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Global regularity for some classes of large
solutions to the Navier-Stokes equations

By Jean-Yves Chemin, Isabelle Gallagher, and Marius Paicu

Abstract

In previous works by the first two authors, classes of initial data to the

three-dimensional, incompressible Navier-Stokes equations were presented,

generating a global smooth solution although the norm of the initial data

may be chosen arbitrarily large. The main feature of the initial data consid-

ered in one of those studies is that it varies slowly in one direction, though

in some sense it is “well-prepared” (its norm is large but does not depend

on the slow parameter). The aim of this article is to generalize that setting

to an “ill prepared” situation (the norm blows up as the small parameter

goes to zero). As in those works, the proof uses the special structure of the

nonlinear term of the equation.

1. Introduction

We study in this paper the Navier-Stokes equation with initial data which

are slowly varying in the vertical variable. More precisely we consider the

system

(NS)


∂tu+ u · ∇u−∆u = −∇p in R+×Ω

div u = 0

u|t=0 = u0,ε,

where Ω = T2×R (the choice of this particular domain will be explained

later on), and u0,ε is a divergence free vector field, whose dependence on the

vertical variable x3 will be chosen to be “slow”, meaning that it depends on εx3

where ε is a small parameter. Our goal is to prove a global existence in time

result for the solution generated by this type of initial data, with no smallness

assumption on its norm.

1.1. Recollection of some known results on the Navier-Stokes equations.

The mathematical study of the Navier-Stokes equations has a long history,

which we shall describe briefly in this paragraph. We shall first recall the

main global wellposedness results and some blow-up criteria. Then we shall

983

http://annals.math.princeton.edu/annals/about/cover/cover.html
http://dx.doi.org/10.4007/annals.2011.173.2.9


984 J.-Y. CHEMIN, I. GALLAGHER, and M. PAICU

concentrate on the case when the special algebraic structure of the system is

used, in order to improve those previous results.

To simplify, we shall place ourselves in the whole euclidian space Rd or

in the torus Td (or in variants of those spaces, such as T2×R in three space

dimensions); of course results exist in the case when the equations are posed

in domains of the euclidian space, with Dirichlet boundary conditions, but we

choose to simplify the presentation by not mentioning explicitly those stud-

ies (although some of the theorems recalled below also hold in the case of

domains up to obvious modifications of the statements and sometimes much

more difficult proofs).

1.1.1. Global wellposedness and blow-up results. The first important re-

sult on the Navier-Stokes system was obtained by J. Leray in his seminal

paper [24] in 1933. He proved that any finite energy initial data (meaning

square-integrable data) generates a (possibly nonunique) global in time weak

solution which satisfies the energy estimate

(1.1)
1

2
‖u(t)‖2L2 +

∫ t

0
‖∇(t′)‖2L2dt′ ≤

1

2
‖u0‖2L2 .

Moreover, he proved in [23] the uniqueness of the solution in two space dimen-

sions. Those results use the structure of the nonlinear terms, in order to obtain

the energy inequality. He also proved the uniqueness of weak solutions in three

space dimensions, under the additional condition that one of the weak solutions

has more regularity properties (say belongs to L2(R+;L∞); this would now be

qualified as a “weak-strong uniqueness result”). Moreover, he proved under

a smallness hypothesis on ‖u0‖L2‖∇u0‖L2 that global regular solutions exists

and thus are unique. The question of the global wellposedness of the three-

dimensional Navier-Stokes equations for large initial data was then raised, and

has been open ever since. The main difficulty can be explained using the scal-

ing property of the incompressible Navier-Stokes system. If u is a solution

of (NS) on [0, T ]×Rd, then uλ(t, x) = λu(λ2t, λx) is a solution on [0, T ]×Rd.
It can be easily checked that in the case when the dimension d is 2, then the

energy is scaling invariant and thus can be used for contraction argument. In

such a case, the problem is called “critical”. It is of course not the case when

the dimension d is equal to 3 which is “super-critical”, which means that the

conserved quantities are less regular than the scaling invariant quantities. We

shall now present a few of the historical landmarks in that study.

The Fujita-Kato theorem [11] gives a partial answer to the construction

of a global unique solution. Indeed, that theorem provides a unique, local in

time solution in the homogeneous Sobolev space Ḣ
d
2
−1 in d space dimensions,

and that solution is proved to be global if the initial data is small in Ḣ
d
2
−1

(compared to the viscosity, which is chosen equal to one here to simplify).
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The result was improved to the Lebesgue space Ld by F. Weissler in [36];

see also [15] and [19]. The method consists in applying a Banach fixed point

theorem to the integral formulation of the equation, and was generalized by

M. Cannone, Y. Meyer, and F. Planchon in [2] to Besov spaces of negative

index of regularity. More precisely they proved that if the initial data is small

in the Besov space Ḃ
−1+ d

p
p,∞ (for p <∞), then there is a unique, global in time

solution. Let us emphasize that this result allows to construct global solutions

for strongly oscillating initial data which may have a large norm in Ḣ
d
2
−1 or

in Ld. A typical example in three space dimensions is

(1.2) uε0(x)
def
= ε−α sin

(x3

ε

)Ä
−∂2ϕ(x), ∂1ϕ(x), 0

ä
,

where 0 < α < 1 and ϕ ∈ S(R3;R). This can be checked by using the definition

of Besov norms:

∀s > 0, ∀(p, q) ∈ [1,∞], ‖f‖Ḃ−s
p,q

def
=
∥∥∥t s2 ‖et∆f‖Lp

∥∥∥
Lq(R+; dt

t
)
.

More recently in [20], H. Koch and D. Tataru obtained a unique global in time

solution for data small enough in a more general space, consisting of vector

fields whose components are derivatives of BMO functions. The norm in that

space is given by

(1.3) ‖u0‖2BMO−1
def
= sup

t>0
t‖et∆u0‖2L∞ + sup

x∈Rd

R>0

1

Rd

∫
P (x,R)

|(et∆u0)(t, y)|2dy,

where P (x,R) stands for the parabolic set [0, R2]×B(x,R) while B(x,R) is the

ball centered at x, of radius R. This implies in particular global existence and

uniqueness for initial data given by (1.2) in the case when α = 1 (provided that

ϕ is small). Those theorems are general results of global existence for small

initial data in the sense that they are valid for a very large class of quadratic

nonlinearities and do not take into account any particular algebraic properties

of the nonlinear terms in the Navier-Stokes equation.

One should notice that spaces where global, unique solutions are con-

structed for small initial data, are necessarily scaling-invariant spaces. More-

over it can be proved (as observed for instance in [6]) that if B is a Banach

space continuously included in the space S ′ of tempered distributions such that

for any (λ, a) ∈ R+
? ×Rd, ‖f(λ(· − a))‖B = λ−1‖f‖B,

then ‖ · ‖B ≤ C sup
t>0

t
1
2 ‖et∆u0‖L∞ . One recognizes on the right-hand side of the

inequality the Ḃ−1
∞,∞ norm, which is slightly smaller than the BMO−1 norm

recalled above in (1.3); indeed the BMO−1 norm takes into account not only

the Ḃ−1
∞,∞ information, but also the fact that first Picard iterate of the Navier-

Stokes equations should be locally square integrable in space and time. It
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thus seems that the Koch-Tataru theorem is optimal for the wellposedness of

the Navier-Stokes equations — note that it was very recently proved (see [14]

and [1]) that the equations are in fact ill-posed in Ḃ−1
∞,∞. This observation also

shows that if one wants to go beyond a smallness assumption on the initial

data to prove the global existence of unique solutions, one should check that

the Ḃ−1
∞,∞ norm of the initial data may be chosen large.

To conclude this paragraph, let us remark that the fixed-point methods

used to prove local in time wellposedness for arbitrarily large data (such re-

sults are available in Banach spaces in which the Schwartz class is dense,

typically Ḃ
−1+ d

p
p,q for finite p and q) naturally provide blow-up criteria. For

instance, one can prove that if the life span of the solution is finite, then

the Lq
(
[0, T ]; Ḃ

−1+ d
p

+ 2
q

p,q

)
norm blows up as T approaches the blow up time.

A natural question is to ask if the Ḃ
−1+ d

p
p,q norm itself blows up. Progress has

been made very recently on this question, and uses the specific structure of the

equation, which was not the case for the results presented in this paragraph.

We therefore postpone the exposition of those results to the next paragraph.

We will not describe more results on the Cauchy problem for the Navier-

Stokes equations. We refer the interested reader to the monographs [22] and

[28] for more details.

