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Dynamical compactifications of C2

By Charles Favre and Mattias Jonsson

Abstract

We find good dynamical compactifications for arbitrary polynomial map-

pings of C2 and use them to show that the degree growth sequence satisfies

a linear integral recursion formula. For maps of low topological degree we

prove that the Green function is well behaved. For maps of maximum

topological degree, we give normal forms.

Introduction

The theory of iteration of rational maps on complex projective varieties

has recently seen the introduction of new analytic techniques for constructing

invariant currents and measures of dynamical interest, through the work of

Bedford-Diller [1], de Thélin-Vigny [13], Diller-Dujardin-Guedj [14], [15], [16],

Dinh-Sibony [19], [22], [23], Dujardin [25], [26], Guedj [36], [38], and others.

These constructions, however, often require a good birational model in which

the dynamical indeterminacy set has a relatively small size, so that the action

on cohomology of the rational map is compatible with iteration.

Diller-Favre [17] proved the existence of such models for birational surface

maps using the decomposition into blow-ups and blow-downs. There are no

other general results, for two reasons. First, it is a delicate task to control a

rational map near its indeterminacy set. Second, the indeterminacy set of a

noninvertible map tends to grow very rapidly under iteration.

In this paper we prove the existence of good birational models for an

important class of rational surface maps, namely polynomial maps.

Theorem A. Let F : C2 → C2 be any polynomial mapping. Then there

exists a projective compactification X ⊃ C2 with at worst quotient singularities

and an integer n ≥ 1 such that the lift ‹F : X 99K X satisfies ‹F (n+j)∗ =‹Fn∗‹F j∗ = ‹Fn∗(‹F ∗)j on the Picard group Pic(X) for all j ≥ 1.

Fix an algebraic embedding C2 ⊂ P2. Define deg(F ) by the relation

F ∗L = deg(F )L for L a generator of Pic(P2). Using Theorem A we prove
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Theorem B. For any polynomial mapping F : C2 → C2, the sequence

(deg(F j))j≥0 satisfies an integral linear recursion formula.

This gives a positive answer to the main conjecture of Bellon-Viallet [6, §5]

in our setting. Example 4.5 shows that there may not be a recursion of or-

der one or two, even though the asymptotic degree λ1 (see below) is always

a quadratic integer [30]. In general, the degree growth of rational maps of

projective space remains mysterious, despite recent works [2], [3], [4], [7], [39],

[45]. Hasselblatt and Propp [39] give examples of rational maps of C2 for

which the degree growth does not satisfy any linear recursion formula. From

this perspective, Theorem B is quite remarkable.

In many cases — and always after replacing F by F 2 — X is smooth

and can be obtained from P2 after finitely many blow-ups at infinity. In these

cases, Theorem B follows immediately from Theorem A.

Note that the compactifications that we consider here are different in

nature from the ones studied by Hubbard, Papadopol, and Veselov [40].

The conclusion in Theorem A is slightly weaker than the condition (‹F j)∗ =

(‹F ∗)j on Pic(X) for all j; the latter is often referred to as algebraic stability [47].

Its importance was first recognized by Fornæss and Sibony [32]. Guedj has con-

jectured [36, Remark 3.1] that any polynomial mapping of C2 is algebraically

stable on some (smooth) compactification X of C2. While we suspect this may

be too much to ask for (see Remark 6.1), Theorem A shows that the conjecture

holds after replacing F by an iterate. In any case, Theorem A is sufficient for

all known applications.

The proof of Theorem A is based on the valuative techniques developed

in [30]. These give a framework for studying the dynamics induced by F on

the set of divisors at infinity in all compactifications of C2. This set of divisors

can be identified with a dense subset of a metrized R-tree V0 consisting of all

valuations on C[x, y], centered at infinity and suitably normalized. There are

however two difficulties in working directly with V0. First, a valuation in V0 is

a local object, whereas we are interested in global properties of F . Second, F

might be not proper, and in this case it does not preserve V0. To remedy these

problems, we introduced in [30] a subtree V1 of V0 consisting of valuations

close enough to −deg; see Section 1.5 for a formal definition. This subtree

is a fundamental technical tool in our analysis. In op. cit., we showed that

valuations in V1 still capture global information, that F induces a continuous

map on V1, and we proved the existence of a locally attracting valuation ν∗ ∈ V1
that we called an eigenvaluation. Theorem A is a consequence of a detailed

study of the global contracting properties of F on V1.
Denote by λ1 := limn→∞ deg(Fn)1/n the asymptotic degree of F [46] and

by λ2 the topological degree of F . These degrees are invariant under conjugacy
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by polynomial automorphisms and satisfy λ2 ≤ λ21. In the case λ2 < λ21, the

Hilbert space methods of Boucksom and the authors [8] apply (see also the

work of Hubbard-Papadopol [42], Cantat [11], and Manin [43]). We showed

in [8] that deg(Fn) ∼ λn1 . Here we use these techniques to prove that ν∗
attracts all valuations in V1 (with at most one exception).

When λ2 = λ21, the Hilbert space technique loses some strength. However,

this loss is compensated by the built-in rigidity of these maps. A more detailed

study of the valuative dynamics allows us to show

Theorem C. Let F : C2 → C2 be a dominant polynomial mapping with

λ2 = λ21. Then we are in one of the following mutually exclusive cases :

(1) deg(Fn) ∼ nλn1 ; then λ1 ∈ N and in suitable affine coordinates, F is a

skew product of the form F (x, y) = (P (x), Q(x, y)), where deg(P ) = λ1
and Q(x, y) = A(x)yλ1 +Ox(yλ1−1) with deg(A) ≥ 1.

(2) deg(Fn) ∼ λn1 ; then there exists a projective compactification X ⊃ C2

with at most quotient singularities such that F extends to a holomorphic

self-map of X .

Here, and throughout the paper, the expression “in suitable affine coor-

dinates” means that the statement holds after conjugation by a polynomial

automorphism of C2.

In suitable affine coordinates, X can be chosen as a toric surface and we

can give normal forms for all maps occurring in (2); see Section 5.3. When λ1
is an integer, X can be chosen as a weighted projective plane.

Theorem C extends the Friedland-Milnor classification [33] of polynomial

automorphisms with λ1 = 1. For automorphisms, only case (2) appears, and X

can be chosen as P2 or a Hirzebruch surface. There is an analogous statement

in the general birational surface case (see [17], [35]): deg(Fn) is then either

bounded or grows linearly or quadratically.

Our last result is another application of the dynamical compactifications.

One of the basic problems in the iteration of rational maps is the construction

and study of an ergodic measure of maximal entropy. When λ2 > λ1, such

a measure can be defined as a limit of preimages of a generic point [32], [46],

[47], and its basic ergodic properties are completely understood; see [9], [19],

[21], [38]. In the case of maps with small topological degree λ2 < λ1, this

construction fails. A different strategy has been proposed for constructing

a dynamically interesting invariant measure; see [36]. One first constructs

two positive closed (1, 1) currents, invariant by pullback and by pushforward,

respectively. The measure is then obtained by taking their intersection. In our

setting, the existence of these two currents follows from Theorem A; see [14].

The existence of their intersection, however, is not guaranteed in general except
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if one has a good control of the singularities of their potentials. We prove such

a control for the pullback invariant current.

Fix affine coordinates (x, y) on C2 and set ‖(x, y)‖ = max{1, |x|, |y|}.

Theorem D. Let F : C2 → C2 be a dominant polynomial mapping with

λ2 < λ1. Then the limit

G+(p) = lim
n→∞

λ−n1 log+ ‖Fnp‖

exists locally uniformly on C2, and defines a continuous, nonzero, nonnegative

plurisubharmonic function of logarithmic growth satisfying G+ ◦ F = λ1G
+.

The support of the positive closed current ddcG+ is equal to ∂K+ where K+ =

{G+ = 0}. Further, for each ε > 0, there exists a constant C > 0, such that

(∗) log+ ‖Fnp‖ ≤ (λ2 + ε)n(log+ ‖p‖+ C)

for all n ≥ 0 and all p ∈ K+.

Theorem D generalizes classical properties of the Green function both of

polynomials in one variable and of Hénon maps [5], [31], [41]. On the locus

{G+ = 0} the dynamics can exhibit various speeds of convergence towards

infinity; see [18]. Note that (∗) is in sharp contrast with the phenomenon

described in [48].

The paper is organized as follows. In Sections 1 and 2 we discuss the

relationship between compactifications and valuations, and study the induced

dynamics on the space of valuations at infinity. We then turn to the proof

of refined versions of Theorems A and B in the case λ2 < λ21: in Section 3

when the eigenvaluation is nondivisorial and in Section 4 when it is divisorial.

Polynomial maps with λ2 = λ21 are handled in Section 5, where we prove The-

orem C. Theorems A and B are proved in Section 6, Theorem D in Section 7,

where we also provide a list of examples of maps with λ2 = λ1. The paper

ends with a short appendix outlining an adaptation of the necessary material

from [8] to our setting.

Acknowledgments. We thank Sébastien Boucksom, Serge Cantat, and Vin-

cent Guedj for their comments on a preliminary version of this paper. We thank

the referee for useful suggestions.

1. Geometry at infinity

We start by discussing compactifications of C2 together with valuations

centered at infinity.

1.1. Admissible compactifications. We consider C2 equipped with a fixed

embedding into P2.
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Definition 1.1. An admissible compactification of C2 is a smooth pro-

jective surface X admitting a birational morphism π : X → P2 that is an

isomorphism above C2.

It follows that π is a composition of point blow-ups and that X \ C2 is

a connected curve with simple normal crossings. The primes of X are the

irreducible components of X \C2. Every X contains a special prime L∞, the

strict transform of the line at infinity in P2.

1.2. Valuations [30, App. A]. Let R be the coordinate ring of C2. We

define V̂0 as the set of valuations ν : R → (−∞,+∞] centered at infinity,

i.e., ν(L) < 0 for a generic affine function L on C2. If ν ∈ V̂0 and X is an

admissible compactification of C2, then the center of ν on X is the unique

scheme-theoretic point on X such that ν is strictly positive on the maximal

ideal of its local ring. Thus the center is either a prime of X or a point on

X \C2. We let V0 be the subset of ν ∈ V̂0 that are normalized by ν(L) = −1.

There are four kinds of valuations in V̂0 that we now describe.

First, if X is an admissible compactification of C2, then each prime E of

X defines a divisorial valuation ordE ∈ V̂0, the order of vanishing along E. In

particular, ordL∞ = −deg. Any valuation proportional to some ordE will also

be called divisorial. Thus a valuation is nondivisorial if and only if its center

on every admissible compactification is a point. If we set bE = − ordE(L) for

a generic affine function L, then νE := b−1E ordE is normalized. We denote by

V̂div and Vdiv the set of divisorial valuations in V̂0 and V0, respectively.

Second, we have irrational valuations. To define them, consider any two

primes E,E′ in X intersecting at a point p and local coordinates (z, w) at p

such that E = {z = 0} and E′ = {w = 0}. To any pair (s, t) ∈ R2
+ we attach

the valuation ν defined on the ring Op of holomorphic germs at p by

ν
Ä∑

aijz
iwj
ä

= min{si+ tj | aij 6= 0};

it does not depend on the choice of coordinates (z, w). By first extending ν to

the common fraction field C(X) of Op and R, then restricting to R, we obtain a

valuation in V̂0, called quasimonomial. (It is monomial in the local coordinates

(z, w) at p.) The valuation ν is normalized if and only if sbE + tbE′ = 1. It is

divisorial if and only if either t = 0 or the ratio s/t is a rational number. Any

divisorial valuation is quasimonomial. An irrational valuation is by definition

a nondivisorial quasimonomial valuation.

Third, pick a point p on the line at infinity L∞ ⊂ P2, a formal irre-

ducible curve C at p, not contained in L∞, and a constant γ > 0. Then

P 7→ γ−1 ordp(P |C), for polynomials P ∈ R, defines a valuation in V̂0 called a

curve valuation. It is normalized if and only if γ is chosen as the intersection
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number (C · L∞). Note that a curve valuation can take the value +∞ when

the curve is algebraic.

In suitable affine coordinates (x, y), a curve valuation can be computed

using a Puiseux parametrization y = h(x−1) of the curve: the value on a

polynomial P is proportional to ordx=∞ P (x, h(x−1)). Now replace the Puiseux

series h by a formal series of the form h(ζ) =
∑
akζ

βk with ak ∈ C∗, and βk an

increasing sequence of rational numbers with unbounded denominators. Then

P 7→ ordx=∞ P (x, h(x−1)) defines a valuation of the fourth and last kind,

namely an infinitely singular valuation.

