
Annals of Mathematics 173 (2011), 169–209
doi: 10.4007/annals.2011.173.1.5

Small subspaces of Lp

By Richard Haydon, Edward Odell, and Thomas Schlumprecht

Abstract

We prove that if X is a subspace of Lp (2 < p < ∞), then either X

embeds isomorphically into `p ⊕ `2 or X contains a subspace Y, which is

isomorphic to `p(`2). We also give an intrinsic characterization of when X

embeds into `p ⊕ `2 in terms of weakly null trees in X or, equivalently, in

terms of the “infinite asymptotic game” played in X. This solves problems

concerning small subspaces of Lp originating in the 1970’s. The techniques

used were developed over several decades, the most recent being that of

weakly null trees developed in the 2000’s.

1. Introduction

The study of “small subspaces” of Lp (2 < p <∞) was initiated by Kadets

and Pe lczyński [KP62] who proved that if X is an infinite dimensional subspace

of Lp, then eitherX is isomorphic to `2 and the L2-norm is equivalent to the Lp-

norm on X, or for all ε > 0, X contains a subspace Y which is 1+ε-isomorphic

to `p. In [JO74] it was shown that if X does not contain an isomorph of `2,

then X embeds isomorphically into `p. (Moreover, [KW95] showed that for all

ε > 0, X 1 + ε-embeds into `p.) W. B. Johnson [Joh77] solved the analogous

problem for X ⊆ Lp (for all 1 < p < 2) by proving that X embeds into `p if for

some K <∞ every weakly null sequence in SX , the unit sphere of X, admits

a subsequence K-equivalent to the unit vector basis of `p.

Using the machinery of [OS02] (see also [OS06]) and the special nature of

Lp, these results were unified in [AO01] as: X ⊆ Lp (1 < p <∞) embeds into

`p if (and only if) every weakly null tree in SX admits a branch equivalent to

the unit vector basis of `p.

After `p and `2 the next smallest natural subspace of Lp (2 < p < ∞) is

`p ⊕ `2. Indeed if X ⊆ Lp does not embed into either `p or `2, it contains an

isomorph of `p ⊕ `2. The next small natural subspace after `p ⊕ `2 is `p (`2)

or, as it is sometimes denoted, (
∑
`2)p. In [JO81] it was shown that if X ⊆ Lp

(2 < p <∞) and X is a quotient of a subspace of `p⊕ `2, then X embeds into

`p ⊕ `2.

Research of the last two authors was partially supported by the National Science

Foundation.
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The motivating problem for this paper (and our main result) dates back

to the 1970’s. We prove that if X ⊆ Lp (2 < p < ∞) and X does not embed

into `p⊕ `2, then X contains an isomorph of `p (`2). To solve this we first give

an intrinsic characterization of when X embeds into `p⊕`2. The terminology is

explained in Section 3. We assume that our space Lp is defined over an atomless

and separable probability space (Ω,Σ,P). We write A
K∼ B if A ≤ KB and

B ≤ KA. X will always denote an infinite dimensional Banach space.

Theorem A. Let X be a subspace of Lp (2 < p <∞). Then the following

are equivalent :

a) X embeds into `p ⊕ `2;

b) every weakly null tree in SX admits a branch (xi) satisfying for some

K and all scalars (ai)

(1.1)

∥∥∥∥∑ aixi

∥∥∥∥ K∼
Ä∑
|ai|p

ä1/p
∨
∥∥∥∥∑ aixi

∥∥∥∥
2

(‖ · ‖2 denotes the L2-norm);

c) every weakly null tree in SX admits a branch (xi) satisfying, for some

K , (wi) ⊆ [0, 1], and all scalars (ai)

(1.2)

∥∥∥∥∑ aixi

∥∥∥∥ K∼
Ä∑
|ai|p

ä1/p
∨
Ä∑
|ai|2w2

i

ä1/2
.

Under any of these conditions the embedding of X into `p ⊕ `2 is given

by: producing a blocking (Hn) of the Haar basis for Lp and 1 ≤ K < ∞, so

that, if X 3 x =
∑
xn, xn ∈ Hn, then

‖x‖ K∼
Ä∑
‖xn‖pp

ä1/p
∨
Ä∑
‖xn‖22

ä1/2
=
Ä∑
‖xn‖pp

ä1/p
∨ ‖x‖2 .

Since (
∑
Hn)p is isomorphic to `p this suffices.

The next task is to show that if X violates these conditions then X con-

tains a complemented subspace isomorphic to `p (`2). We will present two

proofs of this. The first proof will roughly show that X must contain “skinny”

uniform copies of `2 and hence contain uniform `2’s, (Xn)n∈N for which if

xn ∈ SXn then the xn’s are almost disjointly supported and hence behave like

the unit vector basis of `p. Then an argument due to Schechtman will prove

that a subspace of X which is isomorphic to `p(`2) contains an isomorphic copy

of `p(`2) which is complemented in Lp. The second proof will lead to a more

precise result using the random measure machinery of D. Aldous [Ald81] and

the stability theory of Lp [KM81]. For easier reading we will, however, recall

all relevant definitions and results concerning random measures and stability

theory. We will show that the complemented copy of `p(`2) is witnessed by sta-

bilized `2 sequences living on almost disjoint supports, meaning that the joint
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support of the elements of the Xn’s is almost disjoint, not only the support of

the elements of a given sequence (xn) with xn ∈ Xn, for n ∈ N.

This yields the following: If X is a subspace of Lp and X is not contained

in `2 ⊕ `p, then X must contain a complemented copy of `p(`2). Moreover,

it admits a projection onto a subspace isomorphic to `p(`2), whose norm is

arbitrarily close to that of the minimal norm projection of Lp onto any subspace

isomorphic to `2.

Theorem B. Let X ⊆ Lp (2 < p < ∞). If X does not embed into

`p⊕ `2, then for all ε > 0, X contains a subspace Y , which is 1 + ε-isomorphic

to `p (`2). Furthermore, Y is complemented in Lp by a projection of norm

not exceeding (1 + ε)γp, where γp = ‖x‖p, x being a symmetric L2 normalized

Gaussian random variable.

Moreover, we can write Y as the complemented sum of Yn’s, where Yn is

(1 + ε)-isomorphic to `2 and Y is (1 + ε)-isomorphic to the `p-sum of the Yn’s,

and there exists a sequence (An) of disjoint measurable sets so that ‖y|An‖p ≥
(1− ε2−n)‖y‖ for all y ∈ Yn and n ∈ N.

The original proof of the [JO81] result about quotients of subspaces of

`p ⊕ `2 is quite complicated. A byproduct of our results will be to give a

much easier proof (see §7). In addition, we can characterize when X ⊆ Lp
(2 < p <∞) embeds into `p⊕`2 in terms of its asymptotic structure [MMTJ95].

From results in [KP62] and [JO74], we first note that X ⊆ Lp (2 < p < ∞)

embeds into `p if and only if it is asymptotic `p, and X embeds into `2 if and

only if it is asymptotic `2.

Let us say X is asymptotic `p ⊕ `2 if for some K and all (ei)
n
1 ∈ {X}n,

the nth asymptotic structure of X, there exists (wi)
n
1 ⊆ [0, 1] so that for all

(ai)
n
1 ⊆ R,

(1.3)

∥∥∥∥ n∑
1

aiei

∥∥∥∥ K∼
( n∑

1

|ai|p
)1/p
∨
( n∑

1

|ai|2|wi|2
)1/2

.

We note that the space `p ⊕ `2 is itself asymptotic `p ⊕ `2. Indeed, denote by

(fi) and (gi) the unit vector bases of `p and `2, respectively, viewed as elements

of `p⊕ `2. For (x, y) ∈ `p⊕ `2 we put ‖(x, y)‖ = ‖x‖p∨‖y‖2. Since (fi) and (gi)

are 1-subsymmetric and `p⊕ `2 is reflexive, the elements of the nth asymptotic

structure of `p⊕ `2 are exactly the sequences (zi)
n
i=1 in `p⊕ `2, for which there

are 0=k0<k1<k2<. . . kn in N, and (aj), (bj) in R with

zi =
ki∑

j=ki−1+1

(ajfj + bjgj),

so that ‖zi‖ = vi ∨ wi = 1, where

vi =
( ki∑
j=ki−1

|aj |p
)1/p

and wi =
( ki∑
j=ki−1

|bj |2
)1/2

.



172 RICHARD HAYDON, EDWARD ODELL, and THOMAS SCHLUMPRECHT

For (ξi)
n
i=1 ⊂ [−1, 1] we therefore compute∥∥∥∥ n∑

i=1

ξizi

∣∣∣∣=( n∑
i=1

|ξi|pvpi
)1/p
∨
( n∑
i=1

|ξi|2w2
i

)1/2
≤
( n∑
i=1

|ξi|p
)1/p
∨
( n∑
i=1

|ξi|2w2
i

)1/2
.

Assuming now that (otherwise (1.3) follows immediately)( n∑
i=1

|ξi|pvpi
)1/p

≥
( n∑
i=1

|ξi|2w2
i

)1/2
,

we deduce that∥∥∥∥ n∑
i=1

ξizi

∥∥∥∥p≥ 1

2

[ n∑
i=1

|ξi|pvpi +
( n∑
i=1

|ξi|2w2
i

)p/2]
≥ 1

2

n∑
i=1

|ξi|p(vpi ∨w
p
i )=

1

2

n∑
i=1

|ξi|p.

It follows therefore that (zi) satisfies (1.3) with K = 2 and we deduce that

`p ⊕ `2 is asymptotic `p ⊕ `2.

For n ∈ N, let (e
(n)
i,j : i, j ≤ n) be the unit vector basis of `np (`n2 ), i.e.∥∥∥∥ n∑

i,j=1

ai,je
(n)
i,j

∥∥∥∥ =
( n∑
i=1

( n∑
j=1

|ai,j |2
)p/2)1/p

, for all (ai,j) ⊂ R.

Note that (e
(n)
i,j ) is, ordered lexicographically, isometrically in the (n2)th

asymptotic structure of `p(`2), for all n ∈ N. It is not hard to deduce from the

aforementioned description of the asymptotic structure of `p ⊕ `2 that (e
(n)
i,j )

is not (uniformly in n ∈ N) in the (n2)th asymptotic structure of `p ⊕ `2.

Theorem B therefore yields the following:

Corollary C. X ⊆ Lp (2 < p < ∞) embeds into `p ⊕ `2 if and only if

X is asymptotic `p ⊕ `2.

Indeed, if X does not embed into `p ⊕ `2, then by Theorem B it contains

an isomorph of `p (`2), which is not asymptotic `p ⊕ `2.

Using Theorems A and B we will be able to deduce the following additional

surprising characterization of subspaces of Lp which embed into `p ⊕ `2. It is

analogous to the characterization of subspaces of Lp which embed in `p via

normalized weakly null sequences (see the aforementioned result from [Joh77])

and we thank W. B. Johnson for having pointed it out to us.

Corollary D. X ⊆ Lp (2 < p < ∞) embeds into `p ⊕ `2 if and only

if there exists a K ≥ 1 so that every normalized weakly null sequence in SX
admits a subsequence (xi) satisfying for all scalars (ai),

(1.4)

∥∥∥∥∑ aixi

∥∥∥∥ K∼
(∑

|ai|p
)1/p
∨
(∑

a2
i ‖xi‖22

)1/p
.