1.1.2. Results using the specific algebraic structure of the equation. If one

wishes to improve the theory on the Cauchy problem for the Navier-Stokes

equations, it seems crucial to use the specific structure of the nonlinear term in

the equations, as well as the divergence free assumption. Indeed it was proved

by S. Montgomery-Smith in [29] (in a one-dimensional setting, which was later

generalized to a 2D and 3D situation by two of the authors in [13]) that some

models exist for which finite time blow up can be proved for some classes

of large data, despite the fact that the same small-data global wellposedness

results hold as for the Navier-Stokes system. Furthermore, the generalization

to the 3D case in [13] shows that some large initial data which generate a global

solution for the Navier-Stokes equations (namely the data of [5] which will be

presented below) actually generate a blowing up solution for the toy model.

In this paragraph, we shall present a number of wellposedness theorems

(or blow up criteria) which have been obtained in the past and which specifi-

cally concern the Navier-Stokes equations. In order to make the presentation

shorter, we choose not to present a number of results which have been proved

by various authors under some additional geometrical assumptions on the flow,

which imply the conservation of quantities beyond the scaling (namely spher-

ical, helicoidal or axisymmetric conditions). We refer the reader to [21], [26],

[32], or [35] for such studies.
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To start with, let us recall the question asked in the previous paragraph,

concerning the blow up of the Ḃ
−1+ d

p
p,q norm at blow-up time. A typical example

of a solution with a finite Ḃ
−1+ d

p
p,q norm at blow-up time is a self-similar solution,

and the question of the existence of such solutions was actually addressed by

J. Leray in [24]. The answer was given 60 years later by J. Neças, M. Ruz̧içka,

and V. Şverák in [30]. By analyzing the profile equation, they proved that there

is no self-similar solution in L3 in three space dimensions. Later L. Escauriaza,

G. Seregin, and V. Şverák were able to prove in [10] that, more generally, if

the solution remains bounded in L3, then it remains regular: in particular any

solution blowing up in finite time must blow up in L3.

Now let us turn to the existence of large, global unique solutions to the

Navier-Stokes system in three space dimensions.

An important example where a unique global in time solution exists for

large initial data is the case where the domain is thin in the vertical direction

(in three space dimensions): that was proved by G. Raugel, and G. Sell in [33];

see also the paper [18] by D. Iftimie, G. Raugel, and G. Sell. The authors

obtained the global existence of a strong solution for initial data which are

allowed to have a large two-dimensional part (the vertical mean of the initial

data) and a small three-dimensional part. Another example of large initial data

generating a global solution was obtained by A. Mahalov and B. Nicolaenko

in [27]: in that case, the initial data is chosen so as to transform the equation

into a rotating fluid equation (for which it is known that global solutions exist

for a sufficiently strong rotation).

In both those examples, the global wellposedness of the two-dimensional

equation is an important ingredient in the proof. Two of the authors also used

such a property to construct in [5] an example of periodic initial data which

is strongly oscillating and large in Ḃ−1
∞,∞ but yet generates a global solution.

Such an initial data is given by

uN0 (x)
def
= (Nuh(xh) cos(Nx3),−divh uh(xh) sin(Nx3)),

where ‖uh‖L2(T2) ≤ C(lnN)
1
4 , and its Ḃ−1

∞,∞ norm is typically of the same

size. This was generalized to the case of the space R3 in [6]. The main idea

was to obtain the global existence of the solution under a nonlinear smallness

assumption on the first iterate et∆u0 · ∇et∆u0 instead of a smallness condition

directly on et∆u0.

Similarly in [7], the global wellposedness of the two-dimensional equation

was used to prove a global existence result for large data which are slowly

varying in one direction. More precisely, if (vh0 , 0) and w0 are two smooth

divergence free “profile” vector fields, then they proved that the initial data

(1.4) u0,ε(xh, x3)
def
= (vh0 (xh, εx3), 0) + (εwh0 (xh, εx3), w3

0(xh, εx3))
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generates, for ε small enough, a global smooth solution. Here, we have denoted

xh = (x1, x2). Using the language of the weak compressible limit or fast

rotating fluids, this case may be qualified as a “well-prepared” case. Indeed

the initial data converges uniformely for x3 in any compact subset of R to a

two-dimensional vector field which generates global smooth solutions. We shall

be coming back to that example in the next paragraph.

As a conclusion of this short (and of course incomplete) survey, let us

present some results for the Navier-Stokes system with viscosity vanishing in

the vertical direction. Analogous results to the classical Navier-Stokes system

in the framework of small data are proved in [4], [17], [31], and [9]. To cir-

cumvent the difficulty linked with the absence of vertical viscosity, the key

idea, which will be also crucial here (see for instance the proof of the second

estimate of Proposition 2.1) is the following: the vertical derivative ∂3 appears

in the nonlinear term of the equation with the prefactor u3, which has some

additional smoothness thanks to the divergence free condition which states

that ∂3u3 = −∂1u1 − ∂2u2.

1.2. Statement of the main result. In this work, we are interested in gen-

eralizing the situation (1.4) to the ill-prepared case. We shall investigate the

case of initial data of the form

(1.5)

Å
vh0 (xh, εx3),

1

ε
v3

0(xh, εx3)

ã
,

where xh belongs to the torus T2 and x3 belongs to R. Following the termi-

nology for weakly compressible fluids or rotating fluids, the above intial data

can be qualified as ill-prepared because they do not converge in any sense to

a two-dimensional divergence free vector field. The case of ill-prepared initial

data studied here is much more difficult than the case of well-prepared data

dealt with in [7]. Roughly speaking, this initial data indeed may give rise to

instability in the inviscid case or for small viscosity, as for instance in the case

of the Prandtl equation arising in the problem of vanishing viscosity in do-

mains with boundaries (see [16]) and the hypothesis of analyticity can make

the system solvable (see [34]). This prevents us from working in the framework

of Sobolev spaces. However, for analytical initial data we can hope to avoid

the possible instability and consequently a good framework in this situation is

the analytical class. More precisely, we shall see in the next section that after

a change of scale in the vertical variable, the system becomes a Navier-Stokes

system with an anisotropic Laplacian of the form −(∂2
1 + ∂2

2) − ε2∂2
3 and an

anisotropic pressure term of the form (−∇hp, ε2∂3p). The equation on the

pressure is

(1.6) − (∂2
1 + ∂2

2 + ε2∂2
3)p =

∑
j,k

∂j∂k(u
juk),
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and this equation is not uniformly elliptic and we lose control of one derivative

in the vertical variable. This prevents us from working with Sobolev spaces

as in the well-prepared case. To overcome this difficulty, we work in the class

of analytical functions. The main difficulty is then to control the loss in the

radius of analyticity, using a variation of the method introduced in [3]. Our

result may in this sense be seen as a Cauchy-Kovalevskaya result, which is

global in time. The main theorem of this article is the following.

Theorem 1. Let a be a positive number. There are two positive num-

bers ε0 and η such that for any divergence free vector field v0 satisfying

‖ea|D3|v0‖H4 ≤ η,

then, for any positive ε smaller than ε0, the initial data

u0,ε(x)
def
=
(
vh0 (xh, εx3),

1

ε
v3

0(xh, εx3)
)

generates a global smooth solution uε of (NS) on T2×R.

Remarks.

• Such an initial data may be arbitrarily large in Ḃ−1
∞,∞, more precisely

of size ε−1. Indeed it is proved in [7, Prop. 1.1], that if f and g are

two functions in S(T2) and S(R) respectively, then if ε is small enough,

hε(xh, x3)
def
= f(xh)g(εx3) satisfies

‖hε‖Ḃ−1
∞,∞
≥ 1

4
‖f‖Ḃ−1

∞,∞
‖g‖L∞ .

• As in the well-prepared case studied in [7] and recalled in the previous

paragraph, the structure of the nonlinear term will have a crucial role

to play in the proof of the theorem.

• The reason why we put periodic boundary condition on horizontal vari-

ables is technical: in (1.6), in the case of the whole space R3, it seems

difficult to control the very low horizontal frequencies. As we shall see

in the proof, in the case of periodic boundary condition in the hori-

zontal variable, we treat separately functions which do not depend on

the horizontal variable from the others (for which the horizontal fre-

quencies are greater or equal to 1). In that situation, we are able to

solve globally in time the equation (conveniently rescaled in ε) for small

analytic-type initial data. We recall that in that spirit, some local in

time results for Euler and Prandtl equation with analytic initial data

can be found in [34].

• Finally, let us observe that, as pointed out by N. Lerner, Y. Mori-

moto, and C.-J. Xu in [25], solutions of nonlinear equations obtained by

Cauchy-Kovalevskaya type method can be extremely unstable. Here,
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each solution uε is stable in the following sense: for any fixed ε, we can

perturb the initial data u0,ε by any element δ of the Sobolev space Ḣ
1
2

provided ‖δ‖
Ḣ

1
2

is less or equal to some positive rε; then the corre-

sponding initial data still generates a global smooth solution. This

comes from the stability results proved in [12].

