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Bounds for GL(3)× GL(2) L-functions
and GL(3) L-functions

By Xiaoqing Li

Abstract

In this paper, we will give the subconvexity bounds for self-dual GL(3)

L-functions in the t aspect as well as subconvexity bounds for self-dual

GL(3) × GL(2) L-functions in the GL(2) spectral aspect.

1. Introduction

Bounding L-functions on their critical lines is a far-reaching problem

in number theory. For a general automorphic L-function, one may apply

the Phragmen-Lindeloff interpolation method together with bounds on the

L-function in <s > 1 and <s < 0 (the latter coming from the functional equa-

tion) to give an upper bound for the L-function on the line <s = 1
2 . The

resulting bound is usually referred to as the convexity bound (or the trivial

bound) for the L-function. While the Lindeloff hypothesis is still out of reach,

breaking the convexity bounds for L-functions is an interesting problem.

For L-functions of degree one, that is Dirichlet L-functions, such subcon-

vexity estimates are due to Weyl [Wey21] in the t-aspect and Burgess in the

q-aspect [Bur63]. For degree two L-functions this was achieved in a series of pa-

pers by Good [Goo82], Meurman [Meu90] and especially Duke, Friedlander and

Iwaniec [DFI93], [DFI93], [DFI94], [DFI02]. Subconvexity for Rankin-Selberg

L-functions on GL(2) × GL(2) were known due to Sarnak [Sar01], Kowalski,

Michel and Vanderkam [KMV02], Michel [Mic04], Harcos and Michel [HM06],

Michel and Venkatesh [MV07], Lau, Liu and Ye [LLY06], etc. (see the ref-

erences in [MV06]). Impressive subconvexity estimates for triple L-functions

on GL(2) were made by Bernstein and Reznikov [BR05]; see also Venkatesh

[Ven10].

Much less is known for subconvexity bounds for L-functions on higher rank

groups. In this paper, we establish such subconvexity estimates for Rankin-

Selberg L-functions on GL(2) × GL(3) and L-functions on GL(3). To begin

with, let f(z) be a self-dual Hecke-Maass form of type (ν, ν) for SL(3,Z),
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normalized so that the first Fourier coefficient is 1. We define the L-function

(1.1) L(s, f) =
∞∑
m=1

A(m, 1)m−s.

For f and each uj(z) in an orthonormal basis of even Hecke-Maass forms for

SL(2,Z), we define the Rankin-Selberg L-function

(1.2) L(s, f × uj) =
∑
m>1

∑
n>1

λj(n)A(n,m)

(m2n)s
.

Our main theorem is the following:

Theorem 1.1. Let f be a fixed self-dual Hecke-Maass form for SL(3,Z)

and uj be an orthonormal basis of even Hecke-Maass forms for SL(2,Z) cor-

responding to the Laplacian eigenvalue 1
4 + t2j with tj > 0; then for ε > 0, T

large and T
3
8

+ε 6M 6 T
1
2 , we have

(1.3)∑
j

′

e−
(tj−T )2

M2 L

Å
1

2
, f × uj

ã
+

1

4π

∞∫
−∞

e−
(t−T )2

M2

∣∣∣∣LÅ1

2
− it, f

ã∣∣∣∣2 dt�ε,f T
1+εM,

where ′ means summing over the orthonormal basis of even Hecke-Maass forms.

Remarks. 1. The second term in (1.3) comes from the Rankin-Selberg

L-function of f and the Eisenstein series on GL(2).

2. By considering the case that f is the minimal Eisenstein series on

GL(3), one sees that the sign of the functional equation of L(s, f × uj) is +1

when uj is an even Hecke-Maass form and −1 when uj is an odd Hecke-Maass

form for SL(2,Z). For this reason we restrict to even Hecke-Maass forms in

(1.3). This feature does not appear if one averages the second moment of the

L-functions.

3. Since f is a self-dual Hecke-Maass form of GL(3), it has to be orthogonal

which means the (partial) L-function LS(s, f, sym2) has a pole at s = 1; since

uj is a Maass form of GL(2), it is symplectic which means LS(s, uj , sym2) has

no pole at s = 1. Then Lapid’s theorem [Lap03] says that L(1
2 , f × uj) > 0.

Due to this important property, we have

Corollary 1.1. Under the same assumptions as in the above theorem,

L

Å
1

2
, f × uj

ã
�ε,f (1 + |tj |)

11
8

+ε.

The corresponding convexity bound for L(1
2 , f × uj) is t

3
2

+ε

j with ε > 0,

and so the above bound breaks the convexity bound.
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Remarks. 1. The nonnegativity of L(1
2 , f × uj) plays a crucial role in our

approach. Otherwise, one can hardly motivate the goal of studying the first

moment.

2. In the case that f is an Eisenstein series on GL(3), our approach

recovers the subconvexity of a GL(2) L-function in the eigenvalue aspect.

Ignoring the contribution of the cuspidal spectrum in (1.3) by the non-

negativity of L(1
2 , f × uj) [Lap03], one has

∞∫
−∞

e
− (t−T )2

T
3
4

∣∣∣∣LÅ1

2
− it, f

ã∣∣∣∣2 dt�ε,f T
11
8

+ε.

By a standard argument [HB78], we have

Corollary 1.2. For f a self-dual Hecke-Maass form for SL(3,Z),

L

Å
1

2
− it, f

ã
�ε,f (|t|+ 1)

11
16

+ε

where ε > 0.

The corresponding convexity bound for L(1
2 − it, f) is |t|

3
4

+ε with ε > 0,

so that the above bound breaks the convexity bound for L(1
2 − it, f) in the

t-aspect.

Remark. Our method only breaks the convexity bounds of L(1
2 , f × uj)

and L(1
2 , f) with f self-dual on GL(3), i.e., f comes from the symmetric lifts

from GL(2) (see [Sou05]). New ideas are needed for the more general case

when f is non-self-dual on GL(3).

We end the introduction with a brief outline of the proof of the main theo-

rem. Because we restrict to averaging over even Maass forms in (1.3), applying

the approximate functional equation for the Rankin-Selberg L-functions and

Kuznetsov’s formula leads to two parts: ‹R+
3 (see (4.17)) — weighted sums of

Kloosterman sums twisted by e
4πi
√
n

c and ‹R−2 (see (5.10)) — weighted sums

of Kloosterman sums without twisting. Instead of using Weil’s bound for the

Kloosterman sum which only leads to the convexity bound for the individ-

ual L-function, we expand the Kloosterman sums and make crucial use of the

Voronoi formula on GL(3). ‹R−2 involves no twisting which allows a direct

application of the Voronoi formula. ‹R+
3 seems harder. However, as a mira-

cle, the application of the Voronoi formula to ‹R+
3 brings the twists by e

4πi
√
n

c

to twists by additive characters (see (4.24)). This breaks the duality of the

Voronoi formula. A second application of the Voronoi formula twisted by ad-

ditive characters then completes the estimation of R+
3 . In using the Voronoi

formula, one needs the asymptotic behavior of the integral transformations
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of the test functions. This is provided in Lemma 2.1. In the appendix, sug-

gested by Sarnak, we also considered the subconvexity of the Rankin-Selberg

L-function L(s, f × h) where f is self-dual on GL(3) and h runs through holo-

morphic forms of weight k congruent to 0 modulo 4. The analysis is essentially

the same as the nonholomorphic case.

The Voronoi formula for GL(3) was first derived by Miller and Schmid

[MS06] (see [GL06] for a different proof). It was first used by Sarnak and

Watson to prove a Lindeloff-like bound for the L4 norm of a Maass form for

GL(2). For other applications, see [Mil06] and [Li09]. Throughout the paper,

e(x) means e2πix and negligible means O(T−A) for any A > 0.

2. A review of automorphic forms

In this section, we introduce notation and recall some standard facts of

Maass forms for GL(2) and GL(3). We start from the upper half plane H. The

Laplace operator

∆ = −y2

Ç
∂2

∂x2
+

∂2

∂y2

å
has a spectral decomposition on L2(SL(2,Z) \H):

L2(SL(2,Z) \H) = C ⊕ C(SL(2,Z) \H)⊕ E(SL(2,Z) \H).

Here C is the space of constant functions. C(SL(2,Z)\H) is the space of Maass

forms and E(SL(2,Z) \H) is the space of Eisenstein series.

