that the Poisson structure is linearizable around x0.

The deepest known linearization result is the following theorem due to Conn [4]:

Theorem 1. Let (M, {·, ·}) be a Poisson manifold with a zero x0 ∈ M .

If the isotropy Lie algebra gx0 is semisimple of compact type, then {·, ·} is

linearizable around x0.
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Note that there exists a simple well-known criterion to decide if gx0 is

semisimple of compact type: its Killing form K must be negative definite.

The proof given by Conn in [4] is analytic. He uses a combination of

Newton’s method with smoothing operators, as devised by Nash and Moser,

to construct a converging change of coordinates. This proof is full of difficult

estimates and, in spite of several attempts to find a more geometric argument,

it is the only one available up to now. See also the historical comments at the

end of this paper.

In this paper we will give a soft geometric proof of this result using Moser’s

path method. At the heart of our proof is an integration argument and an

averaging argument. The averaging enters into the proof in a similar fashion

to the proofs of other linearization theorems, such as Bochner’s Linearization

Theorem for actions of compact Lie groups around fixed points. Our proof gives

a new geometric insight to the theorem, clarifies the compactness assumption,

and should also work in various other situations. More precisely, the proof

consists of the following four steps:

Step 1: Moser ’s path method. Using a Moser’s path method, we prove a

Poisson version of Moser’s theorem (see Theorem 2), which is inspired by the

work of Ginzburg and Weinstein [14]. It reduces the proof of Conn’s theorem

to showing that the 2nd Poisson cohomology around x0 vanishes.

Step 2: Reduction to integrability around a fixed point. Using the vanishing

of cohomology for proper Lie groupoids and the general Van Est theorem

relating groupoid and algebroid cohomology [5], we show that it is enough

to prove integrability of the Poisson structure around a fixed point x0.

Step 3: Reduction to the existence of symplectic realizations. Using the

equivalence of integrability in the Poisson case and the existence of complete

symplectic realizations [7], we show that it is enough to construct a symplectic

realization of a neighborhood of x0 with the property that the fiber over x0 is

1-connected and compact.

Step 4: Existence of symplectic realizations. The same path space used in

[6] to determine the precise obstructions to integrate a Lie algebroid and to

explicitly construct an integrating Lie groupoid, yields that a neighborhood of

x0 admits the desired symplectic realization.

The fact that the tools that we use only became available recently probably

explains why it took more than 20 years to find a geometric proof of Conn’s

theorem.

The four sections that follow describe each of the steps in the proof. We

conclude the paper with two appendices: the first one contains an auxiliary

proposition on foliations (which is used in the last step), while in the second

we make some historical remarks.
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Finally, we would like to mention that our method works in other situa-

tions as well. A similar linearization result around symplectic leaves instead of

fixed points is being worked out in [18]. The analogue of Conn’s theorem for

Lie algebroids (conjectured in [25] and proved in [20]) can also be proved by

our method, the only missing step being the proof of the vanishing conjecture

of [8] (one must replace the Poisson cohomology of Step 1 by the deformation

cohomology of [8]). Details will be given elsewhere. It would also be interesting

to find a similar geometric proof of the smooth Levi decomposition theorem of

Monnier and Zung [20].

Step 1: Moser’s path method

Let us start by recalling that a Poisson bracket {·, ·} on M can also be

viewed as a bivector field π ∈ Γ(∧2TM) with zero Schouten bracket [π, π] = 0.

One determines the other through the relation

π(df ∧ dg) = {f, g}, (f, g ∈ C∞(M)).

Recall also that the Poisson cohomology of M (with trivial coefficients) is the

cohomology of the complex (Xk(M), dπ), where Xk(M) is the space of k-vector

fields, and the differential is defined by

dπθ := [π, θ].

When x0 is a zero of π, we can consider the local Poisson cohomology

groups Hk
π(M ;x0). By this we mean the Poisson cohomology group of the

germ of (M,π) at x0, i.e., the group lim−→Hk
π(U) obtained by taking the direct

limit of the ordinary Poisson cohomology groups of U , when U runs over the

filter of open neighborhoods of x0.

Theorem 2. Let (M, {·, ·}) be a Poisson manifold with a zero x0. Assume

that the Lie algebra cohomology groups H1(gx0) and H1(gx0 , gx0) vanish. If

H2
π(M ;x0) = 0, then {·, ·} is linearizable at x0.

For the proof, we will apply a Poisson version of Moser’s path method.

Since this is a local result, we can assume that M = Rn and x0 = 0. Also, to

simplify the notation we denote by g the isotropy Lie algebra at 0. We consider

the path of Poisson structures πt on Rn defined by the formula

πt(x) =
1

t
π(tx), (t ∈ [0, 1]).

Then π1 = π, while π0 = πlin is the linearization of π at the origin. Moser’s

method will give us an isotopy {φt}, 0 ≤ t ≤ 1, defined in a neighborhood of

the origin, and such that

(φt)∗πt = πlin, (t ∈ [0, 1]).
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Therefore φ1 will be the desired linearization map. To construct φt let us

consider the bivector field π̇t := dπt
dt .

