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Stable homology of automorphism groups
of free groups

By Søren Galatius

Abstract

Homology of the group Aut(Fn) of automorphisms of a free group on n

generators is known to be independent of n in a certain stable range. Using

tools from homotopy theory, we prove that in this range it agrees with

homology of symmetric groups. In particular we confirm the conjecture

that stable rational homology of Aut(Fn) vanishes.
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1. Introduction

1.1. Results. Let Fn = 〈x1, . . . , xn〉 be the free group on n generators

and let Aut(Fn) be its automorphism group. Let Σn be the symmetric group

and let ϕn : Σn → Aut(Fn) be the homomorphism that to a permutation σ

associates the automorphism ϕ(σ) : xi 7→ xσ(i). The main result of the paper

is the following theorem.

Theorem 1.1. ϕn induces an isomorphism

(ϕn)∗ : Hk(Σn)→ Hk(Aut(Fn))

for n > 2k + 1.

The homology groups in the theorem are independent of n in the sense that

increasing n induces isomorphisms Hk(Σn) ∼= Hk(Σn+1) and Hk(Aut(Fn)) ∼=
Hk(Aut(Fn+1)) when n > 2k + 1. For the symmetric group this was proved

by Nakaoka ([Nak60]) and for Aut(Fn) by Hatcher and Vogtmann ([HV98a],

[HV04]). The homology groups Hk(Σn) are completely known. With finite

coefficients the calculation was done by Nakaoka and can be found in [Nak61].

We will not quote the result here. With rational coefficients the homology

groups vanish because Σn is a finite group, so Theorem 1.1 has the following

corollary.

Corollary 1.2. The groups

Hk(Aut(Fn);Q)

vanish for n > 2k + 1.

The groups Aut(Fn) are special cases of a more general series of groups Asn,

studied in [HV04] and [HVW06]. We recall the definition. For a finite graph

G without vertices of valence 0 and 2, let ∂G denote the set of leaves, i.e.

vertices of valence 1. Let hAut(G) denote the topological monoid of homotopy

equivalences G → G that restrict to the identity map on ∂G. Let Aut(G) =

π0hAut(G).

Definition 1.3. Let Gsn be a connected graph with s leaves and first Betti

number b1(Gsn) = n. For s+ n ≥ 2 let

Asn = Aut(Gsn).

In particular A0
n=Out(Fn) and A1

n = Aut(Fn). As0 is the trivial group for all s.

There are natural group maps for n ≥ 0, s ≥ 1

(1.1) As−1
n Asn

αsnoo
βsn // As+1

n

γsn // Asn+1.

βsn and γsn are induced by gluing a Y -shaped graph to Gsn along part of ∂Gsn.

αsn is induced by collapsing a leaf. We quote the following theorem.
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Theorem 1.4 ([HV04], [HVW06]). (βsn)∗ and (γsn)∗ are isomorphisms for

n > 2k+ 1. (αsn)∗ is an isomorphism for n > 2k+ 1 for s > 1 and (α1
n)∗ is an

isomorphism for n > 2k + 3.

The main Theorem 1.1 calculates the homology of these groups in the

range in which it is independent of n and s. In other words, we calculate the

homology of the group

Aut∞ = colim
n→∞

Aut(Fn).

An equivalent formulation of the main theorem is that the map of classifying

spaces BΣ∞ → BAut∞ is a homology equivalence, i.e. that the induced map

in integral homology is an isomorphism. The Barratt-Priddy-Quillen theorem

([BP72]) gives a homology equivalence Z × BΣ∞ → QS0, where QS0 is the

infinite loop space

QS0 = colim
n→∞

ΩnSn.

The main Theorem 1.1 now takes the following equivalent form.

Theorem 1.5. There is a homology equivalence

Z×BAut∞ → QS0.

Alternatively the result can be phrased as a homotopy equivalence Z ×
BAut+

∞ ' QS0, where BAut+
∞ denotes Quillen’s plus-construction applied to

BAut∞. Quillen’s plus-construction converts homology equivalences to weak

homotopy equivalences; cf. e.g. [Ber82].

As stated, Theorem 1.1 is not quite a formal consequence of Theorem 1.5

and the Barratt-Priddy-Quillen theorem. That proves only that the homology

groups in Theorem 1.1 are isomorphic, not that (ϕn)∗ is an isomorphism. There

is a shortcut around the presumably tedious verification that the composition

of the map coming from the homomorphisms ϕn with the homology equivalence

from Theorem 1.5 is the homology equivalence from the Barratt-Priddy-Quillen

theorem, based on the result of Hatcher ([Hat95]) that Bϕn : BΣn → BAutn
induces a split injection of homology groups in the stable range. Together

with the fact that Hk(BAutn) is a finitely generated abelian group, this lets

us deduce Theorem 1.1 from Theorem 1.5. We explain this in more detail in

Section 5.3.

Most of the theorems stated or quoted above for Aut(Fn) have analogues

for mapping class groups of surfaces. Theorem 1.4 above is the analogue of the

homological stability theorems of Harer and Ivanov for the mapping class group

([Har85], [Iva89], [Wah08]). Corollary 1.2 above is the analogue of “Mumford’s

conjecture”, and the homotopy theoretic strengthening in Theorem 1.5 (which

is equivalent to the statement in Theorem 1.1) is the analogue of Madsen-Weiss’

generalized Mumford conjecture ([MW07]; see also [GMTW09]).
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Some conjectures and partial results in this direction have been known.

To prove the splitting mentioned above, Hatcher ([Hat95]) constructed a map

Z × BAut∞ → QS0 and proved that the composition with Bϕ∞ : BΣ∞ →
BAut∞ is a homology equivalence. This implied the splitting Z × BAut+

∞ '
QS0×W for some space W . He conjectured that W might be trivial, or at least

that BAut+
∞ has trivial rational homology. Hatcher and Vogtmann ([HV98b])

calculated Hk(Aut(Fn);Q) for k < 7 and proved that H4(Aut(F4);Q) = Q

and that Hk(Aut(Fn);Q) = 0 for all other (k, n) with 0 < k < 7, verifying

that Hk(Aut∞;Q) vanishes for k < 7. Theorem 1.1 verifies the integral form

of Hatcher’s conjecture.

1.2. Outline of proof. Culler-Vogtmann’s outer space plays the role for

Out(Fn) that Teichmüller space plays for mapping class groups. Since its

introduction in [CV86], it has been of central importance in the field, and

firmly connects Out(Fn) to the study of graphs. A point in outer space Xn is

given by a triple (G, g, h), where G is a connected finite graph, g is a metric

on G, i.e. a function from the set of edges to [0,∞) satisfying that the sum

of lengths of edges in any cycle of G is positive, and h is a marking, i.e. a

conjugacy class of an isomorphism π1(G) → Fn. Two triples (G, g, h) and

(G′, g′, h′) define the same point in Xn if there is an isometry ϕ : G → G′

compatible with h and h′. The isometry is allowed to collapse edges in G of

length 0 to vertices in G′. If G has N edges, the space of metrics on G is an

open subset M(G) ⊆ [0,∞)N . Equip M(G) with the subspace topology and

Xn with the quotient topology from qM(G), the disjoint union over all marked

graphs (G, h). This defines a topology on Xn and Culler and Vogtmann proved

it is contractible.

Outer space is built using compact connected graphs G with fixed first

Betti number b1(G) = n. The main new tool in this paper is a space Φ(RN )

of noncompact graphs G ⊆ RN . Inside Φ(RN ) is the subspace BN consisting

of compact graphs embedded in the cube IN ⊆ RN . The path components of

BN for N sufficiently large correspond to homotopy types of compact graphs.

Letting N go to infinity, we will show that the component of B∞ = ∪NBN

corresponding to connected graphs G with b1(G) = n is weakly equivalent to

BOut(Fn), for n ≥ 2. There is a canonical map

BN τN−−→ ΩNΦ(RN ),(1.2)

which sends a graph G to all its translates in RN , together with the translation

to ∞ which gives the empty graph, which serves as the basepoint of Φ(RN ).

In the analogy to mapping class groups, τN replaces the Pontryagin-Thom

collapse map of [MW07] and [GMTW09] and as N varies, the spaces Φ(RN )

form a spectrum Φ which replaces the Thom spectrum MTO(d) of [GMTW09]

andCP∞−1 of [MW07]. For this analogy it is important that noncompact graphs
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be included in Φ(RN ). This allows graphs to be localized to germs of graphs

by intersecting graphs with small open balls, then identifying these balls with

RN to represent the germs as noncompact graphs in RN .

Taking N →∞ gives a map

B∞
τ∞−−→ Ω∞Φ

or, by restriction to a connected component,

BOut(Fn)→ Ω∞Φ.

Composing with the maps induced by the quotient maps Aut(Fn)→ Out(Fn),

we get a map ∐
n≥2

BAut(Fn)→ Ω∞Φ,(1.3)

and the proof of Theorem 1.5 is concluded in the following steps.

(i) The map (1.3) induces a well defined τ : Z×BAut∞ → Ω∞Φ which is a

homology equivalence.

(ii) Ω∞Φ ' QS0.

The paper is organized as follows. In Section 2 we define the space Φ(RN )

and establish its basic properties. In Section 3 we explain the weak equivalence

between BOut(Fn) and a path component of B∞ ⊆ Φ(R∞). Relative versions

for the groups Asn are also obtained, and we define the map τN . The proof

that there is an induced map τ : Z × BAut∞ → Ω∞Φ, which is a homology

equivalence, is in Section 4 and is in two steps. First, in Section 4.1 we define a

topological category C, whose objects are finite sets and whose morphisms are

certain graph cobordisms. We prove the equivalence ΩBC ' Ω∞Φ. Secondly,

in Section 4.2, we prove that there is a homology equivalence Z × BAut∞ →
ΩBC. This is very similar to, and inspired by, the corresponding statements for

mapping class groups in [GMTW09]. Finally, Section 5 is devoted to proving

that Ω∞Φ ' QS0. This completes the proof of Theorem 1.5.

In the supplementary Section 6 we compare with the work in [GMTW09].

Our proof of Theorem 1.5 works with minor modifications, if the space Φ(RN )

is replaced throughout by a space Ψd(R
N ) of smooth d-manifolds M ⊆ RN

which are closed subsets. In that case we prove an unstable version of the

main result of [GMTW09]. To explain it, let Grd(R
N ) be the Grassmannian

of d-planes in RN , and U⊥d,N the canonical (N − d) dimensional vector bundle

over it. Let Th(U⊥d,N ) be its Thom space. Then we prove the weak equivalence

BCNd ' ΩN−1Th(U⊥d,N ),(1.4)

where CNd is now the cobordism category whose objects are closed (d − 1)-

manifolds M ⊆ {a} × RN−1 and whose morphisms are compact d-manifolds
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W ⊆ [a0, a1]×RN−1; cf. [GMTW09, §2]. In the limit N →∞ we recover the

main theorem of [GMTW09], but (1.4) holds also for finite N .

1.3. Acknowledgements. I am grateful to Ib Madsen for many valuable

discussions and comments throughout this project and for introducing me to

this problem as a graduate student in Aarhus; and to Allen Hatcher, Kiyoshi

Igusa, Anssi Lahtinen and the referee for useful comments on earlier versions

of the paper.

2. The sheaf of graphs

This chapter defines and studies a certain sheaf Φ on RN . Roughly speak-

ing, Φ(U) will be the set of all graphs G ⊆ U . We allow noncompact, and

possibly infinite, graphs. The precise definition is given in Section 2.1 below,

where we also define a topology on Φ(U), making Φ a sheaf of topological

spaces.

2.1. Definitions. Recall that a continuous map f : X → Y is a topological

embedding if X → f(X) is a homeomorphism, when f(X) ⊆ Y has the sub-

space topology. If X and Y are smooth manifolds, then f is a C1-embedding

if f is C1, if Df(x) : TxX → Tf(x)Y is injective for all x ∈ X, and if f is a

topological embedding.

Definition 2.1. Let U ⊆ RN be open. An unparametrized graph in U is a

closed subset G ⊆ U such that every p ∈ G has an open neighborhood Up ⊆ U
such that G ∩ Up is either

(i) the image of a C1-embedding γ : V → Up for some open V ⊆ (−1, 1),

(ii) the image of a C1-embedding γ : V → Up, for some open V ⊆ ∨n[−1, 1)

containing −1, for some n ≥ 3. Here, the wedge is formed with base

point −1 ∈ [−1, 1), and C1-embedding means a topological embedding

which is C1 in the following sense. Let jk : [−1, 1) → ∨n[−1, 1) be the

inclusion of the kth wedge summand. Then γk = γ ◦ jk : γ−1
k (Up)→ Up is

a C1-embedding, and the vectors γ′k(−1)/|γ′k(−1)| are pairwise different,

k = 1, . . . , n.

A map γ : V → G ∩ Up as in (i) or (ii) is a parametrization of G ∩ Up.
In the first case, G ∩ Vp consists of edge points, and in the second, γ(−1)

is a vertex. We emphasize that no global conditions on the subset G ⊆ U

is being imposed, and that G may be nonconnected, noncompact, and may

have infinitely many edges and vertices. It follows from the definitions that

a compact set K ⊆ RN can contain only finitely many vertices and meet

only finitely many path components of the set of edge points (which forms

a 1-manifold). Thus the potentially infinite topology of G comes from the
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noncompactness of RN and the locality of the conditions on G. Probably

not much intuition will be lost by thinking mainly about graphs with finite

topology, but the theory is technically much nicer when we allow all graphs.

It turns out to be technically convenient to consider graphs that come

with canonical parametrizations (up to sign). Precisely, we make the following

definition.

Definition 2.2. Let U ⊆ RN be open. Let Φ(U) be the set of pairs (G, l),

where G ⊆ U is an unparametrized graph and l : G → [0, 1] is a continuous

function such that every point p ∈ G admits a parametrization γ : V → Up
satisfying l ◦ γ(t) = t2. A graph in U is an element (G, l) ∈ Φ(U).

Let us call a parametrization γ : V → G ∩ Up satisfying l ◦ γ(t) = t2 an

admissible parametrization. These are almost unique: If γ̄ is another admis-

sible parametrization at p, then either γ(t) = γ̄(t) or γ(t) = γ̄(−t) for t near

γ−1(p). So specifying the function l : G → [0, 1] is equivalent to specifying

an equivalence class {[γ], [γ̄]} of germs of parametrizations around each point.

Having preferred parametrizations is technically convenient at places, but no

intuition will be lost by thinking of unparametrized graphs instead of graphs.

Often we will omit l from the notation and write e.g. G ∈ Φ(U).

An inclusion U ⊆U ′ induces a restriction map Φ(U ′)→Φ(U) given by

G 7→ G ∩ U,
l 7→ l|(G ∩ U).

This makes Φ a sheaf on RN . More generally, if j : U → U ′ is a C1-embedding

(not necessarily an inclusion) of open subsets of RN , define j∗ : Φ(U ′) →
Φ(U) by

j∗(G) = j−1(G)

and j∗(l) = l ◦ j : j∗(G)→ [0, 1].

We have the following standard terminology.

Definition 2.3. Let G ∈ Φ(U).

(i) Let V (G) = l−1(1). This is the set of vertices of G.

(ii) An edge point is a point in the 1-manifold E (G) = G− V (G).

(iii) An oriented edge is a continuous map γ : [−1, 1]→ G such that l◦γ(t) = t2

and such that γ|(−1, 1) is an embedding.

(iv) A closed edge of G is a subset I ⊆ G which is the image of some oriented

edge. Each edge is the image of precisely two oriented edges. If I is the

image of γ, it is also the image of the oriented edge given by γ̄(t) = γ(−t).
(v) A subset T ⊆ G is a tree if it is the union of vertices and closed edges of

G and if T is contractible.
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The following notion of maps between elements of Φ(U) is important for

defining the topology on Φ(U). We remark that it does not make Φ(U) into a

category (because composition is only partially defined).

Definition 2.4. Let G′, G ∈ Φ(U). A morphism ϕ : G′ 99K G is a triple

(V ′, V, ϕ), where V ′ ⊆ G′ and V ⊆ G are open subsets and ϕ : V ′ → V is a

continuous surjection satisfying the following two conditions:

(i) For each v ∈ V (G) ∩ V , ϕ−1(v) ⊆ G′ is a finite tree. Let V (V ) =

V (G) ∩ V , E (V ) = V − V (V ),

V (ϕ) =
⋃

v∈V (V )

ϕ−1(v)

and E (ϕ) = V ′ − V (ϕ).

(ii) ϕ restricts to a C1 diffeomorphism

E (ϕ)→ E (V ),(2.1)

which preserves parametrizations, in the sense that l ◦ ϕ = l′.

Throughout the paper we will use dashed arrows for partially defined

maps. Thus the notation f : X 99K Y means that f is a function f : U → X

for some subset U ⊆ X.

It can be seen in the following way that for any morphism (V ′, V, ϕ) as

above, the underlying map of spaces ϕ : V ′ → V is proper. Let K ⊆ V be

compact, and let xn ∈ ϕ−1(K) be a sequence of points. After passing to a

subsequence we can assume that the sequence yn = ϕ(xn) converges to a point

y ∈ K. If y ∈ E (V ), then we must have xn → x with x = ϕ−1(y) ∈ ϕ−1(K)

because (2.1) is a diffeomorphism. If y ∈ V (V ) then T = ϕ−1(y) ⊆ G is

a tree and it is immediate from the definitions that a tree has a compact

neighborhood C ⊆ V ′ with C − T ⊆ E (ϕ). It follows that C = ϕ−1(ϕ(C))

and that ϕ(C) ⊆ V is a neighborhood of V . Therefore xn ∈ C eventually, and

hence xn has a convergent subsequence.

Definition 2.5. Let ε > 0. Let K ⊆ U be compact and write Kε for the

set of k ∈ K with dist(k, U −K) ≥ ε.
(i) ϕ = (V ′, V, ϕ) is (ε,K)-small if K ∩G ⊆ V , Kε ∩G′ ⊆ ϕ−1(K), and if

|k − ϕ(k)| < ε for all k ∈ ϕ−1(K).

We point out that ϕ−1(K) ⊆ V ′ is a compact set containing Kε ∩G′.
(ii) If Q ⊆ K−V (G) is compact, then ϕ is (ε,K,Q)-small if it is (ε,K)-small

and if for all q ∈ Q ∩ G there is an admissible parametrization γ with

q = γ(t) and

|(ϕ−1 ◦ γ)′(t)− γ′(t)| < ε.
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(iii) For ε,K,Q as above, let Uε,K,Q(G) be the set

{G′ ∈ Φ(U) | there exists an (ε,K,Q)-small ϕ : G′ 99K G}.
For the case Q = ∅ we write Uε,K(G) = Uε,K,∅(G).

