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Cycle integrals of the j-function and mock
modular forms

By W. Duke, Ö. Imamoḡlu, and Á. Tóth

Abstract

In this paper we construct certain mock modular forms of weight 1/2

whose Fourier coefficients are given in terms of cycle integrals of the modu-

lar j-function. Their shadows are weakly holomorphic forms of weight 3/2.

These new mock modular forms occur as holomorphic parts of weakly har-

monic Maass forms. We also construct a generalized mock modular form

of weight 1/2 having a real quadratic class number times a regulator as a

Fourier coefficient. As an application of these forms we study holomorphic

modular integrals of weight 2 whose rational period functions have poles at

certain real quadratic integers. The Fourier coefficients of these modular

integrals are given in terms of cycle integrals of modular functions. Such

a modular integral can be interpreted in terms of a Shimura-type lift of a

mock modular form of weight 1/2 and yields a real quadratic analogue of

a Borcherds product.

1. Introduction

Mock modular forms, especially those of weight 1/2, have attracted much

attention recently. This is mostly due to the discovery of Zwegers [47], [46] that

Ramanujan’s mock theta functions can be completed to become modular by

the addition of a certain nonholomorphic function on the upper half plane H.

This complement is associated to a modular form of weight 3/2, the shadow of

the mock theta function. Consider, for example, the q-series

f(τ) = q−1/24
∑
n≥0

qn
2

(1 + q)2 · · · (1 + qn)2

Ä
q = e(τ) = e2πiτ , τ ∈ H

ä
.

Up to the factor q−1/24 this is one of Ramanujan’s original mock theta func-

tions. The shadow of f is the weight 3/2 cusp form (a unary theta series)

g(τ) =
∑

n∈1+6Z
n qn

2/24;
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it is proved in [46] that the completion

f̂(τ) = f(τ) + g∗(τ)

transforms like a modular form of weight 1/2 for Γ(2), the well-known congru-

ence subgroup of Γ = PSL(2,Z), when

g∗(τ) =
∑

n∈1+6Z
sgn(n) β(n

2y
6 ) q−n

2/24
Ä
y = Im τ

ä
.

Here β(x) is defined for x > 0 in terms of the complementary error function

and the standard incomplete gamma function by

(1.1) β(x) = erfc(
√
πx) =

1√
π

Γ(1
2 , πx), where Γ(s, x) =

∞∫
x

tse−t dtt .

Observe that the Fourier expansion of the nonholomorphic “Eichler integral”

g∗(τ) mirrors that of g(τ). In addition to leading to a number of new results

about mock theta functions, the work of Zwegers has stimulated the study of

other kinds of mock modular forms as well (see [33] and [45] for surveys on

some of these developments).

In this paper we will consider mock modular forms of weight 1/2 for Γ0(4).

In some sense this is the simplest case, but has not been treated before because

the associated shadows, if not zero, cannot be cusp forms. We will show that

they are nevertheless quite interesting, and have remarkable connections with

cycle integrals of the modular j-function and modular integrals having rational

period functions. First let us define mock modular forms precisely in this

context. Let

θ(τ) = 1 + 2 q + 2 q4 + 2 q9 + 2 q16 + · · ·
be the Jacobi theta series, which is a modular form of weight 1/2 for Γ0(4).

Set

(1.2) j(γ, τ) = θ(γτ)/θ(τ) for γ ∈ Γ0(4).

For k ∈ 1/2 +Z say that f defined on H has weight k for Γ0(4) (or simply has

weight k) if

f(γτ) = j(γ, τ)2kf(τ) for all γ ∈ Γ0(4).

Let M !
k be the space comprising functions holomorphic on H of weight k for

Γ0(4) whose Fourier coefficients a(n) in the expansion f(τ) =
∑
n a(n)qn vanish

unless (−1)k−1/2n ≡ 0, 1(mod 4) and n > N for some N .

Specializing now to the case of weight 1/2, let E(z) be the entire function

given by any of the following formulas

(1.3) E(z) =

∫ 1

0
e−πzu

2
du =

erf(
√
πz)

2
√
z

=
∞∑
n=0

(−πz)n

(2n+ 1)n!
.
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For any g(τ) =
∑
n bn q

n ∈M !
3/2 we define the nonholomorphic Eichler integral

of g by

(1.4) g∗(τ) = −4
√
y
∑
n≤0

bn E(4ny) q−n +
∑
n>0

bn√
n
β(4ny)q−n.

Let f(τ) =
∑
n anq

n be holomorphic on H and such that its coefficients an
vanish unless (−1)k−1/2n ≡ 0, 1(mod 4) and n > N for some N . We will say

that f(τ) is a mock modular form of weight 1/2 for Γ0(4) if there exists a

g ∈M !
3/2, its shadow, so that

f̂(τ) = f(τ) + g∗(τ)

has weight 1/2 for Γ0(4). Denote by M1/2 the space of all mock modular forms

of weight 1/2 for Γ0(4). Obviously M !
1/2 ⊂ M1/2 but it is not at all clear that

there are any nonmodular mock modular forms.

We will show that they do exist and that they are related to the work of

Borcherds and Zagier on traces of singular moduli of the classical j-function

j(τ) = q−1 + 744 + 196884 q + · · · .

It is well-known and easily shown that C[j] has a unique basis {jm}m≥0 whose

members are of the form jm(τ) = q−m + O(q). For example,

(1.5) j0 = 1, j1 = j − 744, j2 = j2 − 1488j + 159768, . . . .

Here j1(τ) is the normalized Hauptmodule for Γ. In this paper, unless oth-

erwise specified, d is assumed to be an integer d ≡ 0, 1(mod 4) and is called

a discriminant if d 6= 0. For each discriminant d let Qd be the set of integral

binary quadratic forms of discriminant d that are positive definite if d < 0.

The forms are acted on as usual by Γ, resulting in finitely many classes Γ\Qd.
Let ΓQ be the group of automorphs of Q (see §3 for more details).

Suppose that d < 0. For Q ∈ Qd and τQ a root of Q in H, the numbers

j1(τQ) are known by the classical theory of complex multiplication to form a

Gal(Q̄/Q)-invariant set of algebraic integers, so that their weighted sum

(1.6) Trd(j1) =
∑

Q∈Γ\Qd

|ΓQ|−1j1(τQ)

is an integer. A beautiful theorem of Zagier [44] asserts that these integers give

the Fourier coefficients of a weight 3/2 weakly holomorphic form T−(τ) ∈M !
3/2:

T−(τ) = −q−1 + 2 +
∑
d≤0

Trd(j1)(d)q|d|(1.7)

= −q−1 + 2− 248 q3 + 492 q4 − 4119 q7 + 7256 q8 + · · · .
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A natural question is whether one can give a similar statement for the

numbers Trd(j1) defined for nonsquare d > 0 by

(1.8) Trd(j1) = 1
2π

∑
Q∈Γ\Qd

∫
CQ

j1(τ) dτ
Q(τ,1) .

Here CQ is any smooth curve from any z ∈ H to gQz, where gQ is a certain

distinguished generator (see (3.1)) of the infinite cyclic group ΓQ of automorphs

of Q. Note: Trd(j1) is well-defined. We will see that the generating function

(1.9) T+(τ) =
∑
d>0

Trd(j1)qd

(with a suitable definition of Trd(j1) when d is a perfect square) defines a mock

modular form of weight 1/2 for Γ0(4) with shadow T−(τ) from (1.7).

Theorem 1. The function “T+(τ) on H defined by“T+(τ) = T+(τ) + T∗−(τ)

=
∑
d>0

Trd(j1) qd + 4
√
y E(−4y) q − 8

√
y +

∑
d<0

Trd(j1)»
|d|

β(4|d| y) qd

has weight 1/2 for Γ0(4).

Zagier [44] showed that g1(τ) = T−(τ) from (1.7) is the first member of

a basis {gd}0<d≡0,1(4) for M !
3/2, where for each d > 0 the function gd(τ) is

uniquely determined by having a q-expansion of the form1

(1.10) gd(τ) = −q−d +
∑
n≤0

n≡0,1(mod 4)

a(d, n)q|n|.

We define a(d, n) = 0 unless d, n ≡ 0, 1 (mod 4). For d ≤ 0 consider the “dual”

form

(1.11) fd(τ) = qd +
∑
n>0

a(n, d)qn.

As shown in [44], the set {fd}d≤0 coincides with the basis given by Borcherds

[2] for M !
1/2. Thus f0(τ) = θ(τ) and the first few terms of the next function

are

f−3(τ) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 + · · · .

We will show that Borcherds’ basis extends naturally to a basis for M1/2. The

construction of this extension relies heavily on the spectral theory of Maass

forms.

1This is the negative of the gd(τ) defined in [44].
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Theorem 2. For each positive discriminant d there is a unique mock

modular form fd(τ) ∈ M1/2 with shadow gd(τ) having a Fourier expansion of

the form

(1.12) fd(τ) =
∑
n>0

a(n, d)qn.