A proof of Corollary D will be given at the end of Section 5. It is worth

noting that (1.4) is a reformulation of (1.1) in (b) of Theorem A. The difference
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here is that the constant K is uniform and not dependent on the particular

sequence. Without the uniformity assumption, the Corollary would be false

(see Theorem 2.4 below). In Section 2 we recall some inequalities for uncon-

ditional basic sequences and martingales in Lp. Section 3 contains the proof

of Theorem A, along with the necessary preliminaries on weakly null trees,

and the “infinite asymptotic game.” In Section 4 we introduce a dichotomy of

Kadets-Pe lczynski type and apply the results of Section 2 to embed a class of

subspaces of Lp into `p⊕ `2. Section 5 considers the subspaces of Lp which do

not embed in `p ⊕ `2; we show that such subspaces contain “thinly supported

`2’s”. More precisely, for some K < ∞, we find subspaces Yn, n ∈ N, which

are K-isomorphic to `2, but for which the natural equivalence of ‖ · ‖p and

‖ · ‖2 on Yn is bad. By this we mean that ‖y‖p ≥ Mn‖y‖2, for all y ∈ Yn, for

some sequence (Mn) ⊂ R, with Mn ↗ ∞, as n ↗ ∞. This will enable us to

argue that we can choose the Yn’s so that vectors yn ∈ SYn , n ∈ N, are almost

disjointly supported and hence the closed linear span of the Yn’s is isomorphic

to `p(`2). Section 6 refines the result of Section 5, obtaining almost disjointly

supported `2’s, by applying techniques from Aldous’s paper [Ald81] on random

measures. As well as the new proof of the result from [JO81] mentioned above,

Section 7 includes a construction of subspaces of Lp, isomorphic to `2, which

embed only with bad constants in spaces of the form `p ⊕
Ä⊕m

i=1 `2
ä
p
. In Sec-

tion 8 we recall what is known and not known about small Lp-spaces and raise

a problem about when X ⊂ Lp embeds into `p(`2). In light of the deep work

of [BRS81] in constructing uncountably many separable Lp spaces, it is likely

that further study of their ordinal index will be needed to make progress on

classifying the next group of smaller Lp-spaces.

We are especially grateful to the referee for two extremely detailed reports

which greatly improved our exposition.

2. Some inequalities in Lp

We first recall the well-known fact that an unconditional basic sequence

in Lp is trapped between `p and `2.

Proposition 2.1 (see e.g., [AO01]). Let (xi) be a normalized λ-uncon-

ditional basic sequence in Lp (2 < p <∞). Then for all (ai) ⊆ R,

λ−1
Ä∑
|ai|p

ä1/p
≤
∥∥∥∥∑ aixi

∥∥∥∥
p
≤ λBp

Ä∑
|ai|2

ä1/2
.

In Proposition 2.1, Bp is the Khintchin constant ‖∑ airi‖≤Bp(
∑ |ai|2)1/2,

where (ri) is the Rademacher sequence.

H. Rosenthal proved that if the xi’s are independent and mean zero ran-

dom variables in Lp, then they span a subspace of `p ⊕ `2.
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Theorem 2.2 ([Ros70]). Let 2 < p < ∞. There exists Kp < ∞ so that

if (xi) is a normalized mean zero sequence of independent random variables in

Lp, then for all (ai) ⊆ R∥∥∥∥∑ aixi

∥∥∥∥
p

Kp∼
Ä∑
|ai|p

ä1/p
∨
Ä∑
|ai|2‖xi‖22

ä1/2
.

D. Burkholder extended this result to martingale difference sequences as

follows.

Theorem 2.3 ([Bur73], [BDG72], [Hit90]). Let 2 < p <∞. There exists

Cp < ∞ so that if (zi) is a martingale difference sequence in Lp, with respect

to the sequence (Fn) of σ-algebras, then∥∥∥∥∑ zi

∥∥∥∥
p

Cp∼
Ä∑
‖zi‖pp

ä1/p
∨
∥∥∥∥ Ä∑E[z2

i |Fi−1]
ä1/2 ∥∥∥∥

p
,

where E(x|F) denotes the conditional expectation of an integrable random vari-

able x with respect to a sub-σ-algebra F .

From [KP62], it follows that every normalized weakly null sequence in

Lp admits a subsequence (xi), which is either equivalent to the unit vector

basis of `p or equivalent to the unit vector basis of `2. The latter occurs if

ε = limi ‖xi‖2 > 0 and the lower `2 estimate is (essentially)

ε
Ä∑
|ai|2

ä1/2
≤
∥∥∥∥∑ aixi

∥∥∥∥
p
.

By use of Theorem 2.3, W. B. Johnson, B. Maurey, G. Schechtman, and

L. Tzafriri obtained a quantitative improvement.

Theorem 2.4 ([JMST79, Th. 1.14]). Let 2<p<∞. There exists Dp<∞
with the following property. Every normalized weakly null sequence in Lp ad-

mits a subsequence (xi) satisfying for some w ∈ [0, 1], for all (ai) ⊆ R,∥∥∥∥∑ aixi

∥∥∥∥
p

Dp∼
Ä∑
|ai|p

ä1/p
∨ w
Ä∑
|ai|2

ä1/2
.

Thus, in particular the closed linear subspace [(xi)], generated by (xi),

uniformly embeds into `p ⊕ `2.

3. A criterion for embeddability in `p ⊕ `2

In this section we prove Theorem A, and thus provide an intrinsic char-

acterization of subspaces of Lp which isomorphically embed into `p ⊕ `2. This

characterization is based on methods developed in [OS02] and [OS06].

We will need the following notation.

Let Z be a Banach space with a finite dimensional decomposition (FDD)

E = (En). For n ∈ N, we denote the n-th coordinate projection by PEn ; i.e.,
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PEn : Z → En with PEn (z) = zn, for z =
∑
zi ∈ Z, with zi ∈ Ei, for all i ∈ N.

For a finite A ⊂ N we put PEA =
∑
n∈A P

E
n .

Let c00 denote the vector space of sequences in R which are eventually

0 with unit vector basis (ei). More generally, if (Ei) is a sequence of finite

dimensional Banach spaces, we define the vector space

c00(⊕∞i=1Ei) =
{

(zi) : zi ∈ Ei for i ∈ N, and {i ∈ N : zi 6= 0} is finite
©
.

The linear space c00(⊕∞i=1Ei) is dense in each Banach space for which (En) is

an FDD. If A ⊂ N is finite we denote by ⊕i∈AEi the linear subspace of c00(⊕Ei)
generated by the elements of (Ei)i∈A. A blocking of (Ei) is a sequence (Fi) of

finite dimensional spaces for which there is an increasing sequence (Ni) in N
so that (N0 = 0) Fi = ⊕Ni

j=Ni−1+1Ej , for any i ∈ N.

Let V be a Banach space with a normalized 1-unconditional basis (vi)

and E = (Ei) a sequence of finite dimensional spaces. Then for x = (xi) ∈
c00(⊕∞i=1Ei), we define

‖x‖(E,V ) =

∥∥∥∥ ∞∑
i=1

‖xi‖ · vi
∥∥∥∥
V
.

‖·‖(E,V ) is a norm on c00(⊕∞i=1Ei), and we denote the completion of c00(⊕∞i=1Ei),

with respect to ‖ · ‖(E,V ), by
Ä
⊕∞i=1 Ei

ä
V

.

For z ∈ c00(⊕Ei) we define the E-support of z by suppE(z) = {i ∈ N :

PEi (z) 6= 0}. A nonzero sequence (zj) ⊂ c00(⊕Ei) is called a block sequence

of (Ei) if max suppE(zn) < min suppE(zn+1), for all n ∈ N, and it is called

a skipped block sequence of (Ei) if 1 < min suppE(z1) and max suppE(zn) <

min suppE(zn+1) − 1, for all n ∈ N. Let δ̄ = (δn) ⊂ (0, 1]. If Z is a space

with an FDD (Ei), we call a sequence (zj) ⊂ SZ = {z ∈ Z : ‖z‖ = 1} a

δ̄-skipped block sequence of (En), if there are 1≤k1<`1< k2<`2< · · · in N so

that ‖zn − PE(kn,`n](zn)‖<δn, for all n∈N. Of course one could generalize the

notion of δ̄-skipped block sequences to more general sequences, but we prefer

to introduce this notion only for normalized sequences. It is important to note

that, in the definition of δ̄-skipped block sequences, k1≥1, and thus, that the

E1-coordinate of z1 is small (depending on δ1). Let

T∞ =
⋃
`∈N

¶
(n1, n2, . . . , n`) : n1 < n2 < · · ·n` are in N

©
.

T∞ is naturally partially ordered by extension; that is, (m1,m2, . . .mk) �
(n1, n2, . . . n`) if k ≤ ` and ni = mi, for i ≤ k. We call ` the length of

α = (n1, n2, . . . n`) and denote it by |α|, with |∅| = 0 In this paper trees in a

Banach space X are families in X indexed by T∞.

For a tree (xα)α∈T∞ in X, and α = (n1, n2, . . . , n`)∈T∞∪{∅}, we call the

sequences of the form (x(α,n))n>n`
nodes of (xα)α∈T∞ . The sequences (yn) with
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yi = x(n1,n2,...,ni) for i ∈ N, for some strictly increasing sequence (ni) ⊂ N, are

called branches of (xα)α∈T∞ . Thus, branches of a tree (xα)α∈T∞ are sequences

of the form (xαn), where (αn) is a maximal linearly ordered (with respect to

extension) subset of T∞.

If (xα)α∈T∞ is a tree in X and if T ′ ⊂ T∞ is closed under taking initial

segments (if (n1, n2, . . . , n`) ∈ T ′ and m < ` then (n1, n2, . . . , nm) ∈ T ′) and

has the property that for each α∈T ′ ∪ {∅} infinitely many direct successors of

α are also in T ′, then we call (xα)α∈T ′ a full subtree of (xα)α∈T∞ . Note that

(xα)α∈T ′ could then be relabeled to a family indexed by T∞ and note that the

branches of (xα)α∈T ′ are branches of (xα)α∈T∞ and that the nodes of (xα)α∈T ′

are subsequences of certain nodes of (xα)α∈T∞ .

We call a tree (xα)α∈T∞ in X normalized if ‖xα‖= 1 for all α ∈ T∞, and

weakly null if every node is a weakly null sequence. If X has an FDD (Ei) we

call (xα)α∈T∞ a block tree with respect to (Ei) if every node and every branch

(yn) is a block sequence with respect to (Ei).

Note that if (Ei) is an FDD for X and if (εα)α∈T∞ ⊂ (0, 1),then every

normalized weakly null tree (xα)α∈T∞ ⊂X has a full subtree (zα)α∈T∞ which

is an (εα)-perturbation of a block tree (yα) with respect to (Ei); i.e., ‖zα−
yα‖ ≤ εα for any α ∈ T∞. Let us also mention that the proof of the fact,

that normalized weakly null sequences have basic subsequences whose basis

constants are arbitrarily close to 1, generalizes to trees. This means that for a

given ε>0 and for any Banach space X, every normalized weakly null tree in

X has a full subtree, all of whose nodes and all of whose branches are basic,

and their basis constant does not exceed 1+ε.

Now we can state the main results of this section.

Theorem 3.1. Let X be a subspace of Lp, 2 < p < ∞, and assume that

there is a C > 1 so that every normalized weakly null tree in X admits a branch

(yi) for which∥∥∥∥ ∞∑
i=1

aiyi

∥∥∥∥
p

C∼ max

(( ∞∑
i=1

|ai|p
)1/p

,

∥∥∥∥ ∞∑
i=1

aiyi

∥∥∥∥
2

)
for all (ai) ∈ c00.

