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Serre’s uniformity problem in the split
Cartan case

By Yuri Bilu and Pierre Parent

Abstract

We prove that there exists an integer p0 such that Xsplit(p)(Q) is made

of cusps and CM-points for any prime p > p0. Equivalently, for any non-

CM elliptic curve E over Q and any prime p > p0 the image of Gal(Q/Q)

by the representation induced by the Galois action on the p-division points

of E is not contained in the normalizer of a split Cartan subgroup. This

gives a partial answer to an old question of Serre.

1. Introduction

Let N be a positive integer and G a subgroup of GL2(Z/NZ) such that

detG = (Z/NZ)×. Then the corresponding modular curve XG, defined as a

complex curve as H/Γ, where H is the extended Poincaré upper half-plane

and Γ is the pullback of G∩ SL2(Z/NZ) to SL2(Z), is actually defined over Q,

that is, it has a geometrically integral Q-model. As usual, we denote by YG
the finite part of XG (that is, XG deprived of the cusps). The curve XG has a

natural (modular) model over Z that we still denote by XG. The cusps define

a closed subscheme of XG over Z, and we define the relative curve YG over Z
as XG deprived of the cusps. The set of integral points YG(Z) consists of those

P ∈ YG(Q) for which j(P ) ∈ Z, where j is, as usual, the modular invariant.

In the special case when G is the normalizer of a split (or nonsplit)

Cartan subgroup of GL2(Z/NZ), the curve XG is denoted by Xsplit(N) (or

Xnonsplit(N), respectively). In this article we focus more precisely on the case

when G is the normalizer of a split Cartan subgroup of GL2(Z/pZ) for p a

prime number, that is, G is conjugate to the set of diagonal and anti-diagonal

matrices mod p, and we prove the following theorem.

Theorem 1.1. There exists an absolute effective constant C such that for

any prime number p and any P ∈ Ysplit(p)(Z), log |j(P )| ≤ 2πp1/2+6 log p+C .

This is proved in Section 4, by a variation of the method of Runge after

some preparation in Sections 2 and 3. The terms 2πp1/2 and 6 log p seem to
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be optimal for the method. The constant C may probably be replaced by o(1)

when p tends to infinity.

We apply Theorem 1.1 to the arithmetic of elliptic curves. Serre proved

[23] that for any elliptic curve E without complex multiplication (CM in the

sequel), there exists p0(E) > 0 such that for every prime p > p0(E) the natural

Galois representation

ρE,p : Gal(Q/Q)→ GL(E[p]) ∼= GL2(Z/pZ)

is surjective. Masser and Wüstholz [14], Kraus [10], and Pellarin [21] gave

effective versions of Serre’s result; for more recent work, see, for instance,

Cojocaru and Hall [6], [7].

Serre asked whether p0 can be made independent of E:

Does there exist an absolute constant p0 such that for any non-

CM elliptic curve E over Q and any prime p > p0 the Galois

representation ρE,p is surjective?

We refer to this as “Serre’s uniformity problem”. The general guess is that

p0 = 37 would probably do.

The group GL2(Z/pZ) has the following types of maximal proper sub-

groups: normalizers of (split and nonsplit) Cartan subgroups, Borel subgroups,

and “exceptional” subgroups (those whose projective image is isomorphic to

one of the groups A4, S4 or A5). To solve Serre’s uniformity problem, one has

to show that for sufficiently large p, the image of the Galois representation is

not contained in any of the above listed maximal subgroups. (See [16, §2] for

an excellent introduction into this topic.) Serre himself settled the case of ex-

ceptional subgroups (see the introduction of [15]), and the work of Mazur [17]

on rational isogenies implies Serre uniformity for the Borel subgroups; so to

solve Serre’s problem we are left with the Cartan cases. Equivalently, one

would like to prove that, for large p, the only rational points of the modular

curves Xsplit(p) and Xnonsplit(p) are the cusps and CM points, in which case

we will say that the rational points are trivial.

In the present article we solve the split Cartan case of Serre’s problem.

Theorem 1.2. There exists an absolute constant p0 such that for p > p0
every point in Xsplit(p)(Q) is either a CM point or a cusp.

In other words, for any non-CM elliptic curve E over Q and any prime

p > p0 the image of the Galois representation ρE,p is not contained in the

normalizer of a split Cartan subgroup.

Several partial results in this direction were available before. In [20], [22]

it was proved, by very different techniques, that Xsplit(p)(Q) is trivial for a

(large) positive density of primes; but the methods of loc. cit. have failed to

prevent a complementary set of primes from escaping them. In [2] we allowed
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ourselves to consider Cartan structures modulo higher powers of primes, and

showed that, assuming the Generalized Riemann Hypothesis, Xsplit(p
5)(Q) is

trivial for large enough p.

