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The weak type (1, 1) bounds for the
maximal function associated to cubes grow

to infinity with the dimension

By J. M. Aldaz

Abstract

Let Md be the centered Hardy-Littlewood maximal function associated

to cubes in Rd with Lebesgue measure, and let cd denote the lowest constant

appearing in the weak type (1,1) inequality satisfied by Md. We show that

cd → ∞ as d → ∞, thus answering, for the case of cubes, a longstanding

open question of E. M. Stein and J. O. Strömberg.

1. Introduction and result

By a cube Q(x, r) we mean a closed `∞ ball of radius r and center x in

Rd, that is, a closed cube centered at x, with sides parallel to the coordinate

axes, and sidelength 2r. Let Md be the centered maximal function

(1) Mdf(x) := sup
r>0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)|dy

associated to cubes and Lebesgue measure in Rd. A fundamental feature of

the Hardy-Littlewood maximal function M is that it satisfies the weak-type

(1, 1) inequality: There exists a constant c > 0 such that for all α > 0 and all

f ∈ L1,

(2) α|{Mf ≥ α}| ≤ c‖f‖1.

Denote by cd the best (i.e. lowest) constant satisfying (2) in Rd.

Theorem. Fix T > 0. Then there exists a D = D(T ) such that for every

dimension d ≥ D, cd ≥ T .

Thus, cd → ∞ as d → ∞. In fact, these constants approach ∞ in a

monotone manner, since cd+1 ≥ cd by [AV07, Th. 2].
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It is well-known that given 1 < p ≤ ∞, there exists a constant cp such

that for all f ∈ Lp(Rd), ‖Mf‖p ≤ cp‖f‖p. When p=∞, trivially cp=1 in ev-

ery dimension, for averages never exceed a supremum. Dimension-independent

estimates are useful whenever one is interested in extending results from the

finite dimensional to the infinite dimensional setting. For the maximal func-

tion associated to euclidean balls, E. M. Stein showed that one can take cp to

be independent of d ([Ste82], [Ste85], [SS83]; see also [Ste93]). Stein’s result

was generalized to the maximal function defined using balls given by arbi-

trary norms by J. Bourgain ([Bou86a], [Bou86b], [Bou87]) and A. Carbery

([Car86]) when p > 3/2. Given 1 ≤ q < ∞, the `q balls are defined us-

ing the norm ‖x‖q := (|x1|q + |x2|q + · · ·+ |xd|q)1/q, and the `∞ balls, using

‖x‖∞ := max1≤i≤d {|x1|, |x2|, . . . , |xd|}. For `q balls, 1 ≤ q < ∞, D. Müller

[Mül90] showed that uniform bounds again hold for every p > 1. With respect

to weak type bounds, in [SS83], E. M. Stein and J. O. Strömberg proved that

the best constants in the weak type (1,1) inequality satisfied by the maximal

function associated to arbitrary balls grow at most like O(d log d), while if the

balls are euclidean, then the best constants grow at most like O(d). They also

asked if uniform bounds could be found. The theorem above shows that in the

case of cubes the answer is negative. If the d-dimensional Lebesgue measures

are replaced by a sequence of finite, absolutely continuous radial measures with

decreasing densities (such as, for instance, the standard Gaussian measures)

then best constants grow exponentially with d; cf. [Ald07].

In recent years evidence has been mounting to the effect that not only weak

type (1, 1) inequalities are formally stronger than strong (p, p) inequalities for

1 < p < ∞ (since the latter are implied by the former via interpolation) but

they are also stronger in a substantial way, meaning that the strong type may

hold for all p > 1 while the weak type (1, 1) may fail. This is the case, for

instance, with the uncentered maximal function associated to the standard

gaussian measure and euclidean balls. It is shown in [Sjö83] that this maximal

function is not of weak type (1, 1), while it is strong (p, p) for all p > 1; cf.

