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Asymptotics of characters of symmetric
groups related to Stanley character formula

By Valentin Féray and Piotr Śniady

Abstract

We prove an upper bound for characters of the symmetric groups. In

particular, we show that there exists a constant a > 0 with a property that

for every Young diagram λ with n boxes, r(λ) rows and c(λ) columns∣∣∣∣Tr ρλ(π)Tr ρλ(e)
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where |π| is the minimal number of factors needed to write π ∈ Sn as a

product of transpositions. We also give uniform estimates for the error

term in the Vershik-Kerov’s and Biane’s character formulas and give a new

formula for free cumulants of the transition measure.

1. Introduction

1.1. Normalized characters. For a Young diagram λ having n boxes and

a permutation π ∈ Sl (where l ≤ n) we define the normalized character

(1) Σλ(π) = (n)l χ
λ(π),

where (n)l = n(n− 1) · · · (n− l + 1) denotes the falling power and where

χλ(π) =
Tr ρλ(π)

Tr ρλ(e)

is the character rescaled in such a way that χλ(e) = 1.

1.2. Short history of the problem. Unfortunately, the canonical tool for

calculating characters, the Murnaghan-Nakayama rule, quickly becomes cum-

bersome and hence intractable for computing characters corresponding to large

Young diagrams. Nevertheless Roichman [Roi96] showed that it is possible to

use it to find an upper bound for characters, namely he proved that there exist

constants 0 < q < 1 and b > 0 such that

(2) |χλ(π)| ≤
ñ
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where r(λ), c(λ) denote the numbers of rows and columns of λ and suppπ

denotes the support of a permutation π (the set of its nonfixed points). In-

equality (2) is not satisfactory for many practical purposes (such as [MRŚ07])

since it provides rather weak estimates in the case when the Young diagram λ

is balanced, i.e. r(λ), c(λ) = O(
√
n).

Another approach to this problem was initiated by Biane [Bia98], [Bia03]

who showed that the value of the normalized character Σλ(π) can be expressed

as a polynomial (called Kerov polynomial) in free cumulants of the transition

measure of a Young diagram λ. The work of Biane was based on previous

contributions of Kerov [Ker93], [Ker99] and Vershik. Free cumulants of the

transition measure have a nice geometric interpretation therefore Kerov poly-

nomials are a perfect tool for study of the character χλ(π) in the limit when

the permutation π is fixed and the Young diagram λ tends in some sense to

infinity.

Unfortunately, despite much progress in this field ([DFŚ10] and references

therein) our understanding of Kerov polynomials is still not satisfactory; in

particular it is not clear how to use Kerov polynomials in order to obtain non-

trivial estimates on the characters χλ(π) when the length |π| of the permutation

π ∈ Sn is comparable with n.

In a recent work of one of us with Rattan [RŚ08] we took yet another

approach: thanks to the generalized Frobenius formula we showed that the

value of a normalized character of a given Young diagram λ can be bounded

from above by the value of the normalized character of a rectangular Young

diagram p× q for suitably chosen p, q. For such a rectangular Young diagram

the value of the normalized character can be explicitly calculated thanks to

the formula of Stanley [Sta04]. In this way we proved that for each C there

exists a constant D such that if r(λ), c(λ) < C
√
n then

(3) |χλ(π)| <
Ç
Dmax(1, |π|

2

n )
√
n

å|π|
,

where |π| denotes the minimal number of factors necessary to write π as a

product of transpositions. Inequality (3) gives a much better estimate than

(2) for balanced Young diagrams and a quite short permutation (|π| = o(
√
n))

but a careful analysis of its proof shows that it gives nontrivial estimates only

if max
Ä
r(λ), c(λ)

ä
< O(n3/4).

1.3. The main result. Our main result is the following inequality.

Theorem 1. There exists a constant a > 0 such that for every Young

diagram λ

|χλ(π)| ≤
ñ
amax

Ç
r(λ)

n
,
c(λ)

n
,
|π|
n

åô|π|
,

where n denotes the number of boxes of λ.
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It is easy to check that (3) is a consequence of this theorem and that it

gives better estimates than (2) if r(λ)
n , c(λ)

n , |π|n are smaller than some positive

constant. It is natural to ask what is the optimal value of the constant a.

Asymptotics of characters of symmetric groups related to Thoma characters

shows that a ≥ 1.

1.4. Young diagrams. In the following we shall identify a Young diagram λ

with the set of its boxes which we regard as a subset of N2 given by a graphical

representation of λ according to the French notation; namely, for a partition

λ = (λ1, . . . , λk) it is the set

(4) λ =
⋃

1≤i≤k
{1, 2, . . . , λi} × {i} = {(p, q) ∈ N2 : 1 ≤ p ≤ λq}.

1.5. The main tool : reformulation of Stanley character formula. Our main

tool in our investigations will be the following reformulation of Stanley char-

acter formula.

The set of cycles of a permutation π is denoted by C(π). For given per-

mutations σ1, σ2 ∈ Sl we shall consider colorings h of the cycles of σ1 (where

each cycle is colored by the number of some column of λ) and of the cycles of

σ2 (where each cycle is colored by the number of some row of λ). Formally,

each such coloring can be viewed as a function h : C(σ1)tC(σ2)→ N. We say

that a coloring h is compatible with a Young diagram λ if for all c1 ∈ C(σ1)

and c2 ∈ C(σ2) if c1 ∩ c2 6= ∅, then (h(c1), h(c2)) ∈ λ; in other words

(5) 0 < h(c1) ≤ λh(c2)

holds true for all c1 ∈ C(σ1), c2 ∈ C(σ2) such that c1 ∩ c2 6= ∅.