Regarding possible generalizations, note that Runge’s method applies to

the study of integral points on an affine curve Y , defined over Q, if the following

Runge condition is satisfied:

(R) Gal(Q/Q) acts nontransitively on the set X \ Y ,

where X is the projectivization of Y . The Runge condition is satisfied for

the curve Xsplit(p) because it has two Galois orbits of cusps over Q. Runge’s

method also applies to other modular curves such as X0(p), but, unfortunately,

it does not work (under the form we use) with Xnonsplit(p), because all cusps

of this curve are conjugate over Q and the Runge condition fails. Moreover,

we need a weak version of Mazur’s method to obtain integrality of rational

points, and this is believed not to apply to Xnonsplit(p), because (the parity

part of) the Birch and Swinnerton-Dyer conjecture predicts that the Jacobian

of the latter curve has no nontrivial quotient of rank 0 over Q; see [5] for more

details. Actually, it is of interest that the Euler system constructed by Kato [9]

to prove the triviality of the rank of Jacobian quotients in the modular cases

relies on the same Siegel functions as those we use in Runge’s method; so it

seems that both obstructions in applying our method to the nonsplit case come

from the lack of sufficiently many Galois orbits of cusps over Q. Several other

applications of our techniques are however possible, and at present we work

on applying Runge’s method to general modular curves over general number

fields; see [2], [3]. For more on Runge’s method the reader may consult [4], [12].
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Convention. Everywhere in this article the O(·)-notation, as well as the

Vinogradov notation “�” implies absolute effective constants.

2. Siegel functions

As above, we denote by H the Poincaré upper half-plane and put H =

H ∪ Q ∪ {i∞}. For τ ∈ H, as usual we put q = q(τ) = e2πiτ . For a rational

number a we define qa = e2πiaτ . Let a = (a1, a2) ∈ Q2 be such that a /∈ Z2,
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and let ga : H → C be the corresponding Siegel function [11, §2.1]. Then we

have the following infinite product presentation for ga [11, p. 29]:

(1) ga(τ) = −qB2(a1)/2eπia2(a1−1)
∞∏
n=0

Ä
1− qn+a1e2πia2

ä Ä
1− qn+1−a1e−2πia2

ä
,

where B2(T ) = T 2 − T + 1/6 is the second Bernoulli polynomial. We also have

[11, pp. 27–30] the relations

ga ◦ γ = gaγ · (a root of unity) for γ ∈ SL2(Z),(2)

ga = ga′ · (a root of unity) when a ≡ a′ mod Z2.(3)

Note that the root of unity in (2) is of order dividing 12, and in (3) of order

dividing 2N , where N is the denominator of a (the common denominator of a1
and a2). (For (2) use properties K 0 and K 1 of loc. cit., and for (3) use K 3

and the fact that ∆ is modular of weight 12.) Moreover,

(4) ga ◦ γ = ga · (a root of unity) for γ ∈ Γ(N),

the root of unity being of order dividing 12N , because g12Na is a modular

function on Γ(N) by Theorem 1.2 in [11, p. 31].

The following is immediate from (1).

Proposition 2.1. Assume that 0 ≤ a1 < 1. Then for τ ∈ H satisfying

|q(τ)| ≤ 0.1,

log |ga(τ)| = 1

2
B2(a1) log |q|+log

∣∣∣1− qa1e2πia2∣∣∣+log
∣∣∣1− q1−a1e−2πia2 ∣∣∣+O(|q|)

(where we recall that, throughout this article, the notation O(·) as well as �
imply absolute effective constants).

For a ∈ Q2 \ Z2 the Siegel function ga is algebraic over the field C(j). This

again follows from the fact that g12Na is Γ(N)-automorphic, where, as above, N

is the denominator of a. Since ga is holomorphic and does not vanish on the

upper half-plane H (again by Theorem 1.2 of loc. cit.), both ga and g−1a must

be integral over the ring C[j]. Actually, a stronger assertion holds.

Proposition 2.2. Both ga and (1−ζN )g−1a are integral over Z[j]. Here N

is the denominator of a and ζN is a primitive N -th root of unity.

This is, essentially, established in [11], but is not stated explicitly therein.

Therefore we briefly indicate the proof here. A Γ(N)-automorphic function

f : H → C admits the infinite q-expansion

(5) f(τ) =
∑
k∈Z

akq
k/N .

We call the q-series (5) algebraic integral if the following two conditions are

satisfied: the negative part of (5) has only finitely many terms (that is, ak = 0
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for large negative k), and the coefficients ak are algebraic integers. Algebraic

integral q-series form a ring. The invertible elements of this ring are q-series

with invertible leading coefficient. By the leading coefficient of an algebraic

integral q-series we mean am, where m ∈ Z is defined by am 6= 0, but ak = 0

for k < m.