(iv) The C0-topology on Φ(U) is the topology generated by the set

{Uε,K(G) |G ∈ Φ(U), ε > 0, K ⊆ U compact}.(2.2)

(v) The C1-topology on Φ(U) is the topology generated by the set

{Uε,K,Q(G) |G ∈ Φ(U), ε > 0, K ⊆ U and Q ⊆ K − V (G) compact}.(2.3)

Unless explicitly stated otherwise, we topologize Φ(U) using the C1-top-

ology. In Lemma 2.9 below we prove that the sets (2.2) and (2.3) form bases for

the topologies they generate, and that the sets Uε,K(G) form a neighborhood

basis at G in the C0-topology for fixed G and varying ε > 0, K ⊆ U and

similarly Uε,K,Q(G) in the C1-topology.

Thus, neighborhoods of G ∈ Φ(RN ) consist of graphs G′ admitting a

morphism G′ 99K G which is “close” to the identity map G′ → G′, where

the closeness is controlled by the data (ε,K,Q). Intuitively, continuity of a

map f : X → Φ(U) allows the continuous collapse of a finite tree to a point in

a more or less arbitrary fashion (the trees must be contained in smaller and

smaller neighborhoods of the point), whereas noncollapsed edges are required

to depend C1 continuously on x ∈ X (at least away from endpoints of edges).

The role of the compact set K is to allow parts of a graph to be continuously

pushed away to infinity, as illustrated by the following example.

Example 2.6. We discuss the important example G = ∅ ∈ Φ(U). Any

morphism (V ′, V, ϕ) : G′ 99K ∅ must have V ′ = V = ∅, because V ⊆ G = ∅ and

ϕ : V ′ → V . Thus ϕ is (ε,K)-small if and only if Kε ∩G′ = ∅. In particular

• If X is a topological space, then a map f : X → Φ(U) is continuous

at a point x ∈ X with f(x) = ∅ if and only if for all compact subsets

K ⊆ U there exists a neighborhood V ⊆ X of x such that f(y)∩K = ∅
for all y ∈ V .

• If (Gn)n∈N is a sequence of elements of Φ(U), then Gn → ∅ if and

only if for all compact subsets K ⊆ U there exists N ∈ N such that

Gn ∩K = ∅ for n > N .

Lemma 2.7. The space Φ(RN ) is path connected for N ≥ 2.

Proof. We construct an explicit path from a given G ∈ Φ(RN ) to the

basepoint ∅ ∈ Φ(RN ). Choose a point p ∈ RN − G and let ϕt : R
N → RN ,

t ∈ [0, 1] be the map given by

ϕt(x) = (1− t)x+ tp.
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Then ϕt is a diffeomorphism for t < 1 and ϕ1(x) = p for all x. Let Gt =

(ϕt)
−1(G). This defines a map t 7→ Gt ∈ Φ(RN ). We will see (Lemma 2.12)

that it is continuous on [0, 1). Continuity at 1 can be seen as follows. For

a given compact K ⊆ RN , choose δ > 0 such that K ⊆ B(p, δ−1). Then

Gt ∩K = ∅ for t > 1− δ. �

2.2. Point-set topological properties. In this section we prove various re-

sults about Φ(U) of a point-set topological nature. The verifications are ele-

mentary, but somewhat tedious, and their proofs could perhaps be skipped at

a first reading.

Let us first point out that V in Definition 2.5 can always be made smaller:

If (V ′, V, ϕ) : G′ 99K G is (ε,K,Q)-small, then (W ′,W, ψ) is (ε,K,Q)-small if

K ∩G ⊆W ⊆ V with W ⊆ V open, W ′ = ϕ−1(W ), and ψ = ϕ|W ′.
Lemma 2.8. If (V ′, V, ϕ) : G′ 99KG is (ε,K,Q)-small and (V ′′,W ′, ψ) : G′′

→ G′ is (δ,K ′, Q′)-small with K ′ ⊇ ϕ−1(K) ∪ Kε and Q′ ⊇ ϕ−1(Q), then

(V ′′, V, ϕ ◦ ψ) is an (ε+ δ,K)-small morphism after possibly shrinking V and

W ′.

Proof. It suffices to consider the caseK ′ = ϕ−1K∪Kε. We have ϕ−1(K) ⊆
K ′ ∩ G′ ⊆ W ′ by assumption on K ′ and by (δ,K ′)-smallness of (V ′′,W ′, ψ).

Therefore the subset ϕ(V ′ −W ′) ⊆ V is disjoint from K, and properness of

ϕ : V ′ → V implies that ϕ(V ′ − W ′) ⊆ V is closed. After replacing V by

V − ϕ(V ′ −W ′) we can assume that V ′ = ϕ−1(V ) ⊆W ′.
We have Kε ∩ G′ ⊆ ϕ−1(K) ⊆ V ′ because (V ′, V, ϕ) is (ε,K)-small, so

K ′ ∩G′ ⊆ (Kε ∪ϕ−1(K))∩G′ ⊆ V ′. Hence after shrinking W ′ we can assume

that W ′ = V ′. Then (V ′′, V, ϕ ◦ ψ) is a morphism. It is (ε + δ,K,Q)-small

because Kε+δ ∩ G′′ ⊆ (ϕ ◦ ψ)−1(K) and for k ∈ (ϕ ◦ ψ)−1(K) ⊆ ψ−1(K ′) we

have

|k − ϕ ◦ ψ(k)| ≤ |k − ψ(k)|+ |ψ(k)− ϕ(ψ(k))| < δ + ε.

A similar condition on first derivatives holds on (ϕ ◦ ψ)−1(Q). �

Lemma 2.9. Let G ∈ Φ(U), ε > 0 and K ⊆ U and Q ⊆ K − V (G)

compact. Let G′ ∈ Uε,K,Q(G). Then there exists δ > 0 and compact K ′ ⊆ U ,

Q′ ⊆ K ′ − V (G′) such that

Uδ,K′,Q′(G
′) ⊆ Uε,K,Q(G).(2.4)

We can take Q′ = ∅ if Q = ∅.
Proof. Let (V ′, V, ϕ) : G′ 99K G be (ε,K,Q)-small. By compactness of

ϕ−1(K), we can choose δ > 0 with |ϕ(k)− k| < ε− δ for all k ∈ ϕ−1(K). By
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compactness of Q we can assume that

|(ϕ−1 ◦ γ)′(t)− γ′(t)| < ε− δ
for all admissible parametrizations γ of G with γ(t) = q ∈ Q. We can also as-

sume that δ satisfies δ < dist(Kε, ϕ−1(G− int(K)). Then (V ′, V, ϕ) is actually

(ε− δ,K,Q)-small, and the claim follows from Lemma 2.8 if we set

K ′ = ϕ−1(K) ∪K(ε−δ), Q′ = ϕ−1(Q). �

Lemma 2.9 implies that the set (2.3) is a basis for the topology it generates,

and that the collection of Uε,K,Q(G) forms a neighborhood basis at G, for fixed

G and varying ε,K,Q. Similarly for the C0-topology.

The next lemma is the main rationale for including the map l : G→ [0, 1]

into the data of an element of Φ(U). It gives a partial uniqueness result for

the (ε,K)-small maps (V ′, V, ϕ) : G′ 99K G, whose existence is assumed when

G′ ∈ Uε,K(G).

Lemma 2.10. For each G ∈ Φ(U) and each compact C ⊆ U , there exists

an ε > 0 and a compact K ⊆ U with C ⊆ int(Kε) such that for G′ ∈ Uε,K(G),

any two (ε,K)-small maps

ϕ,ψ : G′ 99K G

must have ϕ = ψ near C .

Notice that both ψ and ϕ are defined near C ∩G′ when C ⊆ int(Kε).

Proof. Let W ⊆ U be an open set with compact closure W ⊆ U and

C ⊆W . We will prove that ε and K can be chosen so that ϕ−1(w) = ψ−1(w)

for all w ∈ W when both maps are (ε,K)-small. If we also arrange ε <

dist(C,U −W ), then that will prove the statement in the lemma.

First take ε > 0 and K ⊆ U such that W ⊆ K2ε. We can assume that

the distance between any two elements of K ∩ V (G) is greater than 2ε. Then

the triangle inequality implies that ϕ−1(v) = ψ−1(v) for all v ∈ K2ε ∩ V (G).

It remains to treat edge points.

Let M ⊆ G ∩ int(K) be the smallest open and closed subset containing

G ∩W . We claim that ϕ−1(v) = ψ−1(v) for v in M − V (G). It suffices to

consider v ∈ M ∩ l−1((0, 1)) since that set is dense in M − V (G) (we omit

only “midpoints” of edges). Compactness of W implies that π0M is finite

(connected components of G ∩ int(K) are open in G ∩ int(K), so the compact

subset W ∩G can be nondisjoint from only finitely many). l−1({0, 1}) ∩K is

a finite set of points, so π0(M ∩ l−1((0, 1))) is also finite. Choose a τ > 0 such

that the inclusion

W ∩ l−1([τ, 1− τ ])→M ∩ l−1((0, 1))(2.5)

is a π0-surjection (i.e. the induced map on π0 is surjective).
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The function l′ : G′ → [0, 1] restricts to a local diffeomorphism (l′)−1((0, 1))

→ (0, 1). It follows that the diagonal embedding

(l′)−1((0, 1))
diag−−→ {(k,m) ∈ G′ ×G′ | l(k) = l(m) ∈ (0, 1)}(2.6)

has open image. Therefore (by continuity of ψ−1, ϕ−1 : l−1((0, 1)) → G′) the

set

{k ∈ l−1((0, 1)) ∩M | ψ−1(k) = ϕ−1(k)}

is open and closed in l−1((0, 1)) ∩M , so it suffices to prove that it contains a

point in each path component of l−1((0, 1)) ∩M . We prove that ψ−1 = ϕ−1

when composed with the π0-surjection (2.5).

The set of pairs (k,m) with k,m ∈ K∩ l−1([τ, 1−τ ]), and l(k) = l(m) and

k 6= m is a compact subset ofK×K, so we can assume that |k−m| > 2ε for such

(k,m). Now let k ∈ W ∩ l−1([τ, 1− τ ]) ∈ K2ε ∩G′, assume ψ−1(k) 6= ϕ−1(k),

and set x = ψ−1(k). ψ is (ε,K)-small, so |x − k| = |x − ψ(x)| < ε. Hence

x ∈ Kε ∩ G′, so ϕ(x) is defined and ϕ(x) ∈ G ∩ G. Injectivity of ϕ (on

noncollapsed edges) implies that ϕ(x) = ϕ(ψ−1(k)) 6= k = ψ(x). Setm = ϕ(x).

Since l(k) = l′(x) = l(m) ∈ [τ, 1− τ ], we have

2ε < |k −m| = |ψ(x)− ϕ(x)| ≤ |ψ(x)− x|+ |x− ϕ(x)|
which contradicts ϕ and ψ being (ε,K)-small. �

Proposition 2.11. Φ is a sheaf of topological spaces on RN , i.e. the

following diagram is an equalizer diagram of topological spaces for each covering

of U by open sets Uj , j ∈ J

Φ(U)→
∏
j∈J

Φ(Uj)⇒
∏

(i,l)∈J×J
Φ(Ui ∩ Ul).

Proof. Let V ⊆ U be open and let r : Φ(U)→ Φ(V ) denote the restriction

map. If G ∈ Φ(V ) and G′ ∈ r−1Uε,K,Q(G), then Lemma 2.9 provides δ > 0

and K ′, Q′ ⊆ V such that Uδ,K′,Q′(rG
′) ⊆ Uε,K,Q(G). If dist(K,RN − V ) > δ

we have

Uδ,K′,Q′(G
′) = r−1Uδ,K′,Q′(rG

′) ⊆ r−1Uε,K,Q(G)

which proves that r−1Uε,K,Q(G) is open and hence that r is continuous. There-

fore the maps in the diagram are all continuous. The proposition holds for both

the C0- and the C1-topology. We treat the C0 case first.

Let ‹Φ(U) denote the image of Φ(U)→ ∏
Φ(Ui), topologized as a subspace

of the product. Then Φ(U)→ ‹Φ(U) is a continuous bijection. Take G ∈ Φ(U)

and ε > 0 and let K ⊆ U be compact. We will prove that the image of

Uε,K(G) ⊆ Φ(U) in ‹Φ(U) is a neighborhood of the image ‹G ∈ ‹Φ(U) of G ∈
Φ(U).
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Choose a finite subset {j1, . . . , jn} ⊆ J and compact Ci ⊆ Uji such that

K ⊆ ∪ni=1C
δ
i for some δ ∈ (0, ε). Let Ki ⊆ Uji be compact subsets with

Ci ⊆ int(Ki). Let Kil = Ki∩Kl. By Lemma 2.10 we can assume, after possibly

shrinking δ and enlarging the Ki, that (δ,Kil)-small morphisms ϕil : Gil 99K
(G|Ujijl) with Gil ∈ Φ(Uil) have unique restriction to a neighborhood of G∩Cil.
Thus, if G′ ∈ Φ(U) has a (δ,Ki)-small ϕi : (G′|Uji) 99K (G|Uji) for all i =

1, . . . , n, then ϕi and ϕl agrees near G∩Cil. Therefore they glue to a morphism

ϕ : G′ 99K G which is defined near L = ∪iCi and agrees with ϕi near Ci. Since

ϕi is (δ,Ki)-small we will have ϕi(Ci) ⊇ Cδi ∩ G and hence ϕ(L) ⊇ K ∩ G so

the image of ϕ contains K ∩G. The domain contains L ∩G′ = ∪ni=1(Ci ∩G′)
which contains G ∩ G′ and hence Kδ ∩ G′. Finally, let k ∈ G have ϕ(k) ∈ K
and hence ϕ(k) ⊆ Cδi ⊆ Ki for some i. Then ϕ(k) = ϕi(k) and

|ϕ(k)− k| = |ϕi(k)− k| < δ

because ϕi is (δ,Ki)-small. We get that ϕ is (δ,K)-small.

We have proved that G′ ∈ Uδ,K(G) ⊆ Uε,K(G) whenever (G′|Uji) ∈
Uδ,Ki(G|Uji) for each i = 1, . . . , n. Therefore the image of Uε,K(G) ⊆ Φ(U) in‹Φ(U) contains p−1(U ), where

U =
n∏
i=1

Uδ,Ki(G|Uji) ⊆
n∏
i=1

Φ(Uji),(2.7)

and p is the projection p : ‹Φ(U)→ ∏n
i=1 Φ(Ui). p

−1(U ) is the required neigh-

borhood of ‹G.

To prove the C1 case, suppose Q ⊆ K−V (G), repeat the proof of the C0

case, and set Qi = Ki ∩Q. Then replace Uδ,Ki by Uδ,Ki,Qi in (2.7). �

The sheaf property implies that continuity of a map f : X → Φ(U) can be

checked locally in X×U . In other words, f is continuous if for each x ∈ X and

u ∈ U there is a neighborhood Vx ×Wu ⊆ X × U such that the composition

Vx → X
f−→ Φ(U)

restr.−−−→ Φ(Wu)

is continuous. In particular, U 7→ Map(X,Φ(U)) is a sheaf for every space X.

Proposition 2.12. If V ⊆ U are open subsets of RN , then the restriction

map Φ(U)→ Φ(V ) is continuous. More generally, the action map

Emb(V,U)× Φ(U)→ Φ(V )

(j,G) 7→ j∗(G) is continuous, where Emb(V,U) is given the C1-topology.

Proof sketch. Let j ∈ Emb(V,U), G ∈ Φ(U), let ε > 0, and let K ⊆ V be

compact. Choose δ > 0 and compact subsets C ⊆ V and L ⊆ jV such that
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K ⊆ Cδ and jK ⊆ Lδ. Choose a number M such that

|j−1(l)− j−1(l′)| ≤M |l − l′| and |Dlj
−1(v)| ≤M |v|

for all l, l′ ∈ L and v ∈ Tl(U). We can assume that 2Mδ ≤ ε. Then

j∗ϕ : j∗G′ → j∗G is (ε/2,K)-small if ϕ : G′ → G is (δ,K)-small.

Let j′ ∈ Emb(V,U) be another embedding such that j−1 ◦ j′ : V 99K V
is (ε/2,K ′)-small in the sense that the domain contains (K ′)ε/2, the image

contains K ′, and that |f(k)− k| < ε/2 for f(k) ∈ K ′. Then the composition

(j′)∗G′
j−1◦j′−−−−→ j∗(G′)

j∗ϕ−−→ j∗G

is (ε,K)-small by Lemma 2.8, provided K ′ ⊇ (j∗ϕ)−1(K)∪Kε, which is satis-

fied if (K ′)ε ⊇ K. This proves continuity when Φ(U) and Φ(V ) are given the

C0-topology. The C1-topology is similar. �

3. Homotopy types of graph spaces

Lemma 2.7 shows that the full space Φ(RN ) is path connected. A similar

argument shows that Φ(RN ) is in fact (N − 2)-connected. In this chapter we

study the homotopy types of certain subspaces of Φ(RN ).

3.1. Graphs in compact sets.

Definition 3.1. (i) For a closed subset A ⊆ U , let Φ(A) be the set of

germs around A, i.e. the colimit of Φ(V ) over open sets with A ⊆ V ⊆
U . We remark that the colimit topology is often not well behaved (for

example if A is a point then the one-point subset {[∅]} ⊆ Φ(A) is dense),

and we consider Φ(A) as a set only.

(ii) Let U ⊆ RN be open and M ⊆ U compact. For a germ S ∈ Φ(U− intM),

let ΦS(M) be the inverse image of S under the restriction Φ(U)→ Φ(U−
intM). Topologize ΦS(M) as a subspace of Φ(U).

(iii) Let G′, G ∈ ΦS(M). A graph epimorphism G′ → G is a morphism

(V ′, V, ϕ) in the sense of Definition 2.4 which is surjective and every-

where defined (i.e. V ′ = G′ and V = G). Furthermore ϕ is required to

restrict to the identity map S → S.

(iv) Let GS be the category with objects ΦS(M) and graph epimorphisms as

morphisms. We consider ob(GS) and mor(GS) discrete sets.