Acknowledgments. The authors wish to thank Vladimir Şverák for point-

ing out the interest of this problem to them. They also thank Franck Sueur

for suggesting the analogy with Prandlt’s problem.

2. Structure of the proof

2.1. Reduction to a rescaled problem. We look for the solution under the

form

uε(t, x)
def
=
(
vh(t, xh, εx3),

1

ε
v3(t, xh, εx3)

)
.

This leads to the following rescaled Navier-Stokes system:

(RNSε)


∂tv

h −∆εv
h + v · ∇vh = −∇hq

∂tv
3 −∆εv

3 + v · ∇v3 = −ε2∂3q

div v = 0

v|t=0 = v0

with ∆ε
def
= ∂2

1 + ∂2
2 + ε2∂2

3 . As there is no boundary, the rescaled pressure q

can be computed with the formula

(2.1) ∆εq =
∑
j,k

∂jv
k∂kv

j =
∑
j,k

∂j∂k(v
jvk).

It turns out that when ε goes to 0, ∆−1
ε looks like ∆−1

h . In the case of R3,

for low horizontal frequencies, an expression of the type ∆−1
h (ab) cannot be

estimated in L2 in general. This is the reason why we work in T2×R. In this

domain, the problem of low horizontal frequencies reduces to the problem of

the horizontal average that we denote by

(Mf)(x3)
def
= f̄(x3)

def
=

∫
T2
f(xh, x3)dxh.

Let us also define M⊥f
def
= (Id−M)f . Notice that, because the vector field v is

divergence free, we have v̄3 ≡ 0. The system (RNSε) can be rewritten in the

following form:

(RNSε)



∂tw
h −∆εw

h +M⊥
Ä
v · ∇wh + w3∂3v̄

h
ä

= −∇hq
∂tw

3 −∆εw
3 +M⊥(v · ∇w3) = −ε2∂3M

⊥q

∂tv̄
h − ε2∂2

3 v̄
h = −∂3M(w3wh)

div(v̄ + w) = 0

(v̄, w)|t=0 = (v̄0, w0).
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The problem with solving this sytem is that there is no obvious way to com-

pensate the loss of one vertical derivative which appears in the equation on wh
and v̄ and also, but more hidden, in the pressure term. The method we use is

inspired by the one introduced in [3] and can be understood as a global Cauchy-

Kovalevskaya result. This is the reason why the hypothesis of analyticity in

the vertical variable is required in our theorem.

Let us denote by B the unit ball of R3 and by C the annulus of small

radius 1 and large radius 2. For nonnegative j, let us denote by L2
j the

space FL2((Z2×R)∩2jC) and by L2
−1 the space FL2((Z2×R)∩B) respectively

equipped with the (semi)norms

‖u‖2L2
j

def
= (2π)−d

∫
2jC
|û(ξ)|2dξ and ‖u‖2L2

−1

def
= (2π)−d

∫
B
|û(ξ)|2dξ.

Let us now recall the definition of inhomogeneous Besov spaces modeled on L2.

Definition 2.1. Let s be a nonnegative real number. The space Bs is the

subspace of L2 such that

‖u‖Bs
def
=
∥∥∥Ä2js‖u‖L2

j

ä
j

∥∥∥
`1
<∞.

We note that u ∈ Bs is equivalent to writing ‖u‖L2
j
≤ Ccj2−js‖u‖Bs where

(cj) is a nonnegative series which belongs to the sphere of `1. Let us notice

that B
3
2 is included in F(L1) and thus in the space of continuous bounded

functions. Moreover, if we substitute `2 to `1 in the above definition, we

recover the classical Sobolev space Hs.

The theorem we actually prove is the following.

Theorem 2. Let a be a positive number. There are two positive num-

bers ε0 and η such that for any divergence free vector field v0 satisfying

‖ea|D3|v0‖
B

7
2
≤ η,

then, for any positive ε smaller than ε0, the initial data

u0,ε(x)
def
=
(
vh0 (xh, εx3),

1

ε
v3

0(xh, εx3)
)

generates a global smooth solution of (NS) on T2×R.

2.2. Study of a model problem. In order to motivate the functional setting

and to give a flavour of the method used to prove the theorem, let us study

for a moment the following simplified model problem for (RNSε), in which we

shall see in a rather easy way how the same type of method as that of [3] can

be used (as a global Cauchy-Kovalevskaya technique): the idea is to control a

nonlinear quantity, which depends on the solution itself. So let us consider the
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equation

∂tu+ γu+ a(D)(u2) = 0,

where u is a scalar, real-valued function, γ is a positive parameter, and a(D)

is a Fourier multiplier of order one. We shall sketch the proof of the fact that

if the initial data satisfies

‖eδ|D|u0‖
B

3
2
≤ cγ

for some positive δ and some small enough constant c, then one has a global

smooth solution, say in the space B
3
2 as well as all its derivatives. The idea of

the proof is the following: we want to control the same kind of quantity on the

solution, but one expects the radius of analyticity of the solution to decay in

time. Let us introduce the following notation, which will be used throughout

this article. For any locally bounded function Ψ on R+×Z2×R and for any

function f , we define

fΨ(t)
def
= F−1

Ä
eΨ(t,·)f̂(t, ·)

ä
.

Let us notice that this notation does not make sense for any f ; the following

can be made rigourous by a cut-off in Fourier space. This will be done in the

next section, in the proof of Theorem 2.

So let us introduce the function θ(t) which describes the “loss of analyt-

icity” of the solution. We define

(2.2) θ̇(t)
def
= ‖uΦ(t)‖

B
3
2

with θ(0) = 0 and Φ(t, ξ) = (δ − λθ(t))|ξ|.

The parameter λ will be chosen large enough at the end, and we shall prove

that δ − λθ(t) remains positive for all times. The computations that follow

hold as long as that assumption is true (and a bootstrap will prove that in

fact it does remain true for all times). Taking the Fourier transform of the

equation gives

|û(t, ξ)| ≤ e−γt|û0(ξ)|+ C

∫ t

0
e−γ(t−t′) |ξ| |F(u2)(t′, ξ)| dt′.

Using the fact that

γt+ (δ − λθ(t)) |ξ| ≤ γ(t− t′)− λ|ξ|
∫ t

t′
θ̇(t′′) dt′′

+ γt′ + (δ − λθ(t′)) |ξ − η|+ (δ − λθ(t′)) |η| ,

we infer that

eγt|ûΦ(t, ξ)| ≤ eδ|ξ||û0(ξ)|+ C

∫ t

0
e−λ|ξ|

∫ t

t′
θ̇(t′′) dt′′ |ξ| eγt′ |F(u2

Φ)|(t′, ξ) dt′.

Thus, for any ξ in 2jC,

eγt|ûΦ(t, ξ)| ≤ eδ|ξ||û0(ξ)|+ C

∫ t

0
e−λ2j

∫ t

t′
θ̇(t′′) dt′′2j eγt

′ |F(u2
Φ)|(t′, ξ) dt′.
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Taking the L2(2jC, dξ) norm gives

(2.3)

eγt‖uΦ(t, ·)‖L2
j
≤ ‖eδ|D|u0‖L2

j
+ C

∫ t

0
e−λ2j

∫ t

t′
θ̇(t′′) dt′′2j ‖eγt′u2

Φ(t′, ·)‖L2
j
dt′.

Now, we need a lemma of paradifferential calculus type. The statement requires

the following spaces, introduced in [8].

Definition 2.2. Let s be a real number. We define the space L̃∞T (Bs) as

the subspace of functions f of L∞T (Bs) such that the following quantity is finite:

‖f‖
L̃∞T (Bs)

def
=
∑
j

2js‖f‖L∞T (L2
j ).

Let us notice that L̃∞T (Bs) is obviously included in L∞T (Bs).

We shall also use a very basic version of Bony’s decomposition: let us

define

Tab
def
= F−1

∑
j

∫
2jC∩B(ξ,2j )̂

a(ξ − η)b̂(η)dη

and

Rab
def
= F−1

∑
j

∫
2jC∩B(ξ,2j+1 )̂

a(ξ − η)b̂(η)dη.

We obviously have ab = Tab+Rba.

Lemma 2.1. For any positive s, a constant C exists which satisfies the

following properties. For any function Ψ satisfying

(2.4) Ψ(t, ξ) ≤ Ψ(t, ξ − η) + Ψ(t, η)

for any function b and any positive T , a positive sequence (cj)j∈Z exists in

the sphere of `1(Z) (and depending only on T and b) such that, for any a and

any t ∈ [0, T ],

‖(Tab)Ψ(t)‖L2
j

+ ‖(Rab)Ψ(t)‖L2
j
≤ Ccj2−js‖aΨ(t)‖

B
3
2
‖bΨ‖L̃∞T (Bs)

.

