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Random generation of finite and profinite
groups and group enumeration

By Andrei Jaikin-Zapirain and László Pyber

Abstract

We obtain a surprisingly explicit formula for the number of random ele-

ments needed to generate a finite d-generator group with high probability.

As a corollary we prove that if G is a d-generated linear group of dimension

n then cd + logn random generators suffice.

Changing perspective we investigate profinite groups F which can be

generated by a bounded number of elements with positive probability. In

response to a question of Shalev we characterize such groups in terms of

certain finite quotients with a transparent structure. As a consequence we

settle several problems of Lucchini, Lubotzky, Mann and Segal.

As a byproduct of our techniques we obtain that the number of r-relator

groups of order n is at most ncr as conjectured by Mann.

1. Introduction

Confirming an 1882 conjecture of Netto [40], Dixon [13] proved in 1969

that two randomly chosen elements generate the alternating group Alt(n) with

probability that tends to 1 as n → ∞. This was extended in [21] and [24] to

arbitrary sequences of non-abelian finite simple groups. Such results form the

basis of applying probabilistic methods to the solution of various problems

concerning finite simple groups [50].

Interest in random generation of more general families of finite groups

arose when it was realized that randomized algorithms play a critical role in

handling matrix groups [4]. Denote by ν(G) the minimal number k such that

G is generated by k random elements with probability ≥ 1/e. As Pak [44]

has observed, up to a small multiplicative constant, ν(G) is the same as the

expected number of random elements generating G. We obtain the following

quite unexpected result.
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For a non-abelian characteristically simple group A denote by rkA(G) the

maximal number r such that a normal section of G is the product of r chief

factors isomorphic to A. Denote by l(A) the minimal degree of a faithful

transitive permutation representation of A.

Theorem 1. There exist two absolute constants α > β > 0 such that for

any finite group G we have

α

Ç
d(G) + max

A

®
log(rkA(G))

log(l(A))

´å
< ν(G) < βd(G) + max

A

®
log(rkA(G))

log(l(A))

´
,

where A runs through the non-abelian chief factors of G.

Corollary 2. (1) If G is a finite d-generated linear group of dimen-

sion n over some field K then ν(G) ≤ cd + log n for some absolute

constant c.

(2) If G is a finite d-generated group then ν(G) ≤ cd + log d̃ for some

absolute constant c, where d̃ = d̃(G) is the maximum size of a minimal

generating set.

(3) If G is a finite d-generated group then ν(G) ≤ cd+ log log |G| for some

absolute constant c.

Note that in the first bound the number of random generators does not

depend on K and it grows very slowly when the dimension is increased. Our

bounds can be used in particular in analyzing the behavior of the famous

Product Replacement Algorithm [9], [12], [31]. The parameter d̃ (instead of

log d̃) appears in various results concerning the behaviour of this algorithm [9],

[12]. A slightly different version of the third part of Corollary 2 was first proved

in [11] and [29]. For more details and more precise bounds see Section 9.

Asymptotic results for finite groups are often best understood by consid-

ering their inverse limits, i.e., profinite groups. Motivated in part by Dixon’s

theorem, in the past 20 years results on random generation were obtained for

various profinite groups. Recall that a profinite group G may be viewed as a

probability space with respect to the normalised Haar measure.

Let A denote the Cartesian product of all finite alternating groups of

degree at least 5. Kantor and Lubotzky [21] showed that A can be generated

(as a topological group) by three random elements with positive probability.

They used a more precise version of Dixon’s theorem due to Babai [3]. The

same was shown to hold for profinite groups G obtained as the Cartesian

product of any collection of distinct non-abelian simple groups [21], [24].

Further examples appear in the work of Bhattacharjee [7]. She proved

that if W is an inverse limit of iterated wreath products of finite alternating

groups (of degree at least 5) then W is generated by two random elements with
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positive probability. This result has recently been extended to iterated wreath

products of arbitrary sequences of non-abelian finite simple groups [51].

A profinite group G is called positively finitely generated (PFG) if for some

r a random r-tuple generates G with positive probability. As we saw above

non-abelian finite simple groups can be combined in various ways to yield PFG

groups.

This concept actually first arose in the context of field arithmetic. Various

theorems that are valid for “almost all” r-tuples in the absolute Galois group

G(F ) of a field F appear in [15]. (For a survey on random elements of profinite

groups see [16].)

Answering a question of Fried and Jarden [15], Kantor and Lubotzky [21]

have shown that Fd, the free profinite group of rank d is not PFG if d ≥ 2. On

the other hand, Mann [35] has proved that finitely generated prosoluble groups

have this property. More generally in [8] it was shown that finitely generated

profinite groups which do not have arbitrarily large alternating sections are

PFG.

Denote bymn(G) the number of index nmaximal subgroups ofG. A group

G is said to have polynomial maximal subgroup growth (PMSG) if mn(G) ≤ nc
for all n (for some constant c).

A one-line argument shows that PMSG groups are positively finitely gen-

erated. By a very surprising result of Mann and Shalev the converse also

holds.

Theorem 3. ([38]). A profinite group is PFG if and only if it has poly-

nomial maximal subgroup growth.

This result gives a beautiful characterization of PFG groups. However, it

does not make it any easier to prove that the above mentioned examples of

profinite groups are PFG.

In his 1998 International Congress of Mathematicians talk [53, p. 131]

Shalev stated that “we are still unable to find a structural characterization of

such groups, or even to formulate a reasonable conjecture”. Similar remarks

have been made in [54, p. 386]. We give a semi-structural characterization

which really describes which groups are PFG.

Let L be a finite group with a non-abelian unique minimal normal sub-

group M . A crown-based power L(k) of L is defined as the subdirect product

subgroup of the direct power Lk containing Mk such that L(k)/Mk is isomor-

phic to L/M (here L/M is the diagonal subgroup of (L/M)k).

Theorem 4. Let G be a finitely generated profinite group. Then G is PFG

if and only if for any L as above if L(k) is a quotient of G then k ≤ l(M)c for

some constant c.
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An interesting feature of the theorem is that the number of random ele-

ments needed to generate a group G depends only on its normal sections H/N

which are powers of some non-abelian finite simple groups such that |G/H| is

very small compared to |H/N |.
For the full statement of our main result see Section 11. The theorem

can be used to settle several open problems in the area. For example, it

subsumes a conjecture of Lucchini [33] according to which non-PFG groups

have quotients which are crown-based powers of unbounded size. We can also

answer a question of Lubotzky and Segal [32] proving that finitely generated

profinite groups of polynomial index growth are PFG (see §12). Theorem 4

gives an easy proof that all previously known examples of PFG groups are

indeed PFG. In fact groups which are not PFG are rather “large”.

Corollary 5. Let G be a finitely generated profinite group. Then G is

PFG if and only if there exists a constant c such that for any almost simple

group R, any open subgroup H of G has at most l(R)c|G:H| quotients isomorphic

to R.

Moreover we show that if G is not a PFG group, then for infinitely many

open subgroups H, H has at least 2|G:H| quotients isomorphic to some non-

abelian simple group S.

Corollary 5 immediately implies a positive solution of a well-known open

problem of Mann [35].

Corollary 6. Let H be an open subgroup in a PFG group. Then H is

also a PFG group.

Note that by a recent deep result of Nikolov and Segal [43], if G is a finitely

generated profinite group and H is a finite index subgroup then H is an open

subgroup of G.

On the way towards proving Theorem 4 we obtain similar characterizations

for groups of exponential subgroup growth. For example, we have the following

surprising result.

Theorem 7. Let G be a finitely generated profinite group. Assume that

there is a constant c such that each open subgroup H has at most cb|G:H| quo-

tients isomorphic to Alt(b) for any b ≥ 5. Then G has at most exponential

subgroup growth.

The converse is obvious. Comparing these results with the ones obtained

for PFG groups we immediately see that PFG groups have at most exponential

subgroup growth. This answers a question of Mann and Segal [37].
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The proofs of Theorems 1 and 4 are based on a new approach to count-

ing permutation groups and permutation representations. Our main technical

result (which was first conjectured in [49]) is the following.

Theorem 8. The number of conjugacy classes of d-generated primitive

subgroups of Sym(n) is at most ncd for some constant c.

This estimate unifies and improves several earlier ones. For primitive solu-

ble groups it is an immediate consequence of [47, Lemma 3.4]. More generally

in [8] it was shown to hold for groups G with no large alternating sections

(in which case the primitive groups have polynomial size [5]). Moreover by a

central result of [38], it was known to hold for primitive groups with a given

abstract isomorphism type. The main theorem of [49] bounding the number

of all primitive groups can also be seen as an easy consequence. Indeed we can

improve this bound using Theorem 8 as follows.

Corollary 9. There exists a constant c such that the number of conju-

gacy classes of primitive groups of degree n is at most nc logn/
√

log logn.

Most of Sections 2–8 is devoted to the proof of various structural and

counting results which are needed to prove Theorem 8. Sections 9–12 contain

the proofs of Theorem 1, Theorem 4 and their corollaries.

In recent years probabilistic methods have proved useful in the solution

of several problems concerning finite and profinite groups (see e.g. [25], [50]

and [43]). We believe that our counting results will have a number of such

applications. As an illustration in Section 13 we confirm a conjecture of Mann

[36] by a probabilistic argument

Theorem 10. There exists a constant c such that the number of groups

of order n that can be defined by r relations is at most ncr.

This may be viewed as a refinement of various results on abstract group

enumeration obtained earlier by Klopsch [23], Lubotzky [28] and P. M. Neu-

mann [41].

2. Preliminaries

In this section we collect the notation and the principal results which will

be needed later.

2.1. Notation.

an(G) the number of subgroups of index n in G

sn(G) the number of subgroups of index at most n in G

mn(G) the number of maximal subgroups of index n in G

d(G) the minimal number of generators for G

d̃(G) the maximum of the size of a minimal generating set of G
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l(G) the minimal degree of a faithful transitive representation of G

l∗(G) the minimal degree of a faithful primitive representation of

a primitive group G

rkA(G) the maximal number r such that a non-abelian normal section

of G is the product of r chief factors of G isomorphic to A

rkn(G) the maximum of the numbers rkA(G) with l(A) ≤ n
Epi(G,T ) the set of epimorphisms from G onto T

2.2. Basic facts. First we recall Gaschütz’s lemma.

Lemma 2.1 ([16, Lemma 17.7.2]). Let T be a d-generated group and φ : T

→ L an epimorphism. Suppose that x1, . . . , xd generate L. Then there exist

y1, . . . , yd generating T such that φ(yi) = xi for all i.

Corollary 2.2. Let G be a group, N a normal subgroup of G and S ≤
G/N . Then the number of d-generated subgroups T of G such that TN/N = S

is at most |N |d.

Proof. If S is not generated by d elements then the number of such sub-

groups T is equal to 0. Suppose that S can be generated by d elements. Let

x1, . . . , xd ∈ G/N generate S. Using Gaschütz’s Lemma, we obtain that there

are elements y1, . . . , yd generating T such that yiN = xi for all i. Thus, there

are at most |N |d possibilities for T . �

Proposition 2.3 ([46]). LetP be a primitive permutation group of degree n

and suppose that P does not contain Alt(n). Then the order of P is at most 4n.

Proposition 2.4 ([49]). There exists an absolute constant c1 such that,

for each n, the group Sym(n) has at most cn1 conjugacy classes of primitive

subgroups.

Let Epi(G,T ) denote the set of epimorphism from G onto T . We will

often use the following lemma.

Lemma 2.5. Let T be a transitive subgroup of Sym(n). Then the number

of T -conjugacy classes of epimorphism from G onto T is at most n|Epi(G,T )|
|T | .

Proof. It is well-known that |CSym(n)(T )| ≤ n. Hence |Z(T )| ≤ n. This

gives the lemma. �

Lemma 2.6 ([17, Lemma 8.6]). Let S be a finite non-abelian simple group.

Then |Out(S)| ≤ l(S) and |Out(S)| ≤ 3 log l(S).

We call H a subdirect product subgroup of St if it is a subdirect product

of S1 × · · · × St where the Si are all isomorphic to S. Such an H is called a

diagonal subgroup if it is isomorphic to S.
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Lemma 2.7. Let S be a non-abelian simple group and H a subdirect prod-

uct subgroup of St ∼= S1 × · · · × St.

(1) Then there are partitions of the set of indices {1, . . . , t} and for each

part, say {ij1, . . . , ijk}, a diagonal subgroup Dj of Sij1 ×· · ·×Sijk such

that H is a direct product of the subgroups Dj .

(2) The number of St-conjugacy classes of diagonal subgroups of St is equal

to |Out(S)|t−1.

Proof. (1) This is a standard result.

(2) Identifying Inn(S) with S, we consider St as a subgroup of Aut(S)t.

Note that Aut(S)t acts transitively on diagonal subgroups of St and the sta-

bilizer of a subgroup D = {(s, . . . , s)|s ∈ S} is ‹D = {(φ, . . . , φ)|φ ∈ Aut(S)}.
Since St ∩ ‹D = D, we obtain that there are

|Aut(S)|t|D|
|‹D||S|t = |Out(S)|t−1.

St-conjugacy classes of diagonal subgroups of St. �

2.3. The number of epimorphisms. This subsection is mainly devoted to

considering subdirect products of groups with unique minimal normal sub-

groups.

Lemma 2.8. Let H be a subgroup of Sym(s)k. If a chief-factor of H is

isomorphic to St , where S is a non-abelian simple group, then t ≤ s/2.