These Fourier coefficients a(n, d) satisfy a(n, d) = a(d, n). The set {fd} where

d runs over all integers ≡ 0, 1(mod 4) gives a basis for M1/2.

We have thus defined a(n, d) for all d, n with n > 0. We use them to

evaluate certain twisted traces, which we now define. Suppose that D > 0 is

a fundamental discriminant. There is a function χD : QdD → {−1, 1} defined

below in (3.2) that restricts to a real character (a genus character) on the group

of primitive classes and can be used to define a general twisted trace for dD

not a square by

(1.13) Trd,D(jm) =


1√
D

∑
χ(Q)|ΓQ|−1jm(τQ) if dD < 0,

1
2π

∑
χ(Q)

∫
CQ

jm(τ) dτ
Q(τ,1) if dD > 0,

each sum being over Q ∈ Γ\QdD. We have the following evaluation, which

generalizes a well-known result of Zagier [44, (25)] to include positive d.

Theorem 3. Let a(n, d) be the mock modular coefficients defined in (1.11)

and ( 1.12). Suppose that m ≥ 1. For d ≡ 0, 1 (mod 4) and fundamental D > 0

with dD not a square, we have

(1.14) Trd,D(jm) =
∑
n|m

(
D
m/n

)
na(n2D, d).

Together with Theorem 2, Theorem 3 implies Theorem 1 after we define

Trd(j1) to be equal to a(d, 1) when d is a perfect square. The proof we give uses

Poincaré series and a Kloosterman sum identity that generalizes a well-known

result of Salié. In particular, for nonsquare dD with D > 0, Theorem 3 gives

(1.15) a(D, d) =


1√
D

∑
χ(Q)|ΓQ|−1j1(τQ) if dD < 0,

1
2π

∑
χ(Q)

∫
CQ

j1(τ) dτ
Q(τ,1) if dD > 0,

where each sum is over Q ∈ Γ\QdD.
Concerning the case m = 0, there exists an interesting “second order”

mock modular form Z+(τ) of weight 1/2 that is almost, but not quite, in M1/2

with Fourier expansion

(1.16) Z+(τ) =
∑
d>0

Trd(1) qd.

Here Trd(1) must be defined suitably for square d while for d > 1 a fundamental

discriminant we have

Trd(1) = π−1d−1/2 h(d) log εd,
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where h(d) is the narrow class number of Q(
√
d) and εd is its smallest unit > 1

of norm 1. A (generalized) shadow of Z+(τ) is the completion of the mock

modular form Z−(τ) of weight 3/2 with shadow θ(τ) discovered by Zagier in

1975 [42] (see also [16]) whose Fourier expansion is

(1.17) Z−(τ) =
∑
d≤0

Trd(1)q|d|.

Here for any d ≤ 0 we have that Trd(1) = H(|d|), the usual Hurwitz class

number, whose first few values are given by

H(0) = − 1
12 , H(3) = 1

3 , H(4) = 1
2 , H(7) = 1, . . . .

The completion of Z−(τ), which has weight 3/2 for Γ0(4), is given by

(1.18) Ẑ−(τ) = Z−(τ) +
1

16π

∑
n∈Z

Γ(−1
2 , 4πn

2y)q−n
2
.

Define for y > 0 the special function

α(y) =

√
y

4π

∫ ∞
0

t−1/2 log(1 + t)e−πytdt.

The next result shows that Z+(τ) from (1.16) has Ẑ−(τ) as a generalized

shadow (to be made precise later).

Theorem 4. The function Ẑ+(τ) whose Fourier expansion is given by

Ẑ+(τ)=
∑
d>0

Trd(1) qd+

√
y

3
+
∑
d<0

Trd(1)»
|d|

β(4|d|y)qd+
∑
n6=0

α(4n2y)qn
2− 1

4π log y

(1.19)

has weight 1/2 for Γ0(4).

The automorphic nature of Ẑ+(τ) gives some reason to hope that there

might be a connection between the cycle integrals of j and abelian extensions

of real quadratic fields. So far this hope has not been realized.

Finally, there is an unexpected connection between mock modular forms

of weight 1/2 and modular integrals having rational period functions. Define

for each d ≡ 0, 1(mod 4)

(1.20) Fd(τ) = −Trd(1)−
∑
m≥1

(∑
n|m

na(n2, d)
)
qm.

Note that Fd(τ) is the derivative of the formal Shimura lift of fd. When

d < 0 Borcherds showed that Fd is a meromorphic modular form of weight

2 for Γ having a simple pole with residue |ΓQ|−1 at each point τQ ∈ H of

discriminant d. Thus one has corresponding properties of the infinite product

q−Trd(1)
∏
m≥1

(1− qm)a(m2,d).
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In case d = 0 one finds that this product is ∆(τ)1/12, and we have that

F0(τ) = 1
12 − 2

∑
n≥1

σ(m)qm = 1
12E2(τ).

This is a holomorphic modular integral of weight 2 with a rational period

function

F0(τ)− τ−2F0(− 1
τ ) = − 1

2πi τ
−1.

Theorem 5. For each d > 0 not a square the function Fd defined in

(1.20) is a holomorphic modular integral of weight 2 with a rational period

function

(1.21) Fd(τ)− τ−2Fd(− 1
τ ) =

1

π

∑
c<0<a

b2−4ac=d

(aτ2 + bτ + c)−1.

The Fourier expansion of Fd(τ) can be expressed in the form

Fd(τ) = −
∑
m≥0

Trd(jm) qm.

Note that the period function has simple poles at certain real quadratic

integers of discriminant d, in analogy to the behavior of Fd(τ) when d < 0.

The existence of a holomorphic F satisfying (1.21) with growth conditions was

proved by Knopp [24], [25]. He used a certain Poincaré series built out of

cocycles, which was used earlier by Eichler [11], to construct it. However, it

appears to be very difficult to compute F explicitly from this construction. At

the end of their paper [7], Choie and Zagier raised the problem of explicit con-

struction of a modular integral with a given rational period function. Parson

[34] gave a more direct construction in weights k > 2 using series of the form∑
a>0

(aτ2 + bτ + c)−k/2,

which are partial versions of certain hyperbolic Poincaré series studied by Za-

gier, but they do not converge when k = 2. In any case, the expression of

the Fourier coefficients as sums of cycle integrals is not immediate from this

construction, although it is possible to deduce such expressions this way, at

least in higher weights, using methods from this paper. For the rational pe-

riod functions that occur in (1.21) the modular integral given by Fd(τ) also

gives a real quadratic analogue of (the logarithmic derivative of) the Borcherds

product.

It is interesting to examine numerical values of the traces Trd(jm). We

remark that for d > 1 fundamental we have the identity

(1.22) Trd(jm) =
∑
n|m

Ä
d

m/n

ä
n−1 Trn2d(j1).
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m Tr−3(jm) Tr−4(jm) Tr−7(jm) Tr−8(jm)

0 1/3 1/2 1 1

1 −248 492 −4119 7256

2 53256 287244 16572393 52255768

3 −12288992 153540528 −67515202851 377674781024

Table 1. Traces for d < 0

m Tr5(jm) Tr8(jm) Tr12(jm) Tr13(jm) Tr17(jm) Tr20(jm)

0 0.13700 0.19837 0.24202 0.21095 0.32343 0.33097

1 −5.16163 −6.76613 −8.27912 −6.49263 −10.65828 −8.36253

2 −11.56343 −17.92434 −21.49601 −19.16428 −28.46829 −23.93151

3 −14.31225 −19.50182 −24.84575 −21.99742 −34.17310 −29.69296

Table 2. Traces for d > 0

This result is a consequence of a general identity on Hecke operators proved in

[43]. As a numerical check, the reader can verify that the identity (1.22) holds

for d = 5, D = 1 and m = 2. For d = 20 there are two classes, represented

by [1, 4,−1] and the nonprimitive form [2, 2,−2], and (1.22) amounts to the

curious identity ∫
C[1,4,−1]

j1(τ) 2dτ
τ2+4τ−1

=

∫
C[1,1,−1]

j2(τ) dτ
τ2+τ−1

.(1.23)

In general, a comparison shows that the traces for positive discriminants

are generally much smaller than those for negative discriminants and appear

to exhibit some regular growth behavior in both d and m. For nonsquare d > 1

and m ∈ Z+, we will see that we have the conditionally (and slowly) convergent

expansion

(1.24) Trd(jm) = −24σ1(m)Trd(1) + d−1/2
∑

0<c≡0(4)

Sm(d; c) sin
Ä

4πm
√
d

c

ä
,

where

Sm(d; c) =
∑

b2≡d(mod c)

e
Ä

2mb
c

ä
.

