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All automorphisms of the Calkin algebra
are inner

By Ilijas Farah

Dedicated to my wife Tatiana Velasevic and Dr. Carl J. Vaughan

and Dr. Leonard N. Girardi of New York-Presbyterian Hospital.

Without them I would not be around to prove Theorem 1.

Abstract

We prove that it is relatively consistent with the usual axioms of math-

ematics that all automorphisms of the Calkin algebra are inner. Together

with a 2006 Phillips-Weaver construction of an outer automorphism using

the Continuum Hypothesis, this gives a complete solution to a 1977 prob-

lem of Brown-Douglas-Fillmore. We also give a simpler and self-contained

proof of the Phillips-Weaver result.

Fix a separable infinite-dimensional complex Hilbert space H. Let B(H)

be its algebra of bounded linear operators, K(H) its ideal of compact opera-

tors and C(H) = B(H)/K(H) the Calkin algebra. Let π : B(H) → C(H) be

the quotient map. In [7, 1.6(ii)] (also [35], [43]) it was asked whether all auto-

morphisms of the Calkin algebra are inner. Phillips and Weaver ([33]) gave a

partial answer by constructing an outer automorphism using the Continuum

Hypothesis. We complement their answer by showing that a well-known set-

theoretic axiom implies all automorphisms are inner. Neither the statement

of this axiom nor the proof of Theorem 1 involve set-theoretic considerations

beyond the standard functional analyst’s toolbox.

Theorem 1. Todorcevic’s Axiom, TA, implies that all automorphisms of

the Calkin algebra of a separable Hilbert space are inner.

Todorcevic’s Axiom (also known as the Open Coloring Axiom, OCA) is

stated in Section 2.3. Every model of ZFC has a forcing extension in which

TA holds ([41]). TA also holds in Woodin’s canonical model for negation of

the Continuum Hypothesis ([44], [28]) and it follows from the Proper Forcing

Axiom, PFA ([40]). The latter is a strengthening of the Baire Category Theo-

rem and besides its applications to the theory of liftings it can be used to find

other combinatorial reductions ([40, §8], [31]).
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The Calkin algebra provides both a natural context and a powerful tool for

studying compact perturbations of operators on a Hilbert space. The original

motivation for the problem solved in Theorem 1 comes from a classification

problem for normal operators. By results of Weyl, von Neumann, Berg and

Sikonia, if a and b are normal operators in B(H) then one is untarily equivalent

to a compact perturbation of the other if and only if their essential spectra

coincide (see the introduction to [6] or [8, §IX]). The essential spectrum, σe(a),

of a is the set of all accumulation points of its spectrum σ(a), together with

all of its isolated points of infinite multiplicity. It is known to be equal to

the spectrum of π(a) in the Calkin algebra. Therefore the map a 7→ σe(a)

provides a complete invariant for the unitary equivalence of those operators in

the Calkin algebra that lift to normal operators in B(H).

An operator a is said to be essentially normal if aa∗ − a∗a is compact, or

equivalently, if its image in the Calkin algebra is normal. Not every essentially

normal operator is a compact perturbation of a normal operator. For example,

an argument using the Fredholm index shows that the unilateral shift S is not

a compact perturbation of a normal operator ([6]) while its image in C(H)

is clearly a unitary. Since the essential spectra of S and its adjoint are both

equal to the unit circle, the above mentioned classification does not extend

to all normal operators in C(H). For an essentially normal operator a and

λ ∈ C\σe(a) the operator a−λI is Fredholm. In [6] (see also [7] or [8, §IX]) it

was proved that the function λ 7→ index(a− λI) together with σe(a) provides

a complete invariant for the relation of unitary equivalence modulo a compact

perturbation on essentially normal operators.

It is interesting to note that the unitary equivalence of normal (even self-

adjoint) operators is of much higher complexity than the unitary equivalence

of normal (or even essentially normal) operators modulo the compact pertur-

bation. By the above, the latter relation is smooth: a complete invariant is

given by a Borel-measurable map into a Polish space. On the other hand, the

complete invariant for the former given by the spectral theorem is of much

higher complexity. As a matter of fact, in [26] it was proved that the unitary

equivalence of self-adjoint operators does not admit any effectively assigned

complete invariants coded by countable structures.

Instead of the unitary equivalence modulo compact perturbation, one may

consider a coarser relation which we temporarily denote by ∼. Let a ∼ b if

there is an automorphism Φ of the Calkin algebra sending π(a) to π(b). It is

clear that a ∼ b implies σe(a) = σe(b), and therefore two relations coincide on

normal operators. By [6] these two relations coincide on normal operators, and

the conclusion of Theorem 1 implies that they coincide on all of B(H). The

outer automorphism Φ constructed in [33], as well as the one in Section 1 below,

is pointwise inner : Φ(π(a)) = Φ(π(b)) implies an inner automorphism sends
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π(a) to π(b). It is not known whether ∼ can differ from the unitary equivalence

modulo a compact perturbation in some model of set theory. In particular,

it is still open whether the Continuum Hypothesis implies the existence of an

automorphism of the Calkin algebra sending the image of the unilateral shift

to its adjoint. See [33] for a discussion and related open problems.

Theorem 1 belongs to a line of results starting with Shelah’s ground-

breaking construction of a model of set theory in which all automorphisms of

the quotient Boolean algebra P(N)/Fin are trivial ([36]). An equivalent refor-

mulation states that it is impossible to construct a nontrivial automorphism

of P(N)/Fin without using some additional set-theoretic axiom. Through the

work of Shelah-Steprāns, Velickovic, Just, and the author this conclusion was

extended to many other quotient algebras P(N)/I. The progress was made

possible by replacing Shelah’s intricate forcing construction by the PFA ([37])

and then in [42] by Todorcevic’s Axiom ([40, §8]) in conjunction with Martin’s

Axiom. A survey of these results can be found in [16]. See also [24] for closely

related rigidity results in the Borel context (cf. §6 below).

0.1. Terminology and notation. All the necessary background on operator

algebras can be found e.g., in [32] or [43]. Throughout we fix an infinite di-

mensional separable complex Hilbert space H and an orthonormal basis (en).

Let π : B(H) → C(H) be the quotient map. If F is a closed subspace of H

then projF denotes the orthogonal projection to F . Fix an increasing family of

finite-dimensional projections (Rn) such that
∨
n Rn = I, and consider a non-

increasing family of seminorms ‖a‖n = ‖(I−Rn)a‖. Let ‖a‖K = limn→∞ ‖a‖n.

Note that ‖a‖K = ‖π(a)‖, with the norm of π(a) computed in the Calkin al-

gebra. Projections P and Q are almost orthogonal if PQ is compact. This is

equivalent to QP = (PQ)∗ being compact.

Let A, B be C∗-algebras, J1, J2 their ideals and let Φ: A/J1 → B/J2 be a

*-homomorphism. A map Ψ: A → B such that (πJi is the quotient map)

A Ψ //

πJ1

��

B
πJ2

��
A/J1

Φ
// B/J2

commutes, is a representation of Φ. Since we do not require Ψ to be a *-homo-

morphism, the Axiom of Choice implies every Φ has a representation.

For a partition ~E of N into finite intervals (En) let D[ ~E] be the von Neu-

mann algebra of all operators in B(H) for which each span{ei | i ∈ En} is

invariant. We always assume En are consecutive, so that max(En) + 1 =

min(En+1) for each n. If En = {n} then D[ ~E] is the standard atomic masa

von Neumann algebra of all operators diagonalized by the standard basis.
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These FDD (short for ‘finite dimensional decomposition’) von Neumann al-

gebras play an important role in the proof of Theorem 1. For M ⊆ N let P
~E
M

(or PM if ~E is clear from the context) be the projection to the closed linear

span of
⋃
i∈M{en | n ∈ Ei} and let DM [ ~E] be the ideal PMD[ ~E]PM = PMD[ ~E]

of D[ ~E]. It is not difficult to see that an operator a in D[ ~E] is compact if and

only if limi ‖P( ~E)
{i} a‖ = 0. The strong operator topology coincides with the

product of the norm topology on the unitary group of D[ ~E], U [ ~E] =
∏
i U(Ei)

and makes it into a compact metric group.

If A is a unital C∗-algebra then U(A) denotes its unitary group. We shall

write U [ ~E] for U(D[ ~E]) and UA[ ~E] for U(DA[ ~E]). Similarly, we shall write C[ ~E]

for D[ ~E]/(D[ ~E] ∩ K(H)). For a C∗-algebra D and r <∞ write

D≤r = {a ∈ D | ‖a‖ ≤ r}.

The set of self-adjoint operators in D is denoted by Dsa.

The spectrum of a normal operator b in a unital C∗-algebra is

σ(b) = {λ ∈ C | b− λI is not invertible}.

A rough outline of the proof of Theorem 1. If D is a subset of B(H), we

say that Φ is inner on D if there is an inner automorphism Φ′ of C(H) such

that the restrictions of Φ and Φ′ to π[D] coincide. In Theorem 1.1 we use CH

to construct an outer automorphism of the Calkin algebra whose restriction

to each D[ ~E] is inner. In Theorem 3.2 we use TA to show that for any outer

automorphism Φ there is ~E such that Φ is not inner on D[ ~E]. Both of these

proofs involve the analysis of ‘coherent families of unitaries’ (§1).

Fix an automorphism of the Calkin algebra Φ. Fix ~E such that the se-

quence #En is nondecreasing. A simple fact that Φ is inner on D[ ~E] if and

only if it is inner on DM [ ~E] for some infinite M is given in Lemma 6.2. Hence

we only need to find an infinite M such that the restriction of Φ to DM [ ~E] is

inner. This is done in Proposition 7.1. Its proof proceeds in several stages and

it involves the notion of an ε-approximation (with respect to ‖ · ‖K) to a rep-

resentation (see §4) and the family J n( ~E) = {A ⊆ N | Φ has a C-measurable

2−n-approximation on D[ ~E]}. In Lemma 7.2, TA is used again to prove that

J n( ~E) is so large for every n that
⋂
n J n( ~E) contains an infinite set M . The

Jankov, von Neumann uniformization theorem (Theorem 2.1) is used to pro-

duce a C-measurable representation of Φ on DM [ ~E] as a ‘limit’ of given 2−n-

approximations. This C-measurable representation is turned into a conjuga-

tion by a unitary in Theorem 6.3. This result depends on the Ulam-stability

of approximate *-homomorphisms (Theorem 5.1).

Part of the present proof that deals with FDD von Neumann algebras

owes much to the proof of the ‘main lifting theorem’ from [13] and a number

of elegant improvements from Fremlin’s account [20]. In particular, the proof
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of Claim 6.5 is based on the proof of [20, Lemma 1P] and Section 7.1 closely

follows [20, Lemma 3C].

1. An outer automorphism from the Continuum Hypothesis

We first prove a slight strengthening of the Phillips-Weaver result. Lem-

mas 1.2, 1.3 and 1.6, as well as definitions of ρ and ∆I , will be needed in the

proof of Theorem 1.

Theorem 1.1. The Continuum Hypothesis implies there is an outer au-

tomorphism of the Calkin algebra. Moreover, the restriction of this automor-

phism to the standard atomic masa and to any separable subalgebra is inner.

If ~E and ~F are partitions of N into finite intervals, we write ~E ≤∗ ~F if for

all but finitely many i there is j such that Ei ∪ Ei+1 ⊆ Fj ∪ Fj+1. A family E
of partitions is cofinal if for every ~F there is ~E ∈ E such that ~F ≤∗ ~E.

Let T denote the circle group, {z ∈ C | |z| = 1}, and let TN be its countable

power. It is isomorphic to the unitary group of the standard atomic masa. For

α ∈ TN let uα be the unitary operator on H that sends en to α(n)en. For a

unitary u let Ψu be the conjugation by u, Ψu(a) = uau∗ (usually denoted by

Adu in the operator algebras literature.) If u = uα we write Ψα for Ψuα . We

say that Ψα and Ψβ agree modulo compacts on D if Ψα(a)−Ψβ(a) is compact

for every a ∈ D.

Given ~E define two coarser partitions: ~Eeven, whose entries are E2n∪E2n+1

and ~Eodd, whose entries are E2n−1 ∪ E2n (with E−1 = ∅). Let

F [ ~E] = D[ ~Eeven] ∪ D[ ~Eodd].

I have proved Lemma 1.2 below using the methods of [3]. George Elliott

pointed out that the proof of this lemma (in a more general setting) is contained

in the proof of [11, Theorem 3.1], as remarked in [12].

Lemma 1.2. For a sequence (an) in B(H) there are a partition ~E, a0
n ∈

D[ ~Eeven] and a1
n ∈ D[ ~Eodd] such that an − a0

n − a1
n is compact for each n.

Proof. For A ⊆ N write P
(en)
A for the projection to the closed linear span of

{ei | i ∈ A}. Fixm ∈ N and ε > 0. Since aP[0,m) is compact, we can find n > m

large enough to have ‖P[n,∞)aP[0,m)‖ < ε and similarly ‖P[n,∞)a
∗P[0,m)‖ < ε.

Therefore ‖P[0,m)aP[n,∞)‖ < ε as well. Recursively find a strictly increasing

f : N→ N such that for all m ≤ n and i ≤ n we have ‖P[f(n+1),∞)aiP[0,f(m))‖ <
2−n and ‖P[0,f(m))aiP[f(n+1),∞)‖ < 2−n. We shall check that ~E defined by

En = [f(n), f(n+1)) is as required. Write Qn = P[f(n),f(n+1)) (with f(0) = 0).

Fix a = ai and define

a0 =
∑∞
n=0(Q2naQ2n +Q2naQ2n+1 +Q2n+1aQ2n),

a1 =
∑∞
n=0(Q2n+1aQ2n+1 +Q2n+1aQ2n+2 +Q2n+2aQ2n+1).
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Then a0 ∈ D[ ~Eeven], a1 ∈ D[ ~Eodd]. Let c = a− a0 − a1. For every n we have

‖P[f(n),∞)c‖ ≤
∥∥∥∑∞i=n P[f(i),∞)aP[0,f(i−1))

∥∥∥+
∥∥∥∑∞i=n+1 P[f(n),f(i))aP[f(i+1),∞)

∥∥∥
≤ 2−n+2 + 2−n+1,

and therefore c is compact. �

Whenever possible we collapse the subscripts/superscripts and write e.g.,

Ψξ for Ψαξ (which is of course Ψu
αξ

).

Lemma 1.3. Assume ( ~Eξ)ξ∈Λ is a directed cofinal family of partitions

and αξ , ξ ∈ Λ, are such that Ψη and Ψξ agree modulo compacts on F [ ~Eξ]

for ξ ≤ η. Then there is an automorphism Φ of C(H) such that Ψξ is a

representation of Φ on F [ ~Eξ] for every ξ ∈ Λ. Moreover, Φ is unique.

Proof. By Lemma 1.2, for each a ∈ B(H) there is a partition ~E with

a0 ∈ D[ ~Eeven] and a1 ∈ D[ ~Eodd] such that a− a0− a1 is compact. Fix ~F = ~Eξ

such that ~E ≤∗ ~F and let Φ(π(a)) = π(Ψ~F (a)).

Then Φ is well-defined by the agreement of Ψξ’s. For every pair of oper-

ators a, b there is a single partition ~E with a0 and b0 in D[ ~Eeven] and a1 and

b1 in D[ ~Eodd] such that both a − a0 − a1 and b − b0 − b1 are compact. This

readily implies Φ is a *-homomorphism.