Proof. If k = 1 then our condition implies that Sym(s) has an elementary

abelian section of order pt for some prime p and it is well-known that this

implies t ≤ s/2 (see, for example, [39]). The general case follows by an easy

induction argument. �

Lemma 2.9. Let Ti (i = 0, . . . , l) be a group with a unique minimal normal

subgroup Ki and G a subdirect product of T1 × · · · × Tl. Assume that for all i,

Ki
∼= Ss where S is a non-abelian finite simple group. Put N = K1 × · · · ×Kl

and L = N ∩G. Then the following holds :

(1) If φ : G → T0 is an epimorphism, then φ(L) = K0. Moreover Kerφ =

CG(Ki) for some 1 ≤ i ≤ l.
(2) L is a subdirect product subgroup of N .

(3) If G ∩ Ti 6= 1 for all i, then L = N .

Proof. Denote by ‹N the intersection of the normalizers in T1 × · · · × Tl
of all simple normal subgroups of N . Put L̃ = ‹N ∩ G. It is clear that G/L̃

is a subgroup of Sym(s)l. Hence by Lemma 2.8, L̃ is not contained in Kerφ.

On the other hand L̃/L is a subgroup of Out(S)sl, whence it is solvable. This
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implies that M = Kerφ ∩ L is a normal subgroup of G properly contained in

L and so φ(L) ≥ K0.

Now, we can apply the previous paragraph in the case when T0
∼= Ti for

some 1 ≤ i ≤ l and φ is the projection on Ti. In this case it is clear that

actually φ(L) = Ki. Thus, L is a subdirect product of K1 × · · · × Kl. This

gives us the second part of the lemma.

The third part is trivial, because G ∩ Ti is a normal subgroup of Ti and

so it contains Ki.

Now we finish the proof of the first part of the lemma. If l = 1 then φ

is an isomorphism and Kerφ = CG(K1) = 1. Suppose, now, that l > 1. If

G ∩ Ti is trivial for some 1 ≤ i ≤ l, then G is a subdirect product of l − 1

subgroups Tj and we can apply induction. Hence we can assume that G∩Ti is

a nontrivial normal subgroup of Ti for all 1 ≤ i ≤ l and therefore L = N . Since

M = Kerφ ∩ L is a normal subgroup of G properly contained in L, it follows

that M is the product of all but one of the Ki. Therefore we have φ(L) = Ki

in general.

Assume that M = K2 × · · · ×Kl. Then φ(K1) = K0. Since CT0(K0) = 1

we have φ(CG(K1)) = 1. On the other hand Kerφ and K1 are disjoint normal

subgroups hence Kerφ centralizes K1. Thus we have Kerφ = CG(K1) as

required. �

Lemma 2.10 ([52, Lemma 1.1]). Let G be a group with a characteristic

subgroup H such that CG(H) = 1. Then G is naturally embedded in Aut(H)

by means of conjugation of H by the elements of G, and there is a natural

isomorphism between Aut(G) and NAut(H)(G).

Corollary 2.11. Let T be a group with a unique minimal normal sub-

group K . Suppose that K is isomorphic to Ss where S is a non-abelian simple

group. Then |Aut(T )| ≤ (5|Out(S)|)s|T |.

Proof. Note that Aut(K) is isomorphic to Aut(S) o Sym(s). Denote by B

the base group of this wreath product. T is a subgroup of Aut(K) containing

Ss and by Lemma 2.10, Aut(T ) is also a subgroup of Aut(K) normalising T .

Let T = TB/B be the natural image of T in Sym(s) and Ā = Aut(T )B/B the

image of Aut(T ). T is a transitive group and Ā is contained in its normalizer

in Sym(s). Hence by [17, Th. 11.1], |Ā/T | ≤ 5s. Therefore we have

|Aut(T )| ≤ |B||T |5s ≤ |K||Out(S)|s|T |5s ≤ (5|Out(S)|)s|T |

as required. �

Lemma 2.12. Let G and T be two groups and K a normal subgroup of T .

Then

(1) |Epi(G,T )| ≤ |Epi(G,T/K)||K|d(G).
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(2) Let K be a central product of s isomorphic quasisimple subgroups Si
and suppose that T acts transitively on the Si. Put S = S1/Z(S1).

Then

|Epi(G,T )| ≤ log |G|(5|Out(S)|)s|T ||CT (K)|d(G).

Proof. (1) This is evident.

(2) Since CT/CT (K)(KCT (K)/CT (K)) = 1, using the previous statement,

we can suppose that CT (K) = 1. Hence the Si ∼= S are simple groups and K

is the unique minimal normal subgroup of T .

Without loss of generality we may assume that the intersection of the

kernels of epimorphisms from G onto T is equal to 1. Thus, G is a subdirect

product subgroup of Tm, where m is the number of such epimorphism. Let l

be the smallest k such that G is a subdirect product subgroup of T k. Consider

G inside T l and put L = K l ∩G.

By Lemma 2.9, L = K l and there are at most l ≤ log |G| possibilities

for M = Kerφ, where φ is an epimorphism from G onto T . Fix one such

M . We want to calculate the number of epimorphisms φ : G → T such that

M = Kerφ. This number clearly coincides with the number of automorphisms

of T . By Corollary 2.11,

(2.1) |Aut(T )| ≤ (5|Out(S)|)s|T |.
Hence we conclude that there are at most

log |G|(5|Out(S)|)s|T |
epimorphisms from G onto T . �

Remark 2.13. In case T is an almost simple group the proof of the above

corollary and lemma yields that |Epi(G,T )| ≤ |T | log |G|.

Remark 2.14. Looking at the proof of Lemma 2.12(2) more carefully we

see that the log |G| term can be replaced by the maximal number r = rkA(G)

such that a non-abelian normal section of G is the product of r chief factors

of G isomorphic to A = K/Z(K).

2.4. The number of complements. In this subsection we consider the fol-

lowing situation. Let X be a group containing a normal subgroup D which

is the direct product of the X-conjugates of some subgroup L. We want to

estimate the number of complements to D in X. The first result is due to M.

Aschbacher and L. Scott.

Proposition 2.15 ([2]). Let D′ = 〈LX \ {L}〉 and if T is a complement

to D in X define µ(T ) = D′NT (L)/D′. Then µ is a surjective map from the

set of all complements to D in X onto the set of all complements to D/D′ ∼= L

in NX(L)/D′, and µ induces a bijection TX → µ(T )L of conjugacy classes of

complements.
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We say that a complement T to D in X is large if the image of the natural

map from NT (L) to Aut(L) contains the inner automorphisms of L. In the

next proposition we estimate the number of large complements in the case

where L is a simple non-abelian group. A version of Proposition 2.16 which

considers this situation appears in [51, §2]. We refer the reader to this paper

for more details.

Proposition 2.16. Let X , D and L as before and suppose, moreover,

that L is a simple non-abelian group. Then the number of the X-conjugacy

classes of large complements to D in X is at most

|Out(L)| log |X/D|.

Proof. Since L is a normal subgroup of NX(L), we have a natural homo-

morphism ρ : NX(L) → Aut(L). Let R be the image of ρ. Now NX(L) =

DNT (L) and it is easy to see that a complement T to D in X is large if and

only if ρ(NT (L)) = R. In the following we identify L and Inn(L). Thus L ≤ R.

Let Q = NX(L)/D. Define φ : NX(L) → Q × R by means of φ(x) =

(xD, ρ(x)). The kernel of φ is D ∩ CX(L) = D′. By the above, φ(NT (L)) is a

subdirect pr oduct of Q×R. As a subgroup of φ(NX(L)) it corresponds to µ(T )

which by Proposition 2.15 is a complement to φ(D) ∼= L ≤ R. It follows that

φ(NT (L)) is a complement to R in Q×R. Moreover, by Proposition 2.15, if two

complements T1 and T2 are not X-conjugates, then φ(NT1(L)) and φ(NT2(L))

are not L-conjugates.

Let S = {s = (qs, rs)|qs ∈ Q, rs ∈ R} be a complement to R in Q × R
which is a subdirect product of Q × R. Then the map ψS : qs → rs is an

epimorphism from Q onto R. Note that ψS determines S uniquely and two

such complements are L-conjugates if and only if ψS1 and ψS2 are L-conjugates.

By the remark after Lemma 2.12 the number of epimorphisms from Q

onto R is at most |Aut(L)| log |Q|. Hence the number of X-conjugacy classes

of the large complements to D in X is at most |Out(L)| log |X/D|. �

2.5. Large G-groups. Recall that a G-group A is a group A with a homo-

morphism θ : G→ Aut(A). If there is no danger of confusion we put ag = aθ(g),

if a ∈ A, g ∈ G. When G is profinite, A is also profinite and the homomor-

phism θ is assumed to be continuous. Two G-groups A and B are said to be

G-isomorphic, denoted A ∼=G B, if there exists an isomorphism φ : A → B

such that agφ = aφg, a ∈ A, g ∈ G. We say that A is an irreducible G-group if

A does not have proper normal G-subgroups. We say that A is a semisimple

G-group if A is a direct product of irreducible G-groups.

Let S be quasisimple group. We say that a group A = Sk is a large

G-group if A is a G-group associated with θ : G→ Aut(A) and θ(G) ∩ Inn(A)

is a subdirect product subgroup of Inn(A) ∼= Inn(S)k. For example, any chief

factor of G is large. In the following lemma we give another example.
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Lemma 2.17. Let F be a profinite group and Ki (i = 1, . . . , k) non-abelian

chief factors. Suppose that the Ki are all isomorphic as groups. Then K1 ×
· · · ×Kk is a large F -group.

Proof. Without loss of generality we can suppose that F is a subdirect

product subgroup of T1 × · · · × Tk, where Ti = F/CF (Ki). Then using

Lemma 2.9, we obtain the result. �

Lemma 2.18. Let Q be a group and N a normal subgroup of Q. Suppose

that N = S1×· · ·×Ss, where S1 is a quasisimple group and Q permutes the Si
transitively. Denote by ‹N the normalizer of all the Si and put S = S1/Z(S1).

Then the number of Q-conjugacy classes of d-generated subgroups T of Q such

that N is a large T -group (T acts on N by conjugation) and T ‹N = Q is at most

|CQ(N)|d|Out(S)|sd(1 + |Out(S)|)s.

Proof. Let T be such a subgroup of Q. Since

CQ/CQ(N)(NCQ(N)/CQ(N)) = 1,

using Corollary 2.2, we may assume that CQ(N) = 1. Then the Si ∼= S are

simple groups, N is the unique minimal normal subgroup of Q and K = T ∩N
is a subdirect product subgroup of N ∼= Ss.

Therefore in order to choose K we should first choose a partition of the

set of indices as in Lemma Lemma 2.7(1). Since T acts transitively on {Si} it

is enough to choose the first part and the rest of the partition will be deter-

mined automatically. There are
(s
k

)
subsets in {1, . . . , s} of size k, whence, by

Lemma 2.7(2), there are at most

s∑
k=1

Ç
s

k

å
|Out(S)|k−1 =

(1 + |Out(S)|)s − 1

|Out(S)|

choices for K.

Fix one such K and consider L = NQ(K). Then T ≤ L and it is easy to

see that L∩N = K. Now T projects onto L/(L∩ ‹N) and (L∩ ‹N)/K has order

at most |Out(S)|s. Hence there are at most |Out(S)|sd choices for T/K inside

L/K. But T/K determines T inside L. Thus we conclude that the number

of d-generated subgroups T up to conjugacy inside Q, for which N is a large

T -group and Q = T ‹N , is at most |Out(S)|sd(1 + |Out(S)|)s. �

Lemma 2.19. Let N = Ss = S1×· · ·×Ss, where S is a non-abelian simple

group. Suppose that N is a large Q-group associated with θ : Q→ Aut(N) such

that Q permutes the Si transitively. Let K = N∩θ(Q). Then either |K| < l(N)

or |CQ(K)| ≤ |CQ(N)|l(N) (here we identify Inn(N) and N ).
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Proof. Without loss of generality we may assume that CQ(N) = 1. Then

N is an irreducible Q-group and Q is embedded in Aut(N). Note that since S

is simple, l(N) = l(Ss) = l(S)s.

By Lemma 2.7 there is a partition of the set of indices {1, . . . , s} into l parts

and for each part, say {ij1, . . . , ijk}, a diagonal subgroup Dj of Sij1×· · ·×Sijk
such that K is a direct product of the subgroups Dj . Since Q permutes the

Si transitively, all parts have s/l elements. Suppose that |K| ≥ l(N) = l(S)s.

Now |S| ≤ l(S)l(S), whence l(S)l(S)l ≥ |K| ≥ l(S)s and so s/l ≤ l(S).

If some element of Q centralizes K, it should fix the partition and cen-

tralize all Dj . Hence

|CQ(K)| ≤ ((s/l)!)l ≤ (s/l)s ≤ l(S)s = l(N). �

3. The number of d-generated transitive groups

In this section we count permutation groups up to permutation isomor-

phism, i.e., up to conjugacy in Sym(n). A transitive permutation group T is

determined up to permutation isomorphism by the isomorphism type of T and

by the orbit of a point stabiliser under Aut(T ) and vice versa.

Let ct = (4c1)3, where c1 is a constant from Proposition 2.4. The aim of

this section is to prove the following result.