It is natural to expect that the first term dominates as either m or d gets large,

which would in particular imply that as d → ∞ through nonsquares we have

the asymptotic formula

(1.25) Trd(jm) ∼ −24σ1(m) Trd(1).

Such a result is known for negative discriminants (see [8]) except that then

there is a large main term that grows like eπm
√
|d|. If true, this asymptotic

would indicate that there is tremendous cancellation in the integrals of j over
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the cycles when d is large, since Trd(1) �ε d
ε and jm has exponential growth

in the cusp.

After seeing our paper, Y. Manin and D. Zagier told us that M. Kaneko

also performed calculations of cycle integrals of the j function. Kaneko kindly

sent us his paper [22], in which he calculated the individual cycle integrals

numerically and observed some interesting behaviour in the distribution of

their values. This behavior appears to us to be consistent with the conjectured

asymptotic given above.

Finally, we remark that there is an obvious similarity between Theorem 3

and the formula of Katok and Sarnak [23] for the traces of a Maass cusp

form. The main difference is that there are no Hecke eigenforms in our setting.

Nevertheless, the method we use to prove Theorem 3, which involves Poincaré

series and identities between Kloosterman sums, can be applied to give another

proof of the Katok-Sarnak formula. It would be interesting to approach our

results using a regularized theta lift. (See [14], [6] for the use of regularized

theta lifts in the negative discriminants case.) Another interesting problem is

to understand the nature of the traces on square discriminants.
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2. Weakly harmonic modular forms

We begin by proving Theorem 2 using the theory of weakly harmonic

forms. Set k ∈ 1/2 + Z. If f of weight k for Γ0(4) is smooth, for example, it

will have a Fourier expansion in each cusp. For the cusp at i∞ we have the

Fourier expansion

(2.1) f(τ) =
∑
n

a(n; y)e(nx)

which, if f is holomorphic, has a(n; y) = a(n)e(niy). Set

(2.2) f e(τ) =
∑

n≡0(2)

a(n; y4 )e(nx4 ) and fo(τ) =
∑

n≡1(2)

a(n; y4 )e(n8 )e(nx4 ).

Suppose that the Fourier coefficients a(n; y) satisfy the plus space condition,

meaning that they vanish unless (−1)k−1/2n ≡ 0, 1 (mod 4). An easy extension

of arguments given in [28, p. 190] shows that such an f satisfies

(2τ
i )−kf(− 1

4τ ) = αf e(τ) and (2τ+1
i )−kf( τ

2τ+1) = αfo(τ),(2.3)
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where

α = (−1)b
2k+1

4
c2−k+ 1

2 .

In particular, the behavior of such an f at the cusps 0 and 1/2 is determined by

that at i∞. Thus to check that such a form is weakly holomorphic, meaning it

is holomorphic on H and meromorphic in the cusps, one only needs to look at

the Fourier expansion at i∞, as we have done in the introduction. As there, let

M !
k denote the space of all such forms. Let M+

k ⊂M !
k denote the subspace of

holomorphic forms (having no pole in the cusps) and S+
k ⊂ M+

k the subspace

of cusp forms (having zeros there).

Consider the Maass-type differential operator ξk defined for any k ∈ R
through its action on a differentiable function f on H by

ξk(f) = 2iyk ∂f∂τ̄ .

This operator is studied in some detail in [5]. It is easily checked that

ξk
Ä
(γτ + δ)−kf(gτ)

ä
= (γτ + δ)k−2(ξkf)(gτ)

for any g ∈ PSL(2,R). Thus if f(τ) has weight k for Γ0(4), then ξkf has weight

2 − k and ξkf = 0 if and only if f is holomorphic. Also ξk preserves the plus

space condition. The weight k Laplacian can be conveniently defined by

(2.4) ∆k = −ξ2−k ◦ ξk.

Specializing now to k = 1/2, suppose that h is a real analytic function on

H of weight 1/2 for Γ0(4) that is harmonic on H in the sense that

(2.5) ∆1/2h = 0.

By separation of variables every such h has a (unique) Fourier expansion in

the cusp at ∞ of the form

h(τ) =
∑
n

b(n)Mn(y)e(nx) +
∑
n

a(n)Wn(y)e(nx).(2.6)

The functionsWn(y) andMn(y) in the Fourier expansion (2.6) are defined

in terms of the functions β(x) and E(z) from (1.1) and (1.3) by

Wn(y) =e−2πny


|n|−

1
2 β(4|n|y) if n < 0,

−4y
1
2 if n = 0,

n−
1
2 if n > 0,

(2.7)

Mn(y) =e−2πny


1− β(4|n| y) if n < 0,

1 if n = 0,

4(ny)
1
2 E(−4ny) if n > 0.

(2.8)

We remark that Wn(y) and Mn(y) are special cases of Whittaker functions

(see (2.16)) and we use the notation W and M to suggest this relation. More



CYCLE INTEGRALS OF THE j-FUNCTION 957

importantly, definitions (2.7) and (2.8) make possible the complete symmetry

of the Fourier coefficients of the basis to be given in the next proposition. It

becomes clear after working with them that one can define the normalization

for the Fourier coefficients in different reasonable ways, each with advantages

and disadvantages. Note that the function Wn(y) is exponentially decaying

while Mn(y) is exponentially growing in y (see (A.4)).

Let H !
1/2 denote the space of all real analytic functions on H of weight

1/2 for Γ0(4) that satisfy (2.5), whose Fourier coefficients at ∞ are supported

on integers n with n ≡ 0, 1(mod 4) and that have only finitely many nonzero

coefficients b(n). As before this is enough to control bad behavior in the other

cusps. We will call such an h ∈ H !
1/2 weakly harmonic.2 This space was

identified by Bruinier and Funke [6] as being interesting arithmetically. It

follows easily from its general properties that ξ1/2 maps H !
1/2 to M !

3/2 with

kernel M !
1/2. This is also directly visible after a calculation from (2.8) and

(2.7) yields the formulas

(2.9)

ξ1/2

Ä
Mn(y)e(nx)

ä
= 2|n|

1
2 q−n, ξ1/2

Ä
Wn(y)e(nx)

ä
=

0 if n > 0,

−2q|n| if n ≤ 0.

Given h in (2.6) with b(n) = 0 for all n, we infer that ξ1/2h ∈ M+
3/2 = {0}.

This implies that h ∈ S+
1/2 = {0}, and proves the following uniqueness result.

Lemma 1. If h ∈ H !
1/2 has Fourier expansion

h(τ) =
∑
n

b(n)Mn(y)e(nx) +
∑
n

a(n)Wn(y)e(nx),(2.10)

then h = 0 if and only if b(n) = 0 for all n ≡ 0, 1 (mod 4).

It is now easy to explain the relation between mock modular forms and

weakly harmonic ones (cf. [45]). It follows easily from (2.7), (2.8) and (2.9), or

directly, that for g(τ) ∈M !
3/2,

ξ1/2 g
∗(τ) = −2 g(τ),

where g∗(τ) was defined in (1.4). As a consequence we see that if f ∈M1/2 and

if f̂ = f + g∗ is its completion, then f̂ ∈ H !
1/2 since ξ1/2 f̂(τ) = −2g(τ); thus

∆1/2f̂ = 0. Also f̂(τ) satisfies the plus space condition. In fact it is easy to

see that f 7→ f̂ defines an isomorphism from M1/2 to H !
1/2. Given h ∈ H !

1/2 let

2The definition of harmonic weak Maass forms, for example as given in [3] and elsewhere,

is more restrictive and does not apply to the nonholomorphic h ∈ H !
1/2, so we use the

terminology weakly harmonic to avoid confusion.
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g = −1
2 ξ1/2(h) ∈M !

3/2 and take h+ = h− g∗. It is easily checked that h 7→ h+

gives the inverse of f 7→ f̂ . Call h+ the holomorphic part of h. In terms of the

Fourier expansion (2.6),

(2.11) h+(τ) =
∑
n≤0

b(n)qn +
∑
n>0

a(n)n−1/2qn.

The next result gives one natural basis for H !
1/2.

Proposition 1. For each d ≡ 0, 1 (mod 4) there is a unique hd ∈ H !
1/2

with Fourier expansion of the form

(2.12) hd(τ) =Md(y)e(dx) +
∑

n≡0,1(4)

ad(n)Wn(y)e(nx).

The set {hd}d≡0,1 (4) forms a basis for H !
1/2. The coefficients ad(n) satisfy the

symmetry relation

(2.13) ad(n) = an(d)

for all integers n, d ≡ 0, 1 (mod 4). When d > 0 we have

(2.14) ξ1/2 hd(τ) = −2d
1
2 gd(τ),

where gd ∈M !
3/2 has Fourier expansion given in (1.10).

