
Annals of Mathematics 173 (2011), 1025–1042
doi: 10.4007/annals.2011.173.2.11

Livšic Theorem for matrix cocycles

By Boris Kalinin

Abstract

We prove the Livšic Theorem for arbitrary GL(m,R) cocycles. We con-

sider a hyperbolic dynamical system f : X → X and a Hölder continuous

function A : X → GL(m,R). We show that if A has trivial periodic data,

i.e. A(fn−1p) · · ·A(fp)A(p) = Id for each periodic point p = fnp, then

there exists a Hölder continuous function C : X → GL(m,R) satisfying

A(x) = C(fx)C(x)−1 for all x ∈ X. The main new ingredients in the proof

are results of independent interest on relations between the periodic data,

Lyapunov exponents, and uniform estimates on growth of products along

orbits for an arbitrary Hölder function A.

1. Introduction

For a hyperbolic dynamical system f : X → X and a group G we consider

the question of when a Hölder continuous function A : X → G is a coboundary,

i.e. there exists a (continuous or Hölder continuous) function C : X → G

satisfying

A(x) = C(fx)C(x)−1 for all x ∈ X.
This is equivalent to the fact that the G-valued cocycle A generated by A

(see (2.2) and (2.3)) over the Z action generated by f is cohomologous to the

identity cocycle. Since any coboundary A must have trivial periodic data, i.e.

(1.1)

A(p, n)
def
= A(fn−1p) · · · A(fp)A(p) = Id ∀ p ∈ X, n ∈ N with fnp = p,

the question is whether this necessary condition is also sufficient. Cocycles

appear naturally in many important problems in dynamics. A. Livšic was first

to study cohomology of dynamical systems in his seminal papers [10], [11]. In

the case of Abelian G he obtained positive answers for this and related ques-

tions. Similar questions for non-abelian groups are substantially more difficult

and, despite some progress, were not successfully resolved. Non-abelian co-

homology of hyperbolic systems has since been extensively studied; some of
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the highlights are [5], [2], [3], [12], [13], [14], [15], [16], [17], [19]. We refer the

reader to [4] and to the upcoming book [9] for some of the most recent results

and overview of historical development in this area. The natural difficulty in

non-abelian Livšic-type arguments is related to the growth of the cocycle along

orbits. In particular, the sufficiency of condition (1.1) was established when G

is compact or when A is either sufficiently close to identity or satisfies some

growth assumptions. For example, specific localization assumptions are given

in [4] for various cases of groups and metrics on them.

In this paper we prove the sufficiency of (1.1) for an arbitrary GL(m,R)

cocycle, which has been a long standing open problem. We also obtain an

important result for cocycles with uniformly bounded periodic data. Our the-

orems cover most classes of groups with interesting applications, except for

groups of diffeomorphisms. To prove these theorems we establish new rela-

tions between the periodic data, Lyapunov exponents and uniform estimates

of the growth for an arbitrary Hölder cocycle. These results are of independent

interest and have wide applicability.

To include various classes of hyperbolic systems f : X → X and streamline

the notation we formulate explicitly the property to be used.

Definition. We call orbit segments x, fx, . . . , fnx and p, fp, . . . , fnp expo-

nentially δ close with exponent λ > 0 if for every i = 0, . . . , n we have

(1.2) dist(f ix, f ip) ≤ δ · exp(−λ min{i, n− i}).

Definition. We say that a homeomorphism f of a metric space X satisfies

the closing property if there exist c , λ, δ0 > 0 such that for any x ∈ X and

n > 0 with dist(x, fnx) < δ0 there exists a point p ∈ X with fnp = p such

that the orbit segments x, fx, . . . , fnx and p, fp, . . . , fnp are exponentially

δ = cdist(x, fnx) close with exponent λ and there exists a point y ∈ X such

that for every i = 0, . . . , n

(1.3) dist(f ip, f iy) ≤ δ e−λi and dist(f iy, f ix) ≤ δ e−λ(n−i).

The Anosov Closing Lemma and the local product structure yield the

closing property for smooth hyperbolic systems such as hyperbolic automor-

phisms of tori and nilmanifolds, Anosov diffeomorphisms, and locally maximal

hyperbolic sets (basic sets of axiom-A systems) [8]. Another class satisfying

the closing property includes symbolic dynamical systems such as subshifts of

finite type.

We now state our main result, the Livšic Theorem for matrix cocycles.

Recall that a homeomorphism is called topologically transitive if it has a dense

orbit.
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Theorem 1.1. Let f be a topologically transitive homeomorphism of a

compact metric space X satisfying the closing property. Let A : X → GL(m,R)

be an α-Hölder function such that

A(fn−1p) . . . A(fp)A(p) = Id ∀ p ∈ X, n ∈ N with fnp = p.

Then there exists an α-Hölder function C : X → GL(m,R) such that

(1.4) A(x) = C(fx)C(x)−1 for all x ∈ X.

Remark. Note that a value of C at a point x uniquely determines by (1.4)

the values of C on the orbit of x. Hence, by the topological transitivity of f , C

is unique up to a translation; i.e., any other C ′ satisfying (1.4) is of the form

C ′(x) = C(x)B for some B ∈ GL(m,R). Also, [14, Th. 2.4] implies that such

C is smooth if so are A and (X, f).

Remark. As we note in the end of the proof, if A takes values in a closed

subgroup G of GL(m,R), then C can be naturally chosen to take values in G.