Theorem 3.1. The number of conjugacy classes of transitive d-generated

subgroups of Sym(n) is at most cndt .

Proof. We will prove the proposition by induction on n. The base of

induction is evident and we assume that n ≥ 5.

Let T ≤ Sym(n) be a d-generated transitive group of degree n. Suppose

that {B1, . . . , Bs} is a system of blocks for T , such that b = |B1| > 1 and H1 =

StT (B1) acts primitively on B1. Thus, T ≤ StSym(n)({Bi}) ∼= Sym(b) o Sym(s).

Let P be the image of H1 in Sym(B1) ∼= Sym(b) and let K̃ be the kernel of the

action of T on the blocks. Then T/K̃ can be naturally embedded into Sym(s)

and T into P o (T/K̃).

We divide the d-generated transitive subgroups of Sym(n) into three fam-

ilies. We note that some groups can belong to different families.

Family 1. Suppose that P does not contain Alt(b) or b ≤ 4. By induction,

there are at most cdst choices for T/K̃ up to conjugacy inside Sym(s). Fix

one such T/K̃. By Proposition 2.4, there are at most cb1 choices for P up to

conjugacy inside Sym(b). Also fix one such P . Hence we fixed the embedding

of P o (T/K̃) into Sym(n).

By Proposition 2.3, |P | ≤ 4b. Hence |P |s ≤ 4n. By Corollary 2.2, there

are at most 4nd possibilities for T inside P o (T/K̃). Thus, we conclude, that
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there are at most

(3.1)
∑
s≤n/2

cdst 4ndcb1 ≤ c
d(n

2
+1)

t 4ndcn1

transitive d-generated groups in the first family.

Family 2. Suppose that b ≥ 5, P contains Alt(b) and K̃ 6= 1. Since K̃ 6= 1

and T permutes the blocks {Bi} transitively the image of K̃ in P ≤ Sym(B1) ∼=
Sym(b) is a nontrivial normal subgroup of P . Hence K = [K̃, K̃] is a subdirect

product subgroup of Alt(b)s. Since T acts transitively on the blocks {Bi}, K
is a minimal normal subgroup of T .

Applying induction as in the previous case, we obtain that there are at

most cdst choices for T/K̃ up to conjugacy inside Sym(s). We fix one such T/K̃.

This means that we fixQ = Sym(b)oT/K̃ inside Sym(n). By Lemma 2.18, there

are at most 16sd choices for T up to conjugacy inside Q. Thus we conclude

that there are at most

(3.2)
∑
s≤n/5

cdst 16sd ≤ cd(n
5

+1)
t 2nd

conjugacy classes of transitive d-generated groups in the second family.

Family 3. Suppose that b ≥ 5, P contains Alt(b) and K̃ = 1. In this case

T acts faithfully on the set of blocks. By induction we have at most csdt choices

for T up to conjugacy in Sym(s). Fix W = Sym(b)oT as a subgroup of Sym(n).

By Corollary 2.2 there are at most 2sd possibilities for T (Alt(b))s inside W .

Fix one such possibility and put X = T (Alt(b))s. By Proposition 2.16, there

are at most 4 log |T | ≤ 4n2 choices for T up to conjugacy in X. Thus, we

conclude, that there are at most

(3.3)
∑
s≤n/5

4cdst 2sdn2 ≤ cd(n
5

+1)
t 2ndn2

conjugacy classes of transitive d-generated groups in the third family.

Now, putting together (3.1), (3.2) and (3.3) we obtain the theorem. �

4. The number of transitive representations

The aim of this section is to prove the following result and several corol-

laries.

Proposition 4.1. Let G be a finite d-generated group and T a transitive

group of degree n. Then there are at most |T | log |G|cdnr epimorphisms from G

onto T (where cr = 16).

Proof. We proceed by induction on n. Suppose that {B1, . . . , Bs} is a sys-

tem of blocks for T , such that b = |B1| > 1 and H1 = StT (B1) acts primitively

on B1. Thus, T ≤ StSym(n)({Bi}) ∼= Sym(b) o Sym(s). Let P be the image
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of H1 in Sym(B1) ∼= Sym(b) and let K̃ be the kernel of the action of T on

the blocks. Hence K̃ = T ∩ Sym(b)s. Then T can be naturally embedded in

P o (T/K̃).

Case 1. Suppose that |K̃| ≤ 4n. Note that T/K̃ is a transitive group of

degree s. By induction, there are at most |T/K̃| log |G|cdsr epimorphisms from

G onto T/K̃. Hence, since |K̃| ≤ 4n, there are at most

|T/K̃| log |G|cdsr 4dn ≤ |T | log |G|cdnr

epimorphisms from G onto T .

Case 2. Suppose that |K̃| > 4n. Since K̃ is a subgroup of P s, |P | > 4b.

Hence b ≥ 5 and P contains Alt(B1) (see Proposition 2.3). Therefore as in

the proof of Theorem 3.1, K = [K̃, K̃] = T ∩ (Alt(b))s is a subdirect prod-

uct subgroup of Alt(b)s and it is a minimal normal subgroup of T . Hence,

since |K| > 2n and l(Alt(b)s) = bs ≤ 2n, using Lemma 2.19, we obtain that

|CT (K)| ≤ bs ≤ 2n.

Now, applying Lemma 2.12(2), we obtain that

|Epi(G,T )| ≤ log |G|(20)s|T ||CT (K)|d ≤ |T | log |G|cdnr . �

Remark 4.2. Using Remark 2.14 we see that the log |G| term can be re-

placed by the maximal number r such that a normal section of G is the product

of r chief factors of G isomorphic to A = Alt(b)s for some b and s with bs ≤ 2n.

Setting G = T we obtain the following amusing estimate.

Corollary 4.3. There exists a constant c such that if T is a d-generated

transitive group of degree n then |Aut(T )| ≤ |T |cdn.

Note that if T is a transitive group of degree n then the inequality |Aut(T )|
≥ |T |/n follows from |Z(T )| ≤ n.

If T and T1 are conjugate transitive subgroups of Sym(n) then any per-

mutation representation of a group G with image T1 is equivalent to one with

image T . Moreover, T -conjugate elements of Epi(G,T ) yield equivalent per-

mutation representations. Therefore combining Lemma 2.5, Theorem 3.1 and

Proposition 4.1 we immediately obtain the following.

Corollary 4.4. There exists a constant c such that the number of non-

equivalent transitive representations of degree n of a finite d-generated group

G is at most log |G|cnd.

A subgroup H of index n in G determines a permutation representation

of G. Two such representations are equivalent if and only if the corresponding

subgroups are conjugate in G. Clearly H has at most n conjugates. Hence we

obtain the following handy result on subgroup growth.
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Corollary 4.5. There exists a constant c such that an(G) ≤ log |G|cnd
for any finite d-generated group G.

5. Primitive linear groups

In this section F denotes a finite field of characteristic p. Let U ′ and U

be two finite dimensional vector spaces over F . Suppose that X ≤ GLF (U ′)

and Y ≤ GLF (U). Then X × Y acts naturally on W = U ′ ⊗F U . We denote

by X ⊗F Y the image of X × Y in GLF (W ). We will identify the image of X

in GLF (W ) with X (and the image of Y with Y ).

We say that H ≤ GLF (W ) fixes a nontrivial tensor decomposition U ′⊗F U
of W if there are F -spaces U ′ and U of dimensions greater than 1 over F and

an F -linear isomorphism φ : U ′⊗F U →W such that φ−1 ◦g ◦φ ∈ GLF (U ′)⊗F
GLF (U) for any g ∈ H.

For any F -vector space V we have a natural map

αF,V : ΓLF (V )→ Aut(F ) ∼= ΓLF (V )/GLF (V ).

Let A ≤ ΓLF (U ′) and B ≤ ΓLF (U). Set

(5.1) S = {(a, b) ∈ A×B | αF,U ′(a) = αF,U (b)}.

Then we can make S act on U ′ ⊗F U : if (a, b) ∈ S, u′ ∈ U ′ and u ∈ U then

(a, b)(u′ ⊗ u) = (au′)⊗ (bu).

By A �F B we define a subgroup of ΓLF (U ′ ⊗F U) consisting of the images

of S. We say that H ≤ ΓLF (W ) almost fixes a nontrivial tensor decomposition

U ′ ⊗F U of W if there are F -spaces U ′ and U of dimensions greater than 1

over F and an F -linear isomorphism φ : U ′ ⊗F U →W such that φ−1 ◦ g ◦ φ ∈
ΓLF (U ′)�F ΓLF (U) for any g ∈ H.

Lemma 5.1. Let W be a homogenous FpX-module (that is W ∼=X Uk,

for some irreducible X-module U and some k). Put F = EndX(U). Then

if k > 1 and X is not cyclic, NGLFp (W )(X) almost fixes a nontrivial tensor

decomposition U ⊗F U ′ of W .

Proof. Let A be the F -algebra generated by the images of X in EndFp(W ).

Since W is homogenous, A ∼= EndF (U) ∼= Ms(F ), where s = dimF U . Let B =

CEndFp (W )(A). Then B ∼= Mk(F ). Thus, W is an irreducible A⊗F B-module.

Hence there exists a B-module U ′ such that W ∼= U⊗F U ′ as A⊗F B-modules.

Let Y = Aut(A) and Z = Aut(B). Then Y ∼= ΓLF (U), because any

automorphism of A is a composition of a field automorphism and a conjugation

by an invertible element of A. Since U is the unique A-module, we can consider

U also as a Y -module. In the same way U ′ is a Z-module. We can embed
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Aut(F ) in Z in a natural way and so we can consider U ′ also as an Aut(F )-

module. Hence Y almost fixes U ⊗F U ′ and from now on we identify Y with

Y �F Aut(F ) ≤ Y �F Z ≤ ΓLF (W ).

Since X is not cyclic and k > 1, the decomposition U ⊗F U ′ is not trivial.

Now, if g normalizesX, g also normalizes A. Hence there are an element g1 ∈ Y
and an invertible element g2 ∈ B such that g = g1g2. Hence g ∈ Y �F Z almost

fixes U ⊗F U ′. �

Recall that a p-group is said to be of symplectic type if it has no non-cyclic

characteristic abelian subgroups. The complete description of such groups is

given by P. Hall (see, for example, [1, 23.9]). It is a well-known fact that any

normal p-subgroup of a linear primitive group is of symplectic type.

For the rest of this section we fix the following notation. Let P be an

irreducible primitive subgroup of GLFp(W ). Then W is homogenous as an

F ∗(P )-module. Put F = Z(EndF ∗(P )(W )). Then F is a field and there exists

an absolutely irreducible F [F ∗(P )]-module V such that W ∼= V k. We can

decompose F ∗(P ) = C ∗ K1 ∗ · · · ∗ Ks as a central product of a cyclic group

C and non-abelian groups Ki, such that KiZ(F ∗(P ))/Z(F ∗(P )) is a minimal

perfect normal subgroup of P/Z(F ∗(P )) or Ki is a non cyclic Sylow subgroup

of F (P ). Note that since the elements from C act on V as multiplications

by elements from F , V is also absolutely irreducible as an F [K1 ∗ · · · ∗ Ks]-

module. The space V has a corresponding tensor product decomposition over

F : V = V1 ⊗ · · · ⊗ Vs, where each Vi is an absolutely irreducible FKi-module

(see [22, Lemma 5.5.5]). In particular, F = Z(EndKi(W )).

Lemma 5.2. Suppose that P does not almost fix nontrivial tensor decom-

positions of W over F . Then F ∗(P ) is irreducible and one of the following

holds :

(1) F ∗(P ) is a product of a q-group (which can be trivial) of symplectic

type and a cyclic group of order coprime to p and q and q 6= p;

(2) F ∗(P ) is a central product of k copies of quasisimple group S and a

cyclic group and P acts transitively on these k copies.

Proof. First suppose that F ∗(P ) is cyclic. Then F ∗(P ) spans F inside

EndFp(W ). Let K = CF (P ). Then K is a subfield of F and dimK F =

|P : F ∗(P )|. Hence if A denotes the subalgebra of EndFp(W ) generated

by P , then Z(A) = K and dimZ(A)A = dimK A = |P : F ∗(P )|2. Since

A ∼= M|P :F ∗(P )|(Z(A)), dimZ(A)W =
»

dimZ(A)A = dimK F . Thus W is an

irreducible F ∗(P )-module.

Now suppose that F ∗(P ) is not cyclic. Since F = Z(EndK1(W )), using

Lemma 5.1, we obtain that K1 is irreducible. In particular, s = 1 and F ∗(P )

is irreducible.
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If K1 is a q-subgroup of P , then since P is irreducible, p 6= q and since

P is primitive, K1 is of symplectic type. The rest of the proposition follows

easily. �

Our next aim is to estimate |P/F ∗(P )|. In order to do this we first inves-

tigate the order of the automorphism group of a q-group of symplectic type.

Lemma 5.3. Let T be a q-group of symplectic type and W a faithful irre-

ducible FpT -module. Then |Aut(T )| ≤ |W |14 and |T | ≤ |W |3.

Proof. By [1, 23.9], T is a central product of groups E and R, where E is

extraspecial or trivial and R is cyclic, dihedral, semidihedral or quaternion.

