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Hermitian integral geometry

By Andreas Bernig and Joseph H. G. Fu

Abstract

We give in explicit form the principal kinematic formula for the action

of the affine unitary group on Cn, together with a straightforward alge-

braic method for computing the full array of unitary kinematic formulas,

expressed in terms of certain convex valuations introduced, essentially, by

H. Tasaki. We introduce also several other canonical bases for the algebra of

unitary-invariant valuations, explore their interrelations, and characterize

in these terms the cones of positive and monotone elements.

1. Introduction

1.1. General background. In [17], it was shown that if G is a Lie group

acting transitively on the sphere bundle of a Riemannian manifold M , then

there exist kinematic formulas (cf. (1) below) for certain geometric quantities

associated to subspaces A,B ⊂ M ; the case G = SO(n) n Rn,M = Rn being

the classical kinematic formulas of Blaschke-Santaló-Federer-Chern [26], [30].

The proof was a distillation of the geometric method used in [14] and [16] to

establish the classical case.

A different and in some ways more incisive proof of the classical case was

provided by [22]. Restricting formally to the case where the subspaces are

convex sets, Hadwiger displayed a concrete finite basis for the vector space of

continuous convex valuations invariant under the euclidean group. The exis-

tence of the kinematic formulas is then a simple consequence, and the precise

numerical values of the coefficients involved may be calculated using the “tem-

plate method”, i.e., by evaluating the relevant integrals for enough conveniently

chosen A,B. This approach leaves the impression that the values of the co-

efficients are in some way accidental. However, A. Nijenhuis [27] showed by

direct calculation that under a suitable renormalization of the Hadwiger basis

all of the coefficients are equal to unity.

More recently, S. Alesker [1] gave another proof of the theorem of [17] as

part of a far-reaching reconceptualization of the theory of convex valuations.

He showed that if G is a compact Lie group acting transitively on the sphere of

a euclidean space V , then the space ValG(V ) of continuous convex valuations
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invariant under the group G := GnV , generated by translations and the action

of G, is finite dimensional. Just as in the case of the full euclidean group, the

theorem of [17] follows directly (at least in the euclidean case). In these terms,

the result may be stated as follows.

Theorem 1.1. Let φ1, . . . , φN be a basis for ValG(V ). Given µ∈ValG(V ),

there are constants cµij , 1 ≤ i, j ≤ N , such that for any two compact convex

bodies A,B ⊂ V

(1)

∫
G
µ(A ∩ ḡB) dḡ =

∑
ij

cµijφi(A)φj(B).

Moreover, in [1] Alesker gave an explicit basis (in fact two of them) for

the space ValU(n)(Cn) of unitary-invariant valuations on Cn. Although this

in itself gives a lot of information about the kinematic formulas, a complete

determination of the formulas using the template method appears intractable

(although H. Park [28] used it successfully in the cases n = 2, 3).

Meanwhile, H. Tasaki [31], [32], building on previous work of R. Howard

[23], established a more detailed description of the unitary kinematic formula,

which he stated in the restricted case where A,B are compact submanifolds

of complementary dimension. He showed first of all that if k ≤ n, then the

unitary orbits of the (real) dimension k (resp. codimension k) Grassmannian

Grk(Cn) (resp. Gr2n−k(Cn)) are naturally parametrized by the p := bk2c-
simplex {(θ1, . . . , θp) : 0 ≤ θ1 ≤ · · · ≤ θp ≤ π

2 }. Put Θ(E) for this “multi-

ple Kähler angle” of E ∈ Grk or 2n−k(Cn), and cos2 Θ(E) for the vector with

components cos2 θi. Tasaki’s theorem may then be restated as follows.

Theorem 1.2 (Tasaki [32]). Given k ≤ n, there is a symmetric (p+ 1)×
(p+1) matrix T = Tnk such that whenever Ak, B2n−k ⊂ Cn are C1 submanifolds

of dimension and codimension k respectively,

(2)∫
U(n)

#(A ∩ ḡB) dḡ =
∑
ij

Tij

∫
A
σi(cos2 Θ(TxA)) dx

∫
B
σj(cos2 Θ(TyB)) dy,

where σi is the ith elementary symmetric function and U(n) = U(n) n Cn is

the affine unitary group.

As Tasaki noted, this formula also holds verbatim if Cn is replaced by ei-

ther of the complex space forms CPn,CHn, with their full groups of isometries.

This is an instance of the transfer principle, which we discuss in Section 2.5

below.

1.2. Results of the present paper. In the pages to follow we bring more

of the algebraic machinery introduced by Alesker to bear on the problem of

the integral geometry of the unitary group. The key underlying observation
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(Theorem 2.1 below) is that the graded multiplication introduced in [3] on

the space of convex valuations is intimately related to the various G-kinematic

formulas. This illuminates even the classical SO(n) theory, explaining the

result of Nijenhuis cited above (cf. [20, §2.3], and also [19]). Our point of entry

is the determination in [20] of the multiplicative structure of ValU(n)(Cn). Here

we give a more or less complete set of answers to the questions posed in Section

4 of [20]. We now describe our present results as they relate to those questions,

in the order given there.

(1) Explicit kinematic formulas for U(n). The paper [20] posed the prob-

lem of computing the kinematic formulas explicitly in terms of the monomial

basis (cf. §3.1). This boils down to computing the inverses Qnk of certain sym-

metric matrices Pnk . It turns out that the Pnk are Hankel matrices with ascend-

ing entries of the form
(2i
i

)
. Thus the expansion of the inverse as a polynomial

in the matrix entries gives some kind of answer to this question, but it seems

unreasonably complicated. It would be interesting to have a closed form.

In the present paper we take a different approach, showing how to de-

termine completely the unitary kinematic formulas (cf. Theorem 5.12, Corol-

lary 5.14 and §5.4) in terms of the Tasaki basis (cf. Proposition 3.7 below) for

ValU(n), obtaining in this way the Tasaki matrices Tnk , which may be obtained

in principle by a change of basis from the Qnk . Although the formulas remain

complicated, they are an order of magnitude less so than the näıve formulas for

Qnk described above. Using this approach we can show, for instance, that the

Qnk are positive definite (Corollary 5.13), answering another question of [20].

Furthermore, the Tasaki valuations are more amenable to calculation in con-

crete geometric situations. Strictly speaking we carry this out in full detail only

for the principal kinematic formula kU(n)(χ) (cf. (8) below), then show how the

general formulas may be computed in an essentially straightforward way.

Among the many special bases for ValU(n) (cf. the next item) the Tasaki

valuations seem to enjoy a privileged status. For example, if k = 2p is

even then, in addition to the usual diagonal symmetry (Tnk )ij = (Tnk )ji, the

Tasaki matrices Tn2p display the unexpected antidiagonal symmetry
Ä
Tn2p
ä
ij

=Ä
Tn2p
ä
p−i,p−j (Theorem 3.10).

(2) Canonical bases and their interrelations. We explore with varying de-

grees of depth several canonical bases for ValU(n)(Cn): the monomial basis and

its Fourier transform, the hermitian intrinsic volumes µk,q (which correspond

in a natural way with certain differential forms on the tangent bundle of Cn),

their “Crofton duals” νk,q, and the Tasaki valuations τk,q and their Fourier

transforms τ̂k,q. Although we explicitly study their interrelations only to the

extent necessary to answer our other concerns, there is enough information

here to give a complete (though again complicated) dictionary among them.
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(2) Special cones. We show that the cone P of nonnegative elements of

ValU(n) is generated by the hermitian intrinsic volumes. Stimulated by the fact

(due to Kazarnovskii) that the “Kazarnovskii pseudo-volume” µn,0 is at once

nonnegative and nonmonotone, we give a complete characterization of the cone

M of monotone elements of ValU(n).

As a concluding general remark, we have taken care to give precise and

complete values whenever possible. Beyond the obvious motive of providing

solid information for possible applications, we mean to make the point (in the

only way possible) that this algebraic approach is sufficient to formulate these

results in complete detail, in an area historically plagued by statements of the

form “There exists a formula such that. . . .”

In the latter respect, however, things are not yet in a satisfactory state.

Some results are given in terms of sums for which we have not found closed

forms. Whether or not such closed forms exist, their nature suggests that there

might exist some combinatorial model that generates them, perhaps something

like the devices that occur in Schubert calculus. Indeed much of the approach

in the following pages is inspired by the principle that the algebras ValG(V ) are

similar to the cohomology algebras of Kähler manifolds — it is even the case

that the main subject of this paper, ValU(n)(Cn), has the same Betti numbers

as the even-degree cohomology of the Grassmann manifold of complex 2-planes

in Cn+2, although the algebras themselves are not isomorphic.

Acknowledgements. We wish to thank Semyon Alesker, Ludwig Bröcker,

Dan Nakano, Jason Parsley, Ted Shifrin and Robert Varley for helpful discus-

sions, and the Universities of Georgia (USA) and Fribourg (Switzerland) for

hosting our mutual visits as we worked out this material. We thank also the

anonymous referee, whose many useful remarks greatly improved the text at

key points, and who in particular suggested the proof of Theorem 2.12 in the

nonsmooth case.

2. Valuations and curvature measures

Throughout most of this section we let V be an oriented euclidean vector

space of dimension n <∞. We note, however, that for much of the discussion

the euclidean assumption is not strictly necessary if we substitute the dual

space V ∗ for V in appropriate spots.

We put

ωk :=
π
k
2

Γ(k2 + 1)

for the volume of the k-dimensional euclidean ball. In particular

ω2l =
πl

l!
,
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which also happens to be the volume of the complex projective space CP l
under the Fubini-Study metric.

2.1. Basics. For definiteness we will work formally in the context of con-

vex valuations on V . However, many statements apply also to other geometri-

cally valid subsets (e.g. C2 submanifolds, or in the case of the Crofton formulas

even C1 submanifolds) of smooth manifolds, in terms of the formalism of val-

uations on manifolds [4], [5], [10], [7], [6]. Since these notions intervene only

at the stage of interpretation of our main results, and never in an essential

technical way, we will say no more about them.

We put K = K(V ) for the space of all compact convex subsets of V , en-

dowed with the Hausdorff metric, and Ksm(V ) ⊂ K(V ) for the subspace con-

sisting of subsets with nonempty interior and smooth boundary, and for which

all principal curvatures are nonzero. We refer to [13] and the sources cited

there for the definition and basic properties of the vector space Val = Val(V )

of continuous translation-invariant valuations on V , and of the dense subspace

Valsm(V ) of smooth valuations. Basic examples of these objects include the

Euler characteristic χ and the volume measure voln.

Recall that a valuation φ is of degree k if φ(tK) = tkφ(K) for all t ≥ 0 and

even if φ(−K) = φ(K) for all K ∈ K. The corresponding subspace of Val is

denoted by Val+k . It is known [25] that the restriction of an even valuation µ of

degree k to a k-dimensional subspace E ⊂ V is a multiple of the restriction of

the usual Hausdorff measure volk to E. Putting Klµ(E) for the proportionality

factor, we obtain the Klain function Klµ ∈ C(Grk(V )) of µ. In other words,

Klµ is uniquely characterized by the relation

(3) µ(K) = Klµ(E) volk(K) for E ∈ Grk, K ∈ K(E).