Lemma 1. There exists a vector field X around the origin 0 ∈ Rn, whose

first jet at 0 vanishes, such that

(1) LXπ = −π̇1.

Proof. Differentiating the equation [πt, πt] = 0 with respect to t, we obtain

dππ̇1 = [π, π̇1] = 0,

so π̇1 is a Poisson 2-cocycle. Hence its restriction to a ball around the origin

will be exact; i.e., we find a vector field Y on the ball such that

π̇1 = dπY.

This relation has two consequences:

(a) Since π̇1 vanishes at 0, if we evaluate both sides on a pair of 1-forms and

set x = 0, we see that Y0([α, β]) = 0, for α, β ∈ g. Since H1(g) = 0 (i.e.

[g, g] = g), we conclude that Y0 = 0. Let Ylin be the linearization of Y at

the origin.

(b) Since π̇1 has zero linearization at the origin, the linearization at 0 of our

equation becomes

dπlinYlin = 0.

Note that the complex X•lin(V ) of linear multi-vector fields on V = Rn, endowed

with dπlin , identifies canonically with the Eilenberg-Chevalley complex C•(g, g)

with coefficients in the adjoint representation. Hence, Ylin becomes a 1-cocycle

in this complex; since H1(g, g) = 0, Ylin must be exact, and so Ylin = dπlinv

for some v ∈ g = C0(g, g) ∼= X0
lin(V ). The vector field X = Y − dπv has the

desired properties. �

Proof of Theorem 2. If X is a vector field as in the lemma, consider the

time-dependent vector field Xt(x) := 1
t2
X(tx). From (1) we obtain immedi-

ately that

LXtπt = −π̇t.

Let φt be the flow of Xt. Since Xt(0) = 0, we see that φt is defined in some

neighborhood V of the origin for 0 ≤ t ≤ 1. Also, we compute:

d

dt
(φt)∗πt = (φt)∗

Å
LXtπt +

dπt
dt

ã
= 0.

We conclude that φt is a diffeomorphism of V with the desired property. �
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Step 2: Reduction to integrability around a fixed point

In this section we explain the statement and we prove the following propo-

sition which, when combined with Theorem 2, reduces the proof of Conn’s

theorem to integrability around a fixed point:

Proposition 1. Let (M,π) be a Poisson manifold, x0 ∈M a fixed point.

If some neighborhood of x0 is integrable by a Hausdorff Lie groupoid with 1-con-

nected s-fibers, then
H2
π(M,x0) = 0.

More precisely,

(i) There exist arbitrarily small neighborhoods V of x0 which are integrable

by Hausdorff proper groupoids G ⇒ V with cohomologically 2-connected

fibers.

(ii) For any such V , H1
π(V ) = H2

π(V ) = 0.

The geometric object behind the Poisson brackets which provides the

bridge between Poisson geometry and Lie-group type techniques is the cotan-

gent Lie algebroid A = T ∗M and the associated groupoid G(A) (see [6], [7]).

For a Poisson manifold M we will denote by Σ(M,π) = G(T ∗M) its associated

groupoid. We recall that Σ(M) is defined as the set of cotangent paths in

M modulo cotangent homotopies, and that it is a topological groupoid with

1-simply connected s-fibers. A Poisson manifold M is said to be integrable if

the associated Lie algebroid T ∗M is integrable. This happens if and only if

Σ(M,π) is a Lie groupoid. In this case, Σ(M,π) carries a natural symplectic

structure, that makes it into a symplectic groupoid.

Proof of Proposition 1. Let us assume that U is a neighborhood of x0

which is integrable by a Hausdorff Lie groupoid G ⇒ U . The fiber of the

source map s : G → U above x0 is a Lie group integrating gx0 , so it is compact

and 1-connected. Hence, by Reeb stability, there exists a neighborhood V0

of x0 such that s−1(V0) is diffeomorphic to the product V0 × G. If we let

V = t(s−1(V0)) ⊂ U be the saturation of V0, the restriction GV of G to V

will be a groupoid whose source map has compact, 1-connected, fibers; using

right translations, each fiber will be diffeomorphic to s−1(x0) ' G. Moreover,

a compact Lie group has the same rational homology type as a product of odd

dimensional spheres, so G is automatically cohomologically 2-connected, and

so the s-fibers are also cohomologically 2-connected.

The proof of the second part is a combination of two classical results on

Lie groups which have been extended to Lie groupoids. The first result states

that the differentiable cohomology (defined using groups cocycles which are

smooth) vanishes for compact groups, which follows immediately by averaging.

This result extends immediately to groupoids, i.e. H∗diff(G) = 0 for any proper

groupoid G ([5, Prop. 1]).
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The second result is the Van Est isomorphism. As explained in [5], dif-

ferentiable group(oid) cocycles can be differentiated and they give rise to Lie

algebra(oid) cocycles. The resulting map Φ : Hk
diff(G) → Hk(A), called also

the Van Est map, is an isomorphism for degree k ≤ n provided the s-fibers

of G are cohomologically n-connected ([5, Th. 3]). Again, the proof is just an

extension of the classical proof of Van Est.