Theorem 2 (The new formulation of Stanley character formula). For

any Young diagram λ and a permutation π ∈ Sl (where l ≤ n) the value of the

normalized character (1) is given by

(6) Σλ(π) =
∑

σ1,σ2∈Sl,
σ1σ2=π

(−1)|σ1| Nλ(σ1, σ2),

where

(7) Nλ(σ1, σ2) = #{h : h is a coloring of the cycles of σ1 and σ2

which is compatible with λ}.

Example 3. For a given factorization π = σ1σ2 it is convenient to consider

a bipartite graph with the set of vertices C(σ1) t C(σ2) and with an edge

between vertices c1 ∈ C(σ1) and c2 ∈ C(σ2) if and only if c1 ∩ c2 6= ∅. Notice

that the value of Nλ(σ1, σ2) does not depend on the exact form of σ1 and σ2

but only on the corresponding bipartite graph.
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Figure 1. Bipartite graph associated to the factorization (12) =

(1)(2) · (12).

Figure 1 presents such a bipartite graph for π = (12), σ1 = (1)(2) and

σ2 = (12). Now it becomes clear that

Nλ
Ä
(1)(2), (12)

ä
=
∑
i

(λi)
2.

Similarly,

Nλ
Ä
(12), (1)(2)

ä
=
∑
i

(λ′i)
2,

where λ′ denotes the Young diagram conjugate to λ. In this way, Theorem 2

shows that

Σλ(12) = n(n− 1)
Tr ρλ(12)

Tr ρλ(e)

= Nλ
Ä
(1)(2), (12)

ä
−Nλ

Ä
(12), (1)(2)

ä
=
∑
i

(λi)
2 −

∑
i

(λ′i)
2.

1.6. Overview of the paper. In Section 2 we will prove the new formulation

of Stanley character formula, Theorem 2. In Section 3 we present a relation

between the characters of symmetric groups and characters of some Gaussian

random matrices. We also give a new formula for calculating free cumulants

of (the transition measure of) a Young diagram. Section 4 is devoted to the

proofs of some techical inequalities. In Section 5 we prove estimates for the

characters of the symmetric groups based on Stanley character formula.

2. Stanley character formula

In this section, we prove Theorem 2. It is quite easy to show that it is

equivalent to a recent formula, conjectured by Stanley [Sta06] and proved by

the first author [Fér10]. But the formulation given here is more useful for the

purposes of character estimates and its proof is more elementary than the one

given in [Fér10].

2.1. Young symmetrizer. Let λ be a Young diagram consisting of n boxes.

In the following we will distinguish the symmetric group Sn which permutes

the elements {1, . . . , n} and the symmetric group S̃n which permutes the boxes

of λ.
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For a box � ∈ λ we denote by r(�) ∈ N (respectively, c(�) ∈ N) the row

(respectively, the column) of �; in this way � = (c(�), r(�)).

If σ ∈ S̃n has a property that if two different boxes �1,�2 are in the same

row, then their images σ(�1), σ(�2) are not in the same column then we define

its number of column inversions cinv(σ) as the number of pairs �1,�2 such that

σ(�1), σ(�2) are in the same column, r(�1) < r(�2) and r(σ(�1)) > r(σ(�2)).

If σ ∈ S̃n does not have this property, then we define (−1)cinv(σ) = 0.

The following theorem gives a very esthetically appealing formula for the

characters of the symmetric groups.

Theorem 4. Let a Young diagram λ having n boxes and π ∈ Sn be given.

Let π̂ ∈ S̃n be a random permutation distributed with the uniform distribution

on the conjugacy class defined by π. Then

χλ(π) = E[(−1)cinv(π̂)].

Proof. We denote

Pλ ={σ ∈ S̃n : σ preserves each row of λ},

Qλ ={σ ∈ S̃n : σ preserves each column of λ}

and define

aλ =
∑
σ∈Pλ

σ ∈ C[S̃n],

bλ =
∑
σ∈Qλ

(−1)|σ|σ ∈ C[S̃n],

cλ =bλaλ.

It is well-known that pλ = αλcλ is an idempotent for a constant αλ which

will be specified later. Its image Vλ = C[S̃n]pλ under multiplication from

the right on the regular representation gives a representation ρλ (where the

symmetric group acts by left multiplication) associated to a Young diagram λ.

It turns out that αλ = dimVλ
n! . It follows that for π̃ ∈ S̃n

n!
Tr ρλ(π̃)

dimVλ
=

Tr ρλ(π̃−1)

αλ
=

1

αλ

∑
µ∈S̃n

〈δµ, π̃−1δµpλ〉(8)

=
∑
µ∈S̃n

∑
σ̃1∈Qλ

∑
σ̃2∈Pλ

(−1)|σ̃1|[µ = π̃−1µσ̃1σ̃2].

We define π̂ = µ−1π̃µ. For such a permutation π̂ there exists at most one

factorization π̂ = σ̃1σ̃2; by Young lemma this factorization exists if and only

if (−1)cinv(π̂) 6= 0. Furthermore, if such a factorization exists then (−1)|σ1| =
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(−1)cinv(π̂). It follows that

n!
Tr ρλ(π̃)

dimVλ
=
∑
µ∈S̃n

(−1)cinv(µ−1π̃µ).