[FSSU02] (for cubes the strong (p, p) type follows from a more general result in

[CF84, cf. Th. 1]). The theorem above may represent another instance of this

phenomenon, with respect to uniform bounds in d. However, it is not known

for cubes whether uniform bounds hold when 1 < p ≤ 3/2 (it is suggested in

[Mül90] that the answer may be negative, and conjectured in [ACPL] that the

answer is positive).

Before presenting the proof, we make some comments on the method of

discretization for weak type (1, 1) inequalities. It consists in replacing L1

functions by finite sums of Dirac deltas. This leads to elementary arguments

of a combinatorial nature. The fact that one can get lower bounds for cd using
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Dirac deltas instead of functions is obvious, by mollification, and this is all we

need here.

We mention for completeness that considering Dirac deltas also suffices

to give upper bounds, as shown by M. de Guzmán, see [dG75, Th. 4.1.1].

Furthermore, M. Trinidad Menárguez and F. Soria proved that discretizing

does not alter constants; cf. [TMS92, Th. 1], so it can be used to study the

precise values of cd. This method was utilized, for instance, in [Ald98], were

it was shown that 37/24 ≤ c1 ≤ 9+
√
41

8 , thereby refuting the conjecture that

c1 = 3/2 (cf. [BH89, Prob. 7.74c]) and showing that c1 < 2, which is the best

constant in the uncentered case. Discretization was also used in [Mel02] and

[Mel03], where the exact value of c1 = 11+
√
61

12 was found. No best constants

are known for dimensions larger than one.

Let us point out that the configuration of Dirac deltas we will utilize

had previously been considered in [TMS92, Th. 6], for the same purpose of

bounding cd from below. It is shown there that cd ≥
Ä
1+21/d

2

äd
. But this yields

no information as to whether there is a uniform upper bound for cd, sinceÄ
1+21/d

2

äd
< 2.

The first version of this article contained a simple counting error at the

beginning of the proof, which rendered large parts of it useless. I am most

indebted to professor Keith Rogers for pointing out this mistake to me; sub-

stantial modifications of the argument were required in order to fix it. I am

also indebted to professors Javier Pérez Lázaro and Peter Sjögren, and to an

anonymous referee, for carefully reading this paper and for making several

useful suggestions, which led to thorough rewriting and simplification.

2. Proof

Given a locally finite measure ν in Rd, the maximal functionMdν is defined

by

(3) Mdν(x) := sup
r>0

νQ(x, r)

|Q(x, r)|
.

For notational simplicity we start considering the infinite measure µd in

Rd obtained by placing one Dirac delta at each point of the integer lattice Zd.
The finite measure exhibiting a lower bound for cd will then be obtained by

restricting µd to a sufficiently large cube. Note that µd = µ1 × µ1 × · · · × µ1.
At first, we will work within the unit cube [0, 1]d only.

Given u ∈ (0, 1) and an interval I ⊂ R, call y ∈ I centered at level u

(more briefly, centered, or u centered) if it belongs to the closed subinterval

with the same center and length (1−u)|I|, and off center (at level u) otherwise.

In particular, for I = [0, 1] the centered points are those in [2−1u, 1 − 2−1u].

The role of u in the proof is to serve as a discrete parameter, used to describe
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which cubes should be considered when estimating the value of the maximal

function at a given point.

It can be shown that the maximal function is large on the set Eu ⊂ [0, 1]d of

points x = (x1, . . . , xd) with many centered coordinates, where “large” is deter-

mined by a fixed t� 1, and “many” means more than (1−u)d+ t
»
du(1− u).

Since t
»
du(1− u) amounts to t standard deviations of a binomially distributed

random variable with parameters d and u, the Central Limit Theorem allows

us to bound |Eu| from below, provided d is large enough (we mention that a

similar argument can be carried out on the set of points with many uncentered

coordinates). For a fixed u, the measure of Eu as d → ∞ turns out to be

too small, since we are t � 1 standard deviations away from the mean. On

the other hand, estimates for the size of Mdµ
d worsen when we have roughly

(1 − u)d centered coordinates. Changing the value of u by discrete steps and

taking the union of many Eu’s, we obtain a sufficiently large set over which

Mdµ can be shown to take high values (unlike u, the value of t is fixed through-

out the argument, so dependency on t is not indicated in the notation). In

order to control the intersections of different Eu’s, it is useful to bound also

from below the number of uncentered coordinates; so actually we shall slightly

modify these sets and call them Eu instead of Eu.