A theorem of Klain [25] states that the resulting map Kl from the space of

even valuations of degree k to C(Grk(V )) is injective.

Every even µ ∈ Valsmk (V ) admits a Crofton measure, i.e. a signed measure

m on Grk(V ) such that

µ(A) =

∫
Grk(V )

volk(πE(A)) dm(E),

where πE is the orthogonal projection to E. This follows from the Alesker-

Bernstein theorem [9] (compare also §1 in [1]).

We recall also Alesker’s Fourier transform F : Valsmk (V ) → Valsmn−k(V )

(cf. [8]). In the present paper we will denote the Fourier transform of a valua-

tion φ by

(4) φ̂ := Fφ.
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We will only make use of it for even valuations, in which case it is uniquely

characterized in terms of the Klain embedding by

(5) Kl
φ̂
(E) = Klφ(E⊥), E ∈ Grn−k(V )

for even φ ∈ Valsmk . In this form, the Alesker-Fourier transform was denoted

by D in [1], [13] and in several other papers.

Alesker has defined in [3] a commutative graded product on Valsm(V ),

with the property that the symmetric pairing

(6) (φ, ψ) := degree n part of φ · ψ

is perfect. We recall [13] that the related pairing

(7) 〈φ, ψ〉 := (φ, ψ̂)

is symmetric. We will see later that the restriction of the pairing 〈·, ·〉 to ValU(n)

is positive definite. However this is not true of the unrestricted pairing— it is

shown in [11] that if n is odd then the index of the restriction of the pairing

to ValSU(n)(Cn) is 1.

2.2. Grassmannians. We denote the Grassmannian of k-dimensional sub-

spaces of the real vector space V by Grk(V ). If V = Cn (considered as a real

vector space) we consider the (k, p)-Grassmannian Grk,p(Cn) ⊂ Grk(Cn) to be

the submanifold of all k-dimensional real subspaces that may be expressed as

the orthogonal direct sum of a p-dimensional complex subspace and a (k−2p)-

dimensional real subspace that is isotropic with respect to the standard sym-

plectic (Kähler) structure on Cn. A general element of Grk,p will be denoted

Ek,p. It is easy to see that Grk,p is the orbit of Cp⊕Rk−2p under the standard

action of U(n). In particular, Gr2p,p is the Grassmannian of p-dimensional

complex subspaces and Grn,0(Cn) is the Lagrangian Grassmannian.

2.3. Global and local. We recall that the family of algebras ValU(n) :=

ValU(n)(Cn) is related by the sequence of surjective restriction homomorphisms

ValU(n) → ValU(n−1), n ≥ 1. The algebra ValU(∞) of global valuations is the

inverse limit of this system; abusing terminology we will identify a global val-

uation with its images in the various ValU(n). An expression for an element

of ValU(n) that does not hold in ValU(∞) will be called local, or local at n.

Likewise we will refer to global and local relations among valuations.

2.4. Poincaré duality and kinematic formulas. We recall from [1] that if

G ⊂ O(V ) is a compact group acting transitively on the sphere of V , then

the space ValG(V ) of G-invariant and translation invariant valuations on V

is finite dimensional. It follows (cf. [13]) that there is a linear injection kG :
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ValG → ValG⊗ValG such that whenever A,B ∈ K and φ ∈ ValG,

(8) kG(φ)(A,B) =

∫
G
φ(A ∩ ḡB) dḡ.

Here G := Gn V is the group generated by G and the translation group of V

and dḡ is the Haar measure, normalized so that

(9) dḡ ({ḡ : ḡo ∈ S}) = voln(S), S ⊂ V measurable,

where o ∈ V is an arbitrarily chosen point. If φ ∈ ValGk , then kG(φ) ∈⊕
i+j=n+k ValGi ⊗ValGj . Taking A to be a point, it is clear that the term of

kG(χ) of bidegree (0, n) is χ⊗ voln.

The algebraic approach to the kinematic formula is based on the following

statement from [13]. Let p : ValG → ValG
∗

denote the linear isomorphism

induced by the Poincaré duality pairing (6), mG : ValG⊗ValG → ValG the

restriction of the multiplication map to ValG, and m∗G : ValG
∗ → ValG

∗⊗ValG
∗

its adjoint.

Theorem 2.1.

(10) (p⊗ p) ◦ kG = m∗G ◦ p.

To state this in more sensible terms:

Theorem 2.2. Let φ1, . . . , φN and ψ1, . . . , ψN be bases of ValG, and let

M be the N ×N matrix

Mij := (φi, ψj),

where the right-hand side is given by the Poincaré duality pairing (6). Let

K := M−1. Then

(11) kG(χ) =
∑
i,j

Kij φi ⊗ ψj .

If the ψi = “φi, then M and K are symmetric. More generally, for any µ ∈
ValG,

(12) kG(µ) =
∑
i,j

Kij (µ · φi)⊗ ψj =
∑
i,j

Kij φi ⊗ (µ · ψj).

The symmetry assertion is of course the same as the symmetry of the

pairing (7).

These formulas also apply to other types of geometric subsets of V , as

described in [17], [23], and [18]. The simplest case occurs when A,B are

smooth compact submanifolds of complementary dimensions k, n − k. It is

advantageous to use bases for ValG comprised of bases for the components

ValGk of the grading by degree. Given an even valuation φ ∈ ValGk , and a
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compact C1 k-dimensional submanifold A ⊂ V , it is natural to put

φ(A) :=

∫
A

Klφ(TxA) dx

and the kinematic formula yields the Crofton formula

(13)

∫
G

#(A ∩ ḡB) dḡ =
∑

deg φi=k,degψj=n−k
Kij φi(A)ψj(B),

where # denotes the cardinality.

2.5. The transfer principle for Crofton formulas. R. Howard has estab-

lished a general Crofton formula for Riemannian homogeneous spaces M :=

G/K. Put Grm(M) for the dimension m Grassmann bundle over M .

Theorem 2.3 ([23]). Let G be a unimodular Lie group and M := G/K

a Riemannian homogeneous space of G, and let m + n ≥ dimM . Let the

Haar measure on M be given by (9). Then there exists a nonnegative function

fM,G,K ∈ C∞(Grm(M) × Grn(M)), invariant under the action of G × G on

Grm(M)×Grn(M), such that if Am, Bn ⊂M are C1 submanifolds, then

(14)

∫
G

voldimM−m−n(A ∩ gB) dg =

∫ ∫
A×B

fM,G,K(TxA, TyB) dx dy.

Note that the function fM,G,K is completely determined by its restriction

f̄M,G,Kto Grm(ToM) × Grn(ToM), where o = [K] ∈ M is a representative

point, and that this restriction is K×K invariant. Under this correspondence,

the function fM,G,K is in a certain sense universal:

Theorem 2.4 (Transfer principle [23]). Suppose G′ is another unimodular

Lie group containing K , and M ′ = G′/K an associated Riemannian homoge-

neous space, such that for representative points o ∈M,o′ ∈M ′ there exists an

isometric K-map ToM → To′M
′. If we identify these two spaces via this map,

then f̄M,G,K = f̄M ′,G′,K .

Heuristic proof. Given Am, Bn ⊂M , we may think of A,B as being made

up of infinitesimal pieces of linear elements E ∈ Grm(V ), F ∈ Grn(V ), where

V := ToM ' TxM for any x ∈ M . Taking Riemann sums, it follows that

f̄M,G,K = f̄V,KnV,K . �

2.6. The normal cycle, curvature measures and the first variation of a

valuation. Let S(V ) denote the unit sphere of V and set SV := V × S(V ),

the sphere bundle over V . Given a smooth translation-invariant form β ∈
Ωn−1(SV )V we define Ψβ ∈ Valsm(V ) by

(15) Ψβ(A) :=

∫
N(A)

β
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for A ∈ K(V ), where N(A) is the normal cycle of A. Conversely, any element

of Valsm(V ) may be expressed as c voln +Ψβ for some constant c and some β

as above. This was proved by Alesker [4, Thm. 5.2.1].

The map Ψ : Ωn−1(SV )V → Valsm(V ) from forms to valuations may

be factored through the curvature measure map Φ as follows. The curvature

measure Φβ is defined to be the assignment to any A ∈ K(V ), of a signed

measure supported on ∂A given by

ΦA
β (S) :=

∫
π−1(S)∩N(A)

β

for measurable subsets S ⊂ V , where π : SV → V is the projection. Thus

Ψβ(A) = ΦA
β (A). We say that the curvature measure Φβ is nonnegative if

the measure ΦA
β ≥ 0 for all A ∈ K(V ). We observe that if the boundary of

A is a smooth hypersurface, then the last integral may be expressed as the

integral over S of a function, determined by β, which at each point x ∈ ∂A is

polynomial in the second fundamental form of ∂A at x (cf. Lemma 2.8 below).

Recall that SV is a contact manifold with the global contact form α

defined by α|(x,v)(w) = 〈v, dπ(w)〉. The unique vector field T on SV with

iTα = 1,LTα = 0 is called the Reeb vector field (here L denotes the Lie

derivative). Given a form β ∈ Ωn−1(SV ) there exists a unique vertical form

α ∧ ξ such that d(β + α ∧ ξ) is vertical, i.e., is a multiple of α. The Rumin

operator D, introduced in [29], is the second order differential operator Dβ :=

d(β + α ∧ ξ).
Consider now the first variation of a valuation µ ∈ Valsm(V ): given A ∈

Ksm and a smooth vector field ξ on V , we put

δξµ(A) :=
d

dt

∣∣∣∣
t=0

µ(Ft(A))

where Ft is the flow of ξ. The following implies that δξµ extends by continuity

to a smooth (but not translation-invariant) valuation in the sense of [4], [5],

[7], [6], [10] (although we will not make use of this fact).

Lemma 2.5. If µ = Ψβ , then

(16) δξµ(A) =

∫
N(A)
〈ξ, π∗T 〉 iT (Dβ).

Since ∂A is smooth this may be rephrased as

Corollary 2.6. Suppose A ∈ Ksm(V ), and let n be the outward pointing

normal field to ∂A. Then

δξΨβ(A) =

∫
∂A
〈ξ, n〉 dΦA

iT (Dβ)
.
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Proof of Lemma 2.5. Let ξ̃ denote the complete lift of ξ to SV , i.e., the

vector field whose flow F̃t consists of contact transformations and which covers

Ft ([33]). Put At := Ft(A). Then N(At) = F̃t∗(N(A)), whence

δξΨβ(A) =
d

dt

∣∣∣∣
t=0

Ç∫
N(At)

β

å
=

∫
N(A)

Lξ̃β

=

∫
N(A)

α(ξ̃) iTDβ

=

∫
N(A)
〈ξ, π∗T 〉 iT (Dβ) ,

as claimed. �

The kernel of the map Ψ of (15) has been characterized in [12]. This result

may be restated in the vector space setting as follows. Define the map δ from

Valsm to the space of curvature measures by

(17) δ(Ψβ) := ΦiT (Dβ), δ(voln) := P,

where PK(S) = voln−1(S ∩ ∂K) for K ∈ Ksm and S ⊂ V measurable. We

recall that µ ∈ Val(V ) is said to be monotone if µ(K) ≤ µ(L) whenever

K ⊂ L,K,L ∈ K(V ).