The inverse maps Ψ∗ξ = Ψ(u
αξ

)∗ also satisfy the assumptions of the lemma

and there is a *-homomorphism Φ∗ such that Ψ∗ξ is a representation of Φ∗ on

F [ ~Eξ] for every ξ. Then ΦΦ∗ = Φ∗Φ is the identity on C(H); hence Φ is an

automorphism. The uniqueness follows from Lemma 1.2. �

Let T be the unitary group of the 1-dimensional complex Hilbert space.

Recall that every inner automorphism of C(H) has a representation of the form

Ψu for u which is an isometry between subspaces of H of finite codimension.

The proof of the following lemma was suggested by Nik Weaver.

Lemma 1.4. Assume u and v are isometries between subspaces of H of

finite codimension. If Ψu(a)−Ψv(a) is compact for every a diagonalized by (en),

then there is α ∈ (T)N for which the linear map w defined by w(en) = α(n)v(en)

for all n is such that Ψw(a)−Ψu(a) is compact for all a in B(H).

Proof. Let A = {a ∈ B(H) | a is diagonalized by (en)}. By our assump-

tion, π(v∗u) commutes with π(a) for all a ∈ A. Since π[A] is, by [22], a maximal

abelian self-adjoint subalgebra of the Calkin algebra we have π(w0) = π(v∗u)

for some w0 ∈ A. Let w0 = bw1 be the polar decomposition of w0 in A. Since

π(b) = I we have π(w1) = π(v∗u). Since the Fredholm index of w1 is 0 and

π(w1) is a unitary, we may assume w1 is a unitary. Fix α ∈ TN such that

w1 = uα, i.e., w1(en) = α(n)en for all n.
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Let w = vw1. Then π(w) = π(vv∗u) = π(u). Hence Ψw(a) − Ψu(a)

is compact for all a ∈ B(H). Also, for each n we have w(en) = vw1(en) =

v(α(n)en) = α(n)v(en). �

For i, j in N and α, β in TN, let

ρ(i, j, α, β) = |α(i)α(j)− β(i)β(j)|.

For fixed i, j the function f ≡ ρ(i, j, ·, ·) satisfies the triangle inequality:

f(α, β) + f(β, γ) ≥ f(α, γ).

We also have

ρ(i, j, α, β) = |ρ(i, j, α, β)α(j)β(i)| = |α(i)β(i)− α(j)β(j)|.

Hence for fixed α, β the function f1 ≡ ρ(·, ·, α, β) also satisfies the triangle

inequality:

f1(i, j) + f1(j, k) ≥ f1(i, k).

For I ⊆ N and α and β in TN write

∆I(α, β) = sup
i∈I, j∈I

ρ(i, j, α, β).

The best picture ∆I is furnished by (5) of the following lemma.

Lemma 1.5. For all I, α, β,

(1) ∆I(α, β) ≤ 2 supi∈I |α(i)− β(i)|.
(2) ∆I(α, β) ≥ supj∈I |α(j) − β(j)| − infi∈I |α(i) − β(i)|. In particular if

α(i0) = β(i0) for some i0 ∈ I , then ∆I(α, β) ≥ supj∈I |α(j)− β(j)|.
(3) If z ∈ T, then ∆I(α, β) = ∆I(α, zβ).

(4) If I ∩ J is nonempty, then ∆I∪J(α, β) ≤ ∆I(α, β) + ∆J(α, β).

(5) infz∈T supi∈I |α(i)− zβ(i)| ≤ ∆I(α, β) ≤ 2 infz∈T supi∈I |α(i)− zβ(i)|.

Proof. Since

ρ(i, j, α, β) = |α(i)β(i)− α(j)β(j)| = |β(i)(α(i)− β(i)) + β(j)(β(j)− α(j))|

and |β(i)| = |β(j)| = 1, we have

||α(i)− β(i)| − |α(j)− β(j)|| ≤ ρ(i, j, α, β) ≤ |α(i)− β(i)|+ |α(j)− β(j)|.

This implies

∆I(α, β) = sup
i∈I, j∈I

ρ(i, j, α, β)

≤ sup
i∈I, j∈I

(|α(i)− β(i)|+ |α(j)− β(j)|) ≤ 2 sup
i∈I
|α(i)− β(i)|
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and (1) follows. For (2) we have

∆I(α, β) = sup
i∈I, j∈I

ρ(i, j, α, β)

≥ sup
i∈I, j∈I

||α(i)− β(i)| − |α(j)− β(j)||

= sup
i∈I
|α(i)− β(i)| − inf

i∈I
|α(i)− β(i)|.

Clause (3) is an immediate consequence of the equalityρ(i, j,α,zβ)=ρ(i, j,α,β).

It is not difficult to see that in order to prove (4), we only need to check

ρ(i, j, α, β) ≤ ∆I(α, β) + ∆J(α, β) for all i ∈ I and j ∈ J . Pick k ∈ I ∩ J .

Then we have

ρ(i, j, α, β) ≤ ρ(i, k, α, β) + ρ(k, j, α, β) ≤ ∆I(α, β) + ∆J(α, β),

completing the proof.

Now we prove (5). By the definition, for every j ∈ I we have ∆I(α, β) ≥
supi∈I |α(i)− (α(j)β(j))β(i)|. Therefore ∆I(α, β) ≥ infz∈T supi∈I |α(i)−β(i)|.
On the other hand, for all i and j,

|α(i)− (α(j)β(j))β(i)| ≤ |α(i)− zβ(i)|+ |α(j)− zβ(j)|

for every z ∈ T, which immediately implies the other inequality. �

Recall that for α ∈ TN by uα we denote the unitary such that uα(en) =

α(n)en and that Ψα = Ψuα is the conjugation by uα.

Lemma 1.6. (a) If limn |α(n)−β(n)| = 0 then Ψα(a)−Ψβ(a) is com-

pact for all a ∈ B(H).

(b) The difference Ψα(a) − Ψβ(a) is compact for all a ∈ D[ ~E] if and only

if lim supn ∆En(α, β) = 0.

Proof. (a) Since limn |α(n) − β(n)| = 0 implies π(uα) = π(uβ), we have

that Ψα(a)−Ψβ(a) = (uα − uβ)a(u∗α − u∗β) is compact.

(b) Assume lim supn ∆En(α, β) = 0. For each n let mn = min(En) and

define γ ∈ TN by

γ(i) = β(i)β(mn)α(mn), if i ∈ En.

The operator
∑
n∈N β(mn)α(mn) projEn (with the obvious interpretation of

the infinite sum) is central in D[ ~E] and therefore for every a ∈ D[ ~E] we have

Ψγ(a) = Ψβ(a). By clauses (2) and (3) of Lemma 1.5 we have |γ(i)− α(i)| ≤
∆En(α, γ) = ∆En(α, β) for i ∈ En. Therefore limi |γ(i) − α(i)| = 0 and the

conclusion follows by (a).

Now assume lim supn ∆En(α, β)>0. Fix ε>0, an increasing sequence n(k)

and i(k) < j(k) in En(k) such that ρ(i(k), j(k), α, β) ≥ ε for all k. The partial
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isometry a defined by a(ei(k)) = ej(k), a(ej(k)) = ei(k), and a(ej) = 0 for other

values of j ∈ En(k) belongs to D[ ~E]. Then

Ψα(a)(ei(k)) = (uαau
∗
α)(ei(k)) = uα(a(α(i(k))ei(k))

= uα(α(i(k))ej(k)) = α(j(k))α(i(k))ej(k).

Similarly Ψβ(a)(ei(k)) = β(j(k))β(i(k))ej(k) for all k. Therefore

‖(Ψα(a)−Ψβ(a))(ei(k))‖ ≥ ρ(i(k), j(k), α, β) ≥ ε

for all k, and the difference Ψα(a)−Ψβ(a) is not compact. �

Proof of Theorem 1.1. Enumerate TN as βξ for ξ < ω1 and all partitions

of N into finite intervals as ~F ξ, with ξ < ω1. Construct a ≤∗-increasing cofinal

chain ~Eξ of partitions and αξ ∈ TN such that for all ξ < η we have

(1) lim supn ∆
Eξn∪Eξn+1

(αξ, αη) = 0.

(2) lim supn ∆
Eξ+1
n

(αξ+1, βξ) ≥
√

2.

(3) Eη is eventually coarser than Eξ in the sense that Eηm is equal to a

union of intervals from Eξ for all but finitely many m.

In order to describe the recursive construction, we consider two cases.

First, assume ζ < ω1 and ~Eξ and αξ were chosen for all ξ ≤ ζ. Let ~Eζ+1

be such that Fn = Eζ+1
n is the union of 2n + 1 consecutive intervals of ~Eζ ,

denoted by Fn0 , . . . , F
n
2n. Fix n. If ∆ ~Eζ+1

n
(αζ , βζ) ≥

√
2, let αζ+1 coincide

with αζ on Eζ+1
n . Now assume ∆

Eζ+1
n

(αζ , βζ) <
√

2. Let γn = exp(iπ/n).

Let αζ+1(j) = γknα
ζ(j) for j ∈ Fnk . If i ∈ Fn0 and j ∈ Fnn , then αζ+1(i) =

αζ(i) and αζ+1(j) = −αζ(j). Since |αζ(j)αζ(i) − βζ(j)βζ(i)| <
√

2, we have

∆
Eζ+1
n

(αζ+1, βζ) ≥ |αζ(j)αζ(i) + βζ(j)βζ(i)| >
√

2.

Hence (2) holds. We need to check lim supm ∆
Eζm∪Eζm+1

(αζ , αζ+1) = 0.

We have ∆
Eζm

(αζ , αζ+1) = 0 for all m. Since αζ+1 and αζ coincide on Fn0 and

on Fn2n for each n, ∆Fn2n∪F
n+1
0

(αζ , αζ+1) = 0 for all n. If 0 ≤ k < 2n then

∆Fn
k
∪Fn

k+1
(αζ , αζ+1) ≤ |γn| ≤ | sin(π/n)| ≤ π/n. Hence clause (1) is satisfied

with ξ = ζ and η = ζ + 1, and therefore it holds for all ξ and η = ζ + 1 by

transitivity.

Now assume ζ < ω1 is a limit ordinal such that ~Eξ and αξ have been

defined for ξ < ζ. Let ξn, for n ∈ N, be an increasing sequence with supremum

ζ and write ~En, αn for ~Eξn , αξn . Find a strictly increasing function f : N→ N
such that

(4) f(0) = 0.

(5) f(n + 1) is large enough so that each En+1
i disjoint from [0, f(n + 1))

is the union of finitely many intervals of En.
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(6) For all k ≤ n the interval Fn = [f(n), f(n+ 1)) is the union of finitely

many intervals from Ek.

(7) If l < k ≤ n, j ∈ N, and ∆Elj∪E
l
j+1

(αl, αk) ≥ 1/n, then maxElj ≤ f(n).

(8) F ζi 6⊇ Fn for all i and all n.

The values f(n) for n ∈ N are chosen recursively. If f(n) has been chosen then

each of the clauses (5), (6), (7), and (8) can be satisfied by choosing f(n+ 1)

to be larger than the maximum of a finite subset of N.

Assume f has been chosen to satisfy (4)–(8). By (6) for m and i ≥ m we

have Emi ∪ Emi+1 ⊆ Fn ∪ Fn+1 if n is the maximal such that f(n) < minEmi .

Therefore with ~Eζ = ~F we have ~En ≤∗ ~Eζ for all n, and therefore ~Eξ ≤∗ ~Eζ
for all ξ < ζ. By (8) we have that for each i ∈ N the interval F ζi intersects at

most two of the intervals Fn nontrivially and therefore ~F ξ ≤∗ ~Eξ.
Recursively define γn ∈ T for n ∈ N and αζ(j) for j ∈ N so that for all n

we have

(9) αζ(j) = γnα
n(j) for j ∈ Fn ∪ {f(n+ 1)}.

To this end, let

αζ(j) = α0(j) for j ∈ F0 ∪ {f(1)},

γ1 = α0(f(1))α1(f(1))

αζ(j) = γ1α
1(j) for j ∈ F1 ∪ {f(2)},

and in general for n ≥ 0 let

γn+1 = αn(f(n+ 1))γnαn+1(f(n+ 1))

and let

αζ(j) = γn+1α
n+1(j) for j ∈ Fn+1 ∪ {f(n+ 2)}.

This sequence satisfies (9).

Fix m and write In for Emn ∪ Emn+1. We want to show

lim
n→∞

∆In(αζ , αm) = 0.

By (6), for all n ≥ m we have Emn ⊆ Fk, for some k = k(n) and therefore

In ⊆ Fk ∪ Fk+1. This implies, by Lemma 1.5(4) and Lemma 1.5(3), that

∆In(αζ , αm) ≤ ∆Emn ∪{f(k+1)}(α
k, αm) + ∆Emn+1

(αk+1, αm)

and by (7) the right-hand side is ≤ 1
k+ 1

k+1 , since n≥m. Moreover limn→∞ k(n)

= ∞, and we can conclude that limn→∞∆In(αζ , αm) = 0. Therefore the

conditions of Lemma 1.6(b) are satisfied and αζ satisfies (1).

This finishes the description of the construction of ~Eξ and αξ satisfying

(1) and (2). By Lemma 1.3 there is an automorphism Φ of C(H) that has Ψξ

as its representation on F [ ~Eξ] for each ξ. Assume this automorphism is inner.

Then it has a representation of the form Ψu for some partial isometry u.
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By Lemma 1.4 applied to Ψ0 and Ψu there is β ∈ TN such that Ψβ is a

representation of Φ. But β is equal to βξ for some ξ < ω1, and by (2) and

Lemma 1.6(b) the mapping Ψβ is not a representation of Φ on F [ ~Eζ ].

By construction, the constructed automorphism is inner on the standard

atomic masa, and actually on each D[ ~E]. In addition, Lemma 1.2 shows that

for every countable subset of C(H) there is an inner automorphism of C(H)

that sends a to Φ(a). �

In the proof of Theorem 1.1, CH was used only in the first line to find

enumerations (~F ξ) and (βξ), ξ < ω1. The first enumeration was used to find a

≤∗-cofinal ω1-sequence of partitions ~Eξ and the second to assure that Φ 6= Ψβξ

for all ξ. A weakening of CH known as d = ℵ1 (see e.g., [4]) suffices for the first

task. Stefan Geschke pointed out that the proof of Theorem 1.1 easily gives

2ℵ1 automorphisms and therefore that the existence of the second enumeration

may be replaced with another cardinal inequality, 2ℵ0 < 2ℵ1 (so-called weak

Continuum Hypothesis). Therefore the assumptions d = ℵ1 and 2ℵ0 < 2ℵ1

together imply the existence of an outer automorphism of the Calkin algebra.

It not known whether these assumptions imply the existence of a nontrivial

automorphism of P(N)/Fin.

2. The toolbox

2.1. Descriptive set theory. The standard reference is [27]. A topological

space is Polish if it is separable and completely metrizable. We consider B(H)

with the strong operator topology. For every M < ∞ the strong operator

topology on (B(H))≤M = {a ∈ B(H) | ‖a‖ ≤ M} is Polish. Throughout

‘Borel’ refers to the Borel structure on B(H) induced by the strong operator

topology.

Fix a Polish space X. A subset of X is meager (or, it is of first category)

if it can be covered by countably many closed nowhere-dense sets. A sub-

set of X has the Property of Baire (or, is Baire-measurable) if its symmetric

difference with some open set is meager. A subset of X is analytic if it is a

continuous image of a Borel subset of a Polish space. Analytic sets (as well

as their complements, coanalytic sets), share the classical regularity properties

of Borel sets such as the Property of Baire and measurability with respect to

Borel measures. A function f between Polish spaces is C-measurable if it is

measurable with respect to the smallest σ-algebra generated by analytic sets.