Theorem 2 is an immediate consequence of this proposition. We see that

for d ≤ 0 we have that hd = fd from (1.11) and a(n, d) = n−1/2ad(n) unless

n = d < 0, in which case ad(d) = |d|1/2. If d > 0, let fd(τ) =
∑
n>0 a(n, d)qn

be the holomorphic part of d−1/2 hd. This gives the fd(τ) from Theorem 2 and

we find that for n > 0 we have

(2.15) a(n, d) = (dn)−1/2ad(n).

We remark that the fact we quoted from [44] — that {fd}d≤0 from (1.11) gives

the Borcherds basis for M !
1/2 — also follows from the symmetry relation (2.13)

and (2.14) of Proposition 1.

We now turn to the construction of hd. We will give a uniform construction

using Poincaré series. Due to some delicate convergence issues that arise from

this approach, we will define them through analytic continuation. For fixed s

with Re(s) > 1/2 and n ∈ Z let

Mn(y, s) =

Γ(2s)−1(4π|n|y)−
1
4M 1

4
sgnn,s− 1

2
(4π|n|y) if n 6= 0,

ys−
1
4 if n = 0,

Wn(y, s) =

|n|
− 3

4 Γ(s+ sgnn
4 )−1(4πy)−

1
4W 1

4
sgnn,s− 1

2
(4π|n|y) if n 6= 0,

22s−
1
2

(2s−1)Γ(2s−1/2) y
3
4
−s if n = 0,
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where M and W are the usual Whittaker functions (see Appendix A). By

(A.6) and (A.7), for n 6= 0 we have that

(2.16) Mn(y) =Mn(y, 3/4) and Wn(y) =Wn(y, 3/4),

where Mn(y) and Wn(y) were given in (2.8) and (2.7). However, M0(y) =

W0(y, 3/4) and W0(y) =M0(y, 3/4).3 We also need the usual I and J-Bessel

functions, defined for fixed ν and y > 0 by (see e.g. [29])

(2.17) Iν(y) =
∞∑
k=0

(y/2)ν+2k

k! Γ(ν + k + 1)
and Jν(y) =

∞∑
k=0

(−1)k(y/2)ν+2k

k! Γ(ν + k + 1)
.

For m ∈ Z let

(2.18) ψm(τ, s) =Mm(y, s)e(mx).

It follows from (A.3) and (2.4) that

∆1/2ψm(τ, s) = (s− 1
4)(3

4 − s)ψm(τ, s).

Define the Poincaré series

Pm(τ, s) =
∑

g∈Γ∞\Γ0(4)

j(g, τ)−1ψm(gτ, s),

where Γ∞ is the subgroup fixing the cusp ∞. By (A.5) this series converges

absolutely and uniformly on compacta for Re s > 1. The function P0(τ, s) is

the usual weight 1/2 Eisenstein series. It is clear that for Re(s) > 1 and any m,

the function Pm(τ, s) has weight 1/2 and that Pm satisfies

∆1/2Pm(τ, s) = (s− 1
4)(3

4 − s)Pm(τ, s).

As in [27], in order to get forms whose Fourier expansions are supported on

n ≡ 0, 1 (mod 4), we will employ the projection operator pr+ = 2
3(U4◦W4)+ 1

3 ,

where

(U4f)(τ) = 1
4

∑
ν mod 4

f
( τ+ν

4

)
and (W4f)(τ) =

Ä
2τ
i

ä−1/2
f(−1/4τ).

For each d ≡ 0, 1 (mod 4) and Re(s) > 1 define

(2.19) P+
d (τ, s) = pr+(Pd(τ, s)).

Proposition 2. For any d ≡ 0, 1 (mod 4) and Re(s) > 1 the function

P+
d (τ, s) has weight 1/2 and satisfies

∆1/2P
+
d (τ, s) = (s− 1

4)(3
4 − s)P

+
d (τ, s).

3This notational switching is inessential but gives a cleaner statement of Proposition 1

and some other results.
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Its Fourier expansion is given by

(2.20) P+
d (τ, s) =Md(y, s)e(dx) +

∑
n≡0,1(4)

bd(n, s)Wn(y, s)e(nx),

where

bd(n, s) =
∑

0<c≡0(4)

K+(d, n; c)(2.21)

×



2
1
2π|dn|

1
4 c−1I2s−1

(
4π
√
|dn|
c

)
if dn < 0,

2
1
2π|dn|

1
4 c−1J2s−1

(
4π
√
|dn|
c

)
if dn > 0,

πs+
1
4 |d+ n|s−

1
4 c−2s if dn = 0, d+ n 6= 0,

2
1
2
−2sπ

1
2 Γ(2s)c−2s if d = n = 0,

where K+(d, n; c) is the modified Kloosterman sum defined in (3.4) below. The

sum defining each bd(n, s) is absolutely convergent.

Proof. The first statement is clear. So is the last statement using the

trivial bound for K+(d, n; c) and the definitions (2.17).

For the calculation of the Fourier expansion we employ the following

lemma, whose proof is standard and follows from an application of Poisson

summation using an integral formula found in [13, p. 176]. See [26, Lemma 2,

p. 20] or [27] for the prototype result.

Lemma 2. Let
(
a b
c d

)
∈ SL(2,R) have c > 0 and suppose that Re(s) > 1/2.

Then for ψm defined in (2.18) with any m ∈ Z, we have∑
r∈Z

(c(τ + r) + d)−1/2ψm

Ç
a(τ + r) + b

c(τ + r) + d
, s

å
= 2πi−1/2

∑
n∈Z

e
Ä
am+nd

c

ä
Wn(y, s)e(nx)

×


c−1|mn|

1
4J2s−1(4π

»
|mn|c−1) if mn > 0,

c−1|mn|
1
4 I2s−1(4π

»
|mn|c−1) if mn < 0,

2−
1
2πs−

3
4 c−2s|m+ n|s−

1
4 if mn = 0, m+ n 6= 0,

π−
1
2 (2c)−2sΓ(2s) if m = n = 0,

where both sides of the identity converge uniformly on compact subsets of H.

With this lemma, since the computation of the Fourier coefficients parallels

so closely that given in [26, pp. 18–27] in the holomorphic case, we will omit

the details. �

It is a well-known consequence of the theory of the resolvent kernel that

Pd(τ, s) has an analytic continuation in s to Re(s) > 1/2 except for possibly
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finitely many simple poles in (1/2, 1). These poles may only occur at points

of the discrete spectrum of ∆1/2 on the Hilbert space consisting of weight 1/2

functions f on H that satisfy∫
Γ\H
|f(τ)|2y dµ <∞ (dµ = y−2dx dy),

and this space contains the residues.4 It is easily seen from (2.19) that P+
d (τ, s)

also has an analytic continuation to Re(s) > 1/2 with at most finitely many

simple poles in (1/2, 1). Actually, such poles can only occur in (1
2 ,

3
4 ], since

by (3.8) and (2.17) the series in (2.21) giving the Fourier coefficient bd(n, s)

converges absolutely for Re(s) > 3/4. Thus for Re(s) > 1/2 away from these

poles, the function P+
d (τ, s) has weight 1/2 and satisfies

∆1/2P
+
d (τ, s) = (s− 1

4)(3
4 − s)P

+
d (τ, s).

Furthermore, a residue at s = 3/4 is a weight 1/2 weakly harmonic form

f ∈ H !
1/2. In fact, the Fourier expansion of f can be obtained from that of P+

d

in (2.20) by taking residues term by term, a process that is easily justified using

the integral representations for the Fourier coefficients since the convergence is

uniform on compacta. This shows that the Fourier expansion of f is supported

on n with n ≡ 0, 1 (mod 4) and that it can have no exponentially growing

terms. Another way to see these facts is to observe that f is the projection of

the residue of Pd, which comes from the discrete spectrum. Thus by Lemma 1

applied to f − b(0)θ, we obtain the following result.

Lemma 3. For each d and each τ ∈ H the function P+
d (τ, s) has an

analytic continuation around s = 3/4 with at most a simple pole there with

residue

(2.22) ress=3/4P
+
d (τ, s) = ρd θ(τ),

where ρd ∈ C.

When d = 0, this result is well-known. In fact, b0(n, s) can be computed

in terms of Dirichlet L-functions. We have the following formulas (see e.g.

[19]).

Lemma 4. For m ∈ Z+ and D a fundamental discriminant we have that

(2.23)
∑
n|m

Ä
D
n

ä
b0(Dm

2

n2 , s) = 22−4sπs+
1
4m

3
2
−2s|D|s−

1
4σ4s−2(m)

LD(2s− 1
2)

ζ(4s− 1)

4See [13, p. 179 ] and its references, especially [35] and [12]. A very clear treatment when

the weight is 0 and the multiplier is trivial is given in [31]. In particular, see Satz 6.8 p. 60

in [31]; the case of weight 1/2 is similar.
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and

(2.24) b0(0, s) = π
1
2 2

5
2
−6sΓ(2s)

ζ(4s− 2)

ζ(4s− 1)
,

where LD is the Dirichlet L-function.

