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A reciprocity map and the two-variable
p-adic L-function

By ROMYAR SHARIFI

Abstract

For primes p > 5, we propose a conjecture that relates the values of cup
products in the Galois cohomology of the maximal unramified outside p
extension of a cyclotomic field on cyclotomic p-units to the values of p-adic
L-functions of cuspidal eigenforms that satisfy mod p congruences with
Eisenstein series. Passing up the cyclotomic and Hida towers, we construct
an isomorphism of certain spaces that allows us to compare the value of a
reciprocity map on a particular norm compatible system of p-units to what
is essentially the two-variable p-adic L-function of Mazur and Kitagawa.

1. Introduction

1.1. Background. The principal theme of this article is that special ele-
ments in the Galois cohomology of a cyclotomic field should correspond to
special elements in the quotient of the homology group of a modular curve by
an Eisenstein ideal. The elements on the Galois side of the picture arise as
cup products of units in our cyclotomic field, while the elements on the mod-
ular side arise in alternate forms of our conjecture from Manin symbols and
p-adic L-values of cusp forms that satisfy congruences with Eisenstein series at
primes over p. We can also understand this as a comparison between objects
that interpolate these elements: the value of a reciprocity map on a particular
norm compatible sequence of p-units and an object giving rise to a two-variable
p-adic L-function, taken modulo an Eisenstein ideal.

We make these correspondences explicit via a map from the Galois group
of the maximal unramified abelian pro-p extension of the cyclotomic field of all
p-power roots of unity to the quotient by an Eisenstein ideal of the inverse limit
of first étale cohomology groups of modular curves of p-power level. Recall that
the main conjecture of Iwasawa theory tells us that the p-adic zeta function
provides a characteristic power series for the minus part of the latter Galois
group as an Iwasawa module. In fact, the map we construct is a modification
of that found in the work of M.Ohta on the main conjecture [Oht99]-[Oht07],
which incorporated ideas of Harder-Pink and Kurihara and the Hida-theoretic
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aspects of the work of Wiles into a refinement of the original proof of Mazur-
Wiles. In one of its various guises, our conjecture asserts that this map carries
inverse limits of cup product values on special cyclotomic units to universal
p-adic L-values modulo an Eisenstein ideal, up to a canonical unit.

The reasons to expect such a conjecture, though numerous, are far from
obvious. The core of this article being focused on the statements of the various
forms of this conjecture and the proofs of their equivalence, we take some space
in this first subsection to mention a few of the theoretical reasons that we
expect the conjecture to hold. We omit technical details, deferring them for
the most part to future work.

Initial evidence for our conjecture can be seen in relation to the main
conjecture for modular forms. In fact, we can show that cup products control
the Selmer groups of certain reducible representations, such as the residual
representations attached to newforms that satisfy mod p congruences with
Fisenstein series. More precisely, under weak assumptions, such a Selmer group
will be given as the quotient of an eigenspace of a cyclotomic class group
modulo p by the subgroup generated by a cup product of cyclotomic p-units.
On the other hand, p-adic L-values of such newforms are expected to control
the structure of these Selmer groups by the main conjecture of Iwasawa theory
for modular forms [Gre91, p. 291]. That is, the main conjecture leads us to
expect agreement between these cup products and the mod p reductions of the
p-adic L-values of these newforms inside the proper choice of lattice.

One can think of our conjecture as related to the main conjecture for
modular forms, modulo an Eisenstein ideal, in a quite similar manner to that
in which the classical main conjecture relates to Iwasawa’s construction of the
p-adic zeta function out of cyclotomic p-units. Iwasawa’s theorem provides an
explicit map from the group of norm compatible sequences in the p-completions
of the multiplicative groups of the p-adic fields of p-power roots of unity to the
Iwasawa algebra that sends a compatible sequence of one minus p-power roots
of unity to the p-adic zeta function [Iwa64]. In our conjecture, the two-variable
p-adic L-function modulo an Eisenstein ideal is constructed out of a reciprocity
map applied to the same sequence of cyclotomic p-units, or more loosely, out
of cup products of cyclotomic p-units.

We remark that Fukaya proved a direct analogue of Iwasawa’s theorem
in the modular setting, constructing a certain two-variable p-adic L-function
out of the Beilinson elements that appear in Kato’s Euler system [Fuk03]. In
fact, Kato constructed maps that yield a comparison between these Beilinson
elements, which are cup products of Siegel units, and L-values of cusp forms
[Kat04]. The connection with our elements is seen in the fact that Siegel units
specialize to cyclotomic p-units at cusps. Fukaya constructed her modular
two-variable p-adic L-function via a map arising from Coleman power series.
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Although this map is defined entirely differently from ours, this nonetheless
strongly suggests the existence of a direct correspondence of the sort we con-
jecture.

We feel obliged to emphasize, at this point, that the map that we use arises
in a specific manner from the action of Galois on modular curves, which makes
the conjecture considerably more delicate than a simple correspondence. It is
natural to ask why such a map should be expected to provide our comparison.
At present, the most convincing evidence we have of this is a proof of a par-
ticular specialization of the conjecture. That is, one can derive from [Sha07,
Th. 5.2] that our map takes a particular value of the cup product to a universal
p-adic L-value at the trivial character under the assumption that p does not
divide a certain Bernoulli number, up to a given canonical unit. We describe
this just as briefly but more concretely in the next subsection. It was this result
that convinced us to look at the map we construct here. That the values on
cup products of this consequential map should have prior arithmetic interest
in and of themselves is perhaps the most remarkable aspect of our conjectures.

1.2. A special case. We first describe a special but fundamental case. Set
F = Q(up) for an irregular prime p, and consider the p-completion &p of
the p-units in F. The cup product in the Galois cohomology of the maximal
unramified outside p extension of F' defines a pairing

(-,-):5FX5F—>AF®MP,

where Ap denotes the p-part of the class group of F. This pairing was studied
in detail in [MS03]. We fix a complex embedding ¢ of Q and thereby a p-th root
of unity ¢, = .~ 1(e2™V=1/P). Let w denote the p-adic Teichmiiller character.
For odd t € Z, define

p—1

ar=[[1 -G eer.
i=1
We consider the values (ay, ax_¢) for odd integers ¢ and even integers k. Such
a value can be nontrivial only if the w!~*-eigenspace of Ap is nontrivial, which
is to say, only if p divides the generalized Bernoulli number By ,x-1. We fix
such a k.

Suppose we are given a newform f of weight 2, level p, and character w
(coefficients in Q,) that satisfies a congruence with the normalized Eisenstein
series with I-th eigenvalue 1 + w*~2(1)l for odd primes I # p. Inside the p-adic
representation attached to f is a choice of lattice that corresponds to the first
étale cohomology group of the closed modular curve X1(p) over Q. The action

k—2

of Galois on the resulting residual representation T gives rise directly to a
map
Ap — Homg, (T}, T} ),
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where T}t are the (£1)-eigenspaces of Ty under complex conjugation. We find
a generator of T]j' canonical up to ¢, and therefore we obtain a map

¢f:AI?®Mp—>Tf_®up.

We conjecture that the map ¢ takes values of the cup product on our
special cyclotomic units to the images of p-adic L-values of f in T]? ® pp. In
particular, the space T} (1) may be thought of as a space in which the p-adic
L-values Ly(f,x,s) naturally lie, for x an even character and s € Z,. Let us

denote the image of Ly(f,x,s) in Ty ® pup by Lyp(f,X,s). In this setting, our
conjectures state that

(1‘1) ¢f((atv ak;—t)) =Cpk - Lp(fa Wtila 1)

for some ¢, 1, € (Z/pZ)* independent of ¢ and f.

The first theoretical piece of evidence for this conjecture may be derived
from [Sha07, Th. 5.2]. It implies that (1.1) holds for t = 1 for some ¢, €
(Z/pZ)*, under the assumption that p does not also divide By ,1-». Moreover,
one can show that the value (oy, ax—_¢) is zero only if the Selmer group over
Q of the Tate twist T(t) of Ty is nonzero under certain mild assumptions.
On the other hand, that L,(f,w!~1,1) is zero only if the same Selmer group is
nonzero would follow in this case from the main conjecture of Iwasawa theory
for modular forms. We intend to explore an Iwasawa-theoretic generalization
of this in forthcoming work.

1.3. Summary of the conjectures. Let us now turn to the general setting
and give a condensed but nearly precise overview of the objects to be studied
in our conjectures. Choose a prime p > 5 and a positive integer N prime to p
with p not dividing the number ¢(N) of positive integers relatively prime and
less than or equal to N. The different versions of the conjecture can roughly
be stated as giving, respectively, the following correspondences between to-be-
defined objects:

(1.2) (1= Chpr 1= oy ) ¢ &l 2 ),
(1.3) U9 (1 —C) L%,
(1.4) af Ual? " T (E wh, K, 0, 8).

In the rest of this introduction, we first sketch the definition of the objects on
the Galois (left) side of the picture, followed by the objects on the modular
(right) side, and finish by describing the maps yielding the correspondences.
Let K = Q(unp=). A fixed choice of complex embedding affords us
norm compatible choices (npr of primitive Np"-th roots of unity in the fields
F. = Q(punypr) for r > 1. We let S denote the set of primes over Np and any
real places of any given number field, and we let G, s denote the Galois group
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of the maximal unramified outside S extension of F,.. We then form the cup
product

Hlets(GFmS? Zp(l))®2 — chts(GFmS’ Zp(2))
We use (-, -)f, g to denote the projection of the resulting pairing on S-units
of F}. to the sum of odd, primitive eigenspaces of the second cohomology group
under a twist by Z,(—1) of the standard action of Gal(F}/Q) = (Z/NpZ)*
(see §5.1). In (1.2), we then consider values (1 — C}Qpr, 1-— CJij’“)OFT,S of this
pairing for i, j € Z nonzero modulo Np" with (i, 7, Np) = 1.

Inverse limits of these cup product pairings up the cyclotomic tower allow
us to define a certain reciprocity map W% on norm compatible sequences of
p-units in intermediate extensions of K/F. Put another way, we consider an
exact sequence

1=Xk =T —2Z,—0

of Z,[[Gk,s]]-modules, where Xy is the maximal abelian pro-p quotient of
Gk,s, on which Gi g acts trivially, and 7 is determined by the cocycle that is
the projection map from Gk g to Xg. It yields a long exact sequence among
inverse limits under corestriction of cohomology groups of the G, g, in par-
ticular a coboundary map (see §2.2)

U lim Hyo(Gr,,s, Zp(1) = lim HG (G, 5, Zp(1)) @z, Xk

after twisting by Z,(1). The odd, primitive part of the latter inverse limit is
isomorphic to the odd, primitive part X3  of the maximal unramified quotient
Xk of Xi. Then ¥ is given by composing with projection to X3 ®z, X,
where X denotes the odd part of X. We are interested in (1.3) in the value
V% (1 — ¢) on the norm compatible sequence 1 — ¢ = (1 — {npr), of p-units in
the fields F;.

Finally, we can consider cup products with twisted coefficients. Let w
again denote the Teichmiiller character and k the product of the p-adic cyclo-
tomic character with w™!. Let O ~npr denote the extension of Z, generated by
the values of all Q,-valued characters of (Z/Np"Z)* for any r > 1. For any
even p-adic character ¢ of (Z/Np°Z)* (with s > 1) and t € Z,, we define (as
in §7.1)

Npr—1
of = lim  J] (1=l 0 € Bi(Gaus, Onpe ('wi)),

r—00 -
=1
(i,Np)=1

where Opps (K'w)) designates Opps endowed with a rk'wi-action of Gq,g. We
may then take cup products of pairs of such elements. Suppose that k € Z,, and
that € is an odd character of (Z/Np°Z)*, with the additional assumption that
the restriction of 6 to (Z/NpZ)* is primitive. The cup product o) U azlzlwil

of (1.4) is then the resulting element of H2(Gq.s, Onps (K w0)).
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On the modular side, we need to consider the first étale cohomology
group H} (X1(Np") /@ Z,). Our complex embedding and Poincaré duality
allow us to identify elements of this Galois module with the singular homology
group Hi(X1(Np");Zp) (see §83.4-3.5). This identifies the (£1)-eigenspaces of
H (X1(Np") ey Z,) under complex conjugation with the (F1)-eigenspaces of
Hi(X1(Np");Z,). Both of these groups are modules for a cuspidal Hecke alge-
bra, which acts via the adjoint action on cohomology and the standard action
on homology, and we may consider their ordinary parts, i.e., the submodules
on which the Hecke operator U, is invertible.