Thus Theorem 1.1 holds if GL(m,R) is replaced by such a group G. In fact,

the theorem holds for any connected Lie group G as follows from the remark

after the next theorem.

Next we consider a more general case when the periodic data is not trivial

but is uniformly bounded, for example is contained in a compact subgroup. In

this case we prove that the cocycle itself is also bounded.

Theorem 1.2. Let f be a transitive homeomorphism of a compact metric

space X satisfying the closing property and let A : X → GL(m,R) be an

α-Hölder function. Suppose that there exists a compact set K ⊂ GL(m,R)

such that A(p, n) ∈ K for all p ∈ X and n ∈ N with fnp = p. Then there

exists a compact set K ′ such that A(x, n) ∈ K ′ for all x ∈ X and n ∈ Z.

In particular, this theorem allows one to obtain further cohomology infor-

mation for GL(m,R) cocycles with uniformly bounded periodic data by using

results obtained in [19] for cocycles that distort a distance on the group in a

bounded fashion. For further results on cocycles with bounded or conformal

periodic data, see the subsequent paper [6].

Remark. For a cocycle with values in a connected Lie group G, Theo-

rem 1.2 can be applied to the adjoint representation. For example, if the

periodic data is trivial (1.1), then the theorem implies that all Ad(A(x, n)) are

uniformly bounded and hence the cocycle distorts a right invariant metric on

G in a bounded fashion. It follows from [19] or classical arguments [11], [9,

Th. 5.3.1] that Theorem 1.1 holds for such G.
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To prove Theorems 1.1 and 1.2 we first establish the following growth

estimates for a cocycle in terms of its periodic data. This result gives new

tools for further study of cohomology for non-abelian cocycles, in particular

for the case when the periodic data has exponents close to zero. We think

that Theorem 1.3 will also be useful for various problems in smooth dynamics

of hyperbolic systems and actions, such as existence of invariant geometric

structures and rigidity.

Theorem 1.3. Let f be a homeomorphism of a compact metric space X

satisfying the closing property and let A be a Hölder GL(m,R) cocycle over f .

Let χmin and χmax be real numbers such that for every periodic point p, every

eigenvalue ρ of A(p, n) satisfies χmin ≤ 1
n log |ρ| ≤ χmax, where n is the period

of p. Then for any ε > 0 there exists a constant cε such that for all x ∈ X and

n ∈ N
(1.5)

‖A(x, n)‖ ≤ cε exp(nχmax + εn) and ‖A(x, n)−1‖ ≤ cε exp(−nχmin + εn).

The proof of this theorem relies on our next result which resembles Theo-

rem 3.1 in [21] on approximation of Lyapunov exponents of a hyperbolic invari-

ant measure for a diffeomorphism that follows earlier results in [7]. Note that

in our case there is no assumption on hyperbolicity of the cocycle and, in fact,

our main application is to cocycles with all Lyapunov exponents equal to zero.

Theorem 1.4. Let f be a homeomorphism of a compact metric space X

satisfying the closing property, let A be a Hölder GL(m,R) cocycle over f , and

let µ be an ergodic invariant measure for f . Then the Lyapunov exponents χ1 ≤
· · · ≤ χm (listed with multiplicities) of A with respect to µ can be approximated

by the Lyapunov exponents of A at periodic points. More precisely, for any

ε > 0 there exists a periodic point p ∈ X for which the Lyapunov exponents

χ
(p)
1 ≤ · · · ≤ χ(p)

m of A satisfy |χi − χ(p)
i | < ε for i = 1, . . . ,m.

Remark. Theorems 1.3 and 1.4 use only a weaker version of the closing

property without the existence of a point y. Also, δ = cdist(x, fnx) in the

closing property could be replaced by δ = cdist(x, fnx)β with β > 0. The

proofs of Theorems 1.2, 1.3, and 1.4 work in the same way with proper modi-

fications of exponents. Similarly, Theorem 1.1 holds in this case with C being

(αβ)-Hölder.

Remark. More generally, Theorems 1.1, 1.2, 1.3, and 1.4 hold for an ex-

tension A of f by linear transformations of a vector bundle B over X. The

arguments are essentially identical since we compare the values of A and re-

lated structures only at nearby points. This can be done if one can identify
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fibers at nearby points Hölder-continuously via local trivialization or connec-

tion. In particular, the theorems apply to the derivative cocycle of a smooth

hyperbolic system, as well as to its restriction to a Hölder continuous invariant

distribution, without any global trivialization assumptions.

Acknowledgements. We would like to thank Victoria Sadovskaya, Ralf

Spatzier, and Anatole Katok for helpful comments and suggestions.

2. Cocycles over Z actions

In this section we review some basic definitions and facts of the Oseledec

theory of cocycles over Z actions. We use [1] as a general reference.

2.1. Cocycles. Let f be an invertible transformation of a space X. A func-

tion A : X×Z→ GL(m,R) is called a linear cocycle or a matrix–valued cocycle

over f if for all x ∈ X and n, k ∈ Z we have A(x, 0) = Id and

(2.1) A(x, n+ k) = A(fkx, n) · A(x, k).

We consider only matrix-valued cocycles and simply call them cocycles. Any

cocycle A(x, n) is uniquely determined by its generator A : X → GL(m,R),

which we sometimes also call a cocycle. The generator is defined by A(x) =

A(x, 1), and the cocycle can be reconstructed from its generator as follows: for

any n > 0

(2.2) A(x, n) = A(fn−1x) · · ·A(fx) ·A(x),

(2.3) A(x,−n) = A(f−nx)−1 · · ·A(f−2x)−1 ·A(f−1x)−1 = A(f−nx, n)−1.