1.3. Tree structure [30, App. A]. The space V0 of normalized valuations

is equipped with a partial ordering: ν ≤ µ if and only if ν(P ) ≤ µ(P ) for

all P ∈ R, naturally turning it into a rooted tree. In particular, every two

elements µ, ν ∈ V0 admit a minimum µ ∧ ν ∈ V0. The valuation −deg is the

minimal element of V0. For any admissible compactification X, one can map

a prime E to the normalized valuation νE := b−1E ordE . In this way, we get an

embedding of the set of primes of X into V0. The partial ordering coming from

V0 on the set of primes coincides with the one coming from the tree structure

of the dual graph of X \C2.

The ends of V0, i.e. the maximal elements in the partial ordering, are

the curve and infinitely singular valuations, i.e. the valuations that are not

quasimonomial.

We topologize V0 by declaring νn → ν if and only if νn(P ) → ν(P )

for all P . This topology is compact and admits two important characteriza-

tions. First, it is the weakest topology such that the natural retraction map

rI : V0 → I is continuous for any given closed segment I ⊂ V0. Second, given

any admissible compactification X and any point p ∈ X \ C2, let U(p) ⊂ V0
be the set of valuations whose center on X is p. Then the topology on V0 is

the weakest one in which U(p) ⊂ V0 is always open. Each of the four subsets

of divisorial, irrational, curve, and infinitely singular valuations is dense in V0.
There is a unique, decreasing, upper semicontinuous skewness function

α : V0 → [−∞, 1] satisfying α(−deg) = 1 and |α(νE) − α(νE′)| = (bEbE′)
−1

whenever E and E′ are intersecting primes in some admissible compactification

X; see [30, §A.1] and [28, §6.6.3, §6.8]. One has b2Eα(νE) ∈ Z; see Lemma A.2.

Similarly, there is a unique, increasing, lower semicontinuous thinness

function A : V0 → [−2,+∞] such that A(νE) = aE/bE , where aE = 1 +

ordE(dx ∧ dy) and bE = − ordE(L) as above; see [30, §A.1]. An irrational

valuation has irrational skewness and thinness.

1.4. The subtree V1. Define V1 as the set of valuations ν ∈ V0 with skew-

ness α(ν) ≥ 0 and thinness A(ν) ≤ 0. Then V1 is a subtree of V0 of crucial

importance to our study. Its properties are spelled out in detail in [30, Th. A.7].
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Here we note that the fundamental fact is that any quasimonomial valuation

in V1 is dominated by a pencil valuation.

To define the latter, consider an affine curve C = {P = 0} ⊂ C2 with

one place at infinity, that is, the closure of C in P2 is an irreducible curve

intersecting the line at infinity in a single point and is locally irreducible there.

Consider the pencil |C| consisting of the affine curves Cλ = {P = λ} ⊂ C2 for

λ ∈ C. It is a theorem by Moh (see [44], [10]) that Cλ has one place at infinity

for every λ ∈ C. The (normalized) pencil valuation ν|C| ∈ V0 associated to |C|
is then defined by ν|C|(Q) := (degC)−1 ord∞(Q|Cλ) for λ generic. By Bézout,

−ν|C|(Q) deg(C) equals the number of intersection points in C2 of C with the

curve {Q = ρ} for generic ρ ∈ C. See [30, §A.2] for more details.

This crucial fact that any quasimonomial valuation in V1 is dominated by

a pencil valuation is the affine analog of the (easier) local result that any quasi-

monomial valuation in the valuative tree is dominated by a curve valuation;

see [28, Prop. 3.20].

A pencil valuation ν|C| is divisorial but does not itself belong to V1 in

general. Indeed, we have α(ν|C|) = 0 and A(ν|C|) = (2g − 1)/ deg(C), where

g is the geometric genus of the closure of a generic curve Cλ in the pencil.

Thus ν|C| belongs to V1 if and only if Cλ ' C for generic λ. We then call ν|C|
rational pencil valuation.

It follows that if ν is a quasimonomial valuation in V1, then either α(ν) > 0

or ν is a rational pencil valuation.

1.5. Tight compactifications. Associated to the subtree V1 is an important

class of compactifications of C2.

Definition 1.2. An admissible compactification X of C2 is tight if the

normalized divisorial valuations associated to the primes of X belong to the

subtree V1 of V0.

Remark 1.3. An admissible compactification X is tight if and only if

ordE(dx ∧ dy) < 0 and ordE(P ) ≤ 0 for any prime E of X and any poly-

nomial P ∈ C[x, y]. The second condition is equivalent to ZordE being nef; see

Section A.2. This implies that the nef and psef cones of an admissible com-

pactification X of C2 are simplicial whenever ZordE is nef for every prime E

of X. A compactification of C2 associated to a curve with one place at infinity

as defined in [10] always has the latter property and is tight if and only if the

curve is rational.

Lemma 1.4. Let X be a tight compactification of C2. Pick a point p ∈
X \C2 and let X ′ be the admissible compactification of C2 obtained by blowing

up p. Then X ′ is tight if and only if p does not lie on a unique prime of X ,
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whose associated normalized divisorial valuation has skewness zero or thinness

zero.

Proof. Let ν ∈ V0 be the divisorial valuation associated to the blow-up

of p. Then X ′ is tight if and only if ν ∈ V1. First assume p is the intersection

point between two primes E1, E2 of X with associated divisorial valuations

ν1, ν2 ∈ V0. Then ν lies in the segment between ν1 and ν2. Since νi ∈ V1 and

V1 is a subtree, we get ν ∈ V1, so that X ′ is tight.

Now assume p lies on a single prime E of X, with associated divisorial

valuation νE ∈ V1. In this case, ν > νE . Let bE = − ordE(L) as above.

Then A(ν) − A(νE) = 1/bE and α(ν) − α(νE) = −1/b2E . On the other hand,

b2Eα(νE), bEA(νE)∈Z. Hence ν∈V1 if and only if A(νE)<0 and α(νE)>0. �

Corollary 1.5. Let ν ∈ V1 and define a sequence of admissible com-

pactifications (Xm)m≥0 of C2 as follows : X0 = P2 and Xm+1 is obtained from

Xm by blowing up the center pm of ν on Xm. Then Xm is tight for all m.

Proof. In view of Lemma 1.4, we only have to show that pm never lies on

a unique prime E of Xm whose associated normalized valuation νE ∈ V0 has

skewness zero or thinness zero. But if it did, the valuation νk ∈ V0 associated

to pk would satisfy νk > νE for all k > m. This would imply ν > νE so that

α(ν) < 0 or A(ν) > 0, contradicting ν ∈ V1. �

2. Valuative dynamics

Consider a dominant polynomial mapping F : C2 → C2.

2.1. Induced map on valuations. Let ν ∈ V̂0 be a valuation centered at

infinity and set d(F, ν) := −ν(F ∗L) ≥ 0 for a generic affine function L on

C2. Define a valuation F∗ν by F∗ν = 0 if d(F, ν) = 0 and F∗ν(P ) = ν(F ∗P ) if

d(F, ν) > 0. In the former case, note that ν(F ∗P ) = 0 for a generic polynomial.

In the latter case, F•ν := F∗ν/d(F, ν) is a well-defined normalized valuation

in V0.
We have the following valuative criterion for properness of maps. It is a

consequence of [30, Prop. 7.2].

Proposition 2.1. When F is not proper, one can find a divisorial valu-

ation ν such that d(F, ν) = 0. When F is proper, there exists a constant c > 0

such that d(F, ν) ≥ c for all ν ∈ V0.

When ν ∈ V̂div is divisorial and d(F, ν) > 0, the valuation ν ′ := F∗ν ∈ V̂div
is also divisorial. More precisely, given any two admissible compactifications

X, X ′ of C2 such that the centers of ν and ν ′ are primes E and E′ of X and

X ′, respectively we can write ν = t ordE and ν ′ = t′ ordE′ . Then t′/t is the

coefficient of E in ‹F ∗E′, where ‹F : X 99K X ′ is the lift of F .
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The following result, proved in [30, §7.2] allows us to do dynamics on the

subtree V1 of V0, even when F is not proper.

Proposition 2.2. We have d(F, ·) > 0 on V1 and F• leaves V1 invariant.

The map F• preserves the tree structure on V1 in the sense that small

segments are mapped homeomorphically onto small segments. See [30, Th. 7.4]

for a precise statement.

2.2. Eigenvaluations. The asymptotic degree of F is defined by λ1 :=

limn→∞(degFn)1/n. The following result was proved in [30, §7.3].

Proposition 2.3. There exists a valuation ν∗ belonging to the subtree V1
of V0 such that F∗ν∗ = λ1ν∗. In particular, α(ν∗) ≥ 0 and d(F, ν∗) = λ1.

Such a valuation is called an eigenvaluation. The proof is based on the

fact that F• preserves the tree structure on V1. We also proved that the

eigenvaluation admits a small basin of attraction. Using the techniques of [8]

as described in the appendix, we can strengthen these conclusions considerably

under the assumption λ2 < λ21, where λ2 is the topological degree of F .

Theorem 2.4. Assume λ2 < λ21. Then

(a) the valuation ν∗ in Proposition 2.3 is the unique valuation ν ∈ V0 with

α(ν) ≥ 0 and F∗ν = λ1ν;

(b) if ν ∈ V0 and α(ν) > 0, then Fn• ν → ν∗ in V0 as n→∞;

(c) there exists at most one ν ∈ V0 with α(ν) = 0 such that Fn• ν 6→ ν∗ as

n→∞; this ν must satisfy F•ν = ν.

Hence it makes sense to refer to ν∗ as the eigenvaluation when λ2 < λ21.

Proof. The proof invokes the spectral properties of the operators F ∗ and

F∗ on the space L2(X) as discussed in Appendix A.

For ν ∈ V̂0 let Zν ∈ W (X) be the associated Weil class; see Section A.2.

Then F∗Zν = ZF∗ν . When ν ∈ V0 and α(ν) ≥ 0, Lemma A.3 shows that Zν is

nef; hence in L2(X). Theorem A.8 then implies that F∗ν = λ1ν if and only if

Zν = c θ∗ for some c > 0. In fact, c = 1 since (θ∗ · L) = (Zν · L) = 1, and so

ν = ν∗. This proves (a), and that θ∗ = Zν∗ .

To prove (b) and (c), pick any ν ∈ V0 with α(ν) ≥ 0. It follows from

Theorem A.8 that λ−n1 Fn∗ Zν → (Zν · θ∗)θ∗ = (Zν · θ∗)Zν∗ as n → ∞. Thus

Fn• ν → ν∗ as long as (Zν · θ∗) > 0. Since Zν is nef and (θ∗ · θ∗) = 0, the Hodge

inequality implies that (Zν · θ∗) ≥ 0 with equality if and only if Zν = cθ∗ for

some c > 0. In the latter case, ν is uniquely determined, α(ν) = (Zν ·Zν) = 0,

and F•ν = ν as F∗θ
∗ = (λ2/λ1)θ

∗. �
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Proposition 2.5. The asymptotic degree λ1 is a quadratic integer. More-

over, when λ2 < λ21, we are in one of the following two cases :

(i) λ1 ∈ N and ν∗ is divisorial or infinitely singular;

(ii) λ1 6∈ Q and ν∗ is irrational.

Proof. The fact that λ1 is a quadratic integer is contained in [30, Th. A′].

An outline of the proof goes as follows.

When ν∗ is divisorial, it follows from the discussion above Proposition 2.1

that λ1 = d(F, ν∗) ∈ N.

When ν∗ is not divisorial, Theorem 7.7 in [30] provides local normal forms

of F at some point at infinity of some suitable admissible compactification of

C2. In the infinitely singular case, one sees by inspection that λ1 is an integer.

If instead ν∗ is irrational, then the local normal form at p is monomial,

and λ1 is the spectral radius of a 2× 2 matrix M having nonnegative integer

coefficients. Suppose λ1 ∈ Q. Then the other eigenvalue λ′1 of M is also

rational. Now ν∗ being irrational means that M has an eigenvector (u, v) ∈ R2
+

with u/v irrational. This is only possible if λ′1 = λ1. But then the local

topological degree of F at p equals detM = λ21, contradicting λ2 < λ21. �

Proposition 2.6. When λ2 < λ1, the eigenvaluation ν∗ cannot be divi-

sorial.

Proof. Assume ν∗ is divisorial. Pick an admissible compactification X

of C2 such that ν∗ is proportional to ordE for some prime E of X. Then

the rational lift ‹F : X 99K X maps E onto itself, and the eigenvalue λ1 is the

coefficient of E in ‹F ∗E. This coefficient is dominated by the topological degree

of F in a neighborhood of E. Hence λ1 ≤ λ2. �

In the proof of Theorem A, the case when ν∗ is divisorial and also an end

in V1 needs special treatment. It occurs exactly when α(ν∗) = 0 > A(ν∗) (that

is, ν∗ is a rational pencil valuation), or when α(ν∗) > 0 = A(ν∗). As the next

results show, the dynamics are then quite particular.