Lemma 2.3. Let f be a Γ(N)-automorphic function regular on H such

that for every γ ∈ Γ(1) the q-expansion of f ◦ γ is algebraic integral. Then f

is integral over Z[j].

Proof. This is, essentially, Lemma 2.1 from [11, §2.2]. Since f is Γ(N)-

automorphic, the set {f ◦ γ : γ ∈ Γ(1)} is finite. The coefficients of the poly-

nomial F (T ) =
∏

(T − f ◦ γ) (where the product is taken over the finite set

above) are Γ(1)-automorphic functions with algebraic integral q-expansions.

Since they have no pole on H, they belong to C[j] and even to Z[j], where Z is

the ring of all algebraic integers, because the coefficients of their q-expansions

are algebraic integers. It follows that f is integral over Z[j], hence over Z[j]. �

Proof of Proposition 2.2. The function g12Na is automorphic of level N and

its q-expansion is algebraic integral (as one can easily see by transforming the

infinite product (1) into an infinite series). By (2), the same is true for every

(ga ◦ γ)12N . Lemma 2.3 now implies that g12Na is integral over Z[j], and so

is ga.

Further, the q-expansion of ga is invertible if a1 /∈ Z and is 1− e±2πia2
times an invertible q-series if a1 ∈ Z. Hence the q-expansion of g−1a is algebraic

integral when a1 /∈ Z, and if a1 ∈ Z the same is true for
(
1− e±2πia2

)
g−1a .

In the latter case N is the exact denominator of a2, which implies that

(1− ζN )/(1− e±2πia2) is an algebraic unit. Hence, in any case, (1− ζN )g−1a

has algebraic integral q-expansion, and the same is true with ga replaced by

ga ◦ γ for any γ ∈ Γ(1). (We again use (2) and notice that a and aγ have the

same order in (Q/Z)2.) Applying Lemma 2.3 to the function
(
(1− ζN )g−1a

)12N
,

we complete the proof. �

3. A modular unit

In this section we define a special “modular unit” (in the spirit of [11]) and

study its asymptotic behavior at infinity. With the common abuse of speech,

the modular invariant j, as well as the other modular functions used below,

may be viewed, depending on the context, as either automorphic functions

on the Poincaré upper half-plane, or rational functions on the corresponding

modular curves.

Since the root of unity in (3) is of order dividing 2N , where N is a de-

nominator of a, the function g12Na will be well-defined if we select a in the
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set
(
N−1Z/Z

)2
. Thus, fix a positive integer N and for a nonzero element a

of (N−1Z/Z)2 put ua = g12Na . After fixing a choice for ζN in C (for instance

ζN = e2iπ/N ), we see that the analytic modular curve X(N)(C) := H/Γ(N)

has a modular model over Q(ζN ), parametrizing isomorphism classes of gen-

eralized elliptic curves endowed with a basis (S, T ) of E[N ] such that the

Weil pairing of S with T is ζN . As already noticed, the function ua is

Γ(N)-automorphic and hence defines a rational function on the modular

curve X(N)(C); in fact, it belongs to the field Q(ζN )
Ä
X(N)

ä
. The Ga-

lois group of the latter field over Q(j) is isomorphic to GL2(Z/NZ)/{±1},
and we may identify the two groups to make the Galois action compat-

ible with the natural action of GL2(Z/NZ) on (N−1Z/Z)2 in the follow-

ing sense: for any σ ∈ Gal
Ä
Q
Ä
X(N)

ä¿
Q(j)

ä
= GL2(Z/NZ)/{±1} and any

nonzero a ∈ (N−1Z/Z)2 we have uσa = uaσ, where σ ∈ GL2(Z/NZ) is a pull-

back of σ. Notice that ua = u−a, which follows from (2). For the proof of

the statements above the reader may consult [11, pp. 31–36], and especially

Theorem 1.2, Proposition 1.3 and the beginning of Section 2.2 therein.

From now on we assume that N = p ≥ 3 is an odd prime number, and

that G is the normalizer of the diagonal subgroup of GL2(Fp). In this case

the curve XG = Xsplit(p) has two Galois orbits of cusps over Q, the first being

the cusp at infinity, which is Q-rational (we denote it by ∞), and the second

consisting of the (p− 1)/2 other cusps (denoted by P1, . . . , P(p−1)/2), which

are defined over the real cyclotomic field Q(ζp)
+. According to the theorem of

Manin-Drinfeld, there exists U ∈ Q(XG) such that the principal divisor (U) is

of the form

m
Ä
(p− 1)/2 · ∞ − (P1 + · · ·+ P (p−1)/2)

ä
with some positive integer m. Below we use Siegel functions to find such U

explicitly with m = 2p(p− 1). See Remark 3.4 for a more precise statement.