Theorem 2.7. The mapping δ is well-defined, with kernel equal to the

one-dimensional subspace spanned by the Euler characteristic χ. A valuation

µ ∈ Valsm(V ) is monotone if and only if δµ ≥ 0 and µ({point}) ≥ 0.

Proof. That δ is well-defined follows from Lemma 2.5. Corollary 2.6 im-

plies that if µ ∈ ker δ then δξµ ≡ 0 for all smooth vector fields ξ. Taking

ξ := −∑xi
∂
∂xi

to be the Euler vector field generating the homothetic flow

towards the origin, continuity implies that µ(K) = µ({0}) =: c for all K ∈ K.

It follows that µ = cχ.

To prove the last assertion, by continuity of µ it is enough to show that µ

is monotone if and only if µ({point}) ≥ 0 and δµK ≥ 0 for all K ∈ Ksm.

Suppose µ is monotone and K ∈ Ksm. Then µ({point}) ≥ 0 since µ(∅)
= 0. Furthermore, if f : ∂K → R is smooth and ≥ 0 then by Corollary 2.6

0 ≤ δfnµ(K) =
∫
∂K f d(δµ)K . This implies that (δµ)K ≥ 0, as claimed.

To prove the converse, it is enough to show that if K,L ∈ Ksm and K ⊃ L
then µ(K) ≥ µ(L). Under these conditions there is a smooth deformation

Ft : V → V such that F0 = Id, F1(L) = K and 〈∂Ft∂t (t), n〉 ≥ 0 for all outward

normals n to Ft(L) (for example, the deformation arising from the linear in-

terpolation between the support functions of the two bodies). Integrating the

result of Corollary 2.6 completes the proof. �
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2.7. Constant coefficient valuations. If β extends to a translation-invari-

ant form β ∈ Ωn−1(TV )V ' Ωn−1(V × V )V , then Stokes’ theorem gives∫
N(A)

β =

∫
N1(A)

dβ,

where N1(A) is the “disk bundle” defined in (41) of [13]. We consider here the

case where φ := dβ has constant coefficients, i.e. φ ∈ Λn(V ⊕ V ).

This subject is relevant here for two related reasons. First, it turns out

(cf. Theorem 3.2 below) that all unitary-invariant valuations belong to this

class. Second, constant coefficient valuations are important even in the gen-

eral theory of valuations: from (17), we know that the first variation δµ of

any valuation µ on V n corresponds to a translation-invariant differential form

γ of degree n − 1 on the sphere bundle SV , which is a contact manifold. At

each point (x, v) ∈ SV , the contact hyperplane Qx,v may be naturally iden-

tified with Pv ⊕ Pv, where Pv := v⊥. Thus if we fix (x, v) and restrict γx,v
to Qx,v, we obtain an element of Λn−1(Pv ⊕ Pv). We may now regard γx,v as

giving a constant coefficient valuation on the vector space Pv. It turns out

that the positivity of this family of “infinitesimal” constant coefficient valua-

tions (parametrized by (x, v) ∈ SV ) is equivalent to the monotonicity (in the

sense defined in the remarks preceding Theorem 2.7 above) of µ. This has

the following consequence: in view of the fact (Corollary 2.10) that a constant

coefficient valuation is positive if and only if its homogeneous components are

positive, a general translation-invariant valuation is monotone if and only if its

homogeneous components are monotone (Theorem 2.12).

Strictly speaking, the positivity of the constant coefficient valuation de-

termined by γx,v is not the relevant concern for the monotonicity question—

instead, the matter turns on the positivity of the functional on symmetric

bilinear forms defined in equation (18). However, Lemma 2.9 and and Propo-

sition 2.11 show that these two conditions are equivalent. This is a help when

we want to determine the monotone cone in the space of U(n)-invariant valu-

ations: the family of infinitesimal constant coefficient valuations that arise in

calculating their first variations may be expressed in terms of the invariant val-

uations in dimension n− 1. Thus the determination of the (invariant) positive

cone translates at once into a criterion (Proposition 4.5) for the monotone cone.

Put Σ for the vector space of self-adjoint linear maps V → V . We identify

Σ in the usual way with the space of symmetric bilinear forms on V . Given

φ ∈ Λn(V ⊕ V ), consider the map λφ : Σ→ R given by

(18) λφ(σ) := σ∗φ,

where σ(v) := (v, σv) is the graphing map, and we identify ΛnV with R by

t · vol ' t. Given a euclidean space W of dimension n+ 1, together with A ∈
Ksm(W ) and β ∈ Ω(SW )W , it is convenient to express the curvature measure
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ΦA
β in these terms by taking V := Tx∂A, where x ∈ ∂A. Let n : ∂A → S(W )

denote the Gauss map and σx : V → V the Weingarten map. As above,

the contact hyperplane Qx,n(x) is naturally identified with V ⊕ V , and (after

restriction) βx,n(x) ∈ Λn(V ⊕ V ). The following is immediate.

Lemma 2.8. Let β ∈ Ω(SV )V . For A ∈ Ksm the curvature measure

determined by β may be expressed as the curvature integral

(19) ΦA
β (S) =

∫
S∩∂A

λβx,n(x)(σx) dx.

We say that λφ ≥ 0 if λφ(σ) ≥ 0 whenever σ is nonnegative semidefinite.

Put νφ for the valuation

(20) νφ(K) :=

∫
N1(K)

φ.

Put Λnk(V ⊕ V ) for the space of forms of bidegree (k, n − k) and Σk ⊂ Σ for

the cone of maps of corank k.

Observe that if φ ∈ Λnk(V ⊕ V ) then the Klain function Klνφ is given as

follows. Given E ∈ Grk(V ), let ē1, . . . , ēn be a basis adapted to E, i.e., an

orthonormal basis for V such that ē1, . . . , ēk span E. Put ei := (ēi, 0), εi :=

(0, ēi). Then

(21) Klνφ(E) = ±ωn−k φ(e1, . . . , ek, εk+1, . . . , εn),

where the sign is positive or negative accordingly as the ordered basis ēi de-

termines the correct orientation of V or not.

Lemma 2.9. Suppose φ ∈ Λnk(V ⊕ V ). The following are equivalent :

(1) νφ ≥ 0.

(2) Klνφ ≥ 0.

(3) λφ ≥ 0.

(4) λφ(σ) ≥ 0 for all σ ∈ Σk with σ ≥ 0.

Proof. (1)⇐⇒ (2): That (1) =⇒ (2) is obvious. To prove the converse it

is enough to observe that if P ⊂ V is a compact convex polytope then

νφ(P ) =
∑
F∈Pk

Klνφ(〈F 〉) volk(F )∠(P, F ),

where P k is the k-skeleton of P , 〈F 〉 is the k-plane spanned by F , and ∠(P, F )

is the normalized exterior angle of P along F . (4) ⇐⇒ (3): That (3) =⇒ (4)

is obvious. To prove the converse, let τ ∈ Σ, τ ≥ 0. We may assume that τ is

diagonal. The restriction of λφ to the subspace of diagonal maps τ , with entries

t1, . . . , tn ≥ 0, may be expressed as λφ(τ) =
∑
i1<···<in−k ai1···in−kti1 · · · tin−k for

some coefficients ai1···in−k . Setting suitable subsets of the ti to be zero, the
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hypothesis implies that all ai1···in−k ≥ 0. (4) ⇐⇒ (2): Given σ ∈ Σk, σ ≥ 0,

let ēi be a positively oriented basis of V adapted to E := kerσ. Then

λφ(σ) = φ(e1, . . . , ek, ek+1 + ak+1εk+1, . . . , en + anεn)

= φ(e1, . . . , ek, (ēk+1, σēk+1), . . . , (ēn, σēn))

= det(σ|E⊥)φ(e1, . . . , ek, εk+1, . . . , εn).

Since σ ≥ 0, the determinant is nonnegative. Thus both conditions are equiv-

alent to the assertion that the right-hand side of (21) is nonnegative on such

a basis. �

Corollary 2.10. A constant coefficient valuation is positive if and only

if its homogeneous components are positive.

Proof. Let µ = νφ, φ ∈ Λn(V ⊕ V ) be a constant coefficient valuation.

Let φ =
∑
k φk, φk ∈ Λnk(V ⊕ V ). Suppose some νφk 6≥ 0. By Lemma 2.9,

there is E ∈ Grk such that Klνφk (E) < 0. Since the restrictions to E of the

νφj , j > k, all vanish, it follows that νφ(E ∩ BR) < 0 for balls of sufficiently

large radius R. �

Proposition 2.11. Let φ ∈ Λn(V ⊕ V ). Then νφ ≥ 0 if and only if

λφ ≥ 0.

Proof. This follows from Lemma 2.9, Corollary 2.10 and the fact that

λφ ≥ 0 if and only if each λφk ≥ 0,

whose proof is similar to that of Corollary 2.10, substituting an appropriate

nonnegative symmetric bilinear form of rank k in place of E. �

Theorem 2.12. A valuation µ ∈ Val(V ) is monotone if and only if all of

its homogeneous components are monotone.

Proof. First we prove the statement in the smooth case.

By (17), given µ ∈ Valsm, the first variation measure of µ may be ex-

pressed as δµ = Φγ for some γ ∈ Ω(SV )V (if µ is a multiple of vol then γ is

the corresponding multiple of the form κn−1 of [17]). Since the second fun-

damental form of a smooth convex hypersurface is nonnegative semidefinite,

and conversely every nonnegative semidefinite bilinear form may be realized as

such at some point of the boundary of such a hypersurface, from Lemma 2.8 it

follows that the curvature measure Φγ is nonnegative if and only if λγ(x,v) ≥ 0

as an element of Λn−1k (Qx,v) for every (x, v) ∈ SV . By Lemma 2.9, this is the

case if and only if λγk
(x,v)
≥ 0, k = 0, . . . , n − 1, where γk(x,v) ∈ Λn−1k (Qx,v) are

the homogeneous components of γ(x,v). Thus by assertion (2) from the proof

of Proposition 2.11, the present proof will be completed by showing that these

correspond to the homogeneous components of µ.
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This amounts to showing: if deg µ = k then γx,v ∈ Λn−1k−1(Qx,v) for all

(x, v) ∈ SV . Since this is clearly true when µ is a multiple of vol, we may

assume that degµ < n, and hence µ = Ψβ for some translation-invariant form

β of bidegree (k, n− k− 1). Note that dβ then has bidegree (k, n− k). By the

construction of [29], Dβ = d(β + α ∧ ξ), where ξ is the unique form such that

iT ξ = 0 and (dβ + dα ∧ ξ)|Qx,v = 0. In particular ξ is translation-invariant

and of bidegree (k− 1, n− k− 1), so γ := iTDβ has bidegree (k− 1, n− k), as

claimed.