Proposition 2.7. Assume that ν ∈ V1 is a rational pencil valuation such

that F∗ν = λν for some λ > 0. Then λ is an integer and F is conjugate by

a polynomial automorphism of C2 to a skew product of the form F (x, y) =

(P (x), Q(x, y)) with degy Q = λ.

Proof. As in [30, §7.4] this follows from the Line Embedding Theorem. �

Proposition 2.8. Assume λ1 > 1. If there exists a valuation ν∗ ∈ V0
(not necessarily divisorial) with F∗ν∗ = λ1ν∗ and α(ν∗) > 0 = A(ν∗), then F

is a counterexample to the Jacobian conjecture.
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Proof. The change of variables formula implies A(F∗ν) = A(ν) + ν(JF )

for all ν ∈ V1, where JF is the Jacobian determinant of F ; see [30, Lemma 7.6].

Applying this to ν = ν∗ yields ν∗(JF ) = 0. As α(ν∗) > 0, this is only possible

if JF is constant. But if F were a polynomial automorphism, we would have

α(ν∗) = (θ∗(F ) · θ∗(F )) = (θ∗(F−1) · θ∗(F−1)) = 0. �

2.3. Examples of eigenvaluations. Curve valuations do not belong to V1,
thus can never be eigenvaluations. As the following examples show, any other

type of valuation can occur.

Example 2.9. Assume that the extension to P2 of F : C2 → C2 does

not contract the line at infinity. Then the divisorial valuation −deg is an

eigenvaluation.

Example 2.10. Any rational pencil valuation appears as an eigenvaluation.

Indeed, in suitable affine coordinates, the valuation is associated to the pencil

x = const and is the eigenvaluation of a suitable skew product F (x, y) =

(P (x), Q(x, y)).

Example 2.11. Pick positive integers a, b, c, d such that

∆ := (a+ d)2 − 4(ad− bc) > 0.

Then the 2 × 2 matrix M with entries a, b, c, d has two real eigenvalues t > 1

and t′ < t. The eigenvalue t admits an eigenvector (u, v) ∈ R2
− that we can

normalize by the condition min{u, v} = −1. The map F (x, y) := (xayb, xcyd)

has topological degree λ2 = |ad− bc| and asymptotic degree λ1 = t. It admits

a unique eigenvaluation which is the monomial valuation with weights u on x

and v on y. When ∆ is not a square, the eigenvaluation is irrational. Otherwise

it is divisorial.

One may also perturb F by adding terms of sufficiently low order. After

doing so, λ1, λ2, and the eigenvaluation remain unchanged.

Example 2.12. The eigenvaluation ν∗ of a polynomial automorphism F

with λ1 > 1 is always infinitely singular. Indeed, the eigenclass θ∗ ∈ L2(X)

can be written θ∗(F ) = θ∗(F−1), hence α(ν∗) = (θ∗(F ) · θ∗(F )) = 0. Thus ν∗
cannot be irrational, as that would imply α(ν∗) 6∈ Q. It cannot be divisorial

by Proposition 2.6. Hence it is infinitely singular. Proposition 2.5 now implies

that the asymptotic degree λ1 is an integer, a fact which also follows from the

Friedland-Milnor classification [33].

It would be interesting to investigate the relation between the eigenvalu-

ation ν∗, the solenoids constructed by Hubbard et al. [42], [40], and the singu-

larity of the Green function of F at infinity; see also [29, Prop. 6.9].

Example 2.13. The argument above shows more generally that the eigen-

valuation of any polynomial mapping F : C2 → C2 with λ2 < λ1 ∈ N must be
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infinitely singular. The condition of λ1 being an integer is satisfied, for instance,

if F defines an algebraically stable map on P2, in which case λ1 = degF [32].

3. Stability when λ2 < λ21: the nondivisorial case

Our aim is now to prove precise versions of Theorem A and B in the case

when the eigenvaluation is nondivisorial. Recall that we are always in this

situation when λ2 < λ1; see Proposition 2.6.

Theorem 3.1. Let F : C2 → C2 be a dominant polynomial mapping with

λ2 < λ21 such that the eigenvaluation ν∗ is nondivisorial. Then there exists a

tight compactification X of C2, a point p ∈ X \C2 and local coordinates (z, w)

at p such that the lift ‹F : X 99K X defines a superattracting fixed point germ

at p taking one of the following forms :

(a) ‹F (z, w) = (zawb, zcwd), where a, b, c, d ∈ N and the 2 × 2 matrix M

with entries a, b, c, d has spectral radius λ1; locally at p we have X\C2 =

{zw = 0};
(b) ‹F (z, w) = (zλ1 , µzcw+P (z)), where c ≥ 1, µ ∈ C∗, and P 6≡ P (0) = 0

is a polynomial ; locally at p we have X \C2 = {z = 0}.
Moreover, if F is not conjugate to a skew product by a polynomial automor-

phism of C2, there exists n ≥ 1 such that each prime of X is contracted to p

by ‹Fn. When F is conjugate to a skew product, the same conclusion holds for

all primes of X with the exception of a single prime invariant by ‹F .

Remark 3.2. The skew product case in Theorem 3.1 does not occur when

λ2 < λ1. Indeed, if F (x, y) = (P (x), Q(x, y)), then

λ2 = degP · degy Q ≥ max{degP,degy Q} = λ1.

Corollary 3.3. Under the assumptions of Theorem 3.1, for any ν ∈ V1,

there exists n = n(ν) such that the sequence (d(F j , ν))j≥n satisfies an integral

linear recursion formula of order 1 or 2. In particular, (degF j)j≥n satisfies

such a recursion formula for n large enough.

Proof of Theorem 3.1. Since ν∗ is nondivisorial, its center on any admis-

sible compactification of C2 is a point. We may therefore define an infinite

sequence (Xm)m≥0 of admissible compactifications of C2 by setting X0 = P2

and letting Xm+1 be the blow-up of Xm at the center pm ∈ Xm of ν∗. Let

ν0, . . . , νm be the normalized divisorial valuations associated to the primes of

Xm. As the eigenvaluation ν∗ lies in V1, the compactification Xm is tight by

Corollary 1.5. Hence, for any j, either α(νj) > 0 or νj is a rational pencil

valuation.

We claim that there exists m ≥ 0 such that the lift ‹Fm : Xm 99K Xm

defines a superattracting fixed point germ at pm, taking one of the forms (a)
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or (b) above. This follows from the proof of Theorem 7.7 in [30]. Let us briefly

indicate how to proceed.

When ν∗ is infinitely singular, there exists an infinite subsequence (mj)j≥1
such that Xmj \C2 is locally irreducible at pmj . The corresponding valuations

νmj+1 increase to ν∗ as j → ∞. Consider the segment Ij := ]νmj+1, ν∗] in

V1 and the corresponding open neighborhood Uj of ν∗ in V0 consisting of val-

uations whose tree retraction to the closed segment Ij belongs to Ij . The

attracting properties of ν∗ imply that F•Ij ⊂ Ij and F•Uj ⊂⊂ Uj for large j.

Now Uj is the set of valuations whose center on Xmj equals pmj , so this means

that ‹Fmj defines a holomorphic fixed point germ at pmj which in fact is rigid in

the sense of [27]. The normal form in (b) follows from the classification in [27].

A direct inspection shows that ‹Fmj is superattracting at pmj .

If instead ν∗ is irrational, then for all large m, pm is the intersection of

two primes of Xm. Now F• preserves the tree structure on V0: if I0 is any

small open segment in V0 containing ν∗ and I a small subsegment, then F• is a

homeomorphism of I onto its image F•I ⊂ I0. Moreover, F |I0 is contracting at

ν∗ in the skewness metric. This means that if I is sufficiently symmetric around

ν∗, then F•I ⊂ I. (The symmetry condition is only necessary when F• is order-

reversing on I0.) Let µm, µ
′
m ∈ V0 be the normalized divisorial valuations

associated to the primes of Xm containing pm and set Im = ]µm, µ
′
m[. By

repeating the arithmetic argument as in [30, Lemma 5.6], one shows that there

exists an infinite subsequence (mj)j≥1 such that Imj is sufficiently symmetric

so that F•Imj ⊂ Imj . For j large enough we will also have F•Umj ⊂ Umj , where

Um is the set of valuations whose center on Xm equals pm. Thus ‹Fmj defines

a holomorphic fixed point germ at pmj , which, by invoking [27], can be put in

the monomial form (a) above. Finally ‹Fmj must be superattracting at pmj or

else one of the primes of Xmj containing pmj would be an eigenvaluation for

F 2 with eigenvalue λ21, contradicting Theorem 2.4(a).

In both the irrational and infinitely singular case we have found a tight

compactification X of C2 and a point p ∈ X\C2 such that the lift ‹F : X 99K X
defines a superattracting fixed point germ at p. The point p defines an open

subset U(p) of V0: a valuation ν ∈ V0 belongs to U(p) if and only if the center

of ν on X equals p.

Now pick any prime E of X and let νE ∈ V0 be the associated divisorial

valuation. We have α(νE) ≥ 0 since X is tight. If α(νE) > 0, then Theo-

rem 2.4(b) shows that Fn• νE ∈ U(p) for n� 1. This means that ‹Fn contracts

E to p. If instead α(νE) = 0, then νE must be a rational pencil valuation. The-

orem 2.4(c) shows that ‹Fn still contracts E to p for n� 1 unless F•νE = νE .

In the latter case, F is conjugate to a skew product by Proposition 2.7. �
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Proof of Corollary 3.3. Write νj = F j• (ν) for j ≥ 0. Then d(F j , ν) =∏j−1
i=0 d(F, νi). We may assume Fn• ν → ν∗ as n→∞, since otherwise F•ν = ν

and d(F j , ν) = d(F, ν)j .

If ν∗ is infinitely singular, then d(F, ·) ≡ λ1 in a neighborhood of ν∗. Since

νj → ν∗ as j →∞, we get d(F j+1, ν) = λ1d(F j , ν) for j � 0.

When instead ν∗ is irrational, we use the local monomial form in The-

orem 3.1(a). Let Ez = {z = 0} and Ew = {w = 0} be the primes of X

containing p and write bz = − ordEz(L) and bw = − ordEw(L) for a generic

affine function L on C2. For j ≥ n, set sj := F j∗ ν(z) > 0 and tj := F j∗ ν(w) > 0.

Then (sj+1, tj+1) = M(sj , tj). Now d(F j , ν) = bzsj + bwtj , so this easily im-

plies that (d(F j , ν))j≥n satisfies an integral linear recursion formula of order

at most two. �

4. Stability when λ2 < λ21: the divisorial case

Next we prove Theorem A and B in the case when the eigenvaluation ν∗
is divisorial. Recall that this implies λ2 ≥ λ1. We distinguish between two

subcases: ν∗ may or may not be an end in the tree V1.
When ν∗ is an end, either F is conjugate to a skew product or F is a

counterexample to the Jacobian conjecture; see Propositions 2.7 and 2.8.

Theorem 4.1. Let F : C2 → C2 be a dominant polynomial mapping with

λ2 < λ21. Assume that the eigenvaluation ν∗ is divisorial and an end in V1.

Then there exist a tight compactification X of C2, a prime E∗ of X , a point

p on E∗, and an integer n ≥ 1 such that the lift ‹F : X 99K X maps E∗ onto

E∗ and defines a holomorphic fixed point germ at p. We are in one of the

following situations :

(i) for each prime E 6= E∗ of X , either ‹Fn(E) = E∗, or ‹Fn contracts E

to p;

(ii) F is conjugate to a skew product by a polynomial automorphism of C2

and the properties in (i) hold for all primes E of X with the exception

of a single prime invariant by ‹F .

Corollary 4.2. Under the assumptions of Theorem 4.1, for any ν ∈ V1,

there exists n = n(ν) such that the sequence (d(F j , ν))j≥n satisfies an integral

linear recursion formula of order 1 or 2. In particular, (degF j)j≥n satisfies

such a recursion formula for n large enough.

When ν∗ is not an end, so that α(ν∗) > 0 > A(ν∗), the result is slightly

less precise and the proof more subtle.