The space ΦS(M) will be used in two situations. One is the cube M = IN ,

and the other is the annulus M = B(0, a0) − int(B(0, a1)). Also we will only

consider germs S of graphs whose intersection with ∂M is transverse (and

contains no vertices). The main result in this section and the next is the

following theorem.
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Theorem 3.2. Let U ⊆ RN be open and M ⊆ U compact. Let S ∈
Φ(U − intM). Assume intM is (N − 3)-connected. Then there is an (N − 3)-

connected map

ΦS(M)→ BGS .
In Section 3.3 we prove that the classifying space BGS is homotopy equiv-

alent to a space built out of the spaces BAsn, where Asn are the groups from

Theorem 1.4. Combined with Theorem 3.2 above this leads to Theorem 3.19,

which summarizes the results of Sections 3.1, 3.2, and 3.3. We need more

definitions for the proof.

Definition 3.3. (i) Let M ⊆ U be compact and R ∈ Φ(U). Let S =

[R] ∈ Φ(U − intM) be the germ of R. Let Φ(M ;R) be the set of pairs

(G, f), where G ∈ ΦS(M) and f : G→ R is a graph epimorphism.

(ii) Let (G, f) ∈ Φ(M ;R). For (ε,K,Q) as in Definition 2.5, let Uε,K,Q(G, f)

⊆Φ(M ;R) be the set of (G′, f ′) which admits an (ε,K,Q)-small ϕ : G′ 99K
G with f ′ = ϕ◦f . Topologize Φ(M ;R) by declaring that the Uε,K,Q(G, f)

form a basis.

(iii) Let EmbR(M) ⊆ Φ(M ;R) be the subspace in which the morphism f : G

→ R has an inverse morphism f−1 : R→ G.

The space EmbR(M) can be thought of as a space of certain embeddings

R→ U . Namely (G, f) ∈ EmbR(M) can be identified with the map f−1 : R→
G ⊆ U .

Throughout the paper we will make extensive use of simplicial spaces.

Recall that a simplicial space X• has a geometric realization ‖X•‖ and that a

simplicial map f• : X• → Y• induces ‖f•‖ : ‖X•‖ → ‖Y•‖. We will always use

the “thick” realization (the quotient of
∐

∆p ×Xp by an equivalence relation

involving the face maps, but not the degeneracies). There is also the “thin”

realization |X•|, and the quotient map ‖X•‖ → |X•| is a weak equivalence

when the simplicial space X• is “good”, i.e. when all degeneracy maps are

cofibrations. In most cases appearing in this paper a stronger condition will

be satisfied, namely that the degeneracies are inclusions of open and closed

subsets, and hence the quotient map from thick to thin realization is a weak

equivalence in these cases. If for each k the map fk : Xk → Yk is (n − k)-

connected, the geometric realization ‖f•‖ is n-connected. In particular, ‖f•‖
is a weak equivalence if each fk is a weak equivalence. Recall also that to

each category C is associated a classifying space BC, defined as the geometric

realization of the nerve N•C.

If C is a category and F : C → Spaces is a functor, then the homotopy

colimit of F is defined as

hocolim
C

F = B(C o F ),
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where C oF is the (topological) category whose objects are pairs (c, x) with c ∈
ob(C) and x ∈ F (c), and whose morphisms (c, x)→ (c′, x′) are the morphisms

f ∈ C(c, c′) with F (f)(x) = x′. If T : F → G is a natural transformation such

that T (x) : F (x) → G(x) is n-connected for each object x, then the induced

map hocolimF → hocolimG is also n-connected. The standard reference for

the homotopy colimit construction is [BK72], although the notation C oF does

not appear there.

The proof of Theorem 3.2 is broken down into the following assertions,

whose proofs occupy the remainder of this section and the following:

• The forgetful map

hocolim
R∈GS

Φ(M ;R)→ ΦS(M)

induced by the projection (G, f) 7→ G is a weak equivalence.

• The inclusion EmbR(M)→ Φ(M ;R) is a weak equivalence.

• The space EmbR(M) is (N−4)-connected if int(M) is (N−3)-connected.

The following lemma will be used throughout the paper. Recall that a

map is étale if it is a local homeomorphism and an open map.

Lemma 3.4. Let C be a topological category and Y a space. Regard Y as

a category with only identity morphisms, and let f : C → Y be a functor such

that N0f and N1f are étale maps. Assume that B(f−1(y)) is contractible for

all y ∈ Y . Then Bf : BC → Y is a weak equivalence.

Proof sketch. The hypothesis implies that a neighborhood of the fiber

B(f−1(y)) ⊆ BC

is homeomorphic, as a space over Y , to a neighborhood of

{y} ×B(f−1(y)) ⊆ Y ×B(f−1(y)).

Then the result follows from [Seg78, Prop. (A.1)]. �

Lemma 3.5. The forgetful map p : Φ(M ;R) → ΦS(M), p(G, f) = G, is

étale.

Proof. Let (G, f) ∈ Φ(M ;R). An application of Lemma 2.10 gives an

ε > 0 and a compact K ⊆ U such that any G′ ∈ ΦS(M) ∩Uε,K(G) will have

a unique graph epimorphism ϕG′ : G
′ → G which is (ε,K)-small. ϕG′ restricts

to the identity outside M . This gives a map G′ 7→ (G′, f ◦ϕG′) which is a local

inverse to p. We have proved that p restricts to a homeomorphism

Uε,K(G, f)→ Uε,K(G). �
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Proposition 3.6. The map

hocolim
R∈GS

Φ(M ;R)→ ΦS(M)

induced by the projection (G, f) 7→ G is a weak equivalence.

Proof. The maps from Lemma 3.5 assemble to a map∐
R∈GS

Φ(M ;R)
p−→ ΦS(M).

The domain of this map is the space of objects of the category (GS oΦ(M ;−)).

Morphisms (R′, (G′, f ′)) → (R, (G, f)) exist only if G′ = G; then they are

morphisms ϕ : R′ → R in GS with ϕ ◦ f ′ = f . The classifying space of this

category is the homotopy colimit in the proposition, and p induces a map

Bp : hocolim
R∈GS

Φ(M ;R)→ ΦS(M).

LetG∈ΦS(M). Then the subcategory p−1(G)⊆ (GS oΦ(M ;−)) has (G, (G, id))

as initial object. Therefore (Bp)−1(G) = B(p−1(G)) is contractible, so p sat-

isfies the hypotheses of Lemma 3.4. �

3.2. Spaces of graph embeddings. Our next aim is to prove that the space

Φ(M ;R) is highly connected when intM ⊆ RN is highly connected and N is

large. The main step is to prove that the inclusion EmbR(M)→ Φ(M ;R) is a

weak equivalence. Although it is slightly lengthy to give all details, the idea is

easy to explain. Suppose (G, f) ∈ Φ(M ;R), and we want to construct a path

to an element in EmbR(M). The map f : G→ R specifies a finite set of trees

Tv = f−1(v) ⊆ G, v ∈ V (R) ∩ intM , such that G becomes isomorphic to R

when every Tv ⊆ G is collapsed to a point. The point is that this contraction

can be carried out inside M , by continuously shortening leaves of the tree Tv
and “dragging along” edges incident to Tv (see the illustration in Figure 2).

The formal proof consists of making this construction precise and proving it can

be done continuously. The construction is remotely similar to the Alexander

trick.

We begin by constructing a prototype collapse. This is done in construc-

tion 3.8 below, illustrated in Figure 2.

Definition 3.7. Let (G, l) ⊆ Φ(RN ), and let T ⊆ G be a tree. An incident

edge to T is a map γ : [0, τ ] → G with τ < 2 such that l(γ(t)) = (t − 1)2 and

γ−1(T ) = {0}. We consider two incident edges equivalent if one is a restriction

of the other. Say that (G,T ) is in collapsible position if all g ∈ G∩B(0, 3) are

in either T or in the image of an incident edge, if T ⊆ intDN , and if there are
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1
g0(r)

1.3 1.4 1.9 2.5 r

g1/3(r)

2
3

1

gt(r)
1
3
< t < 1

1− t

g1(r)

Figure 1. gt for various t ∈ [0, 1].

representatives γi : [0, τi]→ G for all the incident edges satisfying

|γi(τi)| > 3,

〈γi(t), γ′i(t)〉 ≥ 0, when |γi(t)| ∈ [1, 3].

These γi provide a “distance to T” function d : G ∩ B(0, 3) → [0, 2) given by

d(x) = 0 when x ∈ T and d(γi(t)) = t.

We point out that if G ∈ Φ(RN ) and if there exists a T with (G,T )

in collapsible position, then T is unique (it must be the union of all closed

edges of G contained in intB(0, 1)), and the function d : G∩B(0, 3)→ [0, 2) is

independent of choice of representatives γi.

Construction 3.8. Let λ 1
3

: [0,∞)→ [0,∞) be a smooth function satisfying

λ 1
3
(r) = 3r/2 for r ≤ 1.3, λ 1

3
(r) = 2 for 1.4 ≤ r ≤ 1.9, and λ 1

3
(r) = r

for r > 2.5. We also assume λ′1
3

(r) ≥ 0 and λ′1
3

(r) > 0 for λ 1
3
(r) 6= 2 and

λ′1
3

(r) ≤ r−1λ 1
3
(r). For t ∈ [0, 1

3 ], let

λt(r) = (1− 3t)r + 3tλ 1
3
(r)

and for (t, r) ∈ [1
3 , 1]× [0,∞)− {(1, 0)} let

λt(r) =


λ 1

3
( 2r

3(1−t)) r ≤ 1.5(1− t)
2 1.5(1− t) ≤ r ≤ 1.9

λ 1
3
(r) r ≥ 1.9.

Let gt(r) = (λt(r))
−1r and gt(0) = 1 for t ≤ 0 and gt(0) = (1− t) for 0 ≤ t ≤ 1.

The graph of gt is shown in Figure 1 for various values of t ∈ [0, 1]. Define
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ϕt : R
N → RN by

ϕt(x) =
x

gt(|x|)
.

Thus ϕt multiplies by (t − 1)−1 near ϕ−1
t (B(0, 1)) and is the identity outside

ϕ−1
t (B(0, 2.5)). ϕt preserves lines through the origin and |ϕt(x)| = λt(|x|), so

the critical values of ϕt when t ≥ 1/3 are precisely the points in 2SN−1. We

leave ϕ1(0) undefined.

(i) For T ⊆ G ∈ Φ(RN ) in collapsible position, define a path of subsets

Gt ⊆ RN by

Gt =

ϕ−1
t (G) for t < 1,

{0} ∪ ϕ−1
1 (G) for t = 1.

(ii) For x ∈ ϕ−1
t (T ) or |ϕt(x)| ≥ 3, let lt(x) = l(ϕt(x)).

(iii) If x ∈ Gt has ϕt(x) ∈ B(0, 3)− T , define lt(x) = (dt(x)− 1)2, where dt is

defined as

dt(x) = gt(|x|)d(ϕt(x))(3.1)

and d : G ∩B(0, 3)→ [0, 2) is the function from Definition 3.7.

The collapse of a tree T ⊆ G in collapsible position in Construction 3.8

above is illustrated in Figure 2. The outer gray circle in each picture is ∂B(0, 2),

and the region between the two gray circles is ϕ−1
t (∂B(0, 2)).

Figure 2. Gt for various t ∈ [0, 1]; cf. Construction 3.8.
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Lemma 3.9. For (G,T ) in collapsible position, the above construction

gives elements Υt(G, l) = (Gt, lt) ∈ Φ(RN ) for all t ∈ [0, 1]. Moreover,

(t, (G, l)) 7→ (Gt, lt) defines a continuous map Υ: [0, 1] × C → Φ(RN ), where

C ⊆ Φ(RN ) is the open subspace consisting of graphs in collapsible position.

Proof. The assumptions on G imply that the set {g ∈G | 1≤ |g| ≤ 3} con-

tains no vertices of G and no critical points of the function g 7→ |g|. Therefore

ϕt : R
N → RN is transverse to the edges of G and for each vertex v of g, ϕt is

a diffeomorphism near ϕ−1
t (v). This implies that Gt satisfies the requirements

of Definition 2.2, except possibly that parametrizations γ satisfy l ◦ γ(t) = t2.

Let γt : (a, b) → Gt be a parametrization of an edge of Gt such that

ϕt ◦ γt(s) maps to the image of an incident edge, and |γt(s)| is an increas-

ing function of s. Then a direct calculation shows that dt(γt(s)) has strictly

positive derivative with respect to s. Indeed, in formula (3.1), both factors

gt(|γt(s)|) and dt(ϕt(x)) have nonnegative derivative, and at least one of them

has strictly positive derivative. On the subset ϕ−1
t (G ∩ ∂B(0, 2)) ⊆ Gt (the

region between the gray circles in Figure 2) the factor d(ϕt(γt(s))) is constant

and the factor gt(|γt(s)|) is 2|γt(s)|. After reparametrizing γt we can assume

dt(γt(s)) = s+ 1 in which case γt is an admissible parametrization of Gt. This

implies that (Gt, lt) ∈ Φ(RN ) for all t ∈ [0, 1].

Thus to each incident edge γ : [0, τ ]→ G = G0 corresponds an admissible

parametrization γt : [0, τ ] → ϕ−1
t (Im(γ)) and γt′ and γt have images that are

diffeomorphic via the map x 7→ γt′ ◦ dt(x). These assemble to a map Gt → Gt′

which is an isomorphism of graphs for t, t′ < 1. For t′ = 1 they assemble to

a graph epimorphism Gt → G1 given by x 7→ γ1 ◦ dt(x) outside ϕ−1
t (T ) and

collapsing ϕ−1
t (T ) ⊆ Gt to 0 ∈ G1.

To prove continuity of (t, (G, l)) 7→ (Gt, lt), let t ∈ [0, 1], G ∈ C, u ∈ RN .

We prove continuity at each point (t, (G, l), u) ∈ [0, 1] × C × RN (cf. Propo-

sition 2.11 and the remark following its proof). For (t, u) 6= (1, 0), continuity

follows from the implicit function theorem, and it remains to prove continuity

at (1, G) ∈ [0, 1]×C at 0 ∈ RN . This follows from the above mentioned graph

epimorphism Gt → G1, because ϕ−1
t (T ) ⊆ B(0, 1− t). �

Notice also that admissible parametrizations of ϕ−1
t (G ∩ ∂B(0, 2)) ⊆ Gt

will be parametrized at constant speed. Indeed,

s = dt(|γt(s)|) = gt(|γt(s)|)d(ϕt(γt(s))) = 2a|γt(s)|

for some constant a = d(ϕt(γt(s))). In particular G1 ∩ B(0, 2) will consist of

straight lines, parametrized in a linear fashion.

If G ∈ Φ(U) and e : RN → U is an embedding such that e∗(G) is in

collapsible position, then we can define a path in Φ(e(RN )) by t 7→ (e−1)∗ ◦
Υt◦e∗(G). This path is constant on Φ(e(RN−B(0, 3))) so by the sheaf property
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(Proposition 2.11) it glues with the constant path t 7→ G|(U − e(B(0, 3))) to a

path t 7→ Υe
t (G) ∈ Φ(U). This defines a continuous function Υe : [0, 1]×C(e)→

Φ(U), where C(e) ⊆ Φ(U) is the open subset consisting of G for which e∗(G)

is in collapsible position.

Lemma 3.10. For any (G, f) ∈ Φ(M ;R) and any v ∈ V (R) ∩ intM ,

let Tv = f−1(v). There exists an embedding e = ev : RN → intM such that

(e−1(G), e−1(Tv)) is collapsible. If W ⊆ U is a neighborhood of Tv then ev can

be chosen to have image in W . In particular we can choose the embeddings

ev, v ∈ V (R) ∩M to have disjoint images.

Proof. Embed small disks around each vertex of Tv, and do connected sum

along a small tubular neighborhood of each edge of Tv. �

If the embeddings in the above lemma have disjoint images, we get an

embedding e : (V (R) ∩ intM) × RN → intM . We will say that e and (G, f)

are compatible if they satisfy the conclusion of the lemma: (e−1
v (G), e−1

v (Tv)) is

collapsible for all v ∈ (V (R) ∩ intM), where ev = e(v,−) : RN → intM . Thus

the lemma says that for any (G, f) ∈ Φ(M ;R) we can find arbitrarily small

compatible embeddings e.

From a compatible embedding e : (V (R) ∩ intM) ×RN → intM we con-

struct a path t 7→ Υe
t (G) ∈ Φ(U) as above, i.e. by gluing the path

t 7→
∏
v

(e−1
v )∗ ◦Υt ◦ e∗v(G) ∈ Φ(

∐
v

ev(R
N ))

with the constant path

t 7→ G|(U −
∐
v

ev(R
N )).

If e is compatible with (G, f), then the path t 7→ Υe
t (G) ∈ Φ(U) has a unique

lift to a path [0, 1] → Φ(M ;R) which starts at (G, f). We will use the same

notation t 7→ Υe
t (G, f) for the lifted path [0, 1]→ Φ(M ;R). We point out that

Υe
t (G, f) ∈ EmbR(M) if (G, f) ∈ EmbR(M) and that Υe

1(G, f) ∈ EmbR(M)

for all (G, f) ∈ Φ(M ;R). If we let C(e) ⊆ Φ(M ;R) be the set of (G, f)

which are compatible with e, then we have constructed a homotopy between

the inclusion C(e) ⊆ Φ(M ;R) and the map Υe
1 : C(e)→ EmbR(M).

We can now prove that π0(Φ(M ;R),EmbR(M)) = 0. Namely, let (G, f) ∈
Φ(M ;R) and use Lemma 3.10 to choose a compatible e : (V (R)∩intM)×RN →
intM . Then t 7→ Υe

t (G, f) is a path to a point in EmbR(M) as required.

To prove that the higher relative homotopy groups vanish, we need to

carry out the above collapsing in families, i.e. when parametrized by a map

X → Φ(M ;R). Unfortunately it does not seem easy to prove a parametrized

version of Lemma 3.10. Instead we use collapsing along multiple e : RN → U

at once.
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Definition 3.11. Let Q be the set of all embeddings e : (V (R)∩M)×RN
→M . Write e < e′ if e({v} ×RN ) ⊆ e′({v} ×B(0, 1)) for all v ∈ V (R). This

makes Q into a poset. We give Q the discrete topology. Let P ⊆ Q×Φ(M ;R)

be the subspace consisting of (e, (G, f)) with (G, f) ∈ C(e). P is topologized

in the product topology and ordered in the product ordering, where Φ(M ;R)

has the trivial order.

Lemma 3.12. The projection p : BP → Φ(M ;R) is a weak equivalence.

The restriction to p−1(EmbR(M))→ EmbR(M) is also a weak equivalence.