Let U = {uj : j > 1} be an orthonormal basis of Hecke-Maass forms

corresponding to the Laplacian eigenvalue 1
4 + t2j with tj > 0 in the space

C(SL(2,Z) \H). Any uj(z) has the Fourier expansion

uj(z) =
∑
n6=0

ρj(n)Wsj (nz),

where Ws(z) is the Whittaker function given by

Ws(z) = 2|y|
1
2Ks− 1

2
(2π|y|)e(x)

and Ks(y) is the K-Bessel function with s = 1
2 + it. C(SL(2,Z) \ H) consists

of even Maass forms and odd Maass forms according to uj(−z̄) = uj(z) or

uj(−z̄) = −uj(z). We can assume uj are eigenfunctions of all the Hecke

operators corresponding to the Hecke eigenvalue λj(n). Then we have the

formula

ρj(±n) = ρj(±1)λj(n)n−
1
2

if n > 0. The Eisenstein series E(z, s) defined by

(2.1) E(z, s) =
1

2

∑
c,d∈Z

(c,d)=1

ys

|cz + d|2s
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has the following Fourier expansion

E(z, s) = ys + φ(s)y1−s +
∑
n 6=0

φ(n, s)Ws(nz),

where

φ(s) =
√
π

Γ(s− 1
2)

Γ(s)

ζ(2s− 1)

ζ(2s)

with ζ(s) the Riemann zeta function and

φ(n, s) = πsΓ(s)−1ζ(2s)−1|n|−
1
2 η(n, s)

with

(2.2) η(n, s) =
∑
ad=|n|

Å
a

d

ãs− 1
2

.

For any m,n > 1 and any test function h(t) which is even and satisfies the

following conditions:

I) h(t) is holomorphic in |=t| 6 1
2 + ε;

II) h(t)� (|t|+1)−2−ε in the above strip, we have the following Kuznetsov

formula (see [CI00], for example)

∑
j>1

′

h(tj)ωjλj(m)λj(n)+
1

4π

∞∫
−∞

h(t)ω(t)η̄

Å
m,

1

2
+ it

ã
η

Å
n,

1

2
+ it

ã
dt(2.3)

=
1

2
δ(m,n)H+

∑
c>0

1

2c

®
S(m,n; c)H+

Ç
4π
√
mn

c

å
+S(−m,n; c)H−

Ç
4π
√
mn

c

å´
,

where
∑′

restricts to the even Maass forms, δ(m,n) is the Kronecker symbol,

ωj = 4π|ρj(1)|2/ coshπtj ,

ω(t) = 4π

∣∣∣∣∣∣φ
Å

1,
1

2
+ it

ã ∣∣∣∣∣∣2 cosh−1 πt,

H =
2

π

∞∫
0

h(t) tanh(πt)tdt,

H+(x) = 2i

∞∫
−∞

J2it(x)
h(t)t

coshπt
dt,

H−(x) =
4

π

∞∫
−∞

K2it(x) sinh(πt)h(t)tdt,

S(a, b; c) =
∑

dd̄≡1(mod c)

e
(da+ d̄b

c

)
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is the classical Kloosterman sum, in the above, Jν(x) and Kν(x) are the stan-

dard J-Bessel function and K-Bessel function respectively.

Now we recall some background on Maass forms for GL(3). We will follow

the notation in Goldfeld’s book [Gol06]. Let f be a Maass form of type ν =

(ν1, ν2) for SL(3,Z). Thanks to Jacquet, Piatetskii-Shapiro, and Shalika, we

have the following Fourier Whittaker expansion

(2.4) f(z) =
∑

γ∈U2(Z)\SL(2,Z)

∞∑
m1=1

∑
m2 6=0

A(m1,m2)

m1|m2|
WJ

Ç
M

Ç
γ

1

å
z, ν, ψ1,1

å
,

where U2(Z) is the group of 2×2 upper triangular matrices with integer entries

and ones on the diagonal, WJ(z, ν, ψ1,1) is the Jacquet-Whittaker function, and

M = diag (m1|m2|,m1, 1). Set

α = −ν1 − 2ν2 + 1, β = −ν1 + ν2, γ = 2ν1 + ν2 − 1

for k = 0, 1. For ψ(x) a smooth compactly supported function on (0,∞) and

ψ̃(s) :=
∞∫
0
ψ(x)xs dxx , set

(2.5)

Ψk(x) :=

∫
<s=σ

(π3x)−s
Γ
Ä

1+s+2k+α
2

ä
Γ
Ä

1+s+2k+β
2

ä
Γ
Ä

1+s+2k+γ
2

ä
Γ
(−s−α

2

)
Γ
Ä−s−β

2

ä
Γ
Ä−s−γ

2

ä ψ̃(−s− k)ds

with σ > max{−1−<α,−1−<β,−1−<γ},

Ψ0
0,1(x) = Ψ0(x) +

π−3c3m

n2
1n2i

Ψ1(x),

and

Ψ1
0,1(x) = Ψ0(x)− π−3c3m

n2
1n2i

Ψ1(x).

We have the following Voronoi formula on GL(3):

Proposition 2.1 ([MS06]). Let ψ(x) ∈ C∞c (0,∞). Let A(m,n) denote

the (m,n)-th Fourier coefficient of a Maass form for SL(3,Z) as in (2.4). Let

d, d̄, c ∈ Z with c 6= 0, (d, c) = 1, and dd̄ ≡ 1(mod c). Then we have∑
n>0

A(m,n)e

Ç
nd̄

c

å
ψ(n)

=
cπ−

5
2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)

n1n2
S(md, n2;mcn−1

1 )Ψ0
0,1

Ç
n2n

2
1

c3m

å
+
cπ−

5
2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)

n1n2
S(md,−n2;mcn−1

1 )Ψ1
0,1

Ç
n2n

2
1

c3m

å
,

where S(a, b; c) is the Kloosterman sum defined as the above.
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To apply Proposition 2.1 in practice, one needs to know the asymptotic

behaviour of Ψ0(x) and Ψ1(x). By changing variables s+1→ s in the definition

of Ψ1(x), one sees that x−1Ψ1(x) has similar asymptotic behavior as of Ψ0(x).

Therefore, in the following, we only consider Ψ0(x).

Lemma 2.1 ([Li09]). Suppose ψ(x) is a smooth function compactly sup-

ported on [X, 2X]. Ψ0(x) is defined by (2.5). Then for any fixed integer K > 1

and xX � 1,

Ψ0(x)=2π4xi

∞∫
0

ψ(y)
K∑
j=1

cj cos(6πx
1
3 y

1
3 ) + dj sin(6πx

1
3 y

1
3 )

(π3xy)
j
3

dy+O
(
(xX)

−K+2
3

)
,

where cj and dj are constants depending on α, β and γ; in particular, c1 = 0,

d1 = − 2√
3π

.

Remark. When xX � 1, moving the line of integration to σ = −11
20 , by

Stirling’s formula for the Γ functions and integration by part once for ψ̃(s),

one shows that

Ψ0(x)�
∞∫
0

|ψ′(x)|dx+ 1.

Note that a special case of the above lemma (when α = β = γ = 0 ) was

given by Ivic (see [Ivi97]). Now let f be a self-dual Hecke-Maass form of type

(ν, ν) for SL(3,Z), normalized to have the first Fourier coefficient A(1, 1) equal

to 1. We associate the L-function L(s, f) defined by (1.1). It is entire and

satisfies the functional equation

Gν(s)L(s, f) = Gν(1− s)L(1− s, f),

where

Gν(s) = π
−3s
2 Γ

Å
s+ 1− 3ν

2

ã
Γ

Å
s

2

ã
Γ

Å
s− 1 + 3ν

2

ã
.

The Rankin-Selberg L-function defined by

L(s, f × f) :=
∑
m>1

∑
n>1

|A(m,n)|2

(m2n)s

for <s large has a meromorphic continuation to the whole plane with the only

simple pole at s = 1. By a standard contour integration, one shows that

(2.6)
∑∑
m2n6N

|A(m,n)|2 �f N.

By Cauchy’s inequality and (2.6), one derives that

(2.7)
∑
n6N

|A(m,n)| �f N |m|.
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The Rankin-Selberg L-function of f and uj defined by (1.2) is entire and

satisfies the functional equation

(2.8) Λ(s, f × uj) = Λ(1− s, f × uj),

where

Λ(s, f × uj) = π−3sΓ

Å
s− itj − α

2

ã
Γ

Å
s− itj − β

2

ã
Γ

Å
s− itj − γ

2

ã
× Γ

Å
s+ itj − α

2

ã
Γ

Å
s+ itj − β

2

ã
Γ

Å
s+ itj − γ

2

ã
L(s, f × uj)

and

(2.9) α = −3ν + 1, β = 0, γ = 3ν − 1.