Theorem 4.3. Let F : C2 → C2 be a dominant polynomial mapping with

λ2 < λ21. Assume that the eigenvaluation ν∗ ∈ V1 is divisorial and not an end
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in V1. Then there exist a tight compactification X of C2, a prime E∗ of X ,

and an integer n ≥ 1 such that the lift ‹F : X 99K X maps E∗ onto E∗, and we

are in one of the following situations :

(i) for each prime E 6= E∗ of X , either ‹Fn(E) = E∗, or ‹Fn contracts E

to a point on E∗ at which all iterates of ‹F are holomorphic ;

(ii) F is conjugate to a skew product by a polynomial automorphism of C2

and the properties in (i) hold for all primes E of X with the exception

of a single prime invariant by ‹F .

Corollary 4.4. Under the assumptions of Theorem 4.3, there exist l ≥ 1

and, for any ν ∈ V1, n = n(ν) such that the sequence (d(F lj+k, ν))j≥0 satisfies

an integral linear recursion formula of order 1 or 2 for any k ≥ n. In particular,

(degF lj+k)j≥0 satisfies such a recursion formula for any sufficiently large k.

Example 4.5. Define F (x, y) = (x(x − y2), x + y) and set aj = deg(F j).

Then a0 = 1, a1 = 3, a2 = 6 and aj = aj−1+aj−2+2aj−3 for j ≥ 3. One checks

that λ1 = 2, λ2 = 3, and that (aj)
∞
0 does not satisfy any integral recursion

formula of order smaller than three.

Proof of Theorem 4.1. The proof is similar to the infinitely singular case of

Theorem 3.1. Let X0 be the smallest admissible compactification such that the

center of ν∗ on X0 is a prime E∗ of X0: it is obtained from P2 by successively

blowing up the center of ν∗, so X0 is tight by Corollary 1.5. Inductively define

a sequence (Xm)m≥0 of tight compactifications by letting Xm+1 be the blow-up

of Xm at the unique intersection point of (the strict transform of) E∗ and the

unique prime Em 6= E∗ of Xm intersecting E∗.

Let νm ∈ V0 be the divisorial valuation associated to Em. Then (νm)m≥0
form a sequence of valuations increasing to ν∗. Set Im = ]νm, ν∗[. As in [30,

§7.3] we see that F• maps Im into itself for large m. Moreover, we have

F•Um ⊂ Um, where Um ⊂ V0 is the set of valuations whose center on Xm

equals pm. Set X = Xm and p = pm. Then the lift ‹F : X 99K X maps E∗ onto

itself and defines a holomorphic fixed point germ at p.

Let U be the open neighborhood of ν∗ in V consisting of valuations whose

center on X is contained in E∗. Pick a prime E 6= E∗ of X. If F•νE = νE ,

then E is unique with this property, νE is a rational pencil valuation, and F

is conjugate to a skew product. For all other primes E we have Fn• νE ∈ U for

n� 1. If Fn• νE = ν∗, then ‹Fn(E) = E∗. Otherwise E is contracted by ‹Fn to

p ∈ E∗. This completes the proof. �

Proof of Corollary 4.2. We can use the same proof as that of Corollary 3.3

in the irrational case. Indeed, let E and E∗ be the primes of X containing p and

write E = {z = 0}, E∗ = {w = 0} for coordinates (z, w) at p. We may perhaps

not arrange that F is monomial in (z, w), but if we set sj := F j∗ ν(z) > 0 and
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tj := F j∗ ν(w) > 0, we will nevertheless have (sj+1, tj+1) = M(sj , tj) for some

2× 2 matrix M with nonnegative integer entries; see [30, Th. 7.4] �

Proof of Theorem 4.3. Since ν∗ is not an end in V1, we have α(ν∗) > 0 >

A(ν∗). Let X0 be the smallest admissible compactification such that the center

of ν∗ on X0 is a prime E∗ of X0: it is obtained from P2 by successively blowing

up the center of ν∗, so X0 is tight by Corollary 1.5.

Lemma 4.6. There exists a tight compactification X of C2 dominating

X0 such that the lift ‹F : X 99K X is holomorphic at all periodic points of ‹F |E∗ ,
where E∗ denotes the center of ν∗ on X .

Using this lemma we now conclude the proof. Let U be the open neigh-

borhood of ν∗ in V consisting of valuations whose center on X is contained

in E∗. Pick a prime E 6= E∗ of X. If F•νE = νE , then E is unique with

this property, νE is a rational pencil valuation, and F is conjugate to a skew

product. For all other primes E we have Fn• νE ∈ U for n� 1. If Fn• νE = ν∗,

then ‹Fn(E) = E∗. Otherwise E is contracted by ‹Fn to a point p ∈ E∗. By

increasing n we can assume that the orbit of p under ‹F |E∗ is either periodic

or infinite. In the first case, ‹F is holomorphic at p by Lemma 4.6. In the

second case, we can by increasing n assume that the orbit does not intersect

the indeterminacy set of ‹F . This completes the proof. �

Proof of Lemma 4.6. Write ‹F0 for the lift of F0 to X0. Let Z ⊂ E∗ be the

(finite) set of periodic points of ‹F0|E∗ whose orbit contains an indeterminacy

point of ‹F0. First assume for simplicity that Z consists of a single periodic

orbit p0, p1, . . . , pl = p0 of length l ≥ 1 for ‹F0|E∗ .
Let µk ∈ V0 be the divisorial valuation associated to the blow-up of X0

at pk, 0 ≤ k ≤ l. The segment Jk := ]µk, ν∗[ in V1 has length (b∗bk)
−1 in the

skewness metric, where b∗ = − ordE∗(L), bk = − ordpk(L) for a generic affine

function L on C2.

For large positive integers m0,m1, . . . ,ml = m0 to be determined shortly,

define valuations νk, 0 ≤ k < l as follows: blow up pk, then successively mk

times blow up the intersection point between the (strict transform of) E∗ and

the previously obtained exceptional divisor. The segment Ik := ]νk, ν∗[⊂ Jk
then has length (b∗(bk +mkb∗))

−1 in the skewness metric.

For mk large, the segment Ik is small enough so that F• maps Ik home-

omorphically onto a subsegment of Jk+1. Moreover, when the segments are

parametrized by skewness, F• is given by a Möbius map with nonnegative in-

teger coefficients; see [30, Th. 7.4]. Thus the one-sided derivative of F• on Ik
at ν∗ is a well-defined rational number sk > 0.

The key fact is now that the Möbius property above implies that the

iterate F l• maps the segment I0 into itself and that either F l• ≡ id or F l• is
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a contraction on I0; see [30, Lemma 5.5]. The former case is impossible by

Theorem 2.4. Hence we conclude that
∏l−1
k=0 sk < 1.

Pick ε > 0 such that
∏l−1
k=0 sk ≤ (1− 2ε)l. We may then pick the integers

mk (with m0 = ml) above arbitrarily large so that

(4.1)
sk

mkb∗ + bk
≤ (1− ε) 1

mk+1b∗ + bk+1
for 0 ≤ k < l;

we just need to make mk+1/mk slightly smaller than 1/sk. By the definition

of sk, (4.1) implies that F• maps Ik into Ik+1. Let Uk be the open subset of

V0 consisting of valuations whose tree retraction to the closed segment Ik is

contained in Ik. Then F• maps Uk into Uk+1 for 0 ≤ k < l, assuming the mk’s

are large enough (again, by convention, Ul = U0).

Let X be the smallest admissible compactification of C2 dominating X0

such that the center of νk is one-dimensional for 0 ≤ k < l. Then X is obtained

from X0 by performing all the blow-ups mentioned above, so X is tight and

the morphism X → X0 induced by the identity on C2 is an isomorphism above

X0 \ Z.

The center of νk on X intersects (the strict transform of) E∗ at some point

qk and the open set Uk above exactly consists of the valuations in V0 whose

center on X equals qk. Thus F•Uk ⊂ Uk+1 translates into the lift ‹F : X 99K X
of F being holomorphic at qk.

This completes the proof when Z consists of a single periodic orbit. In

general, there are several orbits, but we can handle them one at a time. �

Proof of Corollary 4.4. There is a finite subset Z ⊂ E∗ such that if p ∈
E∗ \ Z, we have d(F, ·) ≡ λ1 on the open set U(p) ⊂ V0 of valuations whose

center on X is p. We may pick l ≥ 1 such that any periodic orbit of ‹F |E∗
intersecting Z has order dividing l.

As in the proof of Corollary 3.3, we may assume Fn• ν → ν∗ as n → ∞.

Similarly, we may assume Fn• ν 6= ν∗ for all n.

Pick n = n(ν) so that the center of F k• ν on X is a point pk ∈ E∗ for k ≥ n.

After increasing n, we may assume that the orbit pn, pn+1, . . . is either disjoint

from Z or periodic of order (dividing) l. In the first case, d(F k+j+1, ν) =

λ1d(F k+j , ν) for any j ≥ 0. In the second case, we conclude the proof as in

Corollary 3.3. �

5. Maximum topological degree: λ2 = λ21

Next we turn to maps with maximum topological degree λ2 = λ21. As we

do not have an analog of Theorem A.8 at our disposal, we base our analysis

on a detailed description of the dynamics of F• on V1 using tree arguments.
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5.1. Dynamics on V1. The results of this section form the basis for the

proof of Theorems A, B, and C in the case λ2 = λ21. Define

(5.1) TF := {ν ∈ V1 | F•ν = ν}.

This set is nonempty by Proposition 2.3. The following three results summarize

the structure of TF and its dynamical significance.

Proposition 5.1. Suppose degFn/λn1 is unbounded. Then TF = {ν∗}
is a singleton, where ν∗ is a rational pencil valuation, and Fn• → ν∗ on V1
as n → ∞. Moreover, F is not proper, degFn ∼ nλn1 , and there exist affine

coordinates in which F (x, y) = (P (x), A(x)yλ1 +Ox(yλ1−1)), where degP = λ1
and degA ≥ 1.

Proposition 5.2. Suppose degFn is bounded. Then F is a polynomial

automorphism of C2. In suitable affine coordinates, either

(a) F is an affine map and −deg ∈ TF , or

(b) F is a skew product of the form F (x) = (ax + b, cy + P (x)), where

a, c ∈ C∗, b ∈ C; we may then assume TF = [ν0, ν1], where ν1 is

associated to the pencil x = const and ν0 is a monomial valuation

satisfying ν0(y) = −1, ν0(x) = −1/q, where q = degP > 1.

Proposition 5.3. Suppose degFn/λn1 is bounded and λ1 > 1. Then F

is proper. Moreover:

(a) either TF consists of a single quasimonomial valuation ν∗ ∈ V1 with

α(ν∗) > 0, or TF is a closed segment in V1 whose endpoints are diviso-

rial valuations ;

(b) TFn = TF 2 for n ≥ 2, and either TF = TF 2 or TF is a singleton, lying

in the interior of TF 2 ;

(c) for ν ∈ V1, F 2n
• ν → r(ν) as n→∞, where r : V1 → TF 2 is the natural

retraction ;

(d) in suitable affine coordinates, all the valuations in TF 2 are monomial.

The convergence in (c) holds in a strong sense: F 2n
• ν → r(ν) weakly and

A(F 2n
• ν)→ A(r(ν)).

The proofs of these results are given in Section 5.4.

5.2. Proof of Theorem C. If deg(Fn)/λn1 is unbounded, then we are in

case (1) by Proposition 5.1.

If deg(Fn) is bounded, then we pick suitable affine coordinates as in Propo-

sition 5.2. When F is affine, it extends holomorphically to X = P2. When F is

a skew product as in (b), it extends holomorphically to the Hirzebruch surface

X = Fq. Indeed, we can view Fq as a toric surface associated to the complete
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fan generated by the vectors (1, 0), (0, 1), (0,−1) and (−q,−1) in R2; see [34,

pp. 6–8]. Then X is a compactification of C2 and X \ C2 is a union of two

rational curves, corresponding to the centers of ν0 and ν1 on X. As ν0 and ν1
are totally invariant under F•, the lift of F to Fq is holomorphic.

Finally, when deg(Fn)/λn1 is bounded but λ1 > 1, we apply Proposi-

tion 5.3. Hence we may assume that TF 2 consists of monomial valuations. If

TF contains a divisorial valuation ν∗, then ν∗(x) = −p/q, ν∗(y) = −1, where

q ≥ p ≥ 1 and gcd(p, q) = 1. Let X := Xp,q be the toric surface associated to

the complete fan generated by the vectors (1, 0), (0, 1), and (−p,−q) in R2.

Then X has at worst quotient singularities and is in fact a weighted projective

plane; see below. Note that X \C2 is a single, totally invariant, rational curve.

As ν∗ is totally invariant under F•, F lifts to a holomorphic self-map of X.

If TF contains no divisorial valuation, then TF = {ν∗}, where ν∗ is an

irrational valuation belonging to the interior of TF 2 . Note that d(F, ·) cannot

be locally constant at ν∗, or else the tangent map of F at ν∗ (see below) would

be the identity and TF = TF 2 . Thus λ1 = d(F, ν∗) is irrational.