Then there is a blocking H = (Hn) of the Haar basis (hn) so that

T : X → `p ⊕ L2, T (x) =
Ä
(PHn (x))n∈N, x

ä
∈
Ä
⊕∞n=1 Hn

ä
`p
⊕ L2 ↪→ `p ⊕ L2

is an isomorphic embedding.

Theorem 3.1 is a special case of the following result. By a 1-subsymmetric

basis we mean one that is 1-unconditional and 1-spreading.

Theorem 3.2. Let X and Y be separable Banach spaces, with X reflexive.

Let V be a Banach space with a 1-subsymmetric and normalized basis (vi), and

let T : X → Y be linear and bounded.
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Assume that for some C ≥ 1, every normalized weakly null tree of X

admits a branch (xn) so that

(3.1)

∥∥∥∥ ∞∑
i=1

anxn

∥∥∥∥
X

C∼
∥∥∥∥ ∞∑
i=1

anvn

∥∥∥∥
V
∨
∥∥∥∥T( ∞∑

i=1

anxn
)∥∥∥∥

Y
for all (ai) ∈ c00.

Then there is a sequence of finite dimensional spaces (Gi), so that X is

isomorphic to a subspace of
Ä
⊕∞i=1 Gi

ä
V
⊕ Y.

More precisely, under the above assumptions, if Z is any reflexive space

with an FDD (Ei), and if S : X → Z is an isomorphic embedding, then there

is a blocking (Gi) of (Ei) so that S is a bounded linear operator from X toÄ
⊕∞i=1 Gi

ä
V

and the operator

(S, T ) : X →
Ä
⊕∞i=1 Gi

ä
V
⊕ Y, x 7→

Ä
S(x), T (x)

ä
is an isomorphic embedding.

Remark. Theorem 3.1 can be obtained from Theorem 3.2 by letting V =

`p, Y = L2, Z = Lp, with the FDD (Ei) given by the Haar basis, S is the

inclusion map from X into Lp, and T is the formal identity map from Lp to

L2 restricted to X.

As noted in [OS06, Cor. 2, §2] (see also [OS02] for similar versions), the

tree condition in Theorem 3.2 can be interpreted as follows in terms of the

“infinite asymptotic game”, (IAG) as it has been called by Rosendal [Ros09].

Let C ≥ 1 and let A(C) be the set of all sequences (xn) in SX which

are C-basic and satisfy condition (3.1). The (IAG) is played by two players:

Player I chooses a subspace X1 of X having finite codimension, and Player II

chooses x1 ∈ SX1 , then, again Player I chooses a subspace X2 of X of finite

codimension, and Player II chooses an x2 ∈ SX2 . These moves are repeated

infinitely many times, and Player I is declared the winner of the game if the

resulting sequence (xn) is in A(C).

A(C) is closed with respect to the infinite product of (SX , d), where d

denotes the discrete topology on SX . This implies that this game is determined

[Mar75]; i.e., either Player I or Player II has a winning strategy and as noticed

in [OS06, Cor. 2, §2] for all ε > 0, Player I has a winning strategy for A(C+ε)

if and only if for all ε > 0, every weakly null tree in SX has a branch, which

lies in A(C+ε).

Proof of Theorem A using Theorem 3.1. In terms of the infinite asymp-

totic game, the interpretation of our tree condition I easily implies that the

existence of a uniform C ≥ 1, so that all weakly null trees (xα) ⊂ SX admit

a branch in A(C), is equivalent to the condition, that every weakly null tree

(xα) ⊂ SX admits a branch in A(C), for some C ≥ 1.
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Indeed, if such a uniform C does not exist, Player II could choose a se-

quence (Cn) in R+ which increases to∞ and could play the following strategy.

First he follows his winning strategy for achieving a sequence (xn) outside

of A(C1) and after finitely many steps, s1, he must have chosen a sequence

x1, x2, . . . , xs2 , which is either not C1-basic or does not satisfy (3.1) for some

a = (ai)
s1
i=1 ∈ Rs1 . Then Player II follows his strategy for getting a sequence

outside of A(C2), and continues that way using C3, C4 etc. It follows that the

infinite sequence (xn), which is obtained by Player II, cannot be in any A(C).

Therefore Player II has a winning strategy for choosing a sequence outside of⋃
C≥1A(C) which means that there is a weakly null tree, (zα), none of whose

branches are in
⋃
C≥1A(C) .

Using Theorem 3.1, we deduce therefore that (b)⇒(a) in Theorem A. The

implication (a)⇒(c) in Theorem A is easy, using arguments like those above

establishing that `p⊕`2 is asymptotic `p ⊕ `2.

In order to show (c)⇒ (b) let (xα) be a normalized weakly null tree in

Lp. After passing to a full subtree and perturbing, we can assume that (xα)

is a block tree with respect to the Haar basis. By (c) there is branch (zn), a

sequence (wi) ⊂ [0, 1] and C ≥ 1 so that∥∥∥∥∑ aizi

∥∥∥∥
p

C∼
(∑

|ai|p
)1/p
∨
(∑

w2
i a

2
i

)1/2
for all (ai) ∈ c00.(3.2)

Since (zi) is an unconditional sequence and since ‖ · ‖2 ≤ ‖ ·‖p on Lp, it follows

from Proposition 2.1 that for some constant cp,∥∥∥∥∑ aizi

∥∥∥∥
p
≥ cp

(∑
|ai|p

)1/p
∨
∥∥∥∥∑ aizi

∥∥∥∥
2
.(3.3)

We claim that our branch (zn) satisfies (1.1) for some K <∞. Assuming this

were not true, then we could use (3.2), and choose a normalized block sequence

(yn) of (zn), say

yn =
kn∑

i=kn−1+1

aizi, with ai ∈ R, for i ∈ N and 0 = k0 < k1 < . . . ,

so that for all n ∈ N,

kn∑
i=kn−1+1

w2
i a

2
i = 1,(3.4)

and

( kn∑
i=kn−1+1

|ai|p
)1/p
∨ ‖yn‖2 < 2−n.(3.5)
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For any (bi) ∈ c00, it follows therefore from (3.2) that∥∥∥∥∑ bnyn

∥∥∥∥
p

C∼
(∑

|bn|2
)1/2

;

thus (yn) is C-equivalent to the unit vector basis of `2. The result by Kadets

and Pe lczyński [KP62] yields that ‖ · ‖p and ‖ · ‖2 must be equivalent on Y .

But limn→∞ ‖yn‖2 = 0 by (3.5), so we have a contradiction. �

For the proof of Theorem 3.2 we need to recall some results from [OS02]

and [OS06]. The following result restates Corollary 2.9 of [OS06], versions of

which where already shown in [OS02].

Theorem 3.3 ([OS06, Cor. 2.9 (c) ⇐⇒ (d), and “Moreover”-part]). Let

X be a subspace of a reflexive space Z with an FDD (Ei) and let

A ⊂ {(xn) : xn ∈ SX for n ∈ N}.

Then the following are equivalent :

a) for any ε̄ = (εn) ⊂ (0, 1) every weakly null tree in SX admits a branch

in Aε̄, where

Aε̄ =
¶

(xn) ⊂ SX : ∃(zn)∈A ‖zn − xn‖ ≤ εn for n ∈ N
©
,

and where Aε̄ denotes the closure in the product of the discrete topology

on SX ;

b) for any ε̄ = (εn) ⊂ (0, 1) there is a blocking (Fi) of (Ei) so that every

cε̄-skipped block sequence (xn) ⊂ SX of (Fi) lies in Aε̄. Here c ∈ (0, 1)

is a constant which only depends on the projection constant of (Ei)

in Z .

We also need a blocking lemma which appears in various forms in [KOS99],

[OS02], [OS06], and [OSZ08] and ultimately results from a blocking trick of W.

B. Johnson [Joh77]. In the statement of Lemma 3.4 (and elsewhere) reference

is made to the weak∗-topology of Z, a space with a boundedly complete FDD

(Ei). By this we mean the weak∗-topology on Z obtained by regarding it as the

dual space of the norm closure of the span of (E∗i ) in Z∗. This is then just the

topology of coordinatewise convergence in Z with respect to the coordinates

of (Ei).

Lemma 3.4 ([OS06, Lemma 3, §3]). Let X be a subspace of a space Z

having a boundedly complete FDD E = (Ei) with projection constant K with

BX being a w∗-closed subset of Z . Let δi ↓ 0. Then there exist 0 = N0 < N1 <

· · · in N with the following properties. For all x ∈ SX there exists (xi)
∞
i=1 ⊆ X ,

and for all i ∈ N, there exists ti ∈ (Ni−1, Ni) satisfying (t0 = 0 and t1 > 1):

a) x =
∑∞
j=1 xj ,
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b) ‖xi‖ < δi or ‖PE(ti−1,ti)
xi − xi‖ < δi‖xi‖,

c) ‖PE(ti−1,ti)
x− xi‖ < δi,

d) ‖xi‖ < K + 1,

e) ‖PEti x‖ < δi.

Proof of Theorem 3.2. Assume X embeds in a reflexive space Z with an

FDD E = (Ei). By Zippin’s theorem [Zip88] such a space Z always exists. Af-

ter renorming we can assume that the projection constantK = supm≤n ‖PE[m,n]‖
= 1 and that X is (isometrically) a subspace of Z. We also assume without

loss of generality that ‖T‖ = 1.

For a sequence x = (xi) ∈ SX and a =
∑
aiei ∈ c00 we define∣∣∣∣∣∣∣∣∣∣∣∣∑ aiei

∣∣∣∣∣∣∣∣∣∣∣∣
x

=

∥∥∥∥∑ aivi

∥∥∥∥
V
∨
∥∥∥∥T(∑ aixi

)∥∥∥∥
Y
.

Then ||| · |||x is a norm on c00 and we denote the completion of c00 with respect

to ||| · |||x by Wx.

Define

A =
¶
x = (xn) ⊂ SX : x is 3

2 -basic and 3
2C-equivalent to (ei) in Wx

©
.

Observe that condition a) of Theorem 3.3 is satisfied for this setA. Indeed,

given any weakly null tree in SX we may assume, as noted before the statement

of Theorem 3.1, that by passing to a full subtree, the branches are basic with a

constant close to 1, and thus the first requirement of the definition of A can be

satisfied. The hypothesis from Theorem 3.2 then guarantees that Aε contains

the required branch.

We first choose a null sequence ε̄ = (εi) ⊂ (0, 1), which decreases fast

enough to 0 to ensure that every sequence x = (xn) in Aε̄ is 2-basic and 2C-

equivalent to (ei) in Wx. By Theorem 3.3 applied to ε̄ we can find a blocking

F = (Fi) of (Ei) and a sequence, so that every cε̄-skipped block sequence

(xi) ⊂ SX of (Fi) (c is the constant in Theorem 3.3(b)) is 2-basic and 2C-

equivalent to (ei) in Wx. We put δ̄ = (δi) = cε̄. Then we apply Lemma 3.4 to

get a further blocking (Gi), Gi = ⊕Ni
j=Ni−1+1Fj , for i ∈ N and some sequence

0 = N0 < N1 < N2 . . . , so that for every x ∈ SX there is a sequence (ti) ⊂ N ,

with ti ∈ (Ni−1, Ni) for i ∈ N, and t0 = 0, and a sequence (xi) satisfying

(a)–(e).