The proof is based on Lemma 3.4. First recall that any poset D can be

considered as a category. It is easy to see that BD is contractible when it has

a subset C ⊆ D which in the induced ordering is totally ordered and cofinal,

i.e. if for every d, d′ ∈ D there is c ∈ C with d ≤ c and d′ ≤ c. Indeed,

any finite subcomplex of ‖N•D‖ will be contained in the star of some vertex

c ∈ ‖N•C‖ ⊆ ‖N•D‖.
Proof of Lemma 3.12. p is induced by the projection π : P → Φ(M ;R)

which is étale (because NkP ⊆ NkQ× Φ(M ;R) is open and NkQ is discrete),

so by Lemma 3.4 it suffices to prove that B(π−1(G, f)) is contractible for all

(G, f). For any (G, f) we can choose, by Lemma 3.10, a sequence en : (V (R)∩
intM)×RN → intM , n ∈ N of embeddings compatible with (G, f), such that

e1 > e2 > . . ., and with en({v} ×RN ) contained in the (1/n)-neighborhood of

Tv. This totally ordered subset of π−1((G, f)) is cofinal. The second part is

proved the same way. �

Definition 3.13. For t = (t0, . . . , tk) ∈ [0, 1]k+1 and χ = (e0 < · · · <
ek, (G, f)) ∈ Nk(P ), let

Υ((t0, . . . , tk), χ) = Υek
tk
◦ · · · ◦Υe0

t0 (G, f).

This defines a continuous map Υ: [0, 1]k+1 ×Nk(P )→ Φ(M ;R).

Proposition 3.14. The inclusion EmbR(M)→ Φ(M ;R) is a weak equiv-

alence.

Proof. Let m : ∆k → [0, 1]k+1 be defined by

m(t0, . . . , tk) = (t0, . . . , tk)/max(t0, . . . , tk).

Then the maps h : [0, 1]×∆k ×Nk(P )→ Φ(M ;R) defined by

h(τ, t, χ) = Υ(τm(t), χ)

glue together to a map h : [0, 1]×BP → Φ(M ;R) which is a homotopy between

the projection map p : BP → Φ(M ;R) and the map

q = h(1,−) : BP → EmbR(M) ⊆ Φ(M ;R).
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This produces a null homotopy of the map of pairs

p : (BP, p−1(EmbR(M)))→ (Φ(M ;R),EmbR(M)),

which together with Lemma 3.12 proves that π∗(Φ(M ;R),EmbR(M)) = 0. �

Proposition 3.15. The space EmbR(M) is (N−4)-connected when intM

is (N − 3)-connected.

Proof sketch. Thinking about EmbR(M) as a space of embeddings j : R

→ U this is mostly standard, although the presence of vertices deserves some

comment.

Firstly, we can fix j on V (R)∩ intM , since this changes homotopy groups

only in degrees above (N − 4). Secondly, the proof of Proposition 3.14 shows

that we can assume there is a ball B = B(v, εv) around each vertex v ∈
V (R)∩ intM such that j is linear on j−1(B) (the point is that by construction,

this holds after applying Υe
1). Thirdly, we can fix j on j−1B, since this changes

homotopy groups only in degrees above (N − 3). Then we are reduced to

considering embeddings of a disjoint union of intervals into the manifold intM−
∪vintB(v, εv), and these form an (N−4)-connected space when intM is (N−3)-

connected (an easy consequence of transversality). �

Proof of Theorem 3.2. We have the maps

BGS ← hocolim
R∈GS

Φ(M ;R)→ ΦS(M).

The map pointing to the right is a weak equivalence by Proposition 3.6. The

map pointing to the left is obtained by taking hocolim of the collapse map

Φ(M ;R)→ point

which is (N − 3)-connected by Propositions 3.14 and 3.15. �

3.3. Abstract graphs. The goal in this section is to determine the homo-

topy type of the space BGS . Although the objects of GS are embedded graphs,

the embeddings play no role in the morphisms, and the category GS is equiv-

alent to a combinatorially defined category of abstract graphs. We recall the

definition of abstract graphs; cf. [Ger84].

Definition 3.16. (i) A finite abstract graph is a finite set G with an in-

volution σ : G → G and a retraction t : G → Gσ onto the fixed point set

of σ.

(ii) The vertices of G is the set Gσ of fixed points of σ, and the complement

G − Gσ is the set of half-edges. The valence of a vertex x ∈ Gσ is the

number v(x) = |t−1(x)| − 1. In this paper, all graphs are assumed not to

have vertices of valence 0 and 2.
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(iii) A leaf of G is a valence 1 vertex. A leaf labelling of G is an identification

of the set of leaves of G with {1, . . . , s}.
(iv) A cellular map G → G′ between two abstract graphs is a set map pre-

serving σ and t.

(v) A cellular map G → G′ is a graph epimorphism if the inverse image of

each half-edge of G′ is a single half-edge of G, and the inverse image of a

vertex of G′ is a tree (i.e. contractible graph), not containing any leaves.

If the leaves of G and G′ are labelled, then we require the map to preserve

the labelling.

(vi) For s ≥ 0, let Gs denote the category whose objects are finite abstract

graphs with leaves labelled by {1, . . . , s} and whose morphisms are graph

epimorphisms.

A cellular map is a graph epimorphism if and only if it can be written

as a composition of isomorphisms and elementary collapses, i.e. maps which

collapse a single nonloop, nonleaf edge to a point.

Lemma 3.17. Let N ≥ 3 and let M ⊆ U be compact with intM connected.

Let S ∈ Φ(U − intM) be a germ of a graph with s ≥ 0 ends in intM (i.e. s

is the cardinality of the inverse limit of π0(S ∩ (intM − K)) over larger and

larger compact sets K ⊆ intM ). Then we have an equivalence of categories

GS ' Gs.
It remains to determine the homotopy type of the space BGs. A finite

abstract graph G has a realization

|G| =
Ä
Gσ q ((G−Gσ)× [−1, 1])

ä
/ ∼,

where ∼ is the equivalence relation generated by (x, r) ∼ (σx,−r) and (x, 1) ∼
t(x) ∈ Gσ for x ∈ G − Gσ, r ∈ [−1, 1]. Let ∂|G| ⊆ |G| be the set of leaves

(valence 1 vertices). Let Aut(G) denote the group of homotopy classes of

homotopy equivalences |G| → |G| restricting to the identity on ∂|G|. Recall

from Section 1.2 that Asn = Aut(Gsn), where Gsn is a graph with first Betti

number n and s leaves. In particular A0
n = Out(Fn) and A1

n = Aut(Fn).

BG0 and BG1 are directly related to automorphisms of free groups, via

Culler-Vogtmann’s outer space [CV86]. As mentioned in Section 1.2, outer

space is a contractible space with an action of Out(Fn). Culler-Vogtmann

also define a certain subspace called the spine of outer space, which is an

equivariant deformation retract. For a finite abstract graph G0, the spine

of outer space X(G0) is the classifying space of the poset (which is also the

poset of simplices in outer space itself) of isomorphism classes of pairs (G, h),

where G is a finite abstract graph and h : |G| → |G0| is a homotopy class of

a homotopy equivalence. (G, h) is smaller than (G′, h′) when there exists a
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graph epimorphism ϕ : G′ → G such that h ◦ |ϕ| ' h′. Culler-Vogtmann prove

that X(G0) is contractible. (They state this only for connected G0; the general

statement follows from the homeomorphism X(G0 qG1) ∼= X(G0)×X(G1).)

Proposition 3.18. There is a homotopy equivalence

BGs '
∐
G

BAut(G),(3.2)

where the disjoint union is over finite graphs G with s leaves, one of each homo-

topy type. Consequently, the classifying space of the subcategory of connected

graphs is homotopy equivalent to
∐
nBA

s
n.

The right-hand side of the homotopy equivalence (3.2) can conveniently be

reformulated in terms of a category Gs'. The objects of Gs' are the objects of Gs,
but morphisms G→ G′ in Gs' are homotopy classes of homotopy equivalences

(|G|, ∂|G|) → (|G′|, ∂|G′|), compatible with the labellings. We have inclusion

functors

Gs f // Gs'
∐
G Aut(G)

goo

where f is the identity on the objects and takes geometric realization of mor-

phisms, and g is the inclusion of a skeletal subcategory. Consequently, g is an

equivalence of categories, and the statement of Proposition 3.18 is equivalent

to f inducing a homotopy equivalence Bf : BGs → BGs'.

Proof sketch. We first consider the case s = 0, following [Igu02, Th. 8.1.21].

For a fixed object G0 ∈ Gs', we consider the over category (Gs ↓ G0). Its

objects are pairs (G, h) consisting of an object G ∈ ob(Gs) and a homotopy

class of a homotopy equivalence h : |G| → |G0|. Its morphisms (G, h)→ (G′, h′)

are graph epimorphisms ϕ : G → G′ with h′ ◦ |ϕ| ' h. It is equivalent to the

opposite of the poset whose realization is outer space, and hence contractible.

Then the claim follows from Quillen’s “Theorem A” ([Qui73]).

We proceed by induction in s. Recall that Aut(G) = π0hAut(G), where

hAut(G) is the topological monoid of self-homotopy equivalences of |G| restrict-

ing to the identity on the boundary. Every connected component of hAut(G)

is contractible and we have BhAut(G) ' BAut(G). The monoid hAut(G) acts

on |G|, and the Borel construction is

EhAut(G)×hAut(G) |G| '
∐
p

BhAut(G′),

where G′ is obtained by attaching an extra leaf to G at a point p. The disjoint

union is over p ∈ |G| − ∂|G|, one in each hAut(G)-orbit. It follows that the

map
BGs+1
' → BGs',

induced by forgetting the leaf labelled s + 1, has homotopy fiber |G| over the

point G ∈ BGs'.
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Let Γ: Gs → CAT be the functor which to G ∈ Gs associates the poset of

simplices of G which are not valence 1 vertices, ordered by reverse inclusion.

Recall from e.g. [Tho79] that to such a functor there is a associated category

Gs o Γ. An object of the category Gs o Γ is a pair (G, σ), with G ∈ Gs and

σ ∈ Γ(G) and a morphism (G, σ) → (G′, σ′) is a pair (ϕ,ψ) with ϕ : G → G′

and ψ : Γ(ϕ)(σ)→ σ′. There is a functor

Gs o Γ→ Gs+1,

which maps (G, σ) to the graph obtained by attaching a leaf labeled s + 1 to

G at the barycenter of σ. This is an equivalence of categories, and it follows

(by [Tho79]) that the homotopy fiber of the projection BGs+1 → BGs over the

point G ∈ BGs is B(Γ(G)) ∼= |G|.
Therefore the diagram

BGs+1 //

��

BGs+1
'

��
BGs // BGs'

is homotopy cartesian. This proves the induction step. �

Summarizing Theorem 3.2, Lemma 3.17, and Proposition 3.18 we get

Theorem 3.19. Let N ≥ 3, let U ⊆ RN be open, and let M ⊆ U be

compact with intM (N − 3)-connected. Let S ∈ Φ(U − intM) be a germ of a

graph with s ends in intM . Then we have an (N − 3)-connected map

ΦS(M)→
∐
G

BAut(G),(3.3)

where the disjoint union is over finite graphs G with s leaves, one of each

homotopy type. Consequently the space of connected graphs has an (N − 3)-

connected map to
∐
nBA

s
n.

3.4. BOut(Fn) and the graph spectrum. We are now ready to begin the

proof outlined in Section 1.2. The first goal is to define the maps (1.2) and

(1.3). The space BN in the following definition is the domain of the map (1.2).

Definition 3.20. Let I = [−1, 1]. Let BN ⊆ Φ(RN ) be the subset

BN = Φ[∅](IN ),

i.e. the set of graphs contained in int(IN ). Let BN
n ⊆ BN be the subspace of

graphs homotopy equivalent to ∨nS1.

The homotopy type of the space BN is determined, at least in the limit

N →∞, by Theorem 3.19.
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Proposition 3.21. There is an (N − 3)-connected map

BN →
∐
G

BAut(G),

where the disjoint union is over graphs G without leaves, one of each homotopy

type. Consequently we have a weak equivalence

B∞n → BOut(Fn).

Approximating BOut(Fn) by the space BN
n , the space of graphs G ⊆

int(IN ) for which there exists a homotopy equivalence G ' ∨nS1 is analogous

to the approximation

BDiff(M) ∼ Emb(M, int(IN ))/Diff(M)

for a smooth manifold M . The right-hand side is the space of submanifolds

Q ⊆ int(IN ) for which there exists a diffeomorphism Q ∼= M .

The empty set ∅ ⊆ RN is a graph, and we consider it the basepoint of

Φ(RN ).

Definition 3.22. Let εN : S1∧Φ(RN )→ Φ(RN+1) be the map induced by

the map R× Φ(RN )→ Φ(RN+1) given by (t, G) 7→ {−t} ×G.

Lemma 3.23. εN is well defined and continuous.

Proof. Let e1 ∈ RN+1 be the first standard basis vector, and let ϕ : R→
Diff(RN+1) be the continuous map given by ϕ(t)(x) = x+ te1. The inclusion

Φ(RN )→ Φ(RN+1) given by G 7→ {0} ×G is obviously continuous, and then

Proposition 2.12 gives continuity of εN on R× Φ(RN ).

To see continuity at the basepoint, let K ⊆ RN be a compact subset with

K ⊆ cDN+1. Then we will have ({t} × G) ∩ K = ∅ ∈ Φ(RN+1) as long as

|t| > c or G ∩ cDN = ∅. �

Definition 3.24. Let Φ be the spectrum with Nth space Φ(RN ) and struc-

ture maps εN . This is the graph spectrum.

We will not use any theory about spectra. In fact we will always work

with the corresponding infinite loop space Ω∞Φ defined as

Ω∞Φ = colim
N→∞

ΩNΦ(RN ),

where the map ΩNΦ(RN )→ ΩN+1Φ(RN+1) is the N -fold loop of the adjoint

of εN .

Φ is the analogue for graphs of the spectrum MTO(d) for d-manifolds in

the paper [GMTW09]. The analogy is clarified in Section 6, especially Proposi-

tion 6.2. MTO(d) is the Thom spectrum of the universal stable normal bundle

for d-manifold bundles, −Ud → BO(d). Thus Φ is a kind of “Thom spectrum
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of the universal stable normal bundle for graph bundles.” Remark 5.13 explains

in what sense Φ is the Thom spectrum of a “generalized stable spherical fibra-

tion”. In this section we will define a map which, alluding to a similar analogy,

we could call the parametrized Pontryagin-Thom collapse map for graphs

BOut(Fn)→ Ω∞Φ.(3.4)

Given G ∈ BN and v ∈ RN we can translate G by v and get an element

τN (G)(v) = G− v ∈ Φ(RN ).

We have τN (G)(v) → ∅ if |v| → ∞, so τN extends uniquely to a continuous

map

(BN ) ∧ SN τN−−→ Φ(RN ).(3.5)

Definition 3.25. Let τN : BN → ΩNΦ(RN ) be the adjoint of the map (3.5).

In the following diagram, the left vertical mapBN → BN+1 is the inclusion

G 7→ {0} ×G.

BN τN //

��

ΩNΦ(RN )

εN
��

BN+1
τN+1 // ΩN+1Φ(RN+1).

The diagram is commutative, and we get an induced map

τ∞ : B∞ → Ω∞Φ.(3.6)

By Proposition 3.21, BOut(Fn) is a connected component of B∞, and we define

the map (3.4) as the restriction of (3.6).

The map τN is homotopic to a map τ̃N defined in a different way. This

construction will be used in Section 4.1.2, but is not logically necessary for the

proof of Theorem 1.1. τ̃N is similar to the “scanning” map of [Seg79], and is

defined as follows. Choose a map

e : int(IN )×RN = T int(IN )→ int(IN )

such that for each p ∈ int(IN ), the induced map

ep : Tpint(IN )→ int(IN )

is an embedding with ep(0) = p and Dep(0) = id. We can arrange that the

radius of ep(Tpint(IN )) is smaller than the distance dist(p, ∂IN ). To a graph

G ∈ BN and a point p ∈ int(IN ) we associate

τ̃(G)(p) = (ep)
∗(G) ∈ Φ(TpR

N ) = Φ(RN ).

By Proposition 2.12, the action of Diff(Rk) on Φ(Rk) is continuous. Therefore

we can apply Φ fiberwise to vector bundles: If V → X is a vector bundle,
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then there is a fiber bundle Φfib(V ) whose fiber over x is Φ(Vx). We will have

τ̃N (G)(p) = ∅ for all p outside some compact subset of int(IN ). τ̃N (G)(p) is

continuous as a function of p, and can be interpreted as a compactly supported

section over int(IN ) of the fiber bundle Φfib(TRN ). We define τ̃N (G)(p) = ∅
for p ∈ ∂IN and get a section

τ̃N (G) ∈ Γ((IN , ∂IN ),Φfib(TRN )) ∼= ΩNΦ(RN ).

τ̃N (G) depends continuously on G so we get a continuous map

τ̃N : BN → ΩNΦ(RN ),(3.7)

which is easily seen to be homotopic to the map τN of Definition 3.25.

4. The graph cobordism category

As explained in the introduction, composing (3.4) with the natural map

BAut(Fn) → BOut(Fn) induced by the quotient Aut(Fn) → Out(Fn) gives a

map ∐
n≥2

BAut(Fn)
τ−→ Ω∞Φ.(4.1)

(In fact it is slightly better to precompose the quotient map Aut(Fn) →
Out(Fn) with the natural map Aut(Fn−1) → Aut(Fn), because that makes

the map (4.1) multiplicative with respect to the loop space structure on

the target and the multiplication on the source induced by the group maps

Aut(Fn)×Aut(Fm)→ Aut(Fn+m).) We will prove the following.

Theorem 4.1. τ induces a homology equivalence

Z×BAut∞ → Ω∞Φ.∐
BAut(Fn) is a topological monoid whose group completion is Z ×

BAut+
∞, where the plus sign denotes Quillen’s plus construction. It turns

out to be fruitful to enlarge the monoid to a topological category, with more

than one object. Namely we will define a “graph cobordism category” CN
whose morphisms are graphs in a slab of RN .

Definition 4.2. For ε > 0, let ob(CεN ) be the set

{(a,A, λ) | a ∈ R, A ⊆ int(IN−1) finite, λ ∈ (−1 + ε, 1− ε)A}.