Pick any divisorial valuation ν ∈ TF 2 with ν < ν∗, and set ν ′ = F•ν.

Then ν ′ > ν∗, and ν and ν ′ are both totally invariant under F 2
• . We have

ν(y) = ν ′(y) = −1, ν(x) = −p/q, ν ′(x) = −p′/q′ for some integers with

q ≥ p ≥ 1, q′ > p′ ≥ 1, and gcd(p, q) = gcd(p′, q′) = 1. Define X to be

the toric surface associated to the complete fan generated by (1, 0), (0, 1),

(−p,−q), (−p′,−q′) in R2. Then X has at worst quotient singularities, and

X \C2 consists of two irreducible rational curves E and E′ corresponding to

the centers of ν and ν ′ on X. As these valuations are permuted by F• and

totally invariant by F 2
• , F lifts to a holomorphic self-map of X which permutes

E and E′. This completes the proof of Theorem C.

5.3. Weighted projective spaces and normal forms. Suppose λ2 = λ21,

degFn/λn1 is bounded, and λ1 > 1.

Assume that TF contains a divisorial valuation ν∗, with ν∗(x) = −p/q,
ν∗(y) = −1, where q ≥ p ≥ 1 are relatively prime integers. We saw that F is

holomorphic on the toric surface Xp,q. Conversely any polynomial map of C2

which extends as a holomorphic map to Xp,q satisfies λ2 = λ21, and degFn/λn1 is

bounded. The surface Xp,q is the weighted projective space with homogeneous

coordinates [x : y : z] ∼ [λpx : λqy : λz] for all λ ∈ C∗; see [34, p. 35], [24]

or [12]. For any polynomial P , let P+ be its ν∗-leading homogeneous part, i.e.,

the sum of all monomials aijx
iyj in P such that −(pi/q + j) = ν∗(P ). Then a

polynomial map F = (P,Q) is holomorphic on Xp,q if and only if P+ and Q+

have no common zeroes on the weighted projective line [x : y] ∼ [λpx : λqy],

i.e., if and only if P+(xq, yp) and Q+(xq, yp) have no common zeroes in C2\{0}.
Note that there exist polynomial maps of C2 which extend to a unique

Xp,q. For such an example, pick any λ1 divisible by p and q, write λ1 = pa = qb
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and take F (x, y) = (P,Q) with P+ = αxλ1 + βypb, Q+ = γxqa + δyλ1 , where

αβγδ 6= 0. When λ1 is not divisible by lcm(p, q), TF is not reduced to a

singleton.

Pick p, q and p′, q′ any two pairs of relatively prime integers with associated

monomial valuations ν and ν ′ and p′/q′ > p/q. Then there exists a polynomial

map of C2 for which TF is precisely the segment of monomial valuations [ν, ν ′].

Take λ1 divisible by lcm(p, q, p′, q′), write λ1 = pa = qb = p′a′ = q′b′ and

define F (x, y) = (αxλ1 + βypb + C0, δy
λ1 + γxq

′a′ + C1) with αβγδ 6= 0, and

C0, C1 ∈ C.

Finally if TF contains no divisorial valuation, then λ1 6∈ N and TF consists

of a single irrational monomial valuation ν∗. We may assume ν∗(x) = −t,
ν∗(y) = −1, where t ∈ (0, 1) is irrational. This leads to

P+ = αyb and Q+ = βxc,

where b, c ∈ N, 0 < b < c, bc = λ2 = λ21, t =
»
b/c, and α, β ∈ C∗.

5.4. Proofs of Propositions 5.1– 5.3. The arguments utilize the tree struc-

ture of V1 in much more detail than other parts of this paper. In particular,

we need to exploit the relationship between the parametrizations α and A on

the tree V0 as explained in [30, App. A]. There is an increasing, lower semi-

continuous multiplicity function m : V0 → N∗ ∪ {+∞} such that A(ν) =

−2−
∫ ν
− degm(µ)dα(µ) for all ν ∈ V0; see [30, Th. A.4]. The multiplicity of any

quasimonomial valuation is finite, whereas infinitely singular valuations have

infinite multiplicity.

Write JF for the Jacobian determinant of F . The multiplicity function

will be primarily exploited through the following Jacobian formula (see [30,

Lemma 7.6]):

(5.2) A(ν) + ν(JF ) = d(F, ν)A(F•ν).

We start by proving some general facts about the set TF defined in (5.1).

Lemma 5.4. The set TF is nonempty. For every ν ∈ TF , F∗ν = λ1ν

and F ∗Zν = F∗Zν = λ1Zν . If F is proper, every ν ∈ TF is totally invariant

under F•.

Proof. By Proposition 2.3 there exists ν ∈ V1 with F∗ν = λ1ν, hence TF
is nonempty. For any such ν, we have F∗Zν = λ1Zν by Lemma A.6. The

condition λ2 = λ21 and the Hodge Index Theorem then imply F ∗Zν = λ1Zν .

When F is proper, the latter equation implies that ν is totally invariant by

Proposition A.7.

Now pick any µ ∈ TF . We must prove that F∗µ = λ1µ. In any case,

F∗µ = λµ for some λ > 0. Pick ν ∈ V1 such that F∗ν = λ1ν. We may assume

that ν 6= µ. By what precedes and by (A.1), λ1α(µ ∧ ν) = (Zµ · F ∗Zν) =

(F∗Zµ · Zν) = λα(µ ∧ ν). Since µ 6= ν, α(µ ∧ ν) > 0 and so λ = λ1. �
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Proof of Proposition 5.1. Every valuation ν ∈ TF must have α(ν) = 0, or

else deg(Fn)/λn1 would be bounded by 1/α(ν). By Theorem B′ and Section 7.4

in [30], there exists a rational pencil valuation ν∗ ∈ TF . Moreover, in suitable

affine coordinates, ν∗ corresponds to the pencil x = const and F takes the

required form. Hence degFn ∼ nλn1 .

Now note that since F ∗Zν∗ = λ1Zν∗ , we have

(5.3) α(Fn• ν ∧ ν∗) =
λn1

d(Fn, ν)
α(ν ∧ ν∗)

for any ν ∈ V1 and n ≥ 1.

Apply this to n = 1 and ν < ν∗ close to ν∗. Then F•ν < ν∗, so d(F, ν) < λ1
or else ν ∈ TF . Hence d(F, ·) is nonconstant near ν∗. By [30, Prop. 7.2] there

exists ν0 ∈ V0, ν0 > ν∗ such that F∗Zν0 = cL, where c ≥ 0 and L is the class

of a line. Then c = (F∗Zν0 · Zν∗) = λ1α(ν0 ∧ ν∗) = 0. In particular, F is not

proper; see Proposition 2.1.

It remains to prove that Fn• ν → ν∗ as n → ∞ for every ν ∈ V1. This

will in particular imply TFn = {ν∗} for all n ≥ 1. When α(ν) > 0, this

follows from (5.3), since d(Fn, ν) ≥ deg(Fn)α(ν), so suppose α(ν) = 0 and

set ν ′ = F•ν. If α(ν ′) > 0, then again Fn• ν → ν∗, so suppose α(ν ′) = 0.

Consider the nef Weil class Zν′ and note that (F ∗Zν′ ·Zν) = 0. By the Hodge

Index Theorem, F ∗Zν′ = cZν , where c = λ2/d(F, ν) > 0. Let ν0 > ν∗ be

the valuation with F∗Zν0 = 0 considered above. Then 0 = (F∗Zν0 · Zν′) =

(Zν0 · F ∗Zν′) = cα(ν0 ∧ ν ′), which implies ν ′ = ν∗, completing the proof. �

Proof of Proposition 5.2. Note that λ1 = λ2 = 1. It suffices to prove

that F is proper. Indeed, then F is a polynomial automorphism, and all the

assertions follow from the Friedland-Milnor classification [33].

Now, if F were not proper, by Proposition 2.1 we could find a divisorial

valuation ν0 ∈ V0 such that F∗Zν0 = 0. Hence, for any ν ∈ TF , 0 = (F∗Zν0 ·
Zν) = λ1α(ν0 ∧ ν), so that α(ν) = 0 and ν0 ≥ ν. Thus F would be of the form

(ax+ b, C(x)y+D(x)) in suitable coordinates. As F is nonproper, degC ≥ 1,

contradicting that degFn is bounded. �

Next we turn to Proposition 5.3, which is significantly harder to prove than

the previous two propositions. Assume therefore, for the rest of Section 5.4

that λ2 = λ21 > 1 and that degFn/λn1 is bounded. Then F is proper as follows

from the proof of Proposition 5.2. Hence, by Lemma 5.4, every ν ∈ TF is

totally invariant under F•.

To continue the proof, we recall the definition of the (tree) tangent map of

F at any valuation ν ∈ V0; see [30, §3]. Declare two segments of the form [ν1, ν[

and [ν2, ν[ to be equivalent if and only if they have nonempty intersection. An

equivalence class is called a tangent vector at ν and the set Tν of tangent

vectors the tangent space at ν. If ~v is a tangent vector, we denote by U(~v)
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the open set of all valuations determining ~v. These open sets form a basis for

the weak topology on V0 [28, Th. 5.1]. As F• preserves the tree structure it

naturally induces a surjective self-map F : Tν → Tν, the tangent map, for any

eigenvaluation ν ∈ TF .

When ν ∈ TF is infinitely singular, Tν is a singleton, so F ≡ id. When

ν ∈ TF is irrational, Tν consists of two tangent vectors and F2 ≡ id. If instead

ν ∈ TF is divisorial and X is an admissible compactification on which the center

of ν is a prime E of X, then there exists a canonical identification of E with the

tangent space Tν at ν as follows. For any point p ∈ E, all valuations centered

at p determine the same tangent vector ~vp at ν. Conversely, all valuations in

U(~v) are centered along a connected subspace intersecting E in a single point

p(~v); see [28, Th. B.1]. With this identification, F can be viewed as a rational

self-map of E ' P1.

Lemma 5.5. Assume ν∗ ∈ TF and consider a tangent vector ~v at ν∗ rep-

resented by a valuation with α > 0. If ~v is totally invariant by F, then F• ≡ id

on a small segment representing ~v.

Lemma 5.6. Assume ν∗ ∈ TF is divisorial but not a rational pencil valu-

ation. Then F•U(~v) = U(F~v) for any tangent vector ~v at ν∗.

With these two lemmas at hand, we continue the proof of Proposition 5.3.

First suppose TF = {ν∗} is a singleton. Then ν∗ cannot be infinitely

singular by Lemma 5.5. Neither can it be a rational pencil valuation, since

then degFn ∼ nλn1 . Hence ν∗ is quasimonomial with α(ν∗) > 0.

If TF is not a singleton, pick two distinct valuations ν1, ν2 ∈ TF . The set

[ν1, ν2] ∩ TF is clearly closed, and Lemmas 5.5 and 5.6 show that it is open.

Hence [ν1, ν2] ⊂ TF , so TF is a subtree of V1. Suppose ν is a branch point

of TF . Then ν is divisorial and α(ν) > 0. Each branch of TF emanating

from ν corresponds to a tangent vector ~v which is totally invariant by the

tangent map F at ν, since a valuation in TF is totally invariant. Now F can be

identified with a rational map on P1 whose degree equals λ2/d(F, ν) = λ1 > 1.

Hence F admits at most two totally invariant tangent vectors. This gives a

contradiction. We have shown that TF is a nonempty closed segment of V1.
Suppose that TF ( TF 2 and that TF is not a singleton. We can then find a

valuation ν which is an interior point of TF 2 but an endpoint of TF . Consider

the tangent map F at ν. We see that F2 admits two totally invariant tangent

vectors, exactly one of which is (totally) invariant by F. This is a contradiction.

Similarly, TF cannot be a singleton consisting of an endpoint of TF 2 . An

analogous argument shows that TFn = TF for all n ≥ 3, establishing (b).

Now suppose that TF is a nontrivial segment, and consider a subsegment

I =]ν1, ν2[⊂ TF , that is totally ordered, i.e., ν1 < ν2. We claim that the



DYNAMICAL COMPACTIFICATIONS OF C2 233

multiplicity function m is constant on I. This will imply that the endpoints

of TF are divisorial (rather than infinitely singular), and hence complete the

proof of (a). The Jacobian formula (5.2) gives ν(JF ) = (λ1 − 1)A(ν), so the

function ν → ν(JF ) is piecewise affine on I (with respect to skewness) with

slope m(ν)(λ1 − 1). Now ν → ν(JF ) is concave on I [30, §A.4], whereas

ν 7→ m(ν) is nondecreasing on I. Thus m is constant on I, as required.