We also may assume that
∑∞
i=1 δi < 1/36C and will show that for every

x ∈ X,

(3.6) ‖x‖X
36C∼

(∥∥∥∥ ∞∑
i=1

‖PGi (x)‖vi
∥∥∥∥
V

)
∨ ‖T (x)‖Y .

This implies that the map X → (⊕Gi)V ⊕ Y , x 7→ ((PGi (x)), T (x)) is an

isomorphic embedding.
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Let x ∈ SX and choose (ti) ⊂ N and (xi) ⊂ X as prescribed in Lemma 3.4.

Letting B =
¶
i ≥ 2 : ‖PF(ti−1,ti)

(xi)−xi‖ ≤ δi‖xi‖
©

it follows that (xi/‖xi‖)i∈B
is a δ̄-skipped block sequence of (Fi) and therefore

(3.7)

∥∥∥∥∑
i∈B

xi

∥∥∥∥
X

2C∼
∥∥∥∥∑
i∈B
‖xi‖vi

∥∥∥∥
V
∨
∥∥∥∥T(∑

i∈B
xi
)∥∥∥∥.

We want to estimate
∥∥∥∑∞i=1 ‖xi‖vi

∥∥∥
V
∨ ‖T (x)‖. Since 1 6∈ B (no matter how

large ‖x1‖ is), we will distinguish between the case that ‖x1‖ is essential and

the case that ‖x1‖ is small enough to be discarded.

If ‖x1‖ ≥ 1/8C, then we deduce that

1

8C
≤ ‖x1‖ ≤

∥∥∥∥ ∞∑
i=1

‖xi‖vi
∥∥∥∥
V
∨ ‖T (x)‖Y

(3.8)

≤
(∥∥∥∥ ∞∑

i∈B
‖xi‖vi

∥∥∥∥
V

+ ‖x1‖+
∑
i 6∈B

δi
)
∨ ‖T (x)‖Y

≤ 2C

∥∥∥∥ ∞∑
i∈B

xi

∥∥∥∥+ 2 +
∑

δi [by (3.7), (d) of Lemma 3.4, and since ‖T‖=1]

≤ 2C‖x‖+ 2C

∥∥∥∥ ∞∑
i 6∈B

xi

∥∥∥∥+ 2 +
∑

δi

≤ 2C‖x‖+ 2C‖x1‖+ 2C
∑

δi + 2 +
∑

δi ≤ 9C.

If ‖x1‖ < 1/8C, then

1 = ‖x‖ ≤
∥∥∥∥∑
i∈B

xi

∥∥∥∥+
1

4C

≤ 2C
(∥∥∥∥∑

i∈B
‖xi‖vi

∥∥∥∥
V
∨
∥∥∥∥T(∑

i∈B
xi
)∥∥∥∥

Y

)
+

1

4C
[by (3.7)]

≤ 2C
(∥∥∥∥ ∞∑

i=1

‖xi‖vi
∥∥∥∥
V
∨ ‖T (x)‖Y

)
+

1

2
+

1

4C

≤ 2C
(∥∥∥∥ ∞∑

i=1

‖xi‖vi
∥∥∥∥
V
∨ ‖T (x)‖Y

)
+

3

4
.

Thus

1

8C
≤
∥∥∥∥ ∞∑
i=1

‖xi‖vi
∥∥∥∥
V
∨
∥∥∥∥T (x)

∥∥∥∥
Y

(3.9)

≤
(∥∥∥∥∑

i∈B
‖xi‖vi

∥∥∥∥
V
∨
∥∥∥∥T(∑

i∈B
xi
)∥∥∥∥

Y

)
+

1

4C
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≤ 2C

∥∥∥∥∑
i∈B

xi

∥∥∥∥+
1

4C
[By (3.7)]

≤ 2C‖x‖+ 2C‖x1‖+ 2C
∑

δi +
1

4C
≤ 8C.

Equations (3.8) and (3.9) imply that

(3.10) 1
9C∼

∥∥∥∥ ∞∑
i=1

‖xi‖vi
∥∥∥∥
V
∨
∥∥∥T (x)

∥∥∥.
For n ∈ N, define yn = PF(tn−1,tn](x). From Lemma 3.4(c) and (e), it follows

that

‖yn − xn‖ ≤ ‖PF(tn−1,tn)(x)− xn‖+ ‖PFtn(x)‖ ≤ 2δn

and thus
∑ ‖yn − xn‖ ≤ 1/18C which implies by (3.10) that

(3.11) 1
18C∼

∥∥∥∥ ∞∑
i=1

‖yi‖vi
∥∥∥∥
V
∨
∥∥∥T (x)

∥∥∥.
Since for n ∈ N we have (Nn−1, Nn] ⊂ (tn−1, tn+1) and (tn−1, tn] ⊂ (Nn−2, Nn)

(put N−1 = N0 = 0 and PG0 = 0) it follows from the assumed 1-subsymmetry

of (vn) and the assumed bimonotonicity of (Ei) in Z that

1

2

∥∥∥∥∑
n∈N
‖yn‖vn

∥∥∥∥
V
≤ 1

2

∥∥∥∥∑
n∈N

Ä
‖PGn−1(x)‖+ ‖PGn (x)‖)vn

∥∥∥∥
V

≤
∥∥∥∥∑
n∈N
‖PGn (x)‖vn

∥∥∥∥
V

≤
∥∥∥∥∑
n∈N

∥∥∥PF(tn−1,tn+1)(x)
∥∥∥vn∥∥∥∥

V

≤
∥∥∥∥∑
n∈N

Ä
‖yn‖+ ‖yn+1‖

ä
vn

∥∥∥∥
V
≤ 2

∥∥∥∥∑
n∈N
‖yn‖vn

∥∥∥∥
V
,

which implies with (3.11) that

1
36C∼

∥∥∥∥ ∞∑
i=1

‖PGi (x)‖vi
∥∥∥∥
V
∨
∥∥∥T (x)

∥∥∥
and finishes the proof of our claim. �

4. Embedding small subspaces in `p ⊕ `2

For a subspace X of Lp (where p > 2, as everywhere in this paper) we

shall say that a function v in Lp/2 is a limiting conditional variance associated

with X if there is a weakly null sequence (xn) in X such that x2
n converges

to v in the weak topology of Lp/2. It is equivalent to say that for all E ∈ Σ
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(recall that Lp was defined over the atomless and separable probability space

(Ω,Σ,P)),

E[1Ex
2
n]→ E[1Ev]

as n → ∞. The set of all such v will be denoted V (X). Note that, since

p > 2, every weakly null sequence (xn) in X does of course have a subsequence

(xnk
) such that x2

nk
converges (to some v ∈ V (X)) for the weak topology of

the reflexive space Lp/2.

Limiting conditional variances occur naturally in the context of the mar-

tingale inequalities to be used in this section, and are closely related to the

random measures of Section 6. It is therefore natural to express the basic

dichotomy underlying our main Theorem B in terms of V (X).

Proposition 4.1. Let X be a subspace of Lp, where p > 2. One of the

following is true :

(A) there is a constant M > 0 such that ‖v‖p/2 ≤M‖v‖1 for all v ∈ V (X);

(B) no such constant M exists, in which case there exist disjoint sets Ai ∈
Σ and elements vi ∈ V (X) (i ∈ N), such that ‖1Aivi‖p/2 → 1 and

‖1Ω\Ai
vi‖p/2 → 0 as i→∞.

Proof. This is a consequence of the Kadets-Pe lczynski dichotomy. Either

there exists an ε > 0 so that

V (X) ⊂
¶
u ∈ Lp/2 : P[|u| ≥ ε‖u‖p/2] ≥ ε

©
and then

‖u‖1 ≥ E
î
ε‖u‖p/21[|u|≥ε‖u‖p/2]

ó
≥ ε2‖u‖p/2 for all u ∈ V (X),

and (A) holds for M = ε−2. Otherwise, by the construction in Theorem 2 of

[KP62], we obtain (B). �

The rest of this section will be devoted to showing that if (A) holds, then

X embeds in `p⊕ `2. By Theorem 3.1, it will be enough to prove the following

proposition.

Proposition 4.2. Let X be a subspace of Lp where p > 2, and assume

that (A) holds in Proposition 4.1. Then there is a constant K such that every

weakly null tree in SX has a branch (xi) satisfying

K−1
∥∥∥∥∑ cixi

∥∥∥∥
p
≤ max

{(∑
|ci|p

)1/p
,

∥∥∥∥∑ cixi

∥∥∥∥
2

}
≤ K

∥∥∥∥∑ cixi

∥∥∥∥
p
,

for all ci ∈ R.

Proof. Our proof, using Burkholder’s martingale version of Rosenthal’s

Inequality (Theorem 2.3), is closely modeled on Theorem 1.14 of [JMST79].

We let (xα)α∈T∞ be a weakly null tree in SX . Taking small perturbations, we
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may suppose that we are dealing with a block tree of the Haar basis. So for each

α ∈ T∞, xα is a finite linear combination of Haar functions, say xα ∈ [hn]n≤n(α),

and for each successor (α, k) of α in T∞, x(α,k) ∈ [hn]n(α)<n≤n(α,k). We may

then proceed to choose a full subtree T ′ of T∞ having the properties (1) and

(2) below, as we now describe.

First, we consider the first level of the tree, that is to say the sequence

of elements x(n) with n ∈ N. We may extract a subsequence for which x2
(n)

converges weakly in Lp/2 to some v0 ∈ V (X) and then, by leaving out a finite

number of terms, ensure that |E[x2
(n)]

1/2 − E[v0]1/2| < 1
2 .

We now continue by taking subsequences of the successors of each α in

such a way that the following hold (for n ∈ N, Hn denotes the σ-algebra

generated by (hi : i≤n)):

(1) the elements x2
(α,n) (with (α, n) ∈ T ′) of Lp/2 converge weakly to some

vα ∈ V (X);

(2) for all (α, k) ∈ T ′ we have ‖E[x2
(α,k) | Hn(α)]

1/2 − E[vα | Hn(α)]
1/2‖∞ <

2−|α|−1.

To achieve the above, we use our earlier remark based on relexivity of Lp/2,

and the fact that weak convergence implies norm convergence in the finite

dimensional space [hn]n≤n(α).

We now take any branch (xi) of the resulting subtree (xα)α∈T ′ . So xi = xαi

where αi is the initial segment (n1, n2, . . . , ni) of some branch (n1, n2, . . . ) of

T ′. We consider the σ-algebras Fi where F0 = {∅,Ω} and Fi = Hn(αi) for

i ≥ 1 and write Ei for the conditional expectation relative to Fi. Since we

are dealing with a block tree, the sequence (xi) is a block basis of the Haar

basis, and hence a martingale-difference sequence with respect to (Fi). We

may therefore apply Theorem 2.3 to conclude that the Lp-norm of a linear

combination
∑
cixj is Cp-equivalent to

max
{(∑

|ci|p
)1/p

,

∥∥∥∥∑ c2
iEi−1[x2

i ]

∥∥∥∥1/2

p/2

}
.