A cocycle A over a homeomorphism f of a metric space X is called

α-Hölder if its generator A : X → GL(m,R) is Hölder continuous with ex-

ponent α. To consider this notion we need to introduce a metric on GL(m,R),

for example as follows:

(2.4) distGL(m,R)(A,B) = ‖A−B‖+ ‖A−1 −B−1‖, where

‖A‖ = sup{‖Au‖ · ‖u‖−1 : 0 6= u ∈ Rm}.

We note that on any compact set in GL(m,R) the norms ‖A−1‖ and ‖B−1‖ are

uniformly bounded and hence this distance is Lipschitz equivalent to ‖A−B‖.
Therefore, for a compact X, a cocycle A is α-Hölder if and only if

‖A(x)−A(y)‖ ≤ cdist(x, y)α

for all x, y ∈ X. For a noncompact X certain caution is needed as in the proof

of Theorems 1.1 and 1.2.
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2.2. Lyapunov exponents and Lyapunov metric. Cocycles can be consid-

ered in various categories. Even though in this paper we mostly study Hölder

cocycles, a general theory is developed for measurable cocycles over measure-

preserving transformations.

Theorem 2.1 (Oseledec Multiplicative Ergodic Theorem; [1, Th. 3.4.3]).

Let f be an invertible ergodic measure-preserving transformation of a Lebesgue

probability measure space (X,µ). Let A be a measurable cocycle whose gener-

ator satisfies log ‖A(x)‖ ∈ L1(X,µ) and log ‖A(x)−1‖ ∈ L1(X,µ). Then there

exist numbers χ1 < · · · < χl, an f -invariant set Rµ with µ(Rµ) = 1, and an

A-invariant Lyapunov decomposition of Rm for x ∈ Rµ,

Rmx = Eχ1(x)⊕ · · · ⊕ Eχl(x)

with dimEχi(x) = mi, such that for any i = 1, . . . , l and any 0 6= v ∈ Eχi(x)

one has

lim
n→±∞

n−1 log ‖A(x, n)v‖ = χi and lim
n→±∞

n−1 log detA(x, n) =
l∑

i=1

miχi.

Definitions. The numbers χ1, . . . , χl are called the Lyapunov exponents of

A and the dimension mi of the space Eχi(x) is called the multiplicity of the

exponent χi. The points of the set Rµ are called regular.

We denote the standard scalar product in Rm by 〈·, ·〉. For a fixed ε > 0

and a regular point x we introduce the ε-Lyapunov scalar product (or metric)

〈·, ·〉x,ε in Rm as follows. For u ∈ Eχi(x), v ∈ Eχj (x), i 6= j we set 〈u, v〉x,ε,= 0.

For i = 1, . . . , l and u, v ∈ Eχi(x) we define

〈u, v〉x,ε = m
∑
n∈Z
〈A(x, n)u,A(x, n)v〉 exp(−2χin− ε|n|).

Note that the series converges exponentially for any regular x. The constant

m in front of the conventional formula is introduced for more convenient com-

parison with the standard scalar product. Usually, ε will be fixed and we will

denote 〈·, ·〉x,ε simply by 〈·, ·〉x and call it the Lyapunov scalar product. The

norm generated by this scalar product is called the Lyapunov norm and is

denoted by ‖ · ‖x,ε or ‖ · ‖x.

We summarize below some important properties of the Lyapunov scalar

product and norm; for more details see [1, §§3.5.1–3.5.3]. A direct calculation

shows [1, Th. 3.5.5] that for any regular x and any u ∈ Eχi(x)

(2.5)

exp(nχi − ε|n|)‖u‖x,ε ≤ ‖A(x, n)u‖fnx,ε ≤ exp(nχi + ε|n|)‖u‖x,ε ∀n ∈ Z,

(2.6) exp(nχ− εn) ≤ ‖A(x, n)‖fnx←x ≤ exp(nχ+ εn) ∀n ∈ N,
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where χ = χl is the maximal Lyapunov exponent and ‖·‖fnx←x is the operator

norm with respect to the Lyapunov norms. It is defined for any matrix A and

any regular points x, y as follows:

‖A‖y←x = sup{‖Au‖y,ε · ‖u‖−1
x,ε : 0 6= u ∈ Rm}.

We emphasize that, for any given ε > 0, Lyapunov scalar product and

Lyapunov norm are defined only for regular points with respect to the given

measure. They depend only measurably on the point even if the cocycle is

Hölder. Therefore, comparison with the standard norm becomes important.

The uniform lower bound follows easily from the definition: ‖u‖x,ε ≥ ‖u‖. The

upper bound is not uniform, but it changes slowly along the regular orbits [1,

Prop. 3.5.8]: there exists a measurable function Kε(x) defined on the set of

regular points Rµ such that

‖u‖ ≤ ‖u‖x,ε ≤ Kε(x)‖u‖ ∀x ∈ Rµ, ∀u ∈ Rm(2.7)

and

Kε(x)e−ε|n| ≤ Kε(f
nx) ≤ Kε(x)eε|n| ∀x ∈ Rµ, ∀n ∈ Z.(2.8)

These estimates are obtained in [1] using the fact that ‖u‖x,ε is tempered,

but they can also be checked directly using the definition of ‖u‖x,ε on each

Lyapunov space and noting that angles between the spaces change slowly.