For an object c = (a,A, λ), let U εa = (a− ε, a+ ε)×RN−1 and let

Sεc = (a− ε, a+ ε)×A.
Equipped with the map lc : Sεc → [0, 1) given by

lc(a+ t, x) = (t+ λ(x))2
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for |t| < ε, this defines an element (Sεc , lc) ∈ Φ(U εa). For two objects c0 =

(a0, A0, λ0) and c1 = (a1, A1, λ1) with 0 < 2ε < a1 − a0, let CεN (c0, c1) be the

set consisting of (G, l) ∈ Φ((a0 − ε, a1 + ε)×RN−1) satisfying that

G ⊆ (a0 − ε, a1 + ε)× int(IN−1)

and that (G, l)|U εaν = (Sεcν , lcν ) for ν = 0, 1. If c2 = (a2, A2, λ2) is a third

object and (G′, l′) ∈ CεN (c1, c2), let (G, l) ◦ (G′, l′) = (G′′, l′′), where

G′′ = G ∪G′

and l′′ : G′′ → [0, 1] agrees with l on G and with l′ on G′. This defines CεN as a

category of sets. Topologize the total set of morphisms as a subspace of∐
a0,a1

Φ((a0 − ε, a1 + ε)×RN−1),

where the coproduct is over a0, a1 ∈ R with either a0 = a1 (the identities) or

0 < 2ε < a1 − a0. We have inclusions CεN → Cε
′
N when ε′ < ε, and we let

CN = colim
ε→0

CεN .

The following theorem determines the homotopy type of the space of mor-

phisms between two fixed objects in CN , at least in the limit N → ∞. It is a

consequence of Theorem 3.2, Lemma 3.17, and Proposition 3.18.

Theorem 4.3. Let c0 = (a0, A0, λ0) and c1 = (a1, A1, λ1) be objects of

CN with a0 < a1. There is an (N − 3)-connected map

CN (c0, c1)→
∐
G

BAut(G),

where the disjoint union is over finite graphs G with s = |A0| + |A1| leaves,

one of each homotopy type. Consequently,

{G ∈ C∞(c0, c1) | G is connected} '
∐
n≥0

BAsn.(4.2)

(n = 0 should be excluded if s = 1 and n = 0, 1 should be excluded if s = 0.)

For the proof of Theorem 4.1 we need two more definitions.

Definition 4.4. Let DN ⊆ Φ(RN ) denote the subspace

{G ∈ Φ(RN ) | G ⊆ R× int(IN−1)}.

Definition 4.5. The positive boundary subcategory C∂N ⊆ CN is the sub-

category with the same space of objects, but whose space of morphisms from

c0 = (a0, A0, λ0) to c1 = (a1, A1, λ1) is the subset

{G ∈ CN (c0, c1) | A1 → π0(G) surjective}.
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Then Theorem 4.1 is proved in the following four steps. Carrying them

out occupies the remainder of this chapter.

• There is a homology equivalence

Z×BAut∞ → ΩBC∂∞.(4.3)

• The inclusion induces a weak equivalence

BC∂∞
'−→ BC∞.(4.4)

• There is a weak equivalence

BCN ' DN .(4.5)

• There is a weak equivalence

DN
'−→ ΩN−1Φ(RN ).(4.6)

Then Theorem 4.1 follows by looping (4.5), (4.6), and (4.4), taking the

direct limit N →∞ in (4.5) and (4.6), and composing.

4.1. Poset model of the graph cobordism category. We will use Rδ to de-

note the set R of real numbers, equipped with the discrete topology.

Definition 4.6. (i) Let DtN ⊆ Rδ ×DN be the space of pairs (a, (G, l))

satisfying

G t {a} ×RN−1.(4.7)

This is a poset, with ordering defined by (a0, G) ≤ (a1, G
′) if and only if

G = G′ and a0 ≤ a1.

(ii) For ε > 0, let D⊥,εN ⊆ DtN be the subposet defined as follows. (a, (G, l)) ∈
D⊥,εN if there exists c = (a,A, λ) as in Definition 4.2 such that (G, l)|U εa =

(Sεc , lc).

(iii) Let D⊥N be the colimit of D⊥,εN as ε→ 0.

There is an inclusion functor i : D⊥N → DtN , and a forgetful map u : DtN →
DN . There is also a functor c : D⊥N → CN defined as follows. On an object

x = (a,G), we set c(x) = (a,A, λ), where G∩ ({a}×RN−1) = {λ}×RN−1 and

λ : A→ (−1, 1) is determined by the parametrization of edges at the points of

A. Let (x0 < x1) ∈ N1D
⊥,ε
N with x0 = (a0, G), x1 = (a1, G). Then let

c(x0 < x1) = G|(a0 − ε, a1 + ε)×RN−1.

This defines a functor D⊥,εN → CεN , and c : D⊥N → CN is defined by taking the

colimit.

The forgetful map DtN → DN can be regarded as a functor, where DN is

a category with only identity morphisms. As in Lemma 3.4 there is an induced

map Bu : BDtN → DN .
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Lemma 4.7. The induced maps

B : BD⊥N → BDtN(4.8)

Bu : BDtN → DN(4.9)

Bc : BD⊥N → BCN(4.10)

are all weak equivalences. Consequently, BCN ' DN .

Proof. The equivalence (4.8) is induced by a degreewise weak homotopy

equivalence on the simplicial nerve—straighten the morphisms near their ends.

For (4.9), notice that all maps

Nku : NkD
t
N → DN

are étale, and that for G ∈ DN , the inverse image u−1(G) is the set

{a ∈ R | G t {a} ×RN−1},

where the transversality means that {a} × RN−1 contains no vertices of G

and is transverse to edges in the usual sense. This set is nonempty by Sard’s

theorem for C1 maps R → R (first proved by A. P. Morse [Mor39]). Since

it is totally ordered, it follows that B(u−1(G)) is contractible, and the claim

follows from Lemma 3.4.

The map (4.10) is again induced by a degreewise weak equivalence. Sup-

pose P is a sphere and f : P → NkCN a continuous map. By compactness, f

maps into NkCεN for some ε > 0 so all graphs in the image of f are elements

of Φ((a0 − ε, ak + ε)×RN−1). Choose a diffeomorphism from (a0 − ε, ak + ε)

to R which is the identity on (a0 − ε/2, ak + ε/2) and use that to lift f to

P → NkD
⊥
N . We have constructed an inverse to π∗(Nkc). �

A variation of the proof of Lemma 4.7 given above will prove the following

result. The details are given below.

Proposition 4.8. There is a weak equivalence

DN
'−→ ΩN−1Φ(RN ).

The map DN → ΩN−1Φ(RN ) is similar to the map τN in Definition 3.25.

First let RN−1 ×DN → Φ(RN ) be given by the translation

(v,G) 7→ G− (0, v).(4.11)

This extends uniquely to a continuous map SN−1 ∧ DN → Φ(RN ), and the

adjoint of this map is the weak equivalence in Proposition 4.8. This map is

homotopic to a map

DN → Γ((R× IN−1,R× ∂IN−1),Φfib(TRN )) ' ΩN−1Φ(RN )(4.12)
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defined by “scanning”, just like the map τN in Definition 3.25 is homotopic to

the map τ̃N in (3.7).

We give two proofs of Proposition 4.8. The first is a direct induction proof

which is similar to the proofs of Lemma 4.7. The second uses Gromov’s “flexible

sheaves” [Gro86, §2]. While this is somewhat heavy machinery, we believe it

illuminates the relation between scanning maps and Pontryagin-Thom collapse

maps nicely. For the second proof, the crucial properties of Φ are the continuity

property expressed in Proposition 2.12 and that Φ is “microflexible”.

4.1.1. First proof. For k = 0, 1, . . . , N , let DN,k ⊆ Φ(RN ) be the subspace

DN,k = {G ∈ Φ(RN ) | G ⊆ Rk × int(IN−k)}

equipped with the subspace topology. In particular DN,0 = BN , DN,1 = DN

and DN,N = Φ(RN ). The map R×DN,k−1 → DN,k given by the translation

(t, G) 7→ G− (0, t, 0)

extends uniquely to a continuous map S1 ∧ DN,k−1 → DN,k and we consider

its adjoint

DN,k−1 → ΩDN,k.(4.13)

The composition of the maps (4.13) for k = 2, . . . , N , is the map DN →
ΩN−1Φ(RN ) of Proposition 4.8.

Proposition 4.9. For each k = 2, 3, . . . , N , the map (4.13) is a weak

equivalence.

Proposition 4.8 then follows from Proposition 4.9 by induction. The proof

of Proposition 4.9 is given in the Lemmas 4.11 and 4.13 below. The proof of

Lemma 4.11 is very similar to the proof of Lemma 4.7. In the following we will

use the notation Dt and D⊥ to emphasize the similarity with Definition 4.6,

although there is no longer a relation to transversality or orthogonality.

Definition 4.10. Let k ≥ 2.

(i) Let DtN,k be the space of triples (p, a,G) ∈ (Rδ)k−1×Rδ×DN,k satisfying

{p} × {a} ×RN−k ∩G = ∅.(4.14)

Order DtN,k by declaring (p, a,G) < (p′, a′, G′) if and only if G = G′ and

a < a′.

(ii) Let D⊥N,k ⊆ Rδ ×DN,k be the set of pairs (a,G) satisfying the stronger

condition

Rk−1 × {a} ×RN−k ∩G = ∅.(4.15)
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(iii) Let CN,k be the category whose space of objects is Rδ and with morphism

spaces given by

CN,k(a0, a1) = {G ∈ Φ(RN ) | G ⊆ Rk−1 × int([a0, a1]× IN−k)},

when a0 ≤ a1. Composition is union of subsets.

(iv) Let i : D⊥N,k → DtN,k be the functor (a,G) 7→ (0, a,G) and let u : DtN,k →
DN,k be the forgetful map. Let c : D⊥N,k → CN,k be the functor given on

morphisms by

c((a0, G) ≤ (a1, G)) = G ∩
Ä
Rk−1 × [a0, a1]×RN−k

ä
.

Lemma 4.11. The maps

BCN,k Bc←−− BD⊥N,k
Bi−→ BDtN,k

Bu−−→ DN,k

are all weak equivalences.

Proof. This is very similar to the proof of Lemma 4.7. We first consider

Bu. For each l, Nlu : NlD
t
N,k → DN,k is an étale map, and each fiber u−1(G)

is a contractible poset (we can pick a sequence of (pi, ai) ∈ (Rδ)k−1 ×Rδ with

ai →∞ and (pi, ai, G) ∈ DtN,k. These form a totally ordered cofinal subposet

of u−1(G)). The result now follows from Lemma 3.4.

We consider Bi in two steps. Let P ⊆ DtN,k be the subposet consisting

of (p, a,G) satisfying (a,G) ∈ D⊥N,k. Then the map N•i factors through N•P .

The semi-simplicial space N•P is isomorphic to the product l 7→ NlD
⊥
N,k ×

((Rk−1)δ)l+1. Since the geometric realization of the simplicial space l 7→ X l+1

is contractible for any nonempty X, this proves that the inclusion D⊥N,k → P

induces a weak equivalence of classifying spaces. Secondly we construct for

each l a deformation retraction of NlD
t
N,k onto NlP . A nondegenerate element

χ ∈ NlD
t
N,k is given by an element G ∈ DN,k, real numbers a0 < · · · < al, and

points p0, . . . , pl ∈ Rk−1. We will define a path starting at χ, ending at a point

in NlP and depending continuously on χ, by a construction which in essence

is a parametrized version of the path constructed in Lemma 2.7.

For r ∈ R, let hr : Rk−1 → Rk−1 be the affine function given by

hr(x) = x
l∏

i=0

(r − ai)2 +
l∑

i=0

pi
∏
j 6=i

r − aj
ai − aj

.

Then hr is a diffeomorphism for r 6∈ {a0, . . . , al} and hai(x) = pi for all x. For

t ∈ [0, 1], let ϕt : R
k−1×R×RN−k → Rk−1×R×RN−k be the map given by

ϕt(x, r, y) = ((1− t)x+ thr(x), r, y)
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and let Gt = (ϕt)
∗(G). Then G0 = G and G1 will satisfy (4.15) with respect

to any a = aν , ν ∈ {0, 1, . . . , l}. This gives a continuous path in NlD
t
N,k,

t 7→ χt = ((p0, . . . , pl), (a0 < · · · < al), Gt), t ∈ [0, 1],

which starts at χ0 = χ and ends at a point χ1 ∈ NlP . Finally, Bc is a

homotopy equivalence because Nlc is a homotopy equivalence for all l. This is

proved precisely as the analogous statement in Lemma 4.7. �

The space DN,k−1 is equal to the space of morphisms from 0 to 1 in CN,k.
Thus we have a canonical map

DN,k−1 → ΩBCN,k,(4.16)

which to a morphism (0, 0)→ (1, 0) associates the path along the corresponding

1-simplex in the classifying space. Here ΩBCN,k denotes the space of paths

that start at 0 and end at 1. To finish the proof of the homotopy equivalence

DN,k−1 ' ΩDN,k we need to show that (4.16) is a weak equivalence.

Let us explain the idea of the proof, which is related to the fact that

M ' ΩBM when M is a group-like topological monoid. Morphisms in CN,k
are graphs whose kth coordinate is in some interval (a0, a1), and composition is

union of disjoint graphs. There is a modified version where one instead requires

the kth coordinate to be in some interval (0, t), and where composition of (t, G)

and (t′, G′) is formed by translating the kth coordinate of G′ into the interval

(t, t + t′) before taking union. Let us write M for this version of CN,k. It

is a monoid, and is in bijection with (0,∞) × DN,k−1. If we give (0,∞) the

usual topology, M is a path connected topological monoid and it follows that

DN,k−1 'M ' ΩBM . Rather than completing this idea to a proof by proving

BM ' BCN,k, we choose to prove the following generalization of the fact that

M ' ΩBM for a group-like topological monoid M .

Lemma 4.12. Let C be a topological category and let

c1
f1−→ c2

f2−→ · · ·

be a directed system in C. Define functors Cop → Spaces by

Fn(x) = C(x, cn)

F∞(x) = hocolim
n→∞

Fn(x)

(i) If all morphisms x → y induce weak equivalences F∞(y) → F∞(x), then

there is a weak equivalence F∞(x) ' ΩBC.

(ii) If furthermore all morphisms fn : cn → cn+1 induce homotopy equiva-

lences Fn(x)→ Fn+1(x), then F1(x) ' ΩBC.
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In (ii), the homotopy equivalence is the natural map C(x, c1) → Ωx,c1BC
which to a morphism x → c1 associates the corresponding 1-simplex in the

classifying space. In (i), the natural map goes to hocolimn Ωx,cnBC.

Proof. The second statement follows easily from the first. To prove the

first, recall that to the functor F∞ : Cop → Spaces there is an associated cat-

egory C o F∞ whose objects are pairs (c, x) with c ∈ N0C and x ∈ F∞(c) (cf.

also §3.1). Forgetting x gives a functor C o F∞ → C, and the resulting map of

simplicial spaces N•(C o F∞)→ N•C satisfies the hypothesis of [Seg74, 1.6], so

the geometric realization

B(C o F∞)→ BC

is a quasifibration. Thus for any x ∈ N0C, the inclusion of an actual fiber over

x into the homotopy fiber is a weak equivalence. The category C o Fn has the

identity map of cn as final object, and hence B(C o F∞) = hocolimnB(C o Fn)

is contractible so the homotopy fiber is equivalent to ΩBC. The actual fiber

over x is F∞(x) and the lemma follows. �

Lemma 4.13. The map (4.16) is a weak equivalence for k ≥ 2.

Proof. We apply Lemma 4.12 with cn = n ∈ N = ob(CN,k), fn = ∅.
To see that the assumptions of the lemma are satisfied it suffices to see that

composition with any morphism G : a1 → a2 induces a homotopy equivalence

CN,k(a0, a1)
G◦−−→ CN,k(a0, a2),

when a0 < a1 < a2, and similarly for composition from the right.

To see this, first note that there is an obvious homeomorphism CN,k(a0, a1)
∼= DN,k−1 whenever a0 < a1, induced by stretching the interval [a0, a1] to [0, 1].

It is clear that composition with G is a homotopy equivalence in the case

G = ∅. The space DN = DN,1 ' BCN is connected (given any two objects,

there is a morphism between them) and similarly DN,k ' BCN,k is connected

for k ≥ 2, so composition with any G ∈ CN,k(a1, a2) ' DN,k−1 is homotopic to

composition with G = ∅ and therefore a homotopy equivalence. Similarly for

composition from the right. �

Proof of Proposition 4.9. Combining Lemmas 4.13 and 4.11 gives a homo-

topy equivalence DN,k−1 ' ΩDN,k, but we should explain why that homotopy

equivalence is homotopic to the map (4.13).

In the following diagram, the diagonal maps are (4.16) and (4.13), while

the bottom row comes from Lemma 4.11. We will fill out the middle vertical



STABLE HOMOLOGY OF AUTOMORPHISM GROUPS OF FREE GROUPS 741

map and prove the diagram is homotopy commutative.

DN,k−1

yy �� %%
ΩBCN,k ΩBD⊥N,k

oo // ΩDN,k.

(4.17)

Pick a nondecreasing map λ0 : (0, 1)→ R which has λ−1
0 (0) = [.3, .7] and

which restricts to homeomorphisms (0, .3) → (−∞, 0) and (.7, 1) → (0,∞).

Also pick a map ρ : [0, 1] → [0, 1] with ρ−1(0) = [0, .3] and ρ−1(1) = [.7, 1].

Define maps

[0, .3]×DN,k−1 → N0D
⊥
N,k

(t, G) 7→ (0, G− (0, λ0(t), 0))

and

[.7, 1]×DN,k−1 → N0D
⊥
N,k

(t, G) 7→ (1, G− (0, λ0(t), 0)),

where G− (0, λ0(t), 0) is to be interpreted as ∅ if t ∈ {0, 1}. Also define a map

[.3, .7]×DN,k−1 → [0, 1]×N1D
⊥
N,k

(t, G)→ (ρ(t), (0, G) < (1, G)).

These three maps glue to a map [0, 1] ×DN,k−1 → BD⊥N,k whose adjoint is a

map

DN,k−1 → ΩBD⊥N,k,

where Ω means the space of paths that start at (0, ∅) ∈ N0D
⊥
N,k and end at

(1, ∅). This defines the middle vertical arrow in (4.17).

To see homotopy commutativity of the right triangle in the diagram we

calculate the composition to be

DN,k−1 → ΩDN,k

G 7→ (t 7→ G− (0, λ0(t), 0)).
(4.18)

In this formula, the loops in the loop space are parametrized by t ∈ [0, 1], while

in the map (4.13) they are parametrized by the one-point compactification ofR.

To make sense of comparing these, we must pick an increasing homeomorphism

λ1 : (0, 1)→ R and use that to reparametrize the loops in (4.13). But then we

get the same formula as (4.18), except with λ1 instead of λ0, and we obtain a

homotopy by deforming λ0 to λ1 through proper maps (0, 1)→ R.
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To see homotopy commutativity of the left triangle we calculate the com-

position to be the adjoint of

[0, 1]×DN,k−1 → [0, 1]×N1CN,k ⊆ BCN,k
(t, G) 7→ (ρ(t), (0, G) < (1, G)).