Next we turn to (c). We may replace F by F 2 so that TF = TF 2 . Pick

ν ∈ V1 \TF and write ν∗ := r(ν) ∈ TF . Then ν∗ is divisorial and α(ν∗) > 0. We

need to show that Fn• ν → ν∗ as n→∞. Denote by ~v the tangent vector at ν∗
represented by ν. Note that U(~v) ∩ TF = ∅. If ~v is not preperiodic, then for n

large enough, the functions µ 7→ µ(JF ) and µ 7→ d(F, µ) are both constant on

U(~vn), where ~vn := Fn~v; see [30, Prop. 3.4]. By Lemma 5.6, Fn• ν ∈ U(~vn) for

all n, and the Jacobian formula (5.2) implies that |A(Fn• ν)−A(ν∗)| ∼ λ−n1 → 0.

This implies that Fn• ν → ν∗ in the weak topology.

When ~v is preperiodic, we may assume it is fixed but not totally invariant

by F. Let I := [ν∗, ν] and Ω := {µ ∈ I | Fn• µ → ν∗}. As in the proof of

Lemma 4.6, F• is given on I by a (piecewise) Möbius transformation with non-

negative integer coefficient fixing ν∗. Hence Ω contains a small neighborhood

of ν∗ in I, and is therefore open.

Lemma 5.7. Let ν1, ν2 ∈ V1 be comparable (i.e., ν1 ≤ ν2 or ν2 ≤ ν1)

valuations with α(νi) > 0, i = 1, 2. Then

(5.4) |A(F•ν2)−A(F•ν1)| ≤
4

α(ν1)α(ν2)
|A(ν2)−A(ν1)|

for any dominant polynomial mapping F : C2 → C2.

This result implies the (local) equicontinuity of the family (Fn• ) on Ω ∩
{α > 0}, hence Ω ∩ {α > 0} is closed. When α(ν) > 0, we conclude that

ν ∈ Ω. Otherwise, α(ν) = 0. To complete the proof, we only need to show

that α(νn) > 0 for some n ≥ 1, where νn = Fn• ν.

Suppose to the contrary that α(νn) = 0 for all n ≥ 1. As in the proof of

Proposition 5.1 we get Fn∗Zνn = cnZν , where cn > 0. By Proposition A.7, this

shows that ν is the only preimage of νn under Fn• . Let ~vn be the tangent vector

at ν∗ represented by νn. By Lemma 5.6, ~v is the only preimage of ~vn under

Fn. If n ≥ 2, this implies that ~v is totally invariant under F2, contradicting

Lemma 5.5 since U(~v) ∩ TF 2 = ∅. This proves (c).

Finally we consider the monomialization statement in (d). The starting

point is

Lemma 5.8. A quasimonomial valuation ν ∈ V1 is monomial in some

affine coordinates if and only if A(ν) +m(ν)α(ν) < 0.
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Define ν∗ as the minimal element in TF 2 . We claim that, in suitable

affine coordinates, ν∗ becomes a monomial valuation. In view of Lemma 5.8 it

suffices to prove that A(ν∗)+m(ν∗)α(ν∗) < 0. We assume that ν∗ 6= −deg. By

Lemma 5.5 and the minimality of ν∗, the tangent vector at ν∗ represented by

−deg is not totally invariant under the tangent map. Hence we can find a small

segment I ′ ⊂ [−deg, ν∗] and another small segment I such that I ∩ I ′ = {ν∗}
and F• maps I homeomorphically onto I ′.

We use the Jacobian formula (5.2). If the segments are chosen small

enough, we have A = −m∗α + δ on I ′, where m∗ = m(ν∗) and δ ∈ R. We

must prove that δ < 0. The right-hand side of (5.2) can be written

−m∗d(F, ν)α(F•ν) + δ d(F, ν) = −m∗(ZF∗ν · Zν∗) + δ d(F, ν)

= −m∗(Zν · F ∗Zν∗) + δ d(F, ν) = −m∗λ1α(ν∗) + δ d(F, ν).

Since the left-hand side in (5.2) is strictly increasing in ν, we get δ < 0.

Hence TF 2 contains a monomial valuation. If TF 2 = {ν∗} is a singleton, then

TF = {ν∗}, ν∗ is divisorial and α(ν∗) > 0, and there is nothing left to do.

Assume therefore that TF 2 is a nontrivial segment that contains at least one

monomial valuation.

First suppose that TF 2 contains a unique monomial valuation ν∗; this is

then necessarily divisorial, given by ν(x) = −p/q, ν(y) = −1, where q ≥ p ≥ 1

and gcd(p, q) = 1. We wish to change coordinates so that TF 2 contains a

nontrivial segment of monomial valuations. For this, it suffices to prove that

p = 1. Indeed, there then exists a valuation ν1 ∈ TF 2 with ν1 > ν∗, ν1(x) =

−1/q, ν1(y) = −1, and ν1(y + axq) > −1 for some a ∈ C∗. After a change of

coordinates by a shear of the form (x, y) 7→ (x, y+ axq), TF 2 will then contain

a monomial subsegment.

To prove p = 1, pick ν1 > ν∗ such that ν1 ∈ TF 2 and such that the

multiplicity is constant, equal to q, on I = ]ν∗, ν1]. The Jacobian formula (5.2)

applied to F 2n on I yields ν(JF 2n) = (λ2n1 − 1)A(ν), so ν 7→ ν(JF 2n) is affine

on I with slope q(λ2n1 −1). This implies deg(JF 2n) ≥ q(λ2n1 −1). Applying the

Jacobian formula to −deg gives deg(JF 2n) = −deg(F 2n)A(F 2n
• (−deg)) − 2.

The retraction of −deg on TF 2 equals ν∗, so A(F 2n
• (−deg))→ A(ν∗) = −1−

p/q as n → ∞. On the other hand, deg(F 2n) ≤ d(F 2n, ν∗)/α(ν∗) = λ2n1 q/p.

Altogether this gives q/p+ 1 ≥ q, so p = 1.

We may therefore assume that TF 2 contains a nontrivial subsegment con-

sisting of monomial valuations. We saw that the multiplicity on any totally

ordered open subsegment of TF 2 is constant; hence TF 2 is a segment which

is the union of a segment of monomial valuations [ν0, ν1], ν0 ≤ ν1, and a to-

tally ordered segment whose minimum is ν0. We may assume ν0(x) = −p/q,
ν0(y) = −1, where q ≥ p ≥ 1 and gcd(p, q) = 1. If p > 1, then the above

argument shows that ν0 is an endpoint in TF 2 , yielding TF 2 = [ν0, ν1]. Hence
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assume p = 1 and that TF 2 6= [ν0, ν1]. We proceed by induction on q. If

q = 1, then ν0 = −deg and we may change coordinate by an affine map of

the form (x, y) 7→ (x, y+ ax). The valuations in [ν0, ν1] remain monomial, but

TF 2 contains a new monomial valuation ν ′1, which we may assume maximal.

Thus TF 2 = [ν ′1, ν1] and we are done. If q > 1, then we change coordinates

by a shear of the form (x, y) 7→ (x, y + axq). The valuations in [ν0, ν1] remain

monomial, but ν0 is no longer the minimal monomial valuation in TF 2 . By

the inductive hypothesis we may now make TF 2 monomial. This completes the

proof of Proposition 5.3.

5.5. Proofs of Lemmas. Finally we prove the lemmas used above.

Proof of Lemma 5.5. Pick a segment I in V0 representing the totally in-

variant tangent vector at ν∗. If ν ∈ I is close enough to ν∗, then ν ′ := F•ν ∈ I.

As the tangent vector is totally invariant, ν is then the only preimage of ν ′

under F•. Write d = d(F, ν), α = α(ν), α′ = α(ν ′). Then F∗Zν = dZν′ and,

since F is proper, F ∗Zν′ = λ2
d Zν . On the one hand, this gives

λ2α
′ = λ2(Zν′ · Zν′) = (F ∗Zν′ · F ∗Zν′) =

λ22
d2

(Zν · Zν) =
λ22
d2
α.

On the other hand, we get

λ2
d
α(ν ∧ ν∗) = (F ∗Zν′ · Z∗) = (Zν′ · F∗Z∗) = λ1α(ν ′ ∧ ν∗).

Now either ν, ν ′ > ν∗ or ν, ν ′ < ν∗. In both cases, we easily deduce, using

λ2 = λ21 and α(ν∗) > 0, that λ1 = d and α = α′. Hence ν ′ = F•ν = ν, which

completes the proof. �

Proof of Lemma 5.6. Pick a tight compactification X0 of C2 on which the

center of ν∗ is a prime E0 of X. Let V ⊂ Pic(X0) be the subspace spanned by

all primes E 6= E0. Then V lies in the orthogonal complement of the class Z0

determined by the condition Z0 ·Z = ordE0(Z) for all Z. But α(ν∗) > 0, hence

Z2
0 > 0; see Lemma A.2. Thus the intersection form is negative definite on

V . We may therefore contract all primes E 6= E0: we get a normal (singular)

surface X1 on which the center of ν∗ is a prime E1, and the lift ‹F : X1 → X1

is holomorphic. Pick a tangent vector ~v at ν∗. It corresponds to a point

p ∈ E1: the set U(~v) is exactly the set of valuations ν ∈ V0 centered at p. The

map ‹F induces a finite germ (X1, p) → (X1, ‹F (p)) hence F• maps U(~v) onto

U(F(~v)). �

Proof of Lemma 5.7. The proof is based on the Jacobian formula (5.2).

Write αi = α(νi) > 0, Ai = A(νi) < 0, A′i = A(F•νi) < 0, di = d(F, νi) > 0,

and Ji = νi(JF ) < 0 for i = 1, 2 and write d = degF . The functions ν 7→
−d(F, ν) and ν 7→ ν(JF ) define tree potentials on V0 in the sense of [30, §A.4].
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Hence |d2 − d1| ≤ d|α2 − α1| ≤ d|A2 − A1|, |J2 − J1| ≤ (deg JF )|α2 − α1| ≤
(2d− 2)|A2 −A1|, and di ≥ dαi. Moreover, |Ai + Ji| ≤ 2d. Thus (5.2) gives

|A′2 −A′1| =
∣∣∣∣A2 + J2

d2
− A1 + J1

d1

∣∣∣∣
=

∣∣∣∣∣(A2 + J2)(d1 − d2)
d1d2

+
(A2 −A1) + (J2 − J1)

d1

∣∣∣∣∣
≤
Å

2

α1α2
+

2

α1

ã
|A2 −A1|,

which completes the proof since 0 < α2 ≤ 1. �

Proof of Lemma 5.8. The proof is based on [30, App. A]. By the Line

Embedding Theorem it is sufficient to prove that A(ν) +m(ν)α(ν) < 0 if and

only if ν ∈ V1 is dominated by a rational pencil valuation.

Suppose C is a curve with one place at infinity whose associated pencil

valuation ν|C| dominates ν. Then α(ν|C|) = 0 and α ≤ 0 on [ν, ν|C|], so

A(ν|C|)−A(ν) = −
∫ ν|C|

ν
m(µ) dα(µ) ≥ −

∫ ν|C|

ν
m(ν) dα(µ) = m(ν)α(ν).

By [30, Prop. A.4], the pencil |C| is rational if and only if A(ν|C|) < 0. Hence,

A(ν) + m(ν)α(ν) < 0 if |C| is rational. On the other hand, we may always

pick the curve C with deg(C) = m(ν). Then the multiplicity m is constant

equal to m(ν) on [ν, ν|C|]. Thus equality holds above, and we get A(ν|C|) =

A(ν) +m(ν)α(ν). So when A(ν) +m(ν)α(ν) < 0, |C| is rational. �

6. Proofs of Theorems A and B

Fix an embedding C2 ⊂ P2 and consider an arbitrary polynomial mapping

F : C2 → C2. We start by making a few general remarks.

First, if X is an admissible compactification of C2 and the lift ‹F : X 99K X
satisfies ‹F (n+j)∗ = ‹F ∗n‹F j∗ on Pic(X) for j ≥ 1, then

deg(Fn+j) = (‹F (n+j)∗L · L) = (‹Fn∗‹F ∗jL · L)

with L ∈ Pic(X) the (pullback of the) class of a line in P2. Hence (deg(F j))j≥n
satisfies the linear recurrence relation determined by the characteristic poly-

nomial of the linear map ‹F ∗ : Pic(X) → Pic(X). In the basis given by the

primes of X, ‹F ∗ can be expressed with integer coefficients. Hence Theorem B

follows from Theorem A in this case.

Second, if F : C2 → C2 is not dominant, its image is a point or a curve.