Suppose first that E is not trivial and let k be such that |E| = q2k+1. Then

E is generated by 2k elements and |Ω2(Z2(T ))| ≤ q2k+4. Let φ ∈ Aut(T ). Since

E ≤ Ω2(Z2(T )), we obtain that φ(E) ≤ Ω2(Z2(T ))), whence there are at most

q2k(2k+4) possibilities for images of 2k generators of E. Since R is generated

by at most two elements, we obtain that

|Aut(T )| ≤ q4k(k+2)|T |2 = q4k2+12k+2|R|2.

Now note that |W | ≥ |F |qk ≥ 2q
k
, because the minimal degree of a faithful

representation of E is qk, and |R| ≤ 2|W |, because R has a cyclic subgroup of

index at most 2. Thus, |Aut(T )| ≤ |W |14.

If E is trivial we obtain the bound for |Aut(T )| in a similar way. By the

same ideas |T | ≤ |W |3. �

Lemma 5.4. Let K be a perfect group such that K/Z(K) ∼= Sk for some

simple group S and some k ≥ 1. If W is an irreducible FpK-module, then

|Out(K)| ≤ |W |2. Moreover, if k ≥ 2 then |K| ≤ |W |3.

Proof. The group K is isomorphic to a central product of k quasisimple

groups Si such that Si/Z(Si) ∼= S. Put F = EndK(W ). Then the space W has

a corresponding tensor product decomposition over F : W = W1 ⊗ · · · ⊗Wk,

where each Wi is an absolutely irreducible FSi-module (see [22, Lemma 5.5.5]).

By [19] a perfect group has no nontrivial central automorphisms; hence

Aut(K) has a natural embedding into Aut(Sk). It is also clear that Aut(K)

contains Sk; hence |Out(K)| ≤ |Out(S)|kk!. By Lemma 2.6

|W | ≥
∏
i

|Wi| ≥ |Out(S)|k.

Note also that |W | ≥ 22k > k!. Thus, |Out(K)| ≤ |W |2.

Now, suppose that k ≥ 2. Let n = dimF W and m = min{dimF Wi}.
Then n ≥ mk and |K| ≤ |F |km2+1. Thus, we have |K| ≤ |W |3. �

Proposition 5.5. We have |P/F ∗(P )| ≤ |V |c2 (where c2 = 15).
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Proof. Using two previous lemmas, we obtain that

|P/F ∗(P )| ≤ |Out(C)|
∏
|Out(Ki)| ≤ |V |15. �

Proposition 5.6. There exists a constant c3 such that if H is a qua-

sisimple group and U is an absolutely irreducible FH-module (where F is a

finite field) such that |H| > |U |c3 , then one of the following holds :

(1) H = Alt(m) and W is the natural Alt(m)-module.

(2) H = Cld(K), a classical group over K ≤ F and U = F ⊗K U0, where

U0 is the natural module for Cld(K).

Proof. It follows from [26, Prop. 2.2]. �

Let c4 = c2 + 1 + max{3, c3}.

Proposition 5.7. Suppose that |P | > |W |c4 . Then there is a tensor

decomposition U ′ ⊗F U of W with A ≤ ΓLF (U ′) and B ≤ ΓLF (U) such that

(1) P ≤ A�F B;

(2) dimF (U ′) ≤
√

dimF W and so |A| ≤ |W |2;

(3) F (B) is cyclic;

(4) E(B) = Alt(m) and U is the natural Alt(m)-module over F or E(B) =

Cld(K), a classical group over K ≤ F and U = F ⊗K U0, where U0 is

the natural module for Cld(K).

(5) |CGLFp (W )(E(B))| ≤ |W |.
(6) |A�F B : E(B)| ≤ |W |5.

(7) E(B) ≤ P .

Proof. By Proposition 5.5, |P/F ∗(P )| ≤ |V |c2 . Note that for any tensor

decomposition U1 ⊗F U2 of V fixed by F ∗(P ) we have that |A1| ≤ |V | or

|A2| ≤ |V | (where A1 ∗A2 is the corresponding central product decomposition

of F ∗(P )). Therefore since |F ∗(P )| > |W |c4−c2 ≥ |V |3, there exists an i such

that dimF Vi ≥
√

dimF V and hence |Ki| > |V |c4−c2−1 (in particular, F ∗(P )

cannot be cyclic).

If Ki is a p-group, then it is of symplectic type. In this case, by Lemma 5.3,

|Ki| ≤ |Vi|3, a contradiction.

Hence Ki = S1 ∗ · · · ∗ Sk is a central product of k copies of a quasisimple

group Si. If k > 1, then by Lemma 5.4, we have |Ki| ≤ |Vi|3, a contradiction.

Hence k = 1.

Thus Ki is a quasisimple group. Put U = Vi. Then since |Ki| > |U |c3 , we

obtain a complete description of Ki and U from Proposition 5.6. If U = W ,

then our statement holds with A = 1. Assume U 6= W . By Lemma 5.1, P

almost fixes U ′ ⊗F U for some U ′. There are A ≤ ΓLF (U ′) and B ≤ ΓLF (U)

such that P ≤ A �F B, where B = NΓLF (U)(Ki). It is clear that Ki = E(B)
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and F (B) is cyclic. Moreover since |Ki| ≥ |W |, dimF (U ′) ≤
√

dimF W and so

|A| ≤ |W |2 and |CGLFp (W )(E(B))| ≤ |W |.
It follows that the index of E(B) in B is less than |W |3, whence we obtain

that |A�F B : E(B)| ≤ |W |5. �

Let F ◦ be the subgroup of nonzero elements in F . We will also view F ◦

as a subgroup of ΓLF(U).

Lemma 5.8. Let Y1 and Y2 be two primitive subgroups of GLFp(U) con-

tained in ΓLF(U). Suppose that they are conjugate in GLFp(U) and contain

F ◦. Assume also that either both Y1 and Y2 lie in GLF (U) or that both Y1 and

Y2 do not lie in GLF (U). Then Y1 and Y2 are conjugate in ΓLF(U).

Proof. Let g ∈ GLFp(U) be such that Y g
1 = Y2. First suppose that Y1

and Y2 lie in GLF (U). Then F ≤ Ei = EndYi(U) (i = 1, 2). Since the Yi are

irreducible, Ei is a field. We have that Eg1 = E2 and since F ≤ E1 ∩ E2 is the

unique subfield of Ei (i = 1, 2) of order |F |, we obtain that F g = F and so

g ∈ ΓLF(U).

Now suppose that Y1 and Y2 do not lie in GLF (U). Take x ∈ Y1 which

does not commute with F . Then CF (x) is a proper subfield of F . In particular,

|CF (x)| ≤ |F |1/2. Hence |CF ◦(x)| < |F ◦|1/2 and so |[x, F ◦]| > |F ◦|1/2. This

implies that [x, F ◦] spans F over Fp and so [Y1, F
◦] also spans F in EndFp(U).

In the same way we prove that [Y2, F
◦] spans F over Fp.

Thus the subalgebra of EndFp(U) generated by Y ′i contains F and lies in

EndF (U). In particular F ≤ Ei = Z(EndY ′i (U)). Since Yi is primitive Ei is a

field. We have that Eg1 = E2 and since F ≤ E1 ∩ E2 is the unique subfield of

Ei (i = 1, 2) of order |F |, we obtain that F g = F . Thus g ∈ ΓLF(U). �

Let c5 = 6c4 + 31 + c2.

Proposition 5.9. The number of conjugacy classes of primitive d-gen-

erated subgroups P of GLFp(W ) is at most |W |c5d.

Proof. We prove the proposition by induction on dimFpW . Without loss

of generality we can assume that d > 1.

Put F = Z(EndF ∗(P )(W )) and let n = dimF W . There are at most

(5.2) dimFpW ≤ |W |

possibilities for F . Fix one of them. We divide the primitive groups P into

several families.

Family 1. Suppose that |P | > |W |c4 . Then we can apply Proposition 5.7.

Recall that A�FB is the image in ΓLF (W ) of the group S defined in (5.1). Let‹P be the preimage of P in S. Then without loss of generality we may assume

that ‹P is a subdirect product subgroup of A×B. In particular, A and B can
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be generated by d + 1 elements. Let s = dimF U
′ and b = dimF U (whence

n = bs). Now P from the first family is completely determined if we know:

(1) the choice of b;

(2) a group A ≤ ΓLF (U ′);

(3) a group B ≤ ΓLF (U), satisfying the conditions of Proposition 5.7;

(4) the image of d generators of P in (A�F B)/E(B).

(1) The number of choices for b is at most n ≤ |W |.
(2) We have s ≤

√
n, which implies |ΓLF (U ′)| < |W |2. The group A is

generated by d + 1 elements, whence the number of possibilities for A is at

most |W |2(d+1).

(3) Proposition 5.7 describes all possibilities for E(B) inside GLF (U) up

to conjugacy. This number is clearly less than |U |3. We fix one such possibility.

Note that |NΓLF (U)(E(B))/E(B)| ≤ |U |2. Thus, sinceB is d+1-generated,

there are at most |U |3|U |2(d+1) ≤ |W |2d+5 choices for B inside ΓLF (U) up to

conjugacy.

(4) Now |A�F B/E(B)| ≤ |W |5. Hence there are at most |W |5d possibil-

ities to choose P inside A�F B with E(B) ≤ P .

Putting everything together we obtain that there are at most

(5.3) |W |9d+9

conjugacy classes of primitive d-generated groups in the first family.

Family 2. Suppose that |P | ≤ |W |c4 and P almost fixes a nontrivial tensor

product decomposition U ′ ⊗F U of W . Thus, there are F -spaces U ′ and U of

dimensions greater than 1 over F and groups X ≤ ΓLF (U ′) and Y ≤ ΓLF (U)

such that W = U ′ ⊗F U and P ≤ X �F Y . Denote by ‹P the preimage of P in

X×Y . Note that ‹P is generated by d+ 1 elements. Without loss of generality

we can also assume that F ◦ ≤ X, F ◦ ≤ Y and X and Y are homomorphic

images of ‹P . In particular, X and Y can be generated by d+1 elements. Note

also that since P is primitive, X and Y are primitive over Fp as well.

Let s = dimF U
′ and b = dimF U . Assuming s ≤ b we have s ≤

√
n. Thus,

in order to determine ‹P up to conjugacy in ΓLF (U ′)×ΓLF (U) it is enough to

know:

(1) the decomposition n = bs;

(2) the group F ◦ ≤ Y up to conjugacy in ΓLF (U);

(3) the group F ◦ ≤ X in ΓLF (U ′);

(4) a set of d generators of P in X �F Y .

(1) There are at most n decompositions n = bs and n ≤ |W |.
(2) By induction there are at most |U |c5(d+1) choices for Y up to conjugacy

in GLFp(U). Applying Lemma 5.8, we obtain that there are at most |U |c5(d+1)

choices for Y up to conjugacy in ΓLF (U).
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(3) Note that X ≤ GLF (U ′) if and only if Y ≤ GLF (U). Hence if we fix

Y we know whether X should lie or not in GLF (U ′). As above there are at

most |W |2(d+1) choices for X in ΓLF (U ′).

(4) Since |P | ≤ |W |c4 and |X| ≤ |W |2, |X � Y | ≤ |W |c4+3. Hence there

are at most |W |d(c4+3) choices for d generators of P .

Hence we obtain that there are at most

(5.4) n|W |2(d+1)|U |c5(d+1)|W |d(c4+3) ≤ |W |(d+1)(5+c5/2+c4)

conjugacy classes of primitive d-generated groups in the second family.

Family 3. Suppose that |P | ≤ |W |c4 and P does not almost fix any non-

trivial tensor product decompositions U ′ ⊗F U of W . In this case we can use

Lemma 5.2. From this lemma we know that there are only two possibilities

for F ∗(P ) and that F ∗(P ) is irreducible. We divide the third family into two

subfamilies.

Subfamily 3.1. F ∗(P ) is a product of q-group T of symplectic type and a

cyclic group C of order coprime to p and q. Note first that |T | ≤ |W |3 and

|C| ≤ |W |. It follows that there are at most |W |4 possibilities for the isomor-

phism type of F ∗(P ), and at most |W |4 nonequivalent irreducible representa-

tions over F of degree n for each type. Hence we have at most |W |8 possibilities

for F ∗(P ) inside GLF (W ) up to conjugacy. Fix one such possibility.

Since |NGLFp (W )(F
∗(P ))/F ∗(P )| ≤ |W |c2 , by Proposition 5.5, we have at

most |W |dc2 possibilities for d generators of P/F ∗(P ) inside

NGLFp (W )(F
∗(P ))/F ∗(P ).

We conclude that there are at most

(5.5) |W |4|W |4|W |dc2 = |W |c2d+8

conjugacy classes of primitive d-generated groups in this subfamily.

Subfamily 3.2. F ∗(P ) is a central product of k copies of a quasisimple

group S and a cyclic group C ; now P acts transitively on these k copies and

Z(F ∗(P )) is cyclic. Since there are only at most two simple groups of each

order, we have only at most(2|P |) ≤ |W |c4+1 possibilities for the isomorphism

type of F ∗(P )/Z(F ∗(P )) and at most |F ∗(P )| ≤ |W |c4 nonequivalent irre-

ducible representations in PGLF (W ) for each type. Hence we have at most

|W |2c4+1 possibilities for F ∗(P )/Z(F ∗(P )) inside PGLF (W ) up to conjugacy.

