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Analyticity of periodic traveling
free surface water waves with vorticity

By Adrian Constantin and Joachim Escher

Abstract

We prove that the profile of a periodic traveling wave propagating at

the surface of water above a flat bed in a flow with a real analytic vorticity

must be real analytic, provided the wave speed exceeds the horizontal fluid

velocity throughout the flow. The real analyticity of each streamline be-

neath the free surface holds even if the vorticity is only Hölder continuously

differentiable.

1. Introduction

The theory of periodic traveling waves propagating in irrotational flow at

the surface of water with a flat bed was initiated at the beginning of the 19th

century, with the first investigations confined to waves of small amplitude in

which case linear theory provides a reasonable approximation with sinusoidal

wave profiles [9]. The realization that wave trains at sea — periodic plane

waves termed swell in oceanography, with no variation along their crests, the

motion being identical in any direction parallel to the crest line and the wave

profile being monotone between each crest and trough — feature flatter profiles

near the trough and steeper elevations near the crest than those captured by

a sinusoidal wave profile [13] prompted the development of nonlinear studies.

Of great interest are wave-current interactions: wave trains which propagate

steadily without change of form at the surface of a layer of water with an

underlying current, over an impermeable flat bed. Vorticity is adequate for

describing currents; a current which is uniform with depth is described by zero

vorticity (irrotational case) [8]. Constant nonzero vorticity is appropriate for

tidal flows [19] and nonconstant vorticity is the hallmark of highly irregular

currents [6].

The first rigorous proofs of the existence of wave trains in irrotational

flow — called Stokes waves — appeared at the beginning of the 20th century

and investigations performed over the last decades provide us with a good

understanding of this phenomenon even within the context of waves of large
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amplitude [1], [4], [20]. The currently available existence theory for periodic

traveling waves with vorticity is developed in the context of waves of small and

large amplitude with profiles represented by Hölder continuously differentiable

functions [6]. For irrotational flows a landmark theorem of Lewy [17] that gen-

eralizes the classical Schwarz reflection principle from complex function theory

shows that such profiles must be real analytic (see [20]). Using an elegant

idea pioneered in the context of parabolic problems by Angenent [2] (see the

discussion in [10]) and an approach towards regularity for free boundary value

problems pioneered by Kinderlehrer, Nirenberg, and Spruck [14], we extend

this regularity property of Stokes waves to the case of periodic traveling water

waves with a real analytic vorticity. In the particular case of zero vorticity

our approach yields an alternative short proof of the real analyticity of regular

Stokes waves.1 The approach relies on use of an appropriate hodograph change

of variable that transforms the free boundary value problem (corresponding in

a frame moving at the constant wave speed to the governing equations for wa-

ter waves with vorticity) into a nonlinear boundary problem for a quasi-linear

elliptic equation in a fixed rectangular domain [6]. Subsequently we introduce

an additional parameter in the problem, and then use the implicit function

theorem to exploit the analytic dependence on the parameter to obtain the

analyticity of all streamlines beneath the free surface if the vorticity function

is Hölder continuously differentiable. For real analytic vorticity functions we

prove that even the wave profile (the top streamline) is real analytic.

In Section 2 we present the governing equations for periodic traveling

water waves with vorticity. We conveniently reformulate them by means of

a hodograph transform into a nonlinear boundary problem for a quasi-linear

elliptic equation in a fixed domain. Section 3 is devoted to the proof of the

regularity results.

2. Preliminaries

It is sufficient to analyze a cross-section of the flow, orthogonal to the wave

crests. We therefore choose Cartesian coordinates (X,Y ) with the horizontal

X-axis pointing in the direction of wave propagation, with the Y -axis pointing

1In the context of Stokes waves, in addition to regular profiles there are the waves of

greatest height that are regular except at their crest where the wave profile has a corner (the

profile admits lateral tangents at an angle of 2π/3) and the flow has a stagnation point. For

Stokes waves one can show that the maximal value of the horizontal fluid velocity in the

flow is attained at the wave crest and for regular waves the wave speed exceeds this maximal

value, while for the waves of greatest height these two values are equal (and consequently the

wave crest is a stagnation point since the vertical fluid velocity there is zero)[1], [20], [21].