As µ runs over all permutations, π̂ = µ−1π̃µ runs over all elements of the

conjugacy class defined by π which finishes the proof. �

For permutations σ1, σ2 ∈ Sl we define Ñλ(σ1, σ2) as the number of one-

to-one functions f from {1, . . . , l} to the set of boxes of λ such that r ◦ f is

constant on each cycle of σ2 and c ◦ f is constant on each cycle of σ1.

Proposition 5. Let λ be a Young diagram having n boxes. For any

permutation π ∈ Sl (where l ≤ n)

Σλ(π) =
∑

σ1,σ2∈Sl
σ1σ2=π

(−1)|σ1|Ñλ(σ1, σ2).

Proof. Let us consider the case l = n. Let π̃ ∈ S̃n be any permutation

with the same cycle structure as π ∈ Sn. Our starting point is the analysis of

(8). Notice that the multiset of the values of µ−1π̃µ (over µ ∈ S̃n) coincides

with the multiset of the values of f ◦ π ◦ f−1 (over bijections f). We define

σi = f−1 ◦ σ̃i ◦ f ; then condition µ = π̃−1µσ̃1σ̃2 is equivalent to π = σ1σ2. It

is easy to check that σ̃1 ∈ Qλ if and only if c ◦ f is constant on each cycle of

σ1 and σ̃2 ∈ Pλ if and only if r ◦ f is constant on each cycle of σ2. Thus

(9) n!
Tr ρλ(π̃)

dimVλ
=

∑
σ1,σ2∈Sn,
σ1σ2=π

(−1)|σ1|Ñλ(σ1, σ2)

and the proof in the case when l = n is finished.

For a permutation σ ∈ Sn we denote by suppσ ⊆ {1, . . . , n} the support

of a permutation (the set of nonfixed points). We claim that a factorization

π = σ1σ2 has a nonzero contribution to (9) only if suppσ1, suppσ2 ⊆ suppπ.

Indeed, if m ∈ suppσ1 \ suppπ = suppσ2 \ suppπ, then for any bijection f

at least one of the following conditions hold true: r(f(m)) 6= r(f(σ2(m))) (in

this case r ◦ f is not constant on the cycles of σ2) or c(f(m)) 6= c(f(σ2(m)))

(in this case c(f(σ1(σ2(m)))) 6= c(f(σ2(m))) hence c ◦ f is not constant on the

cycles of σ1).

It follows that if π ∈ Sl then we may restrict the sum in (9) to factoriza-

tions π = σ1σ2, where σ1, σ2 ∈ Sl. It remains to notice that

Ñλ
Sn(σ1, σ2) = (n− l)! Ñλ

Sl
(σ1, σ2),

where the quantity on the left-hand side regards σ1, σ2 as elements of Sn, while

on the quantity on the right-hand side regards them as elements of Sl, and that

the analogous relation holds between Σλ(π) for π ∈ Sn and π ∈ Sl. �
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2.2. Forgetting injectivity. For a pair of permutations σ1, σ2 ∈ Sl we define

N̂λ(σ1, σ2) as the number of all functions f : {1, . . . , l} → λ (with values in

the set of boxes of λ) such that r ◦ f is constant on each cycle of σ2 and c ◦ f
is constant on each cycle of σ1.

Lemma 6. For any Young diagram λ and a permutation π ∈ Sl

(10)
∑

σ1,σ2∈Sl
σ1σ2=π,

(−1)|σ1|Ñλ(σ1, σ2) =
∑

σ1,σ2∈Sl
σ1σ2=π,

(−1)|σ1|N̂λ(σ1, σ2).

Proof. For a given function f : {1, . . . , l} → λ we will show that it has the

same contribution to the left-hand side and to the right-hand side. Clearly, it

is enough to consider the case when f is not a one-to-one function. It follows

that there exists a transposition µ ∈ Sl such that f is constant on the orbits

of µ. Function f contributes to the right-hand side with multiplicity

(11)
∑

σ1,σ2∈Sl
σ1σ2=π

(−1)|σ1|,

where the sum runs over pairs (σ1, σ2) such that σ1σ2 = π and c◦f is constant

on each cycle of σ1 and r ◦ f is constant on each cycle of σ2. Map (σ1, σ2) 7→
(σ′1, σ

′
2) with σ′1 = σ1µ, σ′2 = µσ2 is an involution of the pairs (σ1, σ2) which

contribute to (11); the only less trivial condition which should be verified is

that c ◦ f is constant on each cycle of σ′1 but this is equivalent to c ◦ f being

constant on each cycle of σ′1
−1 = µσ−1

1 .

Since (−1)|σ1| = (−1) · (−1)|σ
′
1| therefore the contributions of the pairs

(σ1, σ2) and (σ′1, σ
′
2) to (11) cancel. In this way we proved that (11) is equal

to zero which finishes the proof. �

Proof of Theorem 2. Proposition 5 and Lemma 6 show that

Σλ(π) =
∑

σ1,σ2∈Sl
σ1σ2=π

(−1)|σ1|N̂λ(σ1, σ2).

