Annals of Mathematics 173 (2011), 477-542
doi: 10.4007/annals.2011.173.1.10

Interface evolution: the Hele-Shaw
and Muskat problems

By ANnTONIO CORDOBA, DIEGO CORDOBA, and FRANCISCO GANCEDO

Abstract

We study the dynamics of the interface between two incompressible 2-D
flows where the evolution equation is obtained from Darcy’s law. The free
boundary is given by the discontinuity among the densities and viscosities of
the fluids. This physical scenario is known as the two-dimensional Muskat
problem or the two-phase Hele-Shaw flow. We prove local-existence in
Sobolev spaces when, initially, the difference of the gradients of the pressure
in the normal direction has the proper sign, an assumption which is also
known as the Rayleigh-Taylor condition.

1. Introduction

We consider the following evolution problem for the active scalar p =
p(z,t), » € R%, and t > 0:

pt+v-Vp=0,
with a velocity v = (v1,v2) satisfying the momentum equation
i
(1.1) ~v==Vp—(0.8p)

and the incompressibility condition V - v = 0.

In the following we achieve a rather complete local existence analysis of the
dynamics of the interface between two incompressible 2-D flows with different
characteristics (i.e., distinct values of u and p) which are evolving under (1.1),
also known as Darcy’s law [3]. This system was studied by Muskat [16] in
order to model the interface between two fluids in a porous media, where p is
the pressure, p is the dynamic viscosity, « is the permeability of the medium,
p is the liquid density and g is the acceleration due to gravity. Saffman and
Taylor [17] made the observation that the one-phase version (one of the fluids
has zero viscosity) was also known as the Hele-Shaw cell equation [14], which,
in turn, is the zero-specific heat case of the classical one-phase Stefan problem.

There is a vast literature about those problems (see [5] and [15] for refer-
ences). In order to frame our result let us point out that in [18] is treated the
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case where both densities are equal, showing global existence for small data in
the stable case and ill-posedness in the unstable case. In [1] the well-posedness
in the stable case was considered under time dependent assumption of the arc-
chord condition. Finally, in the case where the viscosities are the same, the
character of the interphase as the graph of a function is preserved and in [9]
[10] this fact has been used to prove local existence and a maximum principle,
in the stable case, together with ill-posedness in the unstable situation.

Due to the direction of gravity, the horizontal and the vertical coordinates
play different roles. Here we shall assume spatial periodicity in the horizontal
space variable, says p(z1+2km, x9,t) = p(x1,2z2,t). The free boundary is given
by the discontinuity on the densities and viscosities of the fluids, where (y, p)
are defined by

T 1
12 o ={ B0 TS0

and p!' # p?, and p' # p? are constants.
Let the free boundary be parametrized by

OV (t) = {z(a,t) = (21, 1), 29(, 1)) - @ € R}
such that
(z1(a + 2km, t), zo(a + 2km,t)) = (z1(, t) + 2k7, z2(a, 1)),

with the initial data z(a,0) = zp(@).

Notice that each fluid is irrotational, i.e., w = V X u = 0, in the interior
of each domain Q’ (i = 1,2). Therefore the vorticity w has its support on the
curve z(a,t) and it can be shown easily to be of the form

w(z,t) = w(a,t)d(x — z(a,t)).

Then z(a,t) evolves with a velocity field coming from Biot-Savart law,
which can be explicitly computed and is given by the Birkhoff-Rott integral of
the amplitude w along the interface curve:

(1.3)
BR(z,w)(a,t)

z2(at)—22(Bt) 2 z1(a,t)—z1(B,t)
_< PV/ w tanh 2 21(a, t)2 z1(8, t))(l +tan2(22(a t)222 ,Bt)))
(===5==2) +tanh (#)

dg,

tan

tan( 21 (a,t) > 21 (/B,t) )(1 o tanhQ(Zz(a,t) > ZQ(B,t) )) dﬁ)

1
—PV/w B,t
At T (B:1) tanQ(zl(a’t)gzl(ﬁ’t))+tanh2(22(a’t)gz2(ﬁ’t))
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where PV denotes principal value [19]. It gives us the velocity field at the
interface to which we can subtract any term in the tangential direction without
modifying the geometric evolution of the curve

(1.4) zi(a,t) = BR(z,@)(a, t) + c(a, t)0nz(a, t).

A wise choice of ¢(a, t), namely

a+m Onz(a,t)
21 Jr |0az(a, t)]?

a9, 7
- [ oo ooERte =004

allows us to accomplish the fact that the length of the tangent vector to z(«, t)
be just a function in the variable ¢ only:

A(t) = [0az(a, ),

(1.5) cla,t) = - 0u BR(z,w)(a, t)do

as will be shown in Section 2 (see also [15] and [13]). Then we can close the
system using Darcy’s law with the equation

2 1
(1.6)  w@(ot) = —24,BR(z,@)(a,t) - Oaz(a, t) — zngQ - Zl8a22(a,t),
where
Ay = M1 — p2
M1+ 2

is the Atwood number.
Finally we give the function which measures the arc-chord condition in
the periodic case

5/4
2 ( 21 (a,t)fgl (a—p,t) ) + tanh2( 22(a,t)f,;2(0176,t) )

(L7 Fi)(a,b,t) =

tan

for all o, 8 € (—m, ), with
1
=

(see [13] for a closed curve).

Our main result consists of the existence of a positive time 7 (depending
upon the initial condition) for which we have a solution of the periodic Muskat
problem (equations (1.3)—(1.6)) during the time interval [0, 7] so long as the
initial data satisfy zo(a) € H*(T) for k > 3, F(20)(c, ) < oo, and

oo(er) = —(Vp*(20(a)) = Vp'(20(a))) - 95 20(cr) > 0,

where p/ denote the pressure in /.
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It is interesting to remark that the equality of pressure at each side of the
free boundary is obtained in Section 2 directly from Darcy’s law without any
other assumption.

THEOREM 1.1. Let z9(a) € H*(T) for k > 3, F(20)(c, B) < o0, and
o0(0) = — (V9 (z0(a)) — Vo (z0())) - O z0() > 0.

Then there ezists a time T > 0 so that there is a solution to (1.3)~(1.6) in
CY([0,7]; H¥(T)) with z(a,0) = zo(a).

We devote the rest of the paper to the proof of Theorem 1.1 which is or-
ganized as follows. In Section 2 we derive the system of equations (1.3)—(1.6)
with the corresponding choice of ¢(a, t) and we also obtain the properties of the
pressure. In Sections 3 and 4 we present several crucial estimates on the oper-
ator T'(u)(a) = 2BR(z,u)(a) - 9pz(a) and on the inverse operator (I —¢T)~ L,
|€] < 1. Our proofs rely upon the boundedness properties of the Hilbert trans-
forms associated to C® curves, for which we need precise estimates obtained
with arguments involving conformal mappings, Hopf maximum principle, and
Harnack inequalities. We then provide upper bounds for the amplitude of the
vorticity, the Birkhoff-Rott integral, the parametrization of the curve, and the
arc-chord condition; namely

1]l < exp O (IF ()70 + 2l Fns1)  (Section 5),
IBR(z,@)|| e < exp C (IF(2)l|F0e + |2l 3s1)  (Section 6),

d 2 K O(a7t) k k
— < — .
tHZHHk(t) e /T B )‘28az(a,t) A(52)(a, t)da
+expC (HF (z)”%oo (t) + ]]z]\QHk) (Section 7),

and
%IIF(Z)H%oo (t) < expC (|1 F ()7 (8) + 12155 (t))  (Section 8),

where the operator A is defined by the Fourier transform Af (&) = |€](€) and

o(a,t) is the difference of the gradients of the pressure in the normal direction.

In Section 9 we study the evolution of m(t) = mi%a(a, t), which satisfies the
ae

following lower bound

m(t) 2 m(0) ~ [ expC (IFE () + 21 (s)) ds.

Finally, in Section 10, we introduce a regularized evolution equation where
we use the previous a priori estimates together with a pointwise inequality
satisfied by the nonlocal operator A [6] to show local existence.
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By a similar approach, in [8] we obtain local-existence in Sobolev spaces
for the full water wave problem in 2-D when the Rayleigh-Taylor condition is
initially satisfied.

2. The evolution equation

Here (u, p) are defined by

_ [ ), weQl(t)
(M,p)(l‘l,l‘g,t) - { (M2;P2)7 = QQ(t),
where p! # p? and pt # ,02. Then using the Biot-Savart law we get
r—z(f8
PV : t)d
T e e RO

for @ # z(a,t), where the prln(:lpal value is taken at infinity.
It is convenient to introduce the complex notation z = x1 + ixo; then the
complex conjugate v of the velocity field is given by

) @ (B,1)
ot PV —_—
oz t) = 27 r 2 — 2(B,t)
In our case of periodic interface, z(a + 27k, t) = z(a,t) + 27k, the following
classical identity

dB.

1
( + Z (27rk ) - 27 tan(z/2)

k>1

1 tal’lh w 1 + tan2 Ll(ﬁt)
1@@:(—M/w@w (2400 1+ tan’ Dy

tan (cc1 m(ﬁt))_'_tanh?(w)

i/w(ﬁ t)tan(%l(ﬁ:t))( _tanh2(%2(ﬁ’t)))dﬁ
4m Jr tanz(%ﬂ’g’t))—i—tanh?(%ﬁﬂ))

for x # z(a,t).
We have that

B 1 w(a,t)
v?(2(,t),t) = BR(z,@)(a, t) + 5 ’8a2<a’t)’28az(a,t),
. 1 w(a,t)
1}1(2(04, t)v t) - BR(Z? w)(a, t) - 5 |8az(a, t)’Z 8az(oz, t)a

where v/ (z(a, t),t) denotes the limit velocity field obtained approaching the
boundary in the normal direction inside Q7 and BR(z,w@)(a, t) is given by (1.3).
Darcy’s law implies that

Ap(z,t) = —div ('u(m’t)v(x,t)) — g O0pyp(x,t);

K
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therefore
Ap(, 1) = (o, 13z — 20, 1)),
where II(a,t) is given by

R
B (o), 1) - O 20, t) + (0% — pM)Oaz (s ).

I(a,t) = -

It follows that
1
p(z,t) = —— / In (COSh(J)Q — z9(a,t)) — cos(xy — zl(a,t))>H(a,t)da
21 Jr

for x # z(«,t), implying the important identity

pQ(Z(Oé,t), t) = pl(Z(Oz,t),t),

which is just a mathematical consequence of Darcy’s law, making it unneces-
sary to impose it as a physical assumption.
Let us introduce the following notation:

v)(ast) = (20(2(a ), 8) — o (2(0, 1), ) - Daz(ars ).

Then taking the limit in Darcy’s law we obtain that
v|(a,t
W@ (Gp2(ar 1), 8) = Vp (=1 (1), 1)) - Buz(ast)

K
—g(p* = p') Daza(ar,t)
= —0a(P*(2(a, 1), t) — p'(2(e, 1), 1)) — 8(p* — p") Daza(cr,t)
= —g(p® = p') Daza(a, 1),
which gives us

w? — !

©+ pt
——w(a,t) + TBR(Z, w)(a,t) - Oqz(a,t) = fg(pQ - p1)8a22(0z,t),

2K
so that
0% — pl
p+pt

Next we modify the velocity of the curve in the tangential direction

w(a,t) = —A,2BR(z,w)(a,t) - Onz(a, t) — 2Kg Onz2(a,t).
(2.1) zi(a,t) = BR(z,w)(a, t) + c(a, t)0qz(a, t),

where the scalar ¢(a,t) is chosen in such a way that the tangent vector only
depends on the variable t as follows:

(2.2) 0az(, 1)]? = At).
To find such a ¢(a, t) let us differentiate the identity (2.2)
Al(t) = 2002(a,t) - Ozt t) = 2052(, t) - O BR(z, @) (i, t) + 20ac(a, t) A(t),
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so that

AW Ly ant) 0uBR(z ) (1),

(2.3) Onc(a,t) = DA A®)

Because c¢(a, t) has to be periodic, we obtain

Aty 1
(2.4) 2A()  3mAQD /Jraaz(a,t) - 0u BR(z,w)(a, t)do.
Using (2.4) in (2.3) and integrating in «, one gets
_a+T 0pz(B,1)
(2.5) clont) = "3 [ Sy B )05
@ 9p2(B,1)
- /_WW - 0sBR(z,w)(B,1)dp,

where we have chosen ¢(—m,t) = ¢(m,t) = 0.
Let us consider now the solutions of equation (2.1) with c(a,t) given by
(2.5). It is easy to check that

%IaaZ(a, t)|* = e, 1)9a|0az (e, )|* + b(t)|0az (1),

where

052(p3,
b(t) = % /T M - 93BR(=, @)(8, t)dB.

Next we solve this linear partial differential equation, assuming that (2.2) is
satisfied initially, to find that the unique solution is given by

¢
1002(c, 1) > = |0az(a, 0) | + 1/ / Onz(a,t) - 0 BR(z,w) (v, t)douds,
T Jo Jr

which proves (2.2).
Our next step is to find the formula for the difference of the gradients of
the pressure in the normal direction:

—(VpQ(z(a, t)a t) - Vpl(z(av t)a t)) ' ai‘z(a, t)7
which we denote by o(«,t). Approaching the boundary in Darcy’s law, we get

2 1
o t) = F—LoBR(z, @) (0, 1) - 0y 2(at) + 8(0” = p1)daz1 (0 1).

It is easy to check that
2 1

F—LBR(z @) (a,t) - 0 2(e 1) = ﬁaa /T w(B.1)log G(a, B, 1),
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with

G(a, B,t) = sin? (Zl(a’t) ; Zl(ﬁﬂt)> cosh? (2'2(0‘775) ; Z2(ﬂ,t)>

+ cos? (zl(a, t) ; 21(B, t)) sinh? (zg(a, t) ; 22(, t)> '

Therefore

p? —pt
/ BR(z,@)(a,t) - 0 z(a, t)da = 0.
T K

This shows that the condition p? # p! is crucial in order to have a constant
sign in the normal direction of the difference of the gradient. Furthermore,
since z1(a,t) — « is periodic we have

/ Oaz1(a, t)da = 2.
T
Remark 2.1. If we consider a closed contour, then it is easy to check that

/ o(a,t)da =0,
T

which makes impossible the task of prescribing a sign to ¢ along a closed curve.

3. The basic operator
Let us consider the operator T defined by the formula
(3.1) T(u)(a) = 2BR(z,u) () - Onz().

LEMMA 3.1. Suppose that | F(z)||z < oo and z € C*? with 0 < 6. Then
T:L?>— H! and
Il 2 mn < IF()Zee 12l E2s-

Remark 3.2. In Section 5, Lemma 5.2, there is a proof showing that T
also maps H* into H**1, k > 1.