The ordinary part of Hq(X(Np");Z,) contains symbols arising from the
classes of paths between cusps in the upper half-plane (see §§3.1-3.2). For
i,j € Z with (i,7, Np) = 1, we may consider the class of the geodesic from
i T
amod Np", and j = b mod Np". The symbol &.(i : j) is given by first applying

in homology relative to the cusps, where ad — bc = 1, i =

the Manin-Drinfeld splitting to the class of this path and then projecting to
the ordinary part.

Inside the part of the cuspidal Z,-Hecke algebra that is ordinary and
primitive under a certain twisted action of the diamond operators, we have the
Eisenstein ideal I, generated by projections of elements of the form 77 —1—1I(l)
with [ prime and [ t Np, along with U; — 1 for [ | Np. Let Y, denote the
localization of Hét(Xl(Np”)/Q;Zp) at the ideal m, generated by I, p, and
(1+p)—1, and let Y, denote its (—1)-eigenspace under complex conjugation.
In (1.2), the symbol &,(i : j) then denotes the projection of &.(i : ) to Y.~ /L. Y,~
(see §5.1).

We now define what we shall refer to as two-variable p-adic L-functions,
which are more precisely sequences of Mazur-Tate elements that interpolate
such L-functions. We let (Z/Np"Z)* denote the set of nonzero elements in
Z/Np"Z. If r > 1 is given, we use [i], to denote the element of Z,[(Z/Np"Z)*]
(see §6.1) corresponding to i € Z with Np" {i. The L-function Ly is defined
in Section 3.3 as the inverse limit

Np'—1
Ly=1lim > U, &(i:1) @i,
r =1
(i,Np)=1
while the modified L-function L% of Section 6.1 is
Np'—1

N=lim Y U7 1) @[],
ro 4=l

The projection of £}, to the Eisenstein component lies in the completed tensor

product Yy @zp A%, where Yy denotes the inverse limit of the Y, and A% is

the inverse limit of the Z,[(Z/Np"Z)*]. The projection of L} to Vy/IVy @z,

(A%)~ is the object £} used in (1.3) (see §6.3).
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We next consider the special values of Ly. First, we apply a character of
the form 1k'~!, where t > 1 and ¢ is an even character on some (Z/Np*Z)>,
obtaining

Npr—1
lim YrITHE)E (1),
r =1

1=
(3,Np)=1

For any odd character 6 on some (Z/Np°Z)* that is primitive on (Z/NpZ)*,
we may consider the maximal quotient of the inverse limit of ordinary ho-
mology groups with Opps-coefficients on which each diamond operator (j)
acts as Ow 'kF"2(j). The image of the above limit in this quotient is de-
noted L, (&, wb, k,1,t) (see §7.2), in that it interpolates the values at the given
t € Z, of the p-adic L-functions with character v of the ordinary cusp forms
of weight k, level Np®, and character §w~'. Finally, we may consider its re-
duction L, (&, w8, k,1,t) modulo the Eisenstein ideal of weight k and character
G,

The key to relating the above Galois-theoretic and modular objects lies

in the construction of maps which take the objects on the left side of our
earlier diagram to those on the right side. These maps should be canonical
up to our original choice of complex embedding and make these identifications
independent of its choice. In the paragraph following Proposition 4.10, we
define, up to a fixed unit in Ay, a homomorphism

¢1: X — Yn/TVy
that arises from the Galois action of Gk g on Yy, particularly the map
X — Homg, (Vy, Vy)

it induces, together with a modification of a pairing of Ohta’s (see Proposi-
tion 4.5). It induces isomorphisms on “good” eigenspaces. The map yielding
(1.2) is then conjectured to be given by the Tate twist of ¢1 by Zy(1), and the
map yielding (1.4) is also conjectured to be induced by a twist of ¢, taking
appropriate quotients.

Secondly, we have a homomorphism

¢2: X — (AN)™
determined by the action of X} on p-power roots of cyclotomic Np-units (see
Proposition 6.2). More precisely, ¢2(0) is the inverse limit of the sequence of
elements of Z,[(Z/Np"Z)*] that have i-th coefficient modulo p® given by the

exponent of (s obtained in applying the Kummer character attached to o to
a p°-th root of 1 — C]i\,pr. The map yielding (1.3) is conjectured to be ¢1 ® ¢s.
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2. Galois cohomology

2.1. Iwasawa modules. Let p be an odd prime, and let N be a positive
integer prime to p. Let F' = Q(unyp). Since Gal(F'/Q) is canonically isomorphic
to (Z/NpZ)*, we may identify characters on the latter group with characters
on the former. Let K denote the cyclotomic Z,-extension of F'. Set

Z,N = I@Z/Np Z,
and note that that Gal(X/Q) is canonically identified with Z . Set

AN = Zp[[Z; ]

When we speak of Ay-modules, unless stated otherwise, the action shall be
that which arises from the action of Gal(K/Q).

We fix, once and for all, a complex embedding ¢: Q — C, which we will
use to make a number of canonical choices. To begin with, for any d > 1, let
¢4 = 171 (e*™/9), which in particular fixes a generator ¢ = ((pr) of the Tate
module. We use this to identify the Tate module of K> with Z,(1), though this
identification is primarily notational (e.g., by Z,(1) in a cohomology group, we
really mean the Tate module canonically).

We use S = Sg to denote the set of primes dividing Np and any real
places in an algebraic extension E of Q. Let Gg g denote the Galois group
of the maximal unramified outside S extension of F, and let Xg denote its
maximal abelian pro-p quotient. Let Op g denote the ring of S-integers of F,
and let &g denote the p-completion of the S-units of K. If T is a profinite
Z,[[Gq,s]]-module and i > 1, then we let

H,ZS'(K’ T)= I;Ln Héts(GE,&T)’
ECK
in which the inverse limit is taken with respect to corestriction maps over the
number fields E contained in K and containing F'.

Let Uk denote the group of norm compatible sequences of S-units for K;
ie.,

Uk = lim Of ¢ ®z Z, = lim E* ®@z Z,.
ECK ECK
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(Note that any norm compatible sequence must consist of p-units, since all
decomposition groups in Gal(K/F') are infinite and only primes over p ramify,
forcing the valuation of the elements of the sequence to be trivial at primes
not over p.) Let Xk g denote the Galois group of the maximal abelian pro-p
extension of K in which all primes (above those in S) split completely. Kummer
theory provides us with the following well-known lemma, of which we sketch a
proof for the convenience of the reader.

LEMMA 2.1. There is a canonical isomorphism
H§(K, Z(1)) = Ug
and a canonical exact sequence
(2.1) 0= Xks— H(K,Z,(1)) > @ Zp, > Z, =0
vESK
of An-modules.

Proof. Let E be a number field in K containing F'. Let Ag g denote the p-
part of the S-class group of F, and let Brg(E) denote the S-part of the Brauer
group of E. The Kummer sequences arising from the G g g-cohomology of the
S-unit group of the maximal unramified outside S-extension of F' [NSWO08,
Prop. 8.3.11] yield compatible short exact sequences
(2.2) 0— Ep/EY — HYGR.s, 1) — Apslp’] — 0
and

0— Aps/p Aps — H*(Gp,s, ppr) — Brs(E)[p'] = 0
for > 1. Considering the isomorphisms

Heo(Gp,s, Zp(1)) = lim H'(Gp.s; 11r)

”
the first statement follows from the finiteness of Ag ¢ and the second by class
field theory. O

2.2. Cup products and the reciprocity map. Now, consider the cup prod-
ucts

Hgts(GE,& Zp(l)) ®Zp Hclts(GE,Sa Zp(l)) i Hcgts(GE,Sa Zp@))
for number fields F in K containing F'. Note that &g = OE g ®z Zy is canoni-
cally isomorphic to HcltS(G E.5, Zp(1)). Therefore, we obtain a resulting pairing
(*,)Es: &6 x Ep — HE(E,Z,(2)).

Recall that £k denotes the p-completion of the S-units in K*. In the
limit under restriction and corestriction maps, we have a “cup product”

Ex ®z, H5(K, Zy(1)) = HE(K,Z,(2)),
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since £ is canonically isomorphic to the p-completion of the direct limit of
the £g. This provides a Z,-bilinear pairing

(-, Vs Ex x Ui — HE(K, Zp(2)).
Remark. In fact, if one takes the limit over I of cup products with p,r-

coefficients first and then the inverse limit with respect to r, one obtains a
product

Hi(Gres, Zp(1)) @z, HE(K, Zy(1)) = HE(K, Zy(2)).
The group HY (Gk.s,Zy(1)) can be identified by Kummer theory with the
A n-module with nontrivial elements those elements of the p-completion of K*

whose p-power roots define Z,-extensions of K that are unramified outside S.
We shall not need this in this article.

Consider the exact sequence
(2.3) 1=>Xk =T —=2Z,—0

of Z,[[Gk, s]]-modules that is determined up to canonical isomorphism by the
natural projection A\: G s — Xx in the sense that for any lift e € 7 of 1 € Z,,
we have A\(g) = g(e) —e for all g € Gk 5. As (2.3) arises as an inverse limit of
exact sequences

1—=Xp =T —Z,—0

given by the projections A,: Gr, ¢ — XF,, we have a coboundary map

that is the inverse limit of the corresponding coboundaries at the finite level.
For any » > 1, we have

o-A(g) = )‘T(Ugg_l)
for 0 € Gq,s and g € GF, g, so this is in fact a homomorphism of A x-modules.
Twisting (2.4) by Z,(1), we obtain a Ay-module homomorphism
Vgt Ui — HE(K,Zy(1)) ®z, Xk

We refer to U as the S-reciprocity map for K.

If a € €k, let m, € Homes(Xk,Z,(1)) denote the corresponding homo-
morphism. The cup product relates to Vg as follows:
(2.5) (a,u)r,s = (1®7a) (Vi (u))

for u € U and a € Ek.

3. Homology of modular curves

3.1. Homology. We assume from now on that p > 5. Let » > 1. Consider
the modular curves Y{(N) = Y1(Np") and X](N) = X (Np") over C and
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the cusps CT(N) = X{(N) — Y{ (V). We have the following exact sequence in
homology:
(3.1)

0 — Hi(X](N): Z,) = Hi(X](N), C{(N); Z,) %> Ho(CF(N); Zy) = 0,
where flo is used to denote reduced homology. Let ), be the modular Z,-Hecke
algebra of weight two and level Np", which acts on H;(X{(N),C{(N);Z,), and
let b, denote the corresponding cuspidal Hecke algebra over Z,, which acts on
H(X{(N);Zy). We have the canonical Manin-Drinfeld splitting over Q,:

sr: Hi(X7(N), C1(N); Qp) = Hi(X7(N); Qp)-
For any r > 1, and a,b € Z with (a,b) = 1, let

() = micionyz,)

denote the image of the cusp corresponding to a/b € P(Q). In general, we
have that (7) = (:Z)T and

52 ().~ (""),

whenever a = ¢/ mod Np", b =V mod Np", and (a,b) = (d/,0') = 1 (cf.,
[DS05, Prop. 3.8.3]). (We use these equalities to extend the definition of these
symbols to include all (}) with (a,b, Np) = 1.)

Let {a, 5}, denote the class in H;(X{(N), C{(N); Z,) of the geodesic from
a to B for a, 8 € PY(Q), which we refer to as a modular symbol. We note
that the set of such modular symbols generate H1(X{(N), C{(N); Z,) over Z,,.
They are subject, in particular, to the relations

{Oé, ﬁ}r + {,8, ’Y}T = {057 ’7}1”
for a, 3,7 € P1(Q). The map 9§, satisfies

s (22 -() - (),

for a,b,c,d € Z with (a,c) = (b,d) = 1.
Furthermore, for u,v € Z/Np"Z with (u,v) = (1), we let

[ ] { —b —a }
Uy =9——, ——

" dNp"’ e¢Npr),’
where a,b,c,d € Z satisfy ad — bc = 1, v = a (mod Np"), and v = b
(mod Np"). This is the image under the Atkin-Lehner operator wpyy-, which
acts on homology through the matrix

0 -1
Npr 0 )’
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of what is usually referred to as a Manin symbol [Man72] (i.e., that associated
to the pair (a,b)). It is independent of the choices of a, b, ¢, and d. We will often
abuse notation and refer to [u : v], for integers u and v with (u,v, Np) = 1.