C-measurable functions are Baire-measurable (and therefore continuous on a

dense Gδ subset of the domain) and, if the domain is also a locally compact

topological group, Haar-measurable. The following uniformization theorem

will be used a large number of times in the proof of Theorem 1; for its proof

see e.g. [27, Theorem 18.1].
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Theorem 2.1 (Jankov, von Neumann). If X and Y are Polish spaces and

A ⊆ X × Y is analytic, then there is a C-measurable function f : X → Y such

that for all x ∈ X , if (x, y) ∈ A for some y, then (x, f(x)) ∈ A. �

A function f as above uniformizes A. In general it is impossible to uni-

formize a Borel set by a Borel-measurable function, but the following two

special cases of [27, Theorem 8.6] (applied with Ix being the meager ideal or

the null ideal, respectively, for each x ∈ X) will suffice for our purposes.

Theorem 2.2. Assume X and Y are Polish spaces, A ⊆ X × Y is Borel

and for each x ∈ X the vertical section Ax = {y | (x, y) ∈ A} is either empty

or nonmeager. Then A can be uniformized by a Borel-measurable function. �

Theorem 2.3. Assume X and Y are Polish spaces, Y carries a Borel

probability measure, A ⊆ X × Y is Borel and for each x ∈ X the vertical

section Ax = {y | (x, y) ∈ A} is either empty or has a positive measure. Then

A can be uniformized by a Borel-measurable function. �

A topological group is Polish if has a compatible complete separable met-

ric. The unitary group of B(H), for a separable H, is a Polish group with

respect to the strong operator topology (see [27, 9.B(6)]). Also, the unitary

group of every separably acting von Neumann algebra D is Polish with respect

to strong operator topology. A complete separable metric on U(D) is given by

d′(a, b) = d(a, b) +d(a∗, b∗), where d is the usual complete metric on D≤1 com-

patible with the strong operator topology. The following is Pettis’s theorem

(see [27, Theorem 9.10]).

Theorem 2.4. Every Baire-measurable homomorphism from a Polish

group into a second-countable group is continuous. �

We end this subsection with a simple computation.

Lemma 2.5. Consider B(H) with the strong operator topology. Fix M<∞.

(a) The set of compact operators of norm ≤M is a Borel subset of B(H)≤M .

(b) For ε ≥ 0 the set of operators a of norm ≤M such that ‖a‖K ≤ ε is a

Borel subset of B(H)≤M .

Proof. (a) Recall that Rn is a fixed increasing sequence of finite-rank

projections such that
∨
n Rn = I. For a projection P the set {a | ‖Pa‖ ≤ x}

is strongly closed for every x ≥ 0, and

K(H) = {a | (∀m)(∃n)‖(I −Rn)a‖ < 1/m}.

Hence K(H) ∩ B(H)≤M is a relatively Fσδ subset of B(H)≤M for each M .

The proof of (b) is almost identical. �
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2.2. Set theory of the power-set of the natural numbers. A metric d on

P(N) is defined by d(A,B) = 2−min(A∆B), where A∆B is the symmetric dif-

ference of A and B. This turns (P(N),∆) into a compact metric topological

group, and the natural identification of subsets of N with infinite sequences of

zeros and ones is a homeomorphism into the triadic Cantor set.

2.3. Todorcevic’s axiom. Let X be a separable metric space and let

[X]2 = {{x, y}|x 6= y and x, y ∈ X}.

Subsets of [X]2 are naturally identified with the symmetric subsets of X ×X
minus the diagonal. A coloring [X]2 = K0 ∪K1 is open if K0, when identified

with a symmetric subset ofX×X, is open in the product topology. IfK ⊆ [X]2,

then a subset Y of X is K-homogeneous if [Y ]2 ⊆ K. Since K1 = [X]2 \K0

is closed, a closure of a K1-homogeneous set is always K1-homogeneous. The

following axiom was introduced by Todorcevic in [40] under the name Open

Coloring Axiom, OCA.

TA. If X is a separable metric space and [X]2 = K0 ∪ K1 is an open

coloring, then X either has an uncountable K0-homogeneous subset or it can

be covered by a countable family of K1-homogeneous sets.

The instance of TA when X is analytic follows from the usual axioms of

mathematics (see e.g., [19]). In this case the uncountable K0-homogeneous set

can be chosen to be perfect; hence this variant of TA is a generalization of the

classical perfect-set property for analytic sets ([27]).

Note that K1 is not required to be open. We should say a word to clarify

our use of the phrase ‘open coloring.’ In order to be able to apply TA to some

coloring [X]2 = K0 ∪ K1 it suffices to know that there is a separable metric

topology τ on X which makes K0 open. For example, for X ⊆ P(N) and for

each x ∈ X we fix an fx ∈ NN and consider the coloring [X]2 = K0 ∪ K1

defined by

{x, y} ∈ K0 if and only if fx(n) 6= fy(n) for some n ∈ x ∩ y.

This K0 is not necessarily open in the topology inherited from P(N) (§2.2).

However, it is open in the topology obtained by identifying X with a subspace

of P(N) × NN via the embedding x 7→ 〈x, fx〉. We shall use such refinements

tacitly quite often and say only that the coloring [X]2 = K0 ∪ K1 is open,

meaning that it is open in some separable metric topology.

Assume K0 ⊆ [X]2 is equal to a union of countably many rectangles

K0 =
⋃
i Ui× Vi. If sets Ui and Vi separate points of C, then this is equivalent

to K0 being open in some separable metric topology on X. Even without this

assumption, by [13, Prop. 2.2.11], TA is equivalent to its apparent strength-

ening to colorings K0 that can be expressed as a union of countably many

rectangles. Reformulations of TA are discussed at length in [13, §2].
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2.4. Absoluteness. A vertical section of B ⊆ X × Y is a set of the form

Bx = {y | (x, y) ∈ B} for some x ∈ X.

Theorem 2.6. Assume X and Y are Polish spaces and B ⊆ X × Y is

Borel. Truth (or falsity) of the assertion that some vertical section of B is

empty cannot be changed by going to a forcing extension.

In particular, if there is a proof using TA that B has an empty vertical

section, then B has an empty vertical section.

Proof. The first part is a special case of Shoenfield’s Absoluteness Theo-

rem (see e.g., [23, Theorem 13.15]). The second part follows from the fact that

every model of ZFC has a forcing extension in which TA holds ([41]). �

3. Coherent families of unitaries

If u is a partial isometry between cofinite-dimensional subspaces of H we

write Ψu(a) = uau∗. An operator in C(H) is invertible if and only if it is

of the form π(a) for some Fredholm operator a (this is Atkinson’s theorem,

[32, Theorem 3.11.11]; see also [6, §3]). Therefore, inner automorphisms of

C(H) are exactly the ones of the form Ψu for a partial isomorphism u between

cofinite-dimensional subspaces of H. A family F of pairs ( ~E, u) satisfying

conditions (1)–(3) below is called a coherent family of unitaries:

(1) If ( ~E, u) ∈ F then ~E is a partition of N into finite intervals and u is a

partial isometry between cofinite-dimensional subspaces of H,

(2) for all ( ~E, u) and (~F , v) in F and all a ∈ D[ ~E] ∩ D[~F ] the operator

Ψu(a)−Ψv(a) is compact,

(3) for every partition ~E of N into finite intervals there is u such that

( ~E, u) ∈ F .

(By (1) above, π(u) is a unitary in the Calkin algebra for each ( ~E, u) ∈ F .)

The following is an immediate consequence of Lemmas 1.4 and 1.3.

Lemma 3.1. If F is a coherent family of unitaries, then there is a unique

automorphism Φ of C(H) such that Ψu is a representation of Φ on D[ ~E] for

all ( ~E, u) ∈ F . �

Such an automorphism Φ is determined by a coherent family of unitaries.

Since D[ ~E] ⊆ D[~F ] whenever ~F is coarser than ~E, Φ is uniquely determined

by those ( ~E, u) ∈ F such that #En is strictly increasing. In Theorem 1.1 we

have seen that the Continuum Hypothesis implies the existence of an outer

automorphism determined by a coherent family of unitaries. The following

result, which is the main result of this section, complements Theorem 1.1.

Theorem 3.2. Assume TA. Then every automorphism of C(H) deter-

mined by a coherent family of unitaries is inner.
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We shall first show that it suffices to prove Theorem 3.2 in the case when

each u is of the form uα for α ∈ TN, as constructed in Section 1. If Φ is

determined by F , fix ( ~E0, u0) ∈ F . Then F ′ = {(~F , v(u0)∗) | (~F , v) ∈ F}
is a coherent family of unitaries. The automorphism Φ′ determined by F ′ is

inner if and only if Φ is inner. Also, Φ′ is equal to the identity on the standard

atomic masa. In the proof of Theorem 3.2 we may therefore assume Φ is

equal to the identity on the standard atomic masa. Recall that T is the circle

group. For α ∈ TN by uα denote the unitary that sends en to αnen. By our

convention and Lemma 1.4, for every ( ~E, u) ∈ F there is α such that Ψuα and

Ψu agree modulo compacts on B(H). We may therefore identify F with the

family {( ~E, α) | ( ~E, u) ∈ F ,Ψu and Ψuα agree modulo compacts}. It will also

be convenient to code partitions ~E by functions f : N→ N.

3.1. The directed set (N↑N,≤∗). Let N↑N denote the set of all strictly in-

creasing functions f : N→ N such that f(0) > 0. (The reader should be warned

that the requirement f(0) > 0 is nonstandard and important.) Such a function

can code a partition of N into finite intervals in more than one way. It will be

convenient to use the following quantifiers: (∀∞n) stands for (∃n0)(∀n ≥ n0)

and (∃∞n) stands for the dual quantifier, (∀n0)(∃n ≥ n0). For f and g in N↑N
write f ≥∗ g if (∀∞n)f(n) ≥ g(n). A diagonal argument shows that N↑N is

σ-directed in the sense that for each sequence (fn) in N↑N there is g ∈ N↑N
such that fn ≤∗ g for all n.

For f ∈ N↑N recursively define f+ by f+(0) = f(0) and f+(i + 1) =

f(f+(i)). Some X ⊆ N↑N is ≤∗-cofinal if (∀f ∈ N↑N)(∃g ∈ X )f ≤∗ g.

Lemma 3.3. Assume X ⊆ N↑N is ≤∗-cofinal.

(1) If X is partitioned into countably many pieces, then at least one of the

pieces is ≤∗-cofinal.

(2) (∃∞n)(∃i)(∀k ≥ n)(∃f ∈ X )(f(i) ≤ n and f(i+ 1) ≥ k).

(3) {f+ | f ∈ X} is ≤∗-cofinal.

Proof. (1) Assume the contrary, let X =
⋃
n Yn be such that no Yn is

cofinal. Pick fn such that fn 6≤∗ g for all g ∈ Yn. If f ≥∗ fn for all n, then

there is no g ∈ X such that f ≤∗ g — a contradiction.

(2) We first prove

(*) (∃∞n)(∀k ≥ n)(∃i)(∃f ∈ X )(f(i) ≤ n and f(i+ 1) ≥ k).

Assume not and fix n0 such that for all n ≥ n0 there is k = g(n), such that

for all f ∈ X and all i, if f(i) ≤ n then f(i + 1) ≤ g(n). Define functions hm
for m ∈ N recursively by hm(0) = max(m,n0) and hm(i + 1) = g(hm(i)). For

f ∈ X we have f ≤∗ hf(0). By recursion we prove f(i) ≤ hf(0)(i) for all i. For

i = 0 this is immediate. Assume f(i) ≤ hf(0)(i). Then f(i + 1) ≤ g(f(i)) ≤
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g(hf(0)(i)) = hf(0)(i+ 1). Now fix h ∈ N↑N such that hm ≤∗ h. By the above,

there is no f ∈ X such that h ≤∗ f , a contradiction.

For each n the set {i | (∃f ∈ X )f(i) ≤ n} is finite. Therefore in (*) the

same i works for infinitely many k. An easy induction shows that for f ∈ N↑N
we have f(i) ≤ f+(i) for all i, and (3) follows. �

Lemma 3.4. If f, g ∈ N↑N and f ≥∗ g then for all but finitely many n there

is i such that f i(0) ≤ g(n) < g(n + 1) ≤ f i+2(0). If moreover f(m) ≥ g(m)

for all m, then for every n there is such an i.

Proof. If n is such that f(m) ≥ g(m) for all m ≥ n, let i be the minimal

such that f i+1(0) ≥ g(n). Then f i+2(0) ≥ f(g(n)), and since g ∈ N↑N implies

g(n) ≥ n+ 1 this is ≥ f(n+ 1) ≥ g(n+ 1). �

To f ∈ N↑N associate sequences of finite intervals of N:

Efn = [f(n), f(n+ 1)),

F fn = [fn(0), fn+2(0)),

F f,even
n = [f2n(0), f2n+2(0)),

F f,odd
n = [f2n+1(0), f2n+3(0))

(‘F ’ is for ‘fast’). By Lemma 3.4, if X ⊆ N↑N is ≤∗-cofinal, then each one

of {~F f,even | f ∈ X} and {~F f,odd | f ∈ X} is a cofinal family of partitions as

defined in Section 1. Notation ∆I(α, β) used in the following proof was defined

before Lemma 1.5.

Lemma 3.5. Assume Φ is an automorphism of C(H) whose restriction to

the standard atomic masa is equal to the identity and which is determined by

a coherent family of unitaries. For each f ∈ N↑N there is α ∈ TN such that Ψα

is a representation of Φ on both D[~F f,even] and D[~F f,odd].

Proof. By Lemma 1.4, for each f there are β and γ in TN such that Ψβ is a

representation of Φ on D[~F f,even] and Ψγ is a representation of Φ on D[~F f,odd].

Define β′ and γ′ recursively as follows. For i ∈ [f0(0), f2(0)), let β′(i) = β(i).

If β′(i) has been defined for i < f2n(0), then for i ∈ [f2n−1(0), f2n+1(0)) let

γ′(i) = γ(i)γ(f2n−1(0))β′(f2n−1(0)).

If γ′(i) has been defined for i < f2n+1(0) then for i ∈ [f2n(0), f2n+2(0)) let

β′(i) = β(i)β(f2n(0))γ′(f2n(0)).

Then γ′(f j(0)) = β′(f j(0)) for all j, Ψβ′(a) = Ψβ(a) for all a ∈ D[~F f,even],

and Ψγ′(a) = Ψγ(a) for all a ∈ D[~F f,odd]. Let Jn = [fn(0), fn+1(0)). Then

supi∈Jn |β
′(i) − γ′(i)| ≤ ∆Jn(β, γ′) by Lemma 1.5(2). Since Ψβ′ , Ψβ, Ψγ′ and

Ψγ are all representations of Φ on D[ ~J ], by Lemma 1.6(b) we conclude that
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∆J2n+1(β′, γ)→ 0 and ∆J2n(β, γ′)→ 0 as n→∞. Thus limi |β′(i)−γ′(i)| = 0,

and therefore Lemma 1.6(a) implies that Ψγ′ and Ψβ′ agree on B(H) modulo

the compact operators. Therefore α = β′ is as required. �

Proof of Theorem 3.2. As pointed out after the statement of Theorem 3.2,

we may assume Φ is equal to the identity on the standard atomic masa and

that the unitary u is of the form uα for each (f, u) in the coherent family

defining Φ. Let X ⊆ N↑N × TN be the set of all pairs (f, α) such that Ψα is

a representation of Φ on both D[~F f,even] and D[~F f,odd]. By Lemma 3.5, for

every f ∈ N↑N there is α such that (f, α) ∈ X .