Now F ∗(P ) is generated by at most 2 log n elements. Using Corollary 2.2,

we obtain that there are at most |W |2c4+1|F |2 logn ≤ |W |2c4+2 possibilities for

F ∗(P ) inside GLF (W ) up to conjugacy. Fix one such possibility. Since

|NGL(W )(F
∗(P ))/F ∗(P )| ≤ k!|Out(S)|k|W | ≤ log nlogn|W |2 ≤ |W |3,
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we have at most |W |4d possibilities for d generators of P/F ∗(P ) in

NΓL(W )(F
∗(P ))/F ∗(P ).

We conclude that there are at most

(5.6) |W |2c4+2|W |4d = |W |4d+2c4+2

conjugacy classes of primitive d-generated groups in this subfamily.

Now, putting together (5.2), (5.3), (5.4), (5.5) and (5.6) we obtain the

desired result. �

6. Irreducible linear groups

Let ci = 7 + c4 + c5 + log ct.

Proposition 6.1. The number of conjugacy classes of d-generated irre-

ducible subgroups of GLFp(V ) is at most |V |cid.

Proof. Let T be an irreducible d-generated subgroup of GLFp(V ) and H a

subgroup of T such that the representation of T is induced from a primitive rep-

resentation of H. Denote by W a primitive H-module such that V = T ⊗HW .

Let P be the image of H in GLFp(W ) and b = dimFpW . Put K̃ = coreH.

Then T/K̃ is a transitive group of degree s = n/b, where n = dimFp V , and T

is a subgroup of P o T/K̃.

We divide the d-generated irreducible subgroups of GLFp(V ) into three

families. We note that some of the groups can belong to different families.

Family 1. Suppose that |P | ≤ |W |c4 . In this case in order to determine T

we have to know firstly the decomposition n = bs. There are at most n possi-

bilities for this. Fix one such decomposition. Then, by Proposition 5.9, there

are at most |W |c5d(H) choices for a primitive d(H)-generated subgroup P up

to conjugacy in GLFp(W ). Since d(H) ≤ |T : H|(d(T )−1) + 1 ≤ sd, we obtain

that there are at most |V |c5d such possibilities. Fix one such P . By Theo-

rem 3.1, there are at most csdt choices for T/K̃ up to conjugacy inside Sym(s).

Fix one such possibility. Thus we fixed an embedding of P oT/K̃ into GLFp(V ).

Now, by Lemma 2.2, we obtain that there are at most |P |sd choices for T inside

P o T/K̃. Putting everything together, we obtain that there are at most

(6.1) n|V |c5dcsdt |V |c4d ≤ |V |(1+c4+c5+log ct)d

conjugacy classes of d-generated irreducible subgroups in the first family.

Family 2. Suppose that |P | > |W |c4 . Thus, we can use Proposition 5.7.

We use the notation of this proposition. Let E(B) be a homogenous sub-

group of GLFp(W ) as in Proposition 5.7 and denote E(B)/Z(E(B)) by S. Put

N = E(B)s ≤ P s ≤ GLFp(V ).



RANDOM GENERATION AND GROUP ENUMERATION 791

In order to determine T up to conjugacy inside GLFp(V ), we should know

the decomposition n = sb. There at most n possibilities for this. Fix one

such decomposition. Then we have to fix E(B) as a homogenous subgroup of

GLFp(W ) up to conjugacy. In view of Proposition 5.7, there are at most 7b2

such possibilities. Fix one of them. Thus we obtain an embedding of N into

GLFp(V ).

Let R = NGLFp (V )(N). Then R permutes the direct factors of N and

hence the subspaces of V on which they act nontrivially. Therefore

R ∼= NGLFp (W )(E(B)) o Sym(s).

Denote by ‹N the base of this wreath product and put Q = T ‹N . The group

T is a subgroup of R and K̃ = ‹N ∩ T . It follows that N ∩ T and hence

K = (N ∩ T )′ is a normal subgroup of T . Applying Theorem 3.1 as in the

previous case, we obtain that there are at most cdst choices for T/K̃ up to

conjugacy inside Sym(s). Hence we have that there are at most 7cdst n
3 choices

for Q up to conjugacy inside GLFp(V ). Fix one such Q.

Subfamily 2.1 Suppose that |P | > |W |c4 and K 6= 1. In this case the image

of T ∩ N in a direct factor E(B) of N is a non-abelian normal subgroup of

P contained in E(B), whence it is equal to E(B). Therefore K is a subdirect

product subgroup of E(B)s. By Lemma 2.18, there are at most

|CQ(N)|d|Out(S)|sd(1 + |Out(S)|)s

choices for T up to conjugacy inside Q. Now, |CQ(N)| ≤ |V | by Proposition 5.7

and |Out(S)|s ≤ |V |. Thus we obtain that there are at most

(6.2) 7n3cdst |V |3d ≤ |V |3d+4cdnt

conjugacy classes of d-generated irreducible subgroups in the second family.

Family 2.2. Suppose that |P | > |W |c4 and K = 1. Since

|NGLFp (W )(E(B))/E(B)| ≤ |W |2,

there are at most |W |2sd = |V |2d possibilities for TN/N inside Q/N . Fix TN ≤
GLFp(V ). In this case T ∩N is contained in Z = Z(E(B))s. Hence T/(T ∩Z) is

a complement toN/Z in T/Z. Moreover, it is a large complement toN/Z ∼= Ss.

Using Proposition 2.16, we obtain that the number of such complements up to

conjugacy in Q is at most |Out(S)| log |T | ≤ |V |2. Given T/T ∩ Z we have at

most |Z|d choices for T itself. Thus, we conclude, that there are at most

(6.3) 7n3|V |3d|V |2cdnt ≤ |V |3d+5cdnt

conjugacy classes of d-generated irreducible subgroups in the third family.

Now, putting together (6.1), (6.2) and (6.3) we obtain the proposition. �
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7. The number of irreducible linear representations

To express our results in the sharpest form we have to introduce an aux-

iliary function. Denote by rkn(G) the maximum of the numbers rkA(G) with

l(A) ≤ n. It is clear that rkn(G) ≤ log |G|.
The aim of this section is to prove the following result.

Proposition 7.1. Let G be a finite d-generated group and T an irre-

ducible linear subgroup of GLFp(V ). Then there are at most rk|V |(G)|T ||V |dcl
epimorphisms from G onto T (where cl = 4 + max{c4, 4}).

Proof. Let H be a subgroup of T such that the representation of T is

induced from a primitive representation of H. Denote by W a primitive H-

module such that V = T ⊗H W . Let P be the image of H in EndFp(W ) and

b = dimFpW . Put K̃ = coreH. Then T/K̃ is a transitive group of degree

s = n/b and T is a subgroup of P o T/K̃.

Case 1. Suppose that |K̃| ≤ |V |c4 . Since T/K̃ is a transitive group of

degree s, where 2s ≤ |V |, by Proposition 4.1 and Remark 4.2, there are at

most rk|V |(G)|T/K̃|cdsr epimorphisms from G onto T/K̃. On the other hand

|K̃| ≤ |V |c4 , whence there are at most

|T/K̃| rk|V |(G)cdsr |V |c4d ≤ |T | rk|V |(G)|V |dcl

epimorphisms from G onto T .

Case 2. Suppose that |K̃| > |V |c4 . Thus, |P | > |W |c4 , and so we can use

Proposition 5.7 and the notation of that proposition. Denote E(B)/Z(E(B)

by S. Let K = (T ∩ E(B)s)′. As in the proof of Proposition 6.1 we obtain

that K is a normal subgroup of T and it is a subdirect product subgroup of

E(B)s. Also, T acts transitively on factors of N = E(B)s. Since l(S) ≤ pb,

for A = K/Z(K) we have l(A) ≤ l(S)s ≤ |V |.
By [19], a perfect group has no nontrivial central automorphisms, whence

CT (N/Z(N)) = CT (N). Note that |KZ(N)/Z(N)| > |W |s ≥ l(N/Z(N)).

Hence, by Lemma 2.19,

|CT (K)| ≤ |CT (K/Z(K))| ≤ |CT (N/Z(N))|l(N/Z(N))

= |CT (N)|l(N/Z(N)) ≤ |V |3.

Now, using Lemma 2.12(2)and Remark 2.14, we obtain that

|Epi(G,T )| ≤ rk|V |(G)(5|Out(S)|)s|T ||CT (K)|d

≤ rk|V |(G)|T ||V |4d. �

We need the following obvious analogue of Lemma 2.5.
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Lemma 7.2. Let T be an irreducible subgroup of GLFp(V ).Then the num-

ber of T -conjugacy classes of epimorphisms from a group G onto T is at most

|V ||Epi(G,T )|/|T |.

Combining Propositions 6.1 and 7.1 and Lemma 7.2, we obtain the fol-

lowing corollary.

Corollary 7.3. Let G be a finite d-generated group. There exists a

constant c6 such that the number of irreducible G-modules of size n is at most

log |G|ndc6 .

8. The number of primitive permutation groups

In this section we prove the following theorem which is our main technical

result. It was conjectured in [49].

Theorem 8.1. There exists a constant cp such that there are at most ncpd

conjugacy classes of d-generated primitive groups of degree n.

Proof. In view of [38, Cor. 2] we only need to show that the number of

isomorphism classes of d-generated primitive groups of degree n is at most ncd

for some c. Let P be a d-generated primitive group of degree n and M the

socle of P . Then we have two possibilities:

Case 1. M is abelian (P is of affine type). In this case n = pm and we

have to calculate the number of conjugacy classes of irreducible subgroups of

GLm(Fp). By Proposition 6.1 this number is at most pcimd = ncid.

Case 2. M is non-abelian. Then M ∼= Ss = S1 × · · · × Ss for some

non-abelian simple group S and some s. By [8, Lemma 2.3] there are at most

O(n) possibilities for S. Hence there are at most O(n2) possibilities for M .

We fix one of them. Then P is a subgroup of Aut(M) ∼= Aut(S) o Sym(s).

The image P̄ of P in Sym(s) is transitive or has two orbits of size s/2. In

the latter case the actions of P̄ on the two orbits are faithful and equivalent.

By Theorem 3.1 there are at most csdt choices for P̄ up to conjugacy in Sym(s).

Since |Aut(S)/S|s ≤ n2, using Corollary 2.2, we obtain that there are at most

csdt n
2d choices for P up to conjugacy inside Aut(M). Note that n ≥ 2s, whence

the number of isomorphism types of d-generated primitive groups of degree n

with non-abelian socle is at most O(nd(log ct+3)). �

Corollary 8.2. There exists a constant c such that the number of con-

jugacy classes of primitive groups of degree n is at most n
clogn√
log logn .

Proof. By [34], if G is a primitive permutation group of degree n > 2,

then there is a constant a such that d(G) ≤ a log n/
√

log logn. Now, applying

Theorem 8.1, we obtain the desired result. �
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Corollary 8.2 improves an nc logn bound which is the main result of [49].

Note that for infinitely many positive integers n even, the number of isomor-

phism types of primitive soluble groups is at least n
ε logn

log logn [49].

9. The expected number of random elements

generating a finite group

As another consequence of Theorem 8.1 we obtain the following.

Corollary 9.1. There exists a constant c such that for any finite d-gen-

erated group G, mn(G) ≤ ncd rkn(G) ≤ ncd log |G|.

Proof. In view of Theorem 8.1, in order to prove this corollary we have to

show that the following claim holds:

Claim. There exists a constant c such that for any primitive permutation

group P of degree n, |Epi(G,P )| ≤ rkn(G)|P |ncd.
Let M be the socle of P . If P is of affine type (i.e. M is abelian) then

T = P/M is a linear irreducible group acting on a vector space of size n = |M |.
Hence the claim follows from Proposition 7.1 and Lemma 2.12(1).

Now, suppose that M is not abelian and it is a minimal normal subgroup

of P . Then M is a transitive characteristically simple group with l(M) ≤ n.

In this case the claim follows directly from Lemma 2.12(2), Remark 2.14 and

Lemma 2.6.

Now, suppose that M is not a minimal normal subgroup of P . Then M is

a product of two minimal normal subgroups M1 and M2 and n = |M1| = |M2|.
Then we bound first |Epi(G,P/M2) using Lemma 2.12(2)and Lemma 2.6 and

then we obtain the desired bound for |Epi(G,P )| from Lemma 2.12(1). �

In [29] Lubotzky has obtained a slightly different estimate namely that

mn(G) ≤ nd+2(log |G|)2.

Corollary 9.1 is essentially best possible. To see this we need the follow-

ing. Recall that we denote by l∗(L) the smallest degree of a faithful primitive

permutation representation of L (if such a representation exists).

Lemma 9.2. There exists a constant c7 such that if L is a group with a

unique minimal normal subgroup M , with M non-abelian, then l∗(L) ≤ l(M)c7 .

Proof. By our assumptions M ∼= Sk = S1 × · · · × Sk for some non-abelian

simple groups Si ∼= S. The group NL(S1) acts on S1. Define by R the image

of NL(S1) in Aut(S1). Then L is embedded in W = R o L/M̃ , where M̃

is the core of NL(S1). We have Φ(R) = 1 and this implies that R has a

faithful primitive representation. Let Ω be a set of size l∗(R) on which R

acts faithfully and primitively. Then the group W has a faithful primitive

permutation representation of degree l∗(R)k constructed via the product action
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on the set Ωk. By [2, Th. 1(C)(3)], the restriction of this representation on G

is also primitive and faithful. On the other hand we have l(M) = l(S)k (see

[22, Prop. 5.2.7] and the comment afterwards).