By Möbius inversion, (2.23) gives for m 6= 0 the identity

(2.25)

b0(Dm2, s)=22−4sπs+
1
4 |D|s−

1
4
LD(2s− 1/2)

ζ(4s− 1)

∑
n|m

µ(m/n)
(

D
m/n

)
n

3
2
−2sσ4s−2(n).

This yields a direct proof of Lemma 3 in case d = 0. Since b0(d, s) = bd(0, s),

which is clear from (3.5) and (2.21), a calculation using (2.25) and the (2.24)

also gives the constant ρd in (2.22):

(2.26) ρd =


3

4π if d = 0,
6
π

√
d if d is a nonzero square,

0 otherwise.

We are finally ready to define the basis functions hd. For d 6= 0 let

(2.27) hd(τ, s) = P+
d (τ, s)− bd(0, s)

b0(0, s)
P+

0 (τ, s).

It has the Fourier expansion

(2.28)

hd(τ, s) =Md(y, s)e(dx)− bd(0, s)

b0(0, s)
ys−

1
4 +

∑
0 6=n≡0,1(4)

ad(n, s)Wn(y, s)e(nx),

where

(2.29) ad(n, s) = bd(n, s)−
bd(0, s)b0(n, s)

b0(0, s)
.

Lemma 5. For each nonzero d ≡ 0, 1 (mod 4) the function hd(τ, s) defined

in (2.27) has an analytic continuation to s = 3/4 and

hd(τ, 3/4) = hd(τ) ∈ H !
1/2.

The Fourier expansion of each such hd at ∞ has the form (2.12), where for

each nonzero n ≡ 0, 1 (mod 4) we have

ad(n) = lim
s→3/4+

ad(n, s).

Furthermore, ad(0) = 2
√
d if d is a square and ad(0) = 0 otherwise.

Proof. Observe that hd(τ, s) defined in (2.27) is holomorphic at s = 3/4,

since otherwise, by Proposition 3 it would have as residue there a nonzero
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multiple of θ(τ), which cannot happen since (2.28) does not yield the constant

term in θ. From (2.28) its Fourier expansion is given by

hd(τ) =Md(y)e(dx) +
∑

n≡0,1(4)

ad(n)Wn(y)e(nx),

where ad(n) = lims→3/4+ ad(n, s) for n 6= 0 and, after recalling the definition

of W0(y) from (2.7), we have that

(2.30) ad(0) = lim
s→3/4+

bd(0, s)

4b0(0, s)
.

Here again we use the integral representations for the Fourier coefficients and

the fact that hd(τ, s) → hd(τ) uniformly on compacta as s → 3/4+. Thus

hd ∈ H !
1/2 for all d 6= 0. The last statement of Lemma 5 can easily be obtained

from (2.30), (2.25) and (2.24). �

Continuing with the proof of Proposition 1, we next show that the symme-

try relation (2.13) holds. By (3.5) and (2.21) we have that bd(n, s) = bn(d, s);

hence by (2.29)

(2.31) ad(n, s) = an(d, s).

Now (2.13) follows from Lemma 5 and (2.31), where we use that h0 = θ in

case nd = 0. Note that a0(0) = 0. A direct calculation using (2.9) together

with (2.13) yields (2.14). This completes the proof of Proposition 1 and hence

of Theorem 2.

3. Binary quadratic forms and Kloosterman sums

Before turning to the proof of Theorem 3, we need to give some basic

results about binary quadratic forms and Kloosterman sums. Recall that Qd
is the set of integral binary quadratic forms Q(x, y) = ax2 +bxy+cy2 = [a, b, c]

of discriminant d = b2 − 4ac that are positive definite if d < 0. Let Q+
d ⊂ Qd

be those forms with a > 0, so that Qd = Q+
d when d < 0. Let Q 7→ gQ be the

usual action of Γ that is compatible with linear fractional action on the roots

of Q(τ, 1) = 0. Explicitly,

(gQ)(x, y) = Q(δx− βy,−γx+ αy), where g = ±
Ä
α β
γ δ

ä
∈ Γ.

As is well-known, the resulting set of classes Γ\Qd is finite and those classes

consisting of primitive forms make up an abelian group under composition.

Let ΓQ = {g ∈ Γ; gQ = Q} be the group of automorphs of Q. If d < 0 then

|ΓQ| = 1 unless Q ∼ a(x2 + y2) or Q ∼ a(x2 +xy+ y2), in which case |ΓQ| = 2

or 3, respectively. If d > 0 is not a square, then ΓQ is infinite cyclic with a
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distinguished generator denoted by gQ , which for primitive Q is given by

(3.1) gQ = ±
Ç
t+bu

2 cu

−au t−bu
2

å
,

where t, u are the smallest positive integral solutions of t2 − du2 = 4. If

δ = gcd(a, b, c), then gQ = g
Q/δ

.

Suppose that D is a fundamental discriminant, i.e. the discriminant of

Q(
√
D), and that d is a discriminant. For Q=[a, b, c] with discriminant dD let

χ(Q) = χD(Q)(3.2)

=


Ä
D
r

ä
if (a, b, c,D)=1, where Q represents r and (r,D) = 1,

0, if (a, b, c,D) > 1.

Here
Ä
·
·

ä
is the Kronecker symbol. It is well-known that χ is well-defined on

classes Γ\QdD, that χ restricts to a real character (a genus character) on the

group of primitive classes, and that all such characters arise this way. We have

the identity

χD(−Q) = (sgnD)χD(Q).(3.3)

If d is also fundamental we have that χD = χd on Γ\QdD. A good reference

for the basic theory of these characters is [15, p. 508].

A crucial ingredient in what follows is an identity connecting the weight

1/2 Kloosterman sum with a certain exponential sum taken over solutions to

a quadratic congruence, a quadratic Weyl sum. In a special case this identity

is due to Salié and variants have found many applications in the theory of

modular forms. We shall use a general version due essentially to Kohnen [27].

To define the weight 1/2 Kloosterman sum we need an explicit formula for the

theta multiplier in j(γ, τ), which was defined in (1.2). This may be found in [36,

p. 447]. As usual, for nonzero z ∈ C and v ∈ R we define zv = |z|v exp(iv arg z)

with arg z ∈ (−π, π]. We have

j(γ, τ) = (cτ + a)1/2ε−1
a

Ä
c
a

ä
for γ = ± ( ∗ ∗c a ) ∈ Γ0(4),

where
Ä
c
a

ä
is the extended Kronecker symbol and

εa =

1 if a ≡ 1 (mod 4),

i if a ≡ 3 (mod 4).

For c ∈ Z+ with c ≡ 0 (mod 4) and m,n ∈ Z let

K1/2(m,n; c) =
∑

a(mod c)

Ä
c
a

ä
εae
Ä
ma+na

c

ä
be the weight 1/2 Kloosterman sum. Here ā ∈ Z satisfies

aā ≡ 1 (mod c).
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It is convenient to define the modified Kloosterman sum

(3.4) K+(m,n; c) = (1− i)K1/2(m,n; c)×

1 if c/4 is even,

2 otherwise.

It is easily checked that

(3.5) K+(m,n; c) = K+(n,m; c) = K+(n,m; c).

The associated exponential sum is defined for d ≡ 0, 1 (mod 4) and fundamen-

tal D by

(3.6) Sm(d,D; c) =
∑

b(mod c)

b2≡Dd (mod c)

χ
Ä
[ c4 , b,

b2−Dd
c ]
ä
e
Ä

2mb
c

ä
,

where χ was defined in (3.2). Clearly

S−m(d,D; c) = Sm(d,D; c) = Sm(d,D; c).

The following identity is proved by a slight modification of the proof given by

Kohnen in [27, Prop. 5, p. 259] (see also [8], [21] and [37]).

Proposition 3. For positive c ≡ 0 (mod 4), d,m ∈ Z with d ≡ 0, 1

(mod 4) and D a fundamental discriminant, we have

Sm(d,D; c) =
∑

n|(m, c4)

Ä
D
n

ä»
n
c K

+
Ä
d, m

2D
n2 ; cn

ä
.

By Möbius inversion in two variables this can be written in the form

(3.7) c−1/2K+(d,m2D, c) =
∑

n|(m, c4)

µ(n)
Ä
D
n

ä
Sm/n

(
d,D; cn

)
.

Note that this gives an identity forK+(d, d′, c) for any pair d, d′ ≡ 0, 1 (mod 4).