For ε > 0 define [X ]2 = Kε
0 ∪Kε

1 by assigning a pair (f, α), (g, β) to Kε
0 if

(Kε
0): There are m,n such that with J = F fm ∩ F gn we have ∆J(α, β) > ε.

We consider N↑N with the Baire space topology, induced by the metric

d(f, g) = 2−min{n|f(n)6=g(n)}.

This is a complete separable metric. Consider TN in the product of strong

operator topology and X in the product topology. If Kε
0 is identified with a

symmetric subset of X 2 off the diagonal, then it is open in this topology.

Claim 3.6. TA implies that for ε > 0 there are no uncountable Kε
0-ho-

mogeneous subsets of X .

Proof. Assume the contrary and fix ε > 0 and an uncountable Kε
0-homo-

geneous set H. We shall refine H to an uncountable subset several times, until

we reach a contradiction. In order to keep the notation under control, each

successive refinement will be called H. Let

F = {g+ | (∃α)(g, α) ∈ H}.

We may assume H has size ℵ1, hence TA and [40, Ths. 3.4 and 8.5] imply that

F is ≤∗-bounded by some f̄ ∈ N↑N. For each g ∈ F fix lg such that f̄(n) ≥ g(n)

for all n ≥ lg and let sg = g � lg. Fix (l̄, s̄) such that {g ∈ F | (lg, sg) = (l̄, s̄)}
is uncountable. By refining H and increasing f̄ � l̄ to f̄(l̄) we may assume

f̄(n) ≥ g+(n) for all g+ ∈ F and all n ∈ N. Lemma 3.4 implies that for

every (g, α) ∈ H and every n there is i such that F gn ∪ F
g
n+1 ⊆ F f̄i ∪ F

f̄
i+1. By

Lemma 3.5 we may fix α ∈ TN such that Ψα is a representation of Φ on both

D[~F f̄ ,even] and D[~F f̄ ,odd]. Lemma 1.6(b) implies that for every (g, β) ∈ H
we have lim supn ∆Egn

(α, β) = 0. Fix k̄, m̄ ∈ N for which the set H′ of all

(g, β) ∈ H such that gm̄+1(0) = k̄ and ∆Egn
(α, β) < ε/2 whenever n ≥ m̄ is

uncountable. By the separability of TN we can find distinct (g, β) and (h, γ)

in H′ such that gi(0) = hi(0) for all i ≤ m̄ + 1 and |β(i) − γ(i)| < ε/2 for all

i ≤ k̄.
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Fix i and j such that J = F gi ∩F hj 6= ∅. We shall prove ∆J(β, γ) < ε. Since

maxi<k̄ |β(i) − γ(i)| < ε/2, we may assume that J \ [0, k̄) 6= ∅ and therefore

J ∩ [0, gm̄(0)) = J ∩ [0, hm̄(0)) = ∅. Find l such that F gi ⊆ F f̄l , and therefore

J ⊆ F f̄l . Then

∆J(β, γ) ≤ ∆
F gi ∩F

f̄
l

(β, α) + ∆
Fhj ∩F

f̄
l

(γ, α) < ε.

Since i and j were arbitrary we conclude that {(g, β), (h, γ)} ∈ Kε
1 , contradict-

ing our assumption on H. �

Since Kε
0 is an open partition, by TA and Claim 3.6, for each ε > 0 there

is a partition of X into countably many Kε
1-homogeneous sets.

We fix n and let εn = 2−n. Repeatedly using Lemma 3.3, find sets X0 ⊇
X1 ⊇ . . . and 0 = m(0) < m(1) < . . . so that (1) each Xn is Kεn

1 -homogeneous,

(2) each set {f | (∃α)(f, α) ∈ Xn} is ≤∗-cofinal, and (3) for all n and all

k > m(n) there are j ∈ N and (f, α) ∈ Xn such that f j(0) ≤ m(n) and

f j+1(0) ≥ k.

In Xn pick a sequence (fn,i, αn,i) and j(i), for i ∈ N, such that

(4) (fn,i)
j(i)(0) ≤ m(n) < m(n+ i) ≤ (fn,i)

j(i)+1(0) for all i.

By compactness we may assume αn,i converge to αn ∈ TN. We claim that

(5) ∆[m(l),∞)(αk, αl) ≤ εk whenever k ≤ l.
Assume not and fix m(l) ≤ n1 < n2 such that ρ(n1, n2, αk, αl) > εk. By (4),

for all large enough i we have (fk,i)
j(i)+1(0)>n2 and (fl,i)

j(i)+1(0)>n2. Since

limi αk,i = αk and limi αl,i = αl we have ρ(n1, n2, αk,i, αl,i) > εk for large

enough i. These facts imply ∆
F
fk,i
j(i)
∩F

fl,i
j(i)

(αk,i, αl,i) > εk for a large enough i.

However, (fk,i, αk,i) ∈ Xk and (fl,i, αl,i) ∈ Xl ⊆ Xk, contradicting the homo-

geneity of Xk.
By (5) and Lemma 1.5(5), for k < l we can fix zk,l ∈ T such that

(6) supi≥m(l) |zk,lαk(i)− αl(i)| ≤ εk,
with zk,k = 1. We claim that

(7) |zk,l − zk,mzl,m| ≤ 3εmin{k,l,m} for all k, l and m.

For β and γ in TN and ε > 0, in the proof of (7) we write β ∼ε γ if

supi≥m(max{k,l,m}) |β(i)− γ(i)| ≤ ε. Letting ε = εmin{k,l,m}, by (6) we have

zk,lαk ∼ε αl ∼ε zl,mαm ∼ε zl,mzk,mαk
and therefore |zk,l − zk,mzl,m| ≤ 3ε.

We want to find an infinite Y ⊆ N such that for all i < j in Y we have

|1 − zk(i),k(j)| ≤ 4εk(i). To this end, define a coloring M0 ∪M1 of triples in N
by putting a triple k < l < m into M0 if

|zl,m − 1| ≤ 4εk.
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We claim there are no infinite sets Y such that every triple of elements from Y

belongs to M1. Assume the contrary. For such Y let k = min(Y ) and pick

n ∈ Y such that Y has at least 2π/εk strictly between k and n. Then there

are distinct l and m in Y between k and n such that |zl,n − zm,n| ≤ εk. Using

(7) in the second inequality we have

|zl,m − 1| ≤ |zl,m − zl,nzm,n|+ |1− zl,nzm,n| ≤ 4εk.

Therefore there is no infinite M1-homogeneous set of triples. By using Ram-

sey’s theorem we can find an infinite Y ⊆ N such that all triples of elements of

Y belong to M0. Enumerate Y increasingly as k(i), for i ∈ N. We may assume

k(0) ≥ 2 and therefore 4εk(i) ≤ εi. Since |1− zk(i),k(j)| ≤ εi, we have

(8) supl≥m(k(i)) |αk(i) − αk(j)| ≤ ε′i for all i < j.

Define γ ∈ TN by γ(l) = αk(i)(l) if l ∈ [m(k(i)),m(k(i+1))) and γ(l) = αk(0)(l)

if l < m(k(0)). By (8) we have

(9) |γ(l)− αk(i)(l)| ≤ εi for all i and all l ≥ m(k(i)).

We claim that for all j (recall that F fi = [f i(0), f i+1(0)])

(10) If (f, β) ∈ Xk(j), then for all i we have ∆
F fi \mk(j)

(β, γ) ≤ 5εj .

Write n = k(j). Since (fn,l, αn,l) ∈ Xn, for l large enough to have

[(fn,l)
j(l)(0), (fn,l)

j(l)+1(0)) ⊇ F fi \m(n),

we have ∆
F fi \m(n)

(β, αn,l) ≤ εn. The continuity implies ∆
F fi \m(n)

(β, αn) ≤ εn

and (10) implies ∆
F fi \mk(j)

(β, γ) ≤ 5εj .

By Lemma 3.1, it suffices to prove Ψγ is a representation of Φ on ev-

ery D[ ~E]. Fix g such that ~E = ~Eg (with Egn = [g(n), g(n + 1))). Fix β such

that Ψβ is a representation of Φ on D[ ~Eg]. By Lemma 1.6(b) it suffices to

prove ∆Egn
(β, γ) → 0 as n → ∞. Fix m ∈ N and (f, α) ∈ Xm such that

f ≥∗ g. By Lemma 1.6(b) we have limn ∆Egn
(α, β) → 0. By (10) we have

lim supn ∆Egn
(β, γ) ≤ lim supn ∆

F fn
(α, γ) ≤ 5εn. Since n was arbitrary, the

conclusion follows. �

The construction in Theorem 1.1 hinges on the existence of a nontrivial

coherent family of unitaries under CH. Theorem 3.2 shows that under TA,

every coherent family of unitaries is ‘uniformized’ by a single unitary. There is

an analogy to the effect of CH/TA on the additivity of the strong homology as

exhibited in [30]/[9] and [40, Theorem 8.7]. In the latter, uniformizing certain

families of functions from subsets of N into {0, 1} that are coherent modulo

finite plays the key role. For more on such uniformizations see [13, §§2.2–2.4].
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4. Representations and ε-approximations

The present section is a loose collection of results showing that a suffi-

ciently measurable representation, or an approximation to a representation,

can be further improved in one way or another.

Lemma 4.1 below illustrates how drastically different automorphisms of

the Calkin algebra are from the automorphisms of Boolean algebras P(N)/I
and is directly responsible for the fact that Martin’s Axiom is not needed in

the proof of Theorem 1. Recall that for D ⊆ B(H) we say Φ is inner on D if

there is an inner automorphism Φ′ of C(H) such that the restrictions of Φ and

Φ′ to π[D] coincide.

Lemma 4.1. Assume D1 and D2 are subsets of B(H) such that for some

partial isometry u we have uD2u
∗ ⊆ D1 and P = u∗u satisfies PD2P = D2. If

Φ is inner on D1, then it is inner on D2.

Proof. Fix v such that a 7→ vav∗ is a representation of Φ on D1 and w

such that π(w) = Φ(π(u)). If b ∈ D2, then ubu∗ ∈ D1 and u∗ubu∗u = b. If Ψ is

any representation of Φ, then we have (writing c ∼K d for ‘c− d is compact’)

Ψ(b) ∼K Ψ(u∗)Ψ(ubu∗)Ψ(u) ∼K w∗vubu∗v∗w.

Therefore w∗vu shows that Φ is inner on D2. �

An analogue of Lemma 4.1 fails for automorphisms of P(N)/Fin. For

example, in [38] (see also [39]) it was proved that a weakening of the Continuum

Hypothesis implies the existence of a nontrivial automorphism whose ideal of

trivialities is a maximal ideal.

4.1. ε-approximations. Assume A and B are C∗-algebras, J1 and J2 are

their ideals, Φ: A/J1 → B/J2 is a *-homomorphism, and X ⊆ A. A map Θ

whose domain contains X and is contained in A and whose range is contained

in B is an ε-approximation to Φ on X if for all a ∈ X we have

‖Φ(πJ1(a))− πJ2(Θ(a))‖ ≤ ε

for all a ∈ X . If X = A, we say Θ is an ε-approximation to Φ.

Lemma 4.2. Assume A and B are C∗-subalgebras of B(H) containing

K(H) and Φ is a *-homomorphism from A/K(H) into B/K(H). Then

(1) Φ has a Borel-measurable representation if and only if it has a Borel-

measurable representation on U(A).

(2) If Φ has a Borel-measurable ε-approximation on U(A), then it has a

Borel-measurable 4ε-approximation on A≤1.

Proof. (1) We only need to prove the reverse implication. There are norm-

continuous maps γi : A≤1 → U(A) for i < 4 such that a =
∑
i<4 γi(a) for all
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a ∈ A. This is because if a ∈ A, then b = (a + a∗)/2 and c = i(a − a∗)/2 are

self-adjoint of norm ≤ ‖a‖ such that b+ ic = a. If b is self-adjoint of norm ≤ 1,

then the operators b1 = b+ i
√
I − b2 and b2 = b− i

√
I − b2 have norm ≤ 1 and

their product is equal to I. Therefore they are both unitaries. Also, their mean

is equal to b. It is now clear how to define γi. Assume Ψ is a representation

of Φ on U(A). Then let Ψ1(0) = 0 and Ψ1(a) = ‖a‖∑i<4 Ψ(γi(a/‖a‖)) for

a 6= 0. This is the required Borel representation. The proof of (2) uses the

same formula and the obvious estimates. �

Lemma 4.3. Assume D is a von Neumann subalgebra of B(H) and assume

Φ: D/(K(H) ∩ D)→ B(H)/K(H) is a *-homomorphism.

(1) If Φ has a C-measurable ε-approximation Ψ on U(D), then it has a

Borel-measurable 8ε-approximation on U(D).

(2) If Φ has a C-measurable representation on U(D), then it has a Borel-

measurable representation on D.

(3) If there are C-measurable maps Ψi for i ∈ N whose graphs cover an

ε-approximation to Φ on D≤1, then there are Borel-measurable maps

Ψ′i for i ∈ N whose graphs cover an 8ε-approximation to Φ on D≤1.

Proof. (1) Consider U(D) with respect to the strong operator topology. It

is a Polish group. Since Ψ is Baire-measurable we may fix a dense Gδ subset

X of U(D) on which Ψ is continuous. The set

Y = {(a, b) ∈ U(D)2 | b ∈ X ∩ a∗X}

is Borel and it has co-meager sections. By Theorem 2.2 there is a Borel uni-

formization h for Y. Then for each a both h(a) and ah(a) belong to X and

therefore Ψ′(a) = Ψ(ah(a))Ψ(h(a))∗ is a Borel-measurable 2ε-approximation

to Φ on U(D). By Lemma 4.2, Φ has an 8ε-approximation. (2) follows from

the case ε = 0 of (1) plus Lemma 4.2(1). To prove (3), find a dense Gδ subset

X of U(D) on which each Ψi is continuous. Define Y and h as above and

consider the maps Ψ′ij(a) = Ψi(ah(a))Ψj(h(a))∗. �

Lemma 4.4. Let D⊆B(H) be a von Neumann algebra, Φ: D/(K(H)∩D)

→ B(H)/K(H) a *-homomorphism, and Y ⊆ D≤1. Assume Φ has a Borel-

measurable 2−n-approximation Ξn on Y for every n ∈ N. Then Φ has a

C-measurable representation on Y .

Proof. Let X = {(a, b) ∈ D≤1 × B(H)≤1 | (∀n)‖Ξn(a) − b‖K ≤ 2−n+1}.
By Lemma 2.5, this is a Borel set. If Ψ is a C-measurable uniformization of X
provided by Theorem 2.1, then Ψ is a representation of Φ on Y. �
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5. Approximate *-homomorphisms

Assume A and B are C∗-algebras. A map Λ: A → B in an ε-approximate

*-homomorphism if for all a, b in A≤1 we have the following:

(1) ‖Λ(ab)− Λ(a)Λ(b)‖ < ε,

(2) ‖Λ(a+ b)− Λ(a)− Λ(b)‖ < ε,

(3) ‖Λ(a∗)− Λ(a)∗‖ < ε,

(4) |‖a‖ − ‖Λ(a)‖| < ε.