Thus, in order to finish the proof of the lemma it will be enough to show

that l∗(R) ≤ l(S)c for some constant c. It is clear for sporadic groups and

alternating groups S. Also since, l(G(q)) ≥ q for any simple group S = G(q)

of Lie type, we can assume that S is a classical simple group. In this case,

from [22] we obtain that l∗(R) ≤ l(S)2 (moreover l∗(R) = l(S) except when

S ∼= PSLn(Fq) and R 6≤ PΓLn(Fq)). �

Corollary 9.3. Let G be a finite group. Then mx(G) ≥ rkn(G) for

some x ≤ nc7 .

Proof. By the definition of rkn(G) there is a normal section H/N of G

which is the direct product of r = rkn(G) chief factors isomorphic to some

non-abelian characteristically simple group A with l(A) ≤ n, say H/N =

A1×A2×· · ·×Ar. The centralisers Ci = CG(Ai) are different normal subgroups

of G. The quotients G/Ci are groups with a unique minimal normal subgroup

isomorphic to A. By Lemma 9.2 for each Ci there is a maximal subgroup Mi

of G such that coreG(Mi) = Ci and |G : Mi| ≤ nc7 . Our statement follows. �

Recall that ν(G) is the minimal number k such that G is generated by

k random elements with probability ≥ 1/e. Using his estimate on mn(G)

Lubotzky [29] proved that ν(G) ≤ d+ 2 log log |G|+ 4.02 (essentially the same

result was obtained in [11]).

Combining his argument with the above bounds for mn(G) we now prove

Theorem 1. As a finite version of the Mann-Shalev theorem quoted in the

introduction Lubotzky first proves the following [29].

Proposition 9.4. Let M(G) = maxn≥2
logmn(G)

logn . Then

M(G)− 4 ≤ ν(G) ≤M(G) + 3.

The following is a slightly stronger form of Theorem 1.

Theorem 9.5. Let G be finite d-generated group. Then

max

®
d,max

n

log rkn(G)

c7 log n
− 4

´
≤ ν(G) ≤ cd+ max

n

log rkn(G)

log n
+ 3,

where c is as in Corollary 9.1.

Proof. By Corollary 9.1 and Proposition 9.4, we have

ν(G) ≤ max
n

logmn(G)

log n
+ 3 ≤ cd+ max

n

log rkn(G)

log n
+ 3.
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On the other hand, let N be such that

max
n

log rkn(G)

log n
=

log rkN (G)

logN
.

By Corollary 9.3 we have mx(G) ≥ rkN (G) for some x ≤ N c7 . This implies

ν(G) + 4 ≥ mx(G)

log x
≥ log rkN (G)

log x
≥ log rkN (G)

c7 logN
= max

n

log rkn(G)

c7 log n
.

The obvious inequality ν(G) ≥ d completes the proof. �

Denote by rk(G) the maximal number of isomorphic chief factors that

appear in a normal section of G which is a direct power of some non-abelian

simple group.

Corollary 9.6. If G is a finite d-generated group then ν(G) ≤ cd +

log rk(G) for some absolute constant c.

Note that rk(G) is at most the maximal number k such thatG has a normal

section which is the k-th power of a non-abelian simple group; in particular,

rk(G) ≤ log |G|. Since for finite linear groups rk(G) is less than the dimension

[14], we obtain the following.

Corollary 9.7. If G is a finite d-generated linear group of dimension n

over some field F then ν(G) ≤ cd+ log n for some absolute constant c.

It is somewhat surprising that the number of random generators does not

depend on the field F .

The above results are partly motivated by applications to the analysis

of the product replacement algorithm first presented in [9]. We describe this

briefly. The algorithm starts from a list {g1, . . . , gm} of generators of a finite

group G, selects positions i and j at random and replaces gi either by gigj or

gjgi. This step is repeated a number of times and finally after K iterations a

randomly chosen gi is declared to be a “random element of G”. This heuristic

for finding nearly uniform random elements is an essential building block for

efficient matrix group algorithms. There are two critical parameters: m and K.

Let G be a finite group. A generating set S of G is called minimal if

any proper subset of S generates a proper subgroup of G. Denote by d̃(G)

the maximum of the size of a minimal generating set of G. It was already

shown in [9] that if m ≥ 2d̃(G) then the algorithm actually outputs a random

m-tuple if K is large enough. The time it takes to obtain a random m-tuple

is investigated in [12] and [31].

As observed in [9] although in the limit each generating m-tuple is equally

likely (if m is large enough) this does not imply that the algorithm will yield

each element with equal probability. As noted there, this problem leads to the

question of determining what proportion of m-tuples generates G.
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It was later shown by Pak [45] that indeed if most m-tuples generate G

then bias in the distribution of the random component of the last m-tuple does

not occur, at least for some variant of the original algorithm. Hence for the

important case of matrix groups, m = cd+ log n is a reasonable choice in the

algorithm. For general groups we have the following unexpected result.

Corollary 9.8. If G is a finite d-generated group then ν(G) ≤ cd +

log d̃(G).

This follows from Corollary 9.6 and the following observation. (Recall

that a chief-factor N/K of a group G is called non Frattini if there exists a

maximal subgroup H of G which contains K but does not contain N .)

Proposition 9.9. Let G be a finite group. Then d̃(G) is at least the

number of non Frattini chief-factors of G.

Proof. The proof is by induction on |G|. Suppose N is a minimal non-

Frattini normal subgroup of G. Then we need to show that d̃(G) ≥ d̃(G/N)+1.

Let H be a maximal subgroup of G that does not contain N . Put Ḡ = G/N .

Let z1, . . . , zk be a minimal generating of Ḡ with k = d̃(Ḡ). Since G = HN ,

we can choose xi ∈ H such that zi = xiN . Take some elements y1, . . . , yl from

N such that S = x1, . . . , xk, y1, . . . , yl generates G. Then a minimal generating

subset of S contains x1, . . . , xk and so it has at least k + 1 elements. �

Diaconis and Saloff-Coste [12] found the first general bounds for the mixing

time of the product replacement algorithm. Their estimates are too involved

to be reproduced here. The effectiveness of a version of their main result

[12, Th. 5.5] depends crucially (among others) on the proportion of generating

m∗-tuples for some m∗ < m. By Corollary 9.8 and m∗ = cd + log d̃(G), this

quantity becomes a constant.

Remark 9.10. The other parameter which affects the usefulness of the

bounds in [12] is D(G),the maximum diameter of Cayley graphs of G over

all generating sets. Until recently this seemed quite intractable. By a very

recent result of Helfgott [18] for G = SL(2, p) we have D(G) ≤ (log p)c where

c does not depend on p. It is expected that the results in [18] can be extended

to nonsolvable linear algebraic groups over finite fields. This would nicely

complement our results.

10. Characterization of groups of at most

exponential subgroup growth

In [32, Chap. 3] Lubotzky and Segal consider finitely generated groups of

exponential subgroup growth. They ask the “difficult question” as to whether

such groups can be characterized algebraically. The aim of this section is to
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provide such a characterization (which will be used in proving our characteri-

zation theorem for PFG groups).

Actually we will give several related characterizations. Let us introduce

some necessary notation. Let L be a finite group with a unique minimal normal

subgroup M . We say that L is associated with a non-abelian group A if A is

isomorphic to M . In this case A is a direct power of some non-abelian simple

group S. Recall that for each such L we have defined the crown-based power

of L of size k as the subgroup L(k) of Lk defined by

L(k) = {(l1, . . . , lk) ∈ Lk | l1 ≡ · · · ≡ lk mod M}.

Remark 10.1. Clearly the quotient group of L(k) over any minimal normal

subgroup is isomorphic to L(k− 1) and any subdirect product subgroup of Lk

which is also a subgroup of L(k) is isomorphic to a crown-based power of L.

Theorem 10.2. Let F be a finitely generated profinite group. Then the

following conditions are equivalent :

(1) There exists a constant c such that an(F ) ≤ cn.

(2) There exists a constant c such that for any group L associated with

Alt(b)s for some s and b,

|Epi(F,L)| ≤ |L|cbs.

(3) There exists a constant c such that for any group L associated with

Alt(b)s for some s and b, the size of a crown-based power of L, which

occurs as a quotient of F , is at most cbs.

(4) There exists a constant ca for some a ≥ 5 such that for any group L

associated with Alt(b)s for some s and b ≥ a, the size of a crown-based

power of L, which occurs as a quotient of F is at most cbsa .

(5) There exists a constant c such that each open subgroup H of F has at

most cb|F :H| quotients isomorphic to Alt(b) for any b ≥ 5.

Proof. The implications (1)⇒ (2), (2)⇒ (3) and (3)⇒ (4) are immediate

(see the arguments in §4).

We prove now that (4) ⇒ (1). In view of Theorem 3.1, we only need

to prove that for any transitive group T of degree n, |Epi(F, T )| ≤ |T |cn for

some c. We do it by induction on n with c = (max{(a!)d(F ), 4ca2
d(F )})2.

Suppose that {B1, . . . , Bs} is a system of blocks for T , such that b = |B1| >
1 and H1 = StT (B1) acts primitively on B1. Thus, T ≤ StSym(n)({Bi}) ∼=
Sym(b) o Sym(s). Let P be the image of H1 in Sym(B1) ∼= Sym(b) and put

K̃ = core(H1). Hence K̃ = T ∩ Sym(b)s. Then T can be naturally embedded

in P o (T/K̃).

Case 1. Suppose that |K̃| ≤ (a!)n. Note that T/K̃ is a transitive group of

degree s. By induction, there are at most |T/K̃|cs epimorphisms from F onto
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T/K̃. Hence, since |K̃| ≤ (a!)n, there are at most

|T/K̃|cs(a!)d(F )n ≤ |T |cn

epimorphisms from F onto T .

Case 2. Suppose that |K̃| > (a!)n. Since K̃ is a subgroup of P s, |P | > (a!)b.

Hence b > a and P contains Alt(B1) (see Proposition 2.3). Therefore as in

the proof of Theorem 3.1, K = [K̃, K̃] = T ∩ (Alt(b))s is a subdirect product

subgroup of Alt(b)s which is a minimal normal subgroup of T .

Let l be such that K ∼= Alt(b)l. Put L = T/CT (K). Then L has a unique

minimal normal subgroup M ∼= Alt(b)l. We want to estimate |Epi(F,L)| first.

Take φ ∈ Epi(F,L). Then φ induces an epimorphism φ̄ : F → L/M .

Note that L/M is a transitive group of degree l or 2l. Hence, by induction,

there are at most |L/M |c2l ≤ |L/M |cn/2 possibilities for φ̄. Fix one such

φ̄ ∈ Epi(F,L/M) and call it ψ. Denote by Epiψ(F,L) the set

{φ ∈ Epi(F,L) | φ̄ = ψ} = {φ1, . . . , φk},

where k = |Epiψ(F,L)|.
Let R =

⋂k
i=1 kerφi. Then F/R is isomorphic to the following subgroup

of Lk: {(φ1(l), . . . , φk(l)) | l ∈ L}. By Remark 10.1, F/R is a crown-based

power of L. Hence, if we denote by Aut1(L) the set of automorphisms of

L which induce identity on L/M , we obtain that k ≤ cbla |Aut1(L)|. By a

slight modification of the proof of Corollary 2.11, we obtain that |Aut1(L)| ≤
l|Aut(Alt(b)|l. Thus,

|Epi(F,L)| ≤ |L/M |cn/2cbla l|Aut(Alt(b)|l ≤ |L|4llcn/2cna ≤ |L|(4ca)ncn/2

As in Theorem 4.1, we can prove that |CT (K)| ≤ 2n. Therefore, by

Lemma 2.12(1),

|Epi(F, T )| ≤ cn/2(4ca)
n|L|2d(F )n ≤ |T |cn.

The implication (1)⇒ (5) is immediate. Let us prove (5)⇒ (3). Assume

that condition (5) holds but condition (3) does not hold. Then for any c0 there

exists b ≥ 5 and L associated with A = Alt(b)s such that L(k) is a quotient

of G and k > cbs0 . Let K̃ be the normalizer of an Alt(b) component in L. We

have a natural homomorphism from K̃ to Aut(Alt(b)). Let K be the preimage

of Inn(Alt(b)). Then the index of K in L is at most 4s.

Let M be the minimal normal subgroup of L. There is a natural epimor-

phism from F onto L/M ∼= L(k)/Mk. Let H be the preimage of K/M . Then

|F : H| ≤ 4s and it is clear that H has at least k quotients isomorphic to

Alt(b). Hence taking c0 > c4, we obtain a contradiction. �

Note that Theorem 10.2 implies that a finitely generated group without

arbitrarily large alternating upper composition factors has at most exponential



800 A. JAIKIN-ZAPIRAIN and LÁSZLÓ PYBER

subgroup growth. This result was stated in [48]. However there is a gap in the

proof of Corollary 2.2(ii) of that paper (which does not affect the validity of a

slightly weaker form of the above result stated in the abstract of [48]).

One can prove analogous results for groups with a super-exponential sub-

group growth function (which satisfies some mild conditions). For example the

proof of Theorem 10.2 can easily be modified to yield the following.

Theorem 10.3. Let Γ be a finitely generated group. Let f(n) be a mono-

tone increasing function satisfying f(2m) ≥ 2mf(m) for all natural numbers

m. Assume that for any group L associated with Alt(b)s for some s and b the

size of a crown-based power of L which occurs as a quotient of Γ is at most

f(bs). Then an(Γ) ≤ f(n)cd(Γ) for some absolute constant c.