Next, let µ be any continuous translation invariant valuation. Let m1,

m2, . . . be a sequence of smooth compactly supported probability measures on

GL(V ) whose supports converge to the identity. The valuations

µ ∗mi :=

∫
Gl(V )

gµ dmi(g),

where gµ(A) := µ(g−1A), are then smooth and monotone, with µ ∗mi → µ.

Thus the homogeneous components of each µi are monotone by what we have

shown above, and the resulting sequences converge, respectively, to the homo-

geneous components of µ. Since monotonicity is clearly a closed condition, the

result follows. �

Proposition 2.13. Suppose W is the orthogonal direct sum R⊕ V , with

orientation induced by those of R, V , and let t, τ : W ×W → R be the projec-

tions to the two R factors respectively. Let φ ∈ Λn(V × V ). Then the three

conditions

νφ ≥ 0, νdt∧φ ≥ 0, νdτ∧φ ≥ 0

are equivalent. If φ ∈ Λnk(V × V ) and ψ ∈ Λnk−1(V × V ), then νdτ∧φ+dt∧ψ ≥ 0

if and only if both νφ, νψ ≥ 0.

Proof. We may assume that φ ∈ Λnk(V × V ), so that

dt ∧ φ ∈ Λn+1
k+1(W ×W ), dτ ∧ φ ∈ Λn+1

k (W ×W ).

Given E ∈ Grk+1(W ), there is a positively oriented basis of W adapted to E

of the form

c
∂

∂t
+ sēk+1, ē1, . . . , ēk,−s

∂

∂t
+ cēk+1, ēk+2, . . . , ēn,

where ē1, . . . , ēn is a positively oriented orthonormal basis for V and c2+s2 = 1.

Similarly, given any F ∈ Grk(W ) there is a positively oriented basis of W

adapted to F of the form

c
∂

∂t
+ sē1, . . . , ēk,−s

∂

∂t
+ cē1, ēk+1, . . . , (−1)k−1ēn.
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By Lemma 2.9, we may check the nonnegativity of νdt∧φ by evaluating

dt ∧ φ
Å
c
∂

∂t
+ sek+1, e1, . . . , ek,−s

∂

∂τ
+ cεk+1, εk+2, . . . , εn

ã
(22)

= dt ∧ φ
Å
c
∂

∂t
, e1, . . . , ek, cεk+1, εk+2, . . . , εn

ã
= c2φ(e1, . . . , ek, εk+1, . . . , εn),

and of νdτ∧φ by evaluating

dτ ∧ φ
Å
c
∂

∂t
+ se1, . . . , ek,−s

∂

∂τ
+ cε1, εk+1, . . . , (−1)k−1εn

ã
(23)

= dτ ∧ φ
Å
se1, . . . , ek,−s

∂

∂τ
, εk+1, . . . , (−1)k−1εn

ã
= s2φ(e1, . . . , ek, εk+1, εk+2, . . . , εn).

By (21), each of these expressions is nonnegative precisely when νφ ≥ 0, which

proves the first assertion.

To prove the second assertion, it is enough to show that the first condition

implies the second. But (22) and (23) imply that for E ∈ Grk(V ), F ∈
Grk−1(V )

ω−1n+1−k Klνdτ∧φ+dt∧ψ({0} × E) = ω−1n−k Klνφ(E),(24)

Klνdτ∧φ+dt∧ψ(R× F ) = Klνψ(F ),(25)

from which this follows at once. �

3. Special bases for ValU(n)

Every valuation in ValU(n)(Cn) is even and smooth.

3.1. The monomial basis and its Fourier transform. We recall the global

valuations s ∈ Val
U(n)
2 , t ∈ Val

U(n)
1 from [20]. The monomials

sptk−2p, 0 ≤ p ≤ min

ßõ
k

2

û
,

õ
2n− k

2

û™
constitute a basis of ValU(n). In Alesker’s [1] notation,

sptk−2p =
n!(k − 2p)!ωk−2p

(n− p)!πk−2p
Uk,p,

where

Uk,p(K) :=

∫
Gr2n−2p,n−p

µk−2p(K ∩ Ē) dĒ

and the integral is over the corresponding affine Grassmannian with Haar mea-

sure dĒ normalized as in (19) of [20]. By [13] and [1], their Fourier transforms

are given by◊�sptk−2p = ‘(sp) ∗ ◊�(tk−2p) = const.sn−p ∗ t2n−k+2p = const.C2n−k,n−p,
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where ∗ is the convolution product of [13] and

Ck,q(K) :=

∫
Gr2q,q

µk(πE(K)) dE.

We recall from [20]:

Theorem 3.1. The ideal of polynomials p such that p(s, t) = 0 locally at n

is the ideal (fn+1, fn+2), where deg fk(s, t) = k and log(1+s+ t) =
∑
k fk(s, t).

The fk satisfy the relations

f1 = t,(26)

f2 = s− t2

2
,

ksfk + (k + 1)tfk+1 + (k + 2)fk+2 = 0, k ≥ 1.

3.2. The hermitian intrinsic volumes.

Theorem 3.2. There exist global valuations µk,q ∈ Val
U(∞)
k uniquely de-

termined by the relations

(27) Klµk,q(E
k′,q′) = δk

′,q′

k,q .

The valuations µk,q, max(0, k − n) ≤ q ≤ bk2c, comprise a basis for the vector

space Val
U(n)
k .

The µk,q are all constant coefficient valuations in the sense of Section 2.7,

and satisfy the local relations

(28) ‘µk,q = µ2n−k,n−k+q.

Proof. Let (z1, . . . , zn, ζ1, . . . , ζn) be canonical coordinates on TCn ' Cn×
Cn, where zi = xi +

√
−1yi and ζi = ξi +

√
−1ηi. The natural action of U(n)

on TCn corresponds to the diagonal action on Cn × Cn.

Following Park [28], we consider the elements

θ0 :=
n∑
i=1

dξi ∧ dηi,

θ1 :=
n∑
i=1

(dxi ∧ dηi − dyi ∧ dξi) ,

θ2 :=
n∑
i=1

dxi ∧ dyi

in Λ2(Cn⊕Cn)∗. Thus θ2 is the pullback via the projection map TCn → Cn of

the Kähler form of Cn, and θ0+θ1+θ2 is the pullback of the Kähler form under

the exponential map exp(z, ζ) := z + ζ. Together with the symplectic form

θs =
∑n
i=1(dxi∧dξi+dyi∧dηi), the θi generate the algebra of all U(n)-invariant

elements in Λ∗(Cn × Cn) (cf. [28]).
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For positive integers k, q with max{0, k − n} ≤ q ≤ k
2 ≤ n, we now set

θk,q := cn,k,qθ
n+q−k
0 ∧ θk−2q1 ∧ θq2,

where

cn,k,q :=
1

q!(n− k + q)!(k − 2q)!ω2n−k
.

Note that θk,q ∈ Λ2n
k (Cn × Cn). We put

(29) µk,q(K) :=

∫
N1(K)

θk,q.

Since this valuation has constant coefficients in the sense of Section 2.7, we may

evaluate its Klain function using (21). We write Ek,p for a generic element of

Grk,p(Cn). By invariance we may assume that Ek,p = Cp⊕Rk−2p, with adapted

basis

(30)
∂

∂z1
, . . . ,

∂

∂zp
,

∂

∂xp+1
, . . . ,

∂

∂xk−p
,

∂

∂yp+1
, . . . ,

∂

∂yk−p
,

∂

∂zk−p+1
, . . . ,

∂

∂zn
,

where ∂
∂zi

stands for the pair ∂
∂xi
, ∂
∂yi

. We evaluate

(31)

θk,q

Å
∂

∂z1
, . . . ,

∂

∂zp
,

∂

∂xp+1
, . . . ,

∂

∂xk−p
,

∂

∂ηp+1
, . . . ,

∂

∂ηk−p
,

∂

∂ζk−p+1
, . . . ,

∂

∂ζn

å
= δpqp!(n− k + p)!θk−2p1

Ç
∂

∂xp+1
, . . . ,

∂

∂xk−p
,

∂

∂ηp+1
, . . . ,

∂

∂ηk−p

å
=
±δpq
ω2n−k

,

where the sign is that of the basis ∂
∂xp+1

, . . . , ∂
∂xk−p

, ∂
∂yp+1

, . . . , ∂
∂yk−p

relative to

the standard orientation of Ck−2p, i.e., the same as that of the basis (30).

This proves (27). In particular, for fixed n the µk,p in the given range

are linearly independent, since their Klain functions are. Since their number

equals the dimension of ValU(n) they form a basis. Finally, since (Ek,q)⊥ =

E2n−k,n−k+q, relation (28) is immediate, concluding the proof of Theorem 3.2.

�

As a final remark about the hermitian intrinsic volumes, we recall from

Theorem 3.1 that the kernel of the map Val
U(∞)
n+1 → Val

U(n)
n+1 is spanned by the

polynomial fn+1. At the same time it is clear that µn+1,0 = 0 locally at n.

This implies the following global relation.

Lemma 3.3. There are constants γk 6= 0 such that

µk,0 = γkfk.
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The valuation µn,0 ∈ ValU(n) was originally discovered by Kazarnovskii,

and is called the Kazarnovskii pseudo-volume.

3.3. Hermitian curvature measures. Next we consider the U(n)-invariant

curvature measures, which correspond to invariant (2n−1)-forms on the sphere

bundle SCn ' Cn × S2n−1 ⊂ Cn × Cn ' TCn. Consider first the following

three invariant 1-forms on TCn and their exterior derivatives:

α =
n∑
i=1

ξidxi + ηidyi, dα = −θs,

β =
n∑
i=1

ξidyi − ηidxi, dβ = θ1,

γ =
n∑
i=1

ξidηi − ηidξi, dγ = 2θ0,

where θs is the symplectic form of Cn × Cn ' T ∗Cn. The restrictions of these

forms to the sphere bundle Cn × S2n−1, together with that of θ2, generate the

algebra of invariant forms on that space (we will not distinguish notationally

the forms from their restrictions) [28]. Thus each form of degree 2n − 1 that

is a product of these forms gives rise to a U(n)-invariant curvature measure.

Since the contact form α and its exterior derivative θs vanish identically on

any normal cycle, it is enough to consider the products of β, γ, θ0, θ1, θ2. Since

∂N1(K) = N(K), from Stokes’ theorem one easily computes that

Proposition 3.4. Set Bk,q := Φβk,q ,Γk,q := Φγk,q to be the curvature

measures corresponding to the invariant forms

βk,q := cn,k,q β ∧ θn−k+q0 ∧ θk−2q−11 ∧ θq2, k > 2q,(32)

γk,q :=
cn,k,q

2
γ ∧ θn−k+q−10 ∧ θk−2q1 ∧ θq2, n > k − q(33)

on the sphere bundle Cn × S2n−1. Then both of these curvature measures give

rise to the hermitian intrinsic volume µk,q , i.e., for K ∈ K

µk,q(K) = BK
k,q(K) = ΓKk,q(K).