If we apply these two results to our groupoid G ⇒ V , the second part of

the proposition follows since the Poisson cohomology of V coincides with the

Lie algebroid cohomology of A = T ∗V . �

Step 3: Reduction to the existence of symplectic realizations

In the previous step, we reduced the proof of Conn’s theorem to integra-

bility around a fixed point. The integrability of a Poisson manifold (M,π) is

strongly related to the existence of symplectic realizations.

Recall that a symplectic realization of (M,π) consists of a symplectic

manifold S together with a Poisson map ν : S →M which is a surjective sub-

mersion. One calls it complete if, for any complete Hamiltonian vector field

Xf on M , the vector field Xν∗(f) is complete. It is known that the existence

of complete symplectic realizations is equivalent to integrability (Theorem 8

in [7]). However, that depends on subtleties regarding the (required) Hausdorff

conditions on S which are not relevant for us since we are interested in Haus-

dorff Lie groupoids. Instead, in this paper we do require S to be Hausdorff and

we extract from [7] the following result. In the statement we use the following

conventions: for a symplectic realization ν : S → M we denote by F(ν) the

foliation of S by the (connected components of the) fibers of ν, and F(ν)⊥

is its symplectic orthogonal. Also, we recall that a foliation is simple if it is

induced by a submersion.

Theorem 3. A Poisson manifold (M,π) is integrable by a Hausdorff Lie

groupoid with 1-connected s-fibers if and only if it admits a complete symplectic

realization ν : S →M with the property that the foliation F(ν)⊥ is simple and

has simply connected leaves.

Proof. One direction is clear: the source map of a Lie groupoid as in

the statement provides the desired symplectic integration (the symplectic or-

thogonals of the s-fibers are the t-fibers). Assume now that ν : S → M is

a symplectic integration as in the statement. Theorem 8 in [7] insures that

Σ = Σ(M,π) is smooth (but possibly non-Hausdorff). A simple remark on the

proof of the cited theorem implies that, under our hypothesis, Σ is actually

Hausdorff. Recall the main steps of the proof : the assignment Xf 7→ Xν∗(f)

induces an action of the Lie algebroid T ∗M on S which integrates to an action

of the Lie groupoid Σ on S; the associated action groupoid is homeomorphic



A GEOMETRIC APPROACH TO CONN’S LINEARIZATION THEOREM 1127

to the monodromy groupoid of F(ν)⊥, which we denote by G(F⊥). In other

words, we have

Σ×M S ∼= G(F⊥),

where the fibered product is over s and ν. Since the right-hand side is smooth,

it follows easily [7] that Σ is smooth as well and the previous homeomorphism is

a diffeomorphism. Finally, note that F⊥ is induced by a submersion π : S → B,

for some manifold B, and that its leaves are simply connected. Therefore, we

see that G(F⊥) = S ×B S is Hausdorff. We conclude that Σ is Hausdorff as

well. �

Remark 1. The proof actually shows that the conditions on F⊥ can be

replaced by the condition that F⊥ has no vanishing cycles.

The following corollary reduces the proof of Conn’s theorem to the exis-

tence of symplectic realizations around a fixed point:

Corollary 1. Let (M,π) be a Poisson manifold, x0 ∈ M a fixed point,

and assume that a neighborhood U of x0 admits a symplectic realization ν :

S → U with the property that ν−1(x0) is simply connected and compact. Then

there exists a neighborhood of x0 which is integrable by a Hausdorff Lie groupoid

with 1-connected s-fibers.

Proof. Note that ν−1(x0) is a Lagrangian submanifold of S. Therefore,

ν−1(x0) is a compact, 1-connected, leaf of F⊥(ν). By Reeb stability, nearby

leaves are compact, 1-connected and F⊥(ν) is simple. Hence we can apply

Theorem 3. �

Step 4: Existence of symplectic realizations

The proof of Conn’s theorem can now be concluded by proving:

Theorem 4. Let (M,π) be a Poisson manifold, x0 ∈M a fixed point, and

assume that the isotropy Lie algebra g at x0 is semi-simple of compact type,

with associated simply connected Lie group G. Then there exists a symplectic

realization ν : S→U of some open neighborhood U of x0 such that ν−1(x0)=G.

We first recall some of the general properties of Σ(M) (see [6]). To con-

struct it as a topological space and possibly as a smooth manifold (in the

integrable case), we consider the Banach manifold P (T ∗M) consisting of paths

a : I → T ∗M of class C2, with the topology of uniform convergence of a map

together with its derivatives. Inside this Banach manifold we have the space

of cotangent paths:

X :=
{
a ∈ P (T ∗M) : π](a(t)) =

d

dt
p(a(t))

}
,
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where p : T ∗M → M is the bundle projection. Then X is a submanifold of

P (T ∗M) which carries a canonical foliation F ; two cotangent paths a0 and a1

belong to the same leaf if they are cotangent homotopic. This foliation has

finite codimension and its leaf space is precisely Σ(M). Concatenation of paths

makes Σ(M) into a topological groupoid which is smooth precisely when M is

integrable.