Remark 3.1. (a) The general form of units we build is more ripe for gen-

eralization, but in the present case, using the Q-isomorphism between

Xsplit(p) and X0(p
2)/wp, our unit could probably be expressed in terms

of (products of) modular forms of shape ∆(nz).

(b) The assumption that p ≥ 3 is purely technical: the content of this section

extends, with insignificant changes, to p = 2.

Denote by p−1F×p the set of nonzero elements of p−1Z/Z. Then the set

A =
¶

(a, 0) : a ∈ p−1F×p
©
∪
¶

(0, a) : a ∈ p−1F×p
©

is G-invariant. Hence the function

U =
∏
a∈A

ua
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belongs to the field Q(XG). In particular, viewed as a function on H, it is

Γ-automorphic, where Γ is the pullback to Γ(1) of G ∩ SL2(Fp).
More generally, for c ∈ Z put

βc =

Ç
1 0

c 1

å
, Uc = U ◦ βc =

∏
a∈Aβc

ua

(so that U = U0).

Let D be the familiar fundamental domain of SL2(Z); that is, the hyper-

bolic triangle with vertices eπi/3, e2πi/3 and i∞, together with the geodesic

segments [i, e2πi/3] and [e2πi/3, i∞]. Let D + Z be the union of all translates

of D by the rational integers. Recall also that j denotes the modular invariant.

Lemma 3.2. For any P ∈ YG(C) there exists c ∈ Z (even c ∈ {0, . . .
. . . , (p− 1)/2}) and τ ∈ D + Z such that j(τ) = j(P ) and Uc(τ) = U(P ).

Proof. Let τ ′ ∈ H be such that j(τ ′) = j(P ) and U(τ ′) = U(P ). There ex-

ists β ∈Γ(1) such that β−1(τ ′)∈D. Now observe that the set {β0, . . . , β(p−1)/2}
is a full system of representatives of the double cosets Γ\Γ(1)/Γ∞, where Γ∞ is

the subgroup of Γ(1) stabilizing ∞. Thus we may write β= γβcκ with γ ∈ Γ,

c ∈ {0, . . . , bp/2c} and κ ∈ Γ∞. Then τ = κβ−1(τ ′) is as desired. �

Proposition 3.3. For τ ∈ H such that |q(τ)| ≤ 1/p,

(6)
∣∣∣log |Uc(τ)| − (p− 1)2 log |q(τ)|

∣∣∣ ≤ 4π2
p2

log |q(τ)−1|
+O(p log p)

if p | c, and

(7)
∣∣∣log |Uc(τ)|+ 2(p− 1) log |q(τ)|

∣∣∣ ≤ 8π2
p2

log |q(τ)−1|
+O(p)

if p - c.

Remark 3.4. As suggested by the referee, it might perhaps be illuminating

to re-state this proposition not in terms of Uc and q, but in terms of the orig-

inal function U and the “q-parameter” qc = q ◦ β−1c at the cusp βc(∞). From

this point of view (which is systematically taken in [3]) the proposition means

that U behaves like q
(p−1)2
c near the cusp at infinity and like q

−2(p−1)
c near the

other cusps. Since q
1/p
c is a uniformizer at the cusp βc(∞), this implies, in par-

ticular, that the principal divisor (U) ism
Ä
(p− 1)/2 · ∞ − (P1+ · · ·+P(p−1)/2)

ä
with m = 2p(p− 1), as indicated above.

For the proof of Proposition 3.3 we need an elementary, but crucial lemma.
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Lemma 3.5. Let z be a complex number, |z| < 1, and N a positive integer.

Then

(8)

∣∣∣∣∣∣
N∑
k=1

log
∣∣∣1− zk∣∣∣

∣∣∣∣∣∣ ≤ π2

6

1

log |z−1|
+O (1) .

Proof. We have
∣∣∣log |1 + z|

∣∣∣ ≤ − log
∣∣∣1− |z|∣∣∣ for |z| < 1. Applying this with

−zk instead of z, we conclude that it suffices to bound −∑∞k=1 log |1− qk| with

q = |z|. Since the left-hand side of (8) is bounded (independently of N) for

|z| ≤ 1/2, we may assume that

(9) 1/2 ≤ q < 1.