For rotational waves the existence of waves of this type is currently at the level of conjectures

supported by formal considerations and numerical simulations (see the discussions in [7], [19],

[15], [16]).
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vertically upwards, and with the origin lying in the mean water level. In its

undisturbed state (no waves) the equation of the flat surface is Y = 0 and the

flat impermeable bed is given by Y = −d for some d > 0. In the presence of

waves, let Y = η(X−ct) be the free surface and let (u(X−ct, Y ), v(X−ct, Y ))

be the velocity field of the flow, c > 0 being the (constant) speed of the traveling

wave. By the choice of the coordinate system we have∫ 2π

0
η(X) dX = 0,

where 2π is the (normalized) wave period.

Homogeneity (constant density) implies the equation of mass conservation

(2.1) uX + vY = 0.

In the inviscid setting the equation of motion is Euler’s equation

(2.2)

(u− c)uX + vuY = −PX ,
(u− c)vX + vvY = −PY − g,

where P (X − ct, Y ) denotes the pressure and g is the gravitational constant of

acceleration. Both equations (2.1) and (2.2) hold in the fluid domain

Ω =
¶

(X,Y ) ∈ R2 : X ∈ R, −d ≤ Y ≤ η(X)
©
.

For a justification of the assumptions of inviscid homogeneous flow in the

context of waves at sea or in a channel we refer to the discussion in [18].

We also have the boundary conditions

P = 0 on Y = η(X),(2.3)

v = (u− c) ηX on Y = η(X),(2.4)

and

v = 0 on Y = −d.(2.5)

The dynamic boundary condition (2.3) decouples the motion of the air from

that of the water in the absence of surface tension whose effects are negligible

for wave lengths greater than a few centimeters [18]. The kinematic boundary

conditions (2.4) and (2.5) express the fact that the same particles always form

the free water surface; respectively, the fact that the horizontal bed Y = −d is

impermeable (see [13]).

The general description of the propagation of a wave train on a current is

encompassed by equations (2.1)–(2.5), in combination with the equation

(2.6) ω = uY − vX
which specifies the vorticity of the flow. We consider solutions (u, v, P, η) to

(2.1)–(2.6) in the class C2+α
per (Ω) × C2+α

per (Ω) × C2+α
per (Ω) × C3+α

per (R) of Hölder

continuously differentiable functions with exponent α ∈ (0, 1), the index “per”
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indicating 2π-periodicity in the X-variable. In addition, there is a single crest

and trough per period, the wave profile η is decreasing from crest to trough,

and u, P are symmetric while v is antisymmetric about the vertical line directly

below a crest. Notice that the symmetry assumptions encompassed in the

above definition of a traveling wave solution are not restrictive requirements

being actually granted for wave profiles that are monotone between crest and

trough [5]. We also impose the condition

(2.7) u(X,Y ) < c

throughout the fluid. The above requirement that the horizontal fluid velocity

u is always strictly lower than the wave speed c is supported by field evidence.

In swell, the particle speeds are very small compared to the wave speed unless

we approach the breaking regime [18]. The assumption (2.7) expresses the fact

that the waves move faster than the water (this indicates that the waves are

not moving humps of water but pulses of energy moving through water) and

allows us (see the discussion in [6]) to specify the vorticity ω of the flow as a

function of the streamline,

(2.8) ω = γ(ψ)

with the vorticity function γ ∈ C1+α(R) if ω ∈ C1+α(Ω). Given any γ ∈
C1+α(R), an interplay between global bifurcation theory, degree theory, a pri-

ori estimates for nonlinear elliptic equations with nonlinear oblique boundary

conditions in combination with sharp maximum principles ensures the exis-

tence of solutions of this type, representing waves of small amplitude as well

as waves of large amplitude [6]. We will show that for all solutions whose exis-

tence has been rigorously established, all streamlines beneath the free surface

must have maximal regularity being real analytic. Moreover, if the vorticity

function is real analytic, the free surface must also be the graph of a real

analytic function.