To the above Maass form f and the Eisenstein series E
Ä
z, 1

2 + it
ä

(recall (2.1))

we associate the L-function

L(s, f × E) :=
∑
m>1

∑
n>1

η̄(n, 1
2 + it)A(n,m)

(m2n)s
.

By looking at the Euler products

L(s, f) =
∑
n>1

A(n, 1)

ns
=
∏
p

3∏
i=1

(1− βp,ip−s)−1,

L(s, E) =
∑
n>1

η

Å
n,

1

2
+ it

ã
n−s =

∏
p

(1− p−s+it)−1(1− p−s−it)−1

one derives that (see [Gol06, p. 379])

L(s, f×E) =
∏
p

3∏
k=1

(1−βp,kpit−s)−1(1−βp,kp−it−s)−1 = L(s−it, f)L(s+it, f).

This yields

L

Å
1

2
, f × E

ã
=

∣∣∣∣LÅ1

2
− it, f

ã∣∣∣∣2
which satisfies the functional equation (2.8) which can also be verified directly

using the functional equation of L(s, f). Set

F (u) =

Å
cos

πu

A

ã−3A

,

where A is a positive integer for |=t| 6 1000,

(2.10) V (y, t) =
1

2πi

∫
(1000)

y−uF (u)
γ(1

2 + u, t)

γ(1
2 , t)

du

u
,
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and

γ(s, t) = π−3sΓ

Å
s− it− α

2

ã
Γ

Å
s− it− β

2

ã
Γ

Å
s− it− γ

2

ã
× Γ

Å
s+ it− α

2

ã
Γ

Å
s+ it− β

2

ã
Γ

Å
s+ it− γ

2

ã
.

The integral is justified by Luo-Rudnick-Sarnak’s bound on the Ramanujan

conjecture |<α|, |<β|, |<γ| 6 1
2 −

1
10 (see [LRS99]). One has the following

approximate functional equation for L(s, f × uj) (see [IK04] or [Li09]):

Lemma 2.2. For a self-dual Maass form f of type (ν, ν) for SL(3,Z) and

any uj(z) associated to the Laplacian eigenvalue 1
4 +t2j in the orthonormal basis

of even Hecke-Maass forms for SL(2,Z), we have

(2.11) L

Å
1

2
, f × uj

ã
= 2

∑
m>1

∑
n>1

λj(n)A(n,m)

(m2n)
1
2

V (m2n, tj).

We see that V (y, t) has the following properties which effectively limit the

terms in (2.11) with m2n� |tj |3.

Lemma 2.3. For y, t > 0, i = 1, 2,

1) The derivatives of V (y, t) with respect to y satisfy

ya
∂a

∂ya
V (y, t)�

Ç
1 +

y

|t|3

å−A
,

ya
∂a

∂ya
V (y, t) = δa +O

ÇÇ
y

|t|3

åcå
,

where 0 < c 6 1
3min{1

2 − <α,
1
2 − <β,

1
2 − <γ}, δa = 1 if a = 0,

0 otherwise and the implied constants depend only on c, a,A, α, β and γ.

2) If 1 6 y � t3+ε, then as t→∞,

V (y, t) =
1

2πi

∫
( 1
2)

Ç
t3

8π3y

åu
F (u)

ñ
1 +

p1(v)

t
+ · · ·+ pn−1(v)

tn−1
+O

Ç
pn(v)

tn

åô
du

u

+O
Ä
t−B
ä
,

where v = =u, pi(v) are polynomials of v and B is arbitrarily large.

Proof. 1) See [IK04, p. 100].

2) It follows from Stirling’s formula

log Γ(s+ b) =

Å
s+ b− 1

2

ã
log s− s+

1

2
log 2π +

k∑
j=1

aj
sj

+Oδ

Ç
1

|s|k+1

å
,
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which is valid for b a constant, any fixed integer K > 1, | arg s| 6 π − δ for

δ > 0, where the point s = 0 and the neighbourhoods of the poles of Γ(s+ b)

are excluded, and the aj are suitable constants. �

Now, similar to (2.11), L(s, f×E) has the approximate functional equation

(2.12) L

Å
1

2
, f × E

ã
= 2

∑
m>1

∑
n>1

η(n, 1
2 + it)A(n,m)

(m2n)
1
2

V (m2n, t).

Now we introduce the spectrally normalized first moment of the central values

of L-functions

(2.13)

W :=
∑
j

′

e−
(tj−T )2

M2 ωjL

Å
1

2
, f × uj

ã
+

1

4π

∞∫
−∞

e−
(t−T )2

M2 ω(t)

∣∣∣∣LÅ1

2
− it, f

ã∣∣∣∣2 dt,
where ωj and ω(t) are defined below (2.3). Due to Iwaniec [Iwa02], we know

ωj � t−εj

and as a well-known fact ([Tit86, p. 111]) we also know

ω(t)� t−ε.

Now one has

∑
j

′

e−
(tj−T )2

M2 L

Å
1

2
, f × uj

ã
+

1

4π

∞∫
−∞

e
−(t−T )2

M2

∣∣∣∣LÅ1

2
− it, f

ã∣∣∣∣2 dt�WT ε

for any ε > 0. Therefore, for Theorem 1.1 we need to show that

(2.14) W �ε,f T
1+εM.

To use the Kuznetsov formula, the test function has to be even. For that

purpose, we introduce

(2.15) W :=
∑
j

′

k(tj)ωjL

Å
1

2
, f × uj

ã
+

1

4π

∞∫
−∞

k(t)ω(t)

∣∣∣∣LÅ1

2
− it, f

ã∣∣∣∣2 dt.
Here

(2.16) k(t) = e−
(t−T )2

M2 + e−
(t+T )2

M2 .
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Applying (2.11) and (2.12) to W, we see that by smooth dyadic subdivisions

it suffices for our purposes to estimate sums of the form

R := 2
∑
j

′

k(tj)ωj
∑
m>1

∑
n>1

λj(n)A(n,m)

(m2n)
1
2

V (m2n, tj)g

Ç
m2n

N

å(2.17)

+
2

4π

∞∫
−∞

k(t)ω(t)
∑
m>1

∑
n>1

η(n, 1
2 + it)A(n,m)

(m2n)
1
2

V (m2n, t)g

Ç
m2n

N

å
dt.

Here g is essentially a fixed smooth function of compact support on [1, 2] and

N is at most T 3+ε, ε > 0. We then transform R by the Kuznetsov formula

(2.3) into

(2.18) R = D +R+ +R−,

where

(2.19) D =
∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å
δ(n, 1)Hm,n

is the contribution of the diagonal term with

Hm,n =
2

π

∞∫
0

k(t)V (m2n, t) tanh(πt)tdt,(2.20)

R+ =
∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å∑
c>0

c−1S(n, 1; c)H+
m,n

Ç
4π
√
n

c

å
(2.21)

with

(2.22) H+
m,n(x) = 2i

∫ ∞
−∞

J2it(x)
k(t)V (m2n, t)t

coshπt
dt

and

(2.23) R− =
∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å∑
c>0

c−1S(n, 1; c)H−m,n

Ç
4π
√
n

c

å
with

(2.24) H−m,n(x) =
4

π

∫ ∞
−∞

K2it(x) sinh(πt)k(t)V (m2n, t)tdt.

The next three sections are devoted to the estimation of D,R+, and R−
respectively.
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3. The diagonal terms

Recall that D is the contribution to R (see (2.18)) from the diagonal terms

defined by (2.19). Obviously

D =
∑
m>1

A(1,m)

m
g

Ç
m2

N

å
Hm,1,

where

Hm,1 =
2

π

∞∫
0

ñ
e−

(t−T )2

M2 + e−
(t+T )2

M2

ô
V (m2, t) tanh(πt)tdt(3.1)

=
2

π

∞∫
0

e−
(t−T )2

M2 V (m2, t) tanh(πt)tdt+O(T−A)

with A arbitrarily large. By Lemma 2.3 and (2.7), we have

(3.2)
∑
m>1

A(1,m)

m
g

Ç
m2

N

å
V (m2, t)�ε,f (|t|+ 1)ε .

It follows from (3.1) and (3.2) that

D �ε,f T
1+εM

as we want.

4. The terms related to the J-Bessel function

This section is devoted to the estimation of R+ which is defined by (2.21).