Proof. We prove only the lemma for R, the proof for T being strictly

identical. Let us first investigate the case when the function Ψ is identically 0.

We first observe that for any ξ in the annulus 2jC, we have

F(Rab(t))(ξ) =
∑

j′≥j−2

∫
2j′C∩B(ξ,2j′+1)

â(t, ξ − η)b̂(t, η)dη.

By definition of ‖ · ‖
L̃∞T (Bs)

, we infer that

‖Rab(t)‖L2
j
≤ C‖a(t)‖F(L1)

∑
j′≥j−2

cj′2
−j′s‖b‖

L̃∞T (Bs)
.
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Defining c̃j =
∑

j′≥j−2

2(j−j′)scj′ which satisfies
∑
j

c̃j ≤ Cs, we obtain

(2.5) ‖Rab(t)‖L2
j
≤ Cc̃j2−js‖a(t)‖F(L1)‖b‖L̃∞T (Bs)

.

Since B
3
2 is included in F(L1), the lemma is then proved in the case when the

function Ψ is identically 0. In order to treat the general case, let us write that

|eΨ(t,ξ)F(Rab)(t, ξ)|= eΨ(t,ξ)
∑
j

∫
2jC∩B(ξ,2j)

|â(t, ξ − η)| |b̂(t, η)|dη

≤
∑
j

∫
2jC∩B(ξ,2j)

eΨ(t,ξ−η)|â(t, ξ − η)|eΨ(t,η)|b̂(t, η)|dη.

Estimate (2.5) implies the lemma. �

Now let us return to (2.3). We write

eγt
′
u2

Φ(t′) = TuΦ(t′)e
γt′uΦ(t′) +RuΦ(t′)e

γt′uΦ(t′).

Lemma 2.1 gives

‖eγt′u2
Φ(t′, ·)‖L2

j
≤ Ccj(T )2−j

3
2 ‖uΦ(t′)‖

B
3
2
‖eγt′uΦ(t′)‖

L̃∞T (B
3
2 )

for all t′ ≤ T , as long as the function Φ is positive. By definition of the

function θ, this gives

‖eγt′u2
Φ(t′, ·)‖L2

j
≤ Ccj(T )2−j

3
2 θ̇(t′)‖eγt′uΦ(t′)‖

L̃∞T (B
3
2 )
.

Plugging this inequality in (2.3) (after multiplication by 2j
3
2 ) gives

2j
3
2 eγt‖uΦ(t, ·)‖L2

j

≤ 2j
3
2 ‖eδ|D|u0‖L2

j
+ Ccj(T )‖eγtuΦ(t)‖

L̃∞T (B
3
2 )

∫ t

0
e−λ2j

∫ t

t′
θ̇(t′′) dt′′2j θ̇(t′) dt′,

for all t ≤ T , as long as the function Φ is positive. Since∫ t

0
e−λ2j

∫ t

t′
θ̇(t) dt′′2j θ̇(t′) dt′ ≤ 1

λ
,

we get

2j
3
2 eγt‖uΦ(t, ·)‖L2

j
≤ 2j

3
2 ‖eδ|D|u0‖L2

j
+
C

λ
cj(T )‖eγtuΦ(t)‖

L̃∞T (B
3
2 )
.

Taking the supremum for t ≤ T and summing over j, we get

‖eγtuΦ(t, ·)‖
L̃∞T (B

3
2 )
≤ ‖eδ|D|u0‖

B
3
2

+
C

λ
‖eγtuΦ(t)‖

L̃∞T (B
3
2 )

as long as the function Φ is positive. Thus, choosing λ = 2C we infer that

‖eγtuΦ(t, ·)‖
L̃∞T (B

3
2 )
≤ 2‖eδ|D|u0‖

B
3
2
.
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Since ‖a‖
L∞T (B

3
2 )
≤ ‖a‖

L̃∞T (B
3
2 )

, by definition of θ, we get

θ̇(t) ≤ 2e−γt‖eδ|D|u0‖
B

3
2
,

as long as the function Φ is positive. This gives γθ(t) ≤ 2‖eδ|D|u0‖
B

3
2
. If

‖eδ|D|u0‖
B

3
2
≤ δγ

8C
,

then we get that the function Φ remains positive for all time and the global

regularity is proved.

2.3. Functional setting for the study of (RNSε). In the light of the com-

putations of the previous section, let us introduce the functional setting we

are going to work with to prove the theorem. The proof relies on exponential

decay estimates for the Fourier transform of the solution. Let us define the

key quantity we wish to control in order to prove the theorem. To do so, let

us consider the Friedrichs approximation of the original (NS) system
∂tu−∆u+ Pn(u · ∇u+∇p) = 0

div u = 0

u|t=0 = Pn u0,ε,

where Pn denotes the orthogonal projection of L2 on functions the Fourier

transform of which is supported in the ball Bn centered at the origin and of

radius n. Thanks to the L2 energy estimate, this approximated system has a

global solution the Fourier transform of which is supported in Bn. Of course,

this provides an approximation of the rescaled system namely

(RNSε,n)



∂tw
h −∆εw

h + Pn,εM⊥
Ä
v · ∇wh + w3∂3v̄ +∇hq

ä
= 0

∂tw
3 −∆εw

3 + Pn,εM⊥
Ä
v · ∇w3 + ε2∂3q

ä
= 0

∂tv̄
h − ε2∂2

3 v̄
h + Pn,ε ∂3M(w3wh) = 0

div(v̄ + w) = 0

(v̄, w)|t=0 = (v̄0, w0),

where Pn,ε denotes the orthogonal projection of L2 on functions the Fourier

transform of which is supported in Bn,ε
def
={ξ / |ξε|2

def
= |ξh|2 + ε2ξ2

3 ≤ n2}. We

shall prove analytic type estimates here, meaning exponential decay estimates

for the solution of the above approximated system. In order to make notation

not too heavy we shall drop the fact that the solutions we deal with are in fact

approximate solutions and not solutions of the original system. A priori bounds

on the approximate sequence will be derived, which will clearly yield the same

bounds on the solution. In the spirit of [3] (see also (2.2) in the previous

section), we define the function θ (we drop also the fact that θ depends on ε
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in all that follows) by

(2.6) θ̇(t) = ‖w3
Φ(t)‖

B
7
2

+ ε‖whΦ(t)‖
B

7
2

and θ(0) = 0,

where

(2.7) Φ(t, ξ) = t
1
2 |ξh|+ a|ξ3| − λθ(t)|ξ3|

for some λ that will be chosen later on (see §2.5). Notice that the definition of

θ takes into account the particular algebraic structure of (RNSε,n). Since the

Fourier transform of w is compactly supported, the above differential equation

has a unique global solution on R+. If we prove that

(2.8) ∀t ∈ R+ , θ(t) ≤ a

λ
,

this will imply that the sequence of approximated solutions of the rescaled

system is a bounded sequence of L1(R+; Lip). So is, for a fixed ε, the family

of approximation of the original Navier-Stokes equations. This is (more than)

enough to imply that a global smooth solution exists.

2.4. Main steps of the proof. The proof of intequality (2.8) (and of The-

orem 2) will be a consequence of the following two propositions which provide

estimates on vh, wh, and w3. They will be proved in the coming sections.

The first one uses only the fact that the function Φ is subadditive.

Proposition 2.1. A constant C
(1)
0 exists such that, for any positive λ,

for any initial data v0, and for any T satisfying θ(T ) ≤ a/λ, we have

θ(T ) ≤ ε‖ea|D3|wh0‖B 7
2

+ ‖ea|D3|w3
0‖B 7

2
+ C

(1)
0 ‖vΦ‖

L̃∞T (B
7
2 )
θ(T ).

Moreover, we have the following L∞-type estimate on the vertical component :

‖w3
Φ‖L̃∞T (B

7
2 )
≤ ‖ea|D3|w3

0‖B 7
2

+ C
(1)
0 ‖vΦ‖2

L̃∞T (B
7
2 )
.

The second proposition is more subtle to prove, and it shows that the

use of the analytic-type norm actually allows to recover the missing vertical

derivative on vh, in a L∞-type space. It should be compared to the methods

described in the model case above.

Proposition 2.2. A constant C
(2)
0 exists such that, for any positive λ,

for any initial data v0, and for any T satisfying θ(T ) ≤ a/λ, we have

‖vhΦ‖L̃∞T (B
7
2 )
≤ ‖ea|D3|vh0‖B 7

2
+ C

(2)
0

( 1

λ
+ ‖vΦ‖

L̃∞T (B
7
2 )

)
‖vhΦ‖L̃∞T (B

7
2 )
.
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2.5. Proof of the theorem assuming the two propositions. Let us assume

these two propositions are true for the time being and conclude the proof of

Theorem 2. It relies on a continuation argument.