For any matrix A and any regular points x, y, inequalities (2.7) and (2.8)

yield

(2.9) Kε(x)−1‖A‖ ≤ ‖A‖y←x ≤ Kε(y)‖A‖.

When ε is fixed we will usually omit it and write K(x) = Kε(x). For any

l > 1 we also define the following sets of regular points

(2.10) Rµε,l = {x ∈ Rµ : Kε(x) ≤ l}.

Note that µ(Rµε,l) → 1 as l → ∞. Without loss of generality, we can assume

that the set Rµε,l is compact and that Lyapunov splitting and Lyapunov scalar

product are continuous on Rµε,l. Indeed, by Luzin’s theorem we can always

find a subset of Rµε,l satisfying these properties with arbitrarily small loss of

measure. (In fact, for standard Pesin sets these properties are automatically

satisfied.)

3. Proof of Theorem 1.4

We begin with Lemma 3.1 below which gives a general estimate of the

norm of A along any orbit segment close to a regular one. In fact, its proof

does not use the measure µ and relies only on the estimates for A and the

Lyapunov norm along the orbit segment x, fx, . . . , fnx that follow from the

fact that x, fnx ∈ Rµε,l.
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Lemma 3.1. Let A be an α-Hölder cocycle over a homeomorphism f of a

compact metric space X and let µ be an ergodic measure for f with the largest

Lyapunov exponent χ. Then for any positive λ and ε satisfying λ > ε/α there

exists c > 0 such that for any n ∈ N, any regular point x with both x and fnx

in Rµε,l, and any point y ∈ X such that the orbit segments x, fx, . . . , fnx and

y, fy, . . . , fny are exponentially δ close with exponent λ we have

‖A(y, n)‖fnx←x ≤ ec lδ
α
en(χ+ε) ≤ e2nε+c lδα ‖A(x, n)‖fnx←x(3.1)

and

‖A(y, n)‖ ≤ l ec lδαen(χ+ε) ≤ l2e2nε+c lδα ‖A(x, n)‖.(3.2)

The constant c depends only on the cocycle A and on the number (αλ− ε).

Proof. We denote xi = f ix and yi = f iy, i = 0, . . . , n, and estimate the

Lyapunov norm

‖A(y, n)‖xn←x0 = ‖A(yn−1) · · · A(y1)A(y0)‖xn←x0
= ‖A(xn−1) [A(xn−1)−1A(yn−1)] · · · A(x0) [A(x0)−1A(y0)]‖xn←x0
≤ ‖A(xn−1)‖xn←xn−1‖A(xn−1)−1A(yn−1)‖xn−1←xn−1 · · ·

· · · ‖A(x0)‖x1←x0‖A(x0)−1A(y0)‖x0←x0 .

Since ‖A(xi)‖xi+1←xi ≤ eχ+ε by (2.6), where χ is the maximal exponent

of A at x, we conclude that

(3.3) ‖A(y, n)‖xn←x0 ≤ en(χ+ε)
n−1∏
i=0

‖A(xi)
−1A(yi)‖xi←xi .

To estimate the product term we consider Di = A(xi)
−1A(yi) − Id. Since

A(x) is α-Hölder on the compact space X, and hence ‖A(x)−1‖ is uniformly

bounded, we obtain, using the closeness of the orbit segments, that

(3.4)

‖Di‖ ≤ ‖A(xi)
−1‖ · ‖A(yi)−A(xi)‖ ≤ c′dist(xi, yi)

α ≤ c′
Ä
δe−λmin{i,n−i}

äα
,

where the constant c′ depends only on the cocycle A. Since both x and fnx

are in Rµε,l we have K(xi) ≤ leεmin{i,n−i} by (2.8) and (2.10). Hence for the

Lyapunov norms we can conclude that

‖Di‖xi←xi ≤ K(xi)‖Di‖ ≤ leεmin{i,n−i} ‖Di‖(3.5)

≤ leεmin{i,n−i} c′δαe−λαmin{i,n−i}

and

‖A(xi)
−1A(yi)‖xi←xi ≤ 1 + ‖Di‖xi←xi ≤ 1 + c′l δα e(ε−αλ) min{i,n−i}.(3.6)
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Now using (3.3) and (3.6) we obtain

log(‖A(y, n)‖xn←x0)− n(χ+ ε) ≤
n−1∑
i=0

log ‖A(xi)
−1A(yi)]‖xi←xi

≤ c′lδα
n−1∑
i=0

exp [(ε− αλ) min{i, n− i}] ≤ c lδα

since the sum is uniformly bounded due to the assumption ε < αλ. The

constant c depends only on the cocycle A and on (αλ− ε). We conclude using

(2.6) that

(3.7) ‖A(y, n)‖xn←x0 ≤ ec lδ
α
en(χ+ε) ≤ e2nε+c lδα ‖A(x, n)‖xn←x0 .

Since K(x0) ≤ l and K(xn) ≤ l we can also estimate the standard norm

‖A(y, n)‖ ≤ K(x0)‖A(y, n)‖xn←x0(3.8)

≤ lec lδαen(χ+ε) ≤ le2nε+c lδα ‖A(x, n)‖xn←x0
≤ le2nε+c lδα K(xn) ‖A(x, n)‖ ≤ l2e2nε+c lδα ‖A(x, n)‖.