Now it is enough to notice that Nλ(σ1, σ2) = N̂λ(σ1, σ2); the desired bijection

is defined as follows: if m ∈ {1, . . . , l} fulfills m ∈ c1 ∩ c2 for ci ∈ C(σi), then

we set f(m) = (h(c1), h(c2)). �

2.3. Generalization to Young diagrams on R2
+. We may identify a Young

diagram with a subset of R2 given by a graphical representation of λ (according

to the French notation). For example, for a partition λ = (λ1, . . . , λk) it is the

set

(12)
⋃

1≤i≤k
[0, λi]× [i− 1, i].
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In this way we may consider colorings h of the cycles of permutations σ1 and

σ2 which take real values instead of natural numbers. If we fix some numbering

of the cycles in C = C(σ1)tC(σ2), then any such coloring h : C → R+ can be

identified with an element of R|C|+ .

We define

(13) Nλ(σ1, σ2) = vol{h ∈ R|C|+ : h compatible with λ}.

Notice that in the case when λ ⊂ R2 is as prescribed by (12), the set of functions

h ∈ R|C|+ compatible with λ is a polyhedron hence there is no difficulty in

defining its volume; furthermore definitions (7) and (13) give the same value.

The advantage of the definition (13) is that it allows to define characters

for any bounded set λ ∈ R2
+, in particular for generalized Young diagrams (see

[Ker93]).

It is very natural therefore to ask if Theorem 2 holds true also for skew

Young diagrams. Unfortunately, this is not the case as it can be seen for the

skew Young diagram λ = (3, 2) \ (1).

3. Characters of symmetric groups,

random matrices and free probability

3.1. Stanley character formula and random matrices. Let λ be a Young

diagram and N ≥ r(λ), c(λ). We consider a random matrix Tλ = (tij)1≤i,j≤N
such that

• its entries (tij) are independent random variables;

• if (i, j) ∈ λ then tij is a complex centered Gaussian variable, that is to

say that

E(tij) = 0, E(tijtij) = 1, E(t2ij) = 0;

• otherwise, if (i, j) /∈ λ then tij = 0.

The moments of TλT
?
λ are given by a formula which is very similar to the

Stanley formula for characters (Theorem 2).

Theorem 7. With the definitions above and π ∈ Sl with a cycle decom-

position k1, . . . , kr

(14) E
Ä

Tr(TλT
?
λ )k1 · · ·Tr(TλT

?
λ )kr
ä

=
∑

σ1,σ2∈Sl
σ1σ2=π

Nλ(σ1, σ2).
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Proof. The first step is to expand the product and the trace on the left-

hand side:

E
Ä

Tr(TλT
?
λ )k1 . . .Tr(TλT

?
λ )kr
ä

= E
[( ∑

i11,j
1
1 ,...,i

1
k1
,j1
k1

ti11j11
ti12j11

. . . ti1
k1
j1
k1

ti11j1k1

)

. . .
( ∑
ir1,j

r
1 ,...,i

r
kr
,jr
kr

tir1jr1 tir2jr1 . . . tirkr j
r
kr
tir1jrkr

)]

=
∑

i1,j1,...,il,jl

E
[

l∏
m=1

timjmtiπ(m)jm

]
.

Since random variables (tij) are Gaussian, we can apply Wick formula (see

[Zvo97]) to each summand; in order to do this we need to consider all ways

of pairing factors (tim,jm) with factors (tiπ(m)jm). Each such a pairing can be

identified with a permutation σ ∈ Sl: therefore

E
[

l∏
m=1

timjmtiπ(m)jm

]
=
∑
σ∈Sl

[
l∏

m=1

E
Ä
tiσ(m)jσ(m)

tiπ(m)jm

ä]
.

Using the definition of T , this is equal to∑
σ∈Sl

l∏
m=1

[iσ(m) = iπ(m)] [jσ(m) = jm] [(iσ(m), jσ(m)) ∈ λ].

If we plug this in our calculation, the left-hand side of (14) is equal to∑
σ∈Sl

∑
i1,j1,...,il,jl

(
l∏

m=1

[iσ(m) = iπ(m)] [jσ(m) = jm] [(iσ(m), jσ(m)) ∈ λ]

)
.

If we denote σ1 = πσ−1
2 , σ2 = σ, then the sum over σ can be seen as a sum

over all σ1, σ2 ∈ Sl such that σ1σ2 = π. If a sequence i1, . . . , il (respectively,

sequence j1, . . . , jl) contributes to the above sum then it must be constant

on each cycle of σ1 (respecively, each cycle of σ2). It follows that there is a

bijective correspondence between sequences i1, j1, . . . , il, jl which contribute to

the above sum and colorings of the cycles of σ1 and σ2 which are compatible

with λ. �

By comparing the above result with Theorem 2, we obtain the following

corollary.

Corollary 8. Let λ be a Young diagram. Then for any permutation

π ∈ Sl with a cycle decomposition k1, . . . , kr

|Σλ(π)| ≤ E
Ä

Tr(TλT
?
λ )k1 · · ·Tr(TλT

?
λ )kr
ä
.
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We shall not follow this idea in this article and we will prove all estimates

from scratch, but it is worth noticing that the above corollary shows that the

asymptotics of characters of symmetric groups can be deduced from the corre-

sponding asymptotics of random matrices. In particular it follows that when

the lengths k1, . . . , kr of the cycles of π are big enough then the asymptotics of

the corresponding character is related to the limit distribution of the largest

eigenvalue of TλT
∗
λ [SS98]. Notice, however, that due to the minus sign in The-

orem 2 and the resulting cancelations the character |Σλ(π)| could, at least in

priciple, be much smaller than the appropriate moment of the random matrix

TλT
∗
λ .