Put τ = log q/(2πi). Then

−
∞∑
k=1

log |1− qk| = 1

24
log q − log |η(τ)|,

where η(τ) is the Dedekind η-function. Since |η(τ)| = |τ |−1/2|η(−τ−1)|, we

have

(10) −
∞∑
k=1

log |1− qk| = − 1

24
log |Q|+ 1

24
log q +

1

2
log |τ | −

∞∑
k=1

log |1−Qk|

with Q = e−2πiτ
−1

= e4π
2/ log q. The first term on the right-hand side of (10) is

exactly (π2/6)/ log |z−1|, the second term is negative, the third term is again

negative (here we use (9)), and the infinite sum is O(1), again by (9). The

lemma is proved. �

Proof of Proposition 3.3. Write q = q(τ). Recall that for a rational num-

ber α we define qα = e2πiατ . For a ∈ Q/Z we denote by ã the lifting of a to

the interval [0, 1). Then for τ ∈ H satisfying |q| ≤ 0.1 we deduce from Propo-

sition 2.1 that

log |Uc(τ)| = 6p
∑

a∈Aβc
B2(ã1) log |q|

(11)

+12p
∑

a∈Aβc

(
log
∣∣∣1− qã1e2πia2∣∣∣+log

∣∣∣1− q1−ã1e−2πia2∣∣∣)+O(p2|q|).

The rest of the proof splits into two cases and relies on the identity

N−1∑
k=1

B2

Å
k

N

ã
= −(N − 1)

6N
.
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The first case : p | c. In this case Aβc = A. Hence

(12)
∑

a∈Aβc
B2(ã1) =

p−1∑
k=1

B1

Å
k

p

ã
+ (p− 1)B2(0) =

(p− 1)2

6p
.

Further,

(13)
∑

a∈Aβc

(
log
∣∣∣1− qã1e2πia2∣∣∣+ log

∣∣∣1− q1−ã1e−2πia2∣∣∣)

= 2
p−1∑
k=1

log
∣∣∣1− qk/p∣∣∣+ log

∣∣∣∣1− qp1− q

∣∣∣∣+ log p.

Lemma 3.5 with z = q1/p implies that

p−1∑
k=1

log
∣∣∣1− qk/p∣∣∣ ≤ π2

6

p

log |q−1|
+O (1) .

Also, log |1− qp| � |q|p and log |1− q| � |q|. Combining all this with (11),

(12) and (13), we obtain (6).

The second case : p - c. In this case

Aβc = {(a, 0) : a ∈ p−1F×p } ∪ {(a, ab) : a ∈ p−1F×p },

where b ∈ Z satisfies bc ≡ 1 mod p. Hence

∑
a∈Aβc

B2(ã1) = 2
p−1∑
k=1

B2

Å
k

p

ã
= −p− 1

3p
.

Further,∑
a∈Aβc

(
log
∣∣∣1− qã1e2πia2∣∣∣+ log

∣∣∣1− q1−ã1e−2πia2∣∣∣)

= 2
p−1∑
k=1

log
∣∣∣1− qk/p∣∣∣+ 2

p−1∑
k=1

log
∣∣∣1− (q1/pe2πib/p)k

∣∣∣.
Again using Lemma 3.5, we complete the proof. �

4. Proof of Theorem 1.1

In this section p is a prime number and G is the normalizer of the diagonal

subgroup of GL2(Z/pZ). Define the “modular units” Uc as in Section 3. Recall

that U = U0 belongs to the field Q(XG). Theorem 1.1 is a consequence of the

following two statements.
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Proposition 4.1. Assume that p ≥ 3. For any P ∈ YG(C) we have either

log |j(P )| ≤ 2πp1/2 + 6 log p+O(1)

or

(14) log |j(P )| ≤ 1

2(p− 1)

∣∣∣log |U(P )|
∣∣∣+ 2πp1/2 − 6 log p+O

Ä
1
ä
.

Proposition 4.2. For P ∈ YG(Z) we have 0 ≤ log |U(P )| ≤ 24p log p.

Combining the two propositions, we find that for P ∈ Ysplit(p)(Z) we have

log |j(P )| ≤ 2πp1/2 + 6 log p+O(1),

which proves Theorem 1.1 for p ≥ 3.

A similar approach can be used for p = 2 as well, but in this case it is

easier to appeal to the general Runge theorem: If an affine curve Y , defined

over Q, has 2 (or more) rational points at infinity, then integral points on Y

are effectively bounded; see, for instance, [4], [12].

Proof of Proposition 4.1. According to Lemma 3.2, there exist τ ∈ D + Z
and c ∈ Z with Uc(τ) = U(P ) and j(τ) = j(P ). (As in Remark 3.4, one may

say here that P is “close” to the cusp βc(∞) with respect to the archimedean

metric on our curve.) We write q = q(τ). Since τ ∈ D + Z, we have

(15) j(τ) = q−1 +O(1),

which implies that either log |j(P )| ≤ 2πp1/2 + 6 log p+O(1) or log |q−1| ≥
2πp1/2 + 6 log p. In the latter case we apply Proposition 3.3. When p - c it

yields ∣∣∣∣∣log |q|+ 1

2(p− 1)
log |Uc(τ)|

∣∣∣∣∣ ≤ 8π2p2

2(p− 1)(2πp1/2 + 6 log p)
+O(1)