We split R+ into three parts R+
1 ,R

+
2 ,R

+
3 with

R+
1 =

∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å ∑
c>C1/m

c−1S(n, 1; c)H+
m,n

Ç
4π
√
n

c

å
,

(4.1)

R+
2 =

∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å ∑
C2/m6c6C1/m

c−1S(n, 1; c)H+
m,n

Ç
4π
√
n

c

å
,

(4.2)

R+
3 =

∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å ∑
c6C2/m

c−1S(n, 1; c)H+
m,n

Ç
4π
√
n

c

å
,

(4.3)

where

(4.4) C1 = T 100, C2 =

√
N

T 1−εM
.
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First we will estimate (4.1). Recall that H+
m,n(x) is defined by (2.22). Moving

the line of integration to =t = −3/8, we see that H+
m,n(x) becomes

(4.5) 2i

∞∫
−∞

J2iy+3/4(x)
k(−3/8i+ y)V (m2n,−3/8i+ y)(−3/8i+ y)

coshπ(−3/8i+ y)
dy.

By the integral representation of the J-Bessel function ([GR00, 8.411 4]),

Jν(z) = 2

( z
2

)ν
Γ(ν + 1

2)Γ(1
2)

π
2∫

0

sin2ν θ cos(z cos θ)dθ.

For <ν > −1
2 , one derives that

(4.6) J2iy+3/4(x)�
Ç

x

|y|+ 1

å3/4

eπ|y|.

Using Stirling’s formula, we have

(4.7) V (m2n,−3/8i+ y)�
Ç
|y|3

m2n

å3/8

.

Combining (4.5), (4.6), and (4.7), we have

(4.8) H+
m,n(x)� x3/4T 3/8(m2n)−3/8T 1+εM.

Thus, by (2.7), (4.8), and Weil’s bound for the Kloosterman sum, one concludes

that

(4.9) R+
1 � 1.

Next we will estimate R+
2 . By [GR00, (8.411 11)], one derives that

J2it(x)− J−2it(x)

coshπt
= −2i

π
tanhπt

∞∫
−∞

cos(x cosh ζ)e

Å
tζ

π

ã
dζ.

Applying the above integral representation and partial integration in ζ once,

we have

H+
m,n(x) =

4

π

∞∫
t=0

T ε∫
ζ=−T ε

te−
(t−T )2

M2 V (m2n, t) cos(x cosh ζ)e

Å
tζ

π

ã
dtdζ +O(T−A)

with A arbitrarily large. By changing variables t−T
M → t, we have

H+
m,n(x) =

4M

π

∞∫
t=− T

M

T ε∫
ζ=−T ε

(T + tM)e−t
2
V (m2n, tM + T ) cos(x cosh ζ)

×e
Ç

(tM + T )ζ

π

å
dtdζ +O(T−A).
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Extending the t integral to (−∞,∞) with a negligible error term, we have

H+
m,n(x) = H+,1

m,n(x) +H+,2
m,n(x) +O(T−A),

where

H+,1
m,n(x) =

4MT

π

∞∫
t=−∞

ζ=T ε∫
ζ=−T ε

e−t
2
V (m2n, tM + T ) cos(x cosh ζ)e

Å
tMζ

π

ã
×e
Å
Tζ

π

ã
dtdζ

and

H+,2
m,n(x) =

4M2

π

∞∫
t=−∞

T ε∫
ζ=−T ε

te−t
2
V (m2n, tM + T ) cos(x cosh ζ)e

Å
tMζ

π

ã
×e
Å
Tζ

π

ã
dtdζ.

In the following we only treat H+,1
m,n(x) since H+,2

m,n(x) is a lower order term

which can be handled in a similar way. It is clear that

(4.10) H+,1
m,n(x) =

4MT

π

T ε∫
ζ=−T ε

k̂∗
Å
−Mζ

π

ã
cos(x cosh ζ)e

Å
Tζ

π

ã
dζ

which is equal to

4T

MTε

π∫
ζ=−MTε

π

k̂∗(ζ) cos

Å
x cosh

ζπ

M

ã
e

Å
−Tζ
M

ã
dζ

by making a change of variable −Mζ
π → ζ. Here

(4.11) k∗(t) = e−t
2
V (m2n, tM + T )

and

(4.12) k̂∗(ζ) =

∞∫
−∞

k∗(t)e(−tζ)dt

is its Fourier transform. Since k̂∗(ζ) is a Schwartz class function, one can

extend the integral in (4.10) to (−∞,∞) with a negligible error term. Now let

(4.13) Wm,n(x) := T

∞∫
−∞

k̂∗(ζ) cos

Å
x cosh

ζπ

M

ã
e

Å
−Tζ
M

ã
dζ
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and

(4.14) W ∗m,n(x) := T

∞∫
−∞

k̂∗(ζ)e

Å
−Tζ
M
− x

2π
cosh

ζπ

M

ã
dζ;

then

Wm,n(x) =
W ∗m,n(−x) +W ∗m,n(x)

2
and

H+,1
m,n(x) = 4Wm,n(x) +O(T−A)

with A arbitrarily large. The contribution to Wm,n(x) coming from |ζ| > T ε

(ε > 0 arbitrarily small but fixed) is negligible. So we need only consider

|ζ| 6 T ε. The phase φ in the exponential of W ∗m,n(x) is

φ(ζ) = −Tζ
M
− x

2π
cosh

ζπ

M

so that

φ
′
(ζ) = − T

M
− x

2M
sinh

ζπ

M
.

Then if |x| 6 T 1−εM , we have that W ∗m,n(x) is negligible. In the following we

assume that

T 1−εM 6 |x| 6M4.

In this case we need the asymptotic expansion of W ∗m,n(x). One could quote

Lemma 5.1 of [LLY06]. For completeness, we prefer to derive it here. But the

methods are really based on [Sar01] and [LLY06]. Now

W ∗m,n(x) = T

∞∫
−∞

k̂∗(ζ)e

Ç
−Tζ
M
− x

2π
− πxζ2

4M2
− π3xζ4

48M4
− π5xζ6

1440M6

å
dζ

+O

Ñ
T

∞∫
−∞

|k̂∗(ζ)| |ζ|
8|x|
M8

dζ

é
.

Expanding e
(
−π5xζ6

1440M6

)
into a Taylor series of order 1, we have

(4.15) W ∗m,n(x) = W+
m,n(x)− 2π6ix

1440M6
W−m,n(x) +O

Ç
T |x|
M8

å
,

where

W+
m,n(x) = Te

Å−x
2π

ã ∞∫
−∞

k∗0(ζ)e

Ç
−Tζ
M
− πxζ2

4M2

å
dζ

with

k∗0(ζ) = k̂∗(ζ)e

Ç
−π3xζ4

48M4

å
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and

W−m,n(x) = Te

Å−x
2π

ã ∞∫
−∞

k∗1(ζ)e

Ç
−Tζ
M
− πxζ2

4M2

å
dζ

with

k∗1(ζ) = ζ6k̂∗(ζ)e

Ç
−π3xζ4

48M4

å
.

Now by completing the square, we have

W+
m,n(x) = Te

Ç
−x
2π

+
T 2

πx

å ∞∫
−∞

k∗0(ζ)e

Ç
− πx

4M2

Å
ζ +

2MT

πx

ã2
å
dζ

which is equal to ([GR00, 3.691 1])

(1 + i)Te

Ç
−x
2π

+
T 2

πx

å ∞∫
−∞

k̂∗0(ζ)e

Å−2MTζ

πx

ã
M»
π|x|

e

Ç
M2ζ2

πx

å
dζ

by Parseval. Expanding e
(
M2ζ2

πx

)
in a Taylor series, we have

W+
m,n(x) = (1 + i)

TM»
π|x|

e

Ç
−x
2π

+
T 2

πx

å
×
∞∑
l=0

1

l!

Ç
2iM2

x

ål ∞∫
−∞

ζ2lk̂∗0(ζ)e

Å−2MTζ

πx

ã
dζ

= (1 + i)
TM»
π|x|

e

Ç
−x
2π

+
T 2

πx

å ∞∑
l=0

(2i)−l

l!

Ç
M2

π2x

ål
k∗0

(2l)
Å−2MT

πx

ã
.

Since

k∗0
(2l)(t) =

∑
06l162l

Ç
2l

l1

å
dl1

dtl1
e

Ç
−π3xt4

48M4

å
× d2l−l1

dt2l−l1
k̂∗(t)

where

Ç
n

r

å
denotes the binomial coefficient and

dl1

dtl1
e

Ç
−π3xt4

48M4

å ∣∣∣∣∣
t=−2MT

πx

� 1,

one can truncate the above series of Wm,n(x) at order L1 with a remainder

O

(
T

Ç
M√
x

å2L1+3
)
.
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Now expanding e
Ä
−π3xt4

48M4

ä
in a power series and differentiating it term by term,

we have

dl1

dtl1
e

Ç
−π3xt4

48M4

å ∣∣∣∣∣
t=−2MT

πx

=
∑

4l2>l1

(4l2)!