3.2. Free cumulants of the transition measure. For a (continuous) Young

diagram λ we denote by µλ its transition measure (which is a probability

measure on the real line) [Ker93], [Bia98] and by Rλm := Rm(µλ) we denote the

m-th free cumulant of µλ. The importance of free cumulants Rλm in the study

of the asymptotics of symmetric groups was pointed out by Biane [Bia98]. The

following theorem gives a new formula for the free cumulants Rλm. It has a big

advantage that it does not involve the notion of the transition measure and it

is related directly with the shape of a Young diagram.

Theorem 9. For any Young diagram λ

(15) Rλl+1 =
∑

σ1,σ2∈Sl,
σ1σ2=(1,2,...,l),

|σ1|+|σ2|=|(1,2,...,l)|

(−1)|σ1| Nλ(σ1, σ2),

where the sum runs over minimal factorizations of a cycle of length l.

Proof. For a Young diagram λ and c > 0 we denote by cλ the (generalized)

Young diagram obtained from λ by similarity with scale c. A function f on

the set of (generalized) Young diagrams is said to be homogeneous of degree

m if

f(cλ) = cmf(λ)

holds true for all choices of λ and c. Each free cumulant Rm is homogenous of

degree m.

The value of the normalized character Σλ(1, 2, . . . , l) on a cycle can be

expressed as a polynomial (known as Kerov polynomial) in free cumulants

(Rλm : m ∈ {2, 3, . . . }):

Σλ(1, 2, . . . , l) = Rλl+1 + (terms of lower degree);

therefore Rλl+1 is the homogeneous part of Σλ(1, 2, . . . , l) with degree l + 1.

We apply (6) for π = (1, 2, . . . , l); it is easy to see that each summand on the

right-hand side is homogeneous of degree |C(σ1)|+ |C(σ2)| which finishes the

proof. �
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3.3. Generalized circular operators. Let D be the algebra of continuous

functions on R+. We equip it with an expected value φ : D → C given by

φ(f) =
∫∞

0 f(t)dt.

We consider an operator-valued probability space, which by definition is

some ∗-algebra A such that D ⊆ A and equipped with a conditional expecta-

tion E : A → D. For a given (generalized) Young diagram λ let T ∈ A be a

generalized circular operator [VDN92], [Spe98] with a covarianceî
k(T, fT ∗)

ó
(s) =

∫
t:(t,s)∈λ

f(t) dt,(16) î
k(T ∗, fT )

ó
(s) = −

∫
t:(s,t)∈λ

f(t) dt,î
k(T, fT )

ó
(s) = 0,î

k(T ∗, fT ∗)
ó
(s) = 0.

Theorem 10. For any (generalized) Young diagram λ

Rλl+1 = φ
î
(T ∗T )l

ó
.

Proof. It is easy to check that for permutations σ1, σ2 which contribute

to (15) the corresponding bipartite graph is a tree therefore the calculation of

Nλ(σ1, σ2) is particularly simple, namely it is a certain iterated integral. The

same iterated integral appears in the nested evaluation of amalgamated free

cumulants therefore Nλ(σ1, σ2) = ±φ
î
kσ2(T ∗, T, · · · , T ∗, T )

ó
. The plus/minus

sign is due to the minus sign in the covariance (16). It is easy to check that

in fact

(−1)|σ1|Nλ(σ1, σ2) = φ
î
kσ2(T ∗, T, · · · , T ∗, T )

ó
.

The moment-cumulant formula

E
î
(T ∗T )l

ó
=

∑
σ∈NC2

kσ(T ∗, T, · · · , T ∗, T )

finishes the proof since there is a bijective correspondence between noncrossing

pair partitions and the minimal factorizations. �

Due to the analytic machinery of free probability the calculation of the

moments of T in a closed form is possible in many cases therefore Theorem 10

gives a practical method of calculating the free cumulants of the Young dia-

grams.

4. Technical estimates

4.1. Estimates for the number of colorings Nλ(σ1, σ2). As we already

mentioned in Example 3 to permutations σ1, σ2, we can associate a bipar-

tite graph C(σ1) t C(σ2) with an edge between c1 ∈ C(σ1) and c2 ∈ C(σ2) if

c1 ∩ c2 6= ∅.
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For a bipartite graph G = C1 tC2 (not necessarily arising from the above

construction) and a Young diagram λ we define Nλ(G) as the number of color-

ings h of the vertices of C1tC2 which are compatible with the Young diagram

λ. (The definition of compatibility in this context is a natural extension of the

old one; i.e., we require that if c1 ∈ C1 and c2 ∈ C2 are connected by an edge

then
Ä
h(c1), h(c2)

ä
∈ λ.)

We denote by Gp,q a full bipartite graph for which |C1| = p and |C2| = q.

Lemma 11. Let G be a finite bipartite graph such that the degree of any

vertex is nonzero. It is possible (not necessarily in a unique way) to remove

some of the edges of G in such a way that the resulting graph ‹G is a disjoint

union of the graphs of the form G1,1, Gk,1, G1,k.

Assume that a Young diagram λ consists of n boxes. Then, for any A ≥
r(λ), c(λ)

(17) Nλ(G) ≤ A(number of vertices of G)
Å
n

A2

ã(number of connected components of G̃)

.

Proof. If the graph G contains an edge which connects two vertices of

degree bigger than one we remove it and iterate this procedure; if no such edge

exists then the resulting graph ‹G has the desired property.