= 2πp1/2 − 6 log p+O(1),

which, together with (15), implies the result. In the case p | c Proposition 3.3

gives∣∣∣∣∣log |q| − 1

(p− 1)2
log |Uc(τ)|

∣∣∣∣∣ ≤ 4π2p2

(p− 1)2(2πp1/2 + 6 log p)
+O(1) = O(1),

which implies an even better bound than needed. �

Proof of Proposition 4.2. Since U belongs to Q(XG) and has no pole or

zero outside the cusps, U(P ) is a nonzero rational number. Let ζ = ζp be a

primitive p-th root of unity. Since U is a product of 24p(p− 1) Siegel functions,

Proposition 2.2 implies that both U and (1− ζ)24p(p−1)U−1 are integral over

Z[j]. Hence for P ∈ YG(Z) both the numbers U(P ) and (1− ζ)24p(p−1)U(P )−1

are algebraic integers. Since U(P ) ∈ Q×, it is a nonzero rational integer; in
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particular, log |U(P )| ≥ 0. Further, U(P ) divides (1− ζ)24p(p−1). Taking the

Q(ζ)/Q-norm, we see that U(P )p−1 divides p24p(p−1). This proves the propo-

sition. �

5. Proof of Theorem 1.2

First of all, recall the following integrality property of the j-invariant.

Theorem 5.1 (Mazur, Momose, Merel). For a prime p = 11 or p ≥ 17,

the j-invariant j(P ) of any noncuspidal point of Xsplit(p)(Q) belongs to Z.

This is a combination of results of Mazur [17], Momose [19], and Merel

[18]. For more details see the Appendix (§6), where we give a short unified

proof.

Denote by h(α) the absolute logarithmic height of an algebraic number α.

If α is a nonzero rational integer, then h(α) = log |α|. It follows from Theo-

rem 5.1 that if E is an elliptic curve over Q endowed with a normalizer of split

Cartan mod p structure1 with p ≥ 17, then h(jE) = log |jE |.
In view of Theorem 5.1, Theorem 1.2 is a straightforward consequence of

Theorem 1.1 and the following proposition, whose proof will be the goal of this

section.

Proposition 5.2. There exists an absolute effective constant κ such that

the following holds. Let p be a prime number, and E a non-CM elliptic curve

over Q, endowed with a structure of normalizer of split Cartan subgroup in

level p. Then

(16) h(jE) = log |jE | ≥ κp.

The proof of Proposition 5.2 relies on Pellarin’s refinement [21] of the

Masser-Wüstholz famous upper bound [13] for the smallest degree of an isogeny

between two isogenous elliptic curves.

Theorem 5.3 (Masser-Wüstholz, Pellarin). Let E be an elliptic curve

defined over a number field K of degree d. Let E′ be another elliptic curve,

defined over K and isogenous to E. Then there exists an isogeny ψ : E → E′

of degree at most κ(d) (1 + h(jE))2, where the constant κ(d) depends only on d

and is effective.

Masser and Wüstholz had exponent 4 (they actually proved similar state-

ments for general abelian varieties) and Pellarin reduced it to 2, which is crucial

for us; in fact, any exponent below 4 would do. Pellarin gave an explicit ex-

pression for κ(d) of the shape λd4(1 + log d)2 with an absolute constant λ. See

1That is, whose modp Galois representation has image contained in a normalizer of a

split Cartan.
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also the work [25] of E. Viada, who obtains exponent 3, but smaller κ(d). In

[1, App. B] Bertrand remarks (refering to the exponent as C):

En fait, tout porte à croire [. . . ] que du point de vue transcen-

dant, la valeur optimale de C est 2. La tradition folklorique veut

sans doute que C vaille 0 [. . . ], mais cela parâıt sans espoir du

côté transcendant.

Corollary 5.4. Let E be a non-CM elliptic curve defined over a number

field K of degree d, and admitting a cyclic isogeny over K of degree δ. Then

δ ≤ κ(d) (1 + h(jE))2.

Proof. Let φ be a cyclic isogeny from E to E′, and let φD : E′ → E

be the dual isogeny. Let ψ : E → E′ be an isogeny of degree bounded by

κ(d) (1 + h(jE))2; without loss of generality, ψ may be assumed cyclic. As E

has no CM, the composed map φD ◦ ψ must be multiplication by some integer,

so that φ = ±ψ. �

Proof of Proposition 5.2. For an elliptic curve E endowed with a structure

of normalizer of split Cartan subgroup in level p over Q, write C1 and C2 for

the obvious two independent p-subgroups in E[p] which are Galois conjugates

over a quadratic extension K/Q. Set ϕi : E → Ei := E/Ci and recall that

there is a cyclic p2-isogeny over K from E1 to E2, factorizing as the product:

ϕ : E1
ϕ∗1→ E

ϕ2→ E2.