Recall that b, contains a group of diamond operators that is identified
with (Z/Np"Z)*. We use (j), to denote the element corresponding to j €
(Z/Np"Z)*. The homology group H;(X{(N),C{(N);Z,) has a presentation
as a Zp[(Z/Np"Z)*]-module with generators [u : v|, for u,v € Z/Np"Z and
(u,v) = (1), subject to the relations:

[u:v], + [—v:u), =0,
[u:v]p=[u:u+vy+ut+ov:v,,

[—u: —v], = [u:v],

(3.
(3.
(3.
(3. Gy Hu s vl = [ju s jol,

S Ot e W
= D =

(see [Man72, Th. 1.9] for the presentation over Z,; the latter relation is well-
known and easily checked).

The involution o — —a& on the upper half plane provides us with a de-
composition of homology into (£1)-eigenspaces Hy(X](N),Cj(N);Z,)*. We
denote the relevant projections of modular symbols similarly. The presenta-
tions of these modules are subject to one additional relation
(3.7) [—u:v)E = +[u: v]E.

3.2. Ordinary parts. The ordinary parts b?rd and ﬁ?rd of b, and 9, re-
spectively, consist of the largest direct summands upon which the p-th Hecke
operator U, acts invertibly. Let e, denote Hida’s idempotent, which provides
maps

er: 9, — H%%ande,: bh, — hord,

and similarly for any $),-modules. In particular, (3.1) provides a corresponding
exact sequence of ordinary parts:
(3.8)
0— Hi(X{(N); Zp)” = Hi(X](N), O] (N); Zp)" = Ho(C(N); Z)*** — 0.
We will identify Hy (X7 (N); Z,)°™® with its image in Hy (X} (N), C](N); Z,)°™.

LEMMA 3.1. Suppose that u,v € Z/Np"Z with (u,v) =1 and both u and
v nonzero modulo p". Then

erfu: v, € Hi(X](N); Zyp) .

Proof. By (3.8), it suffices to show that if a, b€ Z with (a,b)= 1and p"{a,
then e, (pfb)r = 0. This is an immediate corollary of [Oht99, Prop. 4.3.4]. O
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For any u,v € Z/Np"Z with (u,v) =1, let us set
&r(u:v) =eposp([u:v]).
By Lemma 3.1, we have & (u : v) = e;[u : v], whenever both v and v are not
divisible by p".
Hida (e.g., [Hid86b]) constructs ordinary Hecke algebras
. rd . rd
bzlgnb,,? and .V):hinijg .
Inverse limits of the ordinary parts of homology groups with respect to the
natural maps of modular curves provide the following h-modules:
H1(N) 2 lim H1 (X (N); Zp) ™™
T

H1(N) = lim s (Hy (X](N), O (N); Zy)) ™.

and

.
We now construct certain inverse limits of our symbols.

LEMMA 3.2. Let u € Z[%] and v € Z. Suppose that p 1 v and that
(u,v, N)Z[%] = Z[%]. Then, for r sufficiently large, the symbols &.(p"u : v) are
compatible under the natural maps of homology groups, providing an element

of H1(N) that we denote as &(u : v).

Proof. Suppose u = u'p~% with v’ € Z prime to p. Choose a,b,c,d € Z
with @ = v mod Np®, b = v mod Np", and p"*ad — bc = 1. Note that

, b —a
[p'u:v], = {deT’ chS}r.
For any t with s <t < r, this maps to
-b —a
Cavgr ey, = e ol
since p'~%a - p"~td — bc = 1. O
Lemma 3.1 now has the following immediate corollary.
COROLLARY 3.3. Letu andv be as in Lemma 3.2, and suppose that u ¢ Z.
Then &(u : v) € Hi(N).

3.3. The two-variable p-adic L-function. Mazur [Maz] (see also [Maz79,
§I11.2]) considers the 1 (N)-valued measure Ay on Z \ determined by

AN(a+ Np"Zyn) =U, "¢(p "a: 1),

where a € Z is prime to Np and » > 0. We have an element Ly GHl(N)®szN
(where @zp denotes the completed tensor product), essentially the Mazur-
Kitagawa two-variable p-adic L-function [Kit94], determined by

(39) Rew) = [ owe (V) 9z, Q,

ZP,N
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for any character x € Homets(Z,, N,dpx) and induced map
X: Hi(N) @Zp Ay = Hi(N) ®z, Qp.
Denoting the group element in Ay corresponding to j € Z;;’ ~ by [j], we have

Np™—1
Ly =lim z;) U, 65+ 1) @ [jlr € Hi(N) ®z, An,
]:
(j,Np)=1
where [j], denotes the image of [j] in Z,[(Z/Np"Z)*].
We shall require certain modified versions of this L-function. In this sec-
tion, we mention the following generalization. For any M dividing N, let us

set
Np"—1

(3.10) Lypr=lm Y U6 M) @[] € Hi(N) @z, An-
G dp)=1

One can also define this similarly to (3.9) by integration, replacing Ay by An
with

Avm(a+ Np'Z,N)=U,"E(p "a: M).
We will now explain why Ly s is well-defined.

In general, suppose that ¢ is a positive divisor of Np" for some r and u
and v are positive integers not divisible by Np" with (tu,v, Np) = 1. Let
@ = Np"/t, and choose a,b,c,d € Z with tad — bc = 1, a = wmod Np", and
b =v mod Np". For any such ¢, we define

II o™

lINp
[ prime

where m; denotes the [-adic valuation of ¢t. Then

Ultu : v], = Uy { —b }

dNp"’ c¢Np"
_Z{ b+ kdNp" —a+ch}
tdNp™ > ¢Npr J,
= Z[u—i— kEQ : v,
k=0
We obtain
t—1

(3.11) Ul (tu 2 v) Zgru—i—kQ v).
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Hence, for s > r and any positive i« < Np" with (i, Np) = 1, the quantity

psfr_l
N &(i+ kNP M) @ i + kNp']
k=0
€ Hi(X{(N), G} (N); Z,)”™ ©3, Z,[(Z/Np°Z)"]
maps to

Uy "&(p" i s M) @[], € Hi(XT(N), C3(N); Zp)"™ @3, Zy[(Z/Np"Z)*]
and, therefore, to
Uy~ "6 (i: M) @[], € Hi(XT(N), C(N); Zp)”™ ®z, Zy[(Z/Np"Z)*]

under the maps inducing the inverse limit in (3.10).
The following is immediate from Lemma 3.1.

COROLLARY 3.4. The L-function Ly lies in Hi(N) @zp Ay.

3.4. Cohomology. We now explore the relationship between homology and
cohomology groups of modular curves. We show that, for our purposes, they
are interchangeable. For this, we consider exact sequences in reduced (singular)
homology and cohomology of our modular curves and commutative diagrams
induced by Poincaré duality. We refer the reader to [Ste82, §1.8] as well.

PROPOSITION 3.5. Forr > 1, we have canonical commutative diagrams
(3.12)
0 — Hi(X{(N);Zp) — Hi(X{(N),C{(N); Zy) — Ho(C{(N); Z) — 0
| | |
0 — H'(X{(N); Zy) —— H'(Y{ (N); Zy) —— HO(C{(N); Zy) — 0
that are compatible with the natural maps on homology and trace maps on

cohomology. Furthermore, the actions of §, on the homology groups and the
adjoint Hecke algebras £ on the cohomology groups are compatible.

Proof. Let D = Z,[P*(Q)], and let Dy denote the kernel of the obvious
augmentation map D — Z,. Set G, = I'{(Np"). Using the homological
version of [AS86, Prop. 4.2], we may rewrite the top exact sequence in (3.12)
canonically as

0 — kera — (Do)g, — ker(Dg, — Z,) — 0.
As in [AS86, loc. cit.], the Z,-dual of this sequence is canonically

(313) 0 HY(X{(N);Zy) ¢ H (Y] (N);Zp) « H(CT(N); Zp) 0
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as an exact sequence of $),.-modules. Finally, Poincaré duality implies that the
Z,-dual of the latter sequence is canonically the exact sequence of §;-modules,

0 = H'(X{(N);Zy) » H' (Y] (N); Zp) — H*(C{(N); Z) = 0,

via cup product (fixing a generator of H2(Y{"(N); Z,) corresponding to a simple
counterclockwise loop around a point in the upper half-plane), and it is well-
known that the Hecke and adjoint Hecke actions are compatible with the cup
product.

Now, the natural surjections (Dg)g, — (Do)g, for s > r yield the natural
injections

Homg, (Do, Z,,) — Homg, (Do, Z,),

in the dual, and these maps are all compatible with the standard Hecke ac-
tions arising from the action of GLy(Q)™" on Dg. Furthermore, the trace maps
HY(Y#(N);Z,) — HY (Y[ (N);Z,) are compatible with the actions of the ad-
joint Hecke algebras, and agree with the latter inclusions under Poincaré du-
ality. The rest follows easily. O

As before, we have a Manin-Drinfeld splitting
s HY (Y] (N); Qp) — HY(XT(N): Qp)
and cohomology groups

HY(N) = lim H'(X](N); Z,)*" and H' (V) = lim s" (H' (Y] (N ); Z,))°",

where the inverse limits are taken with respect to trace maps and “ord” now
denotes the part upon which the adjoint Hecke operator Uy acts invertibly.
These are modules over

* h(in(f):)ord andﬁ* — hgn(f):)ord7
respectively.

3.5. Galois actions. Our fixed embedding :: Q < C defines compatible
isomorphisms

" HY(X](N): Qp) = Hey(XT(N) i Qp)
and therefore an isomorphism ® in the inverse limit. We define
Hg(N) = ®(H'(N)) and Hg (N) = D(H'(N)).

Using, for instance, the duality between the top sequence in (3.12) and
the exact sequence in (3.13), we have Galois actions on homology as well,
producing étale homology groups and isomorphisms

@, Hy(X](N); Qp) = HY'(X](N) ;5 Qp),
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resulting in an isomorphism in the inverse limit that we also label ®. We define

H{'(N) = ®(Hi(N)) and Hi'(N) = ®(H1(N)).

Note that the isomorphisms between étale homology and cohomology
groups resulting from Proposition 3.5 and our choice of ¢ are not isomorphisms
of Galois modules. Rather, Poincaré duality yields a perfect pairing

HY, (X} (N) s Zp) X HY(XT(N) s Zp(1)) = HA(XF(N) i Zp(1)) = Z,

of Galois modules. We have canonical isomorphisms H{'(N) & H (N)(1), and
similarly, H$' (V) = H}, (N)(1). Though we will continue to identify elements
of H$'(IV) with elements of H}, (), we also need to remain aware of the Galois
actions for later applications.

Note that the image of Ly s in Heit(N) @zp Ay depends upon ¢, since P,
applied to &.(j : M) for j prime to Np varies with ¢ (i.e., is not fixed by the
absolute Galois group Gq).

4. First form of the conjecture

4.1. Eigenspaces. We continue to fix p prime (with p > 5) and N > 1
prime to p. We assume from now on that (Z/NZ)* has prime-to-p order.
That is, we assume that p does not divide ¢(NN), where ¢ denotes the Euler-
phi function.

For a Z,[(Z/NpZ)*]-module A, we define the primitive part of A to be

ker(A—> @ A®Zp[(Z/NpZ)><] Zp[(Z/MZ)X]>.
M|Np
Np/M prime
Since p 1 ¢(N), the primitive part of A is canonically a direct summand of A
with complement

3 Aker(Z/NpZ)* —(Z/MZ)*)
MI|Np
Np/M prime
We define A° to be the submodule of A consisting of all elements of the prim-
itive part of A upon which —1 € (Z/NpZ)* acts as multiplication by —1, i.e,
the odd part of the primitive part of A.

Remark. For now, we work with the above definition of A°. Later, the
notation A° will depend upon A.