3.4. Tasaki valuations. Tasaki ([31], [32]) was the first to give explicit

Poincaré-Crofton formulas for submanifolds in complex space forms. As a

preparatory step, Tasaki showed that if k ≤ n then the family of U(n) orbits

of Grk(Cn) is in natural one-to-one correspondence with the p-dimensional

simplex

0 ≤ θ1 ≤ · · · ≤ θp ≤
π

2
, p :=

õ
k

2

û
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The invariant Θ(E) := (θ1(E), . . . , θp(E)) is called the multiple Kähler angle

of E ∈ Grk(Cn), and is characterized by the condition that there is an or-

thonormal basis α1, . . . , αk of the dual space E∗ such that the restriction of

the Kähler form of Cn to E is
b k
2
c∑

i=1

cos θi α2i−1 ∧ α2i.

Thus a subspace E is of type (k, q) if and only if

Θ(E) =

Ç
0, . . . , 0︸ ︷︷ ︸

q

,
π

2
, . . . ,

π

2︸ ︷︷ ︸
p−q

å
.

With this definition, the multiple Kähler angle is a global invariant in the

sense of Section 2.3, in that it remains the same under the natural embedding

Grk(Cn)→ Grk(Cn+1). On the other hand it is easy to see that if k > n then

Θ(E) =

Ç
0, . . . , 0︸ ︷︷ ︸
k−n

,Θ(E⊥)

å
.

We remark that Tasaki defined the multiple Kähler angle to be Θ(E⊥) in this

case.

Tasaki ([31, Prop. 3]) observed that if k = 2p ≤ n is even then there is an

orthonormal basis e1, . . . , en of the hermitian vector space Cn, such that

(34) e1, e3, . . . , e2p−1, cos θ1
√
−1e1 +sin θ1 e2, . . . , cos θp

√
−1e2p−1 +sin θp e2p

is an orthonormal basis for E as a real euclidean vector space, and
√
−1 e2, . . . ,

√
−1 e2p, e2p+1,

√
−1e2p+1, . . . , en,

√
−1en,

− sin θ1
√
−1e1 + cos θ1 e2, . . . ,− sin θp

√
−1e2p−1 + cos θp e2p

is an orthonormal basis for E⊥, and similarly if k is odd and/or larger than n.

By (21), it is now easy to see

Lemma 3.5. For each k, q as above, the Klain function Klµk,q(E) is a

linear combination of the elementary symmetric functions in

cos2 θ1(E), . . . , cos2 θp(E).

Proof. Referring to the basis (34) and the expression (21) for the Klain

function, the latter is symmetric in these quantities, and of degree at most one

in each of them. �

We now define the Tasaki valuations τk,q ∈ ValU(∞), 0 ≤ q ≤ p := bk2c by

the condition

(35) Klτk,q(E) = σq(Θ(E)) := σq(cos2 θ1(E), . . . , cos2 θp(E))

where σq is the the qth elementary symmetric function.
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Definition 3.6.

u := 4s− t2.

Proposition 3.7. The Tasaki valuations are well-defined, and are given

by

τk,q =

bk/2c∑
i=q

Ç
i

q

å
µk,i(36)

=
πk

ωk(k − 2q)!(2q)!
tk−2quq.(37)

Furthermore the polynomials from Theorem 3.1 may be expressed

(38) fk =
1

k(−2)k−1

bk/2c∑
q=0

(−1)q
Ç
k

2q

å
tk−2quq.

Proof. Since the elementary symmetric functions corresponding to the

p+1 hermitian intrinsic volumes are linearily independent, relation (36) is a

straightforward calculation, using the defining relations (27).

To prove (38), we introduce the formal complex variable z := t +
√
−1v,

where v is formally real and v2 = u. Then∑
k

fk = log(1 + s+ t) = log

Ç
1 + t+

t2

4
+
v2

4

å
= log

Ç∣∣∣∣1 +
z

2

∣∣∣∣2
å

= 2 Re

Å
log

Å
1 +

z

2

ãã
= Re

∑
k

1

k(−2)k−1

Ä
t+
√
−u
äk
.

We postpone the proof of (37) to Section 5.2. �

Corollary 3.8. The global Tasaki valuations τk,q, 0 ≤ q ≤ k
2 , constitute

a basis for Val
U(∞)
k , and in fact

(39) µk,q =

bk/2c∑
i=q

(−1)i+q
Ç
i

q

å
τk,i.

If k ≤ n then the local Tasaki valuations τ̂k,q, 0 ≤ q ≤ k
2 constitute a basis for

Val
U(n)
2n−k.

If we now write out the U(n) kinematic formula in terms of the basis

{τk,q, τ̂k,q : k ≤ n, 0 ≤ q ≤ k
2} of ValU(n), then the general Crofton formula (13)

now yields the main theorem of [32].
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Theorem 3.9 (Tasaki). For 0 ≤ k ≤ n, there is a
Ä
bk2c+ 1

ä
×
Ä
bk2c+ 1

ä
symmetric matrix Tnk , such that whenever M,N ⊂ Cn are C1 compact sub-

manifolds of dimensions k, 2n− k respectively,

(40)∫
U(n)

#(M ∩ ḡN) dḡ =
∑
i,j

(Tnk )i,j

∫
M
σi(Θ(TxM)) dx

∫
N
σj(Θ(TyN

⊥)) dy.

The symmetry of Tnk follows from that of the pairing (7). In fact these

formulas exhibit a further remarkable symmetry:

Theorem 3.10. If k = 2l is even then

(41) (Tnk )i,j = (Tnk )l−i,l−j , 0 ≤ i, j ≤ l.

To prove Theorem 3.10 we introduce the linear involution ι : Val
U(∞)
2∗ →

Val
U(∞)
2∗ on the subspace of valuations of even degree, determined by its action

on Tasaki valuations:

ι(τ2l,q) := τ2l,l−q.

Lemma 3.11. (1) ι is an algebra automorphism.

(2) ι covers an algebra automorphism of every Val
U(n)
2∗ .

(3) The action of ι on the top degree component Val
U(n)
2n is trivial.

(4) ι commutes with the Fourier transform.

Proof of Lemma 3.11. (1) Any element of Val
U(∞)
2∗ may be expressed as

polynomial in t and v, involving only even powers of each variable. We may

regard this as a (real) polynomial function p(z) in the complex variable z =

t+
√
−1v. From the expression (37), in these terms ι(p(z)) = p(

√
−1 z), which

is of course an algebra isomorphism.

(2) To prove that ι descends to an automorphism of ValU(n) it is enough

to show that ι stabilizes the kernel of the map Val
U(∞)
2∗ → Val

U(n)
2∗ . This kernel

consists of the even degree elements of the ideal (fn+1, fn+2). By (1), it is

enough to show that ι(f2k) ∈ (f2k) and that ι(tf2k−1) ∈ (tf2k−1, f2k). But by

the proof of (38),

ι(f2k) = − 1

k 22k
ι(Re z2k)

= − 1

k 22k
Re(
√
−1z)2k

=
(−1)k+1

k 22k
Re z2k

= (−1)kf2k



928 ANDREAS BERNIG and JOSEPH H. G. FU

and

ι(tf2k−1) =
1

(2k − 1) 22k−2
ι(Re[tz2k−1])

=
1

(2k − 1) 22k−2
Re[−v(

√
−1 z)2k−1]

=
1

(2k − 1) 22k−2
Re
î
(
√
−1 z)2k −

√
−1 t(

√
−1 z)2k−1

ó
= (−1)k+1 4k

2k − 1
f2k +

(−1)k+1

(2k − 1)22k−2
Re(tz2k−1)

= (−1)k+1
Å

4k

2k − 1
f2k + tf2k−1

ã
.

(3) Since locally µ2n,k = 0 for k < n, (36) shows that τ2n,k = τ2n,n−k =(n
k

)
µ2n,n locally.

(4) Put Σp for the vector space spanned by the elementary symmetric

polynomials σp,0 := 1, σp,1 := x1 + · · · + xp, . . . , σp,p := x1x2 . . . xp in the p

variables x1, . . . , xp. As noted above, Σp is canonically isomorphic to Val
U(∞)
2p

via σp,q 7→ τ2p,q, where the map ι corresponds to σp,q 7→ σp,p−q, which we again

denote by ι.

Fixing n ≥ 2p, the Fourier transform ̂: Val
U(n)
2n−2p → Val

U(n)
2p corresponds

to the linear surjection r : Σn−p → Σp given by

r(f) = f(x1, . . . , xp, 1, . . . , 1).

The assertion thus reduces to the claim that for m = n− p ≥ p the diagram

Σm
ι−−−−→ Σmyr yr

Σp
ι−−−−→ Σp

commutes. It is enough to prove this for m = p+ 1, in which case r(σp+1,i) =

σp,i + σp,i−1. Hence for i = 0, . . . , p+ 1,

ι◦r(σp+1,i) = ι(σp,i+σp,i−1) = σp,p−i+σp,p−i+1 = r(σp+1,p−i+1) = r◦ι(σp+1,i).

�

Proof of Theorem 3.10. By Lemma 3.11,

τ2p,i ·‘τ2p,j = τ2p,i ·⁄�(ιτ2p,p−j)

= τ2p,i · ι(◊�τ2p,p−j)
= ι

(
τ2p,i · ι(◊�τ2p,p−j))

= ι(τ2p,i) · ◊�τ2p,p−j
= τ2p,p−i · ◊�τ2p,p−j .

With Theorem 2.2, this implies the result. �
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4. The positive, monotone and Crofton-positive cones

We wish to determine the cones CP ⊂M ⊂ P ⊂ ValU(n) given by

P := {φ : φ(K) ≥ 0 for all K ∈ K},(42)

M := {φ : φ(K) ≥ φ(L) whenever K,L ∈ K and K ⊃ L},(43)

CP := {φ : the homogeneous components of φ each admit(44)

a nonnegative Crofton measure}.

We recall from [13] that if φ, ψ ∈ Valsm,+k are even, and mψ is a Crofton

measure for ψ, then the pairing (7) is given by

(45) 〈φ, ψ〉 =

∫
Grk

Klφ dmψ.

Proposition 4.1. The cone P is generated by the hermitian intrinsic

volumes µk,q . The cone CP is the cone P ∗ := {φ : 〈φ, µ〉 ≥ 0 for all µ ∈ P}
dual to P with respect to the pairing 〈·, ·〉 of (7).