(4.19)

On the other hand, the homotopy equivalence DN,k−1 → ΩBCN,k from (4.16)

is the adjoint of the map given by the same formula as (4.19), except with t

instead of ρ(t), so we obtain a homotopy by deforming ρ : [0, 1]→ [0, 1] to the

identity map. �

4.1.2. Second proof. The sheaf Φ is an example of an equivariant, contin-

uous sheaf in the terminology of [Gro86]. This means that Φ is continuously

functorial with respect to embeddings (not just inclusions) of open subsets of

RN ; cf. Proposition 2.12. In particular, Diff(U) acts continuously on Φ(U).

To such a sheaf on a manifold V there is an associated sheaf Φ∗ and a map of

sheaves Φ→ Φ∗. Up to homotopy, Φ∗(V ) is the space of global sections of the

fiber bundle Φfib(TV ) defined in Section 3.4, and the inclusion

Φ(V )→ Φ∗(V ) ' Γ(V,Φfib(TV ))(4.20)

is a scanning map induced by an “exponential” map on V , similar to the

map (3.7). Gromov, in [Gro86, §2.2.2], proves that (4.20) is a weak homotopy

equivalence when V is open, i.e. all connected components are noncompact, and

Φ is microflexible (we recall the definition below). This also holds in a relative

setting (V, ∂V ). In particular we can use (V, ∂V ) = (R × IN−1,R × ∂IN−1),

in which case (4.20) specializes to (4.12).

That the sheaf Φ is microflexible means that for each inclusion of compact

subsets K ′ ⊆ K ⊆ RN , each open U,U ′ with K ′ ⊆ U ′ ⊆ U ⊇ K, and each

diagram

P × {0} h //

��

Φ(U ′)

��
P × [0, 1]

f // Φ(U)

(4.21)

with P a compact polyhedron, there exists an ε > 0 and an initial lift P ×
[0, ε]→ Φ(U ′) of f extending h, after possibly shrinking U ⊇ K and U ′ ⊇ K ′.

In this subsection we prove that the sheaf of graphs is microflexible. Then

Gromov’s h-principle implies that the map (4.12) above is an equivalence for

all N .

Proposition 4.14. Let K ⊆ U be compact and P a polyhedron. Let

f : P × [0, 1]→ Φ(U) be continuous. Then there exists an ε > 0 and a contin-

uous map g : P × [0, ε]→ Φ(U) with the following properties :
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(i) The map f |P × [0, ε] agrees with g near K ;

(ii) The map g|P × {0} agrees with f |P × {0};
(iii) There exists a compact subset C ⊆ U such that the map

P × [0, ε]
g−→ Φ(U)

res−→ Φ(U − C)(4.22)

factors through the projection pr: P × [0, ε]→ P .

Proposition 4.14 immediately implies microflexibility. Indeed, given maps

as in diagram (4.21), the composition

P × [0, ε]
pr−→ P × {0} h−→ Φ(U ′)→ Φ(U ′ − C)

will agree with g : P × [0, ε]→ Φ(U) on the overlap U ∩ (U ′ −C) = U −C, so

they can be glued together to a map P × [0, ε]→ Φ(U ′). The glued map is the

initial lift in diagram (4.21).

Proof for P a point. We are given a continuous path f : [0, 1] → Φ(U).

Let C ⊆ U be compact with K ⊆ int(C) and choose τ̃ : U → [0, 1] with τ̃ = 1

near K and with supp(τ̃) ⊆ C compact. For each of the finitely many vertices

q ∈ V (f(0)) ∩ (supp(τ̃)−K), choose a function ρq : U → [0, 1] which is 1 near

q, such that the sets supp(ρq) have compact support in U−K and are mutually

disjoint. Let τ : U → [0, 1] be the function

τ(v) = τ̃(v) +
∑
q

ρq(v)
Ä
τ̃(v)− τ̃(q)

ä
.

Then τ : U → [0, 1] is locally constant outside a compact subset of U − (K ∪
V (f(0))).

Continuity of f gives a graph epimorphism ϕt : f(t) 99K f(0) for t suffi-

ciently close to 0, defined and canonical near C. Let g(t) be the image of the

map

f(t)→ U

x 7→ τ(x)x+ (1− τ(x))ϕ(x).

For t ∈ [0, 1] sufficiently close to 0, this defines an element g(t) ∈ Φ(U) satis-

fying (i), (ii), (iii). �

General case. To make the above argument work in the general case (para-

metrized by a compact polyhedron P ), we need only explain how to choose the

function τ : P × U → [0, 1]. For each p ∈ P , the above construction provides

a τp : U → [0, 1] that works for f |{p} × [0, 1] (i.e. τp(x, u) is independent of

u near vertices of f(p, 0)). The same τp will work for f |{q} × [0, 1] for all q

in a neighborhood Wp ⊆ P of p. Choose a partition of unity λp : P → [0, 1]

subordinate to the open covering by the Wp. Then let

τ(q, v) =
∑
p

λp(q)τp(v). �
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4.2. The positive boundary subcategory. The condition on morphisms in

the positive boundary subcategory C∂N ⊆ CN (Definition 4.5) ensures that any

graph representing a morphism G : (a0, A0, λ0) → (a1, A1, λ1) is connected

when |A1| = 1. This will allow us to use homological stability to prove the

“group completion” result in Proposition 4.16 using [MS76], much as was done

in the parallel case of two-dimensional manifolds in [Til97].

Lemma 4.15. Let c0 = (a0, A0, λ0) and c1 = (a1, A1, λ1) be two objects of

C∂∞, with a0 < a1 and |A1| = 1. Then

C∂∞(c0, c1) '
∐
n

BA1+|A0|
n .

Proof. The surjectivity of A1 → π0(G) implies that G is connected. Then

the lemma follows from Theorem 4.3. �

Proposition 4.16. There is a homology equivalence

Z×BAut∞ → ΩBC∂∞.
The proof of this proposition is very similar to the proof of Lemma 4.13,

but with homology equivalences instead of weak homotopy equivalences. We

first give a version of Lemma 4.12 for homology equivalences.

Lemma 4.17. Let C be a topological category and let

c1
f1−→ c2

f2−→ · · ·
be a directed system in C. Define functors Cop → Spaces by

Fi(x) = C(x, ci)
F∞(x) = hocolim

i→∞
Fi(x)

If all morphisms x→ y induce homology isomorphisms F∞(y)→ F∞(x), then

there is a homology equivalence F∞(x) ' ΩBC.

Proof. This is completely analogous to Lemma 4.12, except that the sim-

plicial map

N•(C o F∞)→ N•C
satisfies the assumptions of [MS76, Prop. 4] and therefore the geometric real-

ization

B(C o F∞)→ BC(4.23)

is a homology fibration in the sense of [MS76]. Thus for any x ∈ N0C, the

inclusion of an actual fiber over x into the homotopy fiber is a homology equiv-

alence. The actual fiber over x is F∞(x) and the homotopy fiber is homotopy

equivalent to ΩBC. �
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Proof of Proposition 4.16. We apply Lemma 4.17 to ci = (i, A, 0) ∈ N0C∂∞,

where A ⊆ int(IN ) is a one-point set.

Lemma 4.15 gives a homotopy equivalence for each object c = (a,A0, λ)

Fi(c) '
∐
n

BA1+|A0|
n

if a < i, and hence

F∞(c) ' Z×BA1+|A0|
∞ .

By Theorem 1.4, the functor F∞ : (C∂∞)op → Spaces maps every morphism to a

homology equivalence, and hence the assumptions of Lemma 4.17 are satisfied.

We get a homology equivalence from

F∞(0, ∅, 0) ' Z×BAut∞

to ΩBC∂∞ as desired. �

The following proposition is proved in several steps. The proof occupies

the rest of this section, and is similar to [GMTW09, Chap. 6].

Proposition 4.18. The inclusion induces a weak equivalence

BC∂∞
'−→ BC∞.

For G ∈ DN , we shall write fG : G → R, or just f , for the restriction to

G of the projection R× int(IN−1)→ R.

Definition 4.19. Let D′N ⊆ DN be the subset consisting of graphs G for

which no path component of G is compact.

Definition 4.20. Let G ∈ DN . A “good point” of G is a point p in the

interior of an edge of G, such that there exists a path γ : [0, 1] → G with

γ(0) = p, (f ◦ γ)′(0) > 0, f ◦ γ(t) > f(p) for t > 0, and f ◦ γ(1) > 0. A “good

level” is an a ∈ (−∞, 0] such that f−1(a) ⊆ G consists of good points. Let

RG ⊆ (−∞, 0] be the set of good levels, and let

D∂
N = {G ∈ D′N | RG 6= ∅}.

For fixed r ∈ (−∞, 0], the set {G∈DN | r∈RG} is an open subset of DN .

Lemma 4.21. There is a weak equivalence D∂
N ' BC∂N .

Proof. This is completely analogous to the proof of Lemma 4.7 in Sec-

tion 4.1. It uses the subposet D∂,t
N of DtN consisting of (a,G) with G ∈ D∂

N

and a ∈ RG, and the poset D∂,⊥
N = D⊥N ∩D∂,t

N . As in the proof of Lemma 4.7

we have levelwise equivalences

N•D
∂,⊥
N

'−→ N•D
∂,t
N , N•D

∂,⊥
N

'−→ N•C∂N ,

and the equivalence BD∂,t
N → D∂

N uses Lemma 3.4. �
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Proving Proposition 4.18 now amounts to the inclusion D∂
N ⊂ DN being

a weak equivalence. This is done in Lemmas 4.22 and 4.25 below.

Lemma 4.22. The inclusion D′N → DN is a weak equivalence.

Proof. For a given G ∈ D′N , we can assume, after possibly perturb-

ing the embedding of G into RN little, that no connected component of f

is contained in f−1(0). Then we can choose an ε0 small enough that no

connected component of f−1((−ε, ε)) ⊆ G is compact. For t ∈ [0, 1] let

ht : R → R be an isotopy of embeddings with h0 = id and h1(R) = (−ε, ε).
Let Ht = ht × id : R×RN−1 → R×RN−1. Then

t 7→ Gt = H∗t (G)

defines a continuous path [0, 1] → DN , starting at G0 = G and ending in

G1 ∈ D′N .

This proves that the relative homotopy group πk(DN , D
′
N ) is trivial for

k = 0. The case k > 0 is similar: Given a continuous map of pairs

q : (∆k, ∂∆k)→ (DN , D
′
N )

we can first perturb q a little, such that for all x ∈ ∆k, no connected component

of q(x) is contained in f−1(0), and then stretch a small interval (−ε, ε). �

For G ∈ D′N , the condition that no connected component be compact is

equivalent to saying that the map f : G→ R is unbounded when restricted to a

component. Thus f is either unbounded below or unbounded above (or both),

so for any p ∈ G there exists a path γ : [0, 1)→ G with γ(0) = p and such that

fγ(t) tends to either ∞ or −∞ as t→ 1. Such a path is a special case of what

we will call an escape to ±∞. (The slightly more general definition below is

technically convenient when obtaining such escapes to ±∞ in a parametrized

setting.)

Definition 4.23. For G ∈ DN let “G = G q {+∞,−∞}. Then f extends

to f : “G → [−∞,∞], and we equip “G with the coarsest topology in which

G ⊆ “G has the subspace topology and f : “G → [−∞,∞] is continuous. (In

other words, a sequence of points xn ∈ G, n ∈ N, converges to ±∞ ∈ “G if

and only if f(xn)→ ±∞.) An escape to +∞ is a path γ : [0, 1]→ “G such that

γ(0) = p and γ(1) = +∞. An escape to −∞ is defined similarly.

Given G and p, an escape to either +∞ or −∞ exists if and only if the

path component of G containing p is noncompact. Let us also point out that

a path γ : [0, 1] → “G is uniquely determined by its restriction [0, 1] 99K G,

defined on γ−1(G) ⊆ [0, 1].
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Remark 4.24. The statement of Lemma 4.22 is that any map of pairs

q : (∆k, ∂∆k)→ (DN , D
′
N ) is homotopic to a map q′ such that for any x ∈ ∆k

there exists an escape to ±∞ from each p ∈ q′(x). In fact, the proof gives a

slightly stronger statement, namely that such escapes exist locally in ∆k (not

just pointwise).

Indeed, if p ∈ f−1((−ε, ε)) and γ : [0, 1] → G is a path with γ(0) = p

and |fγ(1)| > ε and Ht is the isotopy from the proof of Lemma 4.22, then

H−1
1 ◦ γ : [0, 1] 99K G1 = H∗1 (G) is an escape from H−1

1 (p) to either +∞ or

to −∞. If G = q(x0) for some x0 ∈ ∆k, then the path γ can be extended

locally to Γ: Ux × [0, 1] → RN for a neighborhood Ux ⊆ ∆k of x, such that

Γ(x, t) ∈ q(x) and Γ(x0,−) = γ. Then H−1
1 ◦ Γ is a family of escapes to +∞

or −∞, defined locally near x0.

Lemma 4.25. The inclusion D∂
∞ → D′∞ is a weak homotopy equivalence.

Proof. We prove that for k ≥ 0, any map of pairs

q : (∆k, ∂∆k)→ (D′∞, D
∂
∞)(4.24)

is homotopic to a map into D∂
∞.

Consider first the case k = 0. Let G = q(∆0). Choose a, b ∈ R with

a < 0 < b and G t {a, b}×R∞, i.e. {a, b}×R∞ contains no vertices of G and

is transverse to edges in the usual sense. If G satisfies the condition that

π0(f−1(b))→ π0(f−1([a, b])) is surjective,(4.25)

then [a, a+ ε] ⊆ RG for some ε > 0, and hence G ∈ D∂
∞. For general G ∈ D′∞

we will construct a path h : [0, 1] → D′∞ with h(0) = G and such that h(1)

satisfies (4.25).

Let p ∈ f−1([a, b]), and let γ : [0, 1] 99K G be an escape from p to −∞.

A typical such G is depicted in the first picture in the cartoon in Figure 3

which also depicts a path h = hγ : [0, 1] → D′∞. The pictures show part of

the graph h(s) ∈ D′∞ for various s ∈ [0, 1]. fh(s) : h(s) → R is the height

function (projection onto vertical axis) in the pictures. At time s = 0 the

graph G = h(0) has a local maximum in f−1([a, b]). At times s ∈ (0, 1
2), the

graph h(s) is the disjoint union of G and a “circle on a string”. At times

s ∈ [1
2 , 1], h(s) is obtained from G by attaching an extra edge at the point

γ(2 − 2s) ∈ “G. The path h depends on two choices. Most importantly, it

depends on the escape γ from p to −∞ along which to “slide” the attached

extra edge. Secondly, we have only defined the graph h(s) abstractly; to get an

element of D′∞, we choose an embedding h(s) ⊂ R× int(IN−1) extending the

inclusion of G ⊂ h(s). Such an embedding always exists when N = ∞, so we

suppress it from the notation (in fact if G = q(∆0) is in D′N , then h(s) has a

nice embedding into RN+2, which extends the embedding of G into RN × {0}
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by embedding the attached edges into the last two coordinates in a standard

way. Thus h : [0, 1]→ D′N+2).

The path hγ has two convenient properties. Firstly we have the inclusion

G ⊆ h(s) for all s ∈ [0, 1]. As constructed in the cartoon in Figure 3, all local

maxima of fh(s) : h(s)→ R are in G ⊆ h(s), so the subset

RG ∩Rh(s) ⊆ RG
is open and dense. In particular Rh(s) is nonempty if RG is nonempty. So the

path h : [0, 1] → D′∞ runs entirely in D∂
∞, provided h(0) ∈ D∂

∞. Secondly, at

time s = 1, the graph G1 = h(1) is obtained from G by attaching an extra

edge extending from p ∈ G to +∞. This assures that if x ∈ f−1([a, b]) is

in the same path component as p, then there is a path from x to +∞ which

goes first to p through points in f−1([a, b]) and then to +∞ through the newly

attached edge. Thus, in the path component of f−1((a, b)) containing p, all

points in a sufficiently small neighborhood of f−1(a) are “good points” (as in

Definition 4.20) unless they are vertices or critical points of f .

There is a similar construction if γ : [0, 1]→ “G is an escape from p to +∞,

only easier: Let hγ(s) be the graph obtained from G by attaching an extra

edge extending to +∞ at the point γ(1− s) ∈ “G.

a

b

s = 0 0 < s < 1
2

s = 1
2

1
2
< s < 1 s = 1

Figure 3. h(s) for various s ∈ [0, 1]
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The same construction can be applied to attach several extra edges at the

same time. Let X ⊆ f−1
G ((a, b)) be a finite subset and let Γ: X × [0, 1] → “G

be such that Γ(p,−) is an escape from p to ±∞. Then the above construction

gives a path h = hΓ : [0, 1]→ D′∞ such that hΓ(1) is obtained from G = hΓ(0)

by attaching an extra edge extending to +∞ at all the points p ∈ X. If

X ⊆ f−1((a, b)) is chosen such that the inclusion

X q f−1(b)→ f−1([a, b])

induces a surjection in π0, then in the resulting graph h(1), all x in a sufficiently

small neighborhood of f−1(a) will be “good points” unless they are vertices or

critical points of f , and therefore Rh(1) 6= ∅ so h(1) ∈ D∂
∞. This finishes the

proof for k = 0.

Let q be as in (4.24) with k > 0. We will use a parametrized version of

the above argument to prove that q is homotopic to a map into D∂
∞, and hence

that πk(D
′
∞, D

∂
∞) vanishes. If x ∈ ∆k has q(x) 6∈ D∂

∞, then the proof in the

case k = 0 gives a path h = hΓ from q(x) to a point in D∂
∞, depending on a

family Γ: Xx × [0, 1] → q(x) of escapes to ±∞. Extending Γ to a continuous

family Γ(y) : Xx × [0, 1] → ‘q(y), y ∈ Ux, parametrized by a neighborhood Ux
of x, we get a homotopy

hx : Ux × [0, 1]→ D′∞

starting at q|Ux and ending in a map Ux → D∂
∞. (Again, if q maps to D′N

we can get hx to map to D′N+2.) The extension of Γ to a continuous family

Γ(y), y ∈ Ux, can be assumed to exist by Remark 4.24. Thus we get an open

covering of ∆k by the sets Ux, x ∈ ∆k, and corresponding homotopies hx. We

now explain how to compose these locally defined homotopies to a homotopy

of q.