In either case, we pick an admissible compactification X of C2 such that the

map X → P2 induced by F is holomorphic. One can then check that the lift‹F : X → X is also holomorphic. This establishes Theorems A and B in the

nondominant case.
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Third, if F : X 99K Y , G : Y 99K Z are dominant rational maps between

surfaces, and F ∗, G∗ denotes the action on the respective Picard groups of these

surfaces, then F ∗ ◦G∗ = (G ◦F )∗ if and only if no curve in X is contracted by

F to an indeterminacy point of G.

Using this, it is not difficult to see that in the case λ2 < λ21, Theorem A

follows directly from Theorems 3.1, 4.1, and 4.3. We obtain Theorem B as a

consequence, in view of the argument above, but we have in any case estab-

lished stronger versions in Corollaries 3.3, 4.2, and 4.4.

From now on, assume F is dominant and λ2 = λ21. We shall freely use the

results in Section 5.

If degFn/λn1 is unbounded, then by Proposition 5.1 there is a unique

rational pencil valuation ν∗ such that Fn• ν → ν∗ for every ν ∈ V1. We may

then proceed exactly as in Section 4 and prove analogs of Theorem 4.1 and

Corollary 4.2.

If instead degFn/λn1 is bounded, then we have already seen in the proof of

Theorem C that F lifts to a holomorphic self-map of a suitable compactification

X of C2, proving Theorem A. However, this compactification need not be

smooth or dominate the given compactification P2 ⊃ C2, so Theorem B does

not immediately follow.

First assume λ1 = 1 so that degFn is bounded. Then F is in particular

birational. The argument by Diller-Favre [17, Th. 0.1] gives us an admissible

compactification X of C2 such that the lift ‹F : X 99K X is algebraically stable.

Thus Theorems A and B hold in this case.

Finally assume λ1 > 1 and degFn/λn1 is bounded and consider the set

TF 2 of eigenvaluations for F 2. We consider three cases. In the first case,

TF 2 = TF = {ν∗} is a singleton. Then Proposition 5.3 shows that Fn• ν → ν∗
for any ν ∈ V1. We may then proceed exactly as in Section 4 and prove analogs

of Theorem 4.3 and Corollary 4.4. This gives a precise version of Theorem A

(with X a tight — hence smooth — compactification of P2) and Theorem B.

In the second case, TF 2 = TF = [ν1, ν2] is a segment, where ν1 and ν2 are

divisorial. We can then proceed essentially as in Section 4. Namely, let X0

be the minimal admissible compactification of C2 such that the centers of ν1
and ν2 are one-dimensional. We can then make further blow-ups to arrive at a

tight compactification X such that for any prime E of X that is the center of a

divisorial valuation in TF , the lift ‹F : X 99K X is holomorphic at any periodic

point of ‹F |E . In view of Proposition 5.3(c) this shows that there exists n ≥ 1

such that the following holds for any prime E of X: either E is the center of

a valuation in TF and then ‹FE = E, or ‹Fn contracts E onto a point at which

all iterates of X are holomorphic. Thus a precise form of Theorem A holds.

We can also prove a precise version of Theorem B as in Corollary 4.4 in this
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setting; in particular, the sequence (d(F j , ν)j≥n(ν)) satisfies an integral linear

recursion formula for all ν ∈ V1.
In the third and final case, TF 2 = [ν1, ν2] is a nontrivial segment and

TF = {ν∗} is a singleton. Again we can prove a precise version of Theorem B

as in Corollary 4.4; it suffices to apply the result just proved to F 2.

Remark 6.1. One can check that for F (x, y) = (y3, x2) there is no toric

admissible compactification of X ⊃ C2 such that the lift of F to X satis-

fies the properties in Theorem A. However, F is holomorphic on P1 × P1.

We conjecture that by adding suitable lower degree terms to F , no smooth

compactification of C2 (admissible or not) will do.

7. Small topological degrees: λ2 ≤ λ1

Here we prove Theorem D and provide examples of maps with λ2 = λ1.

7.1. Proof of Theorem D. Let F : C2 → C2 be a dominant polynomial

mapping with λ2 < λ1. Define

G+ := lim sup
n→∞

λ−n1 log+ ‖Fn‖.

We shall see momentarily that the lim sup is in fact a limit (and ultimately

even a locally uniform one), but let us first establish

Lemma 7.1. We have G+ ≤ C1 log+ ‖ · ‖+ C2 on C2 for some constants

C1, C2 > 0.

Proof. By Theorem B′ in [30] there exists a psh function U on C2 and a

constant C > 0 such that U ◦F ≤ λ1U on C2 and such that C−1 log ‖·‖ ≤ U ≤
C log ‖ · ‖ outside a compact subset of C2. This easily implies the lemma. �

The key step in the proof of Theorem D is to find a sort of filtration for

the dynamics, similar to the one in the case of polynomial automorphisms; see

e.g. [5], [33], [41].

Lemma 7.2. For every ε > 0 there exists an integer n0 ≥ 1, a constant

C > 0 and a partition C2 = V ∪V + with V + open, FV + ⊂ V + and such that :

(i) the lim sup defining G+ is a locally uniform limit on V +; G+ is pluri-

harmonic and strictly positive there ;

(ii) for p ∈ V we have log+ ‖Fn0p‖ ≤ (λ2 + ε)n0 log+ ‖p‖+ C .

Proof of Theorem D. Apply Lemma 7.2 with 0 < ε < λ1 − λ2. Set U+ =⋃
n≥0 F

−nV + and K+ := C2 \U+. Then U+ is open and G+ is pluriharmonic

and strictly positive there. On the other hand, the estimate in (ii) implies

G+ ≡ 0 on K+. Thus G+ is everywhere defined and satisfies G+ ◦ F = λ1G
+.
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Let G+∗ be the upper semicontinuous regularization of G+. We shall prove

that G+∗ = 0 on K+. Lemma 7.1 implies G+∗ ≤ C1 log+ ‖ · ‖ + C2 on C2 for

some constants C1, C2 > 0. Now pick p ∈ K+. Then F kn0p ∈ V for all k ≥ 0,

so using the estimate in Lemma 7.2(ii) we get

(7.1) G+∗ ◦ F kn0(p) ≤ C3(λ2 + ε)kn0(log+ ‖p‖+ C4)

for suitable constants C3, C4 > 0, and all k ≥ 1. Now the equality G+ ◦ F =

λ1G
+ yields the inequality G+∗ ◦ F ≥ λ1G

+∗ (we have equality outside the

curves contracted by F ), so (7.1) gives

G+∗(p) ≤ C3

Å
λ2 + ε

λ1

ãkn0

(log+ ‖p‖+ C4)→ 0 as k →∞.

Hence G+∗≡G+≡0 on K+. We may now argue as in the proof of [5, Prop. 3.4]

to prove that G+ is continuous and psh on C2, that the limit defining G+ is

locally uniform on C2, and that the support of the current ddcG+ equals ∂K+.

The estimate in Theorem D follows from the corresponding estimate in

Lemma 7.2(ii). This completes the proof. �

The filtration in Lemma 7.2 is constructed using a well-chosen compacti-

fication of C2.

Lemma 7.3. For every ε > 0 there exists an integer n0 ≥ 1, an admis-

sible compactification X of C2, and a decomposition X \C2 = Z+ ∪ Z− into

(reducible) curves Z+ and Z− without common components such that :

(i) if E is any irreducible component of Z− and L is a generic affine

function on C2, then

(7.2) ordE(Fn0∗L) ≤ (λ2 + ε)n0 ordE(L);

(ii) there exists a point p ∈ Z+ \ Z− such that ‹Fn0 is holomorphic in a

neighborhood of Z+, ‹Fn0(Z+) = {p}, ‹F is holomorphic at p, ‹F (p) = p;

and there exist local coordinates (z, w) at p in which ‹F takes a simple

normal form as in Theorem 3.1:

(a) if Z+ is locally reducible at p, then Z+ = {zw = 0} and ‹F (z, w) =

(zawb, zcwd), where a, b, c, d ∈ N and the 2 × 2 matrix M with

entries a, b, c, d has spectral radius λ1;

(b) if Z+ is locally irreducible at p, then Z+ = {z = 0} and ‹F (z, w) =

(zλ1 , µzcw + P (z)), where c ≥ 1, µ ∈ C∗, and P is a nonconstant

polynomial with P (0) = 0.

The admissible compactification X will not be tight in general. We first

show how to deduce Lemma 7.2 from Lemma 7.3, then prove the latter lemma.

Proof of Lemma 7.2. Apply Lemma 7.3 after having decreased ε slightly.

We can find a small neighborhood Ωp of p of the form {|z| < δ1, |w| < δ2} such
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that ‹FΩp ⊂ Ωp. Set Vp = Ωp ∩ C2, V + := ‹F−n0(Ωp) ∩ C2 = F−n0Vp, and

V = C2 \ V +. Then V + ⊂ C2 is open and FV + ⊂ V +.

In local coordinates (z, w) near a prime E = {z = 0} of X, the function

log+ ‖ · ‖ in C2 equals − ordE(L) log |z|+O(1). Similarly, in local coordinates

(z, w) at the intersection point between two primes E = {z = 0} and E′ =

{w = 0} we have log+ ‖(z, w)‖ = − ordE(L) log |z| − ordE′(L) log |w|+O(1).

Note that ‹F−n0(Ωp) contains a neighborhood of Z+ in X. Estimate (ii)

in Lemma 7.2 is therefore a consequence of (7.2).

It remains to prove (i). For this we use the normal forms in Lemma 7.3.

Suppose we are in case (a). Then

log+ ‖(z, w)‖ = −s log |z| − t log |w|+ ϕ(z, w)

in Vp for some constants s, t > 0 and a bounded function ϕ. It then follows

easily that λ−n1 log+ ‖Fn‖ converges locally uniformly on Vp to

G+ = −s′ log |z| − t′ log |w|,

where s′, t′ > 0. (The vector (s′, t′) is proportional to the eigenvector with

eigenvalue λ1 of M t.) Hence G+ is pluriharmonic and strictly positive in Vp.

Since Fn0V + ⊂ Vp, the same properties must hold in V +. This completes the

proof in case (a). Case (b) is similar and left to the reader. �

Proof of Lemma 7.3. We apply Theorem 3.1. We shall only treat case (a)

of that theorem, case (b) being similar.

Thus we have an admissible (tight) compactification X0 of C2, two primes

E1, E2 of X0, intersecting in a point p, such that the lift ‹F0 : X0 99K X0

defines an attracting holomorphic fixed point germ at p given by ‹F0(z, w) =

(zawb, zcwd) in suitable local coordinates (z, w). Write Z0 = E1 ∪ E2. Set

γ := maxi=1,2 ordEi(L), where L is a generic affine function on C2. Pick

n0 ≥ 1 large enough so that γλn0
2 < (λ2 + ε)n0 .

By increasing n0 if necessary, we can also assume that all valuations in

the segment I = [−deg, ν∗] are mapped by Fn0
• into the open set U(p) ⊂ V0.

Here, as before, U(p) consists of valuations whose center in X0 is the point p.

Indeed, U(p) is F•-invariant as F is holomorphic at p, and by Theorem 2.4(b),

Fn• ν eventually falls into U(p) for n large enough for any ν ∈ I.

We can now find an admissible compactification X of C2 dominating

X0 such that Fn0 lifts to a holomorphic map G : X → X0. Since ‹F0 was

holomorphic at p, we may assume that the strict transforms of E1 and E2 in

X still intersect in a point p. We use the notation E1, E2, and p also for these

objects on X.

Let Z+ ⊂ X \ C2 be the connected component of G−1(p) containing p.

Our choice of n0 implies that all primes whose associated normalized divisorial

valuation in V0 is dominated by the eigenvaluation lie in Z+. In particular, the
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center L∞ of −deg in X belongs to Z+. Let Z− be the union of the primes

of X not in Z+. Let ‹F : X 99K X be the rational lift of F . It is easy to see

that (ii) holds. The key point is to establish (i).

The dual graph of X \C2 being a tree and Z+ being connected imply that

each connected component W of Z− contains a unique irreducible component

E = EW intersecting Z+. Moreover, since L∞ ⊂ Z+, the normalized divisorial

valuations in V0 associated to the irreducible components of W all dominate

(in the partial ordering on V0) the normalized divisorial valuation associated

to EW . Thus it suffices to verify (i) for E = EW .