Fix t � 1. The assumption that t is very large will be used without

further mention (save for some occasional reminder). But we emphasize that

the value of t remains unchanged throughout the proof; in particular, it does

not approach∞ as d→∞. So we will assume, again without further mention,

that expressions such as t/
√
d are as small as needed each time they appear.

Recall that the standard deviation of a Bernoulli trial with parameter u

is σu =
»
u(1− u). Define, for each u ∈ [1/8, 1/4],

Eu := {x ∈ [0, 1]d : the number k of coordinates j1, . . . , jk for which(4)

xji ∈ [0, 2−1u)∪(1− 2−1u, 1] satisfies ud− (t+t−1)σu
√
d<k ≤ ud− tσu

√
d}.

The values 1/8 and 1/4 are of no special significance; we could have fixed any

0 < a < b < 1 and chosen u ∈ [a, b] instead. In order to prove the theorem, we

first estimate the size of Eu for each u = 1/8, 1/8 + t−4/3, 1/8 + 2t−4/3, 1/8 +

3t−4/3 · · · ≤ 1/4, so we consider Θ(t4/3) different values of u, where, as usual,

Θ stands for exact order. Second, using the fact that distinct values of u differ

by at least t−4/3, we prove that different sets Eu have very small intersection.

Third, we take the union of the Θ(t4/3) sets Eu and bound the measure of this

union from below. And fourth, we show that Mµd is large on each Eu, and

hence on their union.

Up to here, the argument is carried inside [0, 1]d. To complete the proof,

we replace µd by a finite measure, and apply the estimates obtained within

[0, 1]d to several translates of it.
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Let Z ∼ N(0, 1) denote a standard normally distributed random variable.

Claim 1. For all u ∈ [1/8, 1/4] there exists a D = D(u) such that if

d ≥ D, then

(5)
e−t

2/2

2e2t
√

2π
< |Eu| < e−t

2/2

t
√
π
.

Proof. Define a collection of independent Bernoulli random variables Xu,i

by setting Xu,i(x) = 1 if the i-th coordinate of x ∈ [0, 1]d satisfies xi ∈[
0, 2−1u

)
∪
(
1− 2−1u, 1

]
, and Xu,i(x) = 0 otherwise. Then the probability

of having exactly k off center and d− k centered coordinates isÇ
d

k

å
uk(1− u)d−k.

Set Su,d :=
∑d
i=1Xu,i, so that Su,d counts the number of uncentered coordi-

nates. Then Su,d ∼ B(u, d) is binomially distributed with mean E(Su,d) = ud

and standard deviation σ(Su,d) =
»
du(1− u) = σu

√
d, where σu is the stan-

dard deviation of Xu,i. Thus, the Lebesgue measure of Eu is given by

|Eu| = P
Ä
ud− (t+ t−1)σu

√
d < Su,d ≤ ud− tσu

√
d
ä
.

By the Central Limit Theorem, for all d large enough we have

(6) 2−1P (−t− t−1 < Z ≤ −t) < |Eu| <
√

2P (−t− t−1 < Z ≤ −t).

Since P (−t− t−1 < Z ≤ −t) = 1√
2π

∫ t+t−1

t e−y
2/2dy and e−2e−t

2/2 ≤ e−y
2/2 ≤

e−t
2/2 for every y ∈ [t, t+ t−1], we obtain (5). �

We show next that if u and v are “far apart”, then |Ev ∩ Eu| is small

relative to |Eu|.