The symplectic structure on Σ(M) is a consequence of the following gen-

eral property: the restriction of the canonical symplectic form of P (T ∗M) '
T ∗P (M) to X has kernel F and is invariant under the holonomy of F . We

also conclude that any transversal to F carries a symplectic structure invari-

ant under the (induced) holonomy action. Therefore, the quotient of such a

transversal by the holonomy action gives a symplectic manifold, provided the

quotient is smooth. Unfortunately, achieving smoothness is difficult (and it

would imply integrability directly). Instead, we will perform a quotient mod-

ulo only some holonomy transformations, so that the result is smooth, and we

will see that this is enough for our purposes.

Proof. First of all, we consider the source map s : X → M which sends

a cotangent path a(t) to its initial base point p(a(0)). This is a smooth sub-

mersion, and we look at the fiber Y = s−1(x0). Since x0 is a zero of π, Y is

saturated by leaves of F and we set FY = F|Y . The quotient G = Y/FY is the

1-connected Lie group integrating the isotropy Lie algebra gx0 , and so it is com-

pact. Moreover, note that we can canonically identify Y with paths in the Lie

group G which start at the origin, so that the quotient map Y → Y/FY = G

sends a path to its end point. Also, two points in Y belong to the same leaf

of FY if the corresponding paths are homotopic relative to the end points.

Since the first and second homotopy groups of G vanish, the leaves of FY are

1-connected fibers of a locally trivial fibration Y → G with compact base.

For the local triviality; using right translations by contracting homotopies,

one finds even that the restriction of our bundle to any contractible open is

trivializable. By the proposition proven in the appendix, one can find:

(i) a transversal TX ⊂ X to the foliation F such that TY := Y ∩ TX is a

complete transversal to FY (i.e., intersects each leaf of FY at least once);

(ii) a retraction r : TX → TY ;

(iii) an action of the holonomy of FY on r : TX → TY along F .

Moreover, the orbit space S := TX/HolTY (FY ) is a smooth (Hausdorff) man-

ifold. Notice that the source map induces a map ν : S → U , where U is an

open neighborhood of x0. Also, ν−1(x0) = Y/FY = G is compact. It follows

that S carries a symplectic form and that ν : S → U is a Poisson map, so it

satisfies all the properties in the statement of the theorem. �
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Appendix 1: A technical result on foliations

The aim of this section is to prove the proposition below which was used

in the proof of Theorem 4. This proposition concerns the “transversal geom-

etry” of a foliation of finite codimension so, in spite of being a result about

foliations of Banach manifolds, it is essentially of a finite dimensional nature.

We follow the approach first proposed by Haefliger [16] which consists of giving

a meaning to “transversal geometry” by using the language of étale groupoids

(the holonomy groupoid of the foliation restricted to a complete transversal).

Proposition 2. Let F be a foliation of finite codimension on a Banach

manifold X and let Y ⊂ X be a submanifold which is saturated with respect to

F (i.e., each leaf of F which hits Y is contained in Y ). Assume that :

(H0) The holonomy of F at all points in Y is trivial.

(H1) The foliation FY := F|Y is simple; i.e., its leaves are the fibers of a

submersion p : Y → B into a compact manifold B.

(H2) The fibration p : Y → B is locally trivial.

Then one can find :

(i) a transversal TX ⊂ X to the foliation F such that TY := Y ∩ TX is a

complete transversal to FY (i.e., intersects each leaf of FY at least once);

(ii) a retraction r : TX → TY ;

(iii) an action of the holonomy of FY on r : TX → TY along F .

Moreover, the orbit space TX/HolTY (FY ) is a smooth (Hausdorff ) manifold.

Remark 2. The proposition states that under some conditions one can lift

germ-wise actions to actual actions. A similar, more familiar, situation occurs

with group actions: given a discrete group Γ and a group homomorphism

from Γ to the group of germs of diffeomorphisms of some Euclidean space

Rk, preserving the origin, one can promote this germ-wise action to an actual

action of Γ on some open neighborhood of the origin. The proposition can

be seen as an instance of a more general phenomenon of this type, where one

considers actions of (proper) étale groupoids instead of (finite) discrete ones.

Even in the case of finite groups, although the proof is straightforward, the

details are somewhat tedious.

Remark 3. In this proposition, by an action of the holonomy of FY on

r : TX → TY we mean an action of the holonomy groupoid of FY restricted to

TY , denoted HolTY (FY ), on the map r : TX → TY (recall that groupoids act

on smooth maps over the space of units). Also, when we say “along the leaves

of F” we mean that the orbits of the action lie inside the leaves of F .