Proof. By the equivalence (1) ⇐⇒ (3) ⇐⇒ (4) in Lemma 2.9, a con-

stant coefficient valuation belongs to P if and only if its homogeneous com-

ponents do; and by the equivalence (1) ⇐⇒ (2), a homogeneous constant

coefficient valuation belongs to P if and only if its Klain function is nonnega-

tive. By Lemma 3.5, the first assertion of Proposition 4.1 is equivalent to the

following statement. Consider the vector space Σ spanned by the elementary

symmetric functions in the variables x1, . . . , xp, and let C denote the cube

0 ≤ x1, . . . , xp ≤ 1 (we think of xi = cos2 θi). Let f ∈ Σ be given. Then

f |C ≥ 0 if and only if its value at each vertex of C ≥ 0. This is easily proved

by induction on the dimension of the faces of C, using the observation that f

is affine in each variable separately if the others are held fixed.

Moving on to CP , put νk,p ∈ ValU(n) for the dual basis to µk,p with respect

to the pairing (7), i.e.,

〈νk,p, µl,q〉 := δk,pl,q .

Thus, by (45), νk,p is the valuation determined by the Crofton measure that is

U(n)-invariant, is supported on Grk,p, and has total mass 1; furthermore it is

clear that the dual cone P ∗ is generated by the νk,p ∈ CP , so P ∗ ⊂ CP . To

prove the opposite inclusion, we note that (45) implies that if ψ ∈ CP then

〈φ, ψ〉 ≥ 0 for all φ with nonnegative Klain function. Taking ψ to have degree

k and writing ψ =
∑
p bpνk,p, we find that

(46) 0 ≤
〈∑

p

apµk,p, ψ

〉
=
∑
p

apbp,

whenever all ap ≥ 0, which implies that all bp ≥ 0, i.e. ψ ∈ P ∗. �
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This discussion invites the following brief excursion. Define the norms

‖·‖∞ and ‖·‖1 on Valsm,+ by

‖φ‖∞ := ‖Klφ‖∞ ,(47)

‖φ‖1 := min{massm : m is a Crofton measure for φ}.(48)

By (45), the norm dual to ‖·‖∞ with respect to the pairing 〈·, ·〉 satisfies

(49) ‖·‖∗∞ ≤ ‖·‖1 .

Proposition 4.2. Restricted to Val
U(n)
k the norms ‖·‖1 and ‖·‖∞ are dual

to one another with respect to the pairing (7), with∥∥∥∥∥∥∑p apµk,p

∥∥∥∥∥∥
∞

= max
p
|ap|,(50)

∥∥∥∥∥∥∑p bpνk,p

∥∥∥∥∥∥
1

=
∑
p

|bp|.(51)

Proof. Relation (50) follows from the argument in the first paragraph of

the proof of Proposition 4.1, and by (46),∥∥∥∥∥∥∑p bpνk,p

∥∥∥∥∥∥
∗

∞

=
∑
p

|bp| = mass

(∑
p

bpνk,p

)
≥

∥∥∥∥∥∥∑p bpνk,p

∥∥∥∥∥∥
1

which, with (49), completes the proof. �

4.0.1. The monotone cone.

Theorem 4.3. A valuation µ ∈ Val
U(n)
k is monotone if and only if

µ =

bk/2c∑
q=max{0,k−n}

aqµk,q,

where

(52) (k − 2q)aq ≥ (k − 2q − 1)aq+1, max{0, k − n} ≤ q ≤
õ
k − 1

2

û
(53)

(n+ q− k+ 1)aq ≤ (n+ q− k+ 3/2)aq+1, max{0, k−n− 1} ≤ q ≤
õ
k − 2

2

û
.

Corollary 4.4. The inclusions CP ⊂M ⊂ P are strict.

By Theorem 2.7, in order to prove Theorem 4.3 we need to characterize

the cone of nonnegative hermitian curvature measures.

Proposition 4.5. Given constants ak,q, bl,p ∈ R, k > 2q, n > l − p , the

curvature measure
∑
ak,qBk,q +

∑
bl,pΓl,p ≥ 0 if and only if all ak,q, bl,p ≥ 0.
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Proof. Each tangent space Tx∂A is naturally isomorphic to the orthogonal

direct sum R⊕Cn−1, where the first summand corresponds to the distinguished

line spanned by
√
−1n(x) and the second summand to the maximal complex

subspace of Tx∂A. Thus the 1-forms β, γ correspond respectively to dt, dτ

in Proposition 2.13. In view of the characterization in Proposition 4.1 of the

nonnegative elements of ValU(n−1)(Cn−1), the result now follows from Propo-

sitions 2.11 and 2.13. �

Recall from Theorem 2.7 the first variation map δ from valuations to

curvature measures.

Proposition 4.6.

δµk,q = 2cn,k,q(c
−1
n,k−1,q(k − 2q)2Γk−1,q − c−1n,k−1,q−1(n+ q − k)qΓk−1,q−1

(54)

+c−1n,k−1,q−1(n+ q − k +
1

2
)qBk−1,q−1 − c−1n,k−1,q(k − 2q)(k − 2q − 1)Bk−1,q).

Proof. By definition of the µk,q, this valuation is represented by some

(2n− 1)-form ωk,q with

(55) dωk,q = cn,k,qθ
n+q−k
0 ∧ θk−2q1 ∧ θq2,

i.e., µk,q = Ψωk,q . To compute Dωk,q, we must solve for ξ in the equation

(56) Dωk,q = d(ωk,q + α ∧ ξ) ≡ 0 mod α.

Fixing a point (x, v) ∈ SCn = Cn × S2n−1, let Q ⊂ T(x,v)SCn denote the

contact hyperplane α⊥(x,v). Thus Q ' R ⊕ Cn−1 ⊕ R ⊕ Cn−1 in a natural

way, and carries a symplectic structure (cf. [29]). Let L denote the Lefschetz

operator on Λ∗Q (i.e., multiplication by the symplectic form θs = −dα) and

Λ the dual Lefschetz operator. By [24], they induce an sl2-structure on Λ∗Q,

i.e., [L,Λ] = k + 1− 2n on ΛkQ.

To solve (56) amounts to finding ξ ∈ Λ2n−2Q with

Lξ = dωk,q|Q.
We write dωk,q|Q in terms of its Lefschetz decomposition

(57) dωk,q|Q =
n−1∑
i=0

Ln−iπ2i.

Here π2i is a primitive form of degree 2i, i.e. Λπ2i = 0, where Λ is the dual

Lefschetz operator. The sum terminates with i = n − 1 (and not with i = n)

since there are no primitive forms of degree 2n. Clearly

ξ =
n−1∑
i=0

Ln−i−1π2i

solves (56).
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We apply Λ to both sides of (57) and use the fact that

[Li,Λ] = i(k + i− 2n)Li−1 on ΛkQ

to deduce that

(58) Λdωk,q|Q =
n−1∑
i=0

(n− i)2Ln−i−1π2i ≡ ξ mod dα.

From this point on we drop the ∧ notation, with all products of forms

understood to be wedge products.

Lemma 4.7.

Λ
Ä
θa0θ

b
1θ
c
2

ä
≡ βγθa−10 θb−21 θc−12

Ä
acθ21 − b(b− 1)θ0θ2

ä
mod (α, dα).

Proof. Since everything is U(n)-invariant, it suffices to do the computation

at the point (0, e1) ∈ SCn, i.e., where ξ1 = 1, ξ2 = · · · = ηn = 0. At this point,

dξ1 = 0, ∂
∂ξ1

= 0 since
∑

(ξ2j + η2j ) = 1, and β = dy1, γ = dη1.

Next, using the abbreviation ixj := i ∂
∂xj

, we compute that

iξj ◦ ixj
Ä
θa0θ

b
1θ
c
2

ä
= iξj

Ä
bθa0dηjθ

b−1
1 θc2 + cθa0θ

b
1dyjθ

c−1
2

ä
= dyjdηj

Ä
b(b− 1)θa0θ

b−2
1 θc2 − acθa−10 θb1θ

c−1
2

ä
and similarly

iηj ◦ iyj
Ä
θa0θ

b
1θ
c
2

ä
= dxjdξj

Ä
b(b− 1)θa0θ

b−2
1 θc2 − acθa−11 θb1θ

c−1
2

ä
.

Since Λ = iη1 ◦ iy1 +
∑n
j=2(iξj ◦ ixj + iηj ◦ iyj ) at the selected point, and

βγ +
∑
j=2(dxjdξj + dyjdηj) = −dα, the result follows. �

With (58) and the defining relation (55), this yields

ξ ≡ cn,k,qβγθn+q−k−10 θk−2q−21 θq−12

Ä
(n+ q − k)qθ21 − (k − 2q)(k − 2q − 1)θ0θ2

ä
mod (α, dα).

Replacing this into (56) we find

iTDωk,q ≡ iTdωk,q − dξ(59)

≡ cn,k,qθn+q−k−10 θk−2q−21 θq−12

×
Ä
(k − 2q)2γθ0θ1θ2 − (n+ q − k)q γθ31

+ 2(n+ q − k + 1/2)q βθ0θ
2
1

−2(k − 2q)(k − 2q − 1)βθ20θ2
ä

mod (α, dα).

The proposition now follows from Theorem 2.7 and the definition of B,Γ from

Proposition 3.4. �
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Proof of Theorem 4.3. Let µ =
∑
k,q aqµk,q. The coefficient of Γk−1,q with

max{0, k − n} ≤ q ≤
ö
k−1
2

ù
in δµ is given by

2
cn,k,q(k − 2q)2

cn,k−1,q
aq − 2

cn,k,q+1(n+ q − k + 1)(q + 1)

cn,k−1,q
aq+1;

it has the same sign as (k − 2q)aq − (k − 2q − 1)aq+1.

Similarly, the coefficient of Bk−1,q with max{0, k− n− 1} ≤ q ≤
ö
k−2
2

ù
in

δµ is given by

2cn,k,q+1(n+ q − k + 3/2)(q + 1)

cn,k−1,q
aq+1 −

2cn,k,q(k − 2q)(k − 2q − 1)

cn,k−1,q
aq,

which has the same sign as (n + q − k + 3/2)aq+1 − (n − k + q + 1)aq. By

Theorem 2.7 and Proposition 4.5, the valuation µ is monotone if and only if

inequalities (52) and (53) are satisfied. �

5. Explicit kinematic formulas

Our goal in this section is to give explicit forms for the kinematic formulas

(12) in terms of the basis of Tasaki valuations and their Fourier transforms.

Our approach is based on the explicit calculation of the structure of ValU(n)

as an sl(2) module. The existence of such a structure follows from general

considerations (the Jacobson-Morozov theorem [15]) and the fact, originally

established by Alesker [1], [2], that Valsm satisfies the hard Lefschetz property

with respect to either of two different operators of degrees ±1 respectively.

Using the results of [12], [13] we compute explicitly how these operators act

on the Tasaki valuations, and show that together they yield a representation

of sl(2) on ValU(n) (although Alesker has pointed out that this is not the case

when these operators are regarded as acting on the entire space Valsm). We

then calculate explicitly the primitive elements of ValU(n) with respect to this

representation, giving rise to one more canonical basis πk,p for ValU(n). Since

the Poincaré duality multiplication table of ValU(n) in terms of this basis is

antidiagonal (Proposition 5.5 below), we can then easily express the kinematic

formulas in these terms.