We may phrase this in terms of eigenspaces of Z,[(Z/NpZ)*]-modules.
Given a Dirichlet character x: (Z/NpZ)* — @X of conductor dividing Np,
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let R, denote the ring generated over Z, by the values of x. Then R, is
canonically a quotient of Z,[(Z/NpZ)*]. For a Z,[(Z/NpZ)*]-module A, set

AN = A @g, 1z /npz)<) Ry

This is canonically a quotient of A and is an R, [(Z/NpZ)*]-module with a
x-action.

Let ¥ denote the set of Gq,-conjugacy classes of Dirichlet characters on
(Z/NpZ)*. We use (x) to denote the class of x. The direct sum of the quotient
maps gives rise to a decomposition

A @ AX)
(x)ex
canonical up to the choice of representatives of the classes. Let Yy, denote
the subset of ¥ consisting of classes of primitive characters, i.e., of characters
of conductor Np. For a Z,[(Z/NpZ)*]-module A, we then have

g@A

(X)EZNp
x odd
4.2. FEisenstein components. We will have need to distinguish between Ga-
lois and Hecke actions of Ay on certain modules that have both. Therefore,
we write A?V for Ay when we consider it together with its canonical surjec-
tion onto the Z,-subalgebra of h (resp., h*) topologically generated by the
diamond operators (j) (resp., adjoint diamond operators (j)*) for j € Z; N

Let ¢: A?V — (A?V)O denote the natural projection map, viewing A?V as a
Z,[(Z/NpZ)*]-module in the obvious manner. Let w: (Z/NpZ)* — Zj
denote the Dirichlet (Teichmiiller) character which factors as projection to
(Z/pZ)* followed by the natural inclusion, and which we will also view as
a character on Z) . Let r: Z)y — Z; denote the canonical projection to
1+ pZ, We deﬁne the Elsenstem 1deal Z of b to be the ideal generated by
Ty —1—1{l) and {I) — e({I))w(l)~* for I { Np, along with U, — 1 for [ | Np. Let
m =7+ (p,(1+p) — 1)h. (Despite the notation, m need not be a maximal
ideal of h.) Using the same definition with adjoint operators, we have corre-
sponding ideals of h*, which we also denote respectively as Z and m, by abuse
of notation. We also have an Eisenstein ideal J of $) with the same generators
and M =T+ (p, (1 +p) — 1)$ (and similarly for H*).
We define the “localization” of h* at m by

= I b

m’Ch* maximal
mCm’

(and similarly for ). This is well-known to be a direct summand of h*. When
we refer to elements of h* and its modules as elements of b, and localizations
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at m of said modules, we shall mean after taking the appropriate projection
map. We use this notation without further comment.

When needed, we will denote the eigenspace of an hy-module Z upon
which the adjoint diamond operators (j)* with j € (Z/NpZ)* act by 6w=1(j),
where 6 is a primitive, odd Dirichlet character of conductor Np, by Z{. We
remark that m( is the maximal ideal of the nontrivial eigenspace (b )% when
p divides the generalized Bernoulli number By g, and the inverse images of such
m'? in h* are exactly the maximal ideals of h* containing m.

Let Zy = H:(N)wm and Yn = HL(N)m. We note the following useful
fact.

LEMMA 4.1. The inverse limit of the maps s induces a canonical iso-
morphism

(lim H}, (Y7 (V): Z,)") @5 b7, > 2.

Proof. The action of 5, on Zy factors by definition through the action of
bi, so the s” do indeed induce a canonical surjective map s as in the statement
of the lemma, which we must show is injective. For this, we first note that the
natural map ¢: Yy — Zp is by definition injective, as is then the natural map

t: Yy — (lim He (Y] (N); Zy) ™) @+ by,

given that s ot = «. By [Oht03, Th. 1.5.5] and [Oht03, Cor. A.2.4], we have
that the congruence module Zy /Yy is isomorphic to by /Z. In turn, this is
isomorphic by [Oht03, Th. 2.3.6] to

/T Dy by = (lim H (O] (N), Z)™™) @5+ by,
which is canonically the cokernel of ¢. It follows that s is injective as well. [

We have that Zy (resp., V) decomposes into a direct sum of (£1)-
eigenspaces Zﬁ (resp., y]j\[,) under the complex conjugation determined by our
complex embedding (. We wish to compare this decomposition to another
standard sort of decomposition, determined locally at a prime above p, that
is well-understood by work of Ohta [Oht05], building on work of Mazur-Wiles
[MW86] and Tilouine [Til87].

Let 0 be a primitive, odd Dirichlet character of conductor Np with p | By g.
For now, let D, be an arbitrary decomposition group at p, and let 6 be any
element of its inertia subgroup I, such that w(d) has order p —1 and such that
the closed subgroup generated by § has trivial maximal pro-p quotient. Set
Zy = (ZJ@)]P, and let Zj consist of those elements of ZJ@ upon which ¢ acts
by a nontrivial power of w(J).

Abusing notation, we denote the eigenspace of A?V upon which the group

element [j] for j € (Z/NpZ)* acts by fw™"' by AX‘?, and we use £§3> to denote
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its quotient field. Recalling, for instance, [Oht00, Cor. 2.3.6] and [Oht99,
Lemma 5.1.3] and using the fact that (Zx/Vn) is A%Ltorsion, we have that
Z]@ = 7)) ® Zy as (b))% -modules, where Zj is free of rank 1 and the tensor
product of Zj with 2§3> over A§3> is free over (h%) @4, £§3>.

Consider the representation

po: Gq — Auth;k“ (Z;\?>)
of the absolute Galois group Gq, and the four maps

ag: GQ — Endf):% (Zé), by : GQ — HOIIlh;:1 (Zg, Zé),
Cp: GQ — Homb;] (Zé, Zg), dg: GQ — Endhlﬂ;‘ (Zg)

that py induces, which allow us to view pg in matrix form as
ag(o) by(o ))
g) =
pote) (Ce(o’) dy(0)
for 0 € Gq. Note that Endy: (Zg) = (h%)? and similarly for Zj, and let

By and Cy denote the (h;)<9>—modules generated by the images of by and ¢y
respectively.

PROPOSITION 4.2. Let 0 be a primitive, odd, nonquadratic Dirichlet char-
acter of conductor Np such that p | B1g. Then

(41) po(Gx) = {(3 ?) |a,6 € 14T, B € By, 7 € Cy, a6 — By = 1}.

Proof. The induced maps bg: G — By/IBg and é: Gx — Cy/ZCy
are surjective homomorphisms, which follows as in [Oht99, Lemma 5.3.18]
(with Zy replacing Yy and for Cy just as for By). Since §? # 1, eigenspace
considerations yield that the fixed fields of the kernels of by and ¢ on G
intersect precisely in K.

Let G denote the group on the right-hand side of (4.1), which we know con-
tains pp(G ) by the same argument as in [Oht99, Lemma 5.3.12] (as described
for instance in [Oht07, §4.2], noting Lemma 4.1). To prove the proposition, it
suffices to note that the diagram

h l(%)*’ﬁﬂ

BQ/IBQ &) C@/ICQ

commutes, with the vertical map inducing an isomorphism on G®". For this
latter claim, we compute the commutator subgroup of G.
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Note that ByCy = ZI9 by the same argument that leads to [Oht99,
Cor. 5.3.13], together with [Oht07, Cor. 4.1.12]. Let us set

o — {(3 ?) 0,6 €1+Z9 B eIBy, ~eICy, a5—ﬁ7:1},

and let L, D, and U denote the subgroups of G’ consisting of lower-triangular
unipotent, diagonal, and upper-triangular unipotent matrices in G’, respec-
tively. Since G’ = LDU as sets, our claim amounts to showing that L, D, and
U are subgroups of [G, G].

First, note that

@) G =6 )

for a € 1+ 7 and 8 € By, so U C [G,G]. Similarly, we have L C [G,G].
Next, let 3 € By and v € Cy, set t = By € Z¥), and consider the commutator

GG - i)

Setting u = 1 — ¢, and observing that

uw 0 1 0\ [/1—t¢t tp 1 —tu™'p
0 ut) \tuly 1)\ —ty 14+t+t2)\0 1 ’
we have D C [G,G]. Thus G’ = [G, G], and G is as desired. O

We are now ready to compare the two types of decompositions of Z ]<\?>.

THEOREM 4.3. For any primitive, odd Dirichlet character 6 of conductor
Np such that p | By, there exist a decomposition group D, at p in Gq and an
element 0 of its inertia subgroup I, for which w(d) has order p—1 and the closed

subgroup generated by 6 has trivial pro-p quotient such that (Z]'G)<9> = (Z}?)IP

and (Z](,)w> is the submodule of Z]<\€> upon which § acts by a nontrivial power
of w(0).

Proof. It suffices to show that for any choice of D), and §, there exists
a conjugate 7 of our fixed complex conjugation 7y such that, in our earlier
notation, pg(7) = (' ?). Letting det pg denote the composition of det pg with
the projection (h%)@ — (h*/m){?, the image of py is isomorphic to the semi-
direct product of the pro-p group ker(det pg)/ ker py with the finite prime-to-p
group im(det pg) (see, for example, [Oht00, Lemma 3.3.5]).

Since any two Sylow 2-subgroups in the image of pg are conjugate, two

elements of order two in the image are conjugate by the image of an element
of Gq if their determinants agree. As det pp(79) = —1, it suffices to show that
(o'9) € po(Gq). If 6(5) has even order 2m, then pg(6™) = (' 9).
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If 6(8) has odd order, which in particular implies §% # 1, we take a different
approach, exploiting our knowledge of the image of py. Taking tensor products
over A = A§3>, we have

(Z5) 0 0p 20 = Zg @0y £ = Zh on £ = (05) ©4 £

by [Oht99, Lemma 5.1.3] and [Hid86a, p. 588]. We therefore have that pg(mp) =
P (') P! for some

P € Auty, (2 @1 &) 2 GLy((h75)” @4 £V)

of determinant 1. If P = (f: ’?), then

_(—(ad+By)  2a8
po(70) = ( —244 a5+57> ‘

Since ad — By = 1 and afByd € T, exactly one of By and od is a unit in
(h=){¥). However, it cannot be v, as this would force

ad + By = By =1mod m®

contradicting det P = 1 mod m'?). It follows that v € Z® and ad = 1 mod
79 . Right multiplying P by the diagonal matrix of determinant 1 with upper-
left entry a1, it is possible to choose both a and § to be 1 modulo Z{). Since
af € By and v0 € Cy, we must have 8 € By and v € Cy. By Proposition 4.2, P
is then an element of pg(Gk ). It follows that (' V) € pp(Gq), as desired. O

Remark. One might ask if it is possible to use the same decomposition
group D, and element § for all choices of 6 in Theorem 4.3. In fact, if N =1,
or if p does not divide By g1 for any 6 with p | By g, then this follows quickly
from an examination of the proofs of Proposition 4.2 and Theorem 4.3. For
N =1, the image of §=1/2 ig the desired automorphism for all §, which in
this case are the odd powers of w. If p does not divide any Bj g1, then the
analogue of Proposition 4.2 holds for the full representation of Gq on Zy, and
the second method of proof in Theorem 4.3 yields the result.

4.3. A comparison of Iwasawa and Hecke modules. In [Oht95, Def. 4.1.17],
Ohta defines a perfect Zy[[1 + pZy]]-bilinear pairing

Hg(N) x Hg(N) = Zy[[1 + pZy],

viewing Z,[[1+ pZ,]] as a subring of A?V. We now give a slight modification of
this.
Consider first the (canonical) twisted Poincaré duality pairing

(+y)rs HUXT(N), Zp) x HY(XT(N), Z,) = Z,
defined by the cup product

(2, y)r =2 U (wnpr (Uy)"y),
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where wy,- again denotes the Atkin-Lehner involution. It is perfect and sat-
isfies

(T2, y)r = (2, T"y)r
for all z,y € HY(XT(N),Z,)°™d and T* € b?.

PROPOSITION 4.4. There exists a canonical perfect, A?V—bz'linear PaLTINg
(-, Yn: HY(N) x HY(N) = A}
defined by the formula

Np™—1

(wy)v =lim > (@, Gl € AY
T j=1
(4,Np)=1

for x = (x,),y = (y.) € HY(N) and satisfying
for all T* € h*.