Proof. Since formula (1.3) yields

tanh (2@l 22(0) )) a5

T(u)(a) = 71raa/1ru(ﬁ) arctan < (Z1(a)—21(ﬂ))
z(e)—=1(f)

tan
we have
/ T(u)(a)da = 0
T
which implies ||T'(u)||z2 < [|0aT(w)||12-

Let us denote

V(a7 ﬁ) = (Vl(()é,ﬁ), %(avﬂ))

_ (tan (21(04) ; 21(5)) tanh <Z2(a) ; 2’2(5))) '
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In the following we shall refer to the Appendix for the definition of V;, A; and
their properties.
We first write

9T (1) = 2BR(z,u)(a) - 022() + 2042(t) - 0 BR(z,u)(ar) = I) + L.

For I; we have the expression

J'Z (6% J‘Z ) - 22 «
I = 2(BR( () — 22O Hu) (@) Ba(e) + 2 () ) L ()
= J1+Ja,
where H(u) is the (periodic) Hilbert transform of the function w.
Then
. 1 VQ(OJ,B)V2(04,ﬁ)
J = —%Oizl(a)/qru(ﬁ) e
1 Vl(Oé,B)V2(Oé,,3)
~ grtiml) [ u(s) L s
e [ Va@asB) 1 dum()
sr0ha(@) fu(a=5) va,a “HP " [Bar(@)P tan(ﬁ/m]dﬁ
i 2. (o wla — Vi(a,a — B) _ 1 Oaz1()
+ 5 0hm(@) fLul ﬁ)bvw,a—w aaZ(Oé)l”an(ﬁ/?)]dﬁ

=K1+ Ko+ K3+ Ky

and we may use that [Va(a, 5)| <1 to get |Ki| + |K2| < Cllz||cz|lullr2-
To estimate K3 let us observe that the following term

- B VQ(O&,Q_B) _ 1 80422(a)
Ai(a,a = B) = V(,a — )2 |0az(a)]? tan(g)

satisfies || A1 ||z < ||F(2)| e ||z]|Z2 (see Appendix, Lemma 11.1).
In K4 we have the term
‘/1(04’05 - ﬁ) 1 8a21(05)
As(a, a0 — ) = — ,
8 D= WP~ Parla)l tan(5)

which satisfies || Az L < C||F(2)]|poe || 2]|Ze-
Then we obtain |K3| + |K4| < C||F(2)|| 2o ||z ]|2e]lul| 125 therefore

Ji < O F (2)llzellzlEellull 2.
Since the estimate Jo < CH}'(z)HigHzHCz\H(u)(a)\ is immediate, we finally
have

(3-2) 11| < CIF@)zeellzlEe (full 2 + [H (u)()]).
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Next we write 2BR(z, u)(«) as follows:

1
o

V*(a,B)
V(e, B)?

[ u(®Vala 8)(1,0)d8 = Ja(e) + Ja(a).

2BR(z,u)(a)

L e -via.m) dp

1
2T

Easily we have |9,J4(c) - 0a2()] < C|z||%1]lul|z2. Taking one derivative in
J3(a) and using the cancellation dyz(a) - 01 z(a) = 0, we get

OaJ3(@) - Onz(a) = K5 + K¢ + K7 + Kg + Ko,

where
L o c Ozt
K5 = =5 [ a8 - V(0. 5)Valar Mnzale) 5 e s,
Ko= 1 | u®)(1 = V(e )8az1(0)d0za(a)d5,

o L u(®)(1-VE (e )@ @)V, 8)

27
VL(aa ﬁ) i aozz(a)
[V (e, B)|*

/T“(ﬂ)VzQ(% B)(Oaz1()Vi(e, B)
VA (a, B) - Oaz(a)

— az2() V5 (e, B)))

1
o7

dp,

Ksg

+ Buzala)Valon ) g
and

N Vi(a,6) - Baz(a)
Ko = 5 | 0(B) (0o () Va(er )+ 0uza(0) Valew, 8)) 2.

We have |Ks| + |Kg| + |K7| + |Ks| < Cllz[[ga [|ull -
Next we split K9 = —L1 — Ly, where

1
o7

V*(a, B) - Baz(a)
[V (e, B)[*

L /T w(8)Bz1 () Vi (e, B) a3

can be rewritten as follows:

Jp— Juta=p)ouz@)Vita,a—5)

- 27
We have L1 = My + M, where

_ (93x(0)* - 9uz(0)
My = T 2 () H () ),

(V(a,a — B) — 0qz(a)B)* - Oaz(a)

Viaa— B @b
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and

1

My = 27T/Tu(a — B)0az1(a) B, — B)df

for
(932()) " - Daz(a)

B(a,a—p) = Vi(o,a—p) |0az(a)[* tan(B/2)

—0qz21()

V(ava_/@)L 8 ( )
’V(O‘vO‘_ )’

The term M satisfies [M;| < C||F(2)[|¥2 |2l 2| H(u)(c)|. We claim that

M| < CIFE)Eelzlns [ 1B e = Bl

(see the Appendix, Lemma 11.2 for the proof).
A similar estimate can be obtained for Lo. Finally we have

|I2| < CIF(2)|[7oo 12l s (lull g2 + 1H (u |+/ 1B u(a — B)|dB).

This inequality together with (3.2) yields
10T (w)()| < CIIF(2)|[Fo0 |2l s (full 2 + [ H (w) \+/ B~ ula = B)[dB).

To finish we use the L?-boundedness of H and Minkowski’s inequality to obtain
the estimate

18T (W)l z2 < ClIF ()1 Zoe Izl 205 Il 2- O
4. Estimates on the inverse operator (I —¢7)7!
In Lemma 3.1 we have considered the operator T : L? — H*
T(u) = 2BR(z,u)(a) - 0q2()

for F(2)(a, 8) < co. Then T is a compact operator from Sobolev space L? to
itself whose adjoint is given by the formula

1 / P Bazo() tan(2 2By _ 5 2 () tanh(%)
- u
2m J tanz(%)—i-tanh%”(a —%2 )

L [ Daz2(B) tan (72O panp? (22l0) 2200
2 Jr Zl(Q);Zl(ﬁ))+tanh2<Z2(a)2Z2(5))

T (u)(e) = dp

s

tan?(

1 / . Oaz1(B) tanh(@(a);@(ﬂ) ) tan2(21(a)521(6))

- — dg.
2w J1 tan2(zl(a)521(ﬁ))+tanh2(z2(a)522(ﬁ))

We will show that in H2, I — €T has a bounded inverse (I — £T)~! for
|€] < 1, whose norm grows at most like exp(C|||z|[|?) with |||z||| = ||z]/zs +
IF(2)ll -
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Let z be outside the curve z(«); then we define

1 / 8 Baza(B) tan(2=21E0y _ 9,2 (8 )tanmm)

— [ u

27 Jr tan (M)—l-tanh%z )

1 / ﬁ aaZQ(B) tan(&)tanhQ(w Z2(5))
U

f(z) =

dp

dp.

_% T tan? ( >+tanh2(%2(ﬂ))
1 daz1(8) tanh(Z2 2(0)) gan2(2=21(8))
o /TU(B) tan?(2=210)) 4 tann?(2=20)) dp.
_ Ly [ uB)az(B)
N 2WJA tan( ,3))d6

That is, f is the real part of the Cauchy integral

1 [ u(B)0az(B)
JECLECT

FE) =) +igl) = 50 | o
2

tan(
which is defined in both periodic domains €2; and €y, respectively placed above
and below the curve z(«). In the following, §2; denotes a corresponding fun-
damental domain; i.e., Q; = J{Q; + 27n}.

Taking z = z(a) + 91 z(a) we obtain

f(2(a) + €0y 2(a)) = 2177%/1r tan(z?a()ﬁ)za(g);r(giiz(a))dﬁ’
and letting € — 0, we get
(4.1) F(2(a)) = T*(u) = sign ()u(a).
On the other hand we have

;i_r%g(z(a) + 0t 2(a)) = lim SF(z(a) + €0 2()) = G(u)(a),

e—0
where
8 z21(p tan(M)(l - tanh%M))
Glu)e) PV/ 1()—z1(8) 2 z2(2)—22(B) dp
tan?(ZRHTEE) - tanh? (RS

- Lpy [ up e 0 22T

tan2 (2@ 210y 4 panp?(2l)_22(0)

independent of the sign of € — 0.

First we will show that T*u = Au = || < 1. Since 7™ is a compact
operator (of Hilbert-Schmidt type) we can conclude the existence of (I —£7T*) 7!
with [£] <1 (see also [2]). To do that let us compute the value of Vf(z(«)).
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Denoting z = x1 + ix9, the identity

f(z) = 217T%/1r %dﬂ = —;T%/Tu(ﬁ)aﬁ In (sin (Z_;(ﬂ)>> ag

tan(

_ ig/qraﬁu(g) In (sin (Z_;(ﬁ)» a8

yields .
Vf(z) = 73/ d5u(B)V In <sin (’Z_Z(m» dg.
2 T 2
That is,
1 tanh(22=220:0) (1 4 tan? a2y 21(B)
= *7/85’[1 ﬁ)(ﬁ?t 2(13 _i (ﬂt))( 2($ 22(B,1) )) ﬁ’
tan®(=—5""~) + tanh”(Z—3-~)
z1— Z1(/J’t) 2/ z2—22(B,t)
/8 (3 tan )(1 — tanh*(=—5 ))d,B '
4 tan?(£= Zl( ))—l—tanhQ(iI2 (8, t))
Taking the limit as before we get
B . O u(av)
(4.2) Vf(z(a)) = 2BR(z, 0qu)(cr) + sign (S)WE)QZ(&).
Assuming now that 7%u = Au, the analyticity of F'(z) allows us to obtain
0x2(a)
/ 2 _ e
@3) o< [ FEPs = = [ 1(:0)7 () 2 o
0x2(a)
=[(1- a)2BR(z,0u) () - T——da
-/ (2, 0ua)e) - (5
and
Ot 2(a)
4.4 0</ F'(z dx—/f NV f C = do
(44) [ 17 ()
0+ 2(a)
= [ A+ Du(a)2BR(z,0yu & dao,
A (200 g ()

where we have used (4.1) and (4.2). Multiplying together both inequalities we

get
2

J'Z (6%
0<(1- >\2)< /T w(@)2BR(z, dau)(a) - |gzz((a))|da> ,

and therefore || < 1.

PROPOSITION 4.1. The norms H(I$T*)_1HL3 are bounded from above by
exp(C|||2||[?) for some universal constant C where the space L} is the usual
L? with the extra condition of mean value zero, i.e., the subspace orthogonal to
the constants.
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Proof. With the notation introduced before we have

Py =F/ = fi+ig,

Fy=F/Qs = f2 +igo,
f1/0Q =T"u — u,
f2/0Q = T*u + u,
91/ = g2/0Q = G(u).

The proof follows easily from the estimate

—T*
(4.5) clze o =Tl < CllIP

= Tt Toullz

valid for every nonzero u € L3(92).

.. . _ 2
This is because if we assume ||u—T"u| |L3 < e 2ClIA

then we obtain ||u + T*uHLg > 2H'LLHL(2) — ¢ 2ClI=I” > 1 which contradicts
—2C|||2]|?

for some ||UHL(2) =1,

(4.5). Therefore we must have Hu—T*u||Lg >e for all HUHL?) =1,1ie,
H(I—T*)_lHLg < e2ClIElIP | Similarly, we also have H(I+T*)_1HL3 < e2CllAlIP,

Since u — T*u = H1(G(u)) and v + T*u = H2(G(u)), where H; denotes
the Hilbert transforms corresponding to each domain §2;, then (4.5) is a con-
sequence of the estimate

2 2
(4.6) 17511200,y < NI,

where C denotes a universal constant not necessarily the same at each occur-
rence.
This is because the identity ’H? = —1I implies

* 2|2
llu = T*ull 1z = [[H1(G(w))[| 3 < “IITIG(w)]]
< 2N 215G ()l 2 = 2P+ T2

and similarly we have ||u + T*uHLg < e2Cll=IP|

u =Tl
It is enough to prove (4.6) for Q; (the case Qo will follows by symmetry)
and we will rely on the following geometric fact whose elementary proof is left

to the reader.

LEMMA 4.2. Let Q be a domain in R? whose boundary is a C*° para-
metrized curve z(a) satisfying the arc-chord condition ||F(z)||re < co. Then
we have tangent balls to the boundary contained in both Q and R?/S). Further-
more, we can estimate from below the radius of those balls by C|||z|||~, for
some universal constant C' > 0.
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Let ¢ = u+iv be the conformal mapping from ; to the upper half-plane
Ri. Then v is a nonnegative harmonic function vanishing only on 9. Let
¢! be the inverse transformation.

LEMMA 4.3. Since 1 is 2w periodic in the horizontal direction we have
d(z+27) = ¢(2) + « for a certain fixed real number c.

Proof. Let us define ¢(w) = ¢(¢~'(w) + 27). Then v is a conformal

mapping from Ri to itself and, therefore, given by a linear fractional trans-

aw-+b
cw+d

numbers. Since 1 cannot have a fixed point in Ri, it follows that ¢ = 0 and
a = d. Therefore taking z = ¢~!(w) we get the formula ¢(z + 27) = ¢(2) + «
with a = %, proving Lemma 4.3.

Next we observe that ¢/ (z+2km) = ¢/(z) for every z € Q and since 09 is
smooth enough we know from general theory that ¢ and ¢’ extend continuously

formation ¥(w) = satisfying ad — bc = 1, where a,b,c and d are real

to 0Q. Furthermore, in order to estimate the size of ¢'|sq, it will be enough
to consider the compact part of that boundary corresponding to a full period.
Composing with ¢, ¢~! one easily gets the formula

Hif =H(fog oo,  H(fop ') =Hi(f)og™".

Therefore our problem is reduced to a weighted estimate for the Hilbert trans-
form with respect to the weight |(¢(z,0))™!| = w(z) for which we have to
show that w belongs to the Muckenhoupt class A (see [12]). Now it turns out
that for general C'' chord-arc curves that statement is false, but we will take
advantage of the fact that 9 is of class C? (in fact C»* will suffice) to show
that in our case w(z) trivializes, i.e., it is bounded above and below. More
precisely:

LEMMA 4.4. Let w(z) = |(¢/(2,0))"!|. Then we have
w(zo)e CIAIP < w(z) < w(wg), eI,

where C' is a universal constant, |||z||| is our usual norm in the curve 0%
and g is any point. Normalizing our conformal mapping ¢ one may take

w(zy) = 1.