We say Λ is unital if both A and B are unital and Λ(I) = I. We say Λ is

δ-approximated by Θ if ‖Λ(a)−Θ(a)‖ < δ for all a ∈ A≤1. Theorem 5.1 is the

main result of this section and may be of independent interest. The numerical

value of the constant K is irrelevant for our purposes and we shall make no

attempt to provide a sharp bound.

A shorter proof of Theorem 5.1 can be given by using a special case of a

result of Sakai ([34]). After applying the Grove-Karcher-Roh/Kazhdan result

on ε-representations to obtain a representation Θ of Λ � U(A) that is a norm-

continuous group homomorphism, use [34] to extend Θ to a *-homomorphism

or a conjugate *-homomorphism of A into B. An argument included in the

proof below shows that this extension has to be a *-homomorphism. Parts of

the proof of Theorem 5.1 resemble parts of Sakai’s proof, of which I was not

aware at the time of preparing this manuscript.

Theorem 5.1. There is a universal constant K < ∞ such that the fol-

lowing holds. If ε < 1/1000, A is a finite-dimensional C∗-algebra, m ∈ N, and

Λ: A →Mm(C) is a Borel-measurable unital ε-approximate *-homomorphism,

then Λ can be Kε-approximated by a unital *-homomorphism.

In the terminology of S. Ulam, the approximate *-homomorphisms are

stable (see e.g., [24]). Connection between lifting theorems and Ulam-stability

of approximate homomorphisms between Boolean algebras was first exploited

in [13]. Analogous results for groups appear in [14] and [24]. The following is

a special case of a well-known result (see [29]) but we include a proof for the

reader’s convenience.

Lemma 5.2. Assume ε < 1 and a is an element of a finite-dimensional

C∗-algebra A such that ‖a∗a− I‖ < ε. If a = bu is the polar decomposition of

a, then u is a unitary and ‖a− u‖ < ε.

Proof. We have ‖u∗b2u − I‖ < 1. Then P = u∗u is a projection and

‖I − P‖ = ‖(I − P )(u∗bu − I)‖ < 1. Therefore u∗u = I and since A is finite-

dimensional u is a unitary. Hence we have ‖b2 − I‖ < ε and ‖b − I‖ < ε.

Clearly, ‖a− u‖ = ‖bu− u‖ = ‖b− I‖. �
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Proof of Theorem 5.1. We shall write B for Mm(C) and consider its rep-

resentation on the m-dimensional Hilbert space, denoted K. We also write

a ≈δ b for ‖a − b‖ < δ. Fix a unitary u in A and let a = Λ(u). Then

aa∗ ≈ε(1+ε) Λ(u)Λ(u∗) ≈ε Λ(uu∗); thus ‖aa∗ − I‖ < 2ε + ε2. Similarly

‖a∗a − I‖ < 2ε + ε2. Therefore, by Lemma 5.2 there is a unitary v ∈ B
such that ‖Λ(u)− v‖ < 2ε+ ε2 = ε1.

Let X be the set of all pairs (u, v) ∈ U(A)×U(B) such that ‖Λ(u)−v‖ < ε1.

Since Λ is Borel-measurable, X is a Borel set. By Theorem 2.1 there is a

C-measurable Λ′ : U → V uniformizing X . Note that ‖Λ′(u) − Λ(u)‖ < ε1 for

all unitaries u.

We have Λ′(u)Λ′(v) ≈(2+ε)ε1 Λ(u)Λ(v) ≈ε Λ(uv) ≈ε1 Λ′(uv). Thus

‖Λ′(uv)− Λ′(u)Λ′(v)‖ < (3 + ε)ε1 + ε = ε2. In the terminology of [25], Λ′ is a

2ε2-representation of U(A) on K. In [25] and [21] it was proved (among other

things) that if δ < 1/100, then every strongly continuous 2δ-representation ρ

of a compact group can be 2δ-approximated by a (strongly continuous) rep-

resentation ρ′. See [1, Theorem 5.13] for a more streamlined presentation of

this proof. The approximating representation is obtained as a limit of a suc-

cession of integrals with respect to the Haar measure and the assumption that

ρ is continuous can be weakened to the assumption that ρ is Haar measurable

without altering the proof (or the conclusion). In particular, the proof given

in [1] taken verbatim covers the case of a Haar-measurable approximation.

Let Θ be a continuous homomorphism between the unitary groups of A
and B that is a 2ε2-aproximation to Λ′ on U(A). For all u we then have

‖Θ(u)− Λ(u)‖ < 2ε2 + ε1 = ε3.

For a self-adjoint a ∈ A the map R 3 r 7→ exp(ira) ∈ U(K) defines a

norm-continuous one-parameter group. By Stone’s theorem (e.g., [32, The-

orem 5.3.15]), there is the unique ρ(a) ∈ U(K) such that

Θ(exp(ira)) = exp(irρ(a)).

Since B is a von Neumann algebra, we can conclude that ρ(a) ∈ B.

Claim 5.3. ρ(I) = I , hence for all r ∈ R we have Θ(eirI) = eirI .

Proof. Let b = ρ(I) and assume b 6= I. Since b is self-adjoint, there is

s 6= 1 in the spectrum of b. Pick r ∈ R such that r(1 − s) = π + 2kπ for

some k ∈ N. Let ξ be the unital eigenvector of exp(irb) corresponding to the

eigenvalue eirs. Then the vector

exp(irb)(ξ)− eir(ξ) = eirsξ − eirξ = eirs(ξ − eir(1−s)ξ) = 2eirsξ

has norm 2; hence ‖ exp(irb)− eirI‖ = 2. However,

‖Θ(eirI)− eirI‖ ≤ ‖Θ(eirI)− Λ(eirI)‖+ ‖Λ(eirI)− eirI‖ ≤ ε3 + ε < 1,

a contradiction. �
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Let u be a self-adjoint unitary. Then u = I − 2P for some projection P

and therefore exp(iru) = eiru and by Claim 5.3 we have Θ(u) = ρ(u). Also

P = 1
2(I − u) and one straightforwardly checks that ρ(P ) = 1

2(I − ρ(u)) and

that ‖ρ(P )− Λ(P )‖ ≤ ε.

Claim 5.4. If projections P and Q commute, then ρ(P ) and ρ(Q) com-

mute. If PQ = 0, then ρ(P )ρ(Q) = 0.

Proof. Since I−2P and I−2Q commute if and only if P and Q commute,

the first sentence follows. If PQ = 0, then

I − 2ρ(P +Q) = Θ((I − 2P )(I − 2Q)) = (I − 2ρ(P ))(I − 2ρ(Q))

and we have ρ(P + Q) − ρ(P ) − ρ(Q) = 2ρ(P )ρ(Q). The left-hand side has

norm < 4ε < 1. As a product of two commuting projections, ρ(P )ρ(Q) is a

projection, and so it has to be 0. �

We say that projections P and Q in a C∗-algebra A are Murray-von Neu-

mann equivalent and write P ∼ Q if there is a partial isometry u such that

uPu∗ = Q. In the case when A is finite-dimensional this is equivalent to

asserting that there is a unitary u such that uPu∗ = Q.

Claim 5.5. If P and Q are Murray-von Neumann equivalent projections,

then ρ(P ) and ρ(Q) are Murray-von Neumann equivalent projections.

Proof. Fix a unitary u such that uPu∗ = Q. Write vP = I − 2P ad

vQ = I − 2Q. Then (with w = Θ(u)) we have wΘ(vP )w∗ = Θ(vQ), and

therefore wΘ(P )w∗ = Θ(Q). �

Let u be a unitary in A and let eirj , for 0 ≤ j ≤ n − 1, be the spectrum

of u. Fix projections Pj , for 0 ≤ j ≤ n − 1, such that u =
∑n−1
j=0 e

irjPj =∏n−1
j=0 exp(irjPj). Then (by Claim 5.4 in the last equality)

Θ(u) =
∏n−1
j=0 Θ(exp(irjPj)) =

∏n−1
j=0 exp(irρ(Pj)) =

∑n−1
j=0 e

irjρ(Pj).

Claim 5.6. If A is isomorphic to Mk(C) for some natural number k,

then Θ preserves the normalized trace, Tr, of the unitaries.

Proof. By the above computation, we only need to show there is d ∈ N
such that for everym, every projection of rankm inA is mapped to a projection

of rank dm in B. But this is an immediate consequence of Claim 5.5 and the

obvious equality ρ(P + Q) = ρ(P ) + ρ(Q)1 for commuting projections P and

Q, since in Mk(C) two projections are Murray-von Neumann equivalent if and

only if they have the same rank. �

1This equality holds for any two self-adjoint operators, but we shall not need it.
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Claim 5.7. The map Υ: A → B given by Υ(
∑
j αjuj) =

∑
j αjΘ(uj)

whenever αj are scalars and uj are unitaries is a well-defined *-homomorphism

from A into B.

Proof. Since every operator in A is a linear combination of four unitaries

(cf. the proof of Lemma 4.2), in order to see that Υ is well defined we only

need to check that
∑
j αjuj = 0 implies

∑
j αjΘ(uj) = 0.

Let us first consider the case whenA is a full matrix algebra. The following

argument is taken from Dye ([10, Lemma 3.1]).

Assume a =
∑
i αiui = 0. Then 0 = Tr(aa∗) =

∑
i,j αiᾱj Tr(uiu

∗
j ). Also

with b =
∑
i αiΘ(ui) we have

Tr(bb∗) =
∑
i,j αiᾱj Tr(Θ(uiu

∗
j )) =

∑
i,j αiᾱj Tr(uiu

∗
j ),

which is 0 by Claim 5.6. Therefore b = 0, proving that Υ is well-defined when

A is a full matrix algebra.

In order to prove the general case, let S0, . . . , Sm−1 list all minimal central

projections of A. Then SiASi is isomorphic to some Mk(i)(C) and therefore Υ

is well-defined on this subalgebra. However, Θ(u) =
∑m−1
j=0 ρ(Sj)Θ(u) for all

unitaries u in A, and therefore Υ(a) =
∑m−1
j=0 ρ(Sj)Υ(a) is well-defined for all

a ∈ A.

Clearly Υ is a complex vector space homomorphism and Υ(u) = Θ(u) for

a unitary u in A. It is straightforward to check that Υ is multiplicative and a

*-homomorphism. �

Any a ∈ A≤1 can be written as b + ic, where b and c are self-adjoints of

norm ≤ 1, and Λ(a) ≈3ε Λ(b) + iΛ(c). If b is self-adjoint of norm ≤ 1, then

there are unitaries u and v such that b = u + v (cf. the proof of Lemma 4.2).

Therefore Λ(b) ≈ε Λ(u) + Λ(v) ≈2ε3 Ξ(u) + Ξ(v) = Υ(b). All in all, we have

‖Λ(a)−Υ(a)‖ ≤ ε+ ε3 for a ∈ A≤1. Since for small ε each εi for 1 ≤ i ≤ 3 is

bounded by a linear function of ε, this concludes the proof. �

The assumption that Λ is unital was not necessary in Theorem 5.1. This

is an easy consequence of Theorem 5.1 and the following well-known lemma,

whose proof can also be found in [29].

Lemma 5.8. If 0 < ε < 1/8, then in every C∗-algebra A the following

holds. For every a satisfying ‖a2 − a‖ < ε and ‖a∗ − a‖ < ε there is a

projection Q such that ‖a−Q‖ < 4ε.

Proof. We claim that M = ‖a‖ < 2. Let b = (a+ a∗)/2. Then ‖a− b‖ <
ε/2, b is self-adjoint, and ‖b‖ > M − ε/2. Consider A as a concrete C∗-algebra

acting on some Hilbert space H. In the weak closure of A find a spectral

projection R of b corresponding to (M − ε/2 + ‖a − b‖, ‖b‖]. If ξ is a unit

vector in the range of R, then ‖bξ −Mξ‖ < ε/2 − ‖a − b‖. If η = aξ −Mξ,
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then ‖η‖ < ε/2, and M − ε/2 < ‖aξ‖ ≤ M . Also, a2ξ = aη + Maξ =

aη + Mη + M2ξ, and therefore ‖a2ξ‖ ≥ M2 −Mε. Since ‖a2ξ − aξ‖ < ε, we

have ‖a2ξ‖ < ‖aξ‖ + ε < M + 3ε/2. Therefore M + 3ε/2 > M2 −Mε, and

with ε < 1/4 this implies M < 2 as claimed.

Therefore ‖aa∗ − a‖ < 2‖a∗ − a‖+ ‖a2 − a‖ < 3ε. So we have

(1) 4‖b2 − b‖ = ‖a2 + aa∗ + a∗a+ (a∗)2 − 2a− 2a∗‖ < 8ε.

We may assume A is unital. Since b is self-adjoint, via the function calculus

in C∗(b, I), the subalgebra of A generated by b and I, b corresponds to the

identity function on its spectrum σ(b). By (1), for every x ∈ σ(b) we have

|x2 − x| < 2ε. Therefore 1/2 /∈ σ(b), U = {x ∈ σ(b) | |x − 1| < 1/2} is a

relatively closed and open subset of σ(b), and the projection Q corresponding to

the characteristic function of this set in C∗(b, I) belongs to A. Then ‖Q−b‖ =

supx∈σ(b) min(|x|, |1−x|). If δ(ε) = sup{min(|x|, |1−x|) | |x2−x| < 2ε}+ ε/2,

then ‖a−Q‖ < δ(ε). Clearly δ(ε) < 4ε for ε < 1. �

6. Automorphisms with C-measurable representations are inner

Each known proof that all automorphisms of a quotient structure related

to P(N)/Fin or B(H)/K(H) are ‘trivial’ proceeds in two stages. In the first,

some additional set-theoretic axioms are used to prove that all automorphisms

are ‘topologically simple.’ In the second, all ‘topologically simple’ automor-

phisms are shown to be trivial, without use of any additional set-theoretic ax-

ioms (see [16]). The present proof is not an exception and the present section

deals with the second step. Even though no additional set-theoretic axioms

are needed for its conclusion, the proof of Theorem 6.1 given at the end of this

section will take a metamathematical detour via TA and Shoenfield’s theorem

(Theorem 2.6). Note that the latter is not needed for the proof of Theorem 1,

since TA follows from its assumptions.

Theorem 6.1. Every automorphism of C(H) with a C-measurable repre-

sentation on U(H) is inner.

6.1. Inner on FDD von Neumann algebras. If v is a linear isometry be-

tween cofinite-dimensional subspaces of H then Ψv(a) = vav∗ is a representa-

tion of an automorphism of C(H). We use notation ~E, D[ ~E], and DM [ ~E] from

Section 0.1.

Lemma 6.2. Assume #En is a nondecreasing sequence. If an automor-

phism Φ of the Calkin algebra is inner on DM [ ~E] for some infinite M , then it

is inner on D[ ~E].

Proof. By Lemma 4.1, it will suffice to find a partial isometry u such that

uD[ ~E]u∗ ⊆ DM [ ~E] and u∗u = I. If (mj) is an increasing enumeration of M ,
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then #Ej ≤ #Emj by our assumption. Let

uj : span{ei | i ∈ Ej} → span{ei | i ∈ Emj}

be a partial isometry. Then u =
∑
j uj is as required. �

Theorem 6.3. Assume Φ is an automorphism of C(H), ~E is a partition

of N into finite intervals, and Φ has a C-measurable representation on D[ ~E].

Then Φ has a representation which is a *-homomorphism from D[ ~E] into B(H).

Moreover, there is a partial isomorphism v of cofinite-dimensional subspaces

of H such that Ψv is a representation of Φ on D[ ~E].