Estimates (3.7) and (3.8) complete the proof of Lemma 3.1. �

The main part of the proof of Theorem 1.4 is the following proposition

which gives approximation for the largest Lyapunov exponent of A. We use it

to complete the proof of Theorem 1.4 at the end of Section 3.

Let f be a homeomorphism of a compact metric space X satisfying the

closing property with exponent λ, let A be an α-Hölder GL(m,R) cocycle

over f , and let µ be an ergodic invariant measure for f . We denote by χ

the largest Lyapunov exponent of A with respect to µ. Similarly, for any

periodic point p we denote by χ(p) the largest Lyapunov exponent of A at p.

We set ε0 = min{λα, (χ− ν)/2)}, where ν < χ is the second largest Lyapunov

exponent with respect to µ. In the case when χ is the only Lyapunov exponent

of A with respect to µ, we take ε0 = λα.

Proposition 3.2. Let f , A, µ, and ε0 be as above. Then for any positive

l and ε < ε0 there exist N, δ > 0 such that if a periodic orbit p, fp, . . . , fnp = p

is exponentially δ close to an orbit segment x, fx, . . . , fnx, with x, fnx in Rµε,l
and n > N , then |χ− χ(p)| ≤ 3ε.

Proof. To estimate χ(p) from above we apply Lemma 3.1 with p = y. Note

that the largest exponent at p satisfies

χ(p) ≤ n−1 log ‖A(p, n)‖.

From the first inequality in (3.2) we obtain that

n−1 log ‖A(p, n)‖ ≤ χ+ ε+ n−1 log(l ec lδ
α
).
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We conclude that χ(p) ≤ χ+ 2ε provided that δ is small enough and n is large

enough compared to l.

To estimate χ(p) from below we will estimate the growth of vectors in

a certain cone K ⊂ Rm invariant under A(p, n). As in Lemma 3.1 we first

consider an arbitrary orbit segment close to a regular one. Let x be a point

in Rµε,l and y ∈ X be a point such that the orbit segments x, fx, . . . , fnx and

y, fy, . . . , fny are exponentially δ close with exponent λ. We denote xi = f ix

and yi = f iy, i = 0, . . . , n. For each i we have orthogonal splitting Rm =

Ei ⊕ Fi, where Ei is the Lyapunov space at xi corresponding to the largest

Lyapunov exponent χ and Fi is the direct sum of all other Lyapunov spaces

at xi corresponding to the Lyapunov exponents less than χ. For any vector

u ∈ Rm we denote by u = u′+u⊥ the corresponding splitting with u′ ∈ Ei and

u⊥ ∈ Fi; the choice of i will be clear from the context. To simplify notation,

we write ‖.‖i for the Lyapunov norm at xi. For each i = 0, . . . , n we consider

cones

Ki = {u ∈ Rm : ‖u⊥‖i ≤ ‖u′‖i} and Kη
i = {u ∈ Rm : ‖u⊥‖i ≤ (1− η)‖u′‖i}

with η > 0. We will consider the case when χ is not the only Lyapunov

exponent of A with respect to µ. Otherwise Fi = {0}, Kη
i = Ki = Rm, and

the argument becomes simpler. Recall that ε < ε0 = min{λα, (χ − ν)/2)},
where ν < χ is the second largest Lyapunov exponent of A with respect to µ.

Lemma 3.3. In the notation above, for any regular set Rµε,l there exist

η, δ > 0 such that if x, fnx ∈ Rµε,l and the orbit segments x, fx, . . . , fnx and

y, fy, . . . , fny are exponentially δ close with exponent λ, then for every i =

0, . . . , n − 1 we have A(yi)(Ki) ⊂ Kη
i+1 and ‖ (A(yi)u)′ ‖i+1 ≥ eχ−2ε‖u′‖i for

any u ∈ Ki.

Proof. We fix 0 ≤ i < n and write

A(yi) = A(yi)A(xi)
−1A(xi) = (Id +Di)A(xi),

where similarly to (3.4) we have

(3.9)

‖Di‖ = ‖A(yi)A(xi)
−1 − Id‖ ≤ ‖A(yi)−A(xi)‖ ‖A(xi)

−1‖ ≤ c1dist(xi, yi)
α.

For any u = u′+u⊥ ∈ Ki we consider v = A(xi)u and its splitting v = v′+ v⊥

with v′ ∈ Ei+1 and v⊥ ∈ Fi+1. Then by (2.5) we have ‖v‖i+1 ≤ eχ+ε‖u‖i as

well as

‖v′‖i+1 = ‖A(xi)u
′‖i+1 ≥ eχ−ε‖u′‖i

and

‖v⊥‖i+1 = ‖A(xi)u
⊥‖i+1 ≤ eν+ε‖u⊥‖i.
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Now we consider w = A(yi)u = (Id + Di)v = v + Div and its splitting w =

w′ + w⊥ with w′ ∈ Ei+1 and w⊥ ∈ Fi+1. Then we have

(3.10) w′ = v′ + (Div)′ and w⊥ = v⊥ + (Div)⊥.