An immediate consequence of (3.7) and the obvious upper bound

Sm(d,D; c)�ε c
ε

is the upper bound

(3.8) K+(d, d′, c)�ε c
1/2+ε,

which holds for any ε > 0. Furthermore, since for any m,n ∈ Z we have

K1/2(m,n; c) = 1
4K1/2(4m, 4n; 4c),

(3.8) implies that for any m,n ∈ Z

K1/2(m,n, c)�ε c
1/2+ε.
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This elementary bound corresponds to Weil’s bound for the ordinary (weight 0)

Kloosterman sum

K0(m,n; c) =
∑

a(mod c)

(a,c)=1

e
Ä
ma+nā

c

ä
,

which states that (see [39], [17, Lemma 2])

(3.9) K0(m,n; c)�ε (m,n, c)1/2c1/2+ε.

4. Cycle integrals of Poincaré series

As further preparation for the proof of Theorem 3, in this section we will

compute the cycle integrals of certain general Poincaré series, which we will

then specialize in order to treat jm. To begin we need to make some elementary

observations about cycle integrals. For Q ∈ Qd with d > 0 not a square let SQ
be the oriented semi-circle defined by

(4.1) a|τ |2 + bRe τ + c = 0,

directed counterclockwise if a > 0 and clockwise if a < 0. Clearly

(4.2) SgQ = gSQ,

for any g ∈ Γ. Given z ∈ SQ let CQ be the directed arc on SQ from z to gQz,

where gQ was defined in (3.1). It can easily be checked that CQ has the same

orientation as SQ. It is convenient to define

(4.3) dτQ =

√
d dτ

Q(τ, 1)
.

If τ ′ = gτ for some g ∈ Γ we have

(4.4) dτ ′gQ = dτQ.

For any Γ-invariant function f on H the integral
∫
CQ

f(τ)dτQ is both inde-

pendent of z ∈ SQ and is a class invariant. This is an immediate consequence

of the following lemma that expresses this cycle integral as a sum of integrals

over arcs in a fixed fundamental domain for Γ. This lemma will also be used

in the proof of Theorem 5. Let F be the standard fundamental domain for Γ

F = {τ ∈ H;−1
2 ≤ Re τ ≤ 0, |τ | ≥ 1} ∪ {τ ∈ H; 0 < Re τ < 1

2 , |τ | > 1}.

Lemma 6. Let Q ∈ Qd be a form with d > 0 not a square and F ′ = gF
be the image of F under any fixed g ∈ Γ. Suppose that f is Γ-invariant and

continuous on SQ. Then for any z ∈ SQ we have∫
CQ

f(τ)dτQ =
∑
q∈(Q)

∫
Sq∩F ′

f(τ)dτq,(4.5)

where (Q) denotes the class of Q.
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Proof. Let f̃(τ) = f(τ) if τ ∈ F ′ and f̃(τ) = 0 otherwise, so that f(τ) =∑
g∈Γ f̃(gτ) with only a discrete set of exceptions. Thus∫

CQ

f(τ)dτQ =

∫
CQ

∑
g∈Γ

f̃(gτ)dτQ

=
∑

g∈Γ/ΓQ

∑
σ∈ΓQ

∫
CQ

f̃(gστ)dτQ =
∑

g∈Γ/ΓQ

∫
SQ

f̃(gτ)dτQ.

Take gτ as a new variable. By (4.2) and (4.4) we get∫
CQ

f(τ)dτQ =
∑

g∈Γ/ΓQ

∫
SgQ

f̃(τ)dτgQ,

which immediately yields (4.5). �

The general Poincaré series are built from a test function φ : R+ → C
assumed to be smooth and to satisfy that for some a > 1 we have φ(y) = O(ya)

as y → 0. For any m ∈ Z let

(4.6) Gm(τ, φ) =
∑

g∈Γ∞\Γ
e (mRe gτ)φ(Im gτ).

This sum converges uniformly on compacta and defines a smooth Γ-invariant

function on H. We express its cycle integrals in terms of the sum Sm(d,D; c)

from (3.6). Define for t > 0 the integral transform.

Φm(t) =

∫ π

0
cos(2πmt cos θ)φ(t sin θ)

dθ

sin θ
.

For φ as above, we see that this integral converges absolutely and that Φm(t) =

Oε(t
1+ε). As we have seen, we may assume without loss that d,D > 0.

Lemma 7. Suppose that d,D > 0 with dD not a square. Then for all

m ∈ Z,

∑
Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(τ, φ)dτQ =
∑

0<c≡0(4)

Sm(d,D; c)Φm

Ä
2
√
dD
c

ä
.

Proof. For each Q, interchanging the sum defining Gm and the integral

yields

(4.7)

∫
CQ

Gm(τ, φ)dτQ =
∑

g∈Γ∞\Γ

∫
CQ

e(mRe gτ)φ(Im gτ)dτQ.
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Now ΓQ, the group of automorphs of Q, acts freely on Γ∞\Γ so we have that∑
g∈Γ∞\Γ

∫
CQ

e(mRe gτ)φ(Im gτ)dτQ

=
∑

g∈Γ∞\Γ/ΓQ

∑
σ∈ΓQ

∫
CQ

e(mRe gστ)φ(Im gστ)dτQ

=
∑

g∈Γ∞\Γ/ΓQ

∫
SQ

e(mRe gτ)φ(Im gτ)dτQ.

Applying (4.4) and (4.2) in the last expression, we get from (4.7) that∫
CQ

Gm(τ, φ)dτQ =
∑

g∈Γ∞\Γ/ΓQ

∫
SgQ

e(mRe τ)φ(Im τ)dτgQ

and hence that∑
Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(τ, φ)dτQ =
∑

Q∈Γ∞\QdD

χ(Q)

∫
SQ

e(mRe τ)φ(Im τ)dτQ.

We now need to parametrize the cycle explicitly. Let

(4.8) τQ =
−b
2a

+
i
√
d

2|a|
,

which is easily seen to be the apex of the circle SQ. We can parametrize SQ
by θ ∈ (0, π) via

τ =

Re τQ + eiθ Im τQ if a > 0,

Re τQ − e−iθ Im τQ if a < 0.

With this parametrization we find that

Q(τ, 1) =
d

4a
·

e2iθ − 1 if a > 0,

e−2iθ − 1 if a < 0,

and hence that dτQ = dθ/ sin θ. Since χ(Q) = χ(−Q), we arrive at the identity∑
Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(τ, φ)dτQ = 2
∑

Q∈Γ∞\Q+
dD

χ(Q) e(mRe τQ)Φm(Im τQ).

The proof of Lemma 7 is thus reduced to the following lemma. �

Lemma 8. Let φ be as above and suppose that dD is not a square. Then

for all m ∈ Z we have the identity∑
Γ∞\Q+

dD

χ(Q) e(mRe τQ)φ(Im τQ) = 1
2

∑
0<c≡0(4)

Sm(d,D; c)φ
(

2
√
|dD|
c

)
,

where τQ is defined in (4.8).
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Proof. Under the growth condition on φ, both series are absolutely con-

vergent and can be rearranged at will. Consider the left-hand side. For

g = ±( 1 k
0 1 ) ∈ Γ∞ and Q = [a, b, c] ∈ QdD, gQ = [a, b − 2ka, ∗] and so the

map

[a, b, c] 7→ (a, b mod 2a)

is Γ∞-invariant. Thus

∑
Γ∞\Q+

dD

χ(Q)e(mRe τQ)φ(Im τQ)=
∞∑
a=1

φ

Å√
|dD|
2a

ã∑
b (2a)

χ([a, b, b
2−dD

4a ]) e(−mb
2a ).

The sum in b is restricted to those values for which b2−dD
4a is an integer. This

happens exactly when b2 ≡ dD (mod 4a). Thus the inner sum is∑
b (2a)

b2≡dD (4a)

χ([a, b, b
2−dD

4a ])e(−mb
2a ) = 1

2

∑
b (4a)

b2≡dD (4a)

χ([a, b, b
2−dD

4a ]) e(−2mb
4a )

= 1
2Sm(d,D; 4a).

Replace 4a by c to finish the proof. �

We remark that the positive definite version of Lemma 7 is following the

well-known formula for dD < 0:

(4.9)
∑

Q∈Γ\QdD

w−1
Q χ(Q)Gm(τ, φ) = 1

2

∑
0<c≡0(4)

Sm(d,D; c)φ
(

2
√
|dD|
c

)
.

This formula is an immediate consequence of Lemma 8.

Now we will specialize the Poincaré series Gm from (4.6) and construct

the modular functions jm. Let Gm(τ, s) = Gm(τ, φm,s), where

φm,s(y) =

ys if m = 0,

2π|m|
1
2 y

1
2 Is− 1

2
(2π|m|y) if m 6= 0,

with Is−1/2 the Bessel function as before. The resulting Γ-invariant function

satisfies

40Gm(τ, s) = s(1− s)Gm(τ, s).

The function G0 is the usual Eisenstein series while Gm for m 6= 0 was studied

by Neunhöffer [31] and Niebur [32], among others. The required analytic prop-

erties of Gm(τ, s) in s are most easily obtained from their Fourier expansions.