Proof. By coarsening ~E we may assume the sequence #En is nondecreas-

ing. Since ~E is fixed, we write PA for P
~E
A. The proof proceeds by successively

constructing a sequence of representations, each one with more adequate prop-

erties than the previous ones, until we reach one that is a *-homomorphism

between the underlying algebras. This is similar to the proofs in [13, §1]. Some

of the arguments may also resemble those from [3].

Let εi = 2−i. Fix a finite εi-dense in norm subset

ai ⊆ B(span{ei | i ∈ En})≤1

containing the identity and zero. Note that
∏l+m
j=l aj is 2εl-dense in

l+m∏
j=l

B(span{ei | i ∈ Ej})≤1.

Let A =
∏
i ai. We shall identify a ∈ ai with ā ∈ D[ ~E] such that P{i}ā = a

and (I −P{i})ā = 0. For J ⊆ N and x ∈ A it will be convenient to write x � J
for the projection of x to

∏
i∈J ai, identified with PJx.

Claim 6.4. There is a strongly continuous representation Ψ1 of Φ on A.

Proof. Since each ai is finite, the strong operator topology on A coincides

with its Cantor-set topology which is compact metric. Let X ⊆ A be a dense

Gδ set on which Ψ is continuous. Write X as an intersection of dense open

sets Un, n ∈ N. Since each ai is finite, a straightforward diagonalization

argument produces an increasing sequence (ni) in N, with Ji = [ni, ni+1),

bi = aJi =
∏
k∈Ji ai, and si ∈ bi such that for all x ∈ A and all i we have

x � Ji = si implies x ∈ ⋂ij=0 Uj . Therefore {x | (∃∞i)x � Ji = si} ⊆ X .

Let C0 =
⋃
j even Jj , C1 =

⋃
j odd Jj , R0 = PC0 , and R1 = PC1 . Let

S0 =
∑
j odd sj and let S1 =

∑
j even sj . Note that Riu = uRi = RiuRi for all

u ∈ D[ ~E] and i ∈ {0, 1}. For u ∈ A let

(*) Ψ1(u) = Ψ(uR0 + S0)−Ψ(S0) + Ψ(uR1 + S1)−Ψ(S1).

Then Ψ1 is a continuous representation of Φ on A. �
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Our next task is to find a representation Ψ2 of Φ on A which is stabilized

(in a sense to be made very precise below) and then extend it to a represen-

tation of Φ on D[ ~E]. Start with Ψ1 as provided by Claim 6.4. By possibly

replacing Ψ1 with b 7→ Ψ1(b)Ψ1(I)∗, we may assume Ψ1(I) = I.

The sequence of projections (Rk) was fixed in Section 0.1.

Claim 6.5. For all n and ε > 0 there are k > n and u ∈ ∏k−1
i=n ai such

that for all a and b in A satisfying a � [n,∞) = b � [n,∞) and a � [n, k) = u,

we have

(1) ‖(Ψ1(a)−Ψ1(b))(I −Rk)‖ ≤ ε and

(2) ‖(I −Rk)(Ψ1(a)−Ψ1(b))‖ ≤ ε.

Proof. Write c =
∏n−1
i=0 ai. For a ∈ A and s ∈ c write a[s] = s+ P[n,∞)a.

For k > n let

Vk = {a ∈ A | (∃s ∈ c)(∃t ∈ c)‖(Ψ1(a[s])−Ψ1(a[t]))(I −Rk)‖ > ε

or ‖(I −Rk)(Ψ1(a[s])−Ψ1(a[t]))‖ > ε}.

Since Ψ1 is continuous, each Vk is an open subset of A. If a ∈ D[ ~E] and s and

t are in c, then Ψ1(a[s])−Ψ1(a[t]) is compact. Therefore

‖(Ψ1(a[s])−Ψ1(a[t]))(I −Rk)‖ ≤ ε

and

‖(I −Rk)(Ψ1(a[s])−Ψ1(a[t]))‖ ≤ ε
for a large enough k = k(a, s, t). Since c is finite, for some large enough

k = k(a) we have a /∈ Vk. Therefore the Gδ set
⋂
k Vk is empty. By the Baire

Category Theorem, we may fix l such that Vl is not dense. There is a basic

open set disjoint from Vl. Since a ∈ Vl if and only if a[s] ∈ Vl for all a and

s ∈ c, for some k ≥ l there is a u ∈ ∏k−1
i=n ai such that {a ∈ A | a � [n, k) = u}

is disjoint from Vk (note that Vk ⊆ Vl). Then k and u are as required. �

We shall find two increasing sequences of natural numbers, (ni) (unrelated

to the one appearing in the proof of Claim 6.4) and (ki) so that ni < ki <

ni+1 for all i. These sequences will be chosen according to the requirements

described below. With Ji = [ni, ni+1) write bi = aJi =
∏
j∈Ji aj .

Let εi = 2−i. A ui ∈ bi is an εi-stabilizer for Ψ1 (or a stabilizer) if for all

a, b in A such that a � [ni, ni+1) = b � [ni, ni+1) = ui the following hold.

(a) If a � [ni,∞) = b � [ni,∞), then

(a1) ‖(Ψ1(a)−Ψ1(b))(I −Rki)‖ < εi and

(a2) ‖(I −Rki)(Ψ1(a)−Ψ1(b))‖ < εi.

(b) If a � [0, ni+1) = b � [0, ni+1), then

(b1) ‖(Ψ1(a)−Ψ1(b))Rki‖ < εi and

(b2) ‖Rki(Ψ1(a)−Ψ1(b))‖ < εi.
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We shall find (ni), (ki), Ji, bi as above and a stabilizer ui ∈ bi for all i. Assume

all of these objects up to and including ni, ki−1 and ui−1 have been chosen to

satisfy the requirements. Applying Claim 6.5, find ki ≥ ni and u0
i ∈

∏ki−1
j=ni

aj
such that (a1) and (a2) hold. Then apply the continuity of Ψ1 to find ni+1 ≥ ki
and ui ∈

∏ni+1−1
j=ni

aj such that ui � [ni, ki) = u0
i , and (b1) and (b2) hold as

well.

Once the sequences ni+1, ki and ui ∈ bi =
∏
j∈Ji aj are chosen, let

Vi =
⊕

j∈Ji B(Ej).

Then D[ ~E] =
∏
i Vi. We identify Vj with PJiD[ ~E] and b ∈ D[ ~E]≤1 with the

sequence 〈bj〉j such that bj ∈ Vj and b =
∑
j bj . Let Ij denote the identity of

Vj . Note that Ij ∈ bj . Recall that bi is 2εi-dense in (Vi)≤1 and fix a linear

ordering of each bi. Define

σi : Vi → bi

by letting σi(c) be the first element of bi that is within 2εi of c. For c ∈ D[ ~E]≤1

let

ceven =
∑
i σ2i(c2i) and codd =

∑
i σ2i+1(c2i+1).

Both of these elements belong to A and c− ceven − codd is compact.

Let us concentrate on V2i+1. Define Λ2i+1 : V2i+1 → B(H):

Λ2i+1(b) = Ψ1(ueven + σ2i+1(b))−Ψ1(ueven).

Since both σi and Ψ are Borel-measurable, Λ2i+1 is Borel-measurable as well.

Let Qi = Rki+1
−Rki−1

, with k−1 = 0.

Claim 6.6. For b ∈ D[ ~E]≤1 such that b2i = 0 for all i, the operator

Ψ1(b) −∑∞i=0 Q2i+1Λ2i+1(b2i+1)Q2i+1 is compact. In particular the latter op-

erator is bounded.

Proof. Since b−bodd is compact, so is Ψ1(b)+Ψ1(ueven)−Ψ1(ueven +bodd).

By applying (a1) and (b1) to bodd, b+ =
∑∞
j=i σ2j+1(b) and σ2i+1(b2i+1) we see

that

‖(Λ2i+1(b2i+1) + Ψ1(ueven)−Ψ1(ueven + bodd))Q2i+1‖
= ‖Ψ1((ueven + σ2i+1(b))−Ψ1(ueven + bodd))Q2i+1)‖
≤ ‖(Ψ1(ueven + σ2i+1(b))−Ψ1(ueven + b+))Q2i+1‖

+ ‖(Ψ1(ueven + b+)−Ψ1(ueven + bodd))Q2i+1‖
< 2ε2i+1.

Since
∑
i(ε2i+1)2 < ∞ and I −∑i Q2i+1 is a compact operator, the operator

Ψ1(ueven+bodd)−Ψ1(ueven)−∑∞i=0 Λ2i+1(b2i+1)Q2i+1 is compact. An analogous

proof using (a2) and (b2) instead of (a1) and (b1) gives that Ψ1(ueven +bodd)−
Ψ1(ueven)−∑∞i=0 Q2i+1Λ2i+1(b2i+1)Q2i+1 is compact. �
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Define Λ′2i+1 : V2i+1 → B(H) by

Λ′2i+1(b) = Q2i+1Λ2i+1(b)Q2i+1.

With a2i+1 = Λ′2i+1(I2i+1) let εi = max(‖a2
2i+1 − a2i+1‖, ‖a∗2i+1 − a2i+1‖).

We claim that lim supi εi = 0. Assume not and find ε > 0 and an infinite

M ⊆ 2N + 1 such that for all i ∈ M we have max(‖a2
i − ai‖, ‖a∗i − ai‖) > ε.

With a =
∑
i∈M ai the operator Ψ1(PM )−a is compact, thus a∗−a and a2−a

are both compact. Since ai = QiaQi and QiQj = 0 for distinct i and j in M ,

we have a∗ =
∑
i∈M a∗i and a2 =

∑
i∈M a2

i . By the choice of M and ε at least

one of a− a∗ and a2 − a is not compact, a contradiction.

Applying Lemma 5.8 to a2i+1 such that εi is small enough, obtain projec-

tions S2i+1 ≤ Q2i+1 such that lim supi→∞ ‖S2i+1 − Λ′2i+1(I2i+1)‖ = 0. With

Lemma 4.1 in mind, we shall ignore all the even-numbered Vi and Λi. Let

Λ′′i (a) = S2i+1Λ′2i+1(a)S2i+1

for a ∈ V2i+1 and let S′′i = S2i+1 and V ′′i = V2i+1 for all i.

Then Λ′′(a) =
∑
i Λ′′i (ai) is a representation of Φ on

⊕
i V ′′i . For j ∈ N let

δ0
j = sup

a,b∈(V ′′j )≤1

‖Λ′′j (ab)− Λ′′j (a)Λ′′j (b)‖,

δ1
j = sup

a,b∈(V ′′j )≤1

‖Λ′′j (a+ b)− Λ′′j (a)− Λ′′j (b)‖,

δ2
j = sup

a∈(V ′′j )≤1

‖Λ′′j (a∗)− Λ′′j (a)∗‖,

δ4
j = sup

a∈(V ′′j )≤1

|‖a‖ − ‖Λ′′j (a)‖|.

We claim that limj max0≤k≤4 δ
k
j = 0. We shall prove only limj δ

0
j = 0 since

the other proofs are similar. Assume the limit is nonzero, and for each j

fix bj and cj in (V ′′j )≤1 such that ‖Λ′′j (bjcj) − Λ′′j (bj)Λ
′′
j (cj)‖ ≥ δ0

j /2 for all j.

Let b and c in B[ ~E]≤1 be such that PJjb = bj and PJjc = cj for all j. Then

Ψ1(bc)−Ψ1(b)Ψ1(c) is compact. By Claim 6.6, so is
∑
j Λ′′j (bjcj)−Λ′′j (bj)Λ

′′
j (cj).

This implies limj δ
0
j = 0, a contradiction.

Each Λ′′j is a 2δj-approximate *-homomorphism as defined in Section 5.

Since limj 2δj = 0 and each Λ′′j is Borel-measurable, by applying Theorem 5.1

to Λ′′j for j larger than some n0, we find a 2Kδj-approximation to Λ′′j which

is a unital *-homomorphism, Ξi : D2i+1 → B(S′′i [H]). For i ≤ n0 let Ξi be

identically equal to 0. Since limj 2Kδj = 0 and S′′i are pairwise orthogo-

nal, the diagonal Ξ of Ξi is a *-homomorphism and a representation of Φ on

D⋃
i odd

Ji [
~E].

Still ignoring the even-numbered Vj ’s, we address the second part of

Theorem 6.3 by showing Φ is inner on D⋃
i odd

Ji [
~E]. Let Fi = PJi [H] and

Gi = S′′i [H].
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Claim 6.7. For all but finitely many i there is a linear isometry vi : Fi →
Gi such that Ξi(a) = viav

∗
i for all a ∈ D[(Ej)j∈Ji ].

Proof. Let ξn, for n ∈ N, be an orthonormal sequence such that each ξn be-

longs to some Fi and no two ξn belong to the same Fi. Let P = projspan{ξn|n∈N}
and consider the masa A of B(P [H]) consisting of all operators diagonalized by

ξn, for n ∈ N. The image under the quotient map of A in the Calkin algebra

C(P [H]) is a masa ([22]). It is contained in the domain of Ξ. The image of

the Ξ-image of A is a masa in C(Ξ(P )[H]). Because of this, for all but finitely

many n the projection Ξ(projCξn) has rank 1. Since (ξn) was arbitrary, for all

but finitely many n and all one-dimensional projections R ≤ projFn the rank

of Ξ(R) is equal to 1. Fix such n and a basis (ηj | j < dim(En)) of Fn. Let

Pj = Ξ(projCηj ). For all but finitely many n we have
∑
j<dim(Fn) Pj = projGn .

Consider n large enough for this to hold. Fix a unit vector ξ0 in the range

of P0. Let a ∈ U(Fn) be generated by a cyclic permutation of {ηj}, so that

a(ηj) = ηj+1 (with ηdim(Fn) = η0). With b = Ξ(a) let ξj = bj(ξ0) (here bj is

the j-th power of b). Then (ξj) form a basis of Gn. It is clear that ηj 7→ ξj
defines an isometry vn as required. �

For a large enough m the sum v =
⊕∞

n=m vn is a partial isometry from⊕∞
n=m Fn to

⊕∞
n=mGn such that Ξ(a)− vav∗ has finite rank for all a ∈ D[ ~E].

Lemma 6.2 implies Φ is inner on D[ ~E]. �

Proof of Theorem 6.1. Fix an automorphism Φ of C(H) with a C-measur-

able representation. By Lemma 4.3(2) we may assume that Φ has a Borel-

measurable representation Ψ. Let B ⊆ B(H)≤1×B(H)≤1 be the set of all pairs

(a, b) such that Ψ(b)−aba∗ is not compact. Then the assertion of Theorem 6.1

is equivalent to (∃a)(∀b)(a, b) /∈ B. Lemma 2.5 implies B is Borel and therefore

by Theorem 2.6 we may use TA in the proof of Theorem 6.1.

By Theorem 6.3, Φ is inner on D[ ~E] for each finite-dimensional decompo-

sition ~E of H. By Theorem 3.2, Φ is inner. �

7. Locally inner automorphisms

Fix an automorphism Φ of C(H). Proposition 7.1 below is roughly mo-

deled on the proof of [13, Prop. 3.12.1]. Its main components are Lemma 7.2,

Proposition 7.7, and Theorem 6.3. The key device in the proof of Lemma 7.2 is

the partition defined in (K1)–(K3). It is a descendant of Velickovic’s partition

([42]) and the partitions used in [13, p. 100].

If u is a partial isomorphism we write Ψu for the conjugation, Ψu(a) =

uau∗. Fix a partition ~E of N into finite intervals such that the sequence #En
is nondecreasing.