(4l2 − l1)!l2!

Ç
2iπ4

48

ål2Å−x
M4

ãl2
t4l2−l1

∣∣∣∣∣
t=−2MT

πx

=
∑

l1
4
6l26L2

(4l2)!

(4l2 − l1)!l2!

Ç
iπ4

24

ål2Å−x
M4

ãl2Å−2MT

πx

ã4l2−l1

+O

(Ç
T 4

|x|3

åL2+1Ç |x|
MT

ål1)
.

Combining the above, we have the following asymptotic expansion:

W+
m,n(x) =

TM»
|x|
e

Ç
−x
2π

+
T 2

πx

å L1∑
l=0

∑
06l162l

∑
l1
4
6l26L2

cl,l1,l2

× M2l−l1T 4l2−l1

xl+3l2−l1 k̂∗
(2l−l1)

Å−2MT

πx

ã
+O

Ö
TM»
|x|

Ç
T 4

|x|3

åL2+1

+ T

Ñ
M»
|x|

é2L1+3
è
.

Here cl,l1,l2 are constants depending only on l, l1, and l2. W−m,n(x) has a similar

asymptotic expansion. We end up with the following proposition (recall (4.15)):

Proposition 4.1. 1) For |x| 6 T 1−εM with ε > 0,

W ∗m,n(x)� T−A,

where A > 0 is arbitrarily large and the implied constant depends on ε and A.

2) For T 1−εM 6 |x| 6M4, T
3
8

+ε 6M 6 T
1
2 and L2, L1 > 1,

W ∗m,n(x) =
TM»
|x|
e

Ç
−x
2π

+
T 2

πx

å L1∑
l=0

∑
06l162l

∑
l1
4
6l26L2

cl,l1,l2
M2l−l1T 4l2−l1

xl+3l2−l1

(4.16)

×
ñ
k̂∗

(2l−l1)
Å−2MT

πx

ã
− 2π6ix

1440M6
(y6k̂∗(y))(2l−l1)

Å−2MT

πx

ãô
+O

Ö
TM»
|x|

Ç
T 4

|x|3

åL2+1

+ T

Ñ
M»
|x|

é2L1+3

+
T |x|
M8

è
,

where cl,l1,l2 are constants depending only on l, l1, and l2, especially c0,0,0 = 1+i√
π

.
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It follows from 1) in the above proposition that R+
2 is negligible. The

remaining part of this section is devoted to the estimation of R+
3 . Applying

the asymptotic expansion (4.16) ofW ∗m,n(x) and choosing L2 and L1 sufficiently

large makes the contribution to R+
3 from the first two terms in the error term

in (4.16) negligible. The contribution to R+
3 from the last term in the error

term in (4.16) is

Oε,f

Ç
T 1+εN

M8

å
= Oε,f

Ä
T 1+εM

ä
as expected, where we used the trivial bound for the Kloosterman sum and

(2.7). Since |x| > T 1−εM ,

M2l−l1T 4l2−l1

xl−l1+3l2
�
Å
M

T 1−ε

ãl Å T

M3

ãl2
T (3l2−l1)ε � 1.

From now on, we only take the leading term l = 0, l1 = 0, and l2 = 0 in (4.16).

The other terms are of an identical form and can be treated similarly. We are

led to estimate‹R+
3 :=

√
2iπ−1MTe

Å
−1

8

ã∑
m>1

∑
n>1

A(n,m)

mn
3
4

g

Ç
m2n

N

å
(4.17)

×
∑

c6C2/m

c−
1
2S(n, 1; c)e

Ç
2
√
n

c
− T 2c

4π2
√
n

å
k̂∗
Ç
MTc

2π2
√
n

å
.

In the above, if we sum over n trivially and apply Weil’s bound for the Kloost-

erman sum

S(n, 1; c)�ε c
1
2

+ε,

we have ‹R+
3 �MTC1+ε

2 N
1
4 � T

9
4

+ε.

To save T
5
4M−1, we have to sum over n nontrivially by the Voronoi formula

for GL(3) (i.e, Proposition 2.1). Expanding the Kloosterman sum in (4.17)

and applying Proposition 2.1 with

ψ(y) = y−
3
4 g

Ç
m2y

N

å
e

Ç
2
√
y

c
− T 2c

4π2√y

å
k̂∗
Ç
MTc

2π2√y

å
,

we have∑
n>1

A(n,m)e

Ç
nd̄

c

å
ψ(n)

=
cπ−

5
2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)

n1n2
S(md, n2;mcn−1

1 )Ψ0
0,1

Ç
n2n

2
1

c3m

å
+
cπ−

5
2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)

n1n2
S(md,−n2;mcn−1

1 )Ψ1
0,1

Ç
n2n

2
1

c3m

å
,
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where Ψ0
0,1(x) and Ψ1

0,1(x) are defined below (2.5). As we explained before

Proposition 2.1, we only consider the first term involving Ψ0(x) on the right

side of the above formula since all the other terms can be treated in a similar

way. Since c 6 N
1
2

T 1−εMm
,

n2n
2
1

c3m

N

m2
� T

3
2 ,

and by Lemma 2.1 for x =
n2n2

1
c3m

,

Ψ0(x) = 2π4xi

∞∫
0

ψ(y)
d1 sin(6πx

1
3 y

1
3 )

(π3xy)
1
3

dy + lower order terms(4.18)

= π3x
2
3d1

∞∫
0

e(u1(y))a(y)dy − π3x
2
3d1

∞∫
0

e(u2(y))a(y)dy

+ lower order terms,

where

u1(y) =
2
√
y

c
+ 3x

1
3 y

1
3 , u2(y) =

2
√
y

c
− 3x

1
3 y

1
3 ,

and

a(y) = g

Ç
m2y

N

å
k̂∗
Ç
MTc

2π2√y

å
e

Ç
− T 2c

4π2√y

å
y−

13
12 .

Since u
′
1(y)� c−1y−

1
2 and a

′
(y)� T 2cy−

31
12 , we have

u
′
1(y)a

′
(y)−1 �M2T−ε � T

3
4
−ε.

By partial integration many times, one shows that the contribution to (4.17)

from the first integral in (4.18) is negligible.

Now we turn to the second integral in (4.18). Since

u
′
2(y) =

1

c

 
1

y
− x

1
3 y−

2
3 ,

if

(4.19) x > 2
N

1
2

mc3
or x 6

2

3

N
1
2

mc3
,

then

u
′
2(y)� 1

c

 
1

y
.

As in the argument above, under condition (4.19), the contribution to (4.17)

from the second integral in (4.18) is also negligible. So for stationary or small

values of u
′
2(y) we need only consider the case when

(4.20)
2

3

N
1
2

mc3
6 x 6 2

N
1
2

mc3
, i.e.

2

3

N
1
2

n2
1

6 n2 6 2
N

1
2

n2
1

.
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Then
∞∫
0

e(u2(y))a(y)dy =

9
2
x2c6∫

x2c6

4

e(u2(y))a(y)dy.

There is a stationary phase point y0 = x2c6 such that u
′
2(y0) = 0. Applying

the stationary phase method ([Hux96, p. 114]), we have

(4.21)

∞∫
0

e(u2(y))a(y)dy =
e
Ä
−xc2 + 1

8

ä
a(y0)»

u
′′
2(y0)

+O
(
c
7
2T 4N−

11
6 m

11
3

)
.

Due to

(4.22)∑
06d<c
(d,c)=1

e

Å
d

c

ã
S(md, n2;mcn−1

1 ) =
∑

u(mod mcn−1
1 )

uū≡1(mod mcn−1
1 )

S(0, 1 + un1; c)e

Ç
n2ū

mcn−1
1

å
,

where

S(0, a; c) =
∑

v(mod c)
(v,c)=1

e

Å
av

c

ã
is the Ramanujan sum which is bounded by (a, c), we deduce that (4.22) is

bounded by mc1+ε with ε > 0. Therefore, the contribution to (4.17) from the

error term in (4.21) is bounded by

MT
∑
m>1

m−1
∑

c6C2/m

c
1
2

∑
n1|cm

∑
2N

1
2

3n2
1

6n262N
1
2

n2
1

|A(n1, n2)|
n1n2

(4.23)

×
Ç
n2n

2
1

c3m

å 2
3

(mc)1+εc
7
2T 4N−

11
6 m

11
3 �M−3T 1+εN

1
2 � T 1+εM

because M > T
3
8 . We conclude from (4.17), (4.21), (4.22), and (4.23) that‹R+

3 = π−1MT
∑
m>1

m−1
∑

c6C2/m

c−1
∑
n1|cm

n−1
1

∑
n2>0

A(n1, n2)(4.24)

×
∑

06u<mcn−1
1

uū≡1(mod mcn−1
1 )

S(0, 1 + un1; c)e

Ç
n2ū

mcn−1
1

å
e

Ç
−n2n

2
1

cm

å
b(n2)

+O(T 1+εM),

where

b(y) = y−1g

Ç
y2n4

1

N

å
k̂∗
Ç
MTcm

2π2yn2
1

å
e

Ç
−T 2cm

4π2yn2
1

å
.
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If we sum over n2 trivially, we have

R+,∗
3 �MT 1+εC2 �MT 1+εT

1
2

M
.