Proof. Let r > 1. The operator wy,r+1Upwpyyr on Hi(X]TH(N); Zp) is

given by the sum
pl( 1 0)
7=0 ij 1)

Therefore, the natural (restriction) map from Hi (X7 (N); Zy) is given by lifting
and applying the operator
p—1
W pr+1 Upwipr Z (14+ kNp").
k=0

It follows then from Proposition 3.5 and the compatibility of the comparison
maps with restriction and Atkin-Lehner operators that the map

Res: H'(X](N),Z,) — H'(X]"'(N),Z,)
that is identified with restriction on parabolic cohomology satisfies
p—1
Res(yr) = wypr+1 Upwnyr Z(l +ENDP") 1Y
k=0
As the trace map commutes with U; and wyyr, it follows that
p—1
Res(wNpT(U;)Tyr) = Wnpr+1 (U;)TH Z<1 + kNpr>;+1y7‘+l
k=0
and, therefore, that

p—1
<xr+1, Z<1 + kNpr>:+lyr+1> = (@r, Yr)r-
k=0 r+1
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Thus, the formula for (z,y)y is well-defined. By definition, (-, -)y is A?V—
bilinear and satisfies the desired compatibility with the action of h*.

Since our pairing is A?\,—bilinear, its perfectness reduces to the question of
the perfectness of the resulting pairings on eigenspaces

(o)W L) s YN A

for any character 6 on (Z/NpZ)*. This is turn reduces to the perfectness of
the pairing at level Np given by the projection of

Np—1
> (z, G vl
j=1
(7,Np)=1
to Z,[(Z/NpZ)*] for x1, y1 € (H' (XL (N),Zy)" ). This follows immedi-
ately from the perfectness of (-, - );. O

Using ¢, the pairing of Proposition 4.4 allows us to define a A?V—Valued
pairing on H} (N), likewise denoted (-, -)n. This is Galois equivariant with
respect to the action of Gal(K/Q) on A} which, for the arithmetic Frobenius
oy attached to any prime [ { Np, is given by (I[[])~!. This follows from the
fact that wNpral<l> = O|WNpr ON H ( ( ) p),
ariance of the Poincaré duality pairing to Z,(—1) (as in the proof of [Oht95,
Cor. 4.2.8(ii)]).

PROPOSITION 4.5. There ezists a perfect, bk /Z-bilinear pairing
ZN/YN X INITVN = /T,

canonical up to the choice of t.

together with Galois equiv-

Proof. We may consider the restriction of the pairing (-, -)ny on étale
cohomology to a perfect pairing
(-, IN: N XyN—>A?V
on Eisenstein parts. Let 6 denote an odd, primitive Dirichlet character of

(0)

conductor Np. Restriction provides a perfect Ay
(NN < I =AY
satisfying the same Hecke compatibility as (-, - ) n.
Since ZJ@ and y}@ are both free of the same Aﬁ—rank with y}? CcZ <9>,
o)
><

) uniquely to a pairing

-bilinear pairing

we may extend (-,
(4.2) 20 x Y - 2

to the quotient field of Ag\ép. The aforementioned Galois equivariance implies
that (Z]@)i pairs trivially with (y]@)i. Note that (y}ﬁ>)+/1(y§§>)+ and
(Z]@)_ / (y]<\(,9>)_ are both isomorphic to (h*/Z)'?) as Hecke modules. Reducing
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0 . . .
modulo A§V> and taking the direct sum over a set of representatives for the odd
classes in ¥, we finally obtain our pairing. O

LEMMA 4.6. Let r > 1, and let u and v be positive integers not divisible
by Np" that satisfy (u,v, Np) =1. Then e,[u: v], € Hi(X{(N);Zp)m.

Proof. As in Lemma 3.1, this reduces to showing that any cusp (),
with M a nontrivial divisor of Np" has trivial image in Ho(C](N);Z,)m. We
follow the argument of [Oht99, Prop. 4.3.4]. Suppose [ is a prime dividing
M, and let s be such that [* exactly divides Np"/M. Let t > s be such that
I!=% =1 mod P, where P denotes the prime-to-l part of Np”. Then

1t—1 . °—1 .
o a a—+bMi s a—+bMi t—srsf @
— :l :l .
Ui (bM)T ;0< 1'bM ) Zi:(]( I5bM ) Uiloar .

However, U; acts as 1 on the free Z,-module Ho(C](N);Zy)m (see [Oht03,
Th. 2.3.6]), so we must have I'~* = 1 in Z, or (,3,), = 0. Clearly, the former
is impossible. O

We have the following immediate corollary.

COROLLARY 4.7. Let u € Z[%] be nonzero, let v € Z be prime to p, and
suppose that (u,v,N)Z[%] = Z[%]. Then &(u :v) € Hi(N ).

LEMMA 4.8. We have that ZZy C Yy, and the image of £(0 : 1) €
Hi(N)T generates Zy /Yy as an bk /I-module.

Proof. As in the proof of Lemma 4.1, we have
ZN/YN = 25 /Vy =0/ T,

and b /7 is canonically isomorphic to a quotient of A?V. The first statement
follows. Note that H1(N)T is isomorphic to H!(N)F, since complex conjuga-
tion acts on H2(X{(N);Z,) as —1. Hence, the image of £(0 : 1) € Hy(N)*
in H1(N) lies in H}(N)~. That its image in Z5/Yy is a generator follows
the definition of the congruence module and the proof of [Oht03, Th. 2.3.6],
since it is shown there that the projection of the cusp (?)r to the Eisenstein
component of Hy(CT(N):; Z,) generates it as a Hecke module (and we know
that the image of oo is trivial). O

The pairing of Proposition 4.5 induces an isomorphism
(4.3) Zy/Yy = Homy (VN /ZV, b/ T)

of b /Z-modules. We therefore have the following corollary.
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COROLLARY 4.9. The map II induced by applying (4.3) to the image of
€00 :1) € Hi(N)T in Z5/Yy generates Homy: (V¥ /ZV, 0% /T) as a Hecke
module and is canonical up to the choice of t.

Let Xk denote the Galois group of the maximal unramified abelian pro-p
extension of K. Now, we compare the Ay-modules of interest.

PROPOSITION 4.10. We have a homomorphism
¢ X —= In/IVy

of An-modules (under Galois), canonical up to the choice of v, which is an
isomorphism in its (0~1)-eigenspace for 0 odd and primitive if pt Brg-1.

Proof. The Galois action on Yy provides a map
b: Gq — Homh;;(y]‘f,,y&)
that, by Theorem 4.3 and [Oht00, Th. 3.3.12] (see also [MW84, Prop. 1.8.2]),

induces a homomorphism
b: X — Homy: (V3 /IVN, Vn/IVx)
of Galois Ap-modules. Since
Homy;, (Y /ZVN, Yy /IVy) = Homy (VN /Y, b /T) @z Vi /Iy

we may define ¢ by b(0) = II® ¢} (o) for o € X3 and the generator II defined
above.

Let By denote the Hecke submodule of Yy generated by the images of
elements in the image of b. As y]t, is isomorphic to by, as an b -module, BJ@
is isomorphic to the (fw~!)-eigenspace of the image of b for the action of the
adjoint diamond operators in (Z/NpZ)*. That ¢} is an isomorphism in its
(6~ 1)-eigenspace under Galois then follows from [Oht99, (5.3.18) and (5.3.20)]
(and [Oht00, §3.2]) whenever Bﬁ) = (V). If pt By g-1, then (Zy)' is free
of rank 1 over (h%) by [Oht05, (3.4.7)]. Thus, the fact that Z5 /Yy = b /Z
implies that (Vy)% = (ZZ5){?. Combining this with [Oht05, (3.4.10)], which

tells us that B]<\€> = (ZZ3)?, we obtain the final part of the proposition. [

For the purpose of formulating our conjectures, we will use an ill-defined
modification of ¢} throughout. That is, we set

$1 = N

for a fixed unit cy € A%, independent of ¢, that makes Conjecture 4.12 below
true. Though we do not write cy directly into the statements of our conjec-
tures, one should, of course, still understand its existence to be a part of them.
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4.4. Inverse limits of cup products and modular symbols. First, we show
that for the purposes of considering the primitive part of second cohomology
group, it suffices to restrict to the primitive part of the maximal unramified
abelian pro-p extension.

LEMMA 4.11. The canonical homomorphism X5 — H2(K,Z,(1))° is an
isomorphism.

Proof. Note first that, as seen in the proof of [Sha07, Lemma 3.4], we
have Xp = Xg q. If [ is a prime dividing Np, then the part of the direct
sum in (2.1) arising from primes over [ has a trivial (Z/IZ)*-action since there
is a unique prime above [ in Q(x;). But this means, in particular, that the
primitive part of the direct sum in (2.1) must be trivial. O

We will let (-, )% g denote the projection of the pairing (-, -)k.s to
Xp(1). For v prime to p, we let 1 — (" denote the norm compatible sequence
of elements 1 — (},,r € Q(unyr). We use Tk to denote the map

Ti: X5 (1) = (Vn/ZVN)(1)

that is the Tate twist of ¢1.

Recall that Hi(N)j = Yy (1) canonically up to the choice of v. For u €
Z[%] and v € Z prime to p with (u,v,N)Z[%] = Z[%], we let £(u : v) denote
the image of &(u: v)™ in (VN /ZYVN)(1).

We may now phrase the first form of our conjecture as follows.

CONJECTURE 4.12. For any s > 0 and all nonzero u and v € Z prime to
p with (u,v, N) =1 and u not divisible by Np*, we have
Tr((l = CRpss 1 = Ms) = EP ™ v).
We verify the independence of Conjecture 4.12 from the choice of the
complex embedding ¢.

PrOPOSITION 4.13. The validity of Conjecture 4.12 is independent of the
choice of t.

Proof. Let us choose a second complex embedding ¢/ of the form ¢/ = oo™}

for some o0 € Gq. Let 2% denote the (+1)-eigenspaces of Yy under the
complex conjugation determined by ¢/. Let Y%, ¢}, and b’ denote the maps
arising from Proposition 4.10 with the embedding /. Let IT’ denote the map
defined as II using /. We use £ in denoting the symbols defined using ¢/ and
corresponding to those denoted with .

Let us first consider the map ¢;. Note that @ﬁ = a(y]j\c,) and, by con-
struction, we have

'(y) = (e~ 'y)
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for y' € 2];{, /IQ)} We therefore have a commutative diagram

X0 s Homy, (V4/ZVE, Y3 /TVx) —25 Yy /T8

T*—)O’TO'_ll Jfr—)o‘ofoo‘l J{y’_m'y

X O™ 2 Homgs (D4/Z94, D0/ID8) — 97 /ID -

In other words, we have

(4.4) $1(o7o" ) = 061 (7)
(0=")

form e X 7.

Next, note that the change of embedding takes 1 — (¥ to o(1 — ¢¥) and
1—=(Nps to 0(1=CRyps ). Using (4.4) (applied to T ) and the Galois equivariance
of (-, )k g, we see that
(4.5)  Tx(o(l = CRps)s o1 = ¢"Nk,s) = 0Tk ((1 = Crps, 1 = ¢V 9)-

On the other hand, we have a map « that is the isomorphism
L ~
Hi(N) = HT'(N) = He(N)(1)

and the analogous map o' defined using /. One sees immediately that o/ =
oo «. It follows that

(4.6) g (p_su : 1)) =o€ (p_su : v) .
Comparing (4.6) with (4.5), we see that if Conjecture 6.3 holds with ¢, it must
also hold with . O

5. The view from finite level

5.1. Cup products and modular symbols. We now consider the implications
of Conjecture 4.12 at finite level. For now, we focus on weight 2. Let r > 1,
and set F, = F(uyr). Let Y, = HL(XT(N),Zy)m, and let I, denote the image
of 7 in h}. Let

Hi(Gros5.Zp(2)° = @ HA(Gr,.s.Zp(2)0).

(X) GENp
x odd

Note that this differs slightly from our previous version of A° due to the twist
in the cohomology group.

LEMMA 5.1. For each r > 1, there exists a map
ve: Hio(Gr, 5. Zp(2)° = (Y7 /LY,7)(1),

canonical up to the choice of v, that is an isomorphism in its (wd~1)-eigenspace
ifpt Byg-1.
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Proof. We construct v, out of Tx. By Lemma 4.11, we have
H3(K, Zp(2))° = X5 (1).