For any positive λ and η, let us define

Tλ
def
=
¶
T / max{‖vΦ‖

L̃∞T (B
7
2 )
, θ(T )} ≤ 4η

©
.

Since the two functions involved in the definition of Tλ are nondecreasing, Tλ
is an interval. Since θ is an increasing function which vanishes at 0, a positive

time T0 exists such that θ(T0) ≤ 4η. Moreover, if ‖ea|D|3|v0‖
B

7
2
≤ η then,

since ∂tv = Pn F (v) (recall that we are considering Friedrich’s approximations),

a positive time T1 (possibly depending on n) exists such that ‖vΦ‖
L̃∞T1

(B
7
2 )

≤ 4η. Thus Tλ is of the form [0, T ?) for some positive T ?. Our purpose is to

prove that T ? = ∞. As we want to apply Propositions 2.1 and 2.2, we need

that λθ(T ) ≤ a. This leads to the condition

(2.9) 4λη ≤ a.

From Proposition 2.1, defining C0
def
= C

(1)
0 + C

(2)
0 , we have

‖vΦ‖
L̃∞T (B

7
2 )
≤ ‖ea|D3|v0‖

B
7
2

+
C0

λ
‖vΦ‖

L̃∞T (B
7
2 )

+ C0‖vΦ‖2
L̃∞T (B

7
2 )

for all T ∈ Tλ. Let us choose λ =
1

2C0
· This gives

‖vΦ‖
L̃∞T (B

7
2 )
≤ 2‖ea|D3|v0‖

B
7
2

+ 4C0η‖vΦ‖
L̃∞T (B

7
2 )
.

Choosing η =
1

12C0

, we infer that, for any T ∈ Tλ,

(2.10) ‖vΦ‖
L̃∞T (B

7
2 )
≤ 3‖ea|D3|v0‖

B
7
2
.

Propositions 2.1 and 2.2 imply that, for all T ∈ Tλ,

θ(T ) ≤ ε‖ea|D3|wh0‖B 7
2

+ ‖ea|D3|w3
0‖B 7

2
+ C0ηθ(T ).

This implies that

θ(T ) ≤ 2ε‖ea|D3|wh0‖B 7
2

+ 2‖ea|D3|w3
0‖B 7

2
.

If 2ε‖ea|D3|wh0‖B 7
2

+ 2‖ea|D3|w3
0‖B 7

2
≤ η and ‖ea|D3|vh0‖B 7

2
≤ η, then the above

estimate and intequality (2.10) ensure (2.8). This concludes the proof of The-

orem 2.
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3. The action of the phase Φ on the heat operator

The purpose of this section is the study of the action of the multiplier eΦ

on Eε f . Let us recall that the function Φ is defined in (2.7) by Φ(t, ξ) =

t
1
2 |ξh|+ a|ξ3| − λθ(t)|ξ3|. This action is described by the following lemma.

Lemma 3.1. A constant C0 exists such that, for any function f with com-

pact spectrum, for any s we have

‖(EεM⊥f)Φ‖L̃∞T (Bs)
≤ C0‖gΦ‖L̃∞T (Bs)

and

‖(EεM⊥f)Φ‖L1
T (Bs) ≤ C0‖gΦ‖L1

T (Bs) where g
def
= F−1

( 1

|ξh|
|FM⊥f |

)
.

Proof. It will be useful to consider, for any function f , the inverse Fourier

transform of |f̂ |, defined as

f+ def
= F−1|f̂ |.

Let us notice that the map f 7→ f+ preserves the norm of all Bs spaces.

Let us write Eε in terms of the Fourier transform. For any ξ ∈ (Z2 \{0})
× R,

F (Eε f)Φ (t, ξ) = eΦ(t,ξ)
∫ t

0
e−(t−t′)|ξε|2f(t′, ξ)dt′,

with |ξε|2
def
= |ξh|2 + ε2|ξ3|2, as in all that follows. Thus we infer, for any ξ ∈

(Z2 \{0})× R,

|F ((Eε f)Φ) (t, ξ)| ≤
∫ t

0
e−(t−t′)|ξε|2+Φ(t,ξ)−Φ(t′,ξ)F(f+

Φ )(t′, ξ)dt′.

By definition of Φ, we have (see [3, estimate (24)])

(3.1) Φ(t, ξ)− Φ(t′, ξ) ≤ −λ|ξ3|
∫ t

t′
θ̇(t′′)dt′′ +

t− t′

2
|ξh|2.

Thus, for any ξ ∈ (Z2 \{0})× R,

(3.2) |F ((Eε f)Φ) (t, ξ)| ≤
∫ t

0
e−

(t−t′)
2
|ξh|2−ε2(t−t′)|ξ3|2F(f+

Φ )(t′, ξ)dt′.

Let us define Ch
def
={1 ≤ |ξh| ≤ 2} × R. The above inequality means that for

any ξ in 2jC ∩ 2kCh, we have

|F((Eε f)Φ)(t, ξ)| ≤ C
∫ t

0
e−c(t−t

′)22k
2kĝΦ(t′, ξ)dt′.

Taking the L2 norm in ξ in that inequality gives

(3.3) ‖(Eε f)Φ(t)‖FL2(2jC∩2kCh) ≤
∫ t

0
e−c(t−t

′)22k
2k‖gΦ(t′)‖L2

j
dt′.
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By definition of the L̃∞T (Bs) norm, this gives, for any t ≤ T ,

2js‖(Eε f)Φ‖L∞T (L2(2jC∩2kCh))≤Ccj‖gΦ‖L̃∞T (Bs)

∫ t

0
e−c(t−t

′)22k
2kdt′

≤Ccj2−k‖gΦ‖L̃∞T (Bs)
.

Now, writing that

‖(EεM⊥f)Φ‖L∞T (L2
j ) ≤

∞∑
k=0

‖Eε(fΦ)‖L∞T (L2(2jC∩2kCh))

gives the first inequality of the lemma.

In order to prove the second one, let us use the definition of the norm of

the space Bs and (3.3); this gives∑
j

2js‖(Eε f)Φ‖L1
T (L2

j )≤
∑
j,k

2js‖Eε(fΦ)‖L1
T (FL2(2jC∩2kCh))

≤C
∑
j,k

∫
[0,T ]2

1t≥t′e
−c22k(t−t′)2kcj(t

′)‖gΦ(t′)‖Bsdt′dt.

Integrating first in t gives∑
j

2js‖(Eε fΦ)‖L1
T (L2

j ) ≤ C
∑
j,k

∫
[0,T ]

2−kcj(t
′)‖gΦ(t′)‖Bsdt.

As the index k is nonnegative, we get the second estimate of the lemma. �

The following proposition will be of frequent use.

Proposition 3.1. If s is positive, then for any function Ψ satisfying (2.4),

‖(Tab)Ψ‖L̃∞T (Bs)
+ ‖(Rab)Ψ‖L̃∞T (Bs)

≤C‖aΨ‖
L∞T (B

3
2 )
‖bΨ‖L̃∞T (Bs)

and

‖(Tab)Ψ‖L1
T (Bs) + ‖(Rab)Ψ‖L1

T (Bs)≤C min
¶
‖aΨ‖

L1
T (B

3
2 )
‖bΨ‖L̃∞T (Bs)

,

‖aΨ‖
L∞T (B

3
2 )
‖bΨ‖L1

T (Bs)

©
.

Proof. Taking the L∞ norm in time in the inequality of Lemma 2.1 gives

that

‖(Tab)Ψ‖L∞T (L2
j ) + ‖(Rab)Ψ‖L∞T (L2

j ) ≤ Ccj2−js‖a‖L∞T (B
3
2 )
‖b‖

L̃∞T (Bs)
,

which is the first inequality of the corollary. Taking the L1 norm in time on

the inequality of Lemma 2.1 gives

‖(Tab)Ψ‖L1
T (L2

j ) + ‖(Rab)Ψ‖L1
T (L2

j ) ≤ Ccj2−js‖a‖L1
T (B

3
2 )
‖b‖

L̃∞T (Bs)
,

while the other estimate is a consequence of product rules in Besov spaces. �
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The following lemma is a key one. It is here that the function θ allows

the gain of the vertical derivative, in the spirit of the method followed in the

model example presented above.

Lemma 3.2. Let a(D) and b(D) be two Fourier multipliers such that

|a(ξ)| ≤ C|ξ3| and |b(ξ)| ≤ C|ξ|2. We have

‖(Eε a(D)Rb(D)w3f)Φ‖
L̃∞T (B

7
2 )

+ ‖(Eε a(D)Tb(D)w3f)Φ‖
L̃∞T (B

7
2 )

≤ C
( 1

λ
+ ‖w3

Φ‖L̃∞T (B
7
2 )

)
‖fΦ‖

L̃∞T (B
7
2 )
.