Now G must map E onto one of E1 or E2, say G(E) = E1. The restriction

of G to a neighborhood of E has topological degree at most λn0
2 . This implies

in particular that the coefficient of E in the divisor G∗E1 is at most λn0
2 . But

this coefficient is easily seen to be

ordE(Fn0∗L)

ordE1(L)
≥ γ−1 ordE(Fn0∗L)

for a generic affine function L on C2. This proves (7.2) since ordE(L) ≥ 1 and

γλn0
2 < (λ2 + ε)n0 . �

7.2. Examples with λ2 = λ1. Very few surface maps with λ2 = λ1 have

been described in the literature. We provide here a (presumably incomplete)

list of examples. The mappings in (6) below appear in [20, §4]. A classifica-

tion of quadratic polynomial maps with λ2 = λ1 is given in [37]. Note that

Proposition 2.5 implies that the eigenvaluation of a map with λ1 = λ2 > 1 is

always divisorial or infinitely singular.

(1) F = (A(x), Q(x, y)) with A affine and degy Q ≥ 1. Then λ1 = λ2 =

degy Q, and F is proper if and only if for any fixed x, degy Q(x, y) =

degy Q. One can show that any proper polynomial map with λ1 =

λ2 > 1 whose eigenvaluation is divisorial takes this form in suitable

affine coordinates.

(2) F = (P (x), A(x, y)) with degy(A) = 1. Then λ1 = λ2 = deg(P ), and

F is proper if and only if A(x, y) = ay +B(x), a 6= 0.

(3) F = (λxP+a, µyP+b), or F = (xP+a, (x+y)P+b) with P = P (x, y)

of degree d − 1, and a, b ∈ C, λ, µ ∈ C∗. Then λ1 = λ2 = d, the

eigenvaluation is −deg which is divisorial, and F is not proper.

(4) F = (ayp + P (x), xq) with degP = pq, a ∈ C. Then λ1 = λ2 = pq, F

is proper and has an infinitely singular eigenvaluation.

(5) F = (x + aP, y + bP ) with P = Pd + l.o.t., d = deg(P ) ≥ 2, and

Pd(a, b) 6= 0. Then F is proper and λ1 = λ2 = degP .
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(6) F = (ax + by + c, P (x, y)) with degP = degy P ≥ 2. Then λ1 = λ2 =

degP .

(7) F = (P (y), ax + b + Q(y)) with d = degP = degQ ≥ 2. Then λ1 =

λ2 = d.

There seems to be no general conjecture or approach for studying the ergodic

properties of these maps.

Appendix A. The Riemann-Zariski space at infinity

In this appendix we briefly develop the necessary material needed for the

proof of Theorem 2.4. Most of the discussion is completely analogous to the

one in the paper [8], to which we refer for details. See also [11], [43].

The main new consideration is the construction and study of the Weil

class Zν associated to a valuation ν centered at infinity.

A.1. Weil and Cartier classes. The set of admissible compactifications of

C2 defines an inverse system: X ′ dominates X if the birational map X ′ 99K X
induced by the identity on C2 is a morphism. Typically we then identify the

primes of X with their strict transforms in X ′. Formally, the Riemann-Zariski

space (of P2 at infinity) is defined as X := lim←−X. (The only difference to [8]

is that here we never blow up points in C2.)

Our concern is with classes on X rather than X itself. Given X we let

NS(X) be the vector space of R-divisors on X modulo numerical equivalence.

Then NS(X) ' Pic(X)⊗ZR. When X ′ dominates X, the associated morphism

µ : X ′ → X induces linear maps µ∗ : NS(X ′) → NS(X) and µ∗ : NS(X) →
NS(X ′) satisfying µ∗µ

∗ = id. The space of Weil classes on X is W (X) :=

lim←−NS(X). We equip it with the projective limit topology. Concretely, a Weil

class β ∈W (X) is given by a collection of classes βX ∈ NS(X), the incarnation

of β on X, compatible under pushforward.

A class β ∈ NS(X) for a fixed X defines a Weil class whose incarnation

in any compactification X ′ dominating X is the pullback of β to X ′. Such a

Weil class is called a Cartier class. It is determined in X. Formally, the set of

Cartier classes is C(X) := lim−→NS(X).

The intersection pairing on each X extends to a nondegenerate pairing

W (X) × C(X) → R. In particular, we have an inner product on C(X). By

the Hodge Index Theorem, this is of Minkowski type, allowing us to define the

completion L2(X).

A Weil class is nef if all its incarnations are nef. The class of a line in P2

defines a nef Cartier class L on X. The set of nef classes forms a closed convex

cone in W (X). Any nef Weil class belongs to L2(X).
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A.2. Classes and valuations. Every class in NS(X) admits a unique rep-

resentation as a divisor with support at infinity, i.e., a real-valued function on

the set of primes of X. Hence a Weil class Z on X can be identified with a ho-

mogeneous function on V̂div: its value at ν will be denoted ν(Z). For example,

ordE(L) = bE , where L ∈W (X) is the class of a line on P2.

Given a valuation ν ∈ V̂0 we define a Weil divisor Zν ∈ W (X) as follows:

ordE(Zν) = tbEα(ν̃ ∧ νE), where α denotes skewness and ν = tν̃, ν̃ ∈ V0.
When ν is divisorial, Zν is Cartier; see Lemma A.2 below.

Lemma A.1. The assignment ν 7→ Zν defines a continuous embedding of

V̂0 onto a closed subset of W (X).

Proof. After unwinding definitions, the statement boils down to the topol-

ogy on V0 being the weakest topology such that ν 7→ α(ν ∧ νE) is continuous

for all νE ∈ Vdiv. This in turn follows from the characterization of the topology

on V0 in terms of the tree structure. �

Lemma A.2. We have (Zν ·W ) = ν(W ) for ν ∈ V̂div and W ∈ C(X). In

particular, for any two valuations µ, ν ∈ V0 one has

(A.1) (Zν · Zµ) = α(ν ∧ µ) ∈ [−∞, 1].

If E is a prime of some admissible compactification X , then ZordE is a Cartier

class on X determined in X by an integral class. Thus b2Eα(νE) ∈ Z.

Proof. To prove (Zν · W ) = ν(W ), we pick X such that W ∈ C(X) is

determined in X. By linearity we may assume W = E is a prime of X. What

we seek to prove is then a special case of a more general formula (Z · E) =

bE∆g{νE} for any Z ∈ NS(X), where g = gZ is the function on V0 defined by

Z and ∆g is its tree Laplacian as defined (up to a sign) in [30, §A.4]. Indeed,

Z = Zν as above is chosen so that ∆gZ = δν .

Let E1, . . . , En be the primes of X intersecting E properly and write

bi = bEi , νi = νEi . Assume E 6= L∞ for simplicity. Then 0 = (L · E) =

bE(E ·E) +
∑
i bi and (Z · E) = bEg(νE)(E ·E) +

∑
i big(νi). Subtracting and

rearranging using |α(νi)− α(νE)| = (bibE)−1 yields (Z · E) = bE
∑
i(g(νi) −

g(νE))/|α(νi)−α(νE)|, which equals bE∆g{νE}. A similar computation works

in the case E = L∞ and completes the proof of the relation (Zν ·W ) = ν(W ).

This relation and the definition of Zν and Zµ imply (A.1).

For the last statement it suffices to observe that by the nondegeneracy

and unimodularity of the intersection form on Pic(X), there exists a unique

integral class Z satisfying (Z ·W ) = ordE(W ) for any W ∈ Pic(X). �

Lemma A.3. If ν ∈ V0, then Zν is nef if and only if α(ν) ≥ 0.
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Proof. If Zν is nef, then (A.1) shows that α(ν) = (Zν ·Zν) ≥ 0. Conversely,

if α(ν) ≥ 0, then the definition of Zν shows that Zν ≥ 0 as a function on V̂div
and that ν 7→ Zν is decreasing. The nef cone in W (X) being closed, it suffices

by Lemma A.1 to consider the case when ν is divisorial.

Hence assume ν = b−1E ordE is divisorial, where E is a prime in some

admissible compactification X. We must show that (Zν · C) ≥ 0 for every

irreducible curve C in X. If C is a prime of X, then this is clear by the above.

If instead C is the closure of a curve {P = 0} in C2, then (Zν · C) = −ν(P )

which is nonnegative since α(ν) ≥ 0. �

Remark A.4. One can also show that Zν ∈L2(X) if and only if α(ν)>−∞.

A.3. Functoriality. Let F : C2 → C2 be a dominant polynomial mapping.

Following [8] we define actions of F by pushforward and pullback on classes

on the Riemann-Zariski space X. The two key facts are 1) given any admis-

sible compactification X ′, there exists another admissible compactification X

such that the lift X → X ′ of F is holomorphic, and 2) given any admissible

compactification X and any prime E of X, either F maps E onto a point or a

curve in C2, or there exists another compactification X ′ and a prime E′ of X ′

such that the lift X 99K X ′ of F maps E onto E′.

To begin with, we have natural actions F ∗ : C(X) → C(X) and F∗ :

W (X) → W (X). For example, if β ∈ W (X) is a Weil class, the incarnation of

F∗β ∈ W (X) on a given admissible compactification X ′ is the pushforward of

βX ∈ NS(X) by the map X → X ′ induced by F for any X such that this is

holomorphic.

As in [8], the pushforward (resp. pullback) preserves (resp. extends to)

L2-classes. We obtain bounded operators F∗, F
∗ : L2(X)→ L2(X), and (F∗β ·γ)

= (β · F ∗γ) for β, γ ∈ L2(X). These operators preserve nef classes. We have

F∗F
∗ = λ2 · id on L2(X) where λ2 is the topological degree of F .

Remark A.5. Note that F defines a dominant rational self-map of P2,

so the constructions in [8] apply, but they may not yield the same result as

above. For example, consider the map F (x, y) = (x2, xy), which contracts the

line x = 0 to the origin. If L is the class of a line in P2, then F∗L = 2L with

F∗ as above, whereas the image of L under the pushforward considered in [8]

is a Cartier class determined in the blow-up of P2 at the origin.

Lemma A.6. We have F∗Zν = ZF∗ν for any ν ∈ V̂0.

Proof. By continuity and homogeneity it suffices to prove this when ν =

ordE is divisorial, associated to a prime E of some admissible compactification

X of C2. Then we can find another admissible compactification X ′ such that
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the lift ‹F : X 99K X ′ is holomorphic and such that ‹F (E) is either 1) a prime

E′ of X ′ or 2) a point or a curve in C2.

In the first case, F∗ν = k ordE′ , where k is the coefficient of ‹F ∗E′ in E.

For any Cartier class W ∈ C(X) we then have

(F∗Zν ·W ) = (Zν · F ∗W ) = ordE(F ∗W ) = k ordE′(W ) = (ZF∗ν ·W ).

In the second case, we have F∗ν = 0 by definition and the same compu-

tation above shows that (F∗Zν ·W ) = 0 for all W ∈ C(X). Indeed, W can be

represented as a divisor supported at infinity. Hence F∗Zν = 0. �

The situation for the pullback is more delicate. For simplicity we state a

result only in the proper case.

Proposition A.7. Suppose F is a proper polynomial map. Then any

ν ∈ V0 admits at most λ2 preimages in V0 under F•, and one can write:

(A.2) F ∗Zν =
∑

F•µ=ν

a(µ)Zµ,

for some positive constants a(µ).

Proof. Let K be the function field of C2. The field extension [K : F ∗K]

has degree λ2. By standard valuation theory (see [49]) for any valuation ν on

K there exist at most λ2 valuations µ such that F∗µ = ν. This implies the

first assertion.

As F is proper, F• is an open surjective map for the weak topology on V0.
Note also that if (A.2) is true, then one has the uniform bound

∑
F−1
• {ν} a(µ) =

(Zν · F∗L) ≤ deg(F )α(F•(−deg)) ≤ degF . Hence we can reduce the proof to

the divisorial case by continuity. The proof is then of the same flavor as the

proof of Lemma A.6 and left to the reader. �

A.4. Dynamics. Let F : C2 → C2 be a dominant polynomial mapping.

Denote its topological degree by λ2 ≥ 1 and set λ1 := limn→∞(degFn)1/n.

The techniques of [8] can be easily adapted to prove the following result, which

corresponds to parts of Theorems 3.2 and 3.5 in that paper.

Theorem A.8. Assume λ2 < λ21. Then there exist nonzero nef Weil

classes θ∗, θ
∗ ∈ L2(X) such that F ∗θ∗ = λ1θ

∗ and F∗θ∗ = λ1θ∗. They are

unique up to scaling and we may normalize them by (θ∗ · L) = (θ∗ · θ∗) = 1.

Then (θ∗·θ∗) = 0, F∗θ
∗ = (λ2/λ1)θ

∗ and for any Weil class θ ∈ L2(X), we have

1

λn1
Fn∗θ → (θ · θ∗)θ∗ and

1

λn1
Fn∗ θ → (θ · θ∗)θ∗ as n→∞.
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