Proof. From the geometric Lemma 4.3, we know the existence of tangent
balls to 0Q contained inside ) of radius r = O(1/]]|z|||) and such that
each one of those balls touches the boundary 9€2; at a single point and their
centers describe a parallel curve I' to 9Q; which is also of class C? with norm
O(][|z]]])- In the following we shall concentrate our attention to the band B of
those points in ; whose distance to 0€2y is less that r. Then the boundary
of B consists of two parts, namely 9€2; and its parallel curve I' at distance r
which can also be parametrized throughout z(«) in an obvious manner.
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The length of the part of I' corresponding to a full period 0 < a < 27,
is clearly O(|||z]||). Then, after several applications of Harnack’s inequality in
steps of length O(r), we obtain

ol < V1) o a2
v(z2

~—

for any z1, 22 € I'. Let us consider a point P € 91 and @) € I to be the center
of the circle of radius r tangent to 921 at P; furthermore, let us denote by v
the inner normal vector. Then the nonnegative harmonic function v takes its
strict minimum at the point P and by Hopf principle we get the estimate

% py > )

(47) ov r

for some absolute constant C' > 0. On the other hand we may consider a
domain D contained in the band B in such a way that its boundary consists
of a piece of 0y of length 2r containing P at its medium point. Then the
corresponding portion of I', says Lo, obtained by vertical translation of the
points of L; and finally two arcs of C? curves smoothly connecting L; and Lo
in such a way that D becomes a C? curve with norm O(|||z]]|).

Let ¢ be conformal mapping from the unit ball B, to D with standard
normalization. By the Kellogg-Warschawski theorem it follows that i extends
continuously to the boundary and its derivative is bounded from above and
below by universal constants. We also have the Poisson’s kernel K in D ob-
tained by conformal mapping of the kernel for the ball of radius r. Then we
may represent the harmonic function v as the integral of its boundary values
against the Poisson kernel

v(x) = [ K(z,y)v(y)do(y)
oD

3= | et

which is a legitimate 1ntegral. We can take the limit (when x — P € 0§))
because v vanishes identically in L; and the points y € 0D — L are at distance

and

at least r from P to obtain the estimate

C
E(P) < 75preDU($)-

To finish we can invoke Dahlberg-Harnack principle up to the boundary
for the positive harmonic function v (see [4] and [11]), which gives us the
inequality

ov C

< —v(Q)

(43) o)<
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for some fixed constant C. Then the estimates (4.7) and (4.8) yield

v(Q1) < & (p) v(Q1)
v(Q2) ~ 9%(Py) v(Q2)’

but we know from Harnack that

<C

(4.9) ct

—ollAP < Y@ _ cpap
¢ = v(Q2) =¢

for two arbitrary points 1, Q2 in I'. That ends the proofs of Lemma 4.4 and
Proposition 4.1 because |¢'(z(a))| = |Vu(z(a))| = %(z(a)), since 09 is the
level set v = 0 of the positive harmonic function v (¢ = u + v). O
The identity I + T = &£(L +T*) + (1 — €)1 allows us to conclude that
[[(u + €77 w) Y| 2 < eCIEIIE
—Cilll2]l]?

for1—e
(|€] < 1) we have

< €] <1 with an appropriate constant Cy, but for general £

PROPOSITION 4.5. For [§| < 1, the estimate

T+ Y L =T+ L < ClENP
I+ €0y = I+ <

holds for a universal constant C.

Proof. First let us consider the inequality

12 > o= Calll2ll? 14,112
(1.10) |V 2 el

J
where F; = f; +1ig; is the Cauchy integral of u in ; which follows easily from
estimate (4.7) for the derivative of the conformal mapping ¢:

|° = 2 — 201 —1y/12
/Qj!Vfg! /QjAfj/RiAfj(gz; (™Y

0
= | A(fjoe ') = f70¢715;f70¢7%

2 2
R% OR2

where a% is the derivative in the normal direction

9Ji (5, 0) = 1 1/u<w—t>—u<x> _
By (x,0) = 7}% - Y dt = Au(x).

Therefore we can conclude that

+oo
[ vsl= [ ool o 0™
Q; —00

oot “1y2 = = Calllzll ] 112
= A2(fjop )" >e HUHH%
— 00

for a certain positive constant C; as a consequence of the following lemma:
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LEMMA 4.6. Let o be a diffeomorphism of the real line such that 0 <
C~t < | (z)] < C. Then we have the equivalence of Sobolev norms

CE| fllms < If o $llms < CF| ]|
1
for0<s< 3
Proof. Given f in H® we have

N on)lZ = [(Fon)@A>(f o p)(w)d
= [ 1w / f(w|(:r)) —FEW)

x—y\HZS
2
! / / ,x* ,1+fs(y))) dyd
-))\2
2/ / IE \1+2{|(f)_) |1+zs(Wl)'(f)(w*l)’@)dﬂdf,

where Z comes from the application of the mean value theorem. From our
hypothesis we have

e 1
C—(3+25) < (¢|(¢) g)/((;;‘ljgg ) C3+28

which, together with the equality

o) — 2
sl = [ [ g,

allows us to finish the proof of the lemma.

Remark 4.7. In our case the diffeomorphism is given by V(o) = ®(z(«)),
and we will use the periodic version of (4.10); i.e

L 195 2 el 2
Q; H3(T)
To continue, let us assume that Proposition 4.5 is false; then there exist
1
u€ HZ, HuHH% =1 and |n| > 1 such that ||pu — T*uHH% < e GlllElP  where

Cs will be fixed later to be big enough for our purposes.
Let us also assume that the following estimate holds:

0 #(e)
|Oaz(a)]

’]I‘(nu — T"u)2BR(z, 0qu)(a) - da‘

J_
< u— Tl 1 |2BR(z, dau)(@) ’g . @) H |, S el

a)l
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Then from identities (4.3) and (4.4) we get

(4.11)
e~ el < /T(l —nu(a)2BR(z, 0pu)(cv) - Mda + e 501l
e~ Calllzlli® < /11‘(1 + n)u(a)2BR(z, 0qu) () - mda + ¢ P0C2lI=lIP,

Adding these two inequalities together we obtain the positivity of

a )
/Tu(a)2BR(z,8au)() o )‘d a0,

Then we get a contradiction when we substitute the value of n in the first
inequality of (4.11) if n > 1, or in the second one if n < —1. Therefore the
1
hypothesis [[qu—T"ul|, 1 < e~ Cslll=llI” s false for every u in HZ and lull, 1 =1,
and that gives us the desired estimate.
To finish the proof, we need to show that

0+ 2(a)

2 2
[12BR(z, Oau)(c) - WHH_% < eIl lull, 1
for a universal constant C.
In order to prove it let us first observe that
Ot z(a) Ot z(a)
Oo(BR - —2*—~=) = BR(z,0 2+ 0
a( (Zau)(a) ‘aaz(a)’) (Z, au)(a) |8az(a)\ + p(z)uﬂ

where O,(z) is a bounded operator in L? whose norm is controlled by eCllI=lI

for a convenient value of C'. Therefore our task is equivalent to show the
estimate

Orz(e)
a2 ()]

I,y < el

[2BR(z,0)(0) - lel,
Decoding the notation we have to consider the operators 9+ zx(a) - Tju(w),

where

) — zila) —zila=f)
Tju(c) fPV/ (o) —z(a—/B)Pu(a B)dg.

Let ¢ be a C*° cut-off function supported on |z| < r such that ¢ =1 on |z| < §
where r = M Then Tju(e) = Tju + TFu for

Tiu= PV / o(B) Zj((;) __Zzg(ia__ﬁjlu(a — B)dg,

2 B zj(e) —zj(a=p)
Tiu=PV [(1-0(8) 45— gula — 8)ds.



496 ANTONIO CORDOBA, DIEGO CORDOBA, and FRANCISCO GANCEDO

It is straightforward to check that Tj2 is a smoothing operator for which the
desired estimate trivializes. Furthermore, a convenient Taylor expansion allows
us to write leu(a) = m(a)Hu(a) + R(u) where R is a smoothing operator, H
is the Hilbert transform, and the bounded smooth function m depends upon

Clil=i

the curve z in such a way that H%—TSH Lo < e . Finally we may invoke the

following commutator estimate
1 1
[A2(bv) — bAZv| 21y < C[[Vb| Lo ]| 22(T)
to complete our task. O

Remark 4.8. Although it will not be needed to establish our main theo-
rem, we will improve the estimate on the eigenvalues of T, T by showing the
existence of a constant Cy = Cy(z) whose inverse C; * grows at most as a poly-
nomial in |||z||| and such that the eigenvalues of T* must satisfy the estimate
|A] <1 —Cp. To see this let us consider the identities

2 o 42
/Q1 V£l dm+/92 |V fol*dw = 2/Tu(a)2BR(z, o)) 13—y
o 0isto)
T e R A R O O e i

Then it will be enough to show that both integrals fQj_ |V f|?dx are comparable;
i.e., there exists a constant 1 < C' = C(]||z]||) < oo such that

1
S ownars [ vePsc [ vak
(951 Qo Q1

Observe that the Cauchy-Riemann equations imply that this is equivalent to
showing the analogous estimate for g in place of f.

The existence of such C' depending continuously upon |[||z||| follows easily
by a standard compactness argument. Nevertheless it is convenient to have a
control of the growth of the constants. In the following we present an argument
to show that C(|||z]||) grows polynomially with ||z]|].

PROPOSITION 4.9. We shall consider periodic curves z(«) (period 2).
Because of the smoothness and arc-chord conditions, such a curve divides the
cylinder R/277Z x (—o0,00) in two regions 5 (j = 1,2, above and below the
curve respectively) containing tangent balls as in the previous lemma. Then
there exist a constant C' = P(||z||cr.s, || F(2)||L<), polynomial in |||z|||, such

that )
S LEe< [ mr<c [ IR?
CJo, Qo o

for any pair of periodic (in x1) holomorphic functions Fj = f;+1ig; (j = 1,2),
with fj,g;j in Sobolev space H*(Q;) and such that the imaginary parts g, j =
1,2 (or respectively the real part f;, j =1,2) take the same boundary values.
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Proof. In the following we shall use the expression P(7) for different con-
stants to denote that they grow at most polynomially with ~.

For 1 = P(]||z|||) there exist two tangent circles to the curve z of radius
r and contained respectively in 27 and (2. Therefore we can foliate the plane
near z by parallel curves zJ (zg = Z); these curves are the locus of points in
Q; whose distance to z is €, in such a way that |||2]|| < C]||2]|| uniformly on
0<e< %r for some universal finite constant C.

The Cauchy-Riemann equations for the holomorphic functions F}; = f; +

1g; yield
LR = [ vk = [ v
Q; Q; Q;

Let us assume (without loss of generality) that

/’vgl‘QZ/ Vgal?;
Ql QQ

then we want to show the estimate

|19l < PAlIzI [ 190/
Ql Q2

and that will finish the proof.
Let ¢ be a C*™ cut-off function such that ¢(t) = 1 when [t| < 5 and
¢ = 0 when [¢| > &r; then we reflect the values of g1 near z(a) by the formula

G1(P) = g2(Q)o(dist(P, 2)),

where Q € (9 is obtained reflecting P € §2; with respect to z, that is
dist(P, z) = dist(Q, z), and the line segment connecting them is normal to
z at its medium point.

By the Dirichlet principle

[ ol < [ 9aP < Pl [ VaPio? s [ lnPivor).
ﬂl 91 92 Q2

Since F5 is holomorphic, we have the equalities

27 2
; Fy(z,y1)dx = A Fy(z,y2)dx

for |y;| big enough so that the horizontal lines (z,y;) do not meet the curve z.
The hypothesis that f; € L?(€);) implies that

27
/0 g2(z,y)dxr = 0

for those y which can be taken at distance P(|||z]||) of the curve z. For such a
y we get the estimate

2
192(2, )| < /0 Vga(t, )|t
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which implies

2T p—y 2r -y
[ e s)Pasae < n? [© [ [Vaatt,s) Pasd:
0 —y—1 0 —y—1

therefore
1
mlga(z,9) 2 10211193l 200 S 2 < 27,y 1 S 5 <~} < oo,
where m denotes the Lebesgue measure.

Let (2, ym) be in the curve z such that y,, has a minimum value. Then
for all points @ in s inside the band 1/(20r) < dist(Q, z) < 1/(20r) whose
distance to (%, Ym) is less than 1/P(]||z|||) (we shall denote by N the set of
such Q) the segments connecting its points to those of {(z,t), —y <t < —y—1}
are completely contained in Qy. For each (xq,yo) € N let us consider the line
segment connecting (xp,yp) with the set

E = {(x,9)[lg2(x, 8)] <10 - 27|[Vga|2(0)|0 < # < 27, —y =1 <5 < —y};

then given (z,s) € E we have the estimate

L
192(20,90)| < 10+ 27| Vg | 2y + /0 Vg2 ((0, o) + tw)|dt,

where w = (2—=20,5—y0) rand 0 < L < P(H!ZH!)

((z—z0)?+(s—y0)?)2
Since the measure of E is big enough (> 7) the measure of the region

described in the unit circle by those w’s is also big enough (> 1/P(|||z||]))-
Therefore,

aane )| < P (1Vll20y + [ [

This inequality implies that

] lga(o,w0) Pdzodyo < PN | Vaa(a,y)Pdedy.
2

Vas((0,50) — (@,9))]
@y dmdy) |

To conclude the argument we observe that the integral [, [g2|?|V|? is bounded
by P([[2111) ([ lg2(x0, yo) P dzodyo + Jo, [V g2(2, y)[*dzdy) because the parallel
curves have tangent vectors whose lengths are uniformly bounded by P(]||z]||).

(]

5. Estimates on w

In this section we show that the amplitude of the vorticity w is at the
same level than 0,2z. We prove the following result:

LEMMA 5.1. Let w be a function given by
2 1 2 1
B =i PP
(5.1) w(a) = gy 2BR(z,w)(a) - Oqz(ax) — 2ngu2 o Onz2(a).
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Then
(5.2) 1]l < expC (IF ()70 + 120 F051)
for k > 2.

Proof. We have |A,| < 1. Then the formula (5.1) is equivalent to

1
(5.3) () + A, T(w)(a )——zﬁgz +p D20 ()

or
2 1

w(a) = —2/<cgﬁ2 1 Zl (I+ A7) (Oaz2)(ar).