5.1. The sl(2) action. We recall [1], [12], [13] the two operators L̃, Λ̃ :

Valsm(Cn)→ Valsm(Cn), of degrees ±1 respectively:

L̃φ := µ1 · φ,(60)

Λ̃φ := 2µ2n−1 ∗ φ =
d

dt

∣∣∣∣
t=0

φ(·+ tB),(61)

where B is the unit ball of Cn. (Note that Λ̃φ is the valuation corresponding

to the curvature measure δφ, i.e. Λ̃φ(A) = (δφ)A(A).)
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Since L̃ is a multiplication operator in a commutative algebra, the follow-

ing point is obvious:

Lemma 5.1. For φ, ψ ∈ ValU(n),

(L̃φ) · ψ = φ · (L̃ψ).

We renormalize these operators by taking

L :=
2ωk
ωk+1

L̃,(62)

Λ :=
ω2n−k
ω2n−k+1

Λ̃(63)

on each homogeneous component Valsmk .

Lemma 5.2.

Lτk,p = (k − 2p+ 1) τk+1,p,(64)

Λτk,p = (2n− 2p− k + 1) τk−1,p + (k − 2p+ 1) τk−1,p−1.(65)

Proof. We show first that

Λµk,q = 2(n− k + q + 1)µk−1,q + (k − 2q + 1)µk−1,q−1,(66)

Lµk,q = 2(q + 1)µk+1,q+1 + (k − 2q + 1)µk+1,q.(67)

Recall from [12] that if µ(K), µ ∈ Valsm(V ), is obtained by integration over

N1(K) of a differential form ψ on TV then Λ̃µ(K) is obtained by integration

of the Lie derivative LTψ with respect to the Reeb vector field T ; i.e. in the

notation of (20),

Λ̃νψ = νLTψ.

The Lie derivatives of the θi with respect to T are

LT θ0 = 0,LT θ1 = 2θ0,LT θ2 = θ1,

from which one computes that

LT θk,q =
ω2n−k+1

ω2n−k
(2(n− k + q + 1)θk−1,q + (k − 2q + 1)θk−1,q−1) .

Relation (66) now follows at once. Relation (67) follows from (66) using

equation (28) and the fact (which follows at once from Corollary 1.9 of [13])

that the Fourier transform intertwines the operators L,Λ:

(68) ̂◦ L = Λ ◦ .̂

The assertions of the lemma now follow from (36) and (39). �
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Theorem 5.3. Let X,Y,H with [X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y

be generators of sl(2,R). The map

H 7→ 2k − 2n,

X 7→ L,

Y 7→ Λ

defines a representation of sl(2,R) on ValU(n).

Proof. This is a direct calculation, using Lemma 5.2. �

The following corollary is a standard fact for sl(2) representations, com-

pare [24] or [21].

Corollary 5.4.

[H,Li] = 2iLi,(69)

[Li,Λ] = iLi−1 ◦H + i(i− 1)Li−1.(70)

We recall that an element π in degree k ≤ n of such a representation is

called primitive if Λπ = 0, or equivalently, if L2n−2k+1π = 0. By the Hard

Lefschetz Theorem of Alesker [1], and comparing dimensions, it follows that

there exists a unique (up to a multiplicative constant) primitive valuation in

ValU(n) in each even degree not larger than n.

In the following, we use the standard notation

(2k + 1)!! = (2k + 1) · (2k − 1) · (2k − 3) · · · 1

and set formally (−1)!! := 1. For 0 ≤ 2r ≤ n, using Lemma 5.2 we put

(71) π2r,r := (−1)r(2n− 4r + 1)!!
r∑
i=0

(−1)i
(2r − 2i− 1)!!

(2n− 2r − 2i+ 1)!!
τ2r,i

to be the unique primitive valuation of degree 2r whose expansion in terms of

the Tasaki valuations has leading term τ2r,r, and define for k ≥ 2r

πk,r := Lk−2rπ2r,r(72)

= (−1)r(2n− 4r + 1)!!
r∑
i=0

(−1)i
(k − 2i)!

(2r − 2i)!

(2r − 2i− 1)!!

(2n− 2r − 2i+ 1)!!
τk,i(73)

by (64).

For further use, we note that by equation (36),

π2r,r ≡ (−1)r
(2n− 4r + 1)!!(2r − 1)!!

(2n− 2r + 1)!!

Ç
µ2r,0 +

2(2r − n− 1)

2r − 1
µ2r,1

å
(74)

mod 〈µ2r,i : i > 1〉, 2r ≤ n.
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Proposition 5.5. For each 0 ≤ k ≤ 2n the valuations πk,r, 0 ≤ r ≤
min(k,2n−k)

2 constitute a basis of Val
U(n)
k . Furthermore,

πk,r · π2n−k,s = 0, r 6= s.

Proof. The fact that these elements constitute a base of Val
U(n)
k follows at

once from the Lefschetz decomposition of the sl(2)-representation ValU(n). If

r 6= s, say r > s, then

(75) πk,r · π2n−k,s = Lk−2rπ2r,r · Lk−2sπ2s,s = C · L2n−2r−2sπ2r,r · π2s,s = 0

since L2n−4r+1π2r,r = 0. �

Lemma 5.6. For 0 ≤ 2r ≤ k ≤ 2n− 2r,

(76) ‘πk,r =
(k − 2r)!

(2n− 2r − k)!
π2n−k,r.

Proof. We assume, as we may, that k ≤ n. By the Hard Lefschetz Theorem

of Alesker [1], Λn−k : Val
U(n)
2n−k → ValU(n)

n is injective, so it is enough to show

that Λn−k‘πk,r = (k−2r)!
(2n−2r−k)!Λ

n−kπ2n−k,r. By (68) and the fact that the Fourier

transform acts trivially on ValU(n)
n , the left-hand side is just πn,r. On the other

hand, relation (70) yields

Λπl,r = (l − 2r)(2n− 2r − l + 1)πl−1,r,

which after iterating n− k times gives

Λn−kπ2n−k,r =
(2n− 2r − k)!

(k − 2r)!
πn,r,

as claimed. �

Remark. Comparing the algebra of ValU(n) to the cohomology of Kähler

manifolds, (76) corresponds to the magic formula relating primitive forms, the

Lefschetz operator and the Hodge star operator ([24, Prop. 1.2.31]).

5.2. Two loose ends. We tie up two loose ends from Sections 3.2 and 3.4.

Proposition 5.7. The constants γk from Lemma 3.3 are given by

µk,0 = (−1)k+1 (2π)k

2ωk(k − 1)!
fk.

To this end we will make use of two lemmas. We say that a valua-

tion in Val
U(n)
k is anisotropic if its Klain function vanishes on the isotropic

k-Grassmannian Grk,0. Thus the space of anisotropic valuations is spanned by

the µk,p, p ≥ 1.

Lemma 5.8. The space of anisotropic valuations is an ideal in ValU(n).
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Proof of Lemma 5.8. Let φ ∈ Val
U(n)
k be anisotropic, and ψ ∈ ValU(n) of

degree l. By [13, §1.2.2], we may write

ψ(K) =

∫
Gr2n−l(Cn)

χ(K ∩ Ē)dµ(Ē)

with some smooth measure µ on the affine Grassmannian Gr2n−l(Cn), and the

product φ · ψ may be expressed

φ · ψ(K) =

∫
Gr2n−l(Cn)

φ(K ∩ Ē)dµ(Ē).

If K is contained in an isotropic subspace, then the same trivially holds

true for K ∩ Ē. Since φ is anisotropic, the integrand on the right-hand side

vanishes. It follows that φ · ψ is anisotropic. �

Remark. In fact the ideal of anisotropic valuations equals the principal

ideal (u) = (τ2,1) = (µ2,1).

Lemma 5.9.

ti =
i!ωi
πi

µi,(77)

s =
1

π

Å
µ2,1 +

1

2
µ2,0

ã
,(78)

u =
2

π
µ2,1.(79)

Proof. Clearly t0 = χ = µ0 and t = 2
πµ1 by equations (46) and (48) of

[20]. Relation (77) now follows by induction using equation (67) (cf. also [20,

Cor. 3.4]).

Theorem 3.1 implies that s = 1
2 t

2 locally at n = 1. This implies that

the value of s on a complex disc is 1. Thus s = 1
π (µ2,1 + aµ2,0) for some

a ∈ R. Meanwhile, −st + 1
3 t

3 = f3 = 0 locally at n = 2. Therefore −s + 1
3 t

2

is primitive in ValU(2) with respect to the given sl(2,R)-representation. Since

µ3,0 = µ3,2 = 0 locally at n = 2, this implies that

0 = πL

Å
−s+

1

3
t2
ã

= L

Å
−µ2,1 − aµ2,0 +

2

3
(µ2,0 + µ2,1)

ã
= −1

3
µ3,1 +

Å
2

3
− a
ã

2µ3,1

by (67). Thus a = 1
2 . �
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Proof of Proposition 5.7. By the recursion (26) we have

kfk = −t(k − 1)fk−1 − s(k − 2)fk−2

(80)

= −tγ−1k−1(k − 1)µk−1,0 −
t2

4
γ−1k−2(k − 2)µk−2,0 −

γ−1k−2(k − 2)

4
uµk−2,0.

Since u = 2
πµ2,1 is anisotropic, the same holds true for u ·µk−2,0 by Lemma 5.8.

Comparing the coefficients of µk,0 in (80), we obtain using (64)

kγ−1k = −(k − 1)γ−1k−1
ωk

πωk−1
k −

γ−1k−2(k − 2)

4

ωk
π2ωk−2

k(k − 1),

from which the proposition follows by induction. �

The next loose end is

Proof of (37) from Section 3.4. We proceed by induction on q. Since τk,0
is the kth intrinsic volume µk, the case q = 0 is (77). For the inductive step we

observe first that since (64) may be reformulated as

τk+1,p =
πωk

(k − 2p+ 1)ωk+1
t · τk,p,

it is enough to prove the desired relation for τ2r,r. To accomplish this we

compare the expressions (38) for the fk with

fk = (−1)k+1 2ωk(k − 1)!

(2π)k
µk,0

= (−1)k+1 2ωk(k − 1)!

(2π)k

bk/2c∑
i=0

(−1)iτk,i,

which follows from Corollary 3.8 and Proposition 5.7. Taking k = 2r and

equating the two expressions, (37) follows from the inductive hypothesis. �

Corollary 5.10. If 2p ≤ k then

u · µk,p ≡
4(p+ 1)

π(k + 2)
((2p+ 1)µk+2,p+1 − 2(p+ 2)µk+2,p+2)(81)

mod 〈µk+2,i : i > p+ 2〉.

Proof. Since u · τk,p = 2(2p+1)(2p+2)
π(k+2) τk+2,p+1 by (37), the desired rela-

tion (81) may be computed from relations (36), (39) between the τ and the µ.