Proposition 7.1. TA implies Φ is inner on D[ ~E].
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Using the Axiom of Choice, find a representation Ψ: B(H)→ B(H) of Φ.

It is not assumed that Ψ is C-measurable or that it is a homomorphism, but we

may assume Ψ(P ) is a projection whenever P is a projection. This is because

every projection in the Calkin algebra is the image of some projection in B(H)

via the quotient map ([43, Lemma 3.1]). We may also assume ‖Ψ(a)‖ ≤ ‖a‖
for all a: find the polar decomposition of Ψ(a), apply the spectral theorem to

its positive part, and truncate the function to ‖a‖.
For M ⊆ N let UM [ ~E] denote the unitary group of DM [ ~E] and let

J n( ~E) = {M ⊆ N | there is a Borel-measurable Ξ: UM [ ~E]→ B(H)

(∀a ∈ UM [ ~E])‖Φ(π(a))− π(Ξ(a))‖ ≤ 2−n},

J nσ ( ~E) = {M ⊆ N | there are Borel-measurable Ψi : UM [ ~E]→ B(H), i ∈ N

(∀a ∈ UM [ ~E])(∃i)‖Φ(π(a))− π(Ψi(a))‖ ≤ 2−n}.

In the terminology of Section 4.1, Ξ is a 2−n-approximation to Φ on UM [ ~E].

Each J n( ~E) and each J nσ ( ~E) is hereditary and closed under finite changes of

its elements, but these sets are not necessarily closed under finite unions.

Given ~E = (En)∞n=0, write Fn = span{ei | i ∈ En} and P
~E
A for the

projection to
⊕
n∈A Fn. While ~E is fixed we drop the superscript and write PA.

A family of subsets of N is almost disjoint if A ∩ B is finite for all distinct A

and B in the family. An almost disjoint family A is tree-like if there is a partial

ordering � of N such that (N,�) is isomorphic to (2<N,⊆) and each element

of A is a maximal branch of this tree. If Js (s ∈ 2<N) are pairwise disjoint

finite subsets of N and X ⊆ 2N, then the family of all Mx =
⋃
n Jx�n, x ∈ X, is

tree-like, and every tree-like family is of this form.

Lemma 7.2. TA implies that for every k every tree-like family of J kσ ( ~E)-

positive sets is at most countable.

Proof. Fix an uncountable tree-like family A and a partial ordering � on

N such that (N,�) is isomorphic to (2<N,⊆) and all elements of A are maximal

branches in (N,�). Let

X = {(S, a) | S is infinite and (∃B(S) ∈ A)(S ⊆ B(S) and a ∈ US [ ~E])}.

Note that (S, a) ∈ X implies PSa = aPS = PSaPS = a. Also, for i ∈ S we

have that P{i}a ∈ B(Fi). If moreover (T, b) ∈ X , then PSPT = PS∩T and for

each i we have (a− b)P{i} = P{i}(a− b) = P{i}(a− b)P{i}.
Modify Ψ as follows. If a ∈ DB[ ~E] \ K(H) for some B ∈ A, then replace

Ψ(a) with Ψ(PB)Ψ(a)Ψ(PB). Since a is not compact, such B is unique and

since PBaPB = a, the modified Ψ is a representation of Φ which satisfies

‖Ψ(a)‖ ≤ ‖a‖ for all a and Ψ(a)Ψ(PB) = Ψ(PB)Ψ(a) for a and B as above.
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Fix n ∈ N. Define a partition [X ]2 = Kn
0 ∪Kn

1 by letting {(S, a), (T, b)}
in Kn

0 if and only if the following three conditions hold:

(K1) B(S) 6= B(T ).

(K2) For each i ∈ S ∩ T we have ‖(a− b)P{i}‖ < 2−i.

(K3) ‖Ψ(a)Ψ(PT )−Ψ(PS)Ψ(b)‖ > 2−n or

‖Ψ(PT )Ψ(a)−Ψ(b)Ψ(PS)‖ > 2−n.

The definition is clearly symmetric. Consider P(N) with the Cantor-set topol-

ogy (§2.2) and B(H)≤1 with the strong operator topology.

Claim 7.3. The coloring Kn
0 is open in the topology on X obtained by

identifying (S, a) with (B(S), S, a,Ψ(PS),Ψ(a)) ∈ P(N)2 × (B(H)≤1)3.

Proof. Assume the pair (S, a), (T, b) satisfies (K1). Since S and T are

infinite subsets of disjoint branches of (N,�), their intersection is finite and we

may fix s ∈ S ∩ (B(S) \B(T )) and t ∈ T ∩ (B(T ) \B(S)). Then it follows that

U = {(S′, a′) | s ∈ S′} and V = {(T ′, b′) | s ∈ T ′} are open neighborhoods of

(S, a) and (T, b), and any pair in U × V satisfies (K1).

We shall show (K2) is open relative to (K1). Fix (S, a) and (T, b) satisfying

(K1) and (K2) and U , V as above. Let U ′ = {(S′, a′) | (∀r � s)r ∈ S′ if and

only if r ∈ S} and V ′ = {(T ′, b′) | (∀r � t)r ∈ T ′ if and only if r ∈ T}. These

two sets are open and for (S′, a′) ∈ U ′ and (T ′, b′) ∈ V ′ we have S′∩T ′ = S∩T .

For each i in this intersection, P{i} has finite rank. In a finite-dimensional space

the norm topology coincides with the strong operator topology; therefore (K2)

is open on X modulo (K1).

It remains to prove (K3) is open. Assuming the pair {(S, a), (T, b)} satis-

fies one of the alternatives of (K3) (without a loss of generality, the first one)

one only needs to fix a unit vector ξ such that ‖(Ψ(a)Ψ(PT )−Ψ(PS)Ψ(b))ξ‖ >
2−n; this defines an open neighborhood consisting of pairs satisfying (K3). �

Claim 7.4. There are no uncountable Kn
0 -homogeneous sets for any n.

Proof. Assume the contrary. Fix n ∈ N and an uncountable Kn
0 -homoge-

neous H. For i ∈ M =
⋃

(S,a)∈H S fix (Si, ai) ∈ H such that i ∈ Si and let

c =
∑
i∈M aiP{i}. Then c ∈ DM [ ~E]≤1 and ‖(c − a)P{i}‖ = ‖(ai − a)P{i}‖ <

2−i for all (S, a) ∈ H. For (S, a) ∈ H we have M ⊇ S and the operator

PSc − a = cPS − a is compact. Therefore, the operators Ψ(c)Ψ(PS) − Ψ(a)

and Ψ(PS)Ψ(c) − Ψ(a) are in K(H). There is a finite-dimensional projec-

tion R = R(S, a) such that ‖(I − R)(Ψ(c)Ψ(PS) − Ψ(a))‖ < 2−n−2 and

‖(I − R)(Ψ(PS)Ψ(c) − Ψ(a))‖ < 2−n−2. Since Ψ(PS) is a projection, we

may choose R so that RΨ(PS) = Ψ(PS)R.

Let δ = 2−n−4. By the separability of K(H) there are a projection R̄ and

an uncountable H′ ⊆ H such that ‖R̄ −R(S, a)‖ < δ for all (S, a) in H′. By

the norm-separability of the range of R̄ we may find an uncountable H′′ ⊆ H′
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such that for all (S, a) and (T, b) in H′′ we have ‖R̄(Ψ(PS)−Ψ(PT ))‖ < δ and

‖R̄(Ψ(a)−Ψ(b))‖ < δ.

Write a ≈ε b for ‖a−b‖ < ε. Fix distinct (S, a) and (T, b) in H′′. Recalling

that ‖Ψ(d)‖ = ‖d‖ for all d, we have

(I − R̄)Ψ(a)Ψ(PT ) ≈δ (I −R(S, a))Ψ(a)Ψ(PT )

≈2−n−2 (I −R(S, a))Ψ(PS)Ψ(c)Ψ(PT )

= Ψ(PS)(I −R(S, a))Ψ(c)Ψ(PT )

≈2δ Ψ(PS)(I −R(T, b))Ψ(c)Ψ(PT )

≈2−n−2 Ψ(PS)(I −R(T, b))Ψ(b)

≈2δ Ψ(PS)(I −R(S, a))Ψ(b)

= (I −R(S, a))Ψ(PS)Ψ(b)

≈δ (I − R̄)Ψ(PS)Ψ(b).

Hence ‖(I − R̄)(Ψ(a)Ψ(PT )−Ψ(PS)Ψ(b))‖ < 6δ + 2−n−1. Also

R̄Ψ(a)Ψ(PT ) ≈δ R̄Ψ(b)Ψ(PT ) = R̄Ψ(PT )Ψ(b) ≈δ R̄Ψ(PS)Ψ(b)

and ‖Ψ(a)Ψ(PT )−Ψ(PS)Ψ(b)‖ < 8δ+2−n−1 < 2−n. Since an analogous argu-

ment shows ‖Ψ(PT )Ψ(a)−Ψ(b)Ψ(PS)‖ < 2−n, the pair {(S, a), (T, b)} satisfies

(K3). Since (K1) and (K2) are automatic, we have {(S, a), (T, b)} ∈ Kn
1 , a con-

tradiction. �

With k as in the statement of Lemma 7.2 let n̄ = k+ 3. By Claim 7.4 and

TA, X can be covered by the union of K n̄
1 -homogeneous sets Xi for i ∈ N. For

each i fix a countable Di ⊆ Xi dense in the separable metric topology from

Claim 7.3. It suffices to prove that every B ∈ A \ {B(S) : (∃a)(S, a) ∈ ⋃i Di}
belongs to J n̄−3

σ ( ~E).

Fix a dense set of projections Qi, for i ∈ N, in the projections of K(H).

We also assume that Q0 = 0 and that for every i the set {Qm : Qm ≥ Qi}
is dense in {P : P ≥ Qi and P is a projection in K(H)}. For example, we

may let Qm enumerate all finite rank projections belonging to some countable

elementary submodel of Hc+ .

For m ∈ N define a relation ∼m on X by letting

(S, a) ∼m (T, d)

if and only if all of the following conditions are satisfied.

(∼m1) S ∩m = T ∩m,

(∼m2) ‖(a− b)P{i}‖ < 2−i−1 for all i < m,

(∼m3) ‖Qj(Ψ(PS)−Ψ(PT ))Qj‖ ≤ 1/m for all j ≤ m, and

(∼m4) ‖Qj(Ψ(a)−Ψ(b))Qj‖ ≤ 1/m for all j ≤ m.

We should emphasize that this is not an equivalence relation.
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For p and m in N and (S, a) ∈ Xp, let

m+(S, a, p) = min{j > m : (∃(T, d) ∈ Dp)((T, d) ∼m (S, a) and T ∩B ⊆ j)}.

If (S, a) ∈ Xp, then (T, d) as in the definition of m+(S, a, p) exists and T ∩ B
is finite. Therefore m+(S, a, p) is well-defined whenever (S, a) ∈ Xp.

We check that for every m and every p there is a finite set Fm ⊆ Dp such

that for every (S, a) ∈ Xp, there is (T, d) ∈ Fm satisfying (S, a) ∼m (T, d).

Clearly there are only finitely many possibilities for S ∩ m. The projections

P{i} and Qj are finite-dimensional and therefore the unit ball of the range of

any of these projections is totally bounded. Finally, note that in (∼m2) we

have (a− b)P{i} = P{i}(a− b)P{i}. Therefore for m ∈ N we have that

m+ = max{m+(S, a, p) : (S, a) ∈ Xp for some p < m}

is well-defined. Let m(0) = 0 and m(j + 1) > m(j)+ for all j. Let

B0 = B ∩⋃∞j=0[m(2j),m(2j + 1))

and find a nondecreasing sequence k(j), for j ∈ N, such that the following

conditions are satisfied.

(1) δ(j) = ‖Qk(j)Ψ(PB0)−Ψ(PB0)Qk(j)‖ satisfies limj→∞ δ(j) = 0,

(2) k(j) ≤ m(2j + 1), and

(3) Qk(j) strongly converge to the identity.

Let us describe the construction of the sequence k(j), for j ∈ N. Since we can

write R as a strong limit of an increasing sequence of finite rank projections,

there is an increasing sequence of finite rank projections Ri, for i ∈ N, that

strongly converge to the identity and such that

lim
j→∞

‖RjΨ(PB0)−Ψ(PB0)Rj‖ = 0.

Let k(0) = 0 and using the density of Qi, for i ∈ N, pick a nondecreasing

sequence l(j) such that ‖Ql(j) −Rj‖ → 0 as j →∞ and Ql(j) converge to the

identity in the strong operator topology as j →∞. Letting k(j) = max{l(i) :

l(i) ≤ m(2j + 1)} we have that (1)–(3) hold.

For a ∈ UB0 [ ~E] and p ∈ N let

Ya,p = {c : (∀j > p)(∃(S, d) ∈Dp) so that

(i) S ∩B0 ⊆ m(2j + 1),

(ii) S ∩m(2j + 1) = B0 ∩m(2j + 1),

(iii) ‖(a− d)P{i}‖ < 2−i for i ∈ S ∩B0,

and for all l ≤ m(2j + 1) we have (iv) ‖Ql(Ψ(PB0)−Ψ(PS))Ql‖ < 2/j

and (v) ‖Ql(c−Ψ(d))Ql‖ < 2/j}.



654 ILIJAS FARAH

Since Dp is countable, the set

Y(n̄, p) =
⋃
{{a} × Ya,p : a ∈ UB0 [ ~E]}

is Borel for all p.

Claim 7.5. Assume a ∈ UB0 [ ~E] is such that (B0, a) ∈ Xp. Then

(4) Ψ(a) ∈ Ya,p and

(5) ‖Ψ(PB0)c−Ψ(a)Ψ(PB0)‖ < 2−n̄+1 for all c ∈ Ya,p.

Proof. (4) Fix j. By the definition of ∼m(2j+1) and the choice of m(2j+2)

we can choose (S, d) ∈ Dp such that (i)–(v) are satisfied with c = Ψ(a).

(5) Assume the contrary, that ‖Ψ(PB0)c−Ψ(a)Ψ(PB0)‖ > 2−n̄+1. Fix j

large enough to have 2δ(j) < 2−n̄ and

(6) ‖Qk(j)(Ψ(PB0)c−Ψ(a)Ψ(PB0))Qk(j)‖ > 2−n̄+1.

Fix i ≥ j. By the definition of Ya,p we can pick (S, d) = (S(i), d(i)) ∈ Dp such

that

(7) S ∩B0 ⊆ m(2i+ 1),

(8) S ∩m(2i+ 1) = B0 ∩m(2i+ 1),

(9) ‖(a− d)P{r}‖ < 2−r for all r ∈ S ∩B0,

(10) ‖Ql(Ψ(PB0)−Ψ(PS))Ql‖ < 2/i for all l ≤ m(2i+ 1), and

(11) ‖Ql(c−Ψ(d))Ql‖ < 2/i for all l ≤ m(2i+ 1).

Since the pair {(B0, a), (S, d)} belongs to K n̄
1 and the corresponding instances

of (K1) and (K2) hold, we must have

(12) ‖Ψ(PB0)Ψ(d)−Ψ(a)Ψ(PS)‖ < 2−n̄.