11. Characterization of positively finitely generated profinite groups

In this section we prove one of our main results, an algebraic characteriza-

tion of PFG groups. It is motivated by a (much weaker) conjecture of Lucchini

[33] according to which non-PFG groups have quotients which are crown-based

powers of unbounded size.

Note that crown-based powers together with some affine variants were in-

troduced in [10], where it is shown that any finite group which needs more

generators than its proper quotients is isomorphic to one of these (more gen-

eral) crown-based powers. Hence these groups can be used to characterise the

class of d-generator finite (or profinite) groups.

Theorem 11.1. Let F be a finitely generated profinite group. Then the

following conditions are equivalent :

(1) There exists a constant c such that mm(F ) ≤ mc for all m.

(2) There exists a constant c such that for any group L associated with a

characteristically simple group A,

|Epi(F,L)| ≤ |L|l(A)c.

(3) There exists a constant c such that for any group L associated with a

characteristically simple group A, the size of a crown-based power of

L, which occurs as a quotient of F is at most l(A)c.

(4) There exists a constant ca for some a such that for any group L asso-

ciated with a characteristically simple group A such that |A| > l(A)a,

the size of a crown-based power of L, which occurs as a quotient of F

is at most l(A)ca .

(5) There exists a constant c such that for any characteristically simple

group A the number of F -isomorphism types of non-abelian irreducible

large F -groups isomorphic to A as groups is at most l(A)c.
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(6) There exists a constant c such that for any almost simple group R,

any open subgroup H of F has at most l(R)c|F :H| quotients isomorphic

to R.

(7) There exists a constant c such that for any non-abelian characteristi-

cally simple group A if a normal section H/N of G is the product of r

chief factors isomorphic to A as groups then r ≤ l(A)c.

Proof. We begin the proof with the implication (1)⇒ (2). By Lemma 9.2,

there exist a primitive faithful representation L → Sym(Ω) such that |Ω| ≤
l(A)c7 .

The composition of an epimorphism φ ∈ Epi(F,L) with the constructed

representation L→ Sym(Ω) induces a primitive action of F on Ω. Let w ∈ Ω

and denote by Sφ the stabilizer of w in F with respect to the action induced

by φ. It is clear that Sφ is a subgroup of index |Ω|. Note that the number of

epimorphisms from Epi(F,L) with the same Sφ is at most |Aut(L)| ≤ l(A)2|L|,
by Corollary 2.11 and Lemma 2.6. Using our assumptions, we obtain that

|Epi(F,L)| ≤ l(A)c7(c+1)l(A)2|L| ≤ l(A)c7(c+1)+2|L|

as required.

The implications (2)⇒ (3) and (3)⇒ (4) are immediate.

We prove now that (4) ⇒ (1). In view of Theorem 8.1, we only need to

prove that for any primitive permutation group P of degree m, |Epi(F, P )| ≤
|P |mc for some c.

Note that from Theorem 10.2 it follows that there exists a constant e1

such that |Epi(F,L)| ≤ |L|el1 for any transitive group L of degree at most l.

Let P be a primitive group of degree m and M the socle of P . Then we have

two possibilities:

Case 1. M is not abelian and it is a minimal normal subgroup of P . We

divide this case into two subcases.

Case 1a. |M | ≤ l(M)a. Now M = S1 × · · · × Sl is a direct product of

groups isomorphic to a non-abelian simple group S. Denote by M̃ the inter-

section of the normalizers of the Si in P . Setting O= NP (S1)/S1CP (S1) we

see clearly that P/M is equivalent to a transitive subgroup of O oP/M̃ (where

O is considered as a regular permutation group). Since O is isomorphic to

a subgroup of Out(S), by Lemma 1.6, P/M is a transitive group of degree

at most 3l log l(S) ≤ 3 log l(M). Hence there are at most |P/M |e3 log l(M)
1 =

|P/M |l(M)3 log e1 epimorphisms from F onto P/M . Therefore, by Proposi-

tion 2.12(1) there are at most

|P/M |l(M)3 log e1 |M |d(F ) ≤ |P/M |l(M)3 log e1 |l(M)|d(F )ca

epimorphisms from F onto P . Thus |Epi(F, P )| ≤ |P |md(F )ca+3 log e1 .
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Case 1b. |M | > l(M)a. Note that P is associated with a characteristically

simple group A ∼= M and we can apply our assumptions. There is a non-abelian

simple group S such that A ∼= Sl.

Take φ ∈ Epi(F, P ). Then φ induces an epimorphism φ̄ : F → P/M . Note

that P/M is a transitive group of degree at most 3 log l(M) . Hence there are

at most |P/M |l(M)3 log e1 possibilities for φ̄. Fix one such φ̄ ∈ Epi(F, P/M)

and call it ψ. Denote by Epiψ(F, P ) the set

{φ ∈ Epi(F, P ) | φ̄ = ψ} = {φ1, . . . , φk},

where k = |Epiψ(F, P )|.
Let R =

⋂k
i=1 kerφi. Then F/R is isomorphic to the following subgroup of

P k: {(φ1(l), . . . , φk(l)) | l ∈ P}. By Remark 10.1, F/R is a crown-based power

of P . Hence, if we denote by Aut1(P ) the set of automorphisms of P which

induce identity on P/M , we obtain that k ≤ l(M)ca |Aut1(P )|. Repeating the

proof of Corollary 2.11, we obtain that |Aut1(P )| ≤ l|Aut(S)|l. Thus,

|Epi(F, P )| ≤ |P/M |l(M)3 log e1 l(M)ca l|Aut(S)|l.

Note that l(M) ≤ m and by Lemma 2.6, |Out(S)| ≤ l(S). Thus we obtain

that |Epi(F, P )| ≤ m2+ca+3 log e1 |P |.
Case 2. M is not a minimal normal subgroup. Then M is a product of

two minimal normal subgroups M1 and M2 and m = |M1| = |M2|. Then we

first bound |Epi(F, P/M2)|, repeating the argument of the proof of Case 1 and

then we obtain the desired bound for |Epi(G,P )| from Lemma 2.12(1).

Case 3. M is abelian (P is of affine type). In this case m = pn and

P = TM where T is an irreducible subgroup of GLFp(V ), where V = M is

considered as an n-dimensional Fp-vector space.

Let H be a subgroup of T such that the representation of T is induced

from a primitive representation of H. Denote by W a primitive H-module such

that V = T ⊗H W . Let P0 be the image of H in EndFp(W ) and b = dimFpW .

Put K̃ = coreH. Then T/K̃ is a transitive group of degree s = n/b and T is

a subgroup of P0 o T/K̃.

Subcase 3a. Suppose that |K̃| ≤ |V |max{a+6,c4}. Since T/K̃ is a transitive

group of degree s, there are at most |T/K̃|es1 epimorphisms from F onto T/K̃.

On the other hand |K̃| ≤ |V |max{a+6,c4}, whence there are at most

|T/K̃|es1|V |d(F ) max{a+6,c4} ≤ |T |md(F ) max{a+6,c4}+log e1

epimorphisms from F onto T. Thus |Epi(F,P )| ≤ |P |md(F )(max{a+6,c4}+1)+log e1 .

Subcase 3b. Suppose that |K̃| > |V |max{a+6,c4}. Thus, |P0| > |W |c4 , and

so we can use Proposition 5.7 and the notation of that proposition. Put N =

E(B)s ≤ P s0 . Note that T acts transitively on the factors of N . Denote

E(B)/Z(E(B)) by S. Since |P0| ≥ |W |a+6, by Proposition 5.7(6), |S| > |U |a ≥
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l(S)a. As in the proof of Proposition 6.1 we obtain that K = (N ∩ T )′ is a

normal subgroup of T and it is a subdirect product subgroup of N .

Put L=T/CT (K). Then L is associated with Sl∼=M =KCT (K)/CT (K),

and so it is isomorphic to a primitive group of degree at most l(S)lc7 . Using

the same argument as in the proof of Case 1 we can estimate |Epi(F,L)| and

obtain that

|Epi(F,L)| ≤ l(S)lc8 |L|

for some constant c8 depending on F . Note that l(S)l ≤ m since l ≤ s. Thus

we obtain that |Epi(F,L)| ≤ mc8 |L|.
As in the proof of Proposition 7.1, we have |CT (K)| ≤ |V |3, and so

|CT (K)V | ≤ m4. Now, using Lemma 2.12(1), we obtain that

|Epi(G,P )| ≤ mc8+4d(F )|P |

and the implication (4)⇒ (1) is proved.

The implication (5)⇒ (3) is trivial. We prove now (2)⇒ (5). Let A ∼= Ss

be a large F -irreducible group associated with θ : F → Aut(A). First we prove

the following claim:

Claim. There is a constant e such that the number of d-generated sub-

groups T up to conjugacy inside Aut(A) for which A is irreducible and large

is at most l(A)ed.

Let T be such a subgroup of Aut(A). Then K = T ∩ A is a subdirect

product subgroup of A. Let Ã be the normalizer of all simple factors of A in

Aut(A) and K̃ = Ã∩T . Then T is a subgroup of W = Aut(S)oT/K̃. Applying

Theorem 3.1, we obtain that there are at most cdst choices for TÃ/Ã ∼= T/K̃ up

to conjugacy inside Aut(A)/Ã ∼= Sym(s). Fix one such choice. Now, Q = TÃ.

By Lemma 2.18 the number of d-generated subgroups T up to conjugacy inside

Q for which A is irreducible and large is at most |Out(S)|sd(1 + |Out(S)|)s ≤
l(A)2d (see Lemma 2.6). Thus we conclude that there exists a constant e such

that the number of d-generated subgroups T up to conjugacy inside Aut(A)

for which A is irreducible and large is at most

cdst l(A)2d ≤ l(A)ed.

Thus, in order to prove (2) ⇒ (5) we can fix a group T inside Aut(A)

and we only need to show that |Epi(F, T )| ≤ |T |l(A)f for some constant f . As

before, K = T ∩A and K̃ = Ã ∩ T .

Case 1. |K| ≤ l(A). By Theorem 10.2 there exists a constant e1 such

that |Epi(F, T/K̃))| ≤ |T/K̃|es1. Since |K| ≤ l(A), |K̃| ≤ l(A)2. Hence, by

Corollary 2.12(1),

|Epi(F, T )| ≤ |T/K̃|es1l(A)2d(F ).
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Case 2. |K| ≥ l(A). By Lemma 2.19, |CT (K)| ≤ l(A) and our assump-

tions, |Epi(F, T/CT (K))| ≤ l(K)c|T |. Hence, by Lemma 2.12(1)

|Epi(F, T )| ≤ |Epi(F, T/CT (K))||CT (K)|d(F ) ≤ |T |l(A)c+d(F ).

Now, we prove (5) ⇒ (6). Let H be an open subgroup of F and R an

almost simple group. Denote by S the unique normal subgroup of R. Let k

be the number of quotients of H isomorphic to R. Each such quotient induces

a homomorphism of H to Aut(S). We denote by S1, . . . , Sk the (pairwise

nonisomorphic) H-groups associated with these homomorphisms.

For each i define Bi to be the set of functions from F to Si satisfying

f(xq) = f(x)q, where x ∈ F and q ∈ H. The multiplication in Si defines a

multiplication in Bi and F acts on the Bi by means of fy(x) = f(xy) where

f ∈ Bi and x, y ∈ F . Then the Bi are irreducible F -groups and Bi ∼= S|F :H| as

a group. Also note that among the Bi there are at least k
|F :H| nonisomorphic

H-groups. Thus we have constructed at least k
|F :H| irreducible F -groups.

Let B be an F -group such that B ∼= S|F :H| as a group and let θ : F →
Aut(S|F :H|) be the homomorphism corresponding to the F -group B. We want

to find an upper bound on the number of F -groups B such that θ(F ) is a large

complement to S|F :H| in X = θ(F )S|F :H| (as usual, we identify S and Inn(S)).

By the usual argument using Theorem 3.1 we obtain that there are at

most

(11.1) (ct|Out(S)|)d(F )|F :H|

possibilities for X up to conjugacy in Aut(S|F :H|) and, by Proposition 2.16,

there are at most

(11.2) (|Out(S)||F : H|)2

X-conjugacy classes of large complements to S|F :H| in X.

Now fix X and a complement D to S|F :H| in X. Note that from The-

orem 10.2 it follows that there exists a constant e1 such that |Epi(F,L)| ≤
|L|el1 for any transitive group L of degree at most l. Applying this to L =

DAut(S)|G:H|/Aut(S)|G:H|, we obtain that there are at most

(11.3) |F : H|e|F :H|
1 |Out(S)||F :H|d(F )

D-conjugacy classes of epimorphisms from F onto D.

Putting together (11.1), (11.2) and (11.3), we obtain that there exists a

constant e2 (which depends only on ct, e1 and d(F )) such that the number of

nonisomorphic F -groups B such that B ∼= S|F :H| and θ(F ) is a large comple-

ment to S|F :H| in X = θ(F )S|F :H| is at most l(S)e2|F :H|.
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Now note that Bi is either large or of the type considered in the previ-

ous paragraphs. Hence there at most l(S)|F :H|c + l(S)|F :H|e2 nonisomorphic

F -groups among the Bi. Hence k ≤ l(S)|F :H|(c+e2+1) ≤ l(R)|F :H|(c+e2+1) and

we are done.