It yields
Il s < CIE+ Ay l1nz ;-

and Proposition 4.1 gives

(5-4) Iwll,3 < exp CUIF(2) 170 + lI2lI3)-
H?2
Taking the k-th derivative of (5.3) we get
2 _ 1
O () + A, T(0hw)(a) = U (w) + COlHzy(a), C = —2ng’)ZTZl.
w
Using Leibniz’s rule we can write
Qk(w)(a)
(o) — a—ﬁ L 0hz(a 4

Where S is a smoothing operator, C; are suitable constants, and ® is a C*°
cut-off such that ® = 0 outside the ball B(0,r) of radius r = 2|H1Z||| and & =1
in B(0, 5).

Next let us consider

A20F@m(a) + A, T(A20F @) (a) = A,T(A208w)(a) — A, A2T(0Fw)(a)

+ A2Qy (@) + CAZOF  2(a).

Using the estimate for the inverse (I + A4,7)~! in the space H 7 we get
1
1l e = 4285wl 3 < exp (Cl|=]II?)
1
(AlTAzOE |y + AT + [l + (2] s

Then we have
1Tk i < CllI2NH ||| e
by Lemma 3.1 and

19/ < CIF () Lo |l el 2] s
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by Lemma 5.2 (see below). Finally,

1k LAk
ITA205w |y < |ITA205wllm1 < Clllzl*lw@ll i g

C 2
< eI, g + 1120 rg)
2
< G (|| F(2) | oo [ el 2] v + 1121] urg)s

where we have used 9%w(a) = (I — A,T)" 1 + COEFL2y) and the estimate
of the norm in Hz of the inverse operator (I — A,T)~t.

A straightforward induction on k > 2 allows us to finish the proof. The
estimates for k = 1, 3 are obtained similarly, but in all of them the norm ||z|| g3
has to appear; i.e., we have

I3 < expC(IF )T + lllls).

LEMMA 5.2. The operator T maps Sobolev space H*, k > 1, into H*+1
(so long as ||z||gr+2 < 00) and satisfies the estimate

I zzr i < Ol N2 e
Proof. We have that
T(u)(a) = 2BR(z,u)(a) - Opz(c)

1 * (2(a) = 2(a = B))F8az(e)
R M e Tt G
where, as usual and to simplify notation, we have dropped the time dependence
of all functions.
Let 1 be a C* cut-off such that ¢ = 0 outside the ball B(0,r) of radius

r= 2|le”| and ¢ = 1 in B(0, 5). Then

> 2() — z(o — B)) L0 z(
Te) = PV [ u(p)EL AR o gjag

(2() — z(a = B)) " Oaz()
|2(a) = 2(a = B)I?

1 oo
+ 2PV [ @) u(a = B)dp
= Tu(a) + Thu(a).
i) Estimate of Thu(a): Leibniz’s rule gives us

(2() — z(a — B8))*0az(a) k1, (o —
@) —zla— P Ca weohdb

(@) — 2(a = B)) 105 2(a)
2(a) = 2(a = B)I?

o () = — [~ (1 - w(p)

u(o — B)df

T J—00
1 [o° z
w2 7w
T J—00
+ “other terms”

= I + Is + “other terms”.
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The estimate for “other terms” is straightforward. For I; we integrate by parts:

@)~ 2l = F) ucle) e
=2 OGS el

2(a) = z(a — B))L0,2(a
-1 ["a —z,z)w))aﬁ(( el Zsta = BB gkuta ~ yas.

™

Then clearly we have that
1111lz2 < CllIAPH2 e el v

Regarding I we have that

2

I(a) =Y 0k 2(a) - Lyu(o)

j=1
and clearly ||Ljul|ge < C|||2]||?||u||gx. Therefore,
112122 < CllI2lI[|2]| srwse] [ul | -

ii) Estimate of Tiu(a)): We have that

o) = & [ g OO D0 s o g

|2(a) = 2(a = B)I?

Z (@ ANS B L k+22 (@
oL [ v e A gy
1 63“ (0) = O 2(a = B) Ba(e)
IR R L (o - B)d5

+ “other terms”

= J1 + Jo + J3 + “other terms”.

As in the previous case the “other terms” are easy to handle and we shall show
how to estimate the remaining three cases.
We can write Jy in the form

2
Ta(0) = X0k 255(0) [G(H)K;(a 0~ Bula—F)ds = 3" 045 (a) - Liu(a)
j=1
and observe that
1 Ljullzee < ||Ljullmn < OlI21P112] 2| lul a1,
which yields

12112 < NP2 Fperal [l -
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To estimate J; we integrate by parts:

— N0,z
/ w )( z( )) )T;( )8§u(o¢—/3)dz3
zla— L&ﬂoz
+ — / w |l( )( z( )) )|2( ))8§u(a—5)dﬁ

— Jl + Jl‘
For the first part J{ we have that
111122 < ClII2P] 211 Fs [l -

We also have that
/ (3 (Onz(a — B))*+ 60,2(@)

Ou(a — B)dp

|z(a) = z(a — B)[2
1 —zZla—
/ oo |08 0uz(@)]uz(a=B)(() =@ =D g o a5
|2(a) = 2(a—B)[*
:JflJrJ1 :
For J12’1,

(Oaz(a — B)L0nz(q) = (Onz(a — B) — Ouz())F0az(a)
= — 0%z (@) daz(0)B + O(F)
and
|2(0r) = 2(a = B)* = |02 + O(5%),
where the constants in the “O” terms (and in theirs first derivatives) are prop-
erly bounded in terms of ||z||ys. That is,

0221 () Opz ()
|2a(a)]?

where H denotes the Hilbert transform. Therefore for the first integral we get

(o) = -

Ho*u(a) 4+ “bounded terms”,

2,1
177 22 < Il s el
Finally for J12 2 we have

() = 2( = B))-Buz(@)] az(a — B) () — 2(a = )]
= 08 (0)002(0) 0ux(0)28° + O(8")

and
|2(a) = z(a = B)|* = |0az[*8* + O(8Y).

By a similar approach we obtain

0221 (0)a
J12’1(04) = ajaijza);(a)H@gu(a) + “bounded terms”,
and it yields

2,2
1512 < Ol sl v
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To estimate J3 we observe first that the substitution of u(a— ) by u(a) —
dau(a)B produces an error bounded by |[z]|3. 2| *[|ul] g
Using the expansions

v (B) GRS
2@ —2la - AP~ ezt iaE T O

Oht'z(a) -0 z(a - B) = 8 / Ok (0 — 1)t
0

and since the term corresponding to d,u(c)f can be handled very easily, it
remains to estimate

u(a) [ (3§+1z(o¢) _ ala”lz(a — ) 0z (a) B 1
T /_007/)(5) |z(a) — z(a — B)|2 dp = /0 Ki(a)dt,

where

(@ = f) - daz(a)
B

Finally, the L?-boundedness of the Hilbert transform yields

ula 0o 8k+2zl
Ktm):ﬂaa(z(fmg R 5.

1l 2 < [l Fpneee el 1211

uniformly on ¢, allowing us to finish the proof. O

6. Estimates on BR(z,w)

This section is devoted to show that the Birkhoff-Rott integral is as regular
as Jy2.

LEMMA 6.1. The estimate
(6.1) IBR(z, @)l zx < exp(C(|F ()12 + l12[|7x41)
holds for k > 2.

Remark 6.2. Using this estimate for £k = 2 we easily find that
(6.2) 106 BR(z, @ )|z < exp(C(|F(2)[|2 + 1213,
which shall be used throughout the paper.

Proof. We show the proof for k& = 2, with the rest of the cases being
analogous. We have
BR(z,w)(«)

L VB VR(e.8) Vil A(1-VE(.8)
= 5 PVfeles )( V@BE ' V@R )dﬁ
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which is decomposed as follows:

(6.3) BR(z, PV/ w(a— B Mdﬂ
Vi(a,B)

—*/ =8V, 5>|v< el

/w Wal(a, B)dB(1,0)
—P1( ) + Pa(a) + P3(a).

Using that [Va(a, )| < 1, we get |Pa(a)|+|P3(a)| < C||w|| 2. Thus Lemma 5.1
yields [Pl 2 + |1 Pyl 2 < exp(CUIF ()2 + 12120).
Let us write

Pila) = 1= [ (~Ai(asa = ), Anlaa = )l — £)d3
O
+ ’aq»:((:é))P w(a)da = Jl + Jz,
where, as before,
 Va(a,a—B) B 1 Oaz2()
Al(Oé,Oé_/B)_ |V(a,oz—ﬁ)|2 |8O¢Z(O£)|2 tan(g)
and
Ag(ora— ) = Vifwa—B) 1 Onz1()

Vie,a=B)2 [0az(a)? tan(ﬁ)

For Ji, since || A1l < |IF()llz=llzllcz and sl < CIF () ll2]2
(see the Appendix), one gets ||Ji]|p2 < C|F(2)||re|zllc2||zllr2]|@] 2. The
inequality |9az(e)| ™" < | F(2)|[}/2 gives us [|.Tal|z2 < CIF ()12 1120 2 1]l 2

Next it is easy to check that |02 P3(r)| < C||w||2(|022(cr)| + ||2]|Z2) and
to estimate ||02 P3||z2. The kernel in the integral Py(«) has order 1 in 3, and
taking two derivatives in o we get integrals as in P3 and kernels of degree —1
which can be estimated as before. Similar terms of lower order are obtained
in 92 P;(a) which are controlled analogously. The most singular terms are
given by

Qifa) = =PV [ dEela B)M as,
05z
@ PV/ (Vzoz,a—( )|2 B)dﬂ’

Qs(a) = —EPV /Tw(oz _ )

Ll o —
VU0 ) (Rsto) - - ),
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We have

e (VE@a—8) o)
Q= PV [ (=) (rvm,a—mr? raazm)r%an(ﬁ/z))w
o1+(0)

2
+ 2|aaz(a)|2H(8aw)(a)7

which gives us

6.4)  |Qi(@)] < CIF )52 02wll 2 + | F ()|} | H(82w) ()]
< (1+|H(@2w)(@)]) exp C (| F ()3 (1) + |24 (1)) -

Next we write Qo = Rq + Ro + R3, where

1 022(a) — 9%z
:&F/T(w(a—ﬂ)—w(a» < ](V()a a—( BIE B)dﬁ’

Rao() = Z [ (@22(0) — 022t - 9)

1 4
: - d
(IV(oz,oz—B)l2 IaaZ(a)Plﬁ!?) ’

1 w(a) 4 1
Rg<a)_&raaz(a)|2[r(a2 2(a) = 022(a - B) (W—W) w

1 w(a) 2

Using that
022(a) = Oaz(a = B) < 1B ||zl ¢

we get

505

[Ri ()] + | Re(@)| < @]t [F ) |2ll¢zs < expC (I1F ()7 + ll27) -

Meanwhile, for R3 we have

|R3(a)] < ||w||Loo||f< Moo (12l ez + 1A(922)(a)])
< (14 [A022)(a)]) exp C (| F(2) |7 + [12117) ;

that is,

(6.5) Q2()] < (1+AD22)(@)]) exp C (IF ()7 + ll1172) -
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Let us consider Q3 = R4 + Rs + Rg + R7 + Rg + Rg, where

:_—/ w(a—f) — =(a))

V@ B) o o B) - (822(a) — Dl -
|V(a,a— )‘4 (V( 5) (8a ( ) aa ( ﬁ)))dﬂ»

_w(a) [ (V(a,a—B)—0az()B/2)" oo B) - (B2 2(a)— B2 2 (cr —
o= /T |vM B (Va,a=p) - (922(c) = 0az(a = B)))dB,
- - BV (e = B) = duz()B/2) - (922(cr) — D32(cr = B))

o = / [V(a, 0 — B)|* dp,
Ry = @ (« )(167T a o /ﬁz 52(c— )

1
(V(a,a— BIF |0az(a )|45|4) w
wlo 8a2 (8% L 1 !

m@)@ue)
o= gafap ) A%e(@),

Proceeding as before we get
|Qs()] < (1+[AD22)(@)]) exp (IF ()T + [1]1752)
which together with (6.4) and (6.5) gives us the estimate
0P ()] < (14 |A@Z2) ()| + |H (D) ()]) exp O (| F ()1 + [|2172) -
Then |07 Pr]| 2 < exp C(|F(2) |17 + [|2]Zs-
Finally we get
(6.6) 102 BR(z, @) 12 < expC (|F(2)lI7 + |21 -

7. Estimates on z(o,t)

In this section we give the proof of the lemma below when & = 3. The
case k > 3 is left to the reader.

LEMMA 7.1. Let z(a,t) be a solution of 2DM. Then, the following a priori
estimate holds:

10 Gl < 5 o [T gk M@)o t)da

+exp O (IF ()70 (1) + 1217

for k> 3.

We split the proof in the following four parts.
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7.1. Estimates for the L? norm of the curve. We have
2% / |z(a)Pda = / z(a) - z(@)da = / z(a) - BR(z,w)(a)da
T

+ [ el@ys(a) daz@)da = I + I

Taking I1 < ||z||p2||BR(2,w)||;2 and inequality (6.1), let us estimate I;.
Next we get

< Al/Q(t)||cHLoo/T|z(a)|da < 2/T|(9QBR(z,w)(a)|da/T]z(a)|da

which yields
I < exp(C||[F(2) |20 + [|2]1 )

using estimate (6.2). Then we may conclude that

d
(7.2) Szl () < exp (Clll=111)
for an appropriate finite constant C, where, as before, |||2]|[? = ||[F(2)||%~ +
1217

7.2. The integrable terms in 05 BR(z,w). Since z(a) = BR(z,@)(a) +
c(a) - Opz(a), we have

/83 8 2(a da_/83 .93 BR(z,@)(a)da

+/a3 (c(@)0az(q))do = Iy + I.