Clearly, Nλ(G) ≤ Nλ(‹G) therefore it is enough to find a suitable upper

bound for Nλ(‹G). Since both sides of (17) are multiplicative with respect to

the disjoint sum of graphs it is enough to prove (17) for ‹G ∈ {G1,1, Gk,1, G1,k}.
Now, the lemma follows from:

Nλ(Gk,1) =
∑
i

λki ≤
∑
i

λiA
k−1 = nAk−1

and the analogous inequality for Nλ(G1,k). �

Proposition 12. Suppose that r(λ), c(λ) ≤ A ≤ n, σ1, σ2 ∈ Sl and

π = σ1σ2. Then

Nλ(σ1, σ2) ≤ A|C(σ1)|+|C(σ2)|
Å
n

A2

ãorbits(σ1,σ2)

(18)

≤ Al−|C(π)|n|C(π)|
Å

1

A

ão(σ1,σ2)

,

where orbits(σ1, σ2) denotes the number of orbits in the action of 〈σ1, σ2〉 on

the set {1, . . . , n} and

o(σ1, σ2) = l − |C(σ1)| − |C(σ2)|+ orbits(σ1, σ2).

Proof. The first inequality is a simple corollary from Lemma 11 since

A2 ≥ r(λ)c(λ) ≥ n and the number of connected components of ‹G is bounded



ASYMPTOTICS OF CHARACTERS OF SYMMETRIC GROUPS 899

from below by orbits(σ1, σ2). The second inequality follows by multiplying byÅ
n

A

ã|C(π)|−orbits(σ1,σ2)

≥ 1. �

4.2. Estimates for the number of factorizations. Now, we have to find a

bound of the number of factorizations of π with a given value of the statistic

o(σ1, σ2).

Lemma 13. Let π, σ1, σ2 ∈ Sl be such that π = σ1σ2. There exist per-

mutations σ′1, σ
′
2 ∈ Sl such that π = σ′1σ

′
2, |σ′1| + |σ′2| = |σ1| + |σ2|, |σ′2| =

|σ′2σ−1
2 |+ |σ2| and every cycle of σ′1 is contained in some cycle of σ′2. Further-

more, |σ′1| = o(σ1, σ2).

Proof. If every cycle of σ1 is contained in some cycle of σ2 then σ′1 = σ1

and σ′2 = σ2 have the required property.

Otherwise, there exist a, b ∈ {1, . . . , n} such that a and b belong to the

same cycle of σ1 but not to the same cycle of σ2. We define σ′1 = σ1(a, b),

σ′2 = (a, b)σ2. Notice that |σ′1| = |σ1| − 1, |σ′2| = |σ2|+ 1, and the orbits under

the action of the subgroups 〈σ1, σ2〉 and 〈σ′1, σ′2〉 are the same.

We iterate this procedure if necessary (it will finish after a finite number

of steps because the length of σ1 decreases in each step). It remains to prove

that |σ′2| ≥ |σ′2σ−1
2 | + |σ2| (the opposite inequality follows from the triangle

inequality): notice that |σ′2| − |σ2| is equal to k (where k is the number of

steps after which the procedure has terminated) and σ′2σ
−1
2 is a product of k

transpositions, hence |σ′2σ−1
2 | ≤ k.

Furthermore, as every cycle of σ′1 is contained in some cycle of σ′2, the set

of orbits of the group 〈σ′1, σ′2〉 is equal to C(σ′2), so

o(σ1, σ2) = o(σ′1, σ
′
2) = l − |C(σ′1)| = |σ′1|. �

Lemma 14. For any integers l ≥ 1 and i ≥ 0 and for any π ∈ Sl

(19) #{σ ∈ Sl : |σ| = i} ≤ l2i

i!
.

Proof. Since every permutation in Sl appears exactly once in the product

[1 + (12)][1 + (13) + (23)] · · · [1 + (1l) + · · ·+ (l − 1, l)],

we have∑
i

xi #
¶
σ ∈ Sl : |σ| = i

©
= (1 + x)(1 + 2x) · · ·

Ä
1 + (l − 1)x

ä
.

Each of the coefficients of xk on the right-hand side is bounded from above by

the corresponding coefficient of exe2x · · · e(l−1)x = e
l(l−1)x

2 , finishing the proof.

�
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Lemma 15. There exists a constant C0 with a property that for any k the

number of minimal factorisations σ1σ2 = π, |σ1| + |σ2| = |π| of a cycle π =

(1, . . . , k) and such that the associated graph ‹G consists of s ≥ 2 components

is bounded from above by (C0k)2s−2

(2s−2)! .

Proof. Since the factorization is minimal therefore the graph G associated

to σ1, σ2 is a tree. We will give to G a structure of planted planar tree: the

root is the cycle of σ1 containing 1 and his left-most edge links it to the cycle

of σ2 containing 1.

In each connected component of ‹G there is at most one vertex of degree

higher than one and we shall decorate this vertex. If in some connected com-

ponent of ‹G there are no such vertices we decorate any of them which is not a

leaf in G. In this way the decorated vertices can be identified with connected

components of ‹G.

We consider the graph G′ obtained from G by removing the leaves (except

the root) and the graph G′′ which consists of the decorated vertices of ‹G; we

connect two vertices A,B ∈ G′′ by an edge if vertices A,B are connected in G

(or, equivalently, G′) by a direct path, i.e. a path which does not pass through

any connected component of ‹G other than the ones specified by A and B. It

is easy to see that G′′ inherits the structure of a plane rooted tree from G (we

define the root of G′′ to be the connected component of ‹G of the root of G)

and it has s vertices. It follows that the number of such trees G′′ is bounded

from above by the Catalan number 1
s+1

(2s
s

)
< 4s.