For the Eisenstein series we have the well-known formulas (see e.g. [20])

G0(τ, s) = ys + c0(0, s)y1−s +
∑
n6=0

c0(n, s)Ks− 1
2
(2π|n|y)e(nx),
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where Ks− 1
2

is the K-Bessel function (see e.g. [29]),

c0(0, s) =
ξ(2s− 1)

ξ(2s)
and for n 6= 0 c0(n, s) =

2y1/2

ξ(2s)
|n|s−1/2σ1−2s(|n|),

with ξ(s) = π−
s
2 Γ(s/2)ζ(s). For m 6= 0 the Fourier expansion of Gm can be

found in [13], and is given by

Gm(τ, s) = 2π|m|
1
2 y

1
2 Is− 1

2
(2π|m|y)e(mx) + cm(0, s)y1−s

+ 4π|m|1/2y1/2
∑
n6=0

|n|1/2cm(n, s)Ks− 1
2
(2π|n|y)e(nx),

where

cm(0, s) =
4π|m|1−sσ2s−1(|m|)

(2s− 1)ξ(2s)

and

cm(n; s) =
∑
c>0

c−1K0(m,n; c) ·

I2s−1(4π
»
|mn| c−1) if mn < 0,

J2s−1(4π
»
|mn| c−1) if mn > 0.

Define for m ∈ Z+ and Re(s) > 1

(4.10) jm(τ, s) = G−m(τ, s)− 2m1−sσ2s−1(m)

π−(s+ 1
2

)Γ(s+ 1
2)ζ(2s− 1)

G0(τ, s).

It follows from its Fourier expansion, Weil’s bound (3.9) and (2.17) that jm(τ, s)

has an analytic continuation to Re(s) > 3/4. Furthermore, since a bounded

harmonic function is constant, for m ∈ Z+ we have

(4.11) jm(τ, 1) = jm(τ),

where jm was defined above (1.5) (cf. [32]). Alternatively, we could apply the

theory of the resolvent kernel in weight 0 to get the analytic continuation of

jm(τ, s) up to Re s > 1/2.

In view of (4.11), in order to compute the traces of jm(τ, s) it is enough to

compute them for Gm(τ, s). We have the following identities, which are known

when m = 0 (Dirichlet/Hecke) and when dD < 0 (see e.g. [9], [8], [3]). For the

convenience of the reader we will give a uniform proof.

Proposition 4. Let Re(s) > 1 and m ∈ Z. Suppose that d and D are not

both negative and that dD is not a square. Then, when dD < 0 we have∑
Q∈Γ\QdD

χ(Q)

wQ
Gm(τQ, s)

=


√

2π|m|
1
2 |dD|

1
4
∑
c≡0(4)

Sm(d,D;c)

c1/2
Is− 1

2

(
4π
√
m2|dD|
c

)
if m 6= 0,

2s−1 |dD|
s
2
∑
c≡0(4)

S0(d,D;c)
cs if m = 0,
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while when dD > 0 we have∑
Q∈Γ\QdD

χ(Q)

B(s)

∫
CQ

Gm(τ, s)dτQ

=


√

2π|m|
1
2 |dD|

1
4
∑
c≡0(4)

Sm(d,D;c)

c1/2
Js− 1

2

(
4π
√
m2|dD|
c

)
if m 6= 0,

2s−1 |dD|
s
2
∑
c≡0(4)

S0(d,D;c)
cs if m = 0,

where B(s) = 2sΓ( s2)2/Γ(s).

Proof. By (4.9) the proof of Proposition 4 reduces to the case dD > 0.

Applying Lemma 7 when m = 0 we use the well-known evaluation∫ π

0
(sin θ)s−1dθ = 2s−1 Γ( s2)2

Γ(s)
.

When m 6= 0 we need the following not-so-well-known evaluation to finish the

proof. �

Lemma 9. For Re(s) > 0 we have∫ π

0
cos(t cos θ)Is− 1

2
(t sin θ)

dθ

(sin θ)1/2
= 2s−1 Γ( s2)2

Γ(s)
Js−1/2(t).

Proof. Denote the left-hand side by Ls(t). We use the definition of Is− 1
2

in (2.17) to get

Ls(t) =
∞∑
k=0

(t/2)s+2k−1/2

k!Γ(s+ k + 1
2)

∫ π

0
cos(t cos θ)(sin θ)s+2k−1dθ.

Lommel’s integral representation [38, p. 47] gives for Re v > −1/2 that

Jν(y) =
(y/2)ν

Γ(ν + 1
2)Γ(1

2)

∫ π

0
cos(y cos θ)(sin θ)2νdθ.

Thus for Re(s) > 0 we have that

Ls(t) = Γ(1
2)
∞∑
k=0

Γ( s2 + k)

k!Γ(s+ k + 1
2)

(t/2)s/2+kJ(s−1)/2+k(t).

This Neumann series can be evaluated (see [38, p. 143, eq. 1]) giving for

Re(s)>0

Ls(t) =
Γ(1

2)Γ( s2)

Γ( s2 + 1
2)
Js−1/2(t).

The result follows by the duplication formula for Γ(s). �
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5. The traces in terms of Fourier coefficients

In this section we complete the proofs of Theorems 3 and 4. We need

to express the traces of jm in terms of the Fourier coefficients of our basis

hd. This is first done for jm(τ, s) with Re(s) > 1 by applying Proposition 3

to transform the sum of exponential sums in Proposition 4 into a sum of

Kloosterman sums, which is then related to the coefficients of hd(τ, s). The

method of using Kloosterman sums in this way was first applied by Zagier [41]

to base change, then by Kohnen [27] to the Shimura lift and more recently to

weakly holomorphic forms in [4], [8], [21] and [3].

Theorem 3 follows from Lemma 5, (4.11) and the next result by taking the

limit as s → 1+ of both sides of (5.1). Also we use the relationship between

a(n, d) and ad(n) given in and above equation (2.15). We remark that we

actually get a slightly more general result than Theorem 3 in that we may

allow D < 0, but the general result is best left in terms of the coefficients

ad(n).

Proposition 5. Let m ∈ Z+ and Re(s) > 1. Suppose that d and D are

not both negative and that dD is not a square. Then

(5.1)

∑
n|m

Ä
D
n

ä
ad
Ä
m2D
n2 , s2 + 1

4

ä
=


∑
Q χ(Q)w−1

Q jm(τQ, s) if dD < 0,

B(s)−1∑
Q χ(Q)

∫
CQ

jm(τ, s)dτQ if dD > 0,

where each sum on the right-hand side is over Q ∈ Γ\QdD.

Proof. It is convenient to set for any m ∈ Z

Tm(s) =


∑
Q χ(Q)w−1

Q Gm(τQ, s) if dD < 0,

B(s)−1∑
Q χ(Q)

∫
CQ

Gm(τ, s)dτQ if dD > 0,

where each sum is over Q ∈ Γ\QdD. By Propositions 4 and 3 we have for m 6= 0

and Re(s) > 1 that

Tm(s) = π|2m|
1
2 |dD|

1
4

∑
n|m

Ä
D
n

ä
n−

1
2

∑
c≡0(4)

c−1K+
Ä
d, m

2D
n2 ; c

ä
·


Is− 1

2

Å
4π
c

√
m2

n2 |Dd|
ã

if dD < 0,

Js− 1
2

Å
4π
c

√
m2

n2 |Dd|
ã

if dD > 0,

while when m = 0 we have

T0(s) = 2s−1 |dD|
s
2 LD(s)

∑
c≡0(4)

c−s−1/2K+
Ä
d, 0; c

ä
.
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Thus by (2.21) of Proposition 2 we derive that

(5.2) Tm(s) =


∑
n|m
Ä
D
n

ä
bd
Ä
m2D
n2 , s2 + 1

4

ä
if m 6= 0,

2s−1π−
s+1
2 |D|

s
2 LD(s)bd(0,

s
2 + 1

4) if m = 0.

In view of (4.10), in order to prove Proposition 5 it is enough to show that

(5.3)
∑
n|m

Ä
D
n

ä
ad
Ä
m2D
n2 , s2 + 1

4

ä
= Tm(s)− 2m1−sσ2s−1(m)

π−(s+ 1
2

)Γ(s+ 1
2)ζ(2s− 1)

T0(s).

By (2.29) and the first formula of (5.2) the left-hand side of (5.3) is

Tm(s)−
bd(0,

s
2 + 1

4)

b0(0, s2 + 1
4)

∑
n|m

Ä
D
n

ä
b0(m

2D
n2 , s2 + 1

4).

Hence by the second formula of (5.2) we are reduced to showing that

b0(0, s2 + 1
4)−1

∑
n|m

Ä
D
n

ä
b0(m

2D
n2 , s2 + 1

4) =
2sπs/2|D|s/2m1−sσ2s−1(m)LD(s)

Γ(s+ 1
2)ζ(2s− 1)

,

which follows by Lemma 4. This finishes the proof of Proposition 5, hence of

Theorem 3. �

We now give a quick proof of Theorem 4. By (2.26) we have

Ress= 3
4
P+

0 (τ, s) = 3
4πθ(τ).