Here and in Section 7.3 we study I;. We shall estimate I in Section 7.4.
Let us write BR(z,w)(a) = Pi(o) + Po(a) + P3(a) as in (6.3). Then it is
easy to check that

05P3(c)| < Cllowll 2 (105 22()] + II2][E2),

giving us a term controlled by the energy estimate. The kernel in the integral
P(a) has order 1 in f3, therefore taking two derivatives in «a produces regular
integrals as in P3 and kernels of degree —1 in 3, for which we first exchange 3
by a — 8 and then take one more derivative. We obtain kernels of grade —1 in
B acting in w or w, which can be estimated as before. For the most singular
term Pj(«), we have

/83 83P1( )dOz:Ig—I—I4+I5+Iﬁ,

b= / / Oa( (M) w(a — B)dp,

where
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I = % /T /T 03 2() 92 (X,Zf‘f__ﬁf %) Do (cr — B)dB,
h=2 [ [ (W) (o — B)ds,

o= g5 [ ot (Pt ) dimte—mas

The most singular terms for I3 are those in which three derivatives appear
and the kernels have degree —1. The rest of the terms have kernels with degree
k > —1 and can be estimated as before. One of the two singular terms of I3 is

given by
877// ,‘/)(ayig_(ﬂ)lgﬂ))Lw(a—ﬁ)dﬁda,
which we decompose as follows:
5= g [ [ otete PO ghapao
- / / 93 |v)( 03) |2(6)) (ﬁ);w(a) L5
//83 yv)( ,83)’2(/3)) w(ﬂ);w(a)dﬁda
—m+m.

That is, we have made a kind of integration by parts in Ji, allowing us to show
that the most singular term K; vanishes:

(@) = B32(8)*" w(B) + w(a)
5 L oo rv< @ B)P y
_ (932(c) = 932(8))* w(B) + w(@)
- mﬁ/qr/qr(agz(a) ~Oax()) V(a, )2 2 dpda

while for Ky we have

1 w(a) —w
2= g5 [, o) (0R0) G
B 5 (a3 N 1 Opw(a) N
_/Taaz(a) (OQH ( )) ]aaz(a)\Qd
1 L
_5_47T/T/T(93z(a) (822(@—5)) (a, B)dBdex
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where |B1(a, )] < C||F(2)|lz|lzllc2ll@|lcrs|B° L. The other singular term
with three derivatives in z(«) and kernel of degree —1 inside I3 is given by

—;/E/ﬂ‘agz(a)

Lo, o —
. MV(&, a—p3)- (822(04) — 92 2(a— ﬁ))w(a — p)dBda.

Here we take Jy = K3 + K4 + K5, where

e

WW(“ ,B) = W(a,8)) - (932(a) — 032(B))w(B)dBda,

i [, o)

I
- WBZ(O" o= B)- (932(a) - 822(a — B))w(a — B)dAda
with
By(a,a — ) = W(a, oo — B) — Oq2() 3/2.
Thus

W(a, B) = ((21(04) ; zl(ﬁ))p’ (Zz(a) ; Zz(ﬁ))p)

is defined in the Appendix. Finally we have

_ 1 3
K5_ 87TA\/11‘80[Z(C¥)

Ha,a—
. M@az(a) . (822’(01) — 832(04 — ﬂ))w(a _ ﬁ)d,@’da
The L* norm of
Vi(a,
,V(O(é,ﬁﬁl(ww) —W(a.5))

is given in the Appendix, allowing us to estimate the term K3 as before.
Next we split K4 = L1 4+ Lo, where

(
i L o BQ Ba(, 0= ) - 0zz(a)w (o= f)dfdo
and
L
L2 = Am / / HV/ aaaa ﬁi)‘lBQ(a’a_B) . agz(a—ﬁ)w(a—ﬁ)dﬁda,
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We have
L] <C / 3 2( Maﬁ (a) - 63z(a)Hw(a)d6da‘
+ 10221172 1F (2) o< Nl 2ll g2 | | oo s
L] < C / 83 2( mlw(a)aiz(a) .H(agz)(a)dﬂda'

+ 10521721 F ()l 2llzs @l

and the term K}y is controlled.
For K5 we split

K5 = i//822(04)
8w JrJT

Lo, o —
: M(@az(a) — Oa2(a — ﬂ)) 203 2(a — B)w(a — B)dpda

8#//6 2( Bg a,a — B)(0a2(a) - 02 2(a)

— Opz(a—B) - 32(a — B))dﬂda
= L3 + Ly,

where

VE(a,a—B)w(a—
Bafo o) =

Then we have

0+ 2(a)

|L3| SC‘/TagZ(@)'Waz z(a) -

+ 10521217 (2) | L 2ll 2o o e -

H (822 w)(a)dal

For L, we use an appropriated integration by part:
Oaz(a) - O52(a) = |05 2()?
to obtain
Li= o [ [032(0) - Bata,a=p)(1022(a)? - [0E2(a P ) ddda.

Next we write Ly = M + M>, with

M=o [ [ 08a(0) - Clasa - ) (0220 - 1025(a—0) ) dsda
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for

B 20+ z(a)w(a)

Clona =) = Bl o) = oyt (372
_ Ve, a—Blw(a=p)f 29 z(a)w(a)
V(a,a=p)* |022(c)|*sin?(53/2)’
and
_ w(a)
M = C/T/Taf;z(a).aiz(a)wmagzy?)da.

Since

1
|Cla, = B)] < ||]:(Z)||L°°HZHC?HWHC“W

(see Lemma 11.3 in the Appendix for more details) and

1
1022(0) = 1032(a—B)?| < 2]|2]|ca|B] / 032(a+ (s — 1)8)|ds,

we get [Mi| < ||F(2)| Lzl c2llwllor 1052172
For the term M>, we use the estimate

IA192217) 122 = 10a (1022122 < 21103202 10021l 2

to obtain [Ms| < C||F(2)| ]|z 072 o= 1|02 217 -
For I, the most singular terms are those for which two derivatives are
applied to z(a). One of those is J3:

_ . aa (Oé - 6)
J3 = C/T/Tagz(a) . (822(&) — 022(a — 5))mdﬂ.

We split J3 = Kg + K7 + Kg and obtain

Opw(a — ) — Opw ()
‘V(ava - 6)‘2

K¢ = C/T/T@zz(a) : (632(@) — Pz2(a - ﬁ))
Kr=C /T /T Dae() B3 2(a)
(@2s(e) - sta - 1) (1

g,

1 4
(@a PP \8az(a)\262> w
022(a) — 02z(a — B) a.

[0}

52

Kg = C/Eaaw(a)ﬁzz(a) -/T

Using that

(7.3) %z2(a) — 9%2(a — B) = 6/01 822(0( +(s— l)ﬁ)ds
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and |0yw(a — B) — aw(@)| < [Jw]|crs|B|°, we have

1
Kol < CIFE e wlens [ [ 18071 [ [02x(@)l[okx(a+ (s = 1)8) |dadsds
< CllF @) Le<lwlicra
1
[ LB [(1882@) 41082 (@ + (s~ 1)8) *)dadsds
0 JT T
< CIF @) llwllons 10221 Zs-
Due to (7.3) and the estimates obtained in the Appendix, we have
|K7| < CIF (@)oo llwllenll2ll o2 1052117
Then using that 1/8 — 1/2sin(5/2) is bounded, we get
Ks < C|IF (2)]| o lwller 19521 7s-

Regarding I3, its most singular term is given by

) 02w(a — B)
A_CAA%A®(%4®—%W%”»WWa—@P@

which, after being decomposed in the form

A_c//w

2(a) = daz(a— ) 202 2(cv) 0o
< V(a,a— B)? \aaz(a)|2tan(5/2)>aa( B)dp

22()
+c/§ Iﬁz)P(W =) (a)da,

can be estimated as before: |Jy| < C||F(2)| p<|zlc2s || 02wl 12103 2|| 12-

7.3. Looking for o(«). The term I will gives us the proper sign (Rayleigh-
Taylor condition) that has to be imposed upon o(«). Let us recall the formula

2 1
o(a,t) = = BR(z. w)(a,t) - 03 2(e. 1) + (p” — p) a1 ().

We write Ig in the form I = J; + J5, where

Vl(a a—f) (8az(a))J-
Ji = 47r.//63 (Waa—)P_@ﬂmwmmmm>@Mwﬁmma

and

OzJ‘
Jo = 47T// wi& H(92w)(a)dBda.
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Let us denote the kernel of J; by ¥(a, a — ), which is of degree 0 in 5. After
an integration by parts we obtain

/ / 33 (a, 0 — ﬂ)@g(@iw(a — ﬁ))dﬁda
~4r / / 0az(a) - 0p%(a, o = B)Daw(a — B)dBda.

Then 0g¥(c, @ — ) has terms of degree 0 which are estimated easily. The
term with degree —1 is given by

(Qaz(a — B))* . (Gaz(@))t  Vi(a,a—p)
V(o= B)I?  2|002()?sin®(8/2)  [V(e, = B

V(a,a—pB)-0qz(a—p),
and we decompose it as a sum of a kernel of degree 0 (easy to estimate)
(Baz())t (2 1
Oaz(@)]> \|B*  2sin®(8/2)

and six kernels of degree —1, (Py,..., Ps) given by

(Oaz(c = B) — Daz(a))*

Bl = i a—

Prlea=0)= _(aazéa))l (|v<a,i —BF " raaz<cf>|2|ﬁ|2) ’
Py(a,0— ) = MV(@, a = B)- (9az(a) — duz(a - B)),
Py(aya— ) = —W(V(m 0= B) = Bax(a)B/2) - Baz(e),
Palaa— f) = \aazga)r% Vi(a, f“vffl - aﬁéﬂzfa)ﬁ/{

Pola o= ) = ‘aii(vazc'ff(—a;;||f’2 (W(a, = B |aaz<;>|2|ﬂ|2> '

To control the term with kernel P, we consider Py = Q1 + Qo:

_ (Daz(a))t 2002(a) - D32(a)
Qi(,a — B) = Pay(a,a— ) — 5 Buz(@)'B

A olaa doz(a) - Oz(e) (1 1
@uteva = 9) = -0 () (M (5 i)
8aZ(CV) i 8321(04) ) )

|0az(c)|*2 tan(5/2)
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In the Appendix, we show that [|Q1] e < H,F(z)”’zoonHé”\ﬁ]‘s” (see
Lemma 11.4) giving us
» //83 Qi(a, 0 — B)P2w(a — B)dBda
s
< CIF @) s ll2lEes 1002l 2 10wl 2.
The integral
1
K, = —/ / D3 2(a) - Qa(a, a — B w (o — B)dBdx
47 JrJT
is bounded by
K| < CIFEI2 ] 2l e / 032()| (102l 2 + | H(92) ()] ) dax

3/2
< CIFEIFR 1l o2 1032 2|02 ]l 2.

It is now very clear that the other P; terms can be estimated as above or as
before; i.e., we finally have

Ji < expC ([F(2)E + I2lFs) -

Now we consider the Js term which can be written as follows:

Jy = 471/11() / 93 2(a) - 0 2(a) A (02w)(a)da

47rA /A 92z - 9% 2)(a)02w(a)da.

Using formula (5.3) we separate Jy as a sum of two parts, Ko and K3, where

_ Kg(p? —P / 3. al 3
Ky = (2 + ) A0z - 0y 2) ()05 z2(a)da

and

Ky — — 47:1:(75) /T MA@z - 0-2) ()02 T (w)(a)dar.

For K5, we further decompose K9 = L1 + Lo, where

~ kgp? —p
R T /A 0B 210020) ()03 20 () dar

and

kgl —p
Ly= gl /A 03 290021) ()P 22()dar.

Then L, is written as L1 = My + M2 with

o2 — pb
My = 27r(§§p+ le))/z(t) A(A(83213a22)(a) - A(@gzl)(a)aa,ZQ(a))62,32(@)61@
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and

rg(p* — p / 3
= A0 Oo, o da

S ) 021) (@) 0az2() 0, 22()
Using the commutator estlmate, we get

My < C|IF(2)p< 2l c2al1032072 < exp O (IF () + I2l5s) -
The identity
Oaz2()Dp2a(@0) = —Daz1()0521 () — 822(a)

allows us to write Ms as the sum of Ny and No, where

ng—/’ 3 2 2
Ny =— A0 8 d
! 271',u +M / Zl ’ ()| @

and

Ny = 27T /8 21()92 21 (@) A(92 21) (a)dar.

Integration by parts shows that
Ni < Ol F(2) = llzllc2 110321172 < exp C (IF ()17 + ll=I1Fs) -
Writing Lo in the form

1
_ —p) / 3 3
Ly = e +M1)A Onz1(a)05 22 () A(0; 22) () dev,

we finally obtain

K> <expC (Ilf( )H%oo + [12l32)

2/~$g 5 ;
47T (12 +N /8 z1(a)0y2(a) - A(9,2)(a)dar.

515

In the estimate above we can observe how a part of o(«a) appears in the non-

integrable terms. Let us now return to K3 = L3 + L4 + L5, where

Ls = _47TA / A2z 052)(0) (202 BR(z, @) () - Oaz(a)da,

Ly = 27TA /A 22 - 012)(a)0aBR(2,w)()) - 92 2(a)da,
and

Ls— QWA /A 9= - 912)(a) BR(z, w)(a) - 8 2(a)da

We shall first control the terms L3 and L4 and then we shall show how the rest

of o(«v) appears in L. Integrating by parts in L4 we obtain

Ly < C|F(2)l|p= | H(93z - 042) |12 (02 BR(z, ) | 121|022 o<

+ [|0a BR(2, @) | 1o 0322 )
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and using the estimates for |02 BR(z,w@)|12, we get
Ly <expC (| F ()7 + 12]17s) -
With L3 we also integrate by parts to obtain Ly = Mg + My, where

My = - S /T H(0P 2 022)(0) (202 BR (2, =)(a)) - 822(a)da
and
M=~ A / H(0P2 - 02)(0) (202 BR(2, @)(a) - Baz(a)da.

Easily we have
Ms < C|F(2)||L=l|H (937 - 05 2)l| 2|03 BR (2, @)|| 12|02 1
< expC (| F() 2ot 12175 )

In My the application of Leibniz’s rule to 92 BR(z,w) produces many terms
which can be estimated with the same tools used before with Iy and I5. For
the most singular terms we have the expressions

/ H(022 - 02)(0)200 (BR(2,825)(0)) - Baz(a)do

Na —
3 47rA

Ny=— QWA /H83z 0-2)(a)

ot @20~ B gt
frte = 8 dex(eo

AM
sy L H @z 00 (@)

[ wla=B)Blaa—8)- (3hx(a) - O3x(a — B))dBda,

N5 =

where
Vi (a,a— B) - 0uz(a)

Blawo=8) =yt a—pp

V(a,a — 3).
Let us consider

0a(BR(2,02w)(q)) - az(c)

= 0a(BR(2,02w)(a) - 0az(a)) — BR(z,02w)(a) - 022(av)

07

_ %aa (T(&®)(a)) — BR(z,8m)(a) - 622(a),

which yields
N3 < C|IF (2| |H (03205 2) || 2 (|1 T(95) || i1 + | BR(2, 03) | 1211032 < )

therefore,
N3 < exp C (|| F(2) |7t |1 2l[75) -
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Next we write Ny = O1 + Og + O3 + O4 + Os,

0 = —gis [ H(ak0k2) @) 02(0)

9 e wa-p)  4w(a) a
aa ( )/ <|V(Oé OZ_B)P ](%Z(Oé)|2|5|2)dﬂd )

Oy = %A /H 92002 (a )A(@gz(a—B»L

0. z(o @la—p) - el “
Ou( ><|V(a’a_5>|z |aaz<a>|2|ﬂ|2)‘w o

0= s [ He 02 @@ (Ghe(@)

. 8az(a)/ <|;’2 — su12(1ﬂ/2)> dpda,

0i= 54 [ 1O 0b)(0)m(a) [ (0dsta— 7))
2 (55 ~ ) 04
05 =~ A2 / H(932 - 02 2)(0)m(0)duz(0) - A((022)1) (a)da.