Now using (3.9) we obtain

‖Div‖i+1 ≤ ‖Di‖xi+1←xi+1‖v‖i+1 ≤ K(xi+1)‖Di‖ eχ+ε‖u‖i
≤ leεmin{i+1,n−i−1} c1dist(xi, yi)

α eχ+ε
√

2 ‖u′‖i ,

as both x0 and xn are in Rµε,l. Since dist(xi, yi) ≤ δe−λmin{i,n−i} we conclude

that

(3.11) ‖Div‖i+1 ≤
√

2 lc1e
εδαe(−λα+ε) min{i,n−i}‖u′‖i ≤ c2l δ

α‖u′‖i ,

since −λα + ε < 0. Now using (3.10) and (3.11) we obtain that for small

enough δ,

‖w′‖i+1 ≥ eχ−ε‖u′‖i − c2l δ
α‖u′‖i ≥ eχ−2ε‖u′‖i ,

which gives the inequality in the lemma. Similarly we obtain an upper estimate

(3.12) ‖w′‖i+1 ≤ eχ+ε‖u′‖i + c2l δ
α‖u′‖i ≤ c3‖u′‖i.

Finally, from (3.10) we have

‖w′‖i+1 ≥ ‖v′‖i+1 − ‖Div‖i+1 and ‖w⊥‖i+1 ≤ ‖v⊥‖i+1 + ‖Div‖i+1 ,

so that using (3.11) again we can estimate

‖w′‖i+1 − ‖w⊥‖i+1 ≥ ‖v′‖i+1 − ‖v⊥‖i+1 − 2‖Div‖i+1

≥ eχ−ε‖u′‖i − eν+ε‖u⊥‖i − 2c2l δ
α‖u′‖i

≥ (eχ−ε − eν+ε − 2c2l δ
α)‖u′‖i ≥ η′ ‖u′‖i

for any fixed η′ < (eχ−ε − eν+ε) provided that δ is small enough. Now using

(3.12) we conclude that ‖w′‖i+1 − ‖w⊥‖i+1 ≥ η ‖w′‖i+1 with η = η′/c3. This

shows that w ∈ Kη
i+1 and hence A(yi)(Ki) ⊂ Kη

i+1. This completes the proof

of Lemma 3.3. �

We now apply this lemma to the periodic orbit p, fp, . . . , fnp = p and

conclude that A(p, n)(K0) ⊂ Kη
n. Since the Lyapunov splitting and Lyapunov

metric are continuous on the compact set Rµε,l, the cones Kη
0 and Kη

n are close

if x and fnx are close enough. Therefore we can ensure that Kη
n ⊂ K0 if δ

small enough and thus A(p, n)(K) ⊂ K for K = K0. Finally, using the norm

estimate in the lemma we obtain for any u ∈ K,

‖A(p, n)u‖n ≥ ‖(A(p, n)u)′‖n ≥ en(χ−2ε)‖u′‖0

≥ 1√
2
en(χ−2ε)‖u‖0 ≥

1

2
en(χ−2ε)‖u‖n



1036 BORIS KALININ

since Lyapunov norms at x and fnx are close if δ is small enough. Since

A(p, n)u ∈ K for any u ∈ K, we can iteratively apply A(p, n) and use the

inequality above to estimate the largest Lyapunov exponent at p

χ(p) ≥ χ(u) = lim
k→∞

1

kn
log ‖A(p, kn)u‖n ≥

1

n
lim
k→∞

1

k
log

ÇÅ
1

2
en(χ−2ε)

ãk
‖u‖n

å
≥ 1

n
[n(χ− 2ε)− log 2] +

1

n
lim
k→∞

‖u‖n
k
≥ (χ− 2ε)− log 2

n
≥ χ− 3ε

provided that n is large enough. This gives the desired lower estimate and

completes the proof of Proposition 3.2. �

We will now complete the proof of Theorem 1.4. We apply Proposi-

tion 3.2 to cocycles ∧iA induced by A on the i-fold exterior powers ∧iRm,

for i = 1, . . . ,m. This trick is related to Ragunatan’s proof of the Multiplica-

tive Ergodic Theorem [1, §3.4.4] and was also used in [21]. We note that the

largest Lyapunov exponent of ∧iA is equal to (χm + · · · + χm−i+1), where

χ1 ≤ · · · ≤ χm are the Lyapunov exponents of A listed with multiplicities.

For any positive ε < ε0 we choose l so that µ(R) > 0, where R is the

intersection of the sets Rµε,l for all cocycles ∧iA, i = 1, . . . ,m. We may assume

that µ is not atomic since the theorem is trivial otherwise. We take x ∈ R

to be a nonperiodic point with µ(Br(x) ∩ R) > 0 for any r > 0, where Br(x)

is the ball of radius r centered at x. Then by Poincaré recurrence there exist

iterates fnx, with n growing to infinity, returning to R arbitrarily close to x.

Therefore, by the closing property, for any δ > 0 there exists a periodic point

p with fnp = p such that orbit segments x, fx, . . . , fnx and p, fp, . . . , fnp are

exponentially δ close with exponent λ. Then Proposition 3.2 implies that for

small enough δ such a periodic point p gives the approximation∣∣∣(χm + · · ·+ χm−i+1)−
Ä
χ(p)
m + · · ·+ χ

(p)
m−i+1

ä∣∣∣ ≤ 3ε

for all i = 1, . . . ,m. This yields the simultaneous approximation for all χi,

i = 1, . . . ,m, and completes the proof of Theorem 1.4. �

4. Proof of Theorem 1.3

The assumption on the eigenvalues of A(p, n) implies that all Lyapunov

exponents of A at all periodic orbits are in the interval [χmin, χmax]. It follows

from Theorem 1.4 that the Lyapunov exponents of A are in [χmin, χmax] for

any ergodic f -invariant measure. Such control on exponents gives the desired

uniform estimates on the growth of the norm of the cocycle. This uses a result

on subadditive sequences obtained in [20]. We formulate here a weaker version

sufficient for our purposes, which appeared with a short proof in [18].
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[18, Prop. 3.4] Let f : X → X be a continuous map of a compact metric

space. Let an : X → R, n ≥ 0, be a sequence of continuous functions such that

(4.1) an+k(x) ≤ an(fk(x)) + ak(x) for every x ∈ X, n, k ≥ 0

and such that there is a sequence of continuous functions bn : X → R, n ≥ 0,

satisfying

(4.2) an(x) ≤ an(fk(x)) + ak(x) + bk(f
n(x)) for every x ∈ X, n, k ≥ 0.