In order to reconstruct the tree G′ from G′′ we have to specify for each

edge of G′′ if it comes from a single edge of G′ or from a pair or a triple

of consecutive edges of G′; it follows that we have (at most) 3s−1 choices.

It might happen also for two adjacent (with respect to the planar structure)

edges e1, e2 of G′′ that each of these edges ei corresponds to a pair or a triple of

consecutive edges fi = (fi1, fi2[, fi3]) of G′ and these tuples f1 and f2 have one

edge in common. There are at most 2s− 3 such pairs of adjacent edges which

accounts for at most 22s−3 choices. If the root of G is not a decorated vertex,

it might happen that it is a leaf or that it belongs to the left-most and/or to

the right-most edge of the root of G′: there are four choices for that.

In order to reconstruct tree G from G′ we have to specify whether the root

of G is a decorated vertex or not. Furthermore we have to specify places in

which we will add missing l leaves to the tree G′ (note that l ≤ k+ 1− s); it is

easy to see that this is equivalent to specifying a partition l = a1 + · · ·+a2s−1,

where a1, . . . , a2s−1 ≥ 0 are integers. It follows that the number of choices is

bounded from above by

2

Ç
l + 2s− 2

2s− 2

å
≤ 2

Ç
k + s− 1

2s− 2

å
≤ 2

Ä
k + 1

2

ä2s−2

(2s− 2)!
.
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A minimal factorisation is determined by its bicolored map with a marked

edge, for example the one linking the two cycles containing 1 [GJ92]. With

our construction, the coloring is determined by the root which always belongs

to C(σ1) and the marked edge is its left-most edge.

It follows that the total number of choices is bounded from above by

2 · 3s−1 · 22s−1 · 4s
Ä
k + 1

2

ä2s−2

(2s− 2)!
. �

5. Asymptotics of characters

5.1. Upper bound for characters : Proof of Theorem 1.

Proof of Theorem 1. Let k1, . . . , kr ≥ 2 be the lengths of the nontrivial

cycles in the cycle decomposition of π ∈ Sn. It follows that l := k1 + · · ·+kr =

| suppπ| and in the following we will regard π as an element of Sl. We denote

A = max(l, r(λ), c(λ)).

We consider a map which to a pair (σ1, σ2) associates any pair (σ′1, σ
′
2)

as prescribed by Lemma 13. For any fixed σ′2 the permutations σ2 such that

|σ′2| = |σ′2σ−1
2 |+ |σ2| can be identified with noncrossing partitions of the cycles

of σ′2 (see [Bia97, §1.3]). It follows that the number of such permutations σ2 is

equal to the product of appropriate Catalan numbers and, hence, this product

is bounded from above by 4l. Therefore Theorem 2 and Proposition 12 show

that

|Σλ(π)| ≤
∑

σ1,σ2∈Sl,
σ1σ2=π

Al−rnr
Å

1

A

ão(σ1,σ2)

≤ 4l
∑

σ′1,σ
′
2∈Sl,

σ′1σ
′
2=π

Al−rnr
Å

1

A

ã|σ′1|
≤ 4lAl−rnr

∑
σ′1∈Sl

Å
1

A

ã|σ′1|
≤ 4lAl−rnr

∑
i≥0

l2i

Aii!
,

where the last inequality follows from Lemma 14. It follows that

(20) |Σλ(π)| ≤ 4lAl−rnre
l2

A ≤ (4e)lAl−rnr.

After dividing by (n)l ≥
(n
e

)l, we obtain |χλ(π)| ≤ (4e2)l(A/n)l−r, which

finishes the proof because l = | suppπ| ≤ 2|π| and l − r = |π|. �

5.2. Error term for balanced Young diagrams. Biane [Bia98] proved that

if the permutation π is fixed, its nontrivial cycle lengths are equal to k1, . . . , kr
≥ 2, and the Young diagram λ is balanced (i.e. r(λ), c(λ) = O(

√
n)), then

χλ(π) =
1

(n)| supp(π)|

r∏
i=1

Rki+1(λ) +O

Å
n−
|π|+2

2

ã
.
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The following theorem gives a uniform estimate for the error term in

Biane’s formula. (Note that if π is fixed and the Young diagram balanced,

with ε = C√
n

and A = D
√
n we recover the result of Biane.)

Theorem 16. There exists a constant a such that, for any 0 < ε < 1, any

Young diagram λ of size n and any permutation π ∈ Sn such that | supp(π)|2 ≤
εA and r(λ), c(λ) ≤ A ≤ n we have∣∣∣∣∣χλ(π)− 1

(n)| supp(π)|

r∏
i=1

Rki+1(λ)

∣∣∣∣∣ ≤
Å
ε2 +

A

n
ε

ãÅ
aA

n

ã|π|
,

where the ki are the lengths of the nontrivial cycles of π.

Proof. We can assume that π ∈ Sl has no fixpoints. Using Theorems 2

and 9 together with the fact that any minimal factorisation of π is a product

of minimal factorisations of its cycles, we can write

Σλ(π)−
r∏
i=1

Rλki+1 =
∑

σ1,σ2∈Sl
σ1σ2=π

|σ1|+|σ2|>|π|

(−1)|σ1|Nλ(σ1, σ2).