By compactness, ∆k is covered by finitely many of the Ux’s, which we

relabel as Ui, i = 1, . . . ,m. Pick open sets Vi ⊆ Ui which still cover ∆k and

with V i ⊆ Ui, and pick bump functions λi : ∆k → [0, 1] with supp(λi) ⊆ Ui
and Vi ⊆ λ−1

i (1). The homotopy

Ux × [0, 1]→ D′∞

(x, s) 7→ hi(x, sλi(x))

starts at the map f |Ux and is the constant homotopy outside supp(λi), and

therefore extends to a homotopy Hi : ∆k× [0, 1]→ D′∞ starting at q, and such

that Hi(x, 1) ∈ D∂
∞ if x ∈ Vi.

The homotopies Hi are relative in the sense that Hi(x, s) ∈ D∂
∞ if f(x) ∈

D∂
∞. Moreover, the homotopies Hi have the property that q(x) ⊆ Hi(x, s)

for all s (since Hi(x, s) is obtained from f(x) by either attaching an extra

edge somewhere or by taking disjoint union with the “circle on a string” from
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the cartoon), so the graph Hi(x, s) has the same embedded paths Γj(x) as

q(x) does. Thus we can apply the process successively to the paths Γi in the

following way: First use Γ1 to construct the homotopy H1. Then think of Γ2

as a family of paths in H1(−, 1) and get a homotopy H2 starting at H1(−, 1),

etc. Composing these homotopies gives a relative homotopy H starting at q,

and ending at a map ∆k → D∂
∞. �

5. Homotopy type of the graph spectrum

The main result in this chapter is the following, which will finish the proof

of Theorem 1.5.

Theorem 5.1. We have an equivalence of spectra Φ ' S0 and hence a

weak equivalence
Ω∞Φ ' QS0.

Let us first give an informal version of the proof. Since any ε-neighborhood

of 0 ∈ RN can be stretched to all of RN , the restriction map

Φ(RN )→ Φ(0 ∈ RN )

to the “space” of germs near 0 is an equivalence. Now, a germ of a graph

around a point is easy to understand: Either it is the empty germ, or it is the

germ of a line through the point, or it is the germ of k ≥ 3 half-lines meeting

at the point. Any nonempty germ is essentially determined by k ≥ 2 points

on SN−1, so the space of nonempty germs of graphs is essentially the space

of finite subsets of cardinality ≥ 2 of SN−1. Let Sub(SN−1) denote the space

of nonempty finite subsets of SN−1. The space Sub(SN−1) is not quite right,

for two reasons—it does not model the empty germ, and it includes points

that it should not, namely the space of 1-point subsets SN−1 ⊆ Sub(SN−1).

Both of these problems can be fixed by collapsing the space of 1-point subsets

SN−1 ⊆ Sub(SN−1) to a point. The above discussion defines a map

Φ(0 ∈ RN )→ Sub(SN−1)/SN−1,(5.1)

which maps the empty germ to [SN−1] and maps the germ of (G, 0) to the

set of tangent directions of G at 0. It seems reasonable that this map should

be a homotopy equivalence (it even seems close to being a homeomorphism:

If we had considered instead piecewise linear graphs, it would be a bijection).

Curtis and To Nhu [CTN85] proves that Sub(SN−1) is contractible. (In fact

they prove that it is homeomorphic to R∞. For an easy, and more relevant,

proof of weak contractibility see [Han00] or [BD04, §3.4.1].) Therefore the

right-hand side of the map (5.1) is homotopy equivalent to SN as we want.

Unfortunately, the natural map from Φ(RN ) to the right-hand side of (5.1),

which assigns to G ∈ Φ(RN ) the set of directions of half-edges through 0 ∈ RN ,

is not even continuous.
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Let D be the category of finite sets and surjections. Then

Sub(SN−1) = colim
T∈Dop

∏
T

SN−1.

A step towards rectifying (5.1) to a continuous map is to replace the colimit

by the homotopy colimit. But the real reason for discontinuity is that from

the point of view of germs at a point, the collapse of an edge leads to a sudden

splitting of one half-edge into two or more half-edges. To fix this, we will fatten

up Φ(RN ) in a way that allows us to remove the suddenness of edge collapses,

which is remotely similar to the proof of the equivalence (4.9) in Section 4.1.

5.1. A pushout diagram. The main result of this section is Proposition 5.4

below. Recall that a graph G is a tree if it is contractible (in particular

nonempty).

Definition 5.2. Let C be the topological category whose objects are triples

(G, r, ϕ), where G ∈ Φ(RN ) and r > 0 satisfies that G t ∂B(0, r) and that

G ∩ B(0, r) is a finite tree. (Here transversality means that ∂B(0, r) contains

no vertices of G and is transverse to all edges.) ϕ is a labelling of the set of

leaves of this tree, i.e. a bijection

ϕ : m = {1, . . . ,m} ∼=−→ G ∩ ∂B(0, r).

Topologize ob(C ) as a subset

ob(C ) ⊆ Φ(RN )×
∐
r>0
k≥2

Map(m, ∂B(0, r)).

There is a unique morphism (G, r, ϕ) → (G′, r′, ϕ′) if and only if G = G′ and

r ≤ r′, otherwise there is none.

Definition 5.3. Let E• be the simplicial space where an element of Ek ⊆
NkC ×SN is a pair (χ, p), where χ = (G, r0 < r1 < · · · < rk, {ϕi}) ∈ NkC and

p ∈ SN = RN ∪ {∞} satisfies

p ∈ RN ∪ {∞} −
Ä
G ∩B(0, rk)− intB(0, r0)

ä
.

Include N•C ⊂ E• as the subset with p =∞.

Proposition 5.4. Let BC→|E•| be included as the subspace with p=∞.

Then we have a weak equivalence Φ(RN ) ' |E•|/BC .

Proposition 5.4 is proved in several steps. First, in Lemma 5.6, we write

Φ(RN ) as a homotopy pushout of three open subsets U0, U1, and U01. In

Lemma 5.8 we give a similar description of |E•|/BC as a homotopy pushout.

Then we relate the homotopy pushout diagrams by a zig-zag of weak equiva-

lences maps according to diagram (5.6).
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Definition 5.5.

(i) Let U0 ⊆ Φ(RN ) be the subset consisting of graphs G satisfying 0 6∈ G.

(ii) Let U1 ⊆ Φ(RN ) be the subset consisting of graphs G for which there

exists an r > 0 such that G t ∂B(0, r) and that G ∩B(0, r) is a tree.

(iii) Let U01 = U0 ∩ U1.

Lemma 5.6. The homotopy pushout (double mapping cylinder) of the di-

agram

U0 ← U01 → U1(5.2)

is weakly equivalent to Φ(RN ).

Proof. Φ(RN ) is the union of the two subsets U0 and U1, and it is easy

to see that both of these are open. This implies that the projection from the

homotopy pushout to Φ(RN ) is a weak equivalence. �

To give a similar pushout description of |E•|/BC in Lemma 5.8 below we

need the following definitions.

Definition 5.7. Let F0, F01, and F1 be the functors C → Spaces given by

F0(G, r, ϕ) = RN ∪ {∞} −G ∩B(0, r),

F01(G, r, ϕ) = intB(0, r)−G,
F1(G, r, ϕ) = intB(0, r).

The functor F0 is contravariant and F01 and F1 are covariant. All three

spaces Nk(C oF0), Nk(C oF01) and Nk(C oF1) are open subsets of NkC × SN ,

where SN = RN ∪ {∞}.
Lemma 5.8. |E•| is weakly equivalent to the homotopy pushout of the

diagram

B(C o F0)← B(C o F01)→ B(C o F1),(5.3)

and |E•|/BC is weakly equivalent to the homotopy pushout of the diagram

B(C o F0)/BC ← B(C o F01)→ B(C o F1).(5.4)

Proof. As subsets of NkC × SN we have

Nk(C o F0) ∩Nk(C o F1) = Nk(C o F01)

Nk(C o F0) ∪Nk(C o F1) = Ek.

Then Ek is weakly equivalent to the homotopy pushout of the following dia-

gram:

Nk(C o F0)← Nk(C o F01)→ Nk(C o F1).(5.5)
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But the homotopy pushout of diagram (5.3) is homeomorphic to the geometric

realization of the simplicial space whose k-simplices is the homotopy pushout

of (5.5). The second part is similar. �

We will now relate the pushout diagram (5.2) to the pushout diagram (5.4)

by a zig-zag of maps, according to the following diagram.

(5.6) U0 U01
oo // U1

U0

��

BC01
oo

OO

//

��

BC

OO

��
∗ B(C o F01)oo // B(C o F1)

B(C o F0)/BC

OO

B(C o F01)oo // B(C o F1).

The spaces and maps in the diagram will be defined below, and we will prove

that all vertical maps are weak equivalences. We first consider the second row

of the diagram.

Definition 5.9. Let C01 be the subcategory of C consisting of (G, r, ϕ)

with G ∈ U01.

Proposition 5.10. The forgetful maps

BC → U1, BC01 → U01

are both weak equivalences.

Proof. This is completely similar to Lemmas 4.7 and 4.11: NkC → U1

is étale for all k, and for G ∈ U1, the inverse image in C is equivalent as a

category to a totally ordered nonempty set. Similarly for BC01 → U01. �

Maps from the second to the third row in diagram (5.6) are

(5.7) C01

��

// C

��
C o F01

// C o F1.

The horizontal functors in (5.7) are the natural inclusions, and the vertical

functors are both given by (G, r, ϕ) 7→ (G, r, ϕ, 0).

Lemma 5.11.

(i) U0 is contractible.

(ii) BC → B(C o F1) is a weak equivalence.
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(iii) BC01 → B(C o F01) is a weak equivalence.

Proof. (i) follows by pushing radially away from p = 0, as in Lemma 2.7.

(ii) is also easy. Moving the point p ∈ intB(0, r) to 0 along a straight line

defines a deformation retraction of B(C o F1) onto the image of BC .

For (iii), notice that for each k we have the following pullback diagram of

spaces

NkC01
//

��

Nk(C o F01)

��∐
r>0

{0} //
∐
r>0

intB(0, r).

It is easy to see that the right-hand vertical map is a fibration (in fact a

trivial fiber bundle), so the diagram is also homotopy pullback. The bottom

horizontal map is obviously a homotopy equivalence, so it follows thatNkC01 →
Nk(C o F01) is an equivalence for all k. This proves (iii). �

The map from the third to the fourth row of diagram (5.6) is covered by

the following lemma.

Lemma 5.12. The inclusion {∞} → F0(G, r, ϕ) is a homotopy equiva-

lence, and B(C o F0)/BC is weakly contractible.

Proof. Nk(C o F0) is an open subset of NkC × SN such that all fibers of

the projection

Nk(C o F0)→ NkC

are contractible. It follows from [Seg78, Prop. (A.1)] that the projection is a

Serre fibration and hence a weak equivalence. Therefore the section NkC →
Nk(C o F0) obtained by setting p =∞ is also a weak equivalence. It is easy to

see that this section is a cofibration, so the quotient

Nk(C o F0)/NkC

is weakly contractible. �

This finishes the proof of Proposition 5.4.

Remark 5.13. From the third line in diagram (5.6) it follows that Φ(RN )

is weakly equivalent to the mapping cone of the map B(C o F01)→ BC . One

can think of this map as a “generalized spherical fibration”, and hence of the

mapping cone as a “generalized Thom space”, in the following sense. The fiber

of the map

Nk(C o F01)→ NkC
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over a point (G, r0 < r1 < · · · < rk, {ϕi}) is the space

intB(0, r0)−G '
m0−1∨

SN−2,

where m0 is the cardinality of the set G∩ ∂B(0, r0). Thus, the fibers of B(C o
F01)→ BC are not spheres, as they would be were the map an honest spherical

fibration, but wedges of spheres, where the number of spheres in the fiber varies

over the base.

5.2. A homotopy colimit decomposition. Let D≥2 be the category whose

objects are finite sets of cardinality at least 2, and whose morphisms are the

surjective maps of sets. In this section we will first rewrite |E•|/BC stably as

the pointed homotopy colimit of a functor H : Dop
≥2 → Spaces. This is done

in Proposition 5.16 below. Then we prove that this pointed homotopy colimit

is weakly equivalent to SN in Proposition 5.23. Here, N is the dimension of

the ambient euclidean space (cf. Definition 5.3). Together these results prove

Theorem 5.1.

There is a functor T : C→Dop
≥2 defined in the following way. Let (G, r, ϕ)→

(G, r′, ϕ′) be a morphism in C . We have a diagram of inclusions

G ∩ ∂B(0, r)
ir // G ∩ (B(0, r′)− intB(0, r)) G ∩ ∂B(0, r′)

ir′oo

in which the inclusion ir is a homotopy equivalence and ir′ induces a surjection

in π0.

Definition 5.14. Let f : (G, r, ϕ) → (G, r′, ϕ′) be a morphism, and let ir
and ir′ be as above. Then let T (f) be the composition

ϕ−1 ◦ (π0ir)
−1 ◦ (π0ir′) ◦ ϕ′ : m′ → m.

This defines a functor T : C → Dop
≥2.

Definition 5.15. For m ∈ Dop
≥2, let ∆ ⊆ (SN−1)m = Map(m,SN−1) be

the diagonal, i.e. ∆ ' SN−1 consists of the constant maps. Let the functor

H : Dop
≥2 → Spaces be the quotient

H(m) = Map(m,SN−1)/∆.

The following proposition will be proved below in several steps. We will

say that a map is “highly connected” if it is c(N)-connected for a function

c : N→ N such that c(N)→∞ as N →∞. Similarly we will say that a map

is “N+highly connected” if it is (N + c(N))-connected.

Proposition 5.16. There is an N+highly connected map

|E•|/BC → B(Dop
≥2 oH)/BDop

≥2.
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Recall that the space B(Dop
≥2 o H) is the homotopy colimit of H. Each

H(m) has the basepoint [∆] which defines an inclusion BDop
≥2 ⊂ B(Dop

≥2 oH).

The quotient space is the pointed homotopy colimit of the functor H.

Let K ⊆ RN be a compact subset with contractible path components.

The duality map is the map

A : (RN −K)→ Map(K,SN−1)

given by

A(p)(x) =
p− x
|p− x| .

The map A is (2N − 3)-connected. Indeed, it is homotopy equivalent to the

inclusion
π0K∨

SN−1 →
∏
π0K

SN−1.

Let ∆ ⊆ Map(K,SN−1) denote the constant maps. A induces a well defined,

continuous map

RN ∪ {∞} −K A−→ Map(K,SN−1)/∆(5.8)

by mapping ∞ 7→ [∆]. This map is also (2N − 3)-connected.

As K we can take the space G∩B(0, rk)− intB(0, r0) in the definition of

E•. This leads to the following definition.

Definition 5.17. Let ‹E• be the simplicial space where an element of ‹Ek
is a pair (χ, f), where χ = (G, r0 < r1 < · · · < rk, {ϕi}) ∈ NkC and f is an

element

f ∈ Map(K,SN−1)/∆,

where K = G ∩ B(0, rk) − intB(0, r0) and ∆ denotes the subset of constant

maps.

The subset K in the above definition will be a forest, i.e. a disjoint union

of (at least two) contractible graphs. We should explain the topology on the

space ‹Ek. The main observation is that if χ, χ′ ∈ NkC and K,K ′ are the

corresponding forests, then there will be a canonical map ϕ : K ′ → K whenever

χ′ is sufficiently close to χ. (By the definition of the topology on Φ(RN ), any

G′ near G will admit a map ϕ̃ : G′ 99K G whose domain contains K ′ and whose

image contains K. After reparametrizing edges it will restrict to a map from

K ′ onto K.) We topologize ‹Ek by declaring (χ′, f ′) close to (χ, f) if χ′ is close

to χ and f ′ is close to f ◦ ϕ.

For the following lemma, recall the notion of fiber homotopy from [Dol63],

and some related notions. If f : E → B and f ′ : E′ → B are two maps, then a
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fiber homotopy is a homotopy F : E × [0, 1] → E′ over B. A map g : E → E′

over B is a fiber homotopy equivalence if it admits a map h : E′ → E which

is left and right inverse to g up to fiber homotopy. A map E → B is fiber

homotopy trivial if it is fiber homotopy equivalent to a projection B×F → B.

A map f : E → B is locally fiber homotopy trivial if B admits a covering by

open sets U such that the restriction f−1(U) → U is fiber homotopy trivial.

It is shown in [Dol63, Th. 6.4] that local fiber homotopy triviality is sufficient

for the “long exact sequence for a fibration”: if f : E → B is locally fiber

homotopy trivial, then the homotopy groups of a fibers Fb = f−1(b) fit into a

long exact sequence with π∗(E) and π∗(B).

It follows from the definition that the projection ‹Ek → NkC is locally

fiber homotopy trivial. Indeed, let U ⊆ NkC be a neighborhood of χ small

enough that any χ′ ∈ U admits a canonical map ϕ : K ′ → K (cf. the discussion

following Definition 5.17). We get a map

U ×Map(K,SN−1)→ ‹Ek,
given by (χ′, f) 7→ (χ′, f ◦ ϕ), which restricts to a fiber homotopy equivalence

over U .

Lemma 5.18. The map A above induces N+highly connected maps |E•| →
|‹E•| and |E•|/BC → |‹E•|/BC .

Proof. Both maps Ek → NkC and ‹Ek → NkC induce long exact sequences

in homotopy groups. For ‹Ek, this was explained above, and for Ek it can be

proved in the following way. We shall prove later (Lemma 5.21) that NkC
has trivial π1 and π2. A similar argument shows that Ek is simply connected.

Hence the homotopy fiber of the projection Ek → NkC is simply connected.

From [MS76, Prop. 5] it follows that the inclusion of a fiber of the projection

Ek → NkC into the homotopy fiber is a homology equivalence. Since both the

homotopy fiber and the fiber are simply connected, it is actually a homotopy

equivalence, so Ek → NkC is a quasifibration.

The induced map on fibers is the map (5.8), so the first part of the lemma

follows from the 5-lemma. The second map uses that the inclusions of BC into

|E•| and |‹E•| are cofibrations. �

An element of Nl(C o(H ◦T )), where T is the functor from Definition 5.14,

is given by an element (G, r0 < r1 < · · · < rl, {ϕi}) ∈ Nl(C ) together with an

element g ∈ Map(m0, S
N−1)/∆. Here,

ϕi : mi → G ∩ ∂B(0, ri)

are the labellings. Again, let K = G ∩B(0, rl)− intB(0, r0). The labelling ϕ0

in the first vertex induces an injective map

ϕ0 : m0 → K
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which is a homotopy equivalence. It has a unique left inverse which we denote

ϕ−1
0 . Up to homotopy ϕ−1

0 is also right inverse to ϕ0.