The terms O, Oo, 03, and O4 can be estimated as before. Then we split
Os = R1 + Ry, where

Qﬂﬁ’;(t) /T H(032 - 04 2) () (AM(wdaz - (952))(a)

—w(a)daz(a) - A((852)")(e) ) da

Ry =

and
Ry =

ot [ H R 05 @A 0.s - (332) @)

Using the commutator estlmate we obtain
Ri < C|F(2) |2 |1 H (832 - 03 2)l| 2| 00azll .5 1032] 2
< exp C (IIF ) Bt 12113 )
The identity A(H) = —0, gives

Ry = mi%/qr@a(aiz - 032) (@)@ () daz() - (932(c)) Hdar

- _27rig(t) /Taa(agz ’ 5§Z)(Q)W(a)822(a) . 3LZ(O¢)da,

and integrating by parts we get
1
Ry < C||F(2)|[7 11057 - 93 2] 72l|0aw ] Loe < exp C (| F(2) |7t N1z 01715 ) -
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Regarding the term N5 we have the expression
(V(a,a — B) — 0az(a)B/2)*
Bla,a— ) =
(a7 Viasa— B
which shows that B(«,a — ) has order —1 and, therefore, the term N3 can
be estimated as before.

Finally we have to find o(a) in L5 to finish the proof of the lemma. To
do that let us split Ly = M5 + Mg + My + Mg, where

804'2(0‘) V(Oé, a — ﬂ)a

A
My = A“ | M@ 1022)(@) BR: (2, ) (@921 (),
s

Mg = /A 03 210022) () BRa (2, ) ()P 20 () dar,
27TA
My = — QWA /A 08 200021) () BRy (2, ) ()P 21 () dax,
Mg = A(D? B 3
g QWA / 08 200021) () BRa (2, ()05 25 () dar,
and BR;, j = 1,2, is the j-th component of the Birkhoff-Rott integral.
Then

M; — zéf(t) /T (ABaz20321) (@)
— Daz2()A(9321) () ) BR (2, @) ()03 21 (a)da

A /T Dz2(0)) BR1 (2, @)(2) 0% 21 () A(82 21 ) (@) dax
and the commutator estimates yields
(7.4) M5 < expC (HF( Mo + l1201%)
. A J | BB ) @)azn(@) ()M 3E0) (o)
In a similar way we have

Mg < expC (Ilf( MF ot l120175)
27TA /332 (2, 9) (@) Daza(@)8 20 () A (B3 21) () dar

Let us introduce the notation

/332 (2,)(@)az2(0)P 20() A (82 1) () dar.

—+

+

+

N,
4= 27TA

The equality 9, 20()0322(q) = —0421(a)2 21 () — |02 2(a)|? gives Ny = Og +
Or7, where

O =5 A / BRo(2@)(0)|022(0) PA (02 21) () da,
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O7 = —

27TA /BR2 (2, @)(@)daz1() 0521 () A(321) () dar

Integrating by parts in Og we get
O < C|F(2)llz ([0a BR(z, @) 1= 022
+[|BR(z, @) = |02zl L= 1032]| .2 ) |1 H (9521) | 2
<expC (IF(2) 120 + 12113 -
Finally we get the estimate

Mg < expC (HF( Moo + l1217)

/BRQ (2, @) () 0az1 ()02 21 (@) A (92 21 ) (a)dex

27rA
which together with (7.4) yields

Ms + Mg < exp C (| F(2) |7 + 121 Fs)

- 27TAu(t) /T BR(z,w)(a) - 352(04) 8221 (Oz)/\(agzl)(oa)da.

With M7 and Mg we use the equality 0n21(q)0221(a) = —0u22(a)0322()
—10%22(a)|?. Then operating similarly as we did with M5 and Mg, we get

My + Ms < exp C (| F(2) |7 + [|2]/72)

- g [ BRG®)@)-0k2(0) ) @2) (0)do.

The addition of both inequalities produces
Ls <expC (| F(2) 17 + l12[13)

- gt | BRG )@ 0 =(e) 8ix(a) - A0 (o) do.

and all the previous discussion shows that I5 satisfies estimates identical to Ls.

7.4. Estimates on 03 (c(a,t)0a2(a,t)). In the evolution of the L? norm of
03 z(a) it remains to control the term

L= /83 (0)B02(a)) da.

Let us recall the formula
o+ T

(7.5) clot) = 5 /T 952(8,1) - 93BR(z, ) (6, t)dp

_ A}t) /i 52(B,t) - O3 BR(z, @) (B, 1)dp.
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We take I = J; + Jo + J3 + Jy, where

Jp = / 3 2(a) - 022(a) ¢(a)day, Jy = 3/ 102 2()|? O () der,

J3_3/83 () Be(a)da, J4_/83 () Be(a)da
An integration by parts in J; yields

—5 [ 1882(@)Ponc(a)da < el 19312
< 2| F() = 10a BR(z, )|~ 022 2.
and the estimate for ||0,BR(z,w)||r~ obtained before gives us
Ji < exp C (|IF(2) |7 (8) + |27 (1)) -

The term Js satisfies that J, = —6.J1; therefore,

J2 < exp C (IF (2) 17 (8) + Il (D)) -

Next we split J3 = K1 + Ko, where

95z (a)
3 / 0 2(a) - 022( )m-aaBR(z,w)da,

_ —3/ 9 2(a) - 022 )m 02 BR(z, @)da.
We have

Ky <3|\ F(2)||e< || 211221100 BR(2, @)|| £ 103 2| 2

<expC (||F ()70 (1) + |12[175 (1)) ,

Ky < | F()| 2112l o2 103212 |02 BR(2, )l e,

and therefore
Is < exp C (|| F(2) 70 () + lI2l[3s (1)) -

The equality 93 2(a) - pz(a) = —[0%2()|? yields

2
=1
3 3

« «

/|82 )02 c(a)da = 2/ 3 2(a) - 922()02c(a)da =

and finally
I < expC (| F ()17 (1) + [12]1 73 (2)) -
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8. The arc-chord condition

In this section we analyze the evolution of the quantity ||F(2)|re (%),
which gives the local control of the arc-chord condition.

LEMMA 8.1. The following estimate holds:

(8.1) %I\f(Z)II%oo (£) < exp O (| F () |70 () + 2l (2))

Proof. Let us take p > 1. It follows that

IIF( dt// (IV 5F /4 )2>pdﬂda

:Il+12+j3a

where

Via,a — 3,t) - (z¢(a, — B,
h=-p [ [[spr el e n oo =20 s

3o, o0 — 21, z1i(a— B,
I2z_pA/E(‘B‘/2)2pVI(7 B7t)(1( t) 1( Bt))dﬁda,

‘V(O&,Oz— ’ )’2p+2

and

3o, a0 — 29¢(a,t) — zo¢(a — B,
I3ZPAA(|B/2)2PV2( ) 67”( 2( t) 2t( ﬁt))dﬁda

’V(aa o — 57 t)‘2P+2

For I, we have

hsp //(wa@?@>O%JMWM_ﬁm_&mwm‘

Let us consider
z(a) =z — B) = (BR(z, w)(a) — BR(z,@)(a — §))
+ (c(a) — (o — B))Baz(a)
+ cla — ﬂ)(@az(a) — Ogz(a — ﬂ))
=J1+ Jo+ Js.
Then for J; we get |J1]| < ||0aBR(z, )| ||, and the estimate (6.2) gives
1] < exp C (| F(2) 17 () + 121172 (D)) 16].
Using the definition of ¢(«) we easily obtain that

|0a BR(z, @)|| o

le(a) — e(a— B)| < A2

181,

and again using (6.2) we get

| o] < exp O (|F(2) |70 () + 1217 (8)) [B]-
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For J3 we have |J3| < ||c||r=]|z||c2|B]; that is,
|Js] < exp C (IIF (2) 700 (1) + [12132(1)) 1B]-

Those estimates obtained for J; allow us to write

i< pespC (IFIR 0 + 1a0) [ [ (2 )™ dsda

<pIFIZ @) (exp C (IFE) e ) + 1213 (1)) [ FIE (0)-

The Holder inequality implies

’/B‘/Q 2p—1
112|<pcuzltum//(|v ),) dBda
< pCllzrill~(1+ | F(z >\|Lp>

< p(exp C (IIF2)IIE (1) + 1217 (1))) IF ()7

Since |Va(a, 0 — B)| < 1, we have

2p
il <2l [ [ () dode
< 2p (exp C (IF ()0 () + 121125 (0) ) IF ()15

Those estimates for I7,I5, and I3 give us

%IIF(Z)HE@) < p (exp O (IF(2) 17 (1) + [|2l17 (8)) ) |7 ()70 (1);

therefore,

%Hf(Z)HLp(t) < (exp O (IF ()70 () + 211 (6)) ) 1F ()] o (8).

After an integration in the time variable t we get

7+ 1) < P ey ([ O,
and letting p — oo we obtain

IF et 1) < I =)o ( ]

Therefore,

h
" ecm(z)niw(swz||§{3(s>>d8>‘

d . _
I e (t) = Hm ([ F(2) [z ( + ) = [ F (2l 2= (t)) R '
t+h
S Hf(z)HLoo(t) hm (exp </ ec(}-(z)“%oo(s)"!‘Z“i{g(s))ds) _ 1) h*l
h—0 t

2 o 2112
< Hf(z)HLoo(t)eC(HF( Mz oo OFI2175 ()
With this we finish the proof of Lemma 8.1.
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9. The evolution of the minimum of o(«,t)

In this section we get an a priori estimate for the evolution of the minimum
of the difference of the gradients of the pressure in the normal direction to the
interface. This quantity is given by

9.1)  o(a,t) = ” — 'ulBR(z,w)(a,t) R z(0t) + g(p? — P )Pz (at).

LEMMA 9.1. Let us consider a solution z(a, t) of the system with z(c,t) €
c([o,7]; H®), and

t) = mi t).
m(t) = mino(a,t)

Then
m(t) Zm(O)—/O exp C (| F(2) 17 () + 12113 (s)) ds.

Proof. Suppose that z(a,t) € C([0,7]; H?) is a solution of the system.
Then the result obtained in the preceding sections together with Sobolev in-
equalities shows that o (a, t) € C*([0, 7] x T). Therefore we may consider oy € T
such that

m(t) = mino(a,t) = o(ay,t),
a€eT

which is a Lipschitz function differentiable almost everywhere. With an analo-
gous argument to the one used in [7] and [10], we may calculate the derivative
of m(t), to obtain

m/(au, t) = ooy, t).

The identity (9.1) yields

oy(a,t) = v — o, (BR(z,@))(a, 1) - 0% 2(ax, 1)

2 _ 1
+ (uku BR(zw)(0) - 0 24(t) + 2(p® — p)Ouz1s(a, t))
=1 + I,

and we have
|I2] < C(IBR(2, @)l + 1)[|0azt .
We can easily estimate | BR(z,w)|| e, obtaining
1] < exp C (1F(2) e + [1l%) 90t
Next we use equation (1.4) to get
10aztll < (1100 BR(2, @) |12 + [[8aclloe |0azllLoe + [lellzoe 022l )
1/2
< Cll0aBR (2,@)|| (1 + | F() 2] 2lc2) -
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With the bound obtained before for ||0,BR(z,w)| e~ (6.2), we have
|2 < exp O (|F ()70 + 120173 -
Let us write BR(z,w)(«,t) = Pi(a,t) + Pa(a,t) + P3(a, t), where the P; were
defined in (6.3). We have
|0:Po(@)] + |0vP3(a)] < Ol 2 + 1]l 2|22 1 )

The norm ||z¢||z~ is bounded by (1.4) and the adequate estimates for ||co]| 72
which will be introduced later. In 0;P; there are terms of lower order which
can be estimated as 0; P> and 0;P3, but the most singular ones are given by

H(a B)
I = —PV/ - ﬁ)mdﬂ,
() — zi(a — B)
PV/“ |v<a a—pE
PV/ @(a ’V ozaoca 5?!)4 (V(a,a—ﬁ) (z(@) — Zt(o‘_ﬁ)))dﬁ‘

Let us now split J; in a similar way as before, to obtain

_i (o — VL(O“O‘_B) _ 8&2(0&)
Ji = 47rPV/T o 2 <|V(a,a —B)? faaz(aﬂ%an(ﬁ/?)) v

oba(0) o
2z N

and
1/2
1] < CIFE) B 2l Enllwel 2 + 1 F ()| 2t s
Next we divide Jy = K7 + Ko + K3, where

K= o [ (wla—B) — (o) MO 2O D) gy

8m Jr [V(er,a = B)J2
K= 52 [ e~ (o) (|v<a,al —B)P "~ |aaz<§>|21ﬁ|2> .
Ko = st o)~ (=) (5 o )

S Baa P

The identity

1
zt(a) — ze(a— B) = /B/O 8azt(a + (s — 1)5)ds

gives us
k|
K| + [ K| < [l [ F() 17|22 | Oazt ]| Lo
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For K3 we have
|K3| < Clll|zes | F(2) || o= l|zell s

In order to control ||| s, we will use the inequality

[flles < CAUIfllez + 1 llz)

e () - 8)
fla) - f(B
fll=s = suppug———-—.
Let us now take the time derivative of the identity (5.1). We get
A p2 _ pl
wi(a) + AT (wy)(a) = —2—7’:}2( a) — QﬁgMQ o T0a221(),

which yields
lwell 3 < CIT+AT) M3 (R g + [10azel 3 ),

and since we control ||(I + A,T)~ 1||H1 it remains to estimate HR||

Instead we will estimate || R|| g1, and to do that we consider the splitting
R =051+ 5+ 53, where

e (g

e (Vg ).