Proof. We give only the proof for the first term. The second term is

estimated exactly along the same lines. Let us write Eε in Fourier variables.

We have

F(Eε a(D)Rb(D)w3f)Φ(t, ξ) = eΦ(t,ξ)
∫ t

0
e−(t−t′)|ξε|2a(ξ)F(Rb(D)w3f)(t′, ξ)dt′.

Thus, using the fact that |a(ξ)| ≤ C|ξ3|, we obtain that

|F(Eε a(D)Rw3f)Φ(t, ξ)|

≤ C
∫ t

0
e−(t−t′)|ξε|2+Φ(t,ξ)−Φ(t′,ξ)|ξ3| |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

Taking into account Inequality (3.1),

|F(Eε a(D)Rw3f)Φ(t, ξ)|

≤ C
∫ t

0
e−

t−t′
2
|ξε|2−λ|ξ3|

∫ t

t′
θ̇(t′′)dt′′ |ξ3| |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

Let us denote by Ψ the Fourier multiplier Ψa
def
= F−1(1|ξh|≤2|ξ3|â). If |ξh| ≤ 2|ξ3|

and ξ is in 2jC, then we have that |ξ3| ∼ 2j . Thus, for any ξ in 2jC, we infer

that

|FΨ(Eε a(D)Rb(D)w3f)Φ(t, ξ)|≤
∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

Taking the L2 norm gives

‖Ψ(Eε a(D)Rb(D)w3f)Φ(t, ·)‖L2
j
≤
∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j‖(Rb(D)w3f)Φ)(t′)‖L2

j
dt′.
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Using Lemma 2.1, we get

2j
7
2 ‖Ψ(Eε a(D)Rb(D)w3f)Φ(t, ·)‖L2

j
≤Ccj‖fΦ(t)‖

L̃∞T (B
7
2 )

×
∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j‖b(D)w3

Φ(t′, ·)‖
B

3
2
dt′

≤Ccj‖fΦ(t)‖
L̃∞T (B

7
2 )

×
∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j‖w3

Φ(t′, ·)‖
B

7
2
dt′

≤Ccj‖fΦ(t)‖
L̃∞T (B

7
2 )

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j θ̇(t′)dt′

≤ C

λ
cj‖fΦ(t)‖

L̃∞T (B
7
2 )
.

By summation in j, we deduce that

(3.4) ‖Ψ(Eε a(D)Rw3f)Φ‖
L̃∞T (B

7
2 )
≤ C

λ
‖fΦ(t)‖

L̃∞T (B
7
2 )
.

If 2|ξ3| ≤ |ξh|, then, for any ξ in 2jC, |ξh| is equivalent to 2j and |ξ3| is less

than 2j . So we infer that for any ξ in 2jC,

|F(Id−Ψ)(Eε a(D)Rb(D)w3f)Φ(t, ξ)|

≤
∫ t

0
e−c(t−t

′)22j
2j |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

By definition of ‖ · ‖
L̃∞T (B

7
2 )

, taking the L2 norm of the above inequality gives

2j
7
2 ‖(Id−Ψ)(Eε a(D)Rb(D)w3f)Φ(t, ·)‖L2

j

≤
∫ t

0
e−c2

2j(t−t′)2j2j
7
2 ‖(Rb(D)w3f)Φ)(t′)‖L2

j
dt′

≤ Ccj‖(Rb(D)w3f)Φ‖
L̃∞T (B

7
2 )
.

After a summation in j, Proposition 3.1 implies that

‖(Id−Ψ)(Eε a(D)Rb(D)w3f)Φ‖
L̃∞T (B

7
2 )
≤C‖b(D)w3

Φ‖L̃∞T (B
3
2 )
‖fΦ‖

L̃∞T (B
7
2 )

≤C‖w3
Φ‖L̃∞T (B

7
2 )
‖fΦ‖

L̃∞T (B
7
2 )
.

Together with (3.4), this concludes the proof of the lemma. �

Lemma 3.3. A constant C0 exists such that, for any function f with com-

pact spectrum, we have for α in {1, 2},∥∥∥ÄEε(ε∂3)αM⊥f
ä

Φ

∥∥∥
L̃∞T (Bs)

≤C0‖fΦ‖L̃∞T (Bs)
and∥∥∥ÄEε(ε∂3)αM⊥f

ä
Φ

∥∥∥
L1
T (Bs)

≤C0‖fΦ‖L1
T (Bs).
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Proof. Let us start with the case when α = 2. Recalling (3.2), we have

that (for 0 < ε < 1)

ε2|F(Eε ∂2
3f)Φ(t, ξ)| ≤

∫ t

0
e−ε

2 (t−t′)
2
|ξ|2ε2ξ2

3F(f+
Φ )(t′, ξ)dt′.

Writing that |ξ3| ≤ |ξ|, we infer that

ε2
∥∥∥(Eε ∂2

3f)Φ(t)
∥∥∥
L2
j

≤
∫ t

0
e−cε

2(t−t′)22j
ε222j‖f(t′)‖L2

j
dt′.

The estimates follow directly by applying Young’s inequality in t.

In the case when α = 1, we decompose f into two parts,

f = f (1) + f (2), with f (1) = F−1(1ε|ξ3|≤|ξh|f̂).

Let us start by studying the first contribution. We simply write that

ε
∣∣∣FÄEε ∂3f

(1)
ä

Φ
(t, ξ)

∣∣∣≤ ∫ t

0
e−

(t−t′)
2
|ξε|2ε|ξ3|F(f

(1)
Φ )+(t′, ξ)dt′

≤
∫ t

0
e−

(t−t′)
2
|ξε|2 |ξh|F(f

(1)
Φ )+(t′, ξ)dt′

which amounts exactly to the computation (3.3), with g replaced by f (1). On

the other hand, for f (2) we can write

ĝ(2)(ξ)
def
=

1

|ξh|
1ε|ξ3|≥|ξh||FM

⊥f (2)(ξ)|

so that

ε

∣∣∣∣FÄEε ∂3M
⊥f (2)

ä
Φ

(t, ξ)

∣∣∣∣ ≤ ∫ t

0
e−

(t−t′)
2
|ξh|2−ε2(t−t′)|ξ3|2ε|ξ3||ξh|ĝ(2)(t′, ξ)dt′.

Since |ξh| ≤ ε|ξ3|, we are reduced to the case when α = 2 and the conclusion

comes from the fact that ‖g(2)
Φ ‖Bs ≤ ‖M⊥f (2)

Φ ‖Bs ≤ ‖fΦ‖Bs . That proves the

lemma. �

4. Classical analytic-type parabolic estimates

The purpose of this section is to prove Proposition 2.1. We shall use the

algebraic structure of the Navier-Stokes system and the fact that the function Φ

is subadditive.

Let us first bound the horizontal component. We recall that

whΦ(t) = et∆ε+Φ(t,D)wh(0)

−
Ä
EεM⊥(v · ∇wh)

ä
Φ

(t)−
Ä
EεM⊥(w3∂3v̄

h)
ä

Φ
(t)−

Ä
Eε(∇hq)

ä
Φ

(t).
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We note that v ·∇wh = divh(vh⊗wh) +∂3(w3wh), recalling that v3 = w3. On

the one hand, using Lemma 3.1 and Corollary 3.1, we can write

ε‖Eε(divh(vhwh))Φ‖
L1
T (B

7
2 )
≤Cε‖(vhwh)Φ‖

L1
T (B

7
2 )

≤C‖vΦ‖
L̃∞T (B

7
2 )
ε‖wh‖

L1
T (B

7
2 )
.

By definition of θ, we infer that

(4.1) ε‖Eε(divh(vhwh))Φ‖
L1
T (B

7
2 )
≤ Cθ(T )‖vhΦ‖L̃∞T (B

7
2 )
.

On the other hand, Lemma 3.3 and Proposition 3.1 imply that

‖Eε
Ä
ε∂3M

⊥(w3wh)
ä

Φ
‖
L1
T (B

7
2 )
≤C‖w3wh‖

L1
T (B

7
2 )

(4.2)

≤Cθ(T )‖vhΦ‖L̃∞T (B
7
2 )
.

For the second term, we use paradifferential calculus which gives

w3∂3v̄
h = Tw3∂3v̄

h +R∂3v̄hw
3

= ∂3Tw3 v̄h − T∂3w3 v̄h +R∂3v̄hw
3.