In the situation described by the proposition, FY is simple and the action

can be made more explicit in the following way. The action is given by a smooth
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family of diffeomorphisms hx,y : r−1(x) → r−1(y) defined for any x, y ∈ TY
with p(x) = p(y), satisfying hy,z ◦ hx,y = hx,z and hx,x = I. Also, the action

being along the leaves of F means that hx,y(u) and u are in the same leaf of

F , for any u ∈ r−1(x).

Remark 4. In a preliminary version of this paper, we stated the proposi-

tion without (H0) and requiring instead in condition (H1) the leaves of (Y,FY )

to be simply connected. This would be enough for this paper since the fibers

of our fibration p are 1-connected, a consequence of the fact that π2(G) = 0

for any Lie group G. This improved version resulted from a question of Ezra

Getzler, who asked if one could use the much simpler fact that H2(G) = 0

(for a proof of this, see e.g. [12]). Indeed, the condition H2(G) = 0 does imply

(H0) for our fibration.

We now turn to the (straightforward but tedious) detailed proof of Propo-

sition 2. We will consider cross-sections of the fibration p : Y → B whose

fibers are the leaves of FY . A cross-section σ : U → Y , defined over an open

set U ⊂ B, can be identified with its image σ(U) ⊂ Y , which is a transversal

to FY .

Given a cross-section σ : U → Y , by a transversal tubular neighborhood of

σ we mean

E

r   A
AA

AA
AA

� � σ̃ // X

U,

σ

>>~~~~~~~

where r : E → U is a vector bundle and σ̃ : E → X is an embedding defining

a tubular neighborhood of σ(U) in some transversal T to F containing σ(U).

Hence σ̃|U = σ, and σ̃(E) is an open subset of T . We will assume that the

vector bundle comes equipped with a norm || ||. The proof of existence of

transversal tubular neighborhoods can be found in [17]. Similarly, one can

talk about a transversal partial tubular neighborhood of σ (loc. cit. p. 109);

in this case σ̃ is only defined on an open neighborhood of the zero-section in

E. Any such transversal partial neighborhood contains a transversal tubular

neighborhood (loc. cit.). By abuse of notation we write σ̃ : E → T for a

transversal partial tubular neighborhood, even if it is only defined in a open

neighborhood of the zero section in E. Also, we have the following extension

property which follows from general properties of tubular neighborhoods (see,

e.g., Exercise 3, p. 118 in [17]).

Lemma 2. Let σ : U → Y be a cross-section and let V and W be opens

in U such that V ⊂ W ⊂ W ⊂ U (where the closures are in B). Also let

T be a transversal to F containing σ(U). Assume that σ̃W : EW → T is

a transversal tubular neighborhood of σ|W . Then there exists a transversal
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tubular neighborhood σ̃ : E → T of σ, defined on some vector bundle E over

U , such that EW |V = E|V (as vector bundles) and σ̃ = σ̃W on E|V .

A homotopy of two cross-sections σ0, σ1 : U → Y , defined over the same

open set U ⊂ B, is a smooth family {σt : t ∈ [0, 1]} of cross-sections over U

connecting σ0 and σ1. Since the fibration p : Y → B is locally trivial with

connected fibers, it follows that any two cross-sections over a small enough

contractible open set are homotopic.

Let σ = {σt} be a homotopy between two cross-sections σ0, σ1 : U → Y .

Two transversal partial tubular neighborhoods σ̃i : E → X of σi (i ∈ {0, 1})
are said to be σ-compatible if the map

σ̃0(e)
h7−→ σ̃1(e)

(defined for e ∈ E in the intersection of the domains of σ̃i) has the following

properties:

(a) x and h(x) are in the same leaf of F for all x;

(b) the germ of h at each point σ0(u), where u ∈ U , coincides with the holo-

nomy germ of the foliation F along the path t 7→ σt(u).

Lemma 3. Let σ0, σ1 : U → Y be two cross-sections over an open U ⊂ B
connected by a homotopy σ = {σt}. Let σ̃0 : E → X be a transversal partial

tubular neighborhood above σ0 and let T be a transversal to F containing σ1(U).

Then, for any V ⊂ B open with V ⊂ U , there exists

(i) an open subset F ⊂ E|V containing V (hence σ̃0|F is a transversal partial

tubular neighborhood of σ0|V );

(ii) a transversal partial tubular neighborhood σ̃1 : F → T of σ1|V ,

such that σ̃0|F and σ̃1 are σ|V = {σt|V }-compatible.

Proof. Fix σ0, σ1, σ̃0 : E → X and T as in the statement. As a temporary

terminology, we say that an open subset V ⊂ U is good if V ⊂ U and the

conclusion of the lemma holds for V . An open subset of a good open set is

also good.

We first show that any u ∈ U admits a good open neighborhood. Con-

sider the holonomy transformation along the path σu(t) := σ(t, u) from the

transversal σ̃0(E) to the transversal T . This is the germ of a diffeomorphism

hu, defined in some neighborhood of σ0(u), which can be taken of the form

σ̃0(F ) for some open set F ⊂ E containing u. Choosing F a small enough

open ball (relative to || ||) and setting σ̃1 := hu ◦ σ̃0|F , we conclude that V is

a good open set.