Sy(a) = — /T (o — B)0h (Vala,a — £z (0))db.
The terms Sa(«) and S3(«v) are controlled as follows:
[S2(a)] + [S3(a)| < Ozt [l 2
For 51 we split S1(a) = Q1(a) + Q2() + Q3(a) + Qua() + Q5(ar), where

_ o V(eya = B) = 0az(2)B/2) - Bazi(a)

- /]Tw(a ﬁ) ‘V(O[,CU-,B)P dﬁa

1 . (zt(@) = zi(a = B) — Baze(@)B) " - Baz(a)

0)= 3 [ wla—p) Vi)t s,

[ gy V(@a=8) 0,8/ duxla)

=3 /T (o= 5) Voo A Bla,a - B)dB,
with
(9.2) Blaya—p) =V(a,a—p) - (zt(a) - zt(a—ﬁ)),

)
=g [0 e
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Cla,a = B) = Vi, a = B) (210(e) — 210(a = B)) Daz2(a)
+ V(a0 — B) (ZQt(OZ) — z9¢(a — B))aazl(a),

—B)— L.
@sfa) = - [ (o o) B A A 0 b o s
D(a,a=B) =V (o, a=PB)(z11(a) —21e(a—B)) = V5 (o, a=B) (z2¢(er) =224 (a—F)).
We have |Q4(a)| < Clz]|cr ||| 2] 2t]| L= - In a similar way this estimate follows
for Qs:

Qs(@)| < C (12l + IFIF2N=%0 ) 1l 212 -

For Q1 we proceed as before to obtain

Qu(e)] < CIF (=)l ||zl ezl 2l 2ell o -
The inequality

[ze(@0) = ze(@ = B) = Daze(@)B] < |22l cns | B

gives
|Qa()| < CIIF(2)|zellzller @l Lo 2l s,
and
|2t(a) = 2z = B)| < [zt o B
yields

3/2
1Qs(@)] < IFENG2 NNl 2 2l
Finally we have
3/2
|[Ru(@)] < [F@IE 2122 ] 2l s
Using (5.1) we obtain
Il < C (IT (@0l + 1Rl s + 100z1] )
For § < 1/2 we have
IT (@)l < T (@) < 20106T (@) L2 < IF(2) 700 12l G2t |10l 2.

Now to estimate [R5 < |[R[[g1 we consider [|0aR|[z2. The most singular
terms for this quantity are those with two derivatives in o and one in time, or
with one derivative in «, one in time and a principal value. Let us write

o,o0— B) — Oyz(a L.922(a
1 Onzi(a) — Ogze(cv — —83,2,5& L. 9yz(a
o) =} [ oy Qe =Bone =)= Belehp st
o, 0—fB)—0yz(a L. 0,2(a
Qs(e) = 3 [ wlo— 9y RO 2 Do gy,
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with
(9.3) D(a,a— B) =V(a,a—p) - (0qzt(a) — Onzt(a—1)).
We have
|Qo()| < |F(2)l[ 7o |2l E ] L2052 ()]
and

|Qs(@)] < [IF () Foe |2l 2wl o< |26 (@) | oo
Let us split Q7(«) = Jy + J5, where

(Oazt(a) — Opzi(a — Bt - 0uz()

1
Ji= 5PV [wa =) V(a,a—B)P v
and
1 L o
s = =5 (0a(@) (@) PV [ o= ) s

For J5 we have [J5| < || F(2) |5 ||2]/5e||wl| g1|022:(c)|. Next we divide Jy =
K4+ K5 + K¢ + K7, where

1 Opzi() — Opze(a — B - 9pz(c
Ko = [ (sl 5) = (e ezl Pl = Bm Bute) g

Ks = wga) /T(aazt(oz) — Oq2zt(a — ﬁ))L

-+ Oqz () ! - i > ag

¢ V(o= B |0az(a)?|B)?)
_ 2w(a) B ot 1 1
KG = |8az(a)\2 /T(aazt(a) aazt(a B)) 8az(a)<|/8’2 4Sln2(ﬁ/2)> dﬁ’
L
Ky =2, ai((z))‘g (A(Baze)(@))” - Baz(a)
We have
Kl + | K5| < CIF ()| Leo 2162 1wl 11 | 2ell s,
[ K| < | F(2)llzeellzllc2llwl gzl o

and

| K| < [ F(2)l|zeel|zll c2llwl] 1 [A(Oaze) ()]

Finally let us observe that ||z¢|| 1.6 < ||2¢|| 72, which provides us the control
of ||022|| 2. We consider now the terms of 922 (a) given by

I3 = 92BR(z,@)(a), Iy =03(c(a)daz()).
Easily we get
L] < |F)[Eeoll2l1E2 (14 1032(0)| + |03 BR(z, @) (<))
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which yields
Hall g2 < [FE)IEe 1212 (14 N1zl ms + 102 BR(z, )| 12)
so that we can control ||02BR(z,w)| 2 as in (6.6), and finish the estimate
of 13.
The upper bound

loe(a, )] < exp C (|IF(2) [ (1) + [12]1 7 (1))
gives us

m'(t) > —exp C (| F(2) |70 (t) + [|2][355(2))
for almost every ¢, and a further integration yields Lemma 8.1:

m(t) 2 m(©) ~ [ esp(Clll=lI s

10. Regularization and approximation

Our next step is to use the a priori estimates to get local-existence.
For that purpose we introduce a regularized evolution equation having local-
existence independently of the sign condition on o(a,t) at t = 0. But for
o(a,0) > 0, we find a time of existence for the Muskat problem uniformly in
the regularization, allowing us to take the limit.

Let 2¢(a, t) be a solution of the following system:

2% (a,t) = BRY(25°, @) (o, t) + 0 (o, £) 02 (o, 1),
2(a,0) = zo(a),
where
BR®(z,@)(a, t)

1 / 6.1) tanh(w)(l—ktarﬂ(w))
=\~ w
4 Q(M)+tanh2(w)+5

g,

tan

! / @ (B, t) t&n(w)(l_tmﬂﬂ(w)) dﬁ)
47’[’ tan Q(M)+tanh2(w)+6 ,

we’é(oz,t) = —Aude x e * (2BR(Z€’5v we’é) '80‘2876) (a)
P’ =p' 5
—2Rg 57 12+ pl (;55 * Ge * (Oazy") (),

£,0 _ O‘"—Tr/ 8042875( t) 56
(o, t) = o7 e Bzt B2 - 9uBR? (25 )(a, t)da

a 8az€,6 ﬁ,t . A
—1 M'%Bm(z 2, @) (8, t)dp,
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6 OP[R), d(a) >0, ¢(—a)=d(a),
Aé@ﬂazL be(0) = plafe)/e

for e > 0 and § > 0.

Then the operator I+ A,,¢.*¢.+T has a bounded inverse in H %, for € small
enough, with a norm bounded independently of € > 0. For this system there is
local-existence for initial data with F(29)(a, ) < oo even if o(a,0) does not
have the proper sign (see [13]), so that there exists a time 75 and a solution of
the system 25° € C1(]0,75°], H) for k < 3, and as long as the solution exists,
we have |0,259(a,t)|?> = A%°(t). Taking advantage of this property and using
that w9 is regular, we obtain estimates which are independent of §. Now
letting § — 0, we get local-existence for the following system:

Zta(av t) = BR(ZE, wa)(aa t) + Cs(aa t)aaza(aa t)7

2°(a, 0) = zp(a),

where
. a+m O0a 2% (e, t) .
t) = -9, BR(z5, 1)d
(o, t) o7 Jn Bz 0) 0aBR(2°,w")(a, t)da
“ 80626(67 t) £ £
/_WW -0 BR(2%, @) (B, t)dp,
@ (o, t) = —Appe * de % (2BR(2°,w°) - 002%) (@)
gL, % 60 4 (0u35)(0)
Hg/ﬂ +M1¢E * Qg * (On25) ().
Next we shall show that for this system we have
(10.1)
d 12 K / Ua(aat) k e
il < _
dt”z [ 7x (2) < 27 (1 + p2) J1 ’aaze(a’tﬂzﬁba * (052°) (s 1)
Ao (952°)) (a, t)dar+ exp C (|1 F ()7 (1) + 112° 1 30 (1))
where
w? =t
o(a,t) = TBR(zs,wg)(a,t) SO (o, t) + g(p? — ph)azS (at).

To do the task we have to repeat the arguments in our previous sections, with
the exception of Section 7.3. (looking for o°(«v)) where we proceed differently
using the following well-known estimate for the commutator of the convolution:

(10.2) [6e * (9.f) = 9¢= * (F)llm < Cligller |12,

where the constant C' is independent of ¢.
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In the following we will present the details of the evolution of the L? norm
of the third derivatives, being the case of the k-th derivative (k > 3) com-
pletely analogous. Furthermore, with regard to the different decompositions
introduced in the previous sections, in the following we shall select only the
more singular terms, showing for them the corresponding uniform estimates
and leaving to the reader the remaining easier cases.

If we consider the term corresponding to K in Section 7.3, we have

2_ 1
K7 =g ) [ M@0 0 o 6« @ e

which we write in the following manner:
rg(p*—p') / 3 L 3
K5 =— A 052° - 0y 2° 0525)(a)dor.
= ot D) o M0 * (82002 (@) x (9225) (@)
Then we have K5 = L] + L5, where

- nglp®=pY) o )
Li= 2 (12 + ) A= (1) /TA(¢5 * (nglﬁazg)>(a)¢5 5 (0225)(a)da,

. rglpr—p") 5 3
5 =~ g )26 e (02 02550050 ) (@000 + @i (@)

Next we write L] = M7 + M5 + M3 + M}, where

e rglp®—pY
P am(p? 4 ) As(t)

[ (00 % (8257005) — 6. (9220)0055) ()9 * (8225) (),
K 2_ 1
M5 = 5B ) A (0w (0heD0n5) ()
— A (- % (9320)) ()95 (@) 62 % (9325) (@) dav,

ME — ﬂg(p2_p1)( ) /TA(% . (3ng)>(a) [(%ZS(OO(% % (03 25)(a)

B (24 pl) As(t
— e # (0a250325)(a) | da,

€ ( — ) € € €
i = g iﬂf i S A0 022 (@002 # (0075007 (@)
Using (10.2), we get
ME < CIIF () aee [[A (60 % (03270025 — 0 * (03510025 | 162+ (@325)1135
< CIF () e |02 (03250025) — 02 = (325)0a25 |, 193251122
(

< Ol F ()| 1002l 2 10az5 ]l 19325 72
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and therefore
M < exp C (||F (=) |70 + 112°113)
With M5 we use the commutator estimate for the operator A to obtain
Ms < O|IF ()| || e = (9329)| Pe * (0225)
< expC (IIF (=) 17 + 12°13)

Regarding M5 we have

10075l | L

rg(p® — p')
QW(M2+M1)A€( )

6o (O (9a356. * (8325) — 6= * (9a230259)) (a)do

showing that it can be estimated as M7.
The identity

0a25()0575(0) = —0a2i(a) 0571 (@) — |022° (o)

allows us to write My as the sum of N and N3, where

M; =

2 1
NS = e A J A o (28 P
and
€ ( € 7
N§ = _27r(ug iu ) /¢E (025082 )(oz)A(cf)s *6221)(04)d0£.

Then an integration by parts shows that
Ni < CIFE) e 1252105271172 < exp O (I1F (%) 1700 + (1271772 -
Using again the identity (10.2) in N5, we finally obtain

i< =g Bl ) [ 00z R @A (60 (0220) (ada

+exp O ([|F (%) 700 + 127172 -

In a similar way for L5 we get

LES—%(KE(J/;MP ;[ duci(@)6ex (3225) (@A (6 (2259)) (@)do
+exp O (IF oo + 11s)

giving us

€ ’%g(pQ_pl) €
K5 < 5oty | e (@06 x (032)(0) - A (6% (83)) (e)do

+expC (|F ()7 + 12°12) -

531
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The formula for o¢(«,t) begins to appear in the nonintegrable terms. Using
a similar method for the rest of the nonintegrable terms we obtain inequal-
ity (10.1) for k = 3.

The next step is to integrate the system during a time 7 independent
of e. First let us observe that if zo(a) € H¥, then we have the solution
2¢ € C'([0,7°]; H), and if initially o(c, 0) > 0, then there is a time depending
on ¢, denoted by 7¢ again, in which o%(a,t) > 0. Now, for ¢ < 7° we have
(10.1), and then we use the following pointwise inequality (see [6]):

F@)AF(@) = ZAG) @) 2 0

to obtain

d

7 () < T+ expC (|F ) Foe (1) + 12717 (1))

where

ge x (252°)|) (@ t)da

K 1
L= Lo @03 (
We have
[A(e*) ]| Lo (8) < Cllo® |2 (2)
< C (IBR(z",@°) || 12(¢) + 103 BR(=*, )| 2 (1) + 1) [|2]| s (1)-
Writing
K

. 1
I=— Awa%wz

2
27 (11 + pi2) A% (t) (e, t)de,

Ge * (052°)

we obtain
I < C|IF )z IA(e®) | 10525172 < exp C (IIF ()70 + 1251 5) -
Finally, for ¢t < 7¢ we have
d

(10.3) allfllék (t) < CexpC (|| F(2) |70 (8) + 12136 (1)) -
We also have (see §8) that

d £ £ 1>

A 7o () < Cexp C (|F () |7 (1) + 121355 (1)) |

and from (10.3) it follows that

d

% (=517 (1) + IF)1F (1)) < Cexp C (I12°117 (1) + |1F (%) 12 (1))
for t < 7°. Integrating
(10.4)

12217 (8) + 17 (25) 1 o< (8) < —%111 (—t +exp (=C(ll20llFx + 17 (017 ) ))
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for t < 7¢. Let us mention that at this point of the proof we cannot assume
local-existence, because we have the above estimate for ¢ < 7¢, and if we let
¢ — 0, it could be possible that 7 — 0; i.e., we cannot assume that if the
initial data satisfy o(c,0) > 0, then there must be a time 7, independent of
g, in which (10.4) is satisfied. In other words, at this stage of the proof we
do not have local-existence when € — 0. But since in the evolution equation
everything depends upon the sign of 0¢(a, t), the following argument will allow
us to continue the proof. First let us observe that as in Section 9 we have

105) ) 2m0) - [ epC (IFEE()+ 11 ()) ds,
where
me(t) = glel?Irl o (a,t)
and t < 7°. Using (10.4) in (10.5) we get
(10.6) m(t) = m(0) + C (|| 2ol 7 + 17 (20) |7~

+1n (ft + exp ( — C(HZO”%{I@ + ”-F(ZO)H%OO)))

for t < 7¢. Using (10.6) and (10.4), we find that if ¢ — 0, then 7¢ -» 0, because
if we take 7 = min(7y, 72), where 7 satisfies

m(0) + C (|| 20113 + 17 (z0) |13 )
+1n (=7 +exp (= C(llzoll 3 + 1 F(20)[3)) ) > 0

and 79 satisfies

1

L (=72 +exp (= C(ll20l3 + 1 F(20)|}<)) ) < 00

for t < 7, we have m®(t) > 0 and

12513 (8) + IF ()1 Ze< (8)
< —=n (=7 +exp (= C(lz0llZ + 1 FG0)[3))) < o0
— C H bl

and 7 only depends on the initial data zy. Now we let € tends to 0, to conclude
the existence result.