We shall show that provided we modify the constant of equivalence, we

may replace the second term in this expression by∥∥∥∥∑ c2
iEi−1[x2

i ]

∥∥∥∥1/2

1
,

which equals ‖∑ cixi‖2. By construction, the conditional expectations Ei−1[x2
i ]

are close to Ei−1[vi−1], where, for j ≥ 1, vj denotes vαj . More precisely, we

may use (2) above and the triangle inequality in Lp(`2) to obtain

(4.1)∣∣∣∣∣
∥∥∥∥∑ c2

iEi−1[x2
i ]

∥∥∥∥1/2

p/2
−
∥∥∥∥∑ c2

iEi−1[vi−1]

∥∥∥∥1/2

p/2

∣∣∣∣∣≤
∥∥∥∥Ä∑ c2

i 2
−2i
ä1/2∥∥∥∥

p
≤max |ci|.
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We similarly get

(4.2)∣∣∣∣∣
∥∥∥∥∑ c2

iEi−1[x2
i ]

∥∥∥∥1/2

1
−
∥∥∥∥∑ c2

iEi−1[vi−1]

∥∥∥∥1/2

1

∣∣∣∣∣ ≤
∥∥∥∥(∑ c2

i 2
−2i)1/2

∥∥∥∥
2
≤ max |ci|.

Using our assumption about V (X), the fact that all the vi are nonnegative,

and inequalities (4.1) and (4.2), we obtain∥∥∥∥∑ c2
iEi−1[x2

i ]

∥∥∥∥1/2

p/2
≤
∥∥∥∥∑ c2

iEi−1[vi−1]

∥∥∥∥1/2

p/2
+ max |ci|

≤
(∑

c2
i ‖Ei−1[vi−1]]‖p/2

)1/2
+ max |ci|

≤
(∑

c2
i

∥∥∥vi−1

∥∥∥
p/2

)1/2
+ max |ci|

≤
√
M
(∑

c2
i

∥∥∥vi−1

∥∥∥
1

)1/2
+ max |ci|

=
√
M

∥∥∥∥∑ c2
iEi−1[vi−1]

∥∥∥∥1/2

1
+ max |ci|

≤
√
M

∥∥∥∥∑ c2
iEi−1[x2

i ]

∥∥∥∥1/2

1
+
Ä
1 +
√
M
ä

max |ci|,

which yields the left-most inequality in Proposition 4.2. The right-hand in-

equality is easy by Proposition 2.1 since ‖·‖p ≥ ‖·‖2 and (xi) is unconditional,

being a block basis of the Haar basis. �

Corollary 4.3. Let X be a subspace of Lp, where p > 2, and assume

that (A) holds in Proposition 4.1. Then X embeds isomorphically into `p⊕ `2.

5. Embedding `p(`2) in X

Theorem 5.1. Let X be a subspace of Lp (p > 2) and suppose that (B)

of Proposition 4.1 holds. Then X contains a subspace isomorphic to `p(`2).

The first step in the proof is to find `2-subspaces of X which have “thin

support”. The precise formulation of this notion that we shall use in the

present section is given in the following lemma.

Lemma 5.2. Suppose that (B) of Proposition 4.1 holds. Then, for every

M > 0 there is an infinite-dimensional subspace Y of X , on which the Lp and

L2 norms are equivalent, but in such a way that ‖y‖p ≥M‖y‖2 for all y ∈ Y .

Proof. By hypothesis, for every M ′ > 0 there exists v ∈ V (X) such that

‖v‖1 = 1 and ‖v‖p/2 > M ′2. There is a weakly null sequence (xn) in X such

that x2
n converges weakly to v in Lp/2. By taking small perturbations of the

xn’s (with respect to the Lp-norm) and by noting that the Cauchy-Schwarz
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inequality yields ‖x2 − y2‖p/2 ≤ ‖x− y‖p · ‖x+ y‖p, for x and y ∈ Lp, we may

suppose that (xn) is a block basis of the Haar basis. Since the sequence x2
n is

positive and weakly convergent,

‖x2
n‖1 = E[x2

n]→ E[v] = ‖v‖1 = 1.

We can thus assume that ‖xn‖2 = 1 for all n. We may choose a natural

number K such that ‖E[v | HK ]‖p/2 > M ′2 and by discarding the first few

elements of (xn) we have that xn ∈ [hk]k>K , for all n. The xn are martingale

differences with respect to a subsequence Fn = Hk(n) of the Haar filtration

(with k(0) = K). Taking a further subsequence, we may suppose that

(5.1)
∥∥∥E[v | Fn−1]1/2 − E[x2

n | Fn−1]1/2
∥∥∥
∞
< 2−n for all n.

Because (xn) is a martingale difference sequence, we can apply Theorem 2.3

to conclude that∥∥∥∥∑ cnxn

∥∥∥∥
p
≥ C−1

p

∥∥∥∥(∑ c2
nE[x2

n|Fn−1]
)1/2

∥∥∥∥
p

=C−1
p

∥∥∥‖(cnE1/2[x2
n|Fn−1] : n∈N)‖`2

∥∥∥
p
.

If we use (5.1) and apply the triangle inequality in Lp(`2) we obtain∥∥∥∥∑ cnxn

∥∥∥∥
p
≥ C−1

p

∥∥∥‖(cnE1/2[x2
n|Fn−1] : n ∈ N)‖`2

∥∥∥
p

≥ C−1
p

(∥∥∥‖(cnE1/2[v|Fn−1] : n ∈ N)‖`2
∥∥∥
p
− ‖(cn2−n : n ∈ N)‖`2

)
= C−1

p

Ç∥∥∥∥(∑ c2
nE[v|Fn−1]

)1/2
∥∥∥∥
p
−
(∑

c2
n2−2n

)1/2
å

≥ M ′ − 1

Cp

(∑
c2
n

)1/2
.

On the other hand, in L2, the xn are orthogonal, whence∥∥∥∥∑ cnxn

∥∥∥∥
2

=
(∑

c2
n

)1/2
.

Provided M ′ is chosen large enough, we have ‖y‖p ≥M‖y‖2 for all y ∈ [xn] as

required. �

The next step is to show that we can choose our `2-subspaces to have

p-uniformly integrable unit balls. Recall that a subset A of Lp is said to

be p-uniformly integrable if, for every ε > 0 there exists K > 0 such that

‖x1[|x|>K]‖p < ε for all x ∈ A. We shall need the following standard martingale

lemma.
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Lemma 5.3. Let (xn) be a martingale difference sequence that is p-uni-

formly integrable. Then the set of linear combinations of the xn’s with `2-

normalized coefficients is also p-uniformly integrable.

Proof. We assume that ‖xn‖2 ≤ 1 for all n and consider a vector y of the

form
∑
n cnxn with

∑
n c

2
n = 1, noting that ‖y‖22 =

∑
c2
n‖xn‖22 ≤ 1. Given ε >

0, we choose K > ε−1 such that ‖xj1E‖2 < ε for all j whenever P(E) < K−1.

We consider the martingale (yn) where yn =
∑
j≤n cjxj (thus y = y∞) and

introduce the stopping time

τ = inf{n ∈ N : |yn| > K}.

By Doob’s inequality, P[τ < ∞] ≤ K−1‖y‖1 ≤ K−1. We note that if τ < ∞,

then |yτ | ≤ K + |cτxτ | so that

|y| ≤ K + |y − yτ |+ |cτxτ1[τ<∞]|.

We shall estimate the Lp-norms of the second two terms. For the first of these,

we note that (yk − yk∧τ ) is a martingale, so that (C only depends on p)

‖y − yτ‖p ≤ C
∥∥∥∥∑

n

c2
nx

2
n1[τ<n]

∥∥∥∥1/2

p/2
[by the square function inequality]

≤ C
(∑

c2
n‖x2

n1[τ<n]‖p/2
)1/2

[by the triangle inequality in Lp/2]

≤ C sup
n
‖xn1[τ<∞]‖p

î
since

∑
c2
n ≤ 1

ó
≤ Cε [because P[τ <∞] ≤ K−1].

For the second term we use the fact that the sets [τ = n] are disjoint, so that

‖cτxτ1[τ<∞]‖p =

∥∥∥∥∑
n

cnxn1[τ=n]

∥∥∥∥
p

=
(∑

n

|cn|p‖xn1[τ=n]‖pp
)1/p

≤ sup
n
‖xn1[τ<∞]‖p ≤ ε

as before. Thus,

‖y1[|y|>2K]‖p ≤ KP1/p
î
|y − yτ |+|cτxτ1[τ<∞]| > K

ó
+ (C + 1)ε ≤ 2(1 + C)ε,

which implies our claim. �

Lemma 5.4. Let Y be a subspace of Lp (p > 2), which is isomorphic to `2.

There is an infinite dimensional subspace Z of Y such that the unit ball BZ is

p-uniformly integrable.

Proof. Let (yn) be a normalized sequence in Y equivalent to the unit

vector basis of `2. By the Subsequence Splitting Lemma (see, for instance

Theorem IV.2.8 of [GD92]), we can write yn = xn + zn, where the sequence

(xn) is p-uniformly integrable, and the zn are disjointly supported. So (xn)
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and (zn) are weakly null. Taking a subsequence, we may suppose that the (xn)

is a martingale difference sequence, so that the set of all `2-normalized linear

combinations
∑
cnxn is also p-uniformly integrable.

We now consider `2-normalized blocks of the form

y′k = (Nk −Nk−1)−1/2
∑

Nk−1<n≤Nk

yn = x′k + z′k,

where

x′k = (Nk −Nk−1)−1/2
∑

Nk−1<n≤Nk

xn and z′k = (Nk −Nk−1)−1/2
∑

Nk−1<n≤Nk

zn.

Since the zn are disjointly supported in Lp we have ‖z′k‖p ≤ (Nk−Nk−1)1/p−1/2,

so we can choose the Nk such that ‖z′k‖p < 2−k. The sequence (x′k), being `2
normalized linear combinations of the xn, are p-uniformly integrable. Hence

the y′k, which are small perturbations of the x′k, are also p-uniformly integrable.

Another application of Lemma 5.3 yields the result. �

We are now ready for the proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemmas 5.2 and 5.4 there exists, for eachM>0,

a subspace ZM of X, isomorphic to `2 with p-uniformly integrable unit ball

such that

‖y‖p ≥M‖y‖2
for all y ∈ ZM . For a specified ε > 0, we shall choose inductively M1 < M2 <

· · · and define Yn = ZMn , such that

(5.2) ‖|ym| ∧ |yn|‖p ≤ ε/n2n,

whenever ym ∈ BYm , yn ∈ BYn and m < n.

To achieve this, we start by taking an arbitrary value for M1, say M1 = 1.

Recursively, if M1, . . . ,Mn have been chosen, we use the p-uniform integrability

of
⋃
m≤nBYm to find Kn such that

∥∥∥|y| − |y| ∧Kn

∥∥∥
p
< ε/(n+ 1)2n+2 whenever

y ∈ BYm and m ≤ n.

We now choose Mn+1 such that M2
n+1 > Kp−2

n (n + 1)p2p(n+2)ε−p. We

need to check that (5.2) is satisfied, so let yn+1 ∈ BYn+1 and let ym ∈ BYm
with m ≤ n. We have that

|ym| ∧ |yn+1| ≤ Kn ∧ |yn+1|+ (|ym| − |ym| ∧Kn)

and we have chosen Kn in such a way as to ensure that∥∥∥|ym| − |ym| ∧Kn

∥∥∥
p
< ε/(n+ 1)2n+2.

For the first term, we note that

E[(Kn ∧ |yn+1|)p] ≤ E[Kp−2
n |yn+1|2] = Kp−2

n ‖yn+1‖22 ≤ Kp−2
n M−2

n+1,

which is smaller than εp(n+ 1)−p2−p(n+2), by our choice of Mn+1.
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Now let yn ∈ SYn for all n ∈ N. We shall show that the yn’s are small

perturbations of elements that are disjoint in Lp. Indeed, let us set

y′n = sign (yn)
Ä
|yn| − |yn| ∧

∨
m 6=n
|ym|
ä
.