It follows from Corollary 5.4 that h(jEi) ≥ κ1p for i = 1, 2, where κ1 is some

constant independent of p and E.

A result of Faltings [8, Lemma 5] asserts that hF (E1) ≤ hF (E) + 1
2 log p,

where hF is Faltings’ semistable height. Finally, for any elliptic curve E over

a number field we have∣∣∣h(jE)− 12hF (E)
∣∣∣ ≤ 6 log

Ä
1 + h(jE)

ä
+O(1);

see [24, Prop. 2.1]. (Pellarin shows that O(1) can be replaced by 47.15; see [21,

eq. (51), p. 240].) This completes the proof of Proposition 5.2 and of Theo-

rem 1.2. �

6. Appendix: Integrality of the j-invariant

Here we prove that rational points on Xsplit(p) are, in fact, integral.

Theorem 6.1 (Mazur, Momose, Merel). For a prime p = 11 or p ≥ 17,

the j-invariant j(P ) of any noncuspidal point of Xsplit(p)(Q) belongs to Z.

The proof of this theorem is somehow scattered in the literature. Mazur

[17, Cor. 4.8] proved that a prime divisor ` of the denominator of j(P ) must
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either be 2, or p, or satisfy ` ≡ ±1 mod p. The cases ` ≡ ±1 mod p and

` = p were settled by Momose [19, Prop. 3.1], together with the case ` = 2

when p ≡ 1 mod 8 [19, Cor. 3.6]. Finally the case ` = 2 with p 6≡ 1 mod 8

was treated by Merel [18, Th. 5]. The aim of this appendix is to present a

short unified proof. To avoid some technicalities occurring only for small p, we

assume in the sequel that p ≥ 37.

Recall that the curve Xsplit(p) parametrizes (isomorphism classes of) el-

liptic curves endowed with an unordered pair of independent p-isogenies. Let

P =
Ä
E, {A,B}

ä
be a Q-point on Xsplit(p), which we may assume to be non-

CM. Then the isogenies A and B are defined over a number field K with degree

at most 2.

Proposition 6.2. Let P =
Ä
E, {A,B}

ä
∈ Xsplit(p)(Q) and K be defined

as above. Let OK be its ring of integers. Then we have the following :

(a) The curve E is not potentially supersingular at p.

(b) The points (E,B) and (E/A,E[p]/A) = (E/A,A∗), where A∗ is the

isogeny dual to A, coincide in the fibers of characteristic p of X0(p)/OK
.

Proof. Part (a) is proved in [19, Lemma 1.3]. Part (b) follows from [20,

proof of Prop. 3.1]. For the convenience of the reader we sketch somewhat

different (and simpler) arguments.

It follows from Serre’s study of the action of inertia groups Ip at p on the

formal group of elliptic curves that if E is potentially supersingular then Ip
(potentially) acts via a “fundamental character of level 2” (at least if E has

j-invariant different from 1728 mod p), so that the image of inertia contains

a subgroup of index 4 or 6 in a nonsplit Cartan subgroup of GL(E[p]) (see

[23, Paragraph 1]). This gives a contradiction to the fact that a subgroup of

index 2 in the absolute Galois group of Q preserves two lines in E[p]; for the

remaining case of j = 1728 mod p we refer to the article of Momose, loc. cit.,

whence part (a).

For (b) we remark that we may assume the schematic closure of A to

be étale over O (the ring of integers of a completion KP of K at a prime

P above p, whose residue field we denote by kP); indeed, as E is not po-

tentially supersingular at P, at most one line in E[p] can be purely radicial

over kP . Up to replacing KP by a finite ramified extension, we shall also as-

sume E is semistable over KP . Now E/A is isomorphic over k̄P to E(p) via

the Verschiebung isogeny, and the latter is in turn isomorphic to E/kP as E

has a model over Z. Moreover the isomorphism between B and E[p]/A as

K-group schemes induced by the projection E → E/A extends to an isomor-

phism over O by Raynaud’s theorem on group schemes of type (p, . . . , p), as

recalled in [19, Proof of Lemma 1.3]. It follows that (E,B)kP is isomorphic to

(E/A,E[p]/A)kP = (wp(E,A))kP , whence (b). This completes the proof. �
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The curve Xsplit(p) admits an obvious double covering by the curve

Xsp.Car.(p), parametrizing elliptic curves endowed with an ordered pair of

p-isogenies. We denote by w the generator of the Galois group of this covering;

that is, w modularly exchanges the two p-isogenies. If
Ä
E, (A,B)

ä
is a point

on Xsp.Car.(p), then w
Ä
E, (A,B)

ä
=
Ä
E, (B,A)

ä
. We recall certain properties

of the modular Jacobian J0(p) and its Eisenstein quotient J̃(p) (see [15]).