In order to save T
1
2M−1, we have to sum over n2 nontrivially using the Voronoi

formula for GL(3) the second time. Invoking Proposition 2.1, one has∑
n2>1

A(n1, n2)e

Ç
n2(ū− n1)

mcn−1
1

å
b(n2)(4.25)

=
c
′
π−

5
2

4i

∑
l1|c′n1

∑
l2>0

A(l2, l1)

l1l2
S(n1ū

′ , l2;n1c
′
l−1
1 )B0

0,1

Ç
l2l

2
1

c′
3
n1

å
+
c
′
π−

5
2

4i

∑
l1|c′n1

∑
l2>0

A(l2, l1)

l1l2
S(n1ū

′ ,−l2;n1c
′
l−1
1 )B1

0,1

Ç
l2l

2
1

c′
3
n1

å
,

where
ū− n1

mcn−1
1

:=
u
′

c′

with (u
′
, c
′
) = 1, c

′ |mcn−1
1 and B0

0,1(x) and B1
0,1(x) are defined below (2.5). As

before, we only consider the first term involving B0
0,1(x) in (4.25) since all the

other terms can be treated in a similar way. Since

l2l
2
1

c′
3
n1

√
N

n2
1

� T 1−εM,

by Lemma 2.1 for x =
l2l21
c′

3
n1

,

B0(x) = 2π4xi

∞∫
0

b(y)
d1 sin(6πx

1
3 y

1
3 )

(π3xy)
1
3

dy + lower order terms(4.26)

= π3x
2
3d1

∞∫
0

e(v1(y))q(y)dy − π3x
2
3d1

∞∫
0

e(v2(y))q(y)dy

+ lower order terms,

where

v1(y) = 3x
1
3 y

1
3 − T 2cm

4π2yn2
1

,(4.27)

v2(y) = −3x
1
3 y

1
3 − T 2cm

4π2yn2
1

,(4.28)

and

q(y) = y−
4
3 g

Ç
y2n4

1

N

å
k̂∗
Ç
MTcm

2π2yn2
1

å
.(4.29)
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Since

v
′
1(y) = x

1
3 y−

2
3 +

T 2cm

4π2y2n2
1

� T 2cm

y2n2
1

and q
′
(y)� y−

7
3T ε, we have

v
′
1(y)q

′
(y)−1 � y

4
3
T 2−εcm√

N
� T

5
3 .

By partial integration many times, one shows that the contribution to (4.24)

from the first integral in (4.26) is negligible.

Now we turn to v2(y) defined by (4.28). Since

v
′
2(y) = −x

1
3 y−

2
3 +

T 2cm

4π2y2n2
1

,

if

(4.30) x >
T 6c3m3n2

1

10π6N2
or x 6

T 6c3m3n2
1

1000π6N2
,

one has

|v′2(y)| � T 2cm

y2n2
1

.

As in the arguments above, one shows that under condition (4.30), the con-

tribution to (4.24) from the second integral in (4.26) is negligible. For the

remaining case

(4.31)
T 6c3m3n2

1

1000π6N2
6 x 6

T 6c3m3n2
1

10π6N2
, i.e.,

L2

1000
6 l2 6

L2

10

with

L2 =
T 6c3m3n3

1c
′3

π6N2l21
,

we have

|v′′2 (y)| � T 2cm

y3n2
1

� T 2cmN−
3
2n4

1.

Therefore, by the second derivative test ([Hux96, p. 88]), one derives that

(4.32) B0(x)� x
2
3

(
T 2cmN−

3
2n4

1

)− 1
2

Ç√
N

n2
1

å− 4
3

T ε � T 3+εc
3
2N−

5
4n2

1m
3
2 .



GL(3)×GL(2) L-FUNCTIONS AND GL(3) L-FUNCTIONS 323

Combining (4.24), (4.25), and (4.32), and invoking the trivial bound for the

Kloosterman sum, one concludes that‹R+
3 �MT

∑
m>1

m−1
∑

c6C2/m

c−1
∑
n1|cm

n−1
1

∑
u(mod mcn−1

1 )

(1 + un1, c)c
′ ∑
l1|c′n1

∑
L2
100
6l26

L2
10

|A(l1, l2)|
l1l2

× n1c
′
l−1
1 T 3+εc

3
2N−

5
4n2

1m
3
2 +O(MT 1+ε)

� NT−
1
2M−

7
2 +O(MT 1+ε)�MT 1+ε

since M > T
3
8 . This finishes the estimation of R+.

5. The terms related to the K-Bessel function

This section is devoted to the estimation of R− which is defined by (2.23).

We split R− into two parts R−1 and R−2 with

(5.1) R−1 =
∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å ∑
c>C/m

c−1S(n, 1; c)H−m,n

Ç
4π
√
n

c

å
and

(5.2) R−2 =
∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å ∑
c6C/m

c−1S(n, 1; c)H−m,n

Ç
4π
√
n

c

å
;

here

(5.3) C =
√
N + T.

First we will estimate (5.1). By (2.24) and the following formula ([Wat95,

p. 78])

Kν(z) =
1

2
π
I−ν(z)− Iν(z)

sin νπ

where Iν(z) is the I-Bessel function, we have

H−m,n(x) = 2

∞∫
−∞

I−2it(x)− I2it(x)

sin 2itπ
sinh(πt)k(t)V (m2n, t)tdt

= −4

∞∫
−∞

I2it(x)

sin 2itπ
sinh(πt)k(t)V (m2n, t)tdt.
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Moving the line of integration to =t = −σ = −100, H−m,n(x) becomes

−4

∞∫
−∞

[sinπ(2σ + 2iy)]−1 I2σ+2iy(x) sinhπ(−σi+ y)(5.4)

× k(−σi+ y)V (m2n,−σi+ y)(−σi+ y)dy.

By the following formula ([GR00, 8.431 3])

Iν(x) =

(x
2

)ν
Γ(ν + 1

2)Γ(1
2)

π∫
0

ex cos θ sin2ν θdθ

for <ν > −1
2 , one derives that

(5.5) I2σ+2iy(x)�σ x
2σ|y|−2σeπyex.

Combining (5.4), (5.5), and (4.7), we have

(5.6) H−m,n(x)� x2σex(m2n)−σT σ+1+εM.

By (2.7), (5.5), and the trivial bound for the Kloosterman sum, one obtains

that

R−1 �
∑
m>1

∑
n>1

|A(n,m)|
(m2n)

1
2

g

Ç
m2n

N

å ∑
c>C/m

Ç√
n

c

å2σ

T σ+1+ε(m2n)−σM

� N
1
2T 2−σ+εM � 1.

It remains to estimate R−2 . By the following integral representation of the

K-Bessel function (see [GR00, 8.432 4])

K2it(x) =
1

2
cosh−1 tπ

∞∫
−∞

cos(x sinh ζ)e

Å
− tζ
π

ã
dζ

and partial integration in ζ once, we have

H−m,n(x) =
4

π

∞∫
0

∫
|ζ|6T ε

tanhπte−
(t−T )2

M2 V (m2n, t)t cos(x sinh ζ)

× e
Å
− tζ
π

ã
dζdt+O(T−A),

where A is arbitrarily large. By making a change of variable t−T
M → t,

H−m,n(x) =
4M

π

∞∫
− T
M

∫
|ζ|6T ε

tanhπ(tM + T )e−t
2
V (m2n, tM + T )

× (tM + T ) cos(x sinh ζ)e

Å
− tMζ

π
− Tζ

π

ã
dtdζ +O(T−A).
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Following the derivation of Proposition 4.1, by extending the t integral to

(−∞,∞) with a negligible error term, we have

H−m,n(x) = H−,1m,n(x) +H−,2m,n(x) +O(T−A),

where

H−,1m,n(x) =
4MT

π

∞∫
t=−∞

∫
|ζ|6T ε

e−t
2
V (m2n, tM + T ) cos(x sinh ζ)

× e
Ç
−(tM + T )ζ

π

å
dtdζ

and

H−,2m,n(x) =
4M2

π

∞∫
t=−∞

∫
|ζ|6T ε

te−t
2
V (m2n, tM + T ) cos(x sinh ζ)

× e
Ç
−(tM + T )ζ

π

å
dtdζ.