Then the y′n are disjointly supported and from (5.2),

‖yn − y′n‖p =

∥∥∥∥|yn| ∧ ∨
m6=n
|ym|

∥∥∥∥
p
≤
∑
m 6=n

∥∥∥|yn| ∧ |ym|∥∥∥
p

≤ (n− 1)ε/n2n +
∑
m>n

ε/m2m < ε/2n.

Standard manipulation of inequalities now shows us that the closure of the

sum
∑
n Yn in Lp is almost an `p-sum. Indeed,

(1− 2ε)
(∑

|cn|p
)1/p

≤
(∑

|cn|p‖y′n‖pp
)1/p
− ε

(∑
|cn|p

)1/p

=

∥∥∥∥∑ cny
′
n

∥∥∥∥
p
− ε

(∑
|cn|p

)1/p

≤
∥∥∥∥∑ cnyn

∥∥∥∥
p

≤
∥∥∥∥∑ cny

′
n

∥∥∥∥
p

+ ε
(∑

|cn|p
)1/p

≤ (1 + ε)
(∑

|cn|p
)1/p

.

At this point in the proof, we have obtained subspaces Yn of X, each isomorphic

to `2 such that the closed linear span
∑
n Yn is almost isometric to (

⊕
Yn)p.

By stability (see [KM81] or [AO01]) we can take, for each n, a subspace Xn of

Yn which is (1 + ε)-isomorphic to `2. In this way we obtain a subspace of X

which is almost isometric to `p(`2). �

The last part of the claim of Theorem B — namely that we can pass to a

further subspace of X which is still (1+θ)-isomorphic to `p(`2) and, moreover,

complemented in Lp — follows from our results in the next section. G. Schecht-

man [Sch] showed us that if one is not concerned with minimizing the norm of

the projection, then there is a short argument that gives a complemented copy

of `p(`2). We thank him for allowing us to present it here.

Proposition 5.5. Let X ⊂ Lp be isomorphically equivalent to `p(`2).

Then there is a subspace Y of X which is isomorphic to `p(`2) and comple-

mented in Lp.

Proof. Let {x(m,n) : m,n ∈ N} ⊂ X be a normalized basis of X equiva-

lent to the usual unconditional basis of `p(`2); i.e., there is a constant C ≥ 1
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so that ∥∥∥∥ ∑
m,n∈N

a(m,n)x(m,n)

∥∥∥∥ C∼
( ∑
m∈N

(∑
n∈N

a(m,n)2
)p/2)1/p

for all (a(m,n)) ∈ c00(N2).

In [PR75] it was shown that for any C > 1 there is a gp(C) < ∞ so that

every subspace E of Lp, which is C isomorphic to `2, is gp(C) complemented

in Lp. For m ∈ N let Pm : Lp → [(x(m,n) : n ∈ N] be a projection of norm at

most gp(C). We can write

Pm(x) =
∑
n∈N

x∗(m,n)(x)x(m,n) for x ∈ Lp,

where (x∗(m,n) : n ∈ N) is a weakly null sequence in Lq,
1
p + 1

q = 1, and

biorthogonal to x(m,n) : n ∈ N). By passing to subsequences, using a diagonal

argument, and perturbing we may assume that there is a blocking (H(m,n) :

m,n ∈ N) of the Haar basis of Lp, in some order, so that x(m,n) ∈ H(m,n)

and x∗(m,n) ∈ H∗(m,n), for m,n ∈ N, where (H∗(m,n)) denotes the blocking

of the Haar basis in Lq which corresponds to (H(m,n)).

We will show that the operator

P : Lp → Lp, x 7→
∑

m,n∈N
x∗(m,n)(x)x(m,n)

is bounded, and thus it is a bounded projection onto [x(m,n) : m,n ∈ N].

For y =
∑
m,n∈N y(m,n), with y(m,n) ∈ H(m,n), if m,n ∈ N, we deduce

that

‖P (y)‖ =

∥∥∥∥ ∑
m∈N

∑
n∈N

x∗(m,n)(y(m,n))x(m,n)

∥∥∥∥
≤ C

( ∑
m∈N

(∑
n∈N

(x∗(m,n)(y(m,n)))2
)p/2)1/p

≤ C2
( ∑
m∈N
‖Pm(ym)‖p

)1/p
≤ C2gp(C)

Ä∑
m∈N
‖ym‖p

)1/p
,

where ym =
∑
n∈N y(m,n) for m ∈ N.

The Haar basis is unconditional in Lp. If we denote the unconditional

constant in Lp by Up, we deduce from Proposition 2.1 that

‖y‖ ≥ U−1
p (

∑
m∈N
‖ym‖p)1/p,

which implies our claim. �

Remark. G. Schechtman [Sch] has also proved, by a more complicated

argument, that if X ⊂ Lp, 1 < p < 2 is an isomorph of `p(`2), then X contains

a copy of `p(`2) which is complemented in Lp.
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Let us now deduce the statement of Corollary D.

Proof of Corollary D. First assume that X embeds into `p⊕`2. Note that

every weakly null sequence (xn) can be turned into a weakly null tree (xα),

whose branches are exactly the subsequences of (xn) (put x(n1,n2,...,n`) = xn`
for

(n1, n2, . . . , n`) ∈ T∞). This fact, together with the remarks at the beginning

of the proof of Theorem A (about the existence of K), shows that condition

(b) of Theorem A for a subspace X of Lp implies that there exists a K ≥ 1,

so that every weakly null sequence in SX admits a subsequence (xi) satisfying

condition (1.1) in (b) of Theorem A for all scalars (ai).

Conversely, assume that X does not embed into `p ⊕ `2. Then Proposi-

tions 4.1 and 4.2 together with Theorem A imply that condition (B) of Propo-

sition 4.1 is satisfied. Now, using Lemma 5.2, we can find for every M <∞ a

subspace Y of X which is isomorphic to `2, so that ‖ · ‖p ≥M‖ · ‖2 on Y . This

implies that there cannot be a K ≥ 1, so that every weakly null sequence in

SX admits a subsequence (xi) satisfying (1.4). �

6. Improving the embedding via random measures

We shall give a quick review of what we need from the theory of stable

spaces and random measures. We shall then obtain the optimally comple-

mented embeddings of `p(`2).

We start this section by recalling some facts about random measures and

their relation to types on Lp. The introductory part is valid for 1 < p < ∞.

Later we will restrict ourselves again to the case p > 2. As far as possible, we

shall follow the notation and terminology of [Ald81]; for the theory of types

and stability we refer the reader to [KM81] (or [AO01]). The lecture notes of

Garling [Gar82] is one of the few works where the connection between random

measures and types on function spaces is explicitly considered.

We shall denote by P the set of probability measures on R which is a

Polish space for its usual topology. This topology, often called the “narrow

topology”, can be thought of as the topology induced by the weak* topology

σ(Cb(R)∗, Cb(R)).

A random measure on (Ω,Σ,P) is a mapping ξ : ω 7→ ξω; Ω→ P which is

measurable from Σ to the Borel σ-algebra of P. The set of all such random

measures is denoted by M and is a Polish space when equipped with what

Aldous calls the wm-topology. Sequential convergence for this topology can be

characterized by saying that ξ(n) wm−→ ξ if and only if

E
ï
1F

∫
R
f(t)dξ(n)(t)

ò
→ E

ï
1F

∫
R
f(t)dξ(t)

ò
,

for all F ∈ Σ and all f ∈ Cb(R). In interpreting the expectation operator

in the above formula (and in similar expressions involving “implicit” ω’s) the
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reader should bear in mind that ξ is random. If we translate the expectation

into integral notation,

E
ï
1F

∫
R
f(t)dξ(t)

ò
becomes

∫
F

∫
R
f(t) dξω(t) dP(ω).

It is sometimes useful to use the notation ξF , when F is a nonnull set in Σ for

the probability measure given by∫
R
f(t) dξF (t) = P(F )−1E[1F

∫
R
f(t) dξ(t)] (f ∈ C0(R)).

The usual convolution operation on P may be extended to an operation

on M by defining ξ ∗ η to be the random measure with (ξ ∗ η)ω = ξω ∗ ηω.

Garling (Proposition 8 of [Gar82]) observes that this operation is separately

continuous for the wm topology. This result is also implicit in Lemma 3.14 of

[Ald81]. We may also introduce a “scalar multiplication”: when ξ ∈M and α

is a random variable, we define the random measure α.ξ by setting∫
f(t) d(α.ξ)(t) =

∫
R
f(αt) dξ(t) (f ∈ Cb(R)).

Every random variable x on (Ω,Σ,P) defines a random (Dirac) measure

ω 7→ δx(ω). Aldous [Ald81, after Lemma 2.14] has remarked that (provided

that the probability space (Ω,Σ,P) is atomless) these δx form a wm-dense

subset of M. While we do not need this fact here, it may be helpful to note

that the definition given above of α.ξ is so chosen that δαxn
wm−→ α.ξ whenever

δxn
wm−→ ξ. The Lp-norms extend to wm-lower semicontinuous [0,∞]-valued

functions | · |p on M, defined by

|ξ|p = E
[ ∫

R
|t|p dξ(t)

]1/p

.

We shall write Mp for the set of all ξ for which |ξ|p is finite.

As a special case of the characterization of wm-compactness by the con-

dition of “tightness” we note that a subset ofMp which is bounded for | · |p is

wm-relatively compact. In particular, if (xn) is a sequence that is bounded in

Lp, then there is a subsequence (xnk
) such that δxnk

wm−→ ξ for some ξ ∈Mp.

Moreover, if (xn) is p-uniformly integrable, an easy truncation argument shows

that

lim
n→∞

‖xn‖p = lim
n→∞

E
(∫
|t|pdδxn(t)

)
= E

(∫
|t|pdξ(t)

)
.

For a subspace X of Lp we write Mp(X) for the set of all ξ that arise as

wm-limits of sequences (δxn) with (xn) an Lp-bounded sequence in X. It is

an easy consequence of separate continuity that Mp(X) is closed under the

convolution operation ∗ (cf. the proof of [Ald81, Prop. 3.9]).
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We recall that a function τ : X → R on a (separable) Banach space X is

called a type if there is a sequence (xn) in X such that for all y ∈ X,

‖xn + y‖ → τ(y) as n→∞.

The set of all types on X is denoted by TX and is a locally compact Polish

space for the weak topology; this topology may be characterized by saying

that τn
w−→ τ if τn(y)→ τ(y) for all y ∈ X. If we introduce, for each x ∈ X,

the degenerate type τx defined by

τx(y) = ‖x+ y‖,

then TX is the w-closure of the set of all τx. We introduce a “scalar multipli-

cation” of types, defining α.τ , for α ∈ R and τ ∈ TX , by setting

α.τ = w-lim ταxn when τ = w-lim τxn .

A Banach space X is stable if, for xm and yn in X,

lim
m→∞

lim
n→∞

‖xm + yn‖ = lim
n→∞

lim
n→∞

‖xm + yn‖,

whenever the relevant limits exist. All Lp-spaces (1≤p<∞) are stable [KM81].

Stability of a Banach space X permits the introduction of a (commutative)

binary operation ∗ on TX , defined by

τ ∗ υ(z) = lim
m→∞

lim
n→∞

‖xm + yn + z‖

when τ = w-lim τxm and υ = w-lim τyn .

A type τ ∈ TX is said to be an `q-type if

(α.τ) ∗ (β.τ) = (|α|q + |β|q)1/q.τ

for all real α, β. The big theorem of [KM81] shows first that on every stable

space there are `q-types for some value(s) of q, and secondly that the existence

of an `q type implies that the space has subspaces almost isometric to `q. In

fact the proof of Théorème III.1 in [KM81] proves something slightly more

than the existence of such a subspace. We now record the statement we shall

need.