The function Ẑ+(τ) can now be defined through the limit formula5

(5.4) Ẑ+(τ) = 1
3 lim
s→ 3

4

Ç
P+

0 (τ, s)−
3

4πθ(τ)

s− 3/4

å
.

It follows from (5.4) that Ẑ+(τ) has weight 1/2 and satisfies

(5.5) ∆1/2(Ẑ+) = − 1
8πθ.

Finally, using (5.2) when m = 0 and the fact that G0(τ, s) has a simple pole

at s = 1 with residue 3/π, one shows that Ẑ+(τ) has a Fourier expansion of

the form (1.19).

The statement that Ẑ+(τ) has generalized shadow Ẑ−(τ) from (1.18) can

now be made precise since it follows from (5.5) and the easily established

identity

ξ3/2 Ẑ= − 1
4πθ,

that

ξ1/2 Ẑ+ = −2Ẑ−.

5We remark that a similar limit formula was considered in [10].
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6. Rational period functions

We now prove Theorem 5. First we give a rough bound for the traces in

terms of m when d > 0 is not a square that is sufficient to show that Fd is

holomorphic in H.

Proposition 6. For d > 0 not a square and m ∈ Z+ we have for all

ε > 0 that

Trd(jm)�d,ε m
5/4+ε.

Proof. It follows from [18, Thm. 1, p. 110] that for fixed d not a square

and x > 0, we have for all ε > 0 that

(6.1)
∑

0<n<x

Sm(d, 1; 4n)�d,ε (mx)ε(m5/4 + x3/4),

after replacing d by 4d if necessary. For 1 < s < 2 we have by the trivial bound

for Sm(d, 1; 4n) and the well-known bound (see e.g. [29, p. 122])

Jv(y)�ν y
−1/2

that ∑
0<n≤m

Sm(d, 1; 4n)
»

m
n Js− 1

2

(
π
»
|d|mn

)
�d,ε m

1+ε.

By (2.17) we have for x > m

∑
m<n<x

Sm(d, 1; 4n)
»

m
n Js− 1

2

(
π
»
|d|mn

)
�d,ε m

s

∣∣∣∣∣ ∑
m<n<x

Sm(d, 1; 4n)n−s
∣∣∣∣∣+m1+ε.

Summation by parts and (6.1) give

ms
∑

m<n<x

Sm(d, 1; 4n)n−s �d,ε m
5/4+ε.

Now Proposition 6 follows by Proposition 4 and (4.10) by taking s → 1+ in

the resulting uniform inequality∑
Q∈Γ\Qd

∫
CQ

jm(τ, s)dτQ �d,ε m
5/4+ε

and using (4.11). �

It follows from Theorem 3 and Proposition 6 that the function Fd defined

in (1.20) for d > 0 not a square can be represented by the series

(6.2) Fd(τ) = −
∑
m≥0

Trd(jm) qm,
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which gives a holomorphic function on H. The basis {jm}m≥0 has a generating

function that goes back to Faber (see e.g. [1]):

(6.3)
∑
m≥0

jm(z)qm =
j′(τ)

j(z)− j(τ)
, where j′(τ) =

1

2πi

d j

d τ
.

Note that this formal series converges when Im(τ) > Im(z) and that for fixed

τ not a zero of j′ it has a simple pole at z = τ with residue (2πi)−1. It follows

from (6.3) and (6.2) that for Im(τ) sufficiently large we have

(6.4) Fd(τ) =
1

2π

∑
Q∈Γ\Qd

∫
CQ

j′(τ)

j(τ)− j(z)
dz

Q(z, 1)
,

where we take for CQ an arc on SQ, the semi-circle defined in (4.1). Let

F ′ = −F−1 be the image of the standard fundamental domain under inversion

z 7→ −1/z. By (6.4) and Lemma 6 applied to each class of Qd and to each

fundamental domain F and F ′, we can write

Fd(τ) =
1

4π

∑
Q∈Qd

Ç∫
SQ∩F

j′(τ)

j(τ)− j(z)
dz

Q(z, 1)
+

∫
SQ∩F ′

j′(τ)

j(τ)− j(z)
dz

Q(z, 1)

å
.

Now it is easily seen that each of these integrals is invariant under Q 7→ −Q,

so we may restrict the sum to Q+
d , giving

(6.5)

Fd(τ) =
1

2π

∑
Q∈Q+

d

Ç∫
SQ∩F

j′(τ)

j(τ)− j(z)
dz

Q(z, 1)
+

∫
SQ∩F ′

j′(τ)

j(τ)− j(z)
dz

Q(z, 1)

å
.

Recall from [7] that an indefinite quadratic form Q = [a, b, c] is called simple

if c < 0 < a. It is easily seen that Q ∈ Qd is simple if and only if Q ∈ Q+
d and

SQ intersects F ′′ = F ∪ F ′. For simple Q let AQ = SQ ∩ F ′′ be the arc in F ′′
oriented from right to left. Clearly AQ must connect the two “vertical” sides

of F ′′.6 Thus from (6.5) we obtain the identity

Fd(τ) =
1

2π

∑
Q simple

b2−4ac=d

∫
AQ

j′(τ)

j(τ)− j(z)
dz

Q(z, 1)
.

Now we deform each arc AQ in the sum of integrals to BQ, which is within

F ′′ and has the same endpoints as AQ, but travels above τ . By evaluating each

6For example, when d = 12 the simple forms are [1, 0,−3], [1,−2,−2], [1, 2,−2], [3, 0,−1],

[2, 2,−1], [2,−2,−1]. A diagram showing the corresponding arcs AQ in this case is given in

Figure 1.
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Figure 1. Arcs AQ when d = 12.

resulting residue at τ , we get the formula

Fd(τ) =
1

2π

∑
Q simple

b2−4ac=d

∫
BQ

j′(τ)

j(τ)− j(z)
dz

Q(z, 1)
+

1

2π

∑
Q simple

b2−4ac=d

Q(τ, 1)−1,

which is also valid at −1/τ . A simple calculation now shows that (1.21) holds

in a neighborhood of τ , hence for all τ ∈ H. Thus Theorem 5 follows.

Finally, for fixed m ∈ Z+ the inequality (6.1) can be used to show that the

series in Proposition 4 converges when s = 1. They yield the formula (1.24)

upon using the elementary evaluation

J1/2(y) =
√

2
πy sin y.
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Appendix A. Whittaker functions

A standard reference for the theory of Whittaker functions is [40, Chap.

16]. Another good reference is [30]. For the convenience of the reader we will

record here some of the properties of these special functions that we need.

For fixed µ, ν with Re(ν ± µ+ 1/2) > 0, the Whittaker functions may be

defined for y > 0 by [30, pp. 311, 313]

(A.1) Mµ,ν(y) = yν+ 1
2 e

y
2

Γ(1+2ν)

Γ(ν+µ+ 1
2

)Γ(ν−µ+ 1
2

)

∫ 1

0
tν+µ− 1

2 (1− t)ν−µ−
1
2 e−yt dt

and

(A.2) Wµ,ν(y) = yν+ 1
2 e

y
2 1

Γ(ν−µ+ 1
2

)

∫ ∞
1

tν+µ− 1
2 (t− 1)ν−µ−

1
2 e−yt dt.

Both Mµ,ν(y) and Wµ,ν(y) satisfy the second order linear differential equation

(A.3)
d2w

dy2
+
(
− 1

4 + µy−1 + (1
4 − ν

2)y−2
)
w = 0.

Their asymptotic behavior as y → ∞ for fixed µ, ν is easily found from (A.1)

and (A.2) by changing variable t 7→ t/y:

Mµ,ν(y) ∼ Γ(1+2ν)

Γ(ν−µ+ 1
2

)
y−µey/2 and Wµ,ν(y) ∼ yµe−y/2.(A.4)

In particular, they are linearly independent. For small y we get directly from

(A.1) that

Mµ,ν(y) = yν+ 1
2

(
1 + Oµ,ν(y)

)
.(A.5)

It is also apparent from (A.1) and (A.2) that when ν − µ = 1/2 we have

(A.6) Mµ,ν(y) + (2µ+ 1)Wµ,ν(y) = Γ(2µ+ 2)y−µey/2,

while when ν + µ = 1/2 we have from (A.2) that

(A.7) Wµ,ν(y) = yµe−y/2.

The I-Bessel and K-Bessel functions are special Whittaker functions [30]:

Iν(y) = 2−2ν− 1
2 Γ(ν + 1)−1y−

1
2M0,ν(2y) and Kν(y) =

»
π
2y W0,ν(2y).

Their asymptotic properties for large y thus follow from (A.4).
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