The proof is concluded by a computation. Writing x ≈jε y for

‖Qk(j)(x− y)Qk(j)‖ ≤ ε,

by applying (1), (11), (1), and then (12) in this order we obtain the following

estimates:

Ψ(PB0)c ≈jδ(j) Ψ(PB0)Qk(j)c ≈
j
2/i Ψ(PB0)Qk(j)Ψ(d)

≈jδ(j) Ψ(PB0)Ψ(d) ≈j2−n̄ Ψ(a)Ψ(PS)

and therefore

(13) ‖Qk(j)(Ψ(PB0)c−Ψ(a)Ψ(PS))Qk(j)‖ ≤ 2−n̄ + 2
i + 2δ(j).

Recall that (S, d) = (S(i), d(i)) depends on i and note that (10) implies that

Ψ(PS(i)) converge to Ψ(PB0) in the strong operator topology as i→∞. Since

the range of Qk(j) is finite-dimensional,

lim
i→∞
‖Qk(j)(Ψ(a)Ψ(PS(i))−Ψ(a)Ψ(PB0))Qk(j)‖ = 0.
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Together with (13) this implies

‖Qk(j)(Ψ(PB0)c−Ψ(a)Ψ(PB0))Qk(j)‖ < 2−n̄+1,

a contradiction. �

By Theorem 2.1 there is a C-measurable uniformization Θ0
p : UB0 [ ~E] →

B(H) of Y(n̄, p). By Claim 7.5 the graphs of functions

Υ0
p(a) = Ψ(PB0)Θ0

p(a)

for p ∈ N cover a graph of a 2−n̄+1-approximation to Φ. By Lemma 4.3(1)

there are Borel-measurable functions witnessing B0 ∈ J n̄−2
σ ( ~E). An analogous

argument gives (Υ1
i )i witnessing B1 = B \ B0 ∈ J n̄−2

σ ( ~E). Since a ∈ UB[ ~E]

implies that both aPB0 = PB0aPB0 ∈ dom(Υ0
i ) and aPB1 = PB1aPB1 ∈

dom(Υ1
j ), functions Υij(a) = Υ0

i (aPB0)+Υ1
j (aPB1) witness B ∈ J n̄−3

σ ( ~E). �

7.1. Uniformizations. An automorphism Φ of C(H) and its representation

Ψ are fixed. The unitary group UA[ ~E] of DA[ ~E] is compact metric with respect

to its strong operator topology. Let ν ~E denote the normalized Haar measure

on this group.

Lemma 7.6. Assume K is a positive Haar-measurable subset of U [ ~E] such

that Φ has a measurable ε-approximation Ξ on K. Then Φ has a Borel-

measurable 2ε-approximation on U [ ~E].

Proof. By Luzin’s theorem ([27, Theorem 17.12]), by possibly shrinking

K we may assume it is compact and the restriction of Ξ to K is continuous.

Let us first see that we may assume ν(K) > 1/2. Let U ⊆ U [ ~E] be a basic

open set such that ν(K ∩U) > ν(U)/2. Let n be large enough so that there

is an open U0 ⊆
∏
i<n U(Ei) satisfying U = U0 ×

∏
i≥n U(Ei). Fix a finite

F ⊆ {a ∈ U [ ~E] | a(i) = Ii for all i ≥ n}
such that FU0 = U [ ~E]. Then K′ = FK has measure > 1/2 and Ξ′ with

domain K′ defined by Ξ′(b) = Ξ(ab), where a is the first element of F such

that ab ∈ K is a continuous ε-approximation of Φ on K′.

Let X = {(a, b) ∈ U [ ~E] ×K′ | ab∗ ∈ K′}. This set is closed. Since ν ~E
is invariant and unimodular, for each a there is b such that (a, b) ∈ X . By

Theorem 2.3 there is a Borel-measurable f : U [ ~E]→ K such that (a, f(a)) ∈ X
for all a. The map Ξ1(a) = Ξ(af(a)∗)Ξ(f(a)) is clearly a 2ε-approximation to

Φ and it is Borel-measurable. �

Proposition 7.7. If Mi, i ∈ N are pairwise disjoint infinite subsets of N
and M =

⋃
iMi is in J nσ ( ~E) then there is i such that Mi ∈ J n−2( ~E).

Proof. Assume not. Write Pi = P
~E
Mi

and P = P
~E
M . Fix Borel-measurable

functions Ξi, i ∈ N, whose graphs cover a 2−n-approximation to Ψ on UM [ ~E].

Let Qi =
∨∞
j=i Pj ; then Q0 = P . By making unessential changes to Ψ, we
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may assume Ψ(Pi), i ∈ N, are pairwise orthogonal projections such that

Ψ(Qi) =
∨
j≥i Ψ(Pj) for all i. Let Vi =

∏∞
j=i UMi [

~E], a compact group

with Haar measure µi. We shall find ai ∈ UMi [
~E] and a µi-positive compact

Yi ⊆ Vi+1 such that for all i and all b ∈ Yi we have

(2) ‖(Ξi((
∑
j≤i aj) + b)−Ψ(ai))Ψ(Pi)‖K > 2−n.

We shall also assume that for j < i we have

(3) Yi ⊆ {b ∈ Vi+1 | b+
∑i
k=j+1 ak ∈ Yj}.

Condition (3) will assure that “Yi ⊆ V0 defined by “Yi = {∑i
j=0 aj + b : b ∈ Yi},

for i ∈ N, form a decreasing sequence of compact sets. Assume a0, a1, . . . ai−1

and Yi−1 have been chosen to satisfy (2) and (3). Using Fubini’s theorem, the

Lebesgue density theorem, and the inner regularity of the Haar measure, find

compact positive sets Vi ⊆ UMi [
~E] and Wi ⊆ Vi+1 such that for every x ∈ Vi

we have µi+1{y ∈Wi | (x, y) ∈ Yi} > µi+1(Wi)/2. Let

X = {(a, b, c) ∈ Vi ×Wi × U(H) | ‖Ξi((
∑
j<i aj) + a+ b)Ψ(Pi)− c‖K ≤ 2−n}.

This is a Borel set, and so is

X1 = {(a, c) | µi{b | (a, b, c) ∈ X} > µi(Wi)/2}.
Let Z be the set of all a ∈ Vi such that {b | (a, b) ∈ X1} 6= ∅. This is a

projection of X1. If Z 6= Vi, pick ai ∈ Vi \ Z. Since (ai,Ψ(ai)) /∈ X1, with

Y ′i+1 = {b ∈Wi | ‖Ξi((
∑
j<i aj) + ai + b)Ψ(Pi)−Ψ(ai)‖K > 2−n}

we have µi+1(Y ′i+1) ≥ µi+1(Wi)/2. In this case

Y ′′i+1 = Y ′i+1 ∩ {b ∈Wi | (ai, b) ∈ Yi}
is µi-positive and satisfies (2) and (3). By the inner regularity of the Haar mea-

sure, find a compact positive Yi+1 ⊆ Y ′′i+1 and proceed with the construction.

We may therefore without a loss of generality assume Z = Vi. By Theo-

rem 2.1 there is a C-measurable f̄ : UMi [
~E] → B(H) such that (a, f̄(a)) ∈ X1

for all a ∈ Z. Then f defined by f(a) = Ψ(Pi)f̄Ψ(Pi) is also Borel. Since

Z = Vi has positive measure, if f is a 2−n+1-approximation of Φ on Z, then

Lemma 7.6 gives a Borel 2−n+2-approximation of Φ on UMi [
~E], showing that

Mi ∈ J n−2( ~E) and contradicting our assumption. Therefore we can fix ai ∈ Z
such that ‖(f(ai)−Ψ(ai))Ψ(Pi)‖K>2−n+1. Then Y ′i+1 ={b | (ai, b, f(ai))∈X}
has a positive measure and for each b ∈ Y ′i+1 clause (2) holds because

‖(Ξi(
∑
j≤i aj + b)−Ψ(ai))Ψ(Pi)‖K

≥ ‖(f(ai)−Ψ(ai))Ψ(Pi)‖K − ‖(Ξi(
∑
j≤i aj + b)− f(ai))Ψ(Pi)‖K > 2−n.

Let Yi+1 ⊆ Y ′i+1 be a compact positive set. This describes the construction.

Let a =
∑∞
i=0 ai. Since ai = PiaPi for each i and Pi are pairwise orthogo-

nal, ‖a‖ ≤ supi ‖ai‖ = 1. For some i we have ‖Ξi(a) − Ψ(a)‖K ≤ 2−n; hence
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‖(Ξi(a) − Ψ(ai))Ψ(Pi)‖K ≤ 2−n. However,
∑∞
j=i+1 ai is in Yi by (3) and the

compactness of Yi in the product topology. This contradicts (2). �

Proof of Proposition 7.1. Enumerate N as ns (s ∈ 2<N) and write Mx =

{nx�j | j ∈ N}. By Lemma 7.2, for everym the set {x |Mx /∈ J nσ ( ~E)} is at most

countable. We may therefore fix x0 such that M0 = Mx0 belongs to J nσ ( ~E)

for each n. Partition M0 into infinitely many infinite pieces. By Lemma 7.7

at least one of these pieces, call it M1, belongs to J 1( ~E). By successively

applying this argument we find a decreasing sequence Mj of infinite subsets of

M0 such that Mj ∈ J j( ~E) for each j. Fix an infinite M such that M \Mj is

finite for all j. Then M ∈ ⋂j J j( ~E) and on DM [ ~E] there is a Borel-measurable

2−j-approximation to Φ for each j. By Lemma 4.4 there is a C-measurable

representation of Φ on DM [ ~E]. By Theorem 6.3, Φ is inner on DM [ ~E] and by

Lemma 6.2, Φ is inner on D[ ~E]. �

Proof of Theorem 1. Fix an automorphism Φ of C(H) and an orthonor-

mal basis (en) for H. For every partition ~E of N into finite intervals such that

#En is nondecreasing, Proposition 7.1 implies there is a partial isomorphism

u = u( ~E) between cofinite-dimensional subspaces of H such that Ψu is a repre-

sentation of Φ on C[ ~E]. Therefore {( ~E, u( ~E))} is a coherent family of unitaries

and Theorem 3.2 implies Φ is inner. �

8. Concluding remarks

Let S denote the unilateral shift operator. The following problem of

Brown-Douglas-Fillmore is well-known.

Problem 8.1. Is it consistent with the usual axioms of mathematics that

some automorphism of the Calkin algebra sends π(S) to its adjoint?

Ilan Hirshberg pointed out that there are essentially normal operators a

and b with the same essential spectrum such that Φ(π(a)) 6= π(b) for all in-

ner automorphisms Φ of the Calkin algebra. This is because for a fixed Φ

either index(Φ(a)) = index(a) for all Fredholm operators a, or index(Φ(a)) =

− index(a) for all Fredholm operators a. Together with the Brown-Douglas-

Fillmore characterization of unitary equivalence modulo compact perturbation

of essentially normal operators, this implies that a positive answer to Prob-

lem 8.1 is equivalent to the consistency of the existence of normal operators a

and b in C(H) and an automorphism Φ of C(H) such that Φ(a) = b but for

every inner automorphism Ψ of C(H) we have Ψ(a) 6= b. An argument using

[2] shows that if an automorphism Φ sends the standard atomic masa to itself

then Φ cannot send Ṡ to Ṡ∗ (see [18, Prop. 7.7]).

Recall that for a C∗-algebra A its multiplier algebra, the quantized ana-

logue of the Čech-Stone compactification, is denoted by M(A) (see [5, 1.7.3]).

For example, M(K(H)) = B(H), M(C0(X)) = C(βX) for a locally compact
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Hausdorff space X, and M(A) = A for every unital C∗-algebra A. George

Elliott suggested investigating when all automorphisms of M(A)/A are trivial

and Ping Wong Ng suggested investigating when isomorphism of the corona

algebras M(A)/A and M(B)/B implies isomorphism of A and B. The follow-

ing is the set-theoretic core of both of these problems and it is very close to

[16] and [13] in spirit.

Problem 8.2. Assume A and B are separable nonunital C∗-algebras. When

does every isomorphism between the corona algebras M(A)/A and M(B)/B

lift to a *-homomorphism Φ of M(A) into M(B), so that the diagram

M(A)
Φ //

π

��

M(B)

π

��
M(A)/A

Ψ
// M(B)/B

commutes?

TA implies the positive answer when A = B = K(H) (Theorem 1) and

TA+MA implies the positive answer when both A and B are of the form C0(X)

for a countable locally compact space X ([13, Ch. 4]). One could also ask anal-

ogous questions for *-homomorphisms instead of isomorphisms or, as suggested

by Ping Wong Ng, for `∞(A)/c0(A) instead of the corona algebra. A number

of analogous lifting results for quotient Boolean algebras P(N)/I were proved

in [13] (see also [15], [16]).

It was recently proved by the author [17] that the Proper Forcing Axiom,

PFA, implies all automorphisms of the Calkin algebra B(H)/K(H) are inner,

even for nonseparable Hilbert space.

An analogous result for automorphisms of the Boolean algebra P(κ)/Fin,

where κ is arbitrary, was proved in [42].
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[30] S. Mardešić and A. V. Prasolov, Strong homology is not additive, Trans.

Amer. Math. Soc. 307 (1988), 725–744. MR 0940224. Zbl 0648.55007. doi: 10.

2307/2001195.

http://www.ams.org/mathscinet-getitem?mr=2048515
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1046.03031
http://dx.doi.org/10.1090/S0002-9947-04-03565-2
http://www.ams.org/mathscinet-getitem?mr=2143881
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1095.03039
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1095.03039
http://www.arxiv.org/abs/1007.4034
http://www.arxiv.org/abs/1007.4034
http://www.ams.org/mathscinet-getitem?mr=1113695
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0795.03065
http://dx.doi.org/10.2307/2154292
http://www.essex.ac.uk/maths/people/fremlin/
http://www.ams.org/mathscinet-getitem?mr=0355917
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0273.53051
http://dx.doi.org/10.1007/BF01344138
http://dx.doi.org/10.1007/BF01344138
http://www.ams.org/mathscinet-getitem?mr=0341119
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0237.46070
http://dx.doi.org/10.1016/0022-1236(72)90078-X
http://www.ams.org/mathscinet-getitem?mr=1321144
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0813.03034
http://www.ams.org/mathscinet-getitem?mr=1841758
http://www.ams.org/mathscinet-getitem?mr=0693352
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0518.22008
http://dx.doi.org/10.1007/BF02761236
http://www.ams.org/mathscinet-getitem?mr=1855842
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1062.47514
http://dx.doi.org/10.1017/S0143385701001705
http://www.ams.org/mathscinet-getitem?mr=1321597
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0819.04002
http://www.ams.org/mathscinet-getitem?mr=1907668
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1005.03045
http://www.ams.org/mathscinet-getitem?mr=1420863
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1155.46310
http://www.ams.org/mathscinet-getitem?mr=0940224
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0648.55007
http://dx.doi.org/10.2307/2001195
http://dx.doi.org/10.2307/2001195


ALL AUTOMORPHISMS OF C(H) ARE INNER 661

[31] J. T. Moore, A five element basis for the uncountable linear orders, Ann.

of Math. 163 (2006), 669–688. MR 2199228. Zbl 1143.03026. doi: 10.4007/

annals.2006.163.669.

[32] G. K. Pedersen, Analysis Now, Grad. Texts Math. 118, Springer-Verlag, New

York, 1989. MR 0971256. Zbl 0668.46002.

[33] N. C. Phillips and N. Weaver, The Calkin algebra has outer automorphisms,

Duke Math. J. 139 (2007), 185–202. MR 2322680. Zbl 05180738. doi: 10.1215/

S0012-7094-07-13915-2.

[34] S. Sakai, On the group isomorphism of unitary groups in AW -algebras, Tôhoku
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