We fix the wave speed c > 0 and pass to the moving frame

(2.9) x = X − ct, y = Y.

Define the stream function ψ(x, y) up to a constant by

(2.10) ψy = u− c, ψx = −v,

so that

(2.11) ∆ψ = γ(ψ),

in view of (2.6), whereas (2.4) and (2.5) guarantee that ψ is constant on both

components of the boundary of Ω; say ψ = 0 on y = η(x) while ψ = m on

y = −d. Thus

ψ(x, y) = m+

∫ y

−d
[u(x, s)− c] ds
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and ψ has period 2π in the x-variable. Notice (see [6]) that (2.2) ensures that

the expression

(u− c)2 + v2

2
+ g(y + d) + P −

∫ ψ

0
γ(s) ds

is constant throughout the fluid domain Ω. The governing equations are trans-

formed into the equivalent free boundary value problem

(2.12)



∆ψ = γ(ψ) in − d < y < η(x),

|∇ψ|2

2
+ g(y + d) = Q on y = η(x),

ψ = 0 on y = η(x),

ψ = m on y = −d,

with m and Q physical constants (related to mass flux, respectively hydraulic

head). Since η(x) + d > 0, we must have Q > 0 while

(2.13) ψy = u− c < 0 in Ω

ensures m > 0 (see [6]). Assume that in the moving frame the wave crest

is located at (0, η(0)) and the wave troughs at (±π, η(±π)). The hodograph

change of variables

(2.14)

®
q = x,

p = −ψ(x, y)

transforms the free boundary problem (2.11) into an elliptic boundary value

problem for the function

(2.15) h(q, p) = y + d

in a fixed rectangular domain. The transformed boundary value problem is

(2.16)
(1 + h2q)hpp − 2hqhp hpq + h2p hqq − γ(−p)h3p = 0 in −m < p < 0,

1 + h2q + (2gh−Q)h2p = 0 on p = 0,

h = 0 on p = −m,

for h ∈ C3+α
per (R× [−m, 0]), even in the q-variable (see [6]).

3. Main result

Our aim is to prove the following result.

Theorem. Consider a Hölder continuously differentiable classical solu-

tion of the governing equations, representing a periodic traveling water wave

in a flow with a Hölder continuously differentiable vorticity function and such

that the wave speed exceeds the horizontal fluid velocity throughout the flow.

Then each streamline beneath the wave profile is a real-analytic curve. If, in
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addition, the vorticity function is real analytic, then the free surface is the

graph of a real-analytic function.

Remark. Reformulated by use of the notation of Section 2, the first state-

ment above means that for a given γ ∈ C1+α(R), if h ∈ C3+α
per (R× [−m, 0]) is

a solution to (2.16) satisfying

(3.1) inf
(q,p)∈R×[−m,0]

hp(q, p) > 0,

then the map q 7→ h(q, p) must be real-analytic for all p ∈ [−m, 0). Indeed,

recall (2.15) and notice that the change of variables (2.14) yields

(3.2) hp =
1

c− u
.

If, in addition, γ is real analytic, then we claim that q 7→ h(q, 0) is also real

analytic.

Before providing the proof, we introduce some useful notation. Let us

denote by D the strip {(q, p) ∈ R2 : q ∈ R, −m ≤ p ≤ 0}. We consider the

Banach spaces

X = {h ∈ C3+α
per (D) : h(q,−m) = 0}, Y = C1+α

per (D), Z = C2+α
per (R),

of differentiable functions with Hölder continuous derivatives of exponent α ∈
(0, 1), 2π-periodic in the q-variable. We also introduce the open set

O = {h ∈ X : inf
(q,p)∈D

hp(q, p) > 0} ⊂ X.