Claim 2. Fix u, v ∈ [1/8, 1/4] with u − v ≥ t−4/3. Then there exists a

D = D(u) such that for all d ≥ D,

(7) |Ev ∩ Eu| ≤ t−1/3e−2t2/3/9|Eu|.

Proof. We partition the sets Eu into subsets Au,K , consisting of all points

with coordinates xj off center if and only if j ∈ K. More precisely, let us fix a

subset K ⊂ {1, . . . , d} of cardinality k, with k satisfying

(8) ud− (t+ t−1)σu
√
d < k ≤ ud− tσu

√
d.

We define

(9)

Au,K :=
¶
x ∈ [0, 1]d : xj ∈

î
0, 2−1u

ä
∪
Ä
1− 2−1u, 1

ó
if and only if j ∈ K

©
.

Since Au,K ∩ Au,M = ∅ unless K = M , and Eu = ∪KAu,K , we do have a

partition of Eu.
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Let v ≤ u− t−4/3. In order to estimate |Au,K ∩Ev|, consider an arbitrary

set Av,M in the partition of Ev. We may suppose that M ⊂ K, for otherwise

Au,K∩Av,M = ∅. Let M have cardinality m, and let x ∈ Au,K∩Av,M . Observe

that xi ∈ [0, 2−1v) ∪ (1 − 2−1v, 1] for every i ∈ M , xj ∈ [2−1v, 2−1u) ∪ (1 −
2−1u, 1−2−1v] for every j ∈ K \M , and xr ∈ [2−1u, 1−2−1u] for the remaining

d− k coordinates. Thus

|Au,K∩Av,M | = vm×(u−v)k−m×(1−u)d−k = uk(1−u)d−k
Å
v

u

ãm Å
1− v

u

ãk−m
.

The lower bound on k given by (8) allows us to conclude that k > m for

sufficiently large d, since in that case ud− (t+ t−1)σu
√
d > vd− tσv

√
d. Only

the upper bound m ≤ [vd− tσv
√
d] (where [w] denotes the integer part of w)

is needed in the next estimate. Summing first over all sets M ⊂ K of fixed

cardinality m, and then over all m ≤ [vd− tσv
√
d], we get

(10) |Au,K ∩ Ev| ≤ uk(1− u)d−k
[vd−tσv

√
d]∑

m=0

Ç
k

m

åÅ
v

u

ãm Å
1− v

u

ãk−m
.

As before, we control the sum above by using the Central Limit Theorem,

applied to the binomially distributed random variable Sv/u,k ∼ B(v/u, k). We

shall need a lower bound for E(Sv/u,k) and an upper bound for σ(Sv/u,k). From

ud− (t+ t−1)σu
√
d < k ≤ ud we obtain

(11) E(Sv/u,k) = k

Å
v

u

ã
> vd−

Ä
t+ t−1

ä
v
√
d
√
u−1 − 1

and

(12) σ(Sv/u,k) =

 
k

Å
v

u

ãÅ
1− v

u

ã
<

 
vd

Å
1− v

u

ã
.

Since t� 1, 2t−2/3 ≤
»

1− v/u, and
√
v
√
u−1 − 1 +

√
1− v <

√
7,

2t1/3

3
<
t
»

1− v
u√

7
−
√

7

t1/3
<

t
(
1− v

u

)(√
v
»

1
u − 1 +

√
1− v

)»
1− v

u

−
√
v
»

1
u − 1

t
»

1− v
u

=
t
(√

1− v −
√
v
»

1
u − 1

)
− t−1

√
v
»

1
u − 1»

1− v
u

=
t
√
vd
√

1− v −
(
t+ t−1

)
v
√
d
»

1
u − 1 + vd− vd

√
vd
»

1− v
u

<
E(Sv/u,k)− vd+ tσv

√
d

σ(Sv/u,k)
,
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where the last inequality follows from (11) and (12). Hence, by the Central

Limit Theorem we have, for all sufficiently large d,

(13) P
Ä
Sv/u,k ≤ vd− tσv

√
d
ä
≤ P

Ç
Sv/u,k − E(Sv/u,k)

σ(Sv/u,k)
≤ −2t1/3

3

å
≤ 2
√

2π

3
P

Ç
Z ≤ −2t1/3

3

å
=

2

3

∫ ∞
2t1/3

3

e−y
2/2dy(14)

≤ 1

t1/3

∫ ∞
2t1/3

3

ye−y
2/2dy =

e−2t
2/3/9

t1/3
.