In the following we only treat H−,1m,n(x). H−,2m,n(x) is a lower order term which

can be handled in a similar way. It is clear that

H−,1m,n(x) =
4MT

π

∫
|ζ|6T ε

k̂∗
Å
Mζ

π

ã
cos(x sinh ζ)e

Å
−Tζ
π

ã
dζ

which is equal to

(5.7) 4T

∫
|ζ|6π−1MT ε

k̂∗(ζ) cos

Å
x sinh

ζπ

M

ã
e

Å
−Tζ
M

ã
dζ

by making a change of variable Mζ
π → ζ. Since k̂∗(ζ) is a Schwartz class

function, one can extend the above integral to (−∞,∞) with a negligible error

term. Now let

Ym,n(x) := T

∞∫
−∞

k̂∗(ζ) cos

Å
x sinh

ζπ

M

ã
e

Å
−Tζ
M

ã
dζ

and

(5.8) Y ∗m,n(x) := T

∞∫
−∞

k̂∗(ζ)e

Å
−Tζ
M

+
x

2π
sinh

ζπ

M

ã
dζ.

Then

(5.9) Ym,n(x) =
Y ∗m,n(x) + Y ∗m,n(−x)

2

and

H−,1m,n(x) = 4Ym,n(x) +O(T−A)
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with A arbitrarily large. Let

Ω(ζ) =
x sinh ζπ

M

2π
− Tζ

M
;

then

Ω
′
(ζ) =

x cosh ζπ
M

2M
− T

M
.

Next, if

|x| 6 1

100
T or |x| > 100T,

then

Ω
′
(ζ)� T

M
� T ε;

hence by partial integrations,

Y ∗m,n(x)� T−A

with A > 0 arbitrarily large. We are left with the case when

1

100
T 6 x 6 100T and

x

M3
� T−

1
8

(recall M > T
3
8 ). Now

Y ∗m,n(x) = T

∞∫
−∞

k̂∗(ζ)e

Ç
−Tζ
M

+
xζ

2M
+
π2xζ3

12M3
+

π4xζ5

240M5

å
dζ

+O

Ñ
T

∞∫
−∞

|k̂∗(ζ)| |ζ|
7|x|
M7

dζ

é
.

Expanding e
(
π2xζ3

12M3 + π4xζ5

240M5

)
into a Taylor series of order L2, we have

Y ∗m,n(x) = T

∞∫
−∞

k̂∗(ζ)e

Ç
−(2T − x)ζ

2M

å
dζ

×
L2∑
l=0

l∑
j=0

dj,l

Ç
xζ3

M3

åj Ç
xζ5

M5

ål−j
dζ +O

Ç
T |x|L2+1

M3L2+3
+
T |x|
M7

å
,

where dj,l are constants coming from the Taylor expansion and especially

d0,0 = 1. Clearly

Y ∗m,n(x) = T
L2∑
l=0

l∑
j=0

dj,l
xl

M5l−2j
k∗(5l−2j)

Å
x− 2T

2M

ã
(2πi)−5l+2j

+O

Ç
T |x|L2+1

M3L2+3
+
T |x|
M7

å
.

We end up with the following proposition:



GL(3)×GL(2) L-FUNCTIONS AND GL(3) L-FUNCTIONS 327

Proposition 5.1. 1)] For |x| > 100T or x 6 1
100T ,

Y ∗m,n(x)� T−A,

where A > 0 is arbitrarily large and the implied constant depends only on A.

2) For 1
100T 6 |x| 6 100T , T

3
8

+ε 6M 6 T
1
2 and L2 > 1,

Y ∗m,n(x) = T
L2∑
l=0

l∑
j=0

bj,l
xl

M5l−2j
k∗(5l−2j)

Å
x− 2T

2M

ã
+O

Ç
T |x|L2+1

M3L2+3
+
T |x|
M7

å
,

where bj,l are constants depending only on j and l, especially b0,0 = 1.

The contribution to R−2 from the error term O
(
T |x|
M7

)
in the above propo-

sition is O(T 1+εM) by (2.7) and the trivial bound for the Kloosterman sum.

We always take L2 sufficiently large such that the first error term in Propo-

sition 5.1 2) is negligible. From now on we only take the leading term l = 0

since all the other lower order terms can be handled similarly. Let

(5.10)‹R−2 :=T
∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

g

Ç
m2n

N

å ∑
√
N

100Tm
6c6 100

√
N

Tm

c−1S(n, 1; c)k∗
Ç 4π

√
n

c − 2T

2M

å
.

If we sum over n trivially and apply Weil’s bound for the Kloosterman sum,

we derive that ‹R−2 � T
1
2N

3
4

+ε � T
11
4

+ε.

To save T
7
4M−1, we have to sum over n nontrivially using the Voronoi formula

for GL(3). Expanding the Kloosterman sum in (5.10), by Proposition 2.1 we

have ∑
n>1

A(n,m)e

Å
nā

c

ã
r(n)(5.11)

=
cπ−

5
2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)

n1n2
S(ma, n2;mcn−1

1 )R0
0,1

Ç
n2n

2
1

c3m

å
+
cπ−

5
2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)

n1n2
S(ma,−n2;mcn−1

1 )R1
0,1

Ç
n2n

2
1

c3m

å
where

r(y) = g

Ç
m2y

N

å
k∗

Ñ
4π
√
y

c − 2T

2M

é
y−

1
2 ;
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R0
0,1(x) and R1

0,1(x) are as defined below (2.5). As before, in the following,

we only consider R0(x) since x−1R1(x) has similar asymptotic behavior as of

R0(x). Since

n2n
2
1

c3m

N

m2
� T 3

N
1
2

� T
3
2
−ε,

by Lemma 2.1 for x =
n2n2

1
c3m

,

R0(x) = 2π4xi

∞∫
0

r(y)
d1 sin(6πx

1
3 y

1
3 )

(π3xy)
1
3

dy + lower order terms.

If n2 � N
1
2 T ε

M3n2
1

, then

x
1
3 y−

2
3 [r
′
(y)]−1 � T ε.

By partial integration many times, one shows that the contribution to ‹R−2 from

such terms is negligible. Next we assume

n2 �
N

1
2T ε

M3n2
1

.

Since k∗(y)� (1 + |y|)−A for any A > 0, r(y) is negligible unless∣∣∣∣∣∣
2π
√
y

c − T
M

∣∣∣∣∣∣ 6 T ε
which implies that

1

4π2
(Tc− T εMc)2 6 y 6

1

4π2
(Tc+ T εMc)2.

Then

(5.12) R0(x)� x
2
3

Å
N

m2

ã− 5
6

T 1+εMc2.

Combining (5.10), (5.11), (4.22), and (5.12), we have‹R−2 � T
∑

m6
√
N

1

m

∑
√
N

100Tm
6c6 100

√
N

Tm

∑
n1|cm

∑
n2�N

1
2 Tε

M3n2
1

× |A(n1, n2)|
n1n2

mc1+ε

Ç
n2n

2
1

c3m

å 2
3
Å
N

m2

ã− 5
6

T 1+εMc2

� N
1
2M−1T ε � T 1+εM

since M > T
3
8 . This finishes the estimation of R− and hence the proof of the

main theorem.
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Appendix

In this appendix, we consider the subconvexity problem of L(1
2 , f × h)

where f is a self-dual Hecke-Maass form for SL(3,Z) and h runs through holo-

morphic Hecke cusp forms of weight k > 2 and congruent to 0(mod 4) for

SL(2,Z). This analogous problem was suggested by Peter Sarnak and we

would like to thank him here.

Let Bk(SL(2,Z)) denote an orthogonal basis of holomorphic Hecke cusp

forms of weight k ≡ 0(mod 4) for SL(2,Z); each h in Bk(SL(2,Z)) is normalized

to have the first Fourier coefficient ah(1) equal to 1. Set

λh(n) =
ah(n)

n
k−1
2

.

By Deligne [De],

|λh(n)| 6 τ(n).

For f a self-dual Hecke-Maass form of type (ν, ν) for SL(3,Z) with the Fourier-

Whittaker expansion (2.4) and h ∈ Bk(SL(2,Z)), we define the Rankin-Selberg

L-function

L(s, f × h) =
∞∑
m=1

∞∑
n=1

λh(n)A(n,m)

(m2n)s
.