Since G'r,g has p-cohomological dimension 2, corestriction then defines an iso-
morphism

(5.1) Xi(Wr, = Hao(GF.s, Zp(2))°

with I, = Gal(K/F,).

Set w, = ((1+p)*)P" ' —1 € h*. By [Hid86a, Th. 1.2], we have that
b* /w,b* = bf, and by [Oht95, Th. 1.4.3], we have Yy /w,Yn = Y,. The
Galois element ¢; corresponding to j € Z  acts on Yy /Iy as (x() (),
where x is the p-adic cyclotomic character. Thus, corestriction provides an
isomorphism

In/ZYN) D, = (Y7 /LY,7)(1).

We take v, to be the map arising from Y g on I',-coinvariants. The final
statement now follows from the final statement of Proposition 4.10. O

We let (-, )% g denote the pairing induced from (-, -)F, s via projection
to H3,(GF..s,2Z,(2))°. For u,v € Z not divisible by Np" and with (u,v, Np")
=1, we let &.(u : v) denote the image of &.(u : v)* in Y~ /I,.Y,~ (which depends
only upon u and v modulo Np"). We now state an analogue of Conjecture 4.12
at the finite level.

CONJECTURE 5.2. Let r > 1. Suppose that w and v are positive integers
not divisible by Np" with (u,v, Np) = 1. Then we have
V(1= Cprs 1= CRpr) ) = & w).
In fact, this conjecture is equivalent to Conjecture 4.12.
ProproSITION 5.3. Conjecture 4.12 and Conjecture 5.2 are equivalent.

Proof. Let u, v, and s be as in Conjecture 4.12. The corestriction map
yielding (5.1) takes (1 — (R, 1 — ¢")3.g t0 (1 = (Rrpss 1 — CRpr)F g5 and the
map

Hi(N) — Hy(Xi(Np"); Zp)*
takes £(p~%u : v) to & (p"®u : w) for r > s. Since in each of the two cases the

former object is the inverse limit of the latter objects, we have both implica-
tions. (]

Suppose that t is a positive divisor of Np” for some r and that w and v
are positive nonmultiples of Np" with (tu,v, Np) = 1, and set Q = Np"/t. We
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also assume that u is not a multiple of Q). Since Uy — 1 € Z, equation (3.11)
immediately yields that

t—1
(5.2) Z E(u+kQ :v) =& (tu:v).

k=0
On the other hand,
t—1 v0
+
Z(]‘ - C]’ltfp’“ 71 - C}(/vpr)Fr:S = (1 - 4'5’ 1- Cj%pr)FmS'
k=0

In particular, Conjecture 5.2 is compatible with these relations.

5.2. Image of the cup product pairing. We have the following general-
ization of a conjecture of McCallum and the author [MS03, Conjecture 5.3,
originally given in the case N = 1.

CONJECTURE 5.4. The span of the image of (-, )¢, g s H? (GF, 5,Z,(2))°
We require the following lemma.

LEMMA 5.5. The images of the symbols [u : v| for nonzero u,v €
Z/Np"Z with (u,v) = (1) together generate Hy(X|(N); Zy)s: as a Zy-module.

Proof. Lemma 4.6 implies that such a [u : v}, lies in Hy(X](N);Zp)m
since u, v # 0. Furthermore, [Oht03, Th. 2.3.6] implies that Ho(C}(N); Zp)sy is
freely generated as a module over the image of Z,[(Z/Np"Z)*] in ($),)m by the
image of [0 : 1],. Since the Z,[(Z/Np"Z)*]-span in Hi(X](N),C{(N);Zyp)m
of [0 : 1], contains the [0 : w], with 1 <w < Np" and (w, Np) = 1, the exact
sequence (3.1) yields the result. O

We now see that Conjecture 5.2 implies much of Conjecture 5.4.

PROPOSITION 5.6. Conjecture 5.2 implies that the span of the image of
<) contains H2 (Gr. s, Z,(2 @0 for all primitive odd 6 with p
F.,S cts T P
Bl 9—1-

Proof. Since p { By p-1, Proposition 4.10 implies that v;. is an isomorphism.
Lemma 5.5 and Conjecture 5.2 then imply that the images of the pairing values
(1 = Crprs 1 = (Rrpr ) P s gemerate the (wf~1)-eigenspace of H2 (G, s,Zy(2)),
as desired. (]

5.3. A map in the other direction. The comparison between the two sides
of Conjecture 5.2 is perhaps seen more naturally in the opposite direction.
We begin by examining relations among values of the cup product pairings on
cyclotomic S-units. We will find relations analogous to relations (3.3)—(3.7) on
Manin symbols.



A RECIPROCITY MAP AND THE TWO-VARIABLE p-ADIC L-FUNCTION 281

Recall that (z,1 —2)p, g = 0 if 2 and 1 — 2 are both S-units in F, [MS03,
Cor. 2.6]. Note that ((npr, (Npr) Fr,s = 0 by antisymmetry of the cup product.
Since &F, = 5;3 ® ppr and H2(GF,.s,Zy(2))° has a trivial action of —1, Galois
equivariance of the cup product pairing implies that (¢ Npr,a:)%h g = 0 for all
S gFT-

Suppose that v and v are integers that are not divisible by Np”. Since

1= CRpr = =Chrpr (1= (),

we have
(5.3) (1=Cprs 1=CRpr) 7.8 = (1=Chprs 1=Cpr ) 78 = (1=Cprs 1=Cpr ) B

Antisymmetry of the cup product yields

(54) (1 - C]lffp""v 1- CX/p"")Fr,S + (1 - fop’"? 1- C}(fp’")FnS =0.
Additionally, if u + v is not divisible by Np", then the identity

1- C]l\L/pT + fopr(l - CX/pT) =1- CXT;E
implies
(55) (1_C1u\7pr7 1_C]1</p7')%‘,«,5 = (1_41%/'177‘7 1_C]1<[JISE)%‘T,S+(1_C]1</;$7 1_C11<fpr)%r,5'
Finally, Galois equivariance tells us that, for any j € Z prime to Np, we have
(66 01— Gyl Cprdrs = (L= Gl 1 = )rs.
where 0; € Gal(K/Q) satisifes 0;((npr) = d\fp”

PROPOSITION 5.7. There exists a homomorphism
@t HUXT(N), (V) ) — H2(Gr o5 Zy(2))°

satisfying wyo (j), = aj_l ow, for all j prime to Np and such that w,([1: 0];})
=0 and

@r([u:v]f) = (1= Ry 1= R )8
for u,v € Z not divisible by Np" with (u,v, Np) = 1.

Proof. Compare relations (3.3), (3.5), and (3.7) with (5.3) and (5.4), re-
lation (3.4) with (5.5), and relation (3.6) with (5.6). Since the Manin symbols
generate the module H;(X{(N),C](N);Z,)" and relations (3.3)—(3.7) give a
presentation of it, we need only remark that w, behaves well with respect to

these relations in the case v = 0. This is obvious: for instance, for relation (3.4),
we have

@ ([u: 0] + @r([u: ull) + @ ([0:u]t) =0,

as [u:ulf =0. O

We fully expect that the restriction of @, to H1(X](N);Z,)" is Eisenstein.
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CONJECTURE 5.8. The restriction of w, to Hi(X](N);Z,)" satisfies
@ (Tiz) = (1 +le((1)))wor (z)
forlt Np and
w,(Upz) = w,(x)
for 1| Np, for all x € Hi(X{(N);Z,)*.

One can check directly using relations of McCallum and the author in
Milnor K5 of Op, g (e.g., [MS03, §5] for T5) that it is Eisenstein with respect
to the operators T if 2 + N and T3 if 3 1 N. A slight variant of the map
w, and this fact have been discovered independently by C. Busuioc, and we
refer the reader to [Bus08] for the latter (in the case N = 1), as our proof is
very similar. The analogue of Conjecture 5.8 is also discussed in [Bus08]. (We
remark that in [Bus08, §9], Vandiver’s conjecture at p should be assumed for
the conjecture to hold in the form stated.)

Remark. When taken together with Conjectures 5.2 and 5.4 (and not-
ing Lemma 5.5), Proposition 5.7 forces v, and the map that w, induces on
(Y,"/ZY,7)(1) to be inverse isomorphisms. It follows that Y x would also be
an isomorphism, or equivalently, that By in the proof of Proposition 4.10 would
equal Vy. While rather natural, this is also a remarkably strong statement,
which does give us some pause.

6. Main form of the conjecture

6.1. Modified two-variable p-adic L-functions. Let M be a positive divisor
of N. We now consider modifications of our two-variable p-adic L-functions
Ly v. We view Zy[[Z,, n]] as a continuous module over Ay via left multiplica-
tion. We again denote the element of Z,[[Z, n]] corresponding to j € Z, n by
[7]. Define A%, to be the quotient of Zy,[[Z,, y]] by the An-submodule generated
by [0]. Define Z; 5 to be the set of nonzero elements in Z, y. We also write
Ny = Z,[[Z 5]

We now construct modified versions of our L-functions. For any M > 1
dividing N, let us set

Np™—1
6.1)  Lyy=lm Y U,"&(: M)® ], € Hi(N) g, A}
j=1
(G, M)=1
It is worth noting that this is well-defined. The proof is similar to the case of
Ly, with one additional detail. That is, we view [j], in the r-th term of the
inverse limit in (6.1) as an element of Z,[(Z/Np"Z)*], which we define to be
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the quotient of Z,[Z/Np"Z] by the Z,[(Z/Np"Z)*]-submodule generated by
[0],. The natural map
Z,((Z/Np°Z)"] — Zy[(Z/Np"Z)’]

for s > r now takes [j]s to [j],, the latter of which is 0 if j = 0 mod Np". The
rest is then the same as before. Note that we use (Z/Np"Z)* to denote the set
of nonzero elements in Z/Np"Z.

Although L3 ), will not always lie in Hy (V) ®z, Ay, its localization in
the Eisenstein part of homology does. The following is an immediate corollary
of Lemma 4.6.

COROLLARY 6.1. The modified L-function [’?V,M lies in Hy(N)m @ZP Ay

Finally, we remark that £}, also specializes to integrals with respect to
An, - We extend Ay s to a measure on Z, v by setting

0 if (a, M) # 1

A a+ Np"Z =
N ( P ZpN) {Up—rg(a : M) otherwise.

Let x: Z, v — Q, be a congruence function (i.e., a uniform limit of congru-
ence functions of finite period, necessarily satisfying x(0) = 0). Consider the
induced map

X: Hi(N) Rz, Ay = Hi(N) @z, Q.
We then have

(62) i) = [ v €M) 02, Q.

Z, N

6.2. The Zp-dual of the cyclotomic p-units. We shall actually be interested
in the composition of ¥ i with a map to a slightly different module arising from
cyclotomic S-units. We remark that

Xx = Hom(H (G5, pip), pp)-

Let Ok, s denote the ring of S-integers of K. The direct limit of the sequences
(2.2) over r and F provides an exact sequence

; X xp" 1
0= 1lim Ok o/Oks = H (G5, p=) = Ag,s = 0

for every n > 1, where A s denotes the direct limit of the p-parts of the S-class
groups of number fields in K. As before, let £k denote the pro-p completion
of O . Note that

Homes (Ex, Zp) = Hom(Ok o, Zp) = Hom(Ok s @7 Qp/Zp, Qp/Zyp).
Thus, we obtain an exact sequence

(6.3) 0 — Hom(Ak s, pp~) = X — Homes(Ex, Zp(1)) — 0.
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Now consider the pro-p completion Cx of the group of cyclotomic S-units
in K, which is to say the pro-p completion of the group generated by the 1 —¢
with § € unpe, £ # 1. Let us set €x = Homes(Cr, Zp(1)). By (6.3), we have

a homomorphism
q: X K — QK.

Note that we may decompose a Ay-module A into its (+1)-eigenspaces
A* for the action of —1 € (Z/NpZ)*.

Remark. If N =1 (or 2), the map ¢~ : X — €, is an isomorphism if
and only if Vandiver’s conjecture holds.