Using again Lemma 3.3 and Proposition 3.1, we get

‖Eε
Ä
ε∂3M

⊥Tw3 v̄h)Φ‖
L1
T (B

7
2 )
≤C‖(Tw3 v̄h)Φ‖

L1
T (B

7
2 )

≤C‖w3
Φ‖L1

T (B
7
2 )
‖v̄h‖

L̃∞T (B
7
2 )
.

By definition of θ, we infer that

(4.3) ‖Eε
Ä
ε∂3M

⊥Tw3 v̄h)Φ‖
L1
T (B

7
2 )
≤ Cθ(T )‖vhΦ‖L̃∞T (B

7
2 )
.

By Lemma 3.1 and Proposition 3.1, we can write that

‖Eε
Ä
εM⊥T∂3w3 v̄h)Φ‖

L1
T (B

7
2 )
≤Cε‖(T∂3w3 v̄h)Φ‖

L1
T (B

7
2 )

≤Cε‖w3
Φ‖L1

T (B
7
2 )
‖v̄h‖

L̃∞T (B
7
2 )
.

Thus,

(4.4) ‖Eε
Ä
εM⊥T∂3w3 v̄h)Φ‖

L1
T (B

7
2 )
≤ Cθ(T )‖vhΦ‖L̃∞T (B

7
2 )
,

and finally, along the same lines,

(4.5) ‖Eε
Ä
εM⊥R∂3v̄hw

3)Φ‖
L1
T (B

7
2 )
≤ Cθ(T )‖vhΦ‖L̃∞T (B

7
2 )
.

Now we are left with the study of the pressure. Some of its properties are

described in the following lemma.
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Lemma 4.1. Let us define ∇ε
def
= (∇h, ε∂3). The following two inequalities

on the rescaled pressure hold :

ε‖(Eε∇εM⊥q)Φ‖
L̃∞T (B

7
2 )
≤C‖vΦ‖2

L̃∞T (B
7
2 )

and

ε‖(Eε∇εM⊥q)Φ‖
L1
T (B

7
2 )
≤C‖vΦ‖

L̃∞T (B
7
2 )
θ(T ).

Proof. Using the formula (2.1) on the rescaled pressure and the divergence

free condition on v, let us decompose it as εq = q1,ε − q2,ε with

q1,ε
def
=

2∑
k=1

∂k∂`∆
−1
ε (εwkv`) +

∑
1≤k≤2

∂k(ε∂3)∆−1
ε (w3vk)

and

q2,ε
def
= 2ε∂3∆−1

ε (w3 divhw
h).

Let us start with q1,ε. We have

∇εq1,ε =
2∑

k=1

∂k

Ç 2∑
`=1

∇ε∂`∆−1
ε (εwkv`) +∇ε(ε∂3)∆−1

ε (w3vk)

å
.

Since∇2
ε∆
−1
ε is a family of bounded Fourier multipliers (uniformly with respect

to ε), from Lemma 3.1 and Proposition 3.1, we infer that

‖(Eε(∇εM⊥q1,ε))Φ‖
L̃∞T (B

7
2 )
≤C‖vΦ‖2

L̃∞T (B
7
2 )

(4.6)

and

‖(Eε(∇εM⊥q1,ε))Φ‖
L1
T (B

7
2 )
≤C‖vΦ‖

L̃∞T (B
7
2 )
θ(T ).(4.7)

In order to study q2,ε, let us observe that

w3 divhw
h =Rdivh whw3 + Tw3 divhw

h(4.8)

=Rdivh whw3 +
2∑

k=1

Ä
∂kTw3wk − T∂kw3wk

ä
.

As above, using Lemma 3.1 and Proposition 3.1 we get

‖(Eε(∇εM⊥q2,ε))Φ‖
L̃∞T (B

7
2 )
≤C‖vΦ‖2

L̃∞T (B
7
2 )

and

‖(Eε(∇εM⊥q2,ε))Φ‖
L1
T (B

7
2 )
≤C‖vΦ‖

L̃∞T (B
7
2 )
θ(T ).

Together with estimates (4.6) and (4.7), this concludes the proof of the lemma.

�

The above Lemma 4.1, together with estimates (4.1) to (4.4), implies that

(4.9) ε‖wh‖
L1
T (B

7
2 )
≤ ε‖ea|D3|wh0‖B 7

2
+ C

(1)
0 ‖vΦ‖

L̃∞T (B
7
2 )
θ(T ).
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Let us prove the estimates on the vertical component. It turns out that

it is better behaved because of the special structure of the system. Indeed,

thanks to the divergence free condition, almost no vertical derivatives appear

in the equation of w3: we have (since w3 = v3)

(4.10) ∂tw
3 −∆εw

3 = −vh · ∇hw3 + w3 divhw
h − ε2∂3q.

The Duhamel formula reads

w3(t) = et∆εw3(0) + EεM⊥(w3 divhw
h − vh · ∇hw3)(t)− EεM⊥(ε2∂3q)(t).

Applying the Fourier multiplier eΦ(t,D) to the above relation gives

w3
Φ(t) = et∆ε+Φ(t,D)w3(0) +

Ä
EεM⊥(w3 divhw

h − vh · ∇hw3)
ä

Φ
(t)(4.11)

−
Ä
EεM⊥ε2∂3q

ä
Φ

(t).

Using (4.8) and then Lemma 3.1 and Proposition 3.1, we get∥∥∥ÄEεM⊥(w3 divhw
h)
ä

Φ

∥∥∥
L̃∞T (B

7
2 )
≤C‖w3

Φ‖L̃∞T (B
7
2 )
‖whΦ‖L̃∞T (B

7
2 )

(4.12)

and ∥∥∥ÄEεM⊥(w3 divhw
h)
ä

Φ
‖
L1
T (B

7
2 )
≤C‖w3

Φ‖L1
T (B

7
2 )
‖whΦ‖L̃∞T (B

7
2 )
.(4.13)

Writing

vh · ∇ha=
2∑

k=1

Ä
Tvk∂ka+R∂kav

k
ä

=−Tdivh wha+
2∑

k=1

Ä
∂kTvka+R∂kav

k
ä

and using Lemma 3.1 and Proposition 3.1, we get∥∥∥ÄEεM⊥(vh · ∇hw3)
ä

Φ

∥∥∥
L̃∞T (B

7
2 )
≤C‖w3

Φ‖L̃∞T (B
7
2 )
‖whΦ‖L̃∞T (B

7
2 )

and ∥∥∥ÄEεM⊥(vh · ∇hw3)
ä

Φ
‖
L1
T (B

7
2 )
≤C‖w3

Φ‖L1
T (B

7
2 )
‖whΦ‖L̃∞T (B

7
2 )
.

Together with estimates (4.12) and (4.13), and Lemma 4.1, this gives

‖w3
Φ‖L1

T (B
7
2 )
≤‖ea|D3|w3

0‖B 7
2

+ C
(1)
0 ‖vΦ‖

L̃∞T (B
7
2 )
θ(T )

and

‖w3
Φ‖L̃∞T (B

7
2 )
≤‖ea|D3|w3

0‖B 7
2

+ C
(1)
0 ‖vΦ‖2

L̃∞T (B
7
2 )
.

Together with (4.9), this concludes the proof of Proposition 2.1.
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5. The gain of one vertical derivative on the horizontal part

In this section we shall prove Proposition 2.2. The proof will be separated

into two parts: first we shall consider the case of the horizontal average v̄hΦ,

and then the remainder whΦ.

5.1. The gain of one vertical derivative on the horizontal average. We

shall study in this section the equation on the horizontal average of the solu-

tion. We emphasize that in the equation on v̄ we cannot recover the vertical

derivative appearing in the force term by the regularizing effect. The funda-

mental idea to gain a vertical derivative is to use the analyticity of the solution

and therefore to estimate v̄Φ. The lemma is the following.

Lemma 5.1. A constant C0 exists such that, for any positive λ, for any

initial data v0, and for any T satisfying θ(T ) ≤ a/λ,

‖v̄hΦ‖L̃∞T (B
7
2 )
≤ ‖ea|D3|v̄h0‖B 7

2
+ C0

( 1

λ
+ ‖vΦ‖

L̃∞T (B
7
2 )

)
‖vhΦ‖L̃∞T (B

7
2 )
.

Proof. The horizontal average v̄ satisfies

(5.1) ∂tv̄ − ε2∂2
3 v̄ = −∂3M(w3wh) and v̄|t=0 = v̄0.

Let us define G
def
= −∂3M(w3wk). Writing the solution of (5.1) in terms of the

Fourier transform, using (3.1) with ξh = 0, we get

|F(v̄Φ)(t, ξ)| ≤ |F v̄0(ξ)|ea|ξ3| +
∫ t

0
e−λ|ξ3|

∫ t

t′
θ̇(t′′)dt′′ |F(GΦ)(t′, ξ)|dt′.