Proposition 6.1. Let X be a stable Banach space, let 1 ≤ q < ∞, and

let (xn) be a sequence in X such that τxn converges to an `q-type τ on X .

Then there is a subsequence (xnk
) such that τzn converges to τ for every `q-

normalized block subsequence (zn) of (xnk
).

The results of [KM81] were extended, and gave an alternative approach to

the theorem of [Ald81], which obtained `q’s in subspaces of L1 using random

measures. We shall need elements from both approaches. The link is provided

by the following lemma, for which we refer the reader to the final paragraphs
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of [Gar82]. We shall write Tp for TLp and, when X is a subspace of Lp, we

shall write Tp(X) for the weak closure in Tp of the set of all τx with x ∈ X.

Lemma 6.2. Let (xn) be a bounded sequence in Lp, and suppose that

δxn
wm−→ ξ in M. Suppose further that ‖xn‖p → α as n → ∞. Then, for

all y ∈ Lp,

‖xn + y‖pp → E
ï∫

R
|y + t|p dξ(t)

ò
+ βp,

where the nonnegative constant β is given by

αp = ‖ξ‖pp + βp.

The sequence (xn) is p-uniformly integrable if and only if β = 0.

We thus have the following formula showing how the type τ = lim τxn ∈ Tp
is related to the random measure ξ = wm- lim δxn ∈ Mp and the index of p-

uniform integrability β:

(6.1) τ(y)p = E
ï∫

R
|y + t|pdξ(t)

ò
+ βp.

If q < p then a sequence (xn) as above in Lp can be thought of as a sequence

in Lq. If we wish to distinguish the type determined on Lq from the type on

Lp, we use superscripts. Of course,

τ (q)(y)q = E
ï∫

R
|y + t|qdξ(t)

ò
with no “β” term, because an Lp-bounded sequence is q-uniformly integrable.

The * operations on Tp and on Mp are related by the following lemma,

also to be found in [Gar82].

Lemma 6.3. Let τ1 and τ2 be types on Lp represented as

τ1(y)p = E
ï∫

R
|y + t|pdξ1(t)

ò
+ βp1 and τ2(y)p = E

ï∫
R
|y + t|pdξ2(t)

ò
+ βp2 .

Then

(τ1 ∗ τ2)(y)p = E
ï∫

R
|y + t|pd(ξ1 ∗ ξ2)(t)

ò
+ βp1 + βp2 .

It has been noted already in the literature (e.g., [Gar82]) that the repre-

sentation given in (6.1) is not in general unique. However, for most values of

p, it is, as we now show.

Proposition 6.4. Let 1 ≤ p < ∞ and assume that p is not an even

integer. In the representation of a type τ on Lp by the formula (6.1) the

random measure ξ and the constant β are uniquely determined by τ . If (xn) is

any sequence in Lp with τxn
w−→ τ we have δxn

wm−→ ξ and

inf
M

lim
n→∞

‖xn1[|xn|≥M ]‖p = β.
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Proof. Suppose that ξ, β and ξ′, β′ yield the same type τ . For any nonnull

E ∈ Σ and any real number u, we consider τ(y) where y = u1E ∈ Lp to obtain

E
ï∫

R
|t+ u1E |pdξ(t)

ò
+ βp = E

ï∫
R
|t+ u1E |pdξ′(t)

ò
+ β′p,

or, equivalently, ∫
R
|t+ u|pdξE(t) =

∫
R
|t+ u|pdξ′E(t) + αp,

where

P(E)αp = β′p − βp + E
ï
1Ω\E

∫
|t|pdξ′(t)− 1Ω\E

∫
|t|pdξ(t)

ò
.

By the Equimeasurability Theorem (cf. [KK01, p. 903]), α = 0 and the mea-

sures ξE and ξ′E are equal. Since this is true for all E, ξ = ξ′.

Now let (xn) be any sequence with τxn
w−→ τ . By the uniqueness that we

have just proved, the only cluster point of the sequence δxn in M is ξ. Since

(by L1-boundedness) {δxn : n ∈ N} is relatively wm-compact inM, it must be

that δxn
wm−→ ξ. �

We have already noted that Mp(X) is closed under ∗ when X is a sub-

space of Lp. The next proposition, which is closely related to that of [Ald81,

Prop. 3.9], shows that under appropriate conditions, Mp(X) is wm-closed.

Proposition 6.5. Let 1 ≤ p <∞ and let X be a subspace of Lp with no

subspace isomorphic to `p. Then Mp(X) is wm-closed in M.

Proof. The hypothesis implies that the Lp-norm is equivalent to the L1-

norm on X, so that we may regard X as a (reflexive) subspace of L1. Aldous

[Ald81, Lemma 3.12] shows (by a straightforward uniform integrability ar-

gument) that ξ 7→ |ξ|1 is wm-continuous and finite on D, where D is the

wm-closure of {δx : x ∈ X}. Thus every ξ in D is in the wm-closure of an

L1-bounded subset of X, and hence by equivalence of norms, in Mp(X). �

To finish this round-up of types and random measures, we need to mention

the connection between `2-types and the normal distribution (a special case

of the connection between `q-types and symmetric stable laws). We write γ

for the probability measure (or law) of a standard N (0, 1) random variable. If

σ is a nonnegative random variable, then σ.γ is a random measure (a normal

distribution with random variance). Provided σ ∈ Lp, this random measure

defines a type on Lp by

τ(y)p = E
ï∫

R
|y + t|p d(σ.γ)(t)

ò
= E

ï∫
R
|y + σt|p dγ(t)

ò
.

It is a property of the normal distribution that (α.γ) ∗ (β.γ) = (α2 + β2)1/2.γ

for real α, β. By Lemma 6.3, this allows us to see that τ is an `2-type on Lp.

We are finally ready to return to the main subject matter of this paper.
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Lemma 6.6. Let X be a subspace of Lp, with p > 2, and let v be a nonzero

element of Lp/2. The following are equivalent :

(1) v ∈ V (X),

(2) there exists ξ ∈ Mp(X) such that
∫
R t dξ = 0 and

∫
R t

2 dξ = v almost

surely,

(3)
√
v.γ ∈Mp(X).

Proof. We start by assuming (1). Let (xn) be a weakly null sequence

in X such that (x2
n) converges weakly to v in Lp/2. Replacing (xn) with a

subsequence, we may suppose that δxn
wm−→ ξ for some ξ ∈Mp(X). Since the

sequence (xn) is Lp-bounded, it is 2-uniformly integrable and so

E
ï
1E

∫
R
tdξ(t)

ò
= limE [1Exn] = 0(6.2)

and

E
ï
1E

∫
R
t2dξ(t)

ò
= limE

î
1Ex

2
n

ó
= E [1Ev] ,(6.3)

for all E ∈ Σ. This yields (2).

We now assume (2). Let (xn) be an Lp-bounded sequence in X such that

δxn is wm-convergent to ξ. Since
∫
R dξ(t) = 0 a.s. it follows that (xn) is weakly

null and since ξ 6= δ0, ‖xn‖2 does not tend to zero. By [KP62], it follows that

X0, the closed linear span of a subsequence of (xi), is isomorphic to `2. The

assumption about ξ is that, for almost all ω, the probability measure ξω is the

law of a random variable with mean 0 and variance v(ω).

By the Central Limit Theorem

n−1/2. (ξω ∗ ξω ∗ · · · ∗ ξω)︸ ︷︷ ︸
n terms

tends to
»
v(ω).γ for all such ω. So in M we have

n−1/2.(ξ ∗ ξ ∗ · · · ∗ ξ) wm−→
√
v.γ.

Since Mp(X0) is closed under convolution and is closed in the wm-topology

(by Proposition 6.5), we see that
√
v.γ ∈Mp(X0) ⊆Mp(X).

Finally, if we assume (3) we may take (xn) to be an Lp-bounded sequence

in X such that δxn
wm−→
√
v.γ. Calculations like those used in the proof of (1)

=⇒ (2), justified by 2-uniform integrability, show that (xn) is weakly null and

that x2
n tends weakly to v. �

We shall say that a sequence (yn) in Lp is a stabilized `2 sequence with

limiting conditional variance v if, for every `2 normalized block subsequence

(zn) of (yn), the following are true:
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δzn
wm−→
√
v.γ as n→∞;(6.4)

‖zn‖p → γp‖
√
v‖p as n→∞.(6.5)

(Recall that γp = ‖x‖p, where x is a symmetric L2 normalized Gaussian ran-

dom variable.) For p not an even integer, it is not hard to establish the exis-

tence of such sequences using Propositions 6.1 and 6.4. The proof of the next

proposition avoids the irritating problem posed by nonunique representations,

by switching briefly to the L1-norm.

Proposition 6.7. Let X be a closed subspace of Lp (p>2) and let v be

a nonzero element of V (X). Then there exists a stabilized `2 sequence in X

with limiting conditional variance v.

Proof. By Lemma 6.6 the random measure
√
v.γ is in Mp(X). Let (xn)

be a bounded sequence in X with δxn
wm−→
√
v.γ. For the moment, think of

the xn as elements of L1 and consider the types τ
(1)
xn defined on L1. By Lp-

boundedness, the sequence (xn) is uniformly integrable, so the sequence (τ
(1)
xn )

converges weakly to the `2-type τ (1), where

τ (1)(y) = E
ï∫
|y +

√
vt|dγ(t)

ò
.

By Proposition 6.1 we may replace (xn) by a subsequence in such a way that

τ
(1)
zn

w−→ τ (1) for every `2-normalized block subsequence (zn). By Proposi-

tion 6.4 we have δzn
wm−→
√
v.γ for all such (zn).

We now return to the Lp-norm, for which we can assume, after passing to

a subsequence, if necessary, that (xn) is equivalent to the unit vector basis of

`2. By stability of Lp there is an `2-normalized block subsequence (yn) such

that τ
(p)
yn

w−→ τ (p) for some `2-type τ (p) on Lp. Moreover, by Proposition 6.1

we can arrange that τ
(p)
zn

w−→ τ (p) for every further such `2-normalized block

subsequence (zn). By (6.1),

τ (p)(y)p = E
ï∫

R
|y +

√
vt|pdγ(t)

ò
+ βp

for some nonnegative constant β. Now τ (p) is an `2-type, so τ (p)∗τ (p) =
√

2.τ (p).

That is to say

(τ (p) ∗ τ (p))(y)p = E
ï∫

R
|y +

√
2vt|pdγ(t)

ò
+ (
√

2β)p.

On the other hand, by Lemma 6.3,

(τ (p) ∗ τ (p))(y)p = E
ï∫

R
|y +

√
vt|pd(γ ∗ γ)(t)

ò
+ 2βp

= E
ï∫

R
|y +

√
2vt|pdγ(t)

ò
+ 2βp.

Since p 6= 2, we are forced to conclude that β = 0.
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To sum up, for every `2-normalized block subsequence (zn) of (yn) we

have, first of all, that δzn
wm−→
√
vγ, since the zn are normalized blocks of (xn).

But also

‖zn‖p → τ (p)(0) = E
ï∫

R
|
√
vt|pdγ

ò1/p
= γp‖

√
v‖p. �

Theorem 6.8. Let X be a subspace of Lp (p > 2) and assume that (B)

of Proposition 4.1 holds. Then, for every θ > 0, there is a subspace Y of X

which is (1 + θ)-isomorphic to `p(`2) and a projection P from Lp onto Y with

‖P‖ ≤ (1 + θ)γp.