�

Remark. The two sides of (81) are in reality precisely equal, although we

will not use this fact.
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5.3. The main computation.

Proposition 5.11. For all k ≥ 2r

(82) (πk,r,‘πk,r) =
8rπn

ωkω2n−k

Ç
n

2r

å
(k − 2r)!(2n− 4r)!

(n− r)!(2n− 2r − k)!

(2n− 4r + 1)!!

(2n− 2r + 1)!!
.

Proof. We show first that for 2r ≤ n, the value of the Poincaré pairing (6)

of ur and ‘π2r,r is

(83) (ur,‘π2r,r) =

Å
8

π

ãr n!

(n− 2r)!

(2n− 4r + 1)!!

(2n− 2r + 1)!!
.

This follows in turn from the relation

(84) u ·‘π2r,r =
8(2n− 2r + 3)(n− 2r + 1)(n− 2r + 2)

π(2n− 4r + 3)(2n− 4r + 5)
Ÿ�π2r−2,r−1,

after r iterations, since ‘π0,0 = µ̂0 = µ2n. Both sides of (84) lie in the kernel

of the map L : Val
U(n)
2n−2r+2 → Val

U(n)
2n−2r+3, which is one-dimensional. In or-

der to fix the proportionality factor, it suffices to compare the coefficients of

µ2n−2r+2,n−2r+2 on the two sides (note that locally µ2n−2r+2,n−2r+1 = 0). It is

straightforward to carry this out using (81) and (74).

To prove (82) observe first that by (37),

π2r,r ≡ τ2r,r =
π2r

ω2r(2r)!
ur =

πrr!

(2r)!
ur mod t.

Since t ·‘π2r,r = const. t · π2n−2r,r = 0, the case k = 2r follows from (83), the

definition (71) of π2r,r, and (37). If k > 2r we use Lemmas 5.1 and 5.6 to

compute

πk,r ·‘πk,r =
(k − 2r)!

(2n− 2r − k)!
πk,r · π2n−k,r

=
(k − 2r)!

(2n− 2r − k)!
(Lk−2rπ2r,r) · (L2n−k−2rπ2r,r)

=
(k − 2r)!

(2n− 2r − k)!

ω2rω2n−2r
ωkω2n−k

π2r,r · L2n−4rπ2r,r

=
(k − 2r)!(2n− 4r)!

(2n− 2r − k)!

ω2rω2n−2r
ωkω2n−k

π2r,r ·‘π2r,r,
which with the previous case yields (82). �

Using Theorem 2.2, relation (82), Proposition 5.5 and Lemma 5.6 now

yield at once
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Theorem 5.12. Set p := min
¶
bk2c, b

2n−k
2 c
©

.

kU(n)(χ) =
1

πn

2n∑
k=0

ωkω2n−k

(85)

p∑
r=0

(2n− 2r − k)!(n− r)!
8r(k − 2r)!(2n− 4r)!

(2n− 2r + 1)!!

(2n− 4r + 1)!!

Ç
n

2r

å−1
πk,r ⊗‘πk,r

=
1

πn

2n∑
k=0

ωkω2n−k

p∑
r=0

(n− r)!
8r(2n− 4r)!

(2n− 2r + 1)!!

(2n− 4r + 1)!!

Ç
n

2r

å−1
πk,r ⊗ π2n−k,r.

Corollary 5.13. The Tasaki matrices Tnk , and the matrices Qnk of [20],

are positive definite.

Proof. These matrices are the inverses of those arising respectively by

expressing the bilinear forms

(φ, ψ) 7→ φ · ψ̂, (φ, ψ) 7→ φ · t2n−kψ

on Val
U(n)
k in terms of specific bases (the Tasaki valuations in the first case

and the monomials in s and t in the second). Both of these diagonalize upon

change of basis to the πk,r, and the diagonal entries are the inverses of the

(positive) coefficients of (85) in the first case, and positive multiples of these

in the second (by Lemma 5.6 and the definition (72) of the πk,r). �

Expanding via (73) we obtain

Corollary 5.14. The (i, j) entry of the Tasaki matrix Tnk is

(Tnk )ij = (−1)i+j
ωkω2n−k
πn

b k
2
c∑

r=max(i,j)

[Ç
n

2r

å−1
(2n− 2r − k)!(n− r)!(k − 2i)!(k − 2j)!

8r(k − 2r)!(2n− 4r)!(2r − 2i)!(2r − 2j)!

×(2n− 2r + 1)!!(2n− 4r + 1)!!(2r − 2i− 1)!!(2r − 2j − 1)!!

(2n− 2r − 2i+ 1)!!(2n− 2r − 2j + 1)!!

ô
.

We have not been able to simplify this expression further. However, for

fixed k, the above sum is finite and can be computed in a closed form. Thus

it is straightforward (albeit messy) to calculate

(86) Tn2 =
1

4n(n− 1)

Ç
2n− 1 −1

−1 2n− 1

å
,
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(87) Tn3 =
2n−2(n− 3)!

nπ(2n− 3)!!

Ç
2n− 3 −1

−1 2n−1
3

å
,

Tn4 =
(n− 4)!

16n!

Ö
3(2n− 5)(2n− 3) −3(2n− 3) 9

−3(2n− 3) 2n2 − 4n+ 3 −3(2n− 3)

9 −3(2n− 3) 3(2n− 5)(2n− 3)

è
,

(88)

etc. The matrices Tn2 , T
3
3 had previously been computed in [32] using the

template method.

Note that since k = 2, 4 are even, the matrices Tn2 , T
n
4 display both the

expected diagonal symmetry and the antidiagonal symmetry predicted by The-

orem 3.10. In fact that theorem gives a family of identities among the values

given in Corollary 5.14 whenever k is even. From a practical perspective this is

an aid in computing closed forms for these expressions, since for larger values

of i, j the sum in Corollary 5.14 is shorter.

5.4. Other kinematic formulas. Of course the whole point of the compu-

tations above is to give explicit forms for the kinematic formulas

kU(n)(χ)(A,B) =

∫
U(n)

χ(A ∩ ḡB) dḡ,

which in turn specialize to Crofton formulas when A,B ⊂ Cn are compact

C1 submanifolds (or even rectifiable sets) of complementary dimension. By

the transfer principle (Theorem 2.4), the latter formulas hold verbatim if Cn
and U(n) are replaced by the spaces CPn or CHn of constant holomorphic

sectional curvature together with their groups of isometries, with measures dḡ

given by the standard convention (9).

In the case of CPn, however, another natural convention is to take dḡ to

be a probability measure. The resulting Crofton formulas may then be viewed

as a generalization of Bézout’s theorem. Normalizing the metric to be the

standard Fubini-Study metric (i.e. with holomorphic sectional curvature 4),

they are obtained by dividing the constants above by vol2n(CPn) = πn

n! . It

is reassuring to recover Bézout’s theorem for pairs (algebraic curve, algebraic

hypersurface) and (algebraic surface, algebraic variety of codimension 2) from

the matrices (86), (88), using the fact that for varieties V k,Wn−k ⊂ CPn

τ2k,q(V ) =

Ç
k

q

å
µ2k,k(V ) =

Ç
k

q

å
µ2k(V ) =

Ç
k

q

å
πk

k!
deg(V ),‘τ2k,q(W ) =

Ç
k

q

å
µ2n−2k,n−k(W ) =

Ç
k

q

å
µ2n−2k(W ) =

Ç
k

q

å
πn−k

(n− k)!
deg(W ),

as may be computed via (36).
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The calculations above also permit us to compute in explicit form the

kinematic formulas kU(n)(τk,p), using the fundamental relation (12) and the

product formula

(89) τk,p · τl,q =
ωk+l
ωkωl

Ç
k + l − 2p− 2q

k − 2p

åÇ
2p+ 2q

2p

å
τk+l,p+q,

which is a simple consequence of (37). Rather than write down further messy

general formulas, we illustrate by computing the expected value of the length

of the curve given by the intersection of a real 4-fold and a real 5-fold in CP 4.

Theorem 5.15. Let M4, N5 ⊂ CP 4 be real C1 submanifolds of dimension

4, 5 respectively. Let θ1, θ2 be the Kähler angles of the tangent plane to M at

a general point x and ψ the Kähler angle of the orthogonal complement to the

tangent plane to N at y. Let dg denote the invariant probability measure on

U(5). Then∫
U(5)

length(M ∩ gN) dg

=
1

5π4
×
ï
30 vol4(M) vol5(N)− 6 vol4(M)

∫
N

cos2 ψ dy

− 3

∫
M

(cos2 θ1 + cos2 θ2) dx · vol5(N)

+7

∫
M

(cos2 θ1 + cos2 θ2) dx ·
∫
N

cos2 ψ dy

ò
.

Proof. If l ⊂ CPn is a real curve, then τ1,0(l) = length(l). Thus by

the transfer principle we wish to compute the terms of bidegree (4, 5) in
4!
π4kU(4)(τ1,0). Since

τ4,0 · τ1,0 =
8

3
τ5,0, τ4,1 · τ1,0 =

8

5
τ5,1, τ4,2 · τ1,0 =

8

15
τ5,2

the matrix giving the relevant terms is

1

10π4

Ö
75 −15 3

−25 19 −5

15 −15 15

è
,

where the columns are indexed by the τ5,i and the rows by the τ̂4,j = τ4,j .

Locally at n = 4,

τ5,0 = τ̂3,0, τ5,1 = τ̂3,0 + τ̂3,1, τ5,2 = τ̂3,1

so with respect to the bases τ̂3,i, τ4,j one computes the pairing matrix to be

�(90)
1

5π4

Ö
30 −6

−3 7

0 0

è
.
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By [13], we can also translate this result to give an additive kinematic

formula for the average 7-dimensional volume of the Minkowski sum of two

convex subsets in C4 of dimensions 3 and 4 respectively.

Theorem 5.16. Let E ∈ Gr4(C4), F ∈ Gr3(C4); let θ1, θ2 be the Kähler

angles of E and ψ the Kähler angle of F . Let dg be the invariant probability

measure on U(4). If A ∈ K(E), B ∈ K(F ) then∫
U(4)

vol7(A+ gB) dg =
1

120
vol4(A) vol3(B)

×
î
30− 6 cos2 ψ − 3(cos2 θ1 + cos2 θ2) + 7 cos2 ψ(cos2 θ1 + cos2 θ2)

ó
.

Proof. Recall that the additive kinematic operator aU(4) : ValU(4)(C4) →
ValU(4)(C4)⊗ValU(4)(C4) is given by

aU(4)(φ)(A,B) =

∫
U(4)

φ(A+ gB) dg.

By Theorem 1.7 of [13],

aU(4)(µ7) =⁄�kU(4)(̂)µ7 =⁄�kU(4)(µ1).

Thus the bidegree (3, 4) terms of aU(4)(µ7) are given with respect to the bases

τ3,i, τ4,j by the matrix π4

4! × (90). �
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