Composition with ϕ−1
0 induces a homotopy equivalence

Map(m0, S
N−1)/∆

◦ϕ−1
0−−−→ Map(K,SN−1)/∆

and in turn a simplicial map

N•(C o (H ◦ T ))→ ‹E•(5.9)

which is a degreewise homotopy equivalence. Similarly to Lemma 5.18, this

proves the following lemma.

Lemma 5.19. The maps

B(C o (H ◦ T ))→ |‹E•|,
B(C o (H ◦ T ))/BC → |‹E•|/BC

induced by (5.9) are weak homotopy equivalences.

Combining Proposition 5.4 and Lemmas 5.18 and 5.19, we get the follow-

ing.

Corollary 5.20. There is an N+highly connected map

Φ(RN )→ B(C o (H ◦ T ))/BC .

Corollary 5.20 states that stably (i.e. for N →∞), we can regard Φ(RN )

as the pointed homotopy colimit of the functor (H ◦ T ) over the topological

category C . We would like to replace that with the pointed homotopy colimit

of the functor H over the category D≥2, whose objects are finite sets m of

cardinality at least 2 and whose morphisms are surjections.

Lemma 5.21. The functor T : C → Dop
≥2 induces a highly connected map

NlT : NlC → NlD
op
≥2 for all l.

Proof. The codomain NlD≥2 is a discrete set. Let (m0→m1→· · ·→ml) ∈
NlD

op
≥2. A point in the inverse image is given by embeddings of the finite setsmi

into (N−1)-spheres, and trees with these sets as the set of leaves. Embeddings

of finite sets into an (N − 1)-sphere form an (N − 3)-connected space. Trees

with a fixed set of leaves form an (N − 4)-connected space by Theorem 3.19

(applied with M = B(0, aj) − intB(0, aj−1), and using that As0 is the trivial

group). �

The approximation in Lemma 5.21 may seem to be not good enough.

Ω∞Φ is the direct limit of the spaces ΩNΦ(RN ), so we should deal with spaces

up to N+highly connected maps instead of just up to highly connected maps.
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Surprisingly, the extra N comes for free. (Analogously, if f : X → Y is c-

connected and ξ is an N -dimensional vector bundle over Y , then the map of

Thom spaces Xf∗ξ → Y ξ is (c+N)-connected.) Proposition 5.22 finishes the

proof of Proposition 5.16.

Proposition 5.22. The map

B(C o (H ◦ T ))/BC → B(Dop
≥2 oH)/BDop

≥2

is N+highly connected.

Proof. For all k we have the following pullback diagram.

Nk(C o (H ◦ T )) //

��

Nk(D
op
≥2 oH)

��
NkC // NkD

op
≥2.

The right-hand vertical map is a fibration, so the diagram is also homotopy

cartesian. Both vertical maps are split, using the canonical basepoint ∞ ∈ H.

It follows that the diagram

NkC //

��

NkD
op
≥2

��
Nk(C o (H ◦ T )) // Nk(D

op
≥2 oH)

is also homotopy cartesian (horizontal homotopy fibers are homotopy equiva-

lent).

The vertical and horizontal maps are all (N − 3)-connected. It follows by

the Blakers-Massey theorem that the diagram is (N−3)+(N−3)−1 = (2N−7)-

cocartesian. This means precisely that the induced map of vertical cofibers is

(2N − 7)-connected and the claim follows. �

Thus, we have an N+highly connected map from Φ(RN ) to the pointed

homotopy colimit of the functor H : Dop
≥2 → Spaces. We proceed to determine

the homotopy type of this pointed homotopy colimit. Recall that H(m) =

Map(m,SN−1)/∆. The pointed homotopy colimit is homeomorphic to the

quotient

B(Dop
≥2 oMap(−, SN−1))/B(Dop

≥2 o∆),(5.10)

where ∆ denotes the constant functor SN−1.

Proposition 5.23. The spaces B(Dop
≥2 oMap(−, SN−1)) and BD≥2 are

both contractible.
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Proof of Theorem 5.1. Proposition 5.23 implies thatB(Dop
≥2o∆) ∼= BDop

≥2×
SN−1 ' SN−1, so the quotient in (5.10) becomes SN and we get an N+highly

connected map

Φ(RN )→ SN .(5.11)

The map (5.11) is a zig-zag of N+highly connected maps, all of which induce

spectrum maps as N varies. It follows that there is a weak equivalence of

spectra Φ ' S0 as claimed. �

Remark 5.24. For an object m ∈ D≥2, let ∆ → (S−1)m be the inclusion

of the diagonal into the k-fold power of the spectrum S−1. Let (S−1)m/∆ be

the cofiber. Then we have proved two homotopy equivalences

Φ ' hocolim
m∈Dop

≥2

Ç
(S−1)m/∆

å
' S0.

Proof of Proposition 5.23. We have a functor D≥2 → D≥2 given by T 7→
2× T , and the projections define natural transformations

T 2× Too // 2.

This contracts BD≥2 to the point 2 ∈ BD≥2.

For the space

B(Dop
≥2 oMap(−, SN−1)) = hocolim

T∈Dop
≥2

Map(T, SN−1),

we use a trick strongly inspired by the works of [Han00] and [BD04, §3.4.1],

which prove that the colimit (not homotopy colimit) is contractible.

Choose a (symmetric monoidal) disjoint union functor q : D≥2 × D≥2 →
D≥2. For brevity, denote the functor Map(−, SN−1) by J . The disjoint union

functor induces a functor

(Dop
≥2 o J)× (Dop

≥2 o J)→ (Dop
≥2 o J)

which is associative and commutative up to natural transformations. It follows

that the classifying space is a homotopy associative and homotopy commuta-

tive H-space, possibly without a homotopy unit.

In this H-space structure, multiplication by 2 is homotopic to the identity.

This follows from the natural transformation T q T → T . The claim then

follows from Lemma 5.25 below. �

Lemma 5.25. Let X be a connected, homotopy associative, homotopy

commutative H-space, not necessarily with a homotopy unit. Then X is weakly

contractible if multiplication by 2 (i.e. the map x 7→ x · x) is homotopic to the

identity.
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This lemma is completely trivial when X has a homotopy unit. In that

case, it is well known that the map induced by the H-space structure

π∗X × π∗X → π∗X

agrees with the usual group multiplication on homotopy groups. Hence all

x ∈ π∗X satisfies x + x = x. The proof in the general case is a variation of

this argument.

Proof. Let µ : X ×X → X be the H-space structure. Choose a basepoint

x0 ∈ X and write πn(X) = πn(X,x0). We can assume that µ is a pointed

map (after replacing X by the mapping cylinder of the inclusion {x0} → X

we can homotope µ to a basepoint preserving map). The two projections

p, q : X ×X → X induce an isomorphism

(p∗, q∗) : πn(X ×X)→ πnX × πnX,

and we let

• = µ∗ ◦ (p∗, q∗)
−1 : πnX × πnX → πnX.

On the level of spaces, the equations xy = yx, (xy)z = x(yz), and x = xx hold

up to homotopy, but the homotopies need not be basepoint preserving. The

homotopy involved in homotopy commutativity ofX moves the basepoint along

some loop α ∈ π1(X), and on πn(X) we get the equation x•y = (y•x)α, where

the superscript denotes the action of π1(X) on πn(X). Similarly, (x • y) • z =

(x • (y • z))β and x • x = xγ for some β, γ ∈ π1(X) and all x, y, z ∈ π∗(X).

Let + denote the usual group structure on πnX and write 0 for the identity

element with respect to + (we will write it additively although we do not yet

know that it is commutative for n = 1). For σ ∈ π1(X) we have 0σ = 0 and

naturality of the action of π1 gives

xσ • yσ = (x • y)σ•σ = (x • y)γσγ
−1
.

In particular we have xσ • yσ = (x • y)σ when σ commutes with γ.

Let ∆: X → X ×X be the diagonal and i, j : X → X ×X the inclusions

i(x) = (x, x0), j(x) = (x0, x). Then we have

(p∗, q∗) ◦ (i∗ + j∗)(x) = ((p ◦ i)∗, (q ◦ i)∗)(x) + ((p ◦ j)∗, (q ◦ j)∗)(x)

= (x, 0) + (0, x) = (x, x) = (p∗, q∗) ◦∆∗(x).

It follows that ∆∗ = i∗+j∗ because (p∗, q∗) is an isomorphism. Now µ◦∆ ' id

and µ ◦ i ' µ ◦ j, so

xγ = x • x = µ∗∆∗(x) = µ∗i∗x+ µ∗j∗x(5.12)

= x • 0 + 0 • x = x • 0 + (x • 0)α.
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Vanishing of all πn(X) can be deduced algebraically from these equations

in the following way. We have

(x • 0)γ
−1 • 0 = ((x • 0) • 0)γ

−1
= (x • (0 • 0))βγ

−1

= (x • 0)βγ
−1

= xγ
−1β • 0,

so if we substitute (x • 0)γ
−1

for x in (5.12) we get

x • 0 = xγ
−1β • 0 + (xγ

−1β • 0)α.

On the other hand if we substitute xγ
−1β for x in (5.12) we get

xγ
−1βγ = xγ

−1β • 0 + (xγ
−1β • 0)α,

and hence x • 0 = xγ
−1βγ . Substituting this back into (5.12) we get xγ =

(xγ
−1βγ) + (xγ

−1βγ)α which, after substituting xγ
−1β−1γ for x gives

xγ
−1β−1γ2 = x+ xα.(5.13)

For n = 1, the right-hand side of this equation (in multiplicative notation)

is xαxα−1, and (5.13) implies that x 7→ xαxα−1 is a group homomorphism.

Therefore

α−1x2α−1 = (α−1x)α(α−1x)α−1 = (α−1αα−1α−1)(xαxα−1)

= α−2xαxα−1,

and hence x = αxα−1 = xα for all x ∈ π1(X) and hence x 7→ x2 is a group

endomorphism of π1(X). This can only happen if π1(X) is commutative and

then (5.13) says that x = 2x in the abelian group π1(X). This implies that

π1(X) vanishes, and then (5.13) says that x = 2x on πn(X) for all n and

therefore all homotopy groups vanish. �

5.3. Hatcher ’s splitting. We have now completed our proof of Theorem 1.5,

the existence of an integral homology equivalence

Z×BAut∞ → QS0.(5.14)

By the Barratt-Priddy-Quillen Theorem ([BP72]), there is also a homology

equivalence Z×BΣ∞ → QS0, and hence the homology groups Hk(BΣn) and

Hk(BAutn) are isomorphic in the stable range. However, as pointed out in

Section 1.1, we have not shown that the isomorphism is induced by the group

homomorphism ϕn : Σn → Aut(Fn), which to a permutation σ associates the

automorphism that permutes the generators according to σ. However, Hatcher

([Hat95]) proved that in the stable range, Bϕn : BΣn → BAut(Fn) induces a

split injection of Hk(BΣn) onto a direct summand of Hk(BAut(Fn)). Since

Hk(BΣn) is a finitely generated abelian group, the abstract existence of an

isomorphism implies that the split injection (Bϕn)∗ is an isomorphism. Thus

Theorem 1.5 implies Theorem 1.1, using Hatcher’s splitting.
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Hatcher’s proof that Bϕn : BΣn → BAut(Fn) induces a split injection

in the stable range uses a difficult theorem from Waldhausen’s “algebraic K-

theory of spaces”. In this section we offer a different proof, based on the

stable transfer map constructed by Becker-Gottlieb ([BG76]). The proof will

use slightly more stable homotopy theory than the rest of the paper. If X is

a space we will write Σ∞+ X for the suspension spectrum of X with a disjoint

base point added. Recall that the Becker-Gottlieb transfer associates to a

fibration f : E → B, whose homotopy fibers are homotopy equivalent to finite

complexes, a map of spectra T (f) : Σ∞+ B → Σ∞+ E. Let τ(f) : Σ∞+ B → S0

denote the composition with the map E+ → S0 which collapses E to a point.

We will use the same notation τ(f) for the adjoint map B → QS0. Recall also

that to a group G acting on a space X there is an associated fiber bundle

XhG → BG,

with fiber X, where XhG = EG ×G X denotes the Borel construction of the

action. We give a proof of Hatcher’s splitting result in the following form.

Theorem 5.26. Let Aut(Fn) act on BFn ' ∨nS1 in the obvious way,

and let

(BFn)hAut(Fn)
h−→ BAut(Fn)

be the associated fiber bundle and τ(h) : BAut(Fn) → QS0 the corresponding

transfer. Then the composition τ(h) ◦Bϕn : BΣn → QS0 is a homology equiv-

alence in the stable range (onto the homology of the path component of QS0

which it hits).

By a general property of Borel constructions we have a homotopy equiva-

lence (BFn)hAut(Fn) ' B(Aut(Fn)nFn). The semidirect product Aut(Fn)nFn
can be seen to be isomorphic to the group A2

n from Definition 1.3, although

we shall not need this fact.

Proof. The action restricts to an action of Σn on BFn, and we have a

pullback diagram of fiber bundles

(BFn)hΣn
//

f

��

(BFn)hAut(Fn)

h
��

BΣn
// BAut(Fn).

The fiber bundles induce transfer maps τ(h) : BAut(Fn)→QS0 and τ(f) : BΣn

→ QS0, and naturality of the transfer implies that

τ(f) ' τ(h) ◦Bϕn : BΣn → QS0.

It remains to see that τ(f) is a homology isomorphism in the stable range.
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Let n = {1, 2, . . . , n} be an n-point set considered as a Σn-space in the

obvious way. The action gives rise to a fiber bundle

BΣn−1 ' (n)hΣn
g−→ BΣn

and an associated map τ(g) : BΣn → QS0. We wish to use [BS98] to compare

τ(f) and τ(g). Let n+ = nq {∞}. We have a pushout square of Σn-spaces

n+
//

��

C(n+)

��
C(n+) // Rn,

where C(n+) = [0, 1] ∧ n+ denotes the reduced cone, giving rise to a pushout

square of spaces over BΣn

BΣn−1 qBΣn
//

��

BΣn

��
BΣn

// (Rn)hΣn .

The properties of transfer maps from [BS98] (in particular the “additivity”

property) now gives

τ(f) = τ(1)− τ(g) ∈ [BΣn, QS
0].

Here 1 denotes the identity map of BΣn and τ(1) : BΣn → QS0 is just a

constant map to the 1-component.

Now, the Barratt-Priddy-Quillen theorem says that the map τ(g) : BΣn →
QS0 gives a homology isomorphism in a stable range, and hence the same is

true for τ(f) = τ(1)− τ(g). �

6. Remarks on manifolds

Most of the results of this paper work equally well for the sheaf Ψd, where

Ψd(U) is the space of all closed sets M ⊆ U which are smooth d-dimensional

submanifolds without boundary. A neighborhood basis at M is formed by the

sets

VK,W = {N ∈ Ψd(U)|N ∩K = j(M) ∩K for some j ∈W},
where K ⊆ U is a compact set and W ⊆ Emb(M,U) is a neighborhood of the

inclusion in the Whitney C∞-topology.

The analogues of Lemma 4.7 and Proposition 4.8 hold with almost iden-

tical proofs. (For Proposition 4.8 one should use the “second proof” given in

4.1.2 based on Gromov’s microflexible sheaves. The analogue for manifolds of

the “first proof” is a bit more complicated. In Lemma 4.13 we can no longer

say that DN,k is connected for k ≥ 1 as we could for graphs. Instead one can
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with a some work arrange that CN,k is a grouplike topological category, which

is sufficient.) That gives the following weak equivalence:

BCNd ' ΩN−1Ψd(R
N )(6.1)

Here CNd is the cobordism category whose objects are closed (d− 1)-manifolds

M ⊆ {a} × RN−1 and whose morphisms are compact d-manifolds W ⊆
[a0, a1]×RN−1; cf. [GMTW09, §2].

Let Grd(R
N ) be the Grassmannian of d-planes inRN , and U⊥d,N the canon-

ical (N − d)-dimensional vector bundle over it. A point in U⊥d,N is given by a

pair (V, v) ∈ Grd(R
N )×RN with v ⊥ V . Let

q : U⊥d,N → Ψd(R
N )

be the map given by q(V, v) = V − v ∈ Ψd(R
N ). This gives a homeomorphism

onto the subspace of manifolds Md ⊆ RN which are affine subspaces. q extends

continuously to the one-point compactification of U⊥d,N by letting q(∞) = ∅.
This one-point compactification is the Thom space Th(U⊥d,N ), and we get a

map

q : Th(U⊥d,N )→ Ψd(R
N ).(6.2)

We will show that (6.2) is a weak equivalence. Define two open subsets U0 ⊆
Ψd(R

N ) and U1 ⊆ Ψd(R
N ) in the following way. U0 is the space of d-manifolds

M such that 0 6∈ M , and U1 is the space of manifolds such that the function

p 7→ |p|2 has a unique, nondegenerate minimum on M . Let U01 = U0 ∩ U1.

These are open subsets, and Ψd(R
N ) is the pushout of (U0 ← U01 → U1).

Lemma 6.1. Each restriction of q

q−1(U0)→ U0

q−1(U01)→ U01

q−1(U1)→ U1

is a weak homotopy equivalence. Consequently (6.2) is a weak equivalence.

Proof. The last statement follows from the first, because the projections

from homotopy pushouts to pushouts are weak equivalences, and by the general

fact that homotopy pushouts preserve weak equivalences.

U0 and q−1(U0) are both contractible: q−1(U0) contracts to the point ∞,

and the path constructed in the proof of Lemma 2.7 gives a contraction of U0,

pushing everything to infinity, radially away from 0.

For U1 a deformation retraction is defined as follows. Let M ∈ U1 have p

as unique minimum of p 7→ |p|2. Let ϕt(x) = p + (1 − t)(x − p). This defines

a diffeomorphism RN → RN for t < 1. A path γ in U1 from M to a point in

the image of q is defined by γ(t) = ϕ−1
t (M) for t < 1 and γ(1) = p + TpM .
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This proves that q−1(U1)→ U1 is a deformation retraction. This deformation

restricts to a deformation retraction of q−1(U01)→ U01. �

We have proved the following result.

Proposition 6.2. q : Th(U⊥d,N )→ Ψd(R
N ) is a weak equivalence. �

Thus we have proved the following theorem. In the limit N → ∞ we

recover the main theorem of [GMTW09], but Theorem 6.3 holds also for fi-

nite N .

Theorem 6.3. There is a weak homotopy equivalence

BCNd ' ΩN−1Th(U⊥d,N ).
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