Let V be an arbitrary open set with V ⊂ U . We can find a cover of V

by good open sets, so we can extract a finite subcover {Ui : 1 ≤ i ≤ p} of V

in which each Ui is good. We prove by induction on p that V must be a good
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open set. The result clearly holds if p = 1. For the induction step, assume

the assertion is true for p − 1 and assume that V is covered by p good open

sets Ui ⊂ U . Choose another cover {Vi} of V with V i ⊂ Ui. Then, by the

induction hypothesis, U1 = V1 and U2 := V2 ∪ · · · ∪ Vp will be good open sets.

Moreover, V ⊂ U1 ∪ U2, so all that remains to show is the case p = 2.

Let U1, U2 ⊂ U be good opens sets and V ⊂ U1 ∪ U2 ⊂ U . We need to

show that V is a good open set. Let Fi ⊂ E, σ̃i : Fi → T be the associated

transversal partial tubular neighborhoods. Consider also the induced maps

hi : σ̃0(Fi)→ σ̃i(Fi). We consider two new open sets Vi such that V ⊂ V1 ∪ V2

and V i ⊂ Ui. Compactness of V i implies that we can find R > 0 such that:

x ∈ E|Vi , ||x|| < R =⇒ x ∈ Fi.
Due to the properties of hi (properties (a) and (b) above), we see that h1 and

h2 coincide in a neighborhood of σ0(u) in σ0(U). Hence, choosing eventually

a smaller R, we may assume that

x ∈ E|V1∩V2 , ||x|| < R =⇒ σ̃1(x) = σ̃2(x).

It follows that σ̃1 and σ̃2 will glue on

F = {x ∈ EV1∪V2 : ||x|| < R}
and the resulting transversal partial tubular neighborhood will have the desired

properties. Hence V is a good open set. �

For the next lemma, we introduce the following notation. An F-data is a

tuple

(2) {Ui, σi, σ̃i, σ(i,j), E : 1 ≤ i, j ≤ k}
consisting of the following:

(a) {Ui : i = 1, . . . , k} is a family of open sets in B and E is a vector bundle

over U = U1 ∪ · · · ∪ Uk.
(b) σi : Ui → Y are cross-sections and σ(i,j) are homotopies between σi|Ui∩Uj

and σj |Ui∩Uj .

(c) σ̃i : E|Ui → X are transversal tubular neighborhoods over σi such that the

restrictions of σ̃i and σ̃j to E|Ui∩Uj are σi,j-compatible for all i and j.

Assume now that:

(i) Uk+1 ⊂ B is another open set, σk+1 : Uk+1 → Y is a cross-section above

Uk+1 and T is a transversal to F containing σk+1(Uk+1).

(ii) For each 1 ≤ i ≤ k we have a homotopy σ(i,k+1) between σi|Ui∩Uk+1
and

σk+1|Ui∩Uk+1
.

Let Vi ⊂ B be open sets with

V i ⊂ Ui (1 ≤ i ≤ k + 1)

and set V = V1 ∪ · · ·Vk, V ′ = V ∪ Vk+1. Then:
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Lemma 4. Under the above assumptions, there is a vector bundle E′ over

V ′ together with an embedding φ : E′|V ↪→ E|V of bundles, as well as a map

σ̃
′
k+1 : E′|Vk+1

→ X which is a transversal tubular neighborhood of σk+1|Vk+1

inside T such that

{Vi, σi, σ̃i ◦ φ, σ(i,j)|Vi∩Vj , E
′

: 1 ≤ i, j ≤ k + 1}

is an F-data.

Proof. For 1 ≤ i ≤ k + 1, choose open sets V i ⊂ V
′
i ⊂ V

′

i ⊂ Ui. We can

apply Lemma 3 to:

• the restrictions of σi and σk+1 to Ui ∩Uk+1 and the homotopy σ(i,k+1);

• the transversal tubular neighborhood to σi|Ui∩Uk+1
which is the restric-

tion of σ̃i to E|Ui∩Uk+1
;

• the open set V
′
i ∩ V

′
k+1 whose closure is inside Ui ∩ Uk+1.

This gives a transversal tubular neighborhood of σk+1|V ′i ∩V ′k+1
, denoted

σ̃
(i)
k+1 : E

′
i,k+1 → T

defined on some E
′
i,k+1 ⊂ E|V ′i ∩V ′k+1

, an open set containing V
′
i ∩ V

′
k+1.

Now choose open sets V i ⊂ V
′′
i ⊂ V

′′

i ⊂ V
′
i . Since the closure of V

′′
i ∩V

′′
k+1

is compact, we find Ri > 0 such that

x ∈ E|
V
′′
i ∩V

′′
k+1

, ||x|| < Ri =⇒ x ∈ E′i,k+1.