Thus, from (10) and (13), (14) we get

(15) |Au,K ∩ Ev| ≤ uk(1− u)d−kt−1/3e−2t
2/3/9,

and now (7) follows by adding up over all the sets Au,K in the partition of

Eu. �

Next, we write u(j) := 1/8 + jt−4/3, letting u range over [1/8, 1/4] in

discrete steps of size t−4/3.

Claim 3. Let j = 0, 1, 2, . . . ,M , where M is the largest integer j satisfy-

ing jt−4/3 ≤ 1/8. Then

(16)

∣∣∣∣∣∣
M⋃
j=0

Eu(j)

∣∣∣∣∣∣ ≥ Θ(t1/3e−t
2/2).

Proof. Let 0 ≤ k < j ≤ M be natural numbers. We apply Claim 2 and

Claim 1 to all pairs u(k) < u(j), obtaining∑
0≤k<j≤M

∣∣∣Eu(k) ∩ Eu(j)∣∣∣ < t8/3
(
e−2t

2/3/9

t1/3

)(
e−t

2/2

t

)
(17)

= t4/3e−2t
2/3/9e−t

2/2 = O
Ä
t−1e−t

2/2
ä
.

Using the inclusion-exclusion principle, together with (17) and (5), we obtain∣∣∣∣∣∣
M⋃
j=0

Eu(j)

∣∣∣∣∣∣ ≥
M∑
j=0

∣∣∣Eu(j)∣∣∣− ∑
0≤k<j≤M

∣∣∣Eu(k) ∩ Eu(j)∣∣∣(18)

≥
Ç
t4/3

8

å
Θ(t−1e−t

2/2)−O
Ä
t−1e−t

2/2
ä

= Θ(t1/3e−t
2/2).(19)

This proves Claim 3. �

After having estimated the measure of
⋃M
j=1E

u(j), it remains to show that

Mµd takes high values on this set. We do this next.

Claim 4. Fix u ∈ [1/8, 1/4]. Then Eu ⊂ {Mµd > 2−1et
2/2}.
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Proof. Let xj ∈ [2−1u, 1 − 2−1u]. Given any integer s > 0, we have that

µ1[xj − (s− 2−1u), xj + s− 2−1u] = 2s. Suppose y ∈ [0, 1] is off center, say for

instance y > 1− 2−1u. Shifting the interval [xj − (s− 2−1u), xj + s− 2−1u] to

the right by y−xj (so now it is centered at y) loses at most one Dirac delta on

the left. Thus, µ1([y− (s− 2−1u), y + s− 2−1u]) ≥ 2s− 1. Suppose x ∈ [0, 1]d

has r off center and d − r centered coordinates, where r ≤ r0 := ud − tσu
√
d.

Then for every s = 1, 2, 3, . . . ,

(20) Mdµ
d(x) ≥ (2s)d−r(2s− 1)r

(2 (s− 2−1u))d
=

Ä
1− 1

2s

är(
1− u

2s

)d ≥
Ä
1− 1

2s

är0(
1− u

2s

)d .
The next step consists in showing that for some suitably chosen s, the right-

hand side of (20) is bounded below by 2−1et
2/2. Set f(s) := (1− 1

2s)
r0/(1− u

2s)
d.

An elementary calculus argument shows that f(s) is maximized over s ≥ 1

when

(21) s =
u (d− r0)
2 (ud− r0)

=: s0,

and this is the only critical point, so f decreases as we move away from s0.