If infn
Ä

1
n

∫
X andµ

ä
< 0 for every ergodic f -invariant measure, then there is

N ≥ 0 such that aN (x) < 0 for every x ∈ X .

We take ε > 0 and apply this result to an(x) = log ‖A(x, n)‖−(χmax+ε)n.

It is easy to see that an satisfy (4.1). Then the Subadditive Ergodic Theorem

(or [1, Th. 3.5.5], or equations (2.6), (2.8), and (2.9)) implies that for every

f -invariant ergodic measure µ, its maximal exponent χ, and µ-a.e. x ∈ X

inf
n

1

n

∫
X
andµ = lim

n→∞
1

n
an(x) = χ− (χmax + ε) < 0,

and thus the assumptions on an are satisfied. Taking into account (4.1) we

see that (4.2) holds once an(x) ≤ an+k(x) + bk(f
nx) is satisfied. This is easily

verified for bk(x) = log ‖A(x, k)−1‖ since by the cocycle identity (2.1) we have

‖A(x, n)‖ ≤ ‖A(fnx, k)−1‖ · ‖A(x, n+ k)‖.

We conclude from the proposition above that for any ε > 0 there exists Nε

such that aNε(x) < 0, i.e. ‖A(x,Nε)‖ ≤ e(χmax+ε)Nε for all x ∈ X. Hence

(1.5) is satisfied for all x in X and n in N, where cε = max ‖A(x, k)‖ with the

maximum taken over all x ∈ X and 1 ≤ k < Nε. The other estimate in (1.5) is

obtained similarly, for example by applying the same argument to the cocycle

generated by A−1 over f−1. This completes the proof of Theorem 1.3. �

5. Proofs of Theorem 1.1 and Theorem 1.2

We follow the usual approach of extension along a dense orbit. Our proof

is similar to the one in [4] with some modifications for the case of bounded

periodic data. The main difference is that Theorem 1.3 enables us to apply

the following proposition. This allows us to complete the proof without extra

assumptions on the cocycle A.

Proposition 5.1. Let f be a homeomorphism of a compact metric space

X and let A be an α-Hölder GL(m,R) cocycle over f such that for some ε > 0

and cε,

(5.1) ‖A(x, n)‖ ≤ cεeεn and ‖A(x, n)−1‖ ≤ cεeεn ∀ x ∈ X ,n ∈ N.
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Then for any λ > 2ε/α there exists a constant c, which depends only on A, cε,

and (αλ− 2ε), such that for any δ and any orbit segments x, fx, . . . , fnx and

y, fy, . . . , fny,

if dist(f ix, f iy) ≤δe−λi, i = 0, . . . , n, then ‖A(x, n)−1A(y, n)− Id‖ ≤ c δα
(5.2)

and

if dist(f ix, f iy) ≤δe−λ(n−i), i = 0, . . . , n, then ‖A(x, n)A(y, n)−1−Id‖≤c δα.

Proof. We will consider the case when dist(f ix, f iy) ≤ δe−λi for i =

0, . . . , n. The other case can be proved similarly. Denoting

Di = A(f ix)−1A(f iy)− Id, i = 0, . . . , n− 1,

we can write

A(x, n)−1A(y, n) = A(x, n− 1)−1A(fn−1x)−1A(fn−1y)A(y, n− 1)

= A(x, n− 1)−1(Id +Dn−1)A(y, n− 1)

= A(x, n− 1)−1A(y, n− 1)+A(x, n− 1)−1Dn−1A(y, n− 1)

= · · · = Id +
n−1∑
i=0

A(x, i)−1DiA(y, i).

Therefore, using assumption (5.1) we obtain

‖A(x, n)−1A(y, n)− Id‖ ≤
n−1∑
i=0

‖A(x, i)−1‖ · ‖Di‖ · ‖A(y, i)‖ ≤
n−1∑
i=0

(cεe
εi)2 ‖Di‖.

Similarly to (3.4), we can estimate

‖Di‖ = ‖A(f ix)−1A(f iy)− Id‖ ≤ c1dist(f ix, f iy)α ≤ c1δ
αe−αλi.

Using the two estimates above and the assumption λ > 2ε/α we conclude that

‖A(x, n)−1A(y, n)− Id‖ ≤
n−1∑
i=0

c1 c
2
ε δ

α e(2ε−αλ)i ≤ c δα,

where the constant c depends only on A, cε, and (αλ− 2ε) > 0. �

We will now prove Theorems 1.2 and 1.1. Note that the condition on the

periodic data of A in either theorem implies that the assumptions of Theo-

rem 1.3 are satisfied with χmin = χmax = 0 and hence (1.5) gives (5.1) with

any ε > 0. Therefore, we can take ε < αλ/2, where λ is the exponent in the

closing property for f .