To such a pair (σ1, σ2) of permutations we can associate one of the pairs of

permutations (σ′1, σ
′
2) given by Lemma 13 with |σ′1| ≥ 1.

Consider separately the case |σ′1| = 1. Then orbits(σ1, σ2) = orbits(σ′1, σ
′
2)

≥ |C(π)| − 1 and the first inequality in (18) shows that

Nλ(σ1, σ2) ≤ A|C(σ1)|+|C(σ2)|
Å
n

A2

ã|C(π)|−1

.

Therefore the estimate given by Proposition 12 can be improved to the follow-

ing one:

Nλ(σ1, σ2) ≤ Al−|C(π)|n|C(π)| 1

n
.

ClearlyA ≥ l therefore by the same argument as in the proof of Theorem 1,

we obtain the inequality∣∣∣∣∣Σλ(π)−
r∏
i=1

Rki+1(λ)

∣∣∣∣∣ ≤ 4lAl−rnr

Ñ
l2

n
+
∑
i≥2

l2i

Aii!

é
.

The proof is now finished thanks to the remarks of the previous subsection and

the inequality exp(z)− 1− z ≤ z2 for 0 < z < 1. �

5.3. Characters of symmetric groups related to Thoma characters. Vershik

and Kerov [VK81] proved that if π is a fixed permutation with the lengths of

nontrivial cycles k1, . . . , kr then for any Young diagram λ with n boxes

χλ(π) =
r∏
i=1

∑
j

αkij −
∑
j

(−βj)ki
+O

Å
1

n

ã
,
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where αj =
λj
n , βj =

λ′j
n . We prefer to write this formula in the following

equivalent form:

(21) χλ(π) =
nl

(n)l

r∏
i=1

∑
j

αkij −
∑
j

(−βj)ki
+O

Å
1

n

ã
.

In this section we will prove Theorem 17 which together with Theorem 16

gives a uniform estimate for the error term in the formula (21). In particular,

for A = n and ε = D
n we recover the result of Vershik and Kerov.

Theorem 17. There exist constants a,C > 0 with the following property.

Let k1, . . . , kr be positive integers ; we denote k1 + . . . + kr = l. If λ is a

Young diagram having n boxes with less than A rows and columns and such

that ε =
(k21+···+k2r)n

A2 < C , then

(22)

∣∣∣∣∣∣
∏r
i=1Rki+1(λ)

nl
−

r∏
i=1

∑
j

αkij −
∑
j

(−βj)ki
∣∣∣∣∣∣ ≤ ε

Å
A

n

ãl−r
ar,

where αj =
λj
n , βi =

λ′j
n .

Proof. Firstly, let us consider the case r = 1. Note that

Nλ
Ä
e, (1, . . . , k)

ä
=
∑
j

(nαj)
k, Nλ

Ä
(1, . . . , k), e

ä
=
∑
j

(nβj)
k.

Therefore Theorem 9 implies that the left-hand side of (22) is equal to∣∣∣∣∣∣ 1

nk

∑
σ1,σ2∈Sk\{e}

σ1σ2=π
|σ1|+|σ2|=|π|

(−1)|σ1|Nλ(σ1, σ2)

∣∣∣∣∣∣.

For a pair of permutations σ1, σ2 which contributes to the above sum we con-

sider the bipartite graph G and the graph ‹G given by Lemma 11. Clearly, in

this case graph ‹G has more than one component. With Lemmas 15 and 11Å
n

A

ãk−1
∣∣∣∣∣∣R

λ
k+1

nk
−
∑
j

Ä
αkj − (−βj)k

ä∣∣∣∣∣∣ ≤∑s≥2

(C0k)2s−2

(2s− 2)!

Å
n

A2

ãs−1

(23)

≤ 2C2
0k

2n

A2
= 2C2

0ε,

where the last inequality holds true if
2C2

0k
2n

A2 = 2C2
0ε is smaller than some

positive constant and the proof is finished in the case r = 1.
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For the general case, we put εi =
k2i n

A2 . We denote

Xi =
1

a

Å
n

A

ãki−1 Rλki+1

nki
,

Yi =
1

a

Å
n

A

ãki−1∑
j

Ä
αkij − (−βj)ki

ä
.

Let us fix a > 2. Clearly, |Yi| < 2
a < 1 hence (23) shows that |Xi| < 1 if ε is

smaller than some positive constant. Telescopic summation

X1 · · ·Xr − Y1 · · ·Yr = X1 · · ·Xr−1(Xr − Yr)+
X1 · · ·Xr−2(Xr−1 − Yr−1)Yr + · · ·+ (X1 − Y1)Y2 · · ·Yr

shows that

1

ar

Å
n

A

ãl−r ∣∣∣∣∣∣∏r
i=1R

λ
ki+1

nl
−

r∏
i=1

∑
j

αkij −
∑
j

(−βj)ki
∣∣∣∣∣∣

≤ 2C0(ε1 + · · ·+ εr)

a
. �

5.4. Concluding remarks. In the case where π is a fixed permutation, we

only need Lemma 11 and we can avoid most of the technicalities. Therefore,

our method gives a unified, simple way to reprove three important results on

asymptotics of character values on fixed permutations as well as new results:

the intermediate case between balanced diagrams (A = Θ(
√
n)) and diagrams

with long rows and/or columns (A = Θ(n)) has, to our knowledge, not been

studied until now. Moreover, it is interesting to note that our method can be

extended to quite long permutations.
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