Then, taking the L2
j norm, we infer that

(5.2) ‖v̄Φ(t)‖L2
j
≤ ‖ea|D3|v̄0‖L2

j
+

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′‖GΦ(t′)‖L2

j
dt′.

Now, let us estimate ‖GΦ(t′)‖L2
j
. For any function a, using the fact that the

vector field w is divergence free, let us write that

∂3(w3a) = ∂3

Ä
Tw3a+Raw

3
ä

(5.3)

= ∂3Tw3a+R∂3aw
3 −Ra divhw

h

= ∂3Tw3a+R∂3aw
3 −

2∑
`=1

∂`Raw
` +

2∑
`=1

R∂`aw
`.

Thus, we infer that

G=−∂3MTw3wk −M
(
R∂3wkw3 +

2∑
`=1

R∂`wkw` −
2∑
`=1

∂`Rw3w`
)

(5.4)

=−∂3MTw3wk −M
(
R∂3wkw3 +

2∑
`=1

R∂`wkw`
)
.
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Now, let us study FM(Tab)Φ and FM(Rab)Φ for two functions a and b which

have 0 horizontal average. As the two terms are identical, let us study the first

one. By definition, we have

F
Ä
Tab)(t, (0, ξ3)) =

∑
j

∫
2jC∩B((0,ξ3),2j )̂

a((0, ξ3)− η)b̂(η)dη.

Since θ(T ) ≤ λ−1a, by definition of Φ, for any η ∈ (Z2 \{0})× R, we gave

Φ(t, (0, ξ3))≤Φ(t, (0, ξ3 − η3)) + Φ(t, (0, η3))

≤−2t
1
2 + Φ(t, ((0, ξ3)− η) + Φ(t,−η).

Thus we have

|(FM(Tab)Φ)(t, ξ)| ≤ e−2t
1
2 (FMTa+

Φ
b+Φ)(t, ξ).

Applied to (5.4), this implies that∣∣∣FGΦ(t, ξ)
∣∣∣ ≤ |ξ3|F

Ä
T(w3

Φ)+(wkΦ)+
ä
(t, (0, ξ3))

+ e−2t
1
2F
(
R(∂3wk

Φ)+(w3
Φ)+ +

2∑
`=1

R(∂`w
k
Φ)+(w`Φ)+

)
(t, (0, ξ3)).

Inequality (2.1) then implies that, for any t ∈ [0, T ],

(5.5) 2j
7
2 ‖GΦ(t)‖L2

j
≤ Ccj‖vhΦ‖L̃∞T (B

7
2 )

Ä
2j‖w3

Φ(t)‖
B

7
2

+ e−2t
1
2 ‖vΦ‖

L̃∞T (B
7
2 )

ä
.

Then, by definition of θ, inequalities (5.2) and (5.5) imply that

2j
7
2 ‖(v̄Φ)(t)‖L2

j
≤ 2j

7
2 ‖ea|D3|v̄0‖L2

j

+Ccj‖vΦ‖
L̃∞T (B

7
2 )

Ç∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j θ̇(t′)dt′ + ‖vΦ‖

L̃∞T (B
7
2 )

∫ t

0
e−2t′

1
2 dt′
å
.

This gives

2j
7
2 ‖v̄Φ‖L∞T (L2

j ) ≤ 2j
7
2 ‖ea|D3|v̄0‖L2

j
+ Ccj‖vhΦ‖L̃∞T (B

7
2 )

( 1

λ
+ ‖vΦ‖

L̃∞T (B
7
2 )

)
.

Taking the sum over j concludes the proof of the lemma. �

5.2. The gain of the vertical derivative on the whole horizontal term. Now

let us estimate the rest of the horizontal term, that is ‖whΦ‖L̃∞T (B
7
2 )

. As in

Section 5.1, the function θ will play a crucial role.

Lemma 5.2. A constant C0 exists such that, for any λ, for any initial

data v0, and for any T satisfying θ(T ) ≤ a/λ, we have

‖whΦ‖L̃∞T (B
7
2 )
≤ ‖ea|D3|wh0‖B 7

2
+ C0

( 1

λ
+ ‖vΦ‖

L̃∞T (B
7
2 )

)
‖vhΦ‖L̃∞T (B

7
2 )
.
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Proof. The Duhamel formula writes

wh(t) = et∆εwh(0)− Eε divh(vh ⊗ vh)(t)− EεM⊥∂3(w3vh)(t)− Eε(∇hq)(t).

Lemma 3.1 and Proposition 3.1 imply that

‖(Eε divh(vh ⊗ vh))Φ‖
L̃∞T (B

7
2 )
≤C‖(vh ⊗ vh)Φ‖

L̃∞T (B
7
2 )

(5.6)

≤C‖vhΦ‖2
L̃∞T (B

7
2 )
.

Then using (5.4), thanks to Leibnitz formula, we get

M⊥∂3(w3vk) = M⊥∂3Tw3v
k + F k with

F k
def
= M⊥

Ç
R∂3vkw

3 −
2∑
`=1

Ä
∂`Rvkw

` −R∂`vkw
`
äå
.

Thanks to Lemma 3.1 and Proposition 3.1, we get

‖(EεM⊥F k)Φ‖
L̃∞T (B

7
2 )
≤‖(F k)Φ‖

L̃∞T (B
7
2 )

≤C‖vΦ‖
L̃∞T (B

7
2 )
‖vhΦ‖L̃∞T (B

7
2 )
.

Together with Lemma 3.2, this gives

(5.7)
∥∥∥ÄEεM⊥∂3(w3vh)

ä
Φ

∥∥∥
L̃∞T (B

7
2 )
≤ C0

( 1

λ
+ ‖vΦ‖

L̃∞T (B
7
2 )

)
‖vhΦ‖L̃∞T (B

7
2 )
.

Now let us study the pressure term. Formula (2.1) together with the divergence

free condition leads to the decomposition q = qh(wh) + q3(v) with

qh(wh)
def
= ∆−1

ε

(
(divhw

h)2 +
∑

1≤k,`≤2

∂kw
`∂`w

k
)

(5.8)

and

q3(v)
def
= ∆−1

ε

( ∑
1≤`≤2

∂3v
`∂`w

3
)
.(5.9)

For the first term we use Bony’s decomposition in order to obtain

∂kw
`∂`w

k = T∂kw`∂`w
k +R∂`wk∂kw

`.

Then the Leibnitz formula implies that

(5.10) ∂kw
`∂`w

k = ∂`T∂kw`wk + ∂kR∂`wkw` − T∂`∂kw`wk −R∂k∂`wkw`.

On the other hand, again by paradifferential calculus, we can write that

r(divhw
h)2 = Tdivh wh divhw

h +Rdivh wh divhw
h(5.11)

= divh
Ä
Tdivh whwh +Rdivh whwh

ä
−

2∑
k=1

Ä
T∂k divh whwk +R∂k divh whwk

ä
.
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Then Lemma 3.1 implies that

‖(Eε∇hqh(wh))Φ‖
L̃∞T (B

7
2 )
≤ C0‖(M⊥qh(wh))Φ‖

L̃∞(B
7
2 )
.

Using Proposition 3.1 and the fact that the operators ∇h∆−1
ε M⊥ and ∆−1

ε M⊥

are bounded (uniformly in ε) Fourier multipliers, we obtain

(5.12)
∥∥∥ÄEε(∇hqh(wh))

ä
Φ

∥∥∥
L̃∞T (B

7
2 )
≤ C0‖vhΦ‖2

L̃∞T (B
7
2 )
.

For the second term, let us decompose q3(v) in the following way:

∂3v
`∂`w

3 = T∂3v`∂`w
3 +R∂`w3∂3v

`

= ∂`T∂3v`w
3 + ∂3R∂`w3v` − T∂3∂`v`

w3 −R∂3∂`w3v`.

Using now Lemma 3.1 together with Proposition 3.1 and Lemma 3.2, we obtain

(5.13)
∥∥∥ÄEε(∇hq3(v))

ä
Φ

∥∥∥
L̃∞T (B

7
2 )
≤ C0

( 1

λ
+ ‖vΦ‖

L̃∞T (B
7
2 )

)
‖vh‖

L̃∞T (B
7
2 )
.

The expected result is obtained putting together estimates (5.12) and (5.13)

on the pressure with estimates (5.6) and (5.7) on the nonlinear terms. �
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[1] J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations

in a critical space in 3D, J. Funct. Anal. 255 (2008), 2233–2247. MR 2473255.

Zbl 1161.35037. doi: 10.1016/j.jfa.2008.07.008.

[2] M. Cannone, Y. Meyer, and F. Planchon, Solutions auto-similaires des
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