Next, for each 1 ≤ i, j ≤ k, the restrictions of σ̃
(i)
k+1 and σ̃

(j)
k+1 to E

′
i,k+1∩E

′
j,k+1

are transversal partial tubular neighborhoods above the same cross-section

σk+1|V ′i ∩V ′j . Moreover, they are σ-compatible, where σ is the concatenation of

the homotopies σ(i,k+1), σ(j,i) and σ(k+1,j). Since all paths σu(−) = σ(u,−)

induced by the homotopy σ are inside leaves of FY and the holonomy of F along

loops inside Y is trivial (the first assumption in the statement), the holonomy

germs induced by the closed loops σu(k+1,j) ◦ σ
u
(j,i) ◦ σ

u
(i,k+1) are trivial. We

conclude that

{x ∈ E′i,k+1 ∩ E
′
j,k+1 : σ̃

(i)
k+1(x) = σ̃

(j)
k+1(x)}

contains an open subset in E
′
i,k+1 ∩ E

′
j,k+1 containing V

′
i ∩ V

′
j ∩ V

′
k+1. Again,

we can find constants Ri,j such that

x ∈ E′i,k+1|V ′′i ∩V ′′j ∩V ′′k+1
∩E′j,k+1|V ′′i ∩V ′′j ∩V ′′k+1

, ||x|| < Ri,j =⇒ σ̃
(i)
k+1(x) = σ̃

(j)
k+1(x).

Let us set

R = min{Ri, Ri,j : 1 ≤ i, j ≤ k}, E
′′

= {x ∈ E : ||x|| < R}.
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The maps σ̃ik+1 glue together to give a smooth map defined on E
′′ |
V ′′∩V ′′

k+1

where

V ′′ = V
′′

1 ∪ · · · ∪ V
′′
k .

Denote this map by σ̃
′′
k+1. Consider now λ : [0,∞)→ [0, 1) to be a diffeomor-

phism equal to the identity near 0 and define the embedding

φ : E → E
′′
, h(x) = R

λ(||x||)
||x||

x.

Composing the last two maps, we obtain

σ̃
′′
k+1 : E|

V
′′
k+1
∩V ′′ → T

which is a transversal tubular neighborhood of σk+1|V ′′
k+1
∩V ′′ . We can now

apply Lemma 2 to find:

(i) a vector bundle Ek+1 over Vk+1 such that Ek+1|Vk+1∩V = E|Vk+1∩V ;

(ii) a transversal tubular neighborhood σ̃
′
k+1 of σk+1|Vk+1

which is defined on

the entire Ek+1 and which coincides with σ̃
′′
k+1 on E|Vk+1∩V .

Finally, if we let E′ be the vector bundle over V ′ = V ∪Vk+1 obtained by gluing

E|V (over V ) and Ek+1 (over Vk+1), we have obtained the desired F-data. �

Proof of Proposition 2. Let U (1) = {U (1)
1 , . . . , U

(1)
n } be a finite good cover

of B in the sense of [2]. Since B is compact, good covers exist; actually, any

cover can be refined by a finite good cover (see loc. cit.). Hence, refining covers

consisting of opens over which p : Y −→ B is trivial, we may assume that there

are cross-sections σi : U
(1)
i → Y , where the image of each σi is inside some

transversal Ti of F . Since all intersections U
(1)
i ∩U

(1)
j are contractible and the

fibers of p : Y → B are connected, there are homotopies σ(i,j) between σi|Ui∩Uj

and σj |Ui∩Uj . Finally, we choose new good covers U (k) = {U (k)
1 , . . . , U

(k)
n },

k = 1, . . . , n, with the property

U
(k+1)
i ⊂ U (k)

i (i, k = 1, . . . , n).

We then apply Lemma 4 inductively: at each step one gets a vector bundle

over U
(k)
1 ∪ · · · ∪ U (k)

k and an F-data. For k = n, we obtain a vector bundle

over B, a complete transversal to FY (the images of the U
(n)
i ’s by the cross

sections) and the transversal to F (the transversal tubular neighborhoods of

the final F-data).

It remains only to show that TX/HolTY (FY ) is a Hausdorff manifold.

This can be checked directly (for instance, if the starting transversals Ti are

chosen so that their closures are disjoint, then the quotient is just the resulting

vector bundle E over B). Here we indicate a more conceptual argument which

is based on general properties of groupoids and their representations (in the

sense of spaces on which the groupoids act). For Morita equivalences, we
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refer to [19]. First of all, representations can be transported along Morita

equivalences and, provided the groupoids and the Morita equivalences used

are Hausdorff, the Hausdorff property of representations is preserved by this

transport. Secondly, since FY is induced by the submersion p : Y → B, the

groupoid HolTY (FY ) ⇒ TY is Morita equivalent to the trivial groupoid B ⇒ B,

via the bimodule TY
id←− TY

p−→ B. Finally, one just remarks that under this

equivalence, TX/HolTY (FY ) is the representation of B ⇒ B which corresponds

to the representation TX of HolTY (FY ). �

Appendix 2: Historical remarks

The study of the linearization problem for Poisson brackets was initiated

by Alan Weinstein in the foundational paper [23]. There, he states the problem

and shows that the formal linearization problem can be reduced to a cohomol-

ogy obstruction. If the isotropy Lie algebra is semisimple, this obstruction

vanishes. For analytic linearization he conjectured that, provided the isotropy

Lie algebra is semisimple, this can always be achieved, a result later proved by

Conn [3].