PROPOSITION 6.2. There exists a injection
Or: Cp — (AN)~

of An-modules, canonical up to the choice of v, such that

Np"—1 ]
Ox(@)®C=lm ¥ ¢(1 - Chyp) @ [ilr
r =1

for all ¢ € ;.

Proof. For r > 1, let C,. denote the p-completion of the cyclotomic S-units
of F. = F(ppr). There are obvious surjections

(O Zp[(Z/Np’"Z)*] — C

given by ¥, ([i],) =1 — C}Vpr for 4 not divisible by Np”. These are compatible

in the sense that
psfr_l

¢r([z]r) = H '@Ds([l + kNpT]s)
k=0
for any s > r. Note that we have
Homgz, (Z,[(Z/Np"2)"], Zy) = Z,((Z/Np"Z)"]
via

Np—1

p = Z ([l [ilr

and these are compatible in the sense that

Np™—1 Npr+1_1
Z er([ilr)[i]r = Z er41([ilr1)[i]r
=1 =1
if
¢r € Homg, (Z,[(Z/Np"Z)"], Zy)



A RECIPROCITY MAP AND THE TWO-VARIABLE p-ADIC L-FUNCTION 285

for each r > 1 satisfy

psTT—1

‘pr([i]r): Z @s([i"i_kNpr]s)
k=0

for all ¢ not divisible by Np". Hence, we have injections
Yy Homg, (Cy, Zy) — Zy[(Z/Np"Z)"]

dual to the 1, that are compatible under restriction on the left and projection
on the right. We have

Cx = lim Homg, (Cr, Zy(1)),

where the inverse limit is taken with respect to restriction maps, so our injec-
tion Ok can be taken to be the restriction to € of the inverse limit of the
Yr @ ¢®h 0

Remark. In fact, €} is isomorphic to Ay, but it is the injection of Propo-
sition 6.2 that is most natural in our setting. The map O is an isomorphism
in its 1-eigenspace for any odd, primitive character v of (Z/NpZ)*.

Let ¢2 be the composition of ¢~ : X3 — € with Og.

6.3. The reciprocity map and the L-function. Let M be a positive divisor
of N. By Corollary 6.1, the image of L} ,, in Zy @zp A%y is actually contained

in yN @ZP A?V Let
N € YN/IYy @z, (AN)™
denote the projection of 57\,, u to the latter Galois module. (Recall that the
Galois modules H{'(N) and HJ (N)(1) are canonically isomorphic, so LNy
depends upon our fixed choice of ¢.) We denote by =y the homomorphism of
AN @zp A y-modules
EN = ¢1® ¢2: Xk ®z, X = Vy/IVy ®z, (AN)”

resulting from Propositions 4.10 and 6.2.
Recall that H2(K, Z,(1))° = X§. We will use U, to denote the projection
of Ui (see §2.2) to a map

\I/;(: UK — X})( ®Zp :{I_(

Again, let 1 — (M € Uy denote the norm compatible sequence (1 — ¢ %p,ﬂ)w of
S-units. We are now ready to state our main conjecture.

CONJECTURE 6.3. We have

En(Tk (1= ¢M) =L
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In fact, Conjecture 6.3 is equivalent to our earlier conjectures relating cup
products and modular symbols.

PRrROPOSITION 6.4. Conjectures 4.12 and 6.3 are equivalent.

Proof. Let @ > 2 be a divisor of Np” for some r > 0, and let ¢ € Z with
Q ti. Define

mig: Ay — Zp(1)
by
¢ j=1modQ
1 j#imodQ,

which induces a map on (A%)~, viewing it as a submodule.
We claim that

miQ(li]) = {

TiQ O P2 = m-¢,
on X, where ¢ is as in Section 2.2. Let 0 € X}. Recall that ¢3 is the
composite of the map X3 — €5 with ©x. Then, by Proposition 6.2, we have

Nps—1
mi,Q © ¢2(0) = Wi g (lgn Z (Wlfcfvps (0)® C®_1)[j]s)

s j=1
Np°—1
= lim . 5 (o
pa H 1—<]va5( )
s ]:1
j=imod Q

= 71—17(&(0')

for 0 € X}, as desired.
For any positive divisor M of N, we have by definition that

(Lo ) (Wi —¢")=0-C1-¢Mis.
It follows that
6.4) (1eme)ENTR1 =) =Tr((1-¢1-Mks).
Assume now that (Np"/Q -i, M) = 1. Since U, — 1 € Z, we have

Np'—1
Qome)(Lyy) =lim > & : M) @me(l))

T j=1
(:M)=1

(Np"/Q)-1
=lim > &(i+kQ:M).

<_
T k=0
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As in (5.2), we have

~ (Np"/Q)—1
E(NP/Q)i:M)= Y &(i+kQ:M).
k=0
Hence, we have that

(6.5) (1® mQ)(Li ) = E(N/Q)i: M).
Putting (6.4) and (6.5) together, Conjecture 6.3 yields

Tr((1=¢o, 1= ¢Mis) = E((N/Q)i = M)

o

for all i and @ as above. As any symbol (1 — (},,1 — (")5% g as in Conjec-
ture 4.12 is a Galois conjugate of one of the above form, and noting (3.6) and
the fact that
Tiooj = (Y to Tk,
Conjecture 6.3 implies Conjecture 4.12.
Conversely, fix M and take i and @ as before with (Np"/Q -i, M) = 1.
Conjecture 4.12 along with (6.4) and (6.5) then imply that

(6.6) (1@ m,0) En(Tk(1 = ¢™))) = (L@ m,0) (L ar)-

If instead (i, M) # 1, then 7 ¢ is trivial on symbols of the form [j] with
J € Zy y coprime to M, and (6.6) still holds with both sides being trivial.
Since the m; ¢ with @ = Np”" for some r > 1 and 7 € Z not divisible by @
generate Homes (A%, Zp(1)) topologically, we have the reverse implication as
well. O

7. Comparison with p-adic L-values

7.1. Characters and cyclotomic units. From now on, we work with mul-
tiple characters of Z; N at once, so it is easiest to extend scalars to the ring
ON = Zyp[py(nypo]. Similarly to the appendix of [Sha07] (but with a larger
ring), for a Z,[(Z/NpZ)*]-module A and character x of (Z/NpZ)*, we define

AX >~ AX) ®r, ON

to be the x-eigenspace of A®z, On as a On|[(Z/NpZ)*]-module. Furthermore,
for any homomorphism a: A — B of Zy[(Z/NpZ)*]-modules, we have an
induced map

aX: AX — BX
which we may also view as a map from A®z, Oy to BX factoring through AX.
Let €,: A — AX denote the idempotent

= vy 2 X7l € ON[(Z/NpZ)").
i€(Z/NpZ)*
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For notational purposes, we extend these definitions to any function y of Z; N
by using the restriction of x to (Z/NpZ)*.

We extend s multiplicatively to Z, n by setting x(p) = p and, if [ is a
prime dividing N, taking x(l) to be the value one obtains by viewing x as a
character on Z;, which contains [. Suppose now that x: Z, n — @ has the
form y = 1x! for some t > 0, where v arises as the continuous extension of a
not necessarily primitive Dirichlet character on Z of period dividing Np" for
some r > 1. Following [GS93], we refer to such a character as an arithmetic
character. For such a x, we let f, denote the prime-to-p part of the period of
the restriction of ¢ to Z. We consider w as an arithmetic character by taking
its unique extension with f, = 1.

Let v be a finite, even arithmetic character on Z, . Fix ¢ > 1 and
consider positive integers M dividing Np and @ dividing N. Consider the
products

Npr_l 1 NpT‘_l )
) 1 ' -
77]1/\)/[,7‘,75 = H (1- Czlvpr)w” @ and agt"/’ = H (1— Cégpr)w (4)
(1) =1 (i, Np)=1
for r > 1. (Note the abuse of notation here: these elements lie in Cx ®z, Oy,

and so we allow exponents in Op.) In fact, we may consider a%w with the

same definition for any ¢ € Z,. The nﬂmt satisfy

Y (i -1 "
nM,r—i—l,t (nM,r,t) € C?(

(for sufficiently large ) and similarly for the a%w. Let us consider the limits

7¢ va

rt

(7.1) ant = lim 77]1{}/[7T7t and a?

= lim «
? T—>00 T—00

The Galois automorphism o corresponding to j € Z;, y satisfies

(4

=1, 1—t(;
Uj(nM,t):(n}()/[,t)w " (])7

and likewise for the atQ ¥ 50 these are elements of C}Z{l. Note that 04? Y =1
if the prime-to-p part of the conductor of ¢ does not divide Q). Finally, we set
af’ = aiv Y and use corresponding notation with “r” in the subscript for the
r-th terms which have these limits. The limit elements compare as follows.

LEMMA 7.1. We have the following equalities:
(8) o} = (it YT Twmuns 00810 g

(Q) —
(b) af = (a@?)e0 HluwuU=e=20) 4p 1 1 .

Here, the products are taken over primes [.
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Proof. Set x = 1x'~1. Let us also consider
Dp™—1

D. , ,
M,zf,t _ H (1— C%Dpr)x(z)
(i D=1
for any D dividing N and M dividing Dp, as well as the limits 3 M’w that exist
when fy, | D. We claim that if f, | D, then

(7.2) Mﬂf = nﬁ}t
To see this, note that if the period of ¥ on Z divides Dp", then
Dp"—1 Dp"—1 N/D-1 N
[ - H 11 « (1= ™ O
j=1 j=1
(4,M)=1 (4,M)=
Dp™—1 N/D-1
H H J‘HCDP ) x(j+kDp") mod C?{T
j=
(7, M)

Since j + kDp" is prime to M if j is, the latter term is 77}\/)4,7",# The claim then
follows by taking limits.
Consider the formal identity

Np"/d—1 Np'—1
(7.3) Yoo ould) Y M= Y [
d|Np, (d,M)=1 ci=1 Ci=1
d>1 (i,M)=1 (i,Np)=1

where p denotes the Mobius function. It follows from our definitions that

N, )
(7.4) afy= I (Baemy @,
d|Np, (d,M)=1
d>1

where g4 = (d, N) and 64 = log,(d/gq). Note that x(d) # 0 implies that
fu | (N/gq). Taking limits and applying (7.2), we get

_ d)x(d
af = (nﬂt)Zdwp, (d,M)=1 HDxX(d)
Applying
(75) [I C-—x0)= Y udx(d)
UNp, UM d|Np, (d,M)=1
| prime d>1

we have part (a).
For part (b), we assume that fy | Q. Then, we have

(7.6) af = (n’éjp,t)H”N» ne(1=x(M) _ (58%)H1|N, 1 (1=x(1)
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using part (a) in the first step and (7.2) in the second. On the other hand, we
have

Q

% = (83,5 mod ¢

Taking limits and comblmng this with (7.6), we obtain part (b). O

7.2. Special values. Let A be a finitely generated Apx-module. Then for
any arithmetic character x on Z, y we have specialization maps

X: ARz, Ay = A®z, O, a® [j] = a @ x(j).

For later use, we remark that an element of A@zp A% is uniquely determined
by its specializations.

LEMMA 7.2. Suppose that A is Z,-torsion free. An elementa € A@zp Ay
satisfies X(a) = 0 for all (finite) arithmetic characters x on Z, n if and only
if a=0.

Proof. An element of A@ZP A% is nonzero if and only if, for every Z,-
quotient B of A and r > 1, the image of a in B ®z, Zy[(Z/Np"Z)*] is trivial.
The problem then reduces to the case that A = Z,. Now, choose r > 1 such
that the image of a in Zy[(Z/Np"Z)*] is nonzero. Since the primitive Dirichlet
characters of conductor dividing Np” form a basis of the space of Q,-valued
congruence functions of period dividing Np", there exists a primitive Dirichlet
character ¢ of conductor dividing Np" such that (a) # 0. O

Let us compare Ly y and L}, for any positive divisor M of N.
LEMMA 7.3. For any arithmetic character x on Z, y we have
votenan) =TI (@ x0) )WL)

l|Np, UM
[ prime

where D = Hl|Np, UM l.
Proof. Using (7.3), we have

Np"—1 Npr/d 1
Z XU &G M) =Y uld Z x(dj)U, "&(dj = M).
d|Np
(7, Np) (d,M)=1 (J, M) 1
d>1
If x(d) # 0 in the latter equation, then d divides D, and we have
d—1
Up&(dj : M) =Upyq Y & (i +kNp'/d: M)
k=0

by (3.11). Let r be large enough that
x(dj) = x(d)x(j + kNp"/d) mod p"Ox.