For h ∈ O we define F (h) ∈ Y × Z by

(3.3)

F (h) :=
(
(1+h2q)hpp−2hphq hpq+h

2
p hqq−γ(−p)h3p , [1+h2q+(2gh−Q)h2p]

∣∣∣∣
p=0

)
.

Denoting by A a real-analytic dependence, we see that

(3.4) F ∈ A(O, Y × Z).

Furthermore, if we denote by τa the translation by the amount ap in the

q-variable, that is,

τa f(q, p) := f(q + ap, p), (q, p) ∈ D,

then

∂q(τaf) = τa(∂qf), ∂p(τaf) = τa(∂pf + a∂qf).

Using these relations, a direct calculation yields

(3.5) F (τah)− τaF (h) = aK(τah, a),
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where the operator K = (K1,K2) is given by

K1(h, a) = (2hqp − ahqq)− γhq[3h2p − 3ahphq + a2h2q ],

K2(h, a) = (2gh−Q)(2hqhp − ah2q)
∣∣∣
p=0

.

Note that (3.5) holds true for any h ∈ O and any a ∈ R with |a| sufficiently

small to ensure that τah ∈ O. Note also that

(3.6) K ∈ A(O × R, Y × Z).

We close our preliminary considerations with the following remark. Let

h0 ∈ O be a solution to (2.16) and denote by τ0a the standard translation in the

q-variable, i.e. τ0af(q, p) = f(a + q, p). Then F (τ0ah
0) = τ0aF (h0) = 0. Hence,

writing DF(h0) for the Fréchet derivative of F at h0, this equivariance implies

that DF(h0)[h0q ] = 0. In particular, we note that the linear operator DF(h0)

has a nontrivial kernel if h0 is not constant in the q-variable.

Proof of the theorem. Let h0 ∈ O be a solution to (2.16) and assume first

that γ ∈ C1+α(R,R). Then Φ(h0, 0) = F (h0) = 0, where

(3.7)

Φ : O×R→ Y ×Z, Φ(h, a) = F (h)− aK(h, a) +
(
0, λ
Ä
hp − h0p− ah0q

ä∣∣∣
p=0

)
,

with λ > 0 being a positive number chosen so that (3.9) below holds true.

Since F (h0) = 0 as h0 is a solution to (2.16), and(
∂p(τah

0)
)
(q, 0) = h0p(q, 0) + a h0q(q, 0),

we deduce in view of (3.5) that

(3.8) Φ(τah
0, a) = τaF (h0) = 0.

Using the implicit function theorem for real-analytic maps we now show that

a 7→ τah
0 is the unique solution of Φ(h, a) = 0 near (h0, 0). Indeed, by (3.4)

and (3.6), Φ is real analytic in both variables in a neighbourhood of (h0, 0) in

O × R. Denoting the Fréchet derivative

DF(h0) =: (L, T ) : X → Y × Z,

we observe that (3.1) ensures that L is a uniformly elliptic operator. Moreover

L satisfies the weak maximum principle, since it has no zero order term [12].

The boundary operator T is of uniform oblique type and has the form

Th = [2h0qhq + 2h0p(2gh
0 −Q)hp + 2g(h0p)

2h]
∣∣∣
p=0

.

We claim that D1Φ(h0, 0) defined by(
D1Φ(h0, 0)

)
h :=

d

dε
Φ(h0 + εh, 0)

∣∣∣
ε=0

= (L, T + λ∂p)h
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is an isomorphism from X onto Y × Z, provided λ > 0 is such that

(3.9) λ > sup
q∈R

{
2h0p (Q− 2gh0)

∣∣∣
p=0

}
.