We now prove (6) ⇒ (3). Let L be a group associated with a character-

istically simple group A ∼= Sl and let k be the maximal size of a crown-based

power of L, which occurs as a quotient of F . Denote by M ∼= Sl the minimal

normal subgroup of L. Let K̃ be the normalizer of an S-component in L. The

index of K̃ in L is l. We have a natural homomorphism from K̃ to Aut(S).

Denote by R the image of this homomorphism. Then R is an almost simple

group.

There is a natural epimorphism from F onto L/M ∼= L(k)/Mk. Let H be

the preimage of K̃/M . Then |F : H| = l and H has k quotients isomorphic

to R. Hence

k ≤ l(R)lc ≤ l(S)c7lc = l(A)c7c

and we are done.

The implications (5)⇒ (7)⇒ (3) are immediate. �

We have obtained several related characterizations of PFG groups. Per-

haps the most revealing is (3). The equivalence PFG ⇔ (4) extends the main

result of [8] which states that finitely generated non-PFG groups have arbitrar-

ily large alternating sections. The equivalence PFG ⇔ (7) also follows from

Theorem 1. A simple consequence of (5) is that if F is a PFG group then the

number of non-abelian chief factors of order n is at most nc. Instead of a direct

analogue of Theorem 10.2(5) we have the following.

Corollary 11.2. Let G be a finitely generated profinite group which is

not positively finitely generated and let a be an arbitrary positive constant.

Then for infinitely many natural numbers i, G has an open normal subgroup

Hi of index i such that Hi has at least ai quotients isomorphic to some non-

abelian simple group Si.

Proof. Let c be a constant such that 2c > a3. By Theorem 11.1 there exist

infinitely many non-abelian simple groups S such that the following holds.

There are a characteristically simple group A ∼= Sl and a group L associated

with A such that the crown-based power L(k) is a quotient of G where k ≤
l(S)lc. Put j = [3 log(l(S))l].

Let M be the minimal normal subgroup of L and K̃ the normalizer of

an S-component of M in L. The index of K̃ in L is l. The normalizer K̃

contains a subgroup ‹H of index at most |Out(S)| ≤ 3 log(l(S)) which has S

as a quotient. Let H be the preimage of ‹H/M in G. Then |G : H| ≤ j and H

has at least k quotients isomorphic to S. Now k ≥ l(S)lc ≥ (2c/3)j ≥ aj .
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Let us call the subgroup H just constructed by H(S) (note that H(S)

is not defined for all non-abelian simple groups S but is defined for infinitely

many of them). If the indices of all the H(S) are unbounded, we are done (we

put H|G:H(S)| = H(S)).

Suppose now that the indices of all the H(S) are bounded. Then without

loss of generality we can assume that all the H(S) are equal to the same

group H. Let H/K be the maximal quotient of H isomorphic to the product of

simple groups and let N be an open normal subgroup of H which contains K.

Note that for infinitely many non-abelian simple groups S, N has at least

kS quotients isomorphic to S, where lim|S|→∞ kS = ∞. Thus, {Hi} can be

any decreasing chain of open normal subgroups of H which contain K. This

completes the proof. �

12. Applications

In this section we collect various consequences of our main result, Theo-

rem 11.1.

Corollary 12.1. Let F be a PFG profinite group and H an open sub-

group of F . Then H is also PFG.

Proof. This follows directly from Theorem 11.1(6). �

This corollary answers a question of Mann [35] which has been mentioned

in several places including [32]. A partial result was obtained in [42]. It seems

intriguing that no more direct proof has been found.

Our results can be used to shed light on the relationship between PFG

groups and various other classes of groups. In [32, Chap. 12] groups of poly-

nomial index growth are considered, that is, groups G for which |Ḡ : Ḡn| < ns

holds for some s, independent of n and Ḡ, for all finite quotients Ḡ of G. It is

asked in [32, p. 431] whether a finitely generated group G with this property

has polynomial maximal subgroup growth. The positive answer follows from

Theorem 11.1 and an observation in [6], namely that if Sr is an upper factor

of G with S a non-abelian simple group then r is bounded.

Comparing Theorems 10.2 and 11.1 we see that PFG groups have at most

exponential subgroup growth answering a question of Mann and Segal [37,

p. 192].

Let G be a group. We denote by rn(G) (respectively r̂n(G)) the number

of isomorphism classes of irreducible n-dimensional complex representations

(respectively with finite image) of G. Following [30] we call rn(G) the represen-

tation growth function of G. When G is profinite we only consider continuous

representations. In this case rn(G) = r̂n(G).
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Corollary 12.2. Let G be a profinite group. Then the following holds.

(1) If rn(G) grows at most exponentially, then an(G) grows at most expo-

nentially ;

(2) If rn(G) grows at most polynomially, then mn(G) grows at most poly-

nomially ; i.e., G is a PFG group.

Proof. We prove the first statement. The second statement follows by a

similar argument.

Suppose that G has super-exponential subgroup growth. Then by The-

orem 10.2, for any c there exists a group L with a unique minimal normal

subgroup M isomorphic to Alt(b)s for some s and b, such that L(k) is a quo-

tient of G and k > cbs. The projections of L(k) onto each factor of Lk induce

k homomorphisms of G onto L with different kernels. Since L is a transitive

group of degree n = bs and L has a unique minimal normal subgroup, L has

a faithful irreducible representation of degree at most n − 1 (this represen-

tation is a subrepresentation of the permutation representation). Thus, we

have constructed k > cn different irreducible representations of G of degree

at most n − 1. Hence rn(G) grows faster than any exponential function, a

contradiction. �

Note that in the second statement of the previous proposition we can

not change mn(G) to an(G) because there are examples of pro-p groups with

polynomial representation growth but with nonpolynomial subgroup growth

(see [20]). Moreover it is shown in [30] that S-arithmetic groups with the

congruence subgroup property have polynomial representation growth and it

is known that such groups have subgroup growth of type nc logn/ log logn [27].

13. The number of finite groups with

a bounded number of defining relations

Let h(n, r) be the number of (isomorphism types of) groups of order n that

can be defined by r relations. In [36] A. Mann posed the following conjecture.

Conjecture 1. h(n, r) ≤ ncr, for some constant c.

In [36] this bound was established for the number of nilpotent groups

of order n that can be defined by r relations. In this section we prove the

conjecture as a corollary to our results on irreducible representations of finite

groups.

Let F be a finitely generated profinite group. Denote by tn,r(F ) the

number of open normal subgroups N of F of index n such that N can be

generated by r elements as a normal subgroup. The aim of this section is to

prove the following theorem.
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Theorem 13.1. There exists a constant c such that if F is a d-generated

profinite group then tn,r(F ) ≤ ncd+r for all n ≥ 1.

First we prove another corollary of Theorem 3.1. Let F be a profinite

group, N a normal subgroup of F and S a non-abelian finite F -group with

respect to a homomorphism φ : F → Aut(S). We say that S is an irreducible

(F,N)-group if S is an irreducible F -group and φ(N) = Inn(S).

Corollary 13.2. There exists a constant c9 such that the number of

non-abelian nonisomorphic irreducible (F,N)-groups of order m is at most

log |F/N |mc9d for any profinite d-generated group F .

Proof. Let A be a non-abelian irreducible (F,N)-group. Then A = S1 ×
· · · × Ss, where the Si are isomorphic simple groups. Since there are at most

two non-abelian finite simple groups of any given order it follows that there

are at most m possibilities for the isomorphism type of A. We fix one such

isomorphism type.

We want to calculate the number of homomorphisms φ from F to Aut(A)
∼= Aut(S1) o Sym(s) up to conjugacy in Aut(A) such that φ(N) = Inn(A)

and the image acts transitively on the Si. The homomorphism φ induces a

homomorphism φ̄ : F → Sym(s) such that the kernel of φ̄ contains N . Using

Corollary 4.4, we obtain that there are at most

csd log |F/N |

such homomorphisms up to conjugacy. Now φ is a homomorphism from F to

Aut(S1) o Im(φ̄). Given φ̄, such a homomorphism is determined by the images

of a system of generators of F in the cosets of the base group Aut(S1)s which

correspond to the images of this generating system under φ̄. Hence, there are

at most

|Aut(S1)|sdcsd log |F/N | ≤ m2dmd log c log |F/N | ≤ m(2+log c)d log |F/N |

conjugacy classes of appropriate homomorphisms φ from F to Aut(A). This

implies that there are at most m(2+log c)d+1 log |F/N | non-abelian nonisomor-

phic irreducible (F,N)-groups of order m. �

Proof of Theorem 13.1. Let N be the set of open normal subgroups N

with |F/N | = n, such that N can be generated by r elements as a normal

subgroup. Thus tn,r(F ) = |N |.
We now estimate the probability that an open normal subgroup generated

by s random elements from F belongs to N . If N is any such subgroup, then

our s elements lie in N with probability 1/ns. For any profinite F -group R, let

P (R, s) be the probability that a set of s random elements from R generates

R as a normal F -subgroup. Since generating distinct subgroups are disjoint
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events, the probability that we seek is

(13.1)

∑
N∈N P (N, s)

ns
.

Let c = max{c9, c6} be the maximum of the constants from Corollar-

ies 13.2 and 7.3. Put s = cd+ r + 2. Fix N ∈ N and put G = F/N . We now

estimate P (N, s). Let M(N) be the set of open normal subgroups M of F

contained in N and maximal with respect to this property. Then N/M is an

irreducible F -group. Let S be the set of all irreducible F -groups which occur in

this way. These are either irreducible ZG-modules or non-abelian irreducible

(F,N)-groups. If S ∈ S put MS(N) = {M ∈M(N) | N/M ∼=F S}. Set

N̄ = N/
⋂

M∈M(N)

M and for every S ∈ S, NS = N/
⋂

M∈MS(N)

M.

Then, N̄ ∼=
∏
S∈SNS as an F -group (this follows e.g. from an analogue of

Lemma 2.7 for subdirect products of irreducible F -groups). Hence

(13.2) P (N, s) = P (N̄ , s) =
∏
S∈S

P (NS , s).

Let P (N,M, s) be the probability that a set of s random elements from N lie

in M . Then P (N,M, s) = 1/|N/M |s. Hence we have

(13.3) 1− P (NS , s) ≤
∑

M∈MS(N)

P (N,M, s) =
|MS(N)|
|S|s

.

If S is non-abelian, then |MS(N)| = 1. If S is abelian, then the number of

subgroups in MS(N) is less than or equal to the number of F -homomorphisms

from N onto S. Since N is generated by r elements as a normal subgroup of

F , the number of such homomorphisms is at most |S|r. Hence from (13.2) and

(13.3) we obtain that

(13.4) P (N, s) ≥
∏
S∈S

Ç
1− 1

|S|s−r

å
.

Now, from Corollary 7.3 the number of irreducible G-modules of the same

order m is less than mcd log n.

Using Corollary 13.2, we obtain that there are at most mcd log n non-

abelian elements in S of order m. Hence, using (13.4) and taking into account

that (1− 1
t )
t ≥ 1

4 for any t ≥ 2, we obtain that

(13.5) P (N, s) ≥
∏
m≥2

(1− 1

ms−r )(mcd logn) ≥ n−2
∑∞

m=2
mr−s+cd ≥ n2(1−ζ(2)).

Now, (13.1) and (13.5) imply that

1 ≥
∑
N∈N P (N, s)

ns
≥ tn,r(F )n2(1−ζ(2))

ns
.

This gives us the theorem. �
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Applying Theorem 13.1 to the free profinite group on r generators we

obtain Mann’s conjecture

Corollary 13.3. There exists a constant c such that h(n, r) ≤ ncr for

all natural numbers n.

Next we give an upper bound for the number of d-generated finite groups

of order n without abelian composition factors. The problem of enumeration of

these groups was considered recently by B. Klopsch [23]. It was established in

[23] that there exists a constant c such that the number of finite groups of order

n without abelian composition factors is at most nc log logn. On the other hand

if G does not have abelian composition factors, then d(G) ≤ 3 log log |G| + 2

([23, Prop. 1.1]). Thus, the following corollary is a generalization of the result

of Klopsch.

Corollary 13.4. There exists a constant c such that the number of d-

generated finite groups of order n without abelian composition factors is at

most ncd.

Proof. Let F be a free profinite group on d generators and R the intersec-

tion of all open normal subgroups N of F such that F/N has only non-abelian

composition factors. Put F̄ = F/R. Then each d-generated finite group with-

out abelian composition factors is a quotient of F̄ . The composition factors

of F̄ are non-abelian, whence the same is true for any open normal subgroup

H of F̄ . It follows that H can be generated by a single element as an open

normal subgroup of F̄ . Thus, using Theorem 13.1, we obtain the corollary. �

In [28] A. Lubotzky proved that the number of d-generated groups of

order n is at most ncd logn. In the course of the proof he established that such

groups can always be defined by at most cd log n profinite relations. Since

Corollary 13.3 clearly holds for groups with r profinite defining relations it

may be viewed as a refinement of Lubotzky’s result.

Note that since every group of order n can be generated by log n elements,

we see (already by Lubotzky’s result) that the total number of groups of order

n is at most nc(logn)2 , a classic result of P. M. Neumann [41] (see [47] for the

best possible constant in such an estimate).
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Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain and

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM

E-mail : andrei.jaikin@uam.es

http://www.uam.es/personal pdi/ciencias/ajaikin/welc.html
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