A RECIPROCITY MAP AND THE TWO-VARIABLE p-ADIC L-FUNCTION 291

Since M | (Np"/d), we then have

Np"—1 Np"—1
Up Z XU, "6 (5 = > wd)x(dUpg >, x(G)U, &G M),
d|Np j=1
(4, Np) 1 (d,M)=1 (j,M)=1
d>1

where the congruence is taken modulo p”s,(Hi(X](N),Ci(N);Z,))*d. We
obtain

Umz(cN,M):( 3 u(d)x(d)UD/d)>2<mv,M>
d|Np,

(d,M)=1
d>1

in the limit. By an analogous equation to (7.5), the result follows. (]

For any x on Z;N, let

by = (h @z, On)/((a) — xvw™2(a) | a € Zyy ).

Then, for any h-module Z, set Z, = Z ®y by, and let P,: Z — Z, be the
natural map. Now, if o and x are finite arithmetic characters on Z, x and
k,s € Z,, then we define

Lyt (6,0, k. X, 8) = Pk (0r*~1 (Lv1)) € H1(N) gt
If s is a positive integer, then we set
L;,M(& a, k, X, S) = Pan’“ (X’Qs_l (‘C}(V,M)> € Hl(N)ank'

It follows from (3.5) and (3.6) that Ly ,/(£,a,k,x,s) is zero if a is odd.
Lemma 7.3 has the following immediate corollary.

COROLLARY 7.4. Let o and x be finite arithmetic characters on Z, N, let
k € Z,, and let s be a positive integer. Then we have

UDLP,M@,a,k,x,s):( I <Ul—w—la)))L;,M(s,a,k,x,s>,
l|Np, UM
[ prime

with D as in Lemma 7.3.

Let us abbreviate the standard p-adic L-function L, 1 by L,. This has the
following functional equation:

LEMMA 7.5. We have
Lp(é.a a, ka X 3) = _X(_l)LP(£7 «, k: ax_lw_27 k— 8)'

Proof. We may assume that « is even. The result then follows directly
from (3.3) and (3.6), which yield the identity

(7.7) Popr(§(5: 1)) = —a "Wk F P2 () Py (§(—57" 1 1))
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for j prime to Np. This in turn implies

(Nil XA TH()ER( 1))

(J Np) 1
Npr—1
= —x(- ( Z xa~ Wi T (g (T 1)),
(7, Np)
yielding the desired result in the inverse limit. O

We also have the following.
LEMMA 7.6. Let Q = N/M, and suppose that fo, -1 | Q. Then

UDLp(g,CV,k‘,X,S) = :j((]C\gf))UM (H(Ul ax 1w 2/.@/6 s— l(l)))Lp,M(f,Oé,k,X, S)
IIN
Q

fOT D= HZ|N,ZJ(Q l.

Proof. First, let us remark that while ax™" is not a prior: well-defined,
we make it so by considering it as a finite arithmetic character by taking the
extension of its restriction to Z; y of minimal period. We compute the latter

1

L-value. Let us define
Np™—1

£ =lim Z Uy 760G 1) © [j]r-
(JQp)l

Just as in the proof of Lemma 7.3, we have

UnB(L) = (le _ ﬁ(l)))éw%
1IN
hQ

for any arithmetic character 8 on Z, y. Hence, setting
LIP(€, 0k, X, ) = P (xr5~1(£3D))

in general, we obtain

(7.8) UpLy(€,a,kyax w2,k — s)

_ (H(Uz—ax 12k 1<z>>)L§p<e,a,k,ax—lw—%k—s>.
IIN
"hQ
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Then, for r sufficiently large,

Npr—1
Yooax W RFTG (0 1)
j=1
(4,Qp)=1
Qp"—1 M-1
= D> ax WM DD &G+ RQY 1)
j=1 k=0
(4,@Qp)=1
Qp"—1
=Upym Z ax TwZEF L) E (MG 1)
j=1
(4,Qp)=1

(@, "R~
= %UM Z ax TwZEF L) (M 1),

j=1
(J,Np)=1
where the congruences are taken modulo p"s,(Hy (X} (N),Ct(N); Z,))°™ and
we have used (3.11) in the second step. Since &.(Mj : 1) = (§)71&. (M : 1),
we therefore have

(79) Lgp(g’ «, k? aX_1W_2> k — S) = _X(_l):j((]?/v))UMLp,M(gv «, ka X5 S)>

as desired. The result now arises from (7.8) by applying Lemma 7.5 to its
left-hand side and plugging in the result of (7.9) on its right-hand side. O

7.3. Cup products and special values. Let 1) and v be finite even arithmetic
characters on Z, y, set § = wyry, and assume that p | By g and 6 is primitive
when restricted to (Z/NpZ)*. The pairing (-, - )x,g of Section 2 induces an
On-bilinear map

b, -1 -1 91
(- )d G x Uy — X (),
where one should note that the inverses of the characters in question are well-
-1
defined on Z; ~- Any element b € C}Zé induces a homomorphism
71';[): XK ®zp ON — ON(l)
factoring through %";(w. By [Sha07, Lemma A.1], the map (\If%)f1 takes its
image in
o — -1 ~ 971 -1
(Xi 0z, X)) = @ (X @0, ).
X even
(X071 EZ Ny

It follows from (2.5) that

(bow)d = (1o r)(T%) (u)

)

—1
for any u € Uy, .
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Finally, for any positive divisor M of N, let
(L) € On/ZV0) P (1) @z, (AN)~

denote the image of L}, in this module. (In what follows, we view )Z((EI*\, ) )
for an arithmetic character x on Z, y as its image in (Vy/ZVy) " ®r, On.)

ProproOSITION 7.7. Conjecture 4.12 is equivalent to the statement that
o1 Hw~ =1 i1\ (0
T (000 €wopor (1= CONEEY)) = i1 (a0 ™)

for any positive integer M dividing N, finite even arithmetic character ¥ on
Z, N, primitive odd character 0 on (Z/NpZ)* with p | B1g, and t > 1.

Proof. For u € Z[l] and v € Z prime to p with (u,v N)Z[Ilj] = Z[%}, let
€9 (u : v) denote the projection of £(u : v) to (Vy/ZVy)?. We have

— w -1
(7.10) iy 1((77M,r,t,ewwe—1(1—< Nies ))
Np"—1 . )
> R T O (= Gy 1= Mks)
(D=1

Using Conjecture 4.12, this becomes

Np™—1 Np—1
S s H)ED (p~ = YKl (Z g )®[z’]r>,

(iD=1 (6, M)=1
(0)

and the limit over r of the latter sum is (L} /)
(6.1).
As for the reverse implication, noting (7.10), we may apply Lemma 7.2 to

by its definition, noting

obtain

(1= Gy 1= (M) = €077 M)
for all ¢ not divisible by Np" and primitive odd characters 6 on (Z/NpZ)*.
Conjecture 4.12 follows immediately from this. O

For any character x on Z; ~ and Zj-algebra O containing the values of x,
let O(x) be O as an O-module, endowed with a x-action of the Galois group
Z, . For any Ay ®z, O-module A, let A(x) = A ®o O(x). Alternatively, if
A'is a Ay-module, we set A’(x) = A ®z, On(x). For notational convenience,
we set

Héts(GQ,S’ ON(X)) cts(GQ,S7 R(X)) ®r On,

for i > 0, where R is the Z,-algebra generated by the values of x.
Let k£ and ¢ be elements of Z,. As in Lemma 5.1, corestriction provides
an isomorphism

(X5 (KF710)) qai/q) = Has(Gaq,s, On(KFwb)).
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It also provides a homomorphism

Ui (K ) Gairyq) = Hew(Ga,s, On (K7 wy))

under which 1 — ¢ is mapped to ozz_t. We have a cup product map

Hl(Gq,s, On(K'wi)) @0y Hys(Ga,s,On (K wy)) = H2

cts(Gst7 ON</€kwg))'

Define b}, and P analogously to by and Py using the adjoint diamond
operators. We then let I, denote the image of Z in (h})m and set Y, =
P;(Yn). We let L;,M(ﬁ,a,k,x, s) denote the image of L;M(f,a,k,x,s) in
Yk / Lok Yo, for any allowable o, x, k, and s, and similarly for L, ys and Ly,

Note that Tx induces a homomorphism

Vihwo' His(Ga,s, ON (K w0)) = (V5 o/ TekanY grg) (K5 710),

and recall the definitions of the limits of S-units 77]16” and a?’w from (7.1). We
make the following conjecture.

CONJECTURE 7.8. Let M be a positive integer dividing N, and let ¢ and
v be finite even arithmetic characters on Zpn. Set 0 = wiry, suppose that
p | Big and 0|z npz)x is primitive, and let k € Z, and t > 1. Then, we have

N/M, B
Vikwo (U}@i U akjt ’y) = LpVM(é-a wl, k, v, t)'

One sees easily that 77]%4,1/ Uaév_/iw’ﬂ’ is the image of (771%)4,1:’ S-1(1— ¢My)yw)

under corestriction. Therefore, Proposition 7.7 implies the following:

ProPOSITION 7.9. Conjecture 4.12 is equivalent to Conjecture 7.8.

In terms of standard p-adic L-values, we have the following possibly weaker
conjecture.

CONJECTURE 7.10. Let 0 and v be finite arithmetic characters on Zy, n
with § odd and 1 even, suppose that p | B1g and 9|(Z/sz)>< 1§ primitive, and
let k,t € Z,,. Then we have

0 —-1,,—1
Vikwo (O‘g) U aklﬁt “ ) = LP(&WH, k> wa t)'

ProposITION 7.11. Conjecture 7.8 for M = 1 implies Conjecture 7.10,
and the converse implication holds if Yy /Iy is p-torsion free.

Proof. We will prove slightly more than what is claimed. Suppose first
that t > 1. Pick M such that f, | (N/M), e.g., M = 1. By Lemma 7.1, we
have that o) U] _, equals

D) (1o o e
@(N) (l};v[p(l ) 1(l))>< ”HN (1 — sk 1(l))> (nM,tU A )
M UN/M
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On the other hand, by Corollary 7.4 and Lemma 7.6, L,(&,wb, k, 1, t) equals

/M) (T 11 i NP G—
p(N) (lglp(l (& (D))( ll:[V (1=~ (D))LP,M(& 0,k,1,1).
uM UN/M

Conjecture 7.8 then immediately implies Conjecture 7.10 for t > 1. The gen-
eral case then follows by taking limits using a sequence of positive integers
converging to ¢, since aff’, o) ,, and Ly(&,wb, k, v, t) vary continuously with ¢.
Conversely, suppose that 1 — (1) lies in Oy for all I | N with [ { (N/M).
This occurs, of course, whenever M = 1. Conjecture 7.10 then implies that
N/M,
Vﬁ’“m@(a?) U ak—/t ,Y) = LP,M(ga wo, k, 1, t)
for all k € Z), and t > 1 (again by Lemmas 7.1 and 7.6), and hence that
T30 (0 61 (1= M) = 1w (Cnan) ™).

Next, note that

(afey1(1= )R = (T = 020 g ey -1(1 = )T

[|[Np
UM

and

Tl ) () e tem}

[|[Np
UM

We have that x!~1(l) # 1 for t > 2 and [ | Np, since x'~!(l) is in this case
a nontrivial element of 1 4 pZ, and (1) is either 0 or a root of unity in Oy.
Since X?{l and, by assumption, (Vy/ZYVy)% contain no p-torsion, it follows
that -

T?;l ((U%{,ta e 1(1— CM»%?) — K1 ((%)(9))
for all ¢ > 2. Conjecture 7.8 for our our particular M, ¢ and ~ then follows
for t = 1 as well by Lemma 7.2. O

Remark. If p { By g1 for a given 0 with p | By g, then Proposition 4.10
implies that (Vy/ZYVy){? is p-torsion free. As in the remark at the end of
Section 5.3, our conjectures imply that Yy /Z)) is isomorphic to X3, so we
expect it to be p-torsion free in general.
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