11. Appendix

Let us denote
Ve, B)=(Vi(a, B), Va(er, B)) = (tan<M) ’ t‘““”“(M))

and

W(a, B)

Il
—
=
P
=
u\/
5
L
=

I

VR
N
N
A
L
( R
N
A
=
N~~~
N
N
V)
—
L
Do |
N
V)
~~
=
S~
S
N~
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where («), is the periodic extension of the function « in T. We give the
following equalities for the hyperbolic tangent function:

(11.1) (tanh(a) — (@),)/ tanh?(a) = (a),f(a) with f € L®(R),
(11.2) (tanh(a) — (),)/ tanh®(a) = g(a) with g € L*(R).
For the tangent function we have

(11.3)  (tan(a/2) — (/2)p)/ tan(e/2) = (a/2)ph(a) with h e L>(R),

(114)  (tan(0/2) - (a/2),)/ tan(a/2) = (@/2),j(a)  with j € L(R),

(11.5) (tan(a/2) — (/2),)/| tan*(a/2)| = k(a) with k€ L™(R).
Also we shall use that the functions below are bounded on [—, 7]
(11.6) 2/a — 1/ tan(a/2), 4/a* — 1/sin?(a/2) € L=(T)
and the following estimates:
1
(11.7) W (e, o= B) = daz()B/2] < 5122 B,
1
(11.8) W(ov,a = B) = Baz()B/2 — 032(0) 3% /4] < S 2llc2s B2,
LEMMA 11.1. Given
VQ(a? a — ﬂ) 1 aozZQ(a)
A ) - = - )
1<Oé « 5) |V(Oé,0[ _5)’2 lﬁaz(a)|2 tan(g)
Vila,a — ) 1 Oaz1()
A ) - = - )
1900 = Viaa = BE ~ azl@)l tan(2)
we have
[Ar(e, @ = B)l[Le < [[F(2) ]| ze< 2l c2
and

[A2(a, o = B)|[ oo < [[F(2) oo |2 |2
Proof. We introduce the splitting A; (o, « — ) = Iy + Is + I3 + 14 where
B tanh(zQ(a)_?(a—ﬁ)) _ (22(04)—;2(04—5))

h= V(a,a— B) p’

Iy = F(:) (0, o) A 220 2 ) 2 = Bl P2,
. aozZQ(a) N B 1

n= 2t (f( )(. B) ,aaz(aﬂg) ,

7= Oaz2() (2_ 1 )
T J0az(@) \ B tan(2)
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and F(z)(a, 5) was defined in (1.7).

Since
_ 1 z(a) — zo(a— B) [ 22(a) — z2(a — )
L= VZ(a,a—p) f 2 2
1 + V22(a7a_ﬁ) p

by (11.1), we get I} < C. Also Iy < ||F(2)||ze||z]|c2 using (11.7), and Iy <
CH}'(z)Hig We rewrite

I = Oaz2() (002()B/2 + V(a,a— B)) - (Oaz()B/2 = V(a,a — )
B/2 |0az(a) 2|V (o, 0 = B)?

and split further

I3 = J1 + Ja,
where
5. _ Buza(a) @un (@)8/2+ Vilasa = ) (@ur ()5/2 = Vilasa - §))
B/2 |0a2(a) PV (v, 0 — B)|2 ’
5, — Duza(a) @uzal@)B/2 + Va(asa — 8))(@uzal@)5/2 ~ Valasa - 8))
5/2 a(@)PV (a0 — B)P
We continue as follows:
J1 =K1 + K>
with
K — Oaz2()0q21(a)(Onz1 () 5/2 — Vi(a, a0 — B))
0az(a) 2|V (a, & = B)[? ’
Ky — Oaz2(a)Vi(e, o — B)(0az1 () B/2 = Vi(a, o — B))

|0a2(a) 2|V (a, 0 — B)23/2
Next we take K1 = L1 + Lo,

_ az2(@)daz1 (@) (LUFET), — Vifa,a - B))
[az(@)P[V (@, a = B) |

L 9az2(a)001(0) (91 () B/2 — (M), )

Ly

’ [002() 2V (a, 0 = B)[?
We find that
L dam(@den(@) 1 (M), - Vifa,a - f)
1 pr—
Opz(a)|? Vi (o,0—f) Vi (a,a — B ’
() 1y e Paa=0)
and using (11.4), we obtain L; < C.
Since
O 9 _ (zla)=z=1(a=p)
LQ — 8a22(04)8a21(a) f(z)(a, B)( Zl(a)/ﬁ/ ( 2 )p)

|0z (a)]? 52/4 ’
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we have Ly < C||F(2)]|r|lz|lc2- Next let us write Ko = L3 + Ly for

1, _ Paz(@Vila,a = H((HAED), — Viga,a - §))
Gaz(@) PV (@ 0 = H)25/2 ’
1, = den(@)Vi(a,0 = B)(Bazi(a)/2 - (M) )
Ga(0) PIV (@, 0 = H)P/2
In a similar way we find that
Lo amle) 1 (), Viea-f)2
Gax(0)? 1 4 Vleah) Vi(a,a = ) B

Vi (e,0—p)
By (11.3) one gets

Daza(@)] (R,

00 2(a)? 181/2 B

As before we conclude that

0021 () p/2 — (2Mla)=z1e=D))
1812

Now we consider Jo = K3 + Ky, where

|00 22(00)|? Dz () B/2 — Voo, o0 — )

|002()]? V(a,a = B3)[2

Ly <C

|
Ly < C|lF(2)| L= = < O|F@) <zl e

K3 =

d
o Duza() Vala,a—B) Buza(a)8/2 — Va(a,a — )
|00z ()] |V (o, a — B)? B/2 ‘
Using (11.1), we have

|0a22()|? [Onza(a)B/2 — (M)M

Ky =

K3 <C+

< CIF () lzeelzllcz

Oaz(@) Via,a—p)P
and
K, < 10az2(a >|< [Va(a, 0 — B) — Wa(a, 0 — B)|
[az(@)1? \ (1 + [HEA=E0) V(o a — B)]18/2]
+ 0az3(0)B/2 = Wi(a, 0 — 5)!)
Via,a = B)l15/2]
o (OO, | [Baza(a)B/2— (RO
< COIFOli= 5 +IFEl~ G

< ClIFE)ee= 2l 2

that is, K3 + K4 < C||F(2)| ||zl c2-
Putting all the previous estimates together we get

[Ar(e, a = B)| < ClIF(2)] L= |2l c2-
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Regarding

B B ‘G(O&,OZ_B) B 1 8a21(05)
A2 =) = i a =B T Parta)l tan(3/2)°

we have the splitting As = I5 + I + I7 + Ig, where
f o Vilaa = p) - (2egle ),
‘V<aa a — ﬁ)|2 ’
z(a)=z1(a=f)y 5 9
Iy = Fl)o,0) 2 e )

B2 /4 ’
_8a21(a) Mo B 1
=50 (f( ). ) |aaz<a>\2>’

_ Oaz(e) (2 1
5= a2 ()P (B tan(6/2)>'

Then by the same arguments used above, we obtain |As| < C||F(2)||z=] 2| c2-

LEMMA 11.2. Let B(a, 3) be defined by
Vi, — ) - 0az()
’V(av o — 5)’4

Then it satisfies the inequality
|B(a, = B)| < Ol F (2) |70 | 2l1E2.s 181

(922(a))* - Daz(a)
|0az(@)|* tan(5/2)

B(a,a—p3) = Vi(a,a—p) —0qz1()

Proof. Let us decompose B(«, 3) = I1 + I2, where

MNvitoa g (D =2(e=B) | V(e,a=B)" - duz(e)
Il_(“(’ ﬁ)< 2 )) V(o= B

and

I — (zl(a)zl(oz — B)) V(,a—pB)t - 0pz(a) oz (a) (022(a))t - Ouz(e)

2 V(a, a=p)|* |0az(a)|* tan(5/2)

Using the identity (11.5), we can rewrite 7 as follows:

1 Vi, — B)* - 0az(a)
I = k(z1(e) — 21(a = B)) >
A (1+Bedy  Viwa=p

to get 11| < Cllzcn.
Next we consider Iy = J; + Jo, where
(V(a,a — B) — W(a,a — B))t - 0az(c)

= e V(oo Hf

and
W(a, o0 — B)L - Op2(a)
V(e = B)[*

(922())" - Oaz(c)
|0az(a)|* tan(5/2)

JQ = Wl(Oé, o — ﬂ) — aazl(a)
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Using (11.2), (11.5), and the fact that (8/2),/ tan(3/2) is bounded, we obtain
|J1] < C||z]|c1. To continue we can rewrite Jo as follows:
(W (a0 = B) - 0a2(0)B/2)* - ax(a)
V(e a = B)[*
(92z(a))* - Daz(a)
|0az(a)|* tan(3/2)
and Jo = Ky + K9 + K3 + K4, where

J2 = Wl(a,a — 5)

— Opz1()

(W (o, — B) — 0a2()B/2)* - Oaz()

Ki = (Wi(a,a = f8) — Onz1(a)3/2)

‘V(O‘7 o — B)H 7
B (W(asa— B) — Baz(0)B/2 — 022()%/4)" - Buz()
o = onlnf2 Viea— A |
Ky = 20,21(0)(022(a)" - Bax(0)) (F(2)(, B)? — W)/B,
 Gum(a)(@22(a) az(e) (21
fa= Doz(o)]] (6 tan(6/2)> |

Clearly we have |K4| < C||F(2)||z||z]lc2, and using (11.7) we obtain

[K1| < CIF ()70 12112
Also, estimate (11.8) allows us to obtain |Ks| < OH}—(Z)H%OO||Z||?é2’5‘ﬁ|6_1.
Next we consider in K3 the factor L(«, 3) given by

— 2 1
L(CM,B)— (]'-(Z)(Oé,/ﬁ) - \8az(a)4>/ﬁ
We can write L(a, ) as follows:

(1022(e)?8%/4 + |V (o, 0 = B)I?)

O g @)V (@, a— P
(Oaz(a)B/2+ V(a,a = B)) - (Oaz()B/2 = V(a,a — B))
V(a,a = B)?B '
Then proceeding as in the previous lemma we get |K3| < CH}"(z)H%szH%Z
This ends the proof. O

LEMMA 11.3. Given C(«, ) by the equality

Vi(a,a - Byw(a - B)B 20, 2(a)w(av)

Clona =) = o a— B (e sn(3/2)

we obtain )
[Cla,a = B)] < CHf(z)HZLooHZchHW\Iclm-



INTERFACE EVOLUTION: THE HELE-SHAW AND MUSKAT PROBLEMS 539

Proof. We decompose C(a,a — 3) = I + Is + I3 + 14 + I5, where

;- Vlwa—-p5)-Wlaa- B)) w(a—B)B
1= )

Via,a— At
1 (Wlasa = §) — 0a2()3/2) ' wla - )
Via,a— At ’
L 0k2(0)B(w(a ~ ) — w(a))
’ 2V (a0 = B)[* ’
= J_Z a)wo(&x z)\« 2 # 2
11 = 80+ () (F 0.0 - i) /6%
B Ot z(a)w(a) .
Is = 2w(4/52 —sin*(8/2)).

Using (11.2) and (11.5) we get |[;| < C||.7:(2)H};/£HWHL00 Using (11.7) clearly
we obtain |Is] < C||F(2)||2||z|lc2 |||z /|B]. For the next term it holds that

13| < CIIF(2)IZe |zl Il /18]-

The reference (11.6) gives |I5]| < CH]—"(z)HigHwHLoo Finally, the estimate

given in the previous lemma for the term

(Fe @ - ) 19

written in (11.9), allows us to conclude |Iy| < || F(2) |2 ||2]lc1 || L= /|8]-
LEMMA 11.4. Let Q1(«, 3) be given by

oy Gaz(a)t L 2007(2) - 9az(a)
Ql(a,a 6)— 9 (’V(Q,Q—B)P |8a2’(04)‘2’,8|2+ |8O‘Z<a>’45 >

Then it satisfies the estimate [|Q1 oo < [|[F(2) |50 [|2]|E2.s 81771

Proof. To simplify we will consider

1 4 4042() - 022()
=D = Vo= BF ~ Buc(@PIBE © uz(@lis
and we will show that ||C||fe < H]-"(z)”’iooHzH’ég,glﬂ\‘s*l. We can rewrite
Cla,a—p)
_ (Oaz(@)B +2V(a,a—B)) - (Baz(a)B — 2V(e,a—B)) | 40a2(c) - O32(c)
B [V(er,a = B)?|0az(a) P[5 |0az(c)|*

and then take C(a, o — ) = I + I3 + I3, where

2V(aya = ) — daz(@)8?
V{a,a— B)P[az(@P I8P

I =
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_ 2042(a)B - (2V(a, o = B) — Daz(a)B — 022(a)3%/2)

b= [V (a, 0 — B)|?|00z()|?|8]? )
I —  Oaz(a) - 02z(a)B ( 1 B 4 ) |
Oaz(@) \[V(e,a =P 10az(0) P[5
Since
| < 2V (o, — B) = 2W (e, 0 — ﬂ)|2 12W (a, o0 — B) — 3(12’(04),3‘2

|V (a, a0 = B) P[0z (a) P 5] IV (a, 0 = B)P0az(a) P|6]*

using (11.1), (11.3), and the inequality (11.7), we control the term I;. For I
it holds that

AV(a,a = B) = W(a,a = f)|
|V (e, a0 = B) P[0z ()| ]
AW (o, a = B) — daz(a)B — 052(c) 3/2)
V(a, a0 = B)?0az(a)]|A] '

Using (11.1), (11.4), and (11.8) we get the appropriate inequality. For I3 we

|I5] <

write

_ 40a2(a) - 022(a) 4
5= = ) (f (Z>(“’5)‘|aaz<a>\2m2>/ﬁ

and proceed as before.
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