It is entire and satisfies the functional equation

(A.1) Λ(s, f × h) = Λ(1− s, f × h),

where

Λ(s, f × h) = π−3sΓ

(
s+ k−1

2 − α
2

)
Γ

(
s+ k−1

2 − β
2

)
Γ

(
s+ k−1

2 − γ
2

)

× Γ

(
s+ k+1

2 − α
2

)
Γ

(
s+ k+1

2 − β
2

)
Γ

(
s+ k+1

2 − γ
2

)
L(s, f × h)

and

(A.2) α = −3ν + 1, β = 0, γ = 3ν − 1.

The above functional equation can be obtained by examining the template

arising from the case of the minimal parabolic Eisenstein series for GL(3)

twisted by a cusp form in Bk(SL(2,Z)) (see [Gol06, p. 315]). Note that the sign

of the above functional equation is +1 because we restrict k to be congruent to

0(mod 4) (see [IK04, p. 131] and [Iwa97, p. 121]). This is important because

we need the uniformity of the sign of the functional equations of L(1
2 , f × h)

when applying the Petersson formula. The main theorem in this appendix is
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Theorem A.1. Let f be a fixed self-dual Hecke-Maass form for SL(3,Z);

then for ε > 0,K large, and K
3
8

+ε 6M 6 K
1
2 , we have∑

26k≡0(mod 4)

e−
(k−K)2

M2
∑

h∈Bk(SL(2,Z))

L

Å
1

2
, f × h

ã
�ε,f K

1+εM.

As explained in the introduction, Lapid’s theorem applies which means

that L(1
2 × h) > 0. Due to this important property, we have

Corollary A.1. Under the same assumptions as in the above theorem,

L

Å
1

2
, f × h

ã
�ε,f k

11
8

+ε.

The corresponding convexity bound for L(1
2 , f × h) is k

3
2

+ε with ε > 0;

so the above bound breaks the convexity bound. The rest of the paper is

devoted to the proof of Theorem A.1. As in Lemma 2.2, we have the following

approximate functional equation for L(s, f × h):

L

Å
1

2
, f × h

ã
= 2

∑
m>1

∑
n>1

λj(n)A(n,m)

(m2n)
1
2

U(m2n, k),(A.3)

where

U(y, k) =
1

2πi

∫
(1000)

y−uF (u)
γ(1

2 + u, k)

γ(1
2 , k)

du

u

and

γ(s, k) = π−3sΓ

(
s+ k−1

2 − α
2

)
Γ

(
s+ k−1

2 − β
2

)
Γ

(
s+ k−1

2 − γ
2

)

× Γ

(
s+ k+1

2 − α
2

)
Γ

(
s+ k+1

2 − β
2

)
Γ

(
s+ k+1

2 − γ
2

)
.

We introduce the spectrally normalized first moment of the central values of

L-functions

A :=
∑

26k≡0(mod 4)

e−
(k−K)2

M2
∑

h∈Bk(SL(2,Z))

KL(1
2 , f × h)

(k − 1)L(1, sym2h)
.

The weights L−1(1, sym2h) are needed in the Petersson formula and they are

harmless since it is known ([Iwa02], [HL94]) that

k−ε � L(1, sym2h)� kε

for any ε > 0. Applying (A.1) to A, it is enough to show

(A.4)∑
26k≡0(mod 4)

e−
(k−K)2

M2
K

k − 1

∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

U(m2n, k)g

Ç
m2n

N

å
Fk � K1+εM.
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Here g is a fixed smooth function of compact support on [1, 2], 1 6 N �ε K
3+ε,

and

Fk =
∑

h∈Bk(SL(2,Z))

λh(n)

L(1, sym2h)
.

By Petersson’s formula (see [ILS00, p. 111], for example),

(A.5) Fk =
k − 1

2π2

δ(n, 1) + 2π
∑
c>1

c−1S(n, 1; c)Jk−1

Ç
4π
√
n

c

å .
We then write the left side of (A.4) as

Dw +NDw,

where

(A.6) Dw =
∑

26k≡0(mod 4)

K

2π2
e−

(k−K)2

M2
∑
m>1

A(1,m)

m
U(m2, k)g

Ç
m2

N

å
and

NDw =
∑

26k≡0(mod 4)

K

π
e−

(k−K)2

M2
∑
m>1

∑
n>1

A(n,m)

(m2n)
1
2

U(m2n, k)(A.7)

× g
Ç
m2n

N

å∑
c>1

c−1S(n, 1; c)Jk−1

Ç
4π
√
n

c

å
.

From (3.2),

Dw � K1+εM,

which is consistent with the desired bound in (A.2).

To estimate NDw, we begin by executing the k-sum by Poissson summa-

tion as in [Iwa97, p. 86] and [Sar01, p. 430]. Applying the following integral

representation [GR00] of the J-Bessel function

Jl(x) =

1
2∫

− 1
2

e(lt)e−ix sin 2πtdt

and the Poisson summation in k yields

(A.8) K
∑

26k≡0(mod 4)

u(k − 1)Jk−1(x) = −1

2
V1(x) +

i

2
V2(x),

where u(x) = e−
(x+1−K)2

M2 U(m2n, x+ 1),

(A.9) V1(x) = K

∞∫
−∞

û(t) sin(x cos 2πt)dt,
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and

(A.10) V2(x) = K

∞∫
−∞

û(t) sin(x sin 2πt)dt,

with û(t) being the Fourier transform of u(x) as defined in (4.12). Since

û(t) = Me(−(K − 1)t)û0(Mt)

with

(A.11) u0(x) = e−x
2
U(m2n, xM +K),

we have

(A.12) V1(x) = K

∞∫
−∞

û0(t)e

Ç
−(K − 1)t

M

å
sin

Å
x cos

2πt

M

ã
dt

and

(A.13) V2(x) = K

∞∫
−∞

û0(t)e

Ç
−(K − 1)t

M

å
sin

Å
x sin

2πt

M

ã
dt.

We will first estimate the contribution to (A.7) from V1(x). Set

V ∗1 (x) = K

∞∫
−∞

û0(t)e

Ç
−(K − 1)t

M
− x

2π
cos

2πt

M

å
dt;

then

V1(x) =
V ∗1 (−x)− V ∗1 (x)

2i
.

One can see that V ∗1 (x) and W ∗m,n(x) (see (4.14)) have similar integral repre-

sentation. Following the derivation of Proposition 4.1, it is straightforward to

derive the following:

Proposition A.2. 1) For |x| 6 K1−εM with ε > 0,

V ∗1 (x)� K−A,

where A > 0 is arbitrarily large and the implied constant depends on ε and A.

2) For K1−εM 6 |x| 6M4,K
3
8

+ε 6M 6 K
1
2 and L2, L1 > 1,

V ∗1 (x) =
KM»
|x|
e

Ç
−x
2π

+
(K − 1)2

4πx

å L1∑
l=0

∑
06l162l

∑
l1
4
6l26L2

cl,l1,l2
M2l−l1(K − 1)4l2−l1

xl+3l2−l1

×
ñ
û

(2l−l1)
0

Ç
(K − 1)M

2πx

å
+

4π6ix

45M6
(t6û0(t))(2l−l1)

Ç
(K − 1)M

2πx

åô
+O

Ö
KM»
|x|

Ç
T 4

|x|3

åL2+1

+K

Ñ
M»
|x|

é2L1+3

+
K|x|
M8

è
,

where cl,l1,l2 are constants depending only on l, l1, and l2.
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Now we consider the contribution to (A.5) from V2(x) given by (A.13).

Set

V ∗2 (x) = K

∞∫
−∞

û0(t)e

Ç
−(K − 1)t

M
+

x

2π
sin

2πt

M

å
dt;

then

V2(x) =
V ∗2 (x)− V ∗2 (−x)

2i
.

One can see that V ∗2 (x) and Y ∗m,n(x) have similar integral representation (see

(5.8)), so they have similar asymptotic behavior (see Proposition 5.1):

Proposition A.3. 1) For |x| > 100K or |x| 6 1
100K ,

V ∗2 (x)� K−A,

where A > 0 is arbitrarily large and the implied constant depends only on A.

2) For 1
100K 6 |x| 6 100K , K

3
8

+ε 6M 6 K
1
2 and L2 > 1,

V ∗2 (x) = K
L2∑
l=0

l∑
j=0

aj,l
xl

M5l−2j
u0

(5l−2j)
Å
x−K + 1

M

ã
+O

Ç
K|x|L2+1

M3L2+3
+
K|x|
M7

å
,

where aj,l are constants depending only on j and l.

Replacing T by (K − 1)/2 and k∗ by u0 in Sections 4 and 5, one can see

that Theorem A.1 follows directly from Propositions A.2 and A.3.
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