In particular, f(s0) ≥ f([s0]) ≥ f(s0 − 1) (where [s0] denotes the integer part

of s0) so for convenience we shall use s0 − 1 instead of [s0] in (20). Thus,

(22)

logMdµ
d(x) ≥

Ä
ud− tσu

√
d
ä

log

Ç
1− 1

2(s0 − 1)

å
− d log

Ç
1− u

2(s0 − 1)

å
.

Replacing r0 by its value in (21) we see that

s0 =
σu
√
d

2t
+
u

2
= Θ(

√
d) and 2(s0 − 1) =

σu
√
d

t

Ç
1− (2− u)t

σu
√
d

å
.

Thus, using (1−w)−1 = 1 +w+O(w2) applied to w1 := (2−u)t
σu
√
d

= Θ(1/
√
d) we

get

(23)
1

2(s0 − 1)
=

t

σu
√
d

+
(2− u)t2

σ2ud
+O

Å
1

d3/2

ã
.

Finally, from log(1 − w) = −w − w2/2 + O(w3) applied to w2 := 1
2(s0−1) =

Θ(1/
√
d) and to w3 := uw2, we obtain, by substituting in (22) and simplifying,

�(24) logMdµ
d(x) ≥ t2

2
+O

Ç
1√
d

å
.

Completing the argument. The last step consists in fixing d (so large that

all the preceding estimates hold) and replacing the infinite measure µd by a

finite measure µdR, such that the ratio of unit volume cubes to Dirac deltas is

close to 1. The measure µdR is obtained by keeping only the point masses of
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µd contained in the cube
î
−
√
d,R+

√
d
ód

. This part of the proof (save for a

small modification) already appears in [TMS92, Th. 6].

Let f be an integrable function and ν a finite sum of Dirac deltas. By

discretization, any lower bound for c in α |{Mf ≥ α}| ≤ c‖f‖1 is a lower bound

for C in α |{Mν ≥ α}| ≤ Cν(Rd), and vice versa. Here ν(Rd) simply counts

the number of point masses in ν. Observe that the cubes used in Claim 4 to

estimate the size of Mµd(x), for x ∈ [0, 1]d, never exceed a sidelength of 2
√
d.

Let µdR :=
∑
i δxi , where R = R(d)� d is a natural number and xi ∈ Zd ranges

over all the points with integer coordinates in the cube [−
√
d,R+

√
d]d. Using

the fact that the estimates in the preceding claims hold for every unit subcube

of [0, R]d with vertices in Zd (by the same argument presented for [0, 1]d) we

have

cd ≥ sup
R>0

2−1et
2/2
∣∣∣¶Mdµ

d
R > 2−1et

2/2
©
∩ [0, R]d

∣∣∣
µdR(Rd)

≥ sup
R>0

Ç
Rd

(R+ 2
√
d+ 1)d

å
Θ
Ä
t1/3e−t

2/2et
2/2
ä

= Θ
Ä
t1/3
ä
. �
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[FSSU02] L. Forzani, R. Scotto, P. Sjögren, and W. Urbina, On the Lp bound-

edness of the non-centered Gaussian Hardy-Littlewood maximal function,

Proc. Amer. Math. Soc. 130 (2002), 73–79. MR 1855622. Zbl 0991.42012.

doi: 10.1090/S0002-9939-01-06156-1.

[Mel02] A. D. Melas, On the centered Hardy-Littlewood maximal operator, Trans.

Amer. Math. Soc. 354 (2002), 3263–3273. MR 1897399. Zbl 1015.42015.

doi: 10.1090/S0002-9947-02-02900-8.

[Mel03] , The best constant for the centered Hardy-Littlewood maximal

inequality, Ann. of Math. 157 (2003), 647–688. MR 1973058. Zbl 1055.

42013. doi: 10.4007/annals.2003.157.647.

[Mül90] D. Müller, A geometric bound for maximal functions associated to con-

vex bodies, Pacific J. Math. 142 (1990), 297–312. MR 1042048. Zbl 0728.

42015. Available at http://projecteuclid.org/getRecord?id=euclid.pjm/

1102646348.
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