In [23], Alan Weinstein also considers the smooth linearization prob-

lem. He gives an example of a smooth, nonlinearizable, Poisson bracket with

isotropy Lie algebra sl(2,R). The situation is remarkably similar to the case of

Lie algebra actions, and this counter-example is analogous to the example of

a nonlinearizable smooth action of sl(2,R), given by Guillemin and Sternberg

in [15]. By contrast, he suggests that linearization when the isotropy is so(3)

could be proved as follows (see [23, p. 539]):

The first step would be to use the theorems of Reeb and Moussu

to “linearize” the foliation by symplectic areas. Next, a “volume

preserving Morse lemma” would be used to put in standard form

the function which measures the symplectic area of the leaves.

Finally, the deformation method of Moser and Weinstein would

have to be applied to each symplectic leaf, with care taken to

assure regularity at the origin.

The proof sketched was actually implemented by Dazord in [9]; it is less known

that this result and a proof of it can be traced back to the thesis of Reeb [21]

(but in the dual language of completely integrable Pfaffian forms, which, in

dimension 3, correspond to bivectors which are Poisson). Weinstein goes on to

conjecture that smooth linearization can be achieved for compact semisimple

isotropy. This, again, was proved to be so by Conn in [4].

Conn’s proof of smooth linearization is a highly nontrivial analytic argu-

ment. He views the effect of changes of coordinates upon the Poisson tensor as

a nonlinear partial differential operator. A combination of Newton’s method
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with smoothing operators, as devised by J. Nash and J. Moser, is used to con-

struct successive approximations to the desired linearizing coordinates. The

linearized equations that need to be solved at each step are nondegenerate

and overdetermined (the operator differentiates only along the symplectic fo-

liation). However, by working at the level of Lie algebra cohomology of g with

coefficients in the space of smooth functions on g∗, Conn is able to find accu-

rate solutions to the linearized equations. This involves many estimates on the

Sobolev norms, which are defined from the Killing form, and so take advantage

of its invariance, nondegeneracy and definiteness.

After Conn’s work was completed, attention turned to other Lie algebras.

In [24], Weinstein showed that semisimple Lie algebras of real rank greater

than one are nonlinearizable, in general. The case of real rank 1, with the

exception of sl(2,R), remains open. In [10], Dufour studied linearization when

the isotropy belongs to a certain class of Lie algebras, called nonresonant,

which allowed him to classify all the 3-dimensional Lie algebras that entail

linearizability. Dufour and Zung proved formal and analytic linearization for

the Lie algebra of affine transformations aff(n) [11]. There are also examples of

Poisson structures for which linearization can be decided only from knowledge

of its higher order jets (see [1]). More recently, a Levi decomposition for Poisson

brackets, generalizing linearization, has been introduced by Wade ([22], formal

category), Zung ([27], analytic category), and Zung and Monnier ([20], smooth

category). The methods are very similar to the ones of Weinstein and Conn.

A survey of these results can be found in [13].

In spite of Conn’s master work, the question remained if a simple, more

geometric proof of smooth linearization would be possible. In the introduction

of [25], Alan Weinstein writes:

Why is it so hard to prove the linearizability of Poisson struc-

tures with semisimple linear part? Conn published proofs about

15 years ago in a pair of papers full of elaborate estimates (. . . )

no simplification of Conn’s proofs has appeared.

This is a mystery to me, because analogous theorems about

linearizability of actions of semisimple groups near their fixed

points were proven (. . . ) using a simple averaging.

In this paper he goes on to propose to use Lie algebroid/groupoid theory

to tackle this and other linearization problems. After this work, it become

clear that this would indeed be the proper setup for a geometric proof of

linearization. However, his attempt would not be successful because some of

the techniques needed were not available yet. Some basic results on proper

groupoids, as well as a full understanding of the integrability problem for

Poisson manifolds and Lie algebroids was missing, and this was done later

by us in [5], [6], [7].
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In the end, the geometric proof we have given here is really a combination

of classical results on Lie groups extended to the groupoid context. Once the

groupoid is brought into the picture, one has the usual differential geometric

machinery at hand, and hence also all the standard techniques to deal with

linearization problems one finds in different contexts (Moser trick, Van Est

argument, Reeb stability, averaging). It is curious that the methods used are

so close to the proof suggested by Alan Weinstein for the case of so(3), that we

have quoted above. A general setup to discuss linearization problems and their

relation to deformation problems will be given elsewhere (work in progress).

Finally, note that it would be possible to combine our Proposition 1 with

the linearization theorem for proper groupoids around fixed points (see [26],

[28]) to obtain another proof of Conn’s theorem (this would be a geometric-

analytic proof, since the linearization of proper groupoids also involves some

estimates.)

References
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