Indeed, in view of (3.1) and (3.2), for such λ > 0 the boundary operator T+λ∂p
is uniformly oblique, while L is uniformly elliptic. The approach pursued in

Section 4 of [6] shows then that (L, T + λ∂p) is a Fredholm operator of index

zero. Hence it suffices to show that it is injective. Assume, in contrast to our

claim, that there is a nonzero h ∈ X such that (L, T + λ∂p)h = 0. We may

assume that h has a positive maximum (otherwise consider −h). By the weak

maximum principle [12] and the boundary condition h(·,−m) = 0 we conclude

that h takes its positive maximum on p = 0, say at (q0, 0). Then hq(q0, 0) = 0,

whereas hp(q0, 0) > 0 by Hopf’s maximum principle [11]. This contradicts our

assumption (Th + λhp)|p=0 = 0 since hq(q0, 0) = 0 yields that (Th + λhp)

evaluated at (q0, 0) equals

hp(q0, 0)
[
λ − 2h0p(q0, 0)

(
Q − 2gh0(q0, 0)

)]
+ 2g

[
h0p(q0, 0)

]2
h(q0, 0) > 0

in view of (3.9) and the fact that h(q0, 0) > 0. Thus for λ > 0 satisfying (3.9),

we have

D1Φ(h0, 0) ∈ Isom(X,Y × Z).

By the implicit function theorem for real-analytic maps [3] we now conclude the

existence of some ε > 0 and some ϕ ∈ A((−ε, ε),O) such that in a sufficiently

small neighbourhood of (h0, 0) ∈ X × R all solutions of Φ(h, a) = 0 are given

by (h, a) = (ϕ(a), a). Taking into account (3.8), by uniqueness we deduce that

τah
0 = ϕ(a) for a ∈ (−ε, ε). In particular, given (q, p) ∈ R× [−m, 0), we have

[a 7→ h0(ap+ q, p)] ∈ A((−ε, ε),R).

Real-analyticity being a local property, we conclude that [q 7→ h0(q, p)] ∈
A(R,R) for any p ∈ [−m, 0). The first part of the proof is thus completed.

Assume now that γ ∈ A(R,R). We prove the analyticity of the wave

profile η by applying the approach developed in [14] to the problem (2.12).

Using the notation in [14], we choose some d+ > supx∈R {η(x)} and we set

Γ = graph η,

Ω− :=
¶

(x, y) ∈ R2 ; −d < y < η(x)
©
, Ω+ :=

¶
(x, y) ∈ R2 ; η(x) < y < d+

©
,

as well as u− := ψ and u+ ≡ 0. Recall that

ν(x, η(x)) =
(−η′(x), 1)»

1 + η′(x)2
, x ∈ R

is a unit normal vector to Γ. Differentiation of the relation ψ(x, η(x)) ≡ 0

yields

(3.10) ψx(x, η(x)) = −η′(x)ψy(x, η(x)), x ∈ R.
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This implies the following expression for the normal derivative:

(3.11) ∂νψ(x, η(x)) =
»

1 + η′(x)2 ψy(x, η(x)), x ∈ R.

On the other hand, using (3.10), the first boundary condition on Γ in (2.12)

takes the form

(3.12)
(
1 + η′(x)2

)
ψ2
y(x, η(x)) + 2g

(
η(x) + d

)
− 2Q = 0, x ∈ R.

Now introduce the function f : R4 → R by

f(x, y, n−, n+) := n2− + 2g(y + d)− 2Q.

Invoking (3.11), relation (3.12) can be expressed as f(x, y, ∂νu−, ∂νu+) = 0.

Clearly f is real analytic in all its arguments and ∂3f · ∂νu− = 2 (∂νψ)2 on Γ.

But (2.13) and (3.11) imply that (∂νψ)2 6= 0 on Γ. Since ∂νu+ ≡ 0, we see

that all assumptions of Theorem 3.2 and the Remark following it in [14] are

satisfied. Hence Γ is real analytic. �

Remark. Notice that h /∈ A(D) if γ ∈ C1+α(R) \ A(R).
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