Proposition 6.3. Let p be a prime number. Then we have the following.

(a) [15, Th. 1] The group J0(p)(Q)tors is cyclic and generated by cl(0−∞),

where 0 and ∞ are the cusps of X0(p). Its order is equal to the numer-

ator of the quotient (p− 1)/12.

(b) [15, Th. 4] The group J̃(p)(Q) is finite. Moreover, the natural projec-

tion J0(p)→ J̃(p) defines an isomorphism J0(p)(Q)tors → J̃(p)(Q).

As Mazur remarks, Raynaud’s theorem on group schemes of type (p, . . . , p)

insures that J0(p)(Q)tors defines a Z-group scheme which, being constant in the

generic fiber, is étale outside 2, and which at 2 has étale quotient of rank at

least half that of J0(p)(Q)tors.

Proof of Theorem 6.1. For an element t in the Z-Hecke algebra for Γ0(p),

define the morphism gt from Xsmooth
sp.Car. (p)/Z to J0(p)/Z which extends the mor-

phism on generic fibers:

gt :

®
Xsp.Car.(p) → J0(p)

Q =
Ä
E, (A,B)

ä
7→ t · cl

Ä
(E,A)− (E/B,E[p]/B)

ä
.

Let J0(p)
π→ J̃(p) be the projection to the Eisenstein quotient, and g̃t := π ◦ gt.

One checks that gt ◦ w = −wp ◦ gt and one knows that (1 + wp) acts trivially

on J̃(p) from [15, Prop. 17.10]. Therefore g̃t actually factorizes through a Q-

morphism from Xsplit(p) to J̃(p), which we extend by the universal property

of Néron models to a map from Xsmooth
split (p)/Z to J̃(p)/Z. We still denote this

morphism by g̃t and we put g̃ = g̃1.

Let P be a rational point on Xsplit(p), and ` a prime divisor of the de-

nominator of j(P ). Then P specializes to a cusp at `. Recall that Xsplit(p)

has one cusp defined over Q (the rational cusp), and (p− 1)/2 other cusps,

conjugate over Q. We first claim that P specializes to the rational cusp. In-

deed, it follows from Proposition 6.2 (a) that P does extend to a section of

Xsmooth
split (p)/Zp

, from Proposition 6.2 (b) that g̃(P )(Fp) = 0(Fp), and from the

remark after Proposition 6.3 that g̃(P )(Q) = 0(Q) (recall p 6= 2). The nonra-

tional cusps of Xsplit(p)(C) map to cl(0−∞) in J0(p)(C) (this can be seen with

the above modular interpretation of g̃t, by the fact that the nonrational cusps

specialize at p to a generalized elliptic curve endowed with a pair of étale iso-

genies. Or, if f denotes the map f : Xsp.C.(p)→ X0(p), (E, (A,B)) 7→ (E,A),
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one has g1 = cl(f −wpfw), and as f(ci) = 0 ∈ X0(p) for ci a nonrational cusp

and w permutes the cis, one sees that g̃(ci) = cl(0−∞). For more details see,

for instance, the proof of Proposition 2.5 in [19]). Therefore, as we assumed

p ≥ 37, Proposition 6.3 implies that if P specializes to a nonrational cusp at `

then g̃(P ) would not be 0 at `, a contradiction.

Now we use the winding quotient (see, for instance, [18]). Take an `-

adically maximal element t in the Hecke algebra which kills the winding ideal Ie.

Again, as t(1+wp) = 0, the above morphism gt factorizes through a morphism

g+t from Xsmooth
split (p)/Z to t · J0(p)/Z. Moreover g+t (P ) belongs to t · J0(p)(Q),

hence is a torsion point, as t · J0(p) is isogenous to a quotient of the winding

quotient of J0(p). As above, by looking at the fiber at p, we see that g+t (P ) = 0

at p, hence at the generic fiber as well. We then easily check by use of the

q-expansion principle, as in [18, Th. 5], that g+t is a formal immersion at the

specialization ∞(F`) of the rational cusp on Xsplit(p). This allows us to apply

the classical argument of Mazur (see e.g. [17, proof of Cor. 4.3]), yielding a

contradiction; therefore P is not cuspidal at `. �
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MR 1065157. Zbl 0729.14025.

[2] Y. Bilu and P. Parent, Integral j-invariants and Cartan structures for ellip-

tic curves, C. R. Math. Acad. Sci. Paris 346 (2008), 599–602. MR 2423260.

Zbl 1165.11053. doi: 10.1016/j.crma.2008.04.002.

[3] , Runge’s method and modular curves, Internat. Math. Res. Notes (2010),

31 pages, article ID rnq141. doi: 10.1093/imrn/rnq141.
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