In the proof we will abbreviate dG = distGL(m,R). Since f is transitive,

there exists a point z ∈ X with dense orbit O = {fkz}k∈Z. We will show

that dG(A(z, k), Id) is uniformly bounded in k ∈ Z. Since O is dense and A
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is continuous this implies that dG(A(x, n), Id) is uniformly bounded in x ∈ X
and n ∈ Z. This yields Theorem 1.2.

Consider any two points of O for which dist(fk1z, fk2z) < δ0, where δ0

is as in the closing property. Assume k1 < k2 and denote x = fk1z and

n = k2 − k1, so that δ = dist(x, fnx) < δ0. By the closing property there exist

points p, y ∈ X with fnp = p such that for i = 0, . . . , n

dist(f iy, f ip) ≤ c δ e−λi and dist(f iy, f ix) ≤ c δ e−λ(n−i).

Now using Proposition 5.1 we obtain

(5.3) ‖A(p, n)−1A(y, n)− Id‖ ≤ c1δ
α and ‖A(x, n)A(y, n)−1− Id‖ ≤ c1δ

α.

We want to show that these inequalities imply that there exists c2 such that

(5.4) dG(A(p, n),A(y, n)) ≤ c2δ
α and dG(A(y, n),A(x, n)) ≤ c2δ

α

uniformly in x, p, y, n. We use the following simple estimate.

Lemma 5.2. If dG(A, Id) ≤M and either ‖A−1B−Id‖ ≤ ξ or ‖AB−1−Id‖
≤ ξ, with ξ < 1/2, then dG(A,B) ≤ 3(M + 1)ξ.

Proof. We prove the first case; the second case follows similarly. From the

assumption we have ‖A‖ ≤M + 1 and ‖A−1‖ ≤M + 1. Then

‖A−B‖ ≤ ‖A‖ · ‖Id−A−1B‖ ≤ (M + 1)ξ.

Denoting Y = Id−A−1B we obtain B−1A = (Id− Y )−1 = Id + Y + Y 2 + · · · .
Then

‖B−1A− Id‖ ≤
∞∑
k=1

‖Y k‖ ≤
∞∑
k=1

ξk =
ξ

1− ξ
≤ 2ξ

and

‖A−1 −B−1‖ ≤ ‖A−1‖ · ‖Id−B−1A‖ ≤ (M + 1)2ξ

so that dG(A,B) = ‖A−B‖+ ‖A−1 −B−1‖ ≤ 3(M + 1)ξ. �

Since the periodic data is in a compact subset of GL(m,R) there exists c0

so that

(5.5) dG(A(p, n), Id) ≤ c0

for all p and n. Now Lemma 5.2 and the first equation in (5.3) give the

first equation in (5.4) which implies, in particular, that dG(A(y, n), Id) is also

uniformly bounded. Then the lemma and the second equation in (5.3) give the

second equation in (5.4). This establishes (5.4), which implies that

dG(A(p, n),A(x, n)) ≤ 2c2δ
α(5.6)

and hence
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dG(A(x, n), Id) ≤ c0 + 2c2δ
α ≤ c3(5.7)

for all x ∈ O and n ∈ Z with δ = dist(x, fnx) < δ0. The case of negative n

follows from the corresponding estimate for positive n.

By density of O we can take its finite piece OL = {fkz}k∈[−L,L] which

forms a δ0 net in X and choose c4 = maxk∈[−L,L] dG(A(z, k), Id). Then for

any N ∈ Z there exists k ∈ [−L,L] such that dist(fkz, fNz) < δ0. Denoting

x = fkz and n = N − k we have dist(x, fnx) < δ0, so that (5.7) applies. The

cocycle property (2.1) gives

A(z,N) = A(x, n)A(z, k).

Since the distance from Id to the terms on the right is bounded by c3 and c4,

we conclude that dG(A(z,N), Id) is also uniformly bounded. This completes

the proof of Theorem 1.2.

To prove Theorem 1.1 we define a function C : O → GL(m,R) by

C(fnz) = A(z, n). Note that C satisfies (1.4) for x ∈ O and that dG(C, Id)

is uniformly bounded by the previous argument. It remains to show that C

is α-Hölder on O with uniform constant and hence extends uniquely to an

α-Hölder function on X, which also satisfies (1.4). Indeed, consider any x ∈ O
and n ∈ Z with dist(x, fnx) = δ < δ0. Since A(p, n) = Id by the assumption,

using (5.6) we obtain

‖C(fnx)C(x)−1 − Id‖ < dG(C(fnx)C(x)−1, Id) = dG(A(x, n), Id) ≤ 2c2δ
α.

Now, since dG(C, Id) is uniformly bounded, Lemma 5.2 gives the desired Hölder

continuity of C : O → GL(m,R). This completes the proof of Theorem 1.1.

Note that if the function A : X → GL(m,R) takes values in a subgroup

G ⊂ GL(m,R), then so does the function C on O and, if G is closed, then so

does the extension C : X → GL(m,R). �
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[10] A. N. Livšic, Certain properties of the homology of Y -systems, Mat. Zametki

10 (1971), 555–564. MR 0293669.

[11] , Cohomology of dynamical systems, Math. USSR Izvestija 6 (1972), 1278–

1301. MR 0334287. doi: 10.1070/IM1972v006n06ABEH001919.
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