Remark. The fact that Theorem 6.8 is the optimal result concerning the

norm of a projection onto a copy of `p(`2) follows from [GLR73, Th. 5.12],

where it was shown that Lp contains subspaces isometric to `2 which are γp
complemented.

Proof. Let ε ∈ (0, 1) be fixed and, for m ∈ N, let vm ∈ V (X), together

with disjoint sets Am ∈ Σ, Am ⊂ supp(vm), be chosen so that ‖v1/2
m 1Am‖p = 1

and ‖v1/2
m ‖pp < 1 + εp2−(m+2)p. Using Proposition 6.7 choose for each m a

stabilized `2-sequence (x
(m)
n )n∈N in X with limiting conditional variance vm.

By (6.4), we have that

lim inf
n→∞

E[|yn|p1Am ] ≥ γpp and lim inf
n→∞

E[y2
nv

p
2
−1

m 1Am ] ≥ 1

and by (6.5),

lim
n→∞

E[|yn|p] = γpp‖
√
v

1/2
m ‖pp < γpp(1 + εp2−(m+2)p)

for all `2-normalized block subsequences (yn) of (x
(m)
n ). By relabeling the

sequence (x
(m)
n ), starting at a suitably large value of n, we may suppose that

the following hold for all `2-normalized linear combinations y of the x
(m)
n :

‖y1Am‖pp ≥ (1− ε2−(m+2)p)γpp ,(6.6)

E
ï
y2v

p
2
−1

m 1Am

ò
≥ 1− ε2−m−1,(6.7)

‖y‖pp ≤ (1 + ε2−(m+2)p)γpp .(6.8)

Of course, (6.6) and (6.8) imply that the closed linear span Ym = [x
(m)
n ]n∈N is

almost isometric to `2; indeed, by homogeneity, they yield

(1− ε2−(m+2)p)1/pγp
Ä∑

c2
n

ä1/2
≤ ‖y‖p ≤ (1 + ε2−(m+2)p)1/pγp

Ä∑
c2
n

ä1/2
,

when y =
∑
cnx

(m)
n ∈ Ym.

Moreover, from the same inequalities we obtain

(6.9) ‖y − y1Am‖p ≤ ε2−m‖y‖p for all y ∈ Ym.
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If ym is an element of SYm for each m ∈ N, then y′m = ym1Am are disjointly

supported and are small perturbations of the ym. As in the proof of Theo-

rem 5.1, we see that, by an appropriate choice of ε, we can arrange for the

closure of
∑
m Ym in X to be (1+θ)-isomorphic to `p(`2). We are now ready to

show that the subspace Y =
∑
m Ym is complemented in Lp. We shall do this

by combining the disjoint perturbation procedure used above with a standard

“change-of-density” argument.

For each m let φm = v
p/2
m 1Am ; thus ‖φm‖1 = 1. Let Φm : Lp → Lp(φm)

be defined by

Φm(f) = 1Amφ
−1/p
m f,

which is well-defined since Am ⊂ supp(vm), and observe that

‖Φm(f)‖Lp(φm) = ‖f1Am‖p.

Let Jm : Lp(φm) → L2(φm) be the standard inclusion and let Im : Ym → Lp
be the natural embedding. We note that for y ∈ Ym,

‖JmΦmImy‖2L2(φm) = E[y2φ−2/p
m φm1Am ]

= E
ï
y2v

p
2
−1

m 1Am

ò
≥ (1− ε2−m)2γ−2

p ‖y‖2p

by (6.7), (6.8), and homogeneity. So if Wm is the image

Wm = JmΦmIm[Ym],

then Wm is closed in L2(φm) and the inverse mapping

Rm = (JmΦmIm)−1 : Wm → Ym

satisfies ‖Rm‖ ≤ (1− ε2−m)−1γp.

We now introduce the orthogonal projections

Pm : L2(φm)→Wm

and consider Qm : Lp → Ym defined to be Qm = RmPmJmΦm. For f ∈ Lp, we

have ∑
‖Qmf‖pp ≤

∑
‖Rm‖p · ‖Φmf‖pLp(φm) ≤ (1− ε)−pγpp

∑
‖f1Am‖pp

≤ (1− ε)−pγpp‖f‖pp,

the last inequality following by disjointness of the sets Am. Since we already

know that Y =
∑
Ym is naturally isomorphic to (

⊕
Ym)p, we see that the

series
∑
Qmf converges to an element Qf of Y . Moreover, the operator Q

thus defined satisfies ‖Q‖ ≤ γp/(1− ε).
To finish, we investigate ‖Q(y) − y‖p, when y =

∑
yk with yk ∈ Yk.

If, as before, we write y′k = yk1Ak
, we may note that Qk(yk) = Qk(y

′
k) and
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Qm(y′k) = 0 for m 6= k. Thus

‖Q(y)− y‖p =

∥∥∥∥∑
k

(∑
m

Qmyk − yk
)∥∥∥∥

p

=

∥∥∥∥∑
k

∑
m 6=k

Qmyk

∥∥∥∥
p

[since Qkyk = yk]

=

∥∥∥∥∑
k

∑
m

Qm(yk − y′k)
∥∥∥∥
p

=

∥∥∥∥Q(∑
k

yk − y′k
)∥∥∥∥

p

≤ ‖Q‖
∑
k

‖yk − y′k‖p ≤ γp(1− ε)−1
∑

2−kε‖yk‖p,

using our estimate for ‖Q‖ and (6.9) at the last stage. We can now see that

for suitable chosen ε, Q may be modified to give a projection Q̃ : Lp → Y with

‖Q̃‖ ≤ (1 + θ)γp. �

7. Quotients and embeddings

7.1. Subspaces of Lp that are quotients of `p⊕ `2. It was shown in [JO81]

that a subspace of Lp (p > 2) that is isomorphic to a quotient of a subspace of

`p⊕`2 is in fact isomorphic to a subspace of `p⊕`2. We can give an alternative

proof of this result by applying the main theorem of this paper. Clearly all

that is needed is to show that `p(`2) is not a quotient of a subspace of `p ⊕ `2.

We shall prove something more general, namely that `p(`q) is not a quo-

tient of a subspace of `p ⊕ `q when p, q > 1, and p 6= q. By duality it will be

enough to consider the case p > q. For elements w = (w1, w2) of `p ⊕ `q, we

shall write ‖w‖p = ‖w1‖p, ‖w‖q = ‖w2‖q, and ‖w‖ = ‖w‖p ∨ ‖w‖q.

Lemma 7.1. Let 1 < q < p <∞ and let W be a subspace of `p ⊕ `q . Let

X = `q , let Q : W → X be a quotient mapping, and let λ be a constant with

0 < λ < ‖Q‖−1. For every M > 0 there is a finite-codimensional subspace Y

of X such that for w ∈W ,

‖w‖ ≤M, Q(w) ∈ Y, ‖Q(w)‖ = 1 =⇒ ‖w‖q > λ.

Proof. Suppose otherwise. We can find a normalized block basis (xn) in X

and elements wn of W with ‖wn‖ ≤ M , Q(wn) = xn, and ‖wn‖q ≤ λ. Taking

a subsequence and perturbing slightly, we may suppose that wn = w + w′n,

where (w′n) is a block basis in `p ⊕ `q satisfying ‖w′n‖ ≤M , ‖w′n‖q ≤ λ.

Since Q(w) = w-limQ(wn) = 0, we see that Q(w′n) = xn. We may now

estimate as follows using the fact that the w′n are disjointly supported:∥∥∥∥ N∑
n=1

w′n

∥∥∥∥ =
( N∑
n=1

‖w′n‖pp
)1/p
∨
( N∑
n=1

‖w′n‖qq
)1/q

≤ N1/pM ∨N1/qλ.



SMALL SUBSPACES OF Lp 201

Since the xn are normalized blocks in X = `q, we have

N1/q =

∥∥∥∥ N∑
n=1

xn

∥∥∥∥ ≤ ‖Q‖ ∥∥∥∥ N∑
n=1

w′n

∥∥∥∥ ≤M‖Q‖N1/p ∨ λ‖Q‖N1/q.

Since λ‖Q‖ < 1, this is impossible once N is large enough. �

Proposition 7.2. If 1 < q < p < ∞, then `p(`q) is not a quotient of a

subspace of `p ⊕ `q .

Proof. Suppose, if possible, that there exists a quotient operator

`p ⊕ `q ⊇ Z
Q−→ X =

(⊕
n∈N

Xn

)
p
,

where Xn = `q for all n. Let K be a constant such that Q[KBZ ] ⊇ BX , let λ be

fixed with 0 < λ < ‖Q‖−1, choose a natural number m with m1/q−1/p > Kλ−1,

and set M = 2Km1/p.

Applying the lemma, we find, for each n, a finite-codimensional subspace

Yn of Xn such that

(7.1) z ∈MBZ , Q(z) ∈ Yn, ‖Q(z)‖ = 1 =⇒ ‖z‖q > λ.

For each n, let (e
(n)
i ) be a sequence in Yn, 1-equivalent to the unit vector basis

of `q. For each m-tuple i = (i1, i2, . . . , im) ∈ Nm, let z(i) ∈ Z be chosen with

Q(z(i)) = e
(1)
i1

+ e
(2)
i2

+ · · ·+ e
(m)
im

and ‖z(i)‖ ≤ Km1/p.

Taking subsequences in each coordinate, we may suppose that the follow-

ing weak limits exist in Z:

z(i1, i2, . . . , im−1) = w-limim→∞ z(i1, i2, . . . , im)

...

z(i1, i2, . . . , ij) = w-limij+1→∞ z(i1, i2, . . . , ij+1)

...

z(i1) = w-limi2→∞z(i1, i2).

Notice that for all j and all i1, i2, . . . , ij , the following hold:

Q(z(i1, . . . , ij) = e
(1)
i1

+ · · ·+ e
(j)
ij
,

‖z(i1, . . . , ij)‖ ≤ Km1/p,

‖z(i1, . . . , ij)− z(i1, . . . , ij−1)‖ ≤ 2Km1/p = M.

Since Q(z(i1, . . . , ij)− z(i1, . . . , ij−1)) = e
(j)
ij
∈ SYj , it must be that

(7.2) ‖z(i1, . . . , ij)− z(i1, . . . , ij−1)‖q > λ, [by (7.1)].
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We now choose recursively some special ij , in such a way that for all j,

‖z(i1, . . . , ij)‖q > λj1/q. Start with i1 = 1; since ‖z(i1)‖ ≤ M and Q(z(i1)) =

e
(1)
i1

we certainly have ‖z(i1)‖q > λ by 7.1. Since z(i1, k)−z(i1)→ 0 weakly we

can choose i2 such that z(i1, i2)− z(i1) is essentially disjoint from z(i1). More

precisely, because of (7.2), we can ensure that

‖z(i1, i2)‖q = ‖z(i1) + (z(i1, i2)− z(i1))‖q > (λq + λq)1/q = λ21/q.

Continuing in this way, we can indeed choose i3, . . . , im in such a way that

‖z(i1, . . . , ij)‖q ≥ λj1/q.

However, for j = m this yields λm1/q ≤ Km1/p, contradicting our initial choice

of m. �

Remark. The proof we have just given actually establishes the following

quantitative result: if Y is a quotient of a subspace of `p⊕`q, then the Banach-

Mazur distance d
Ä
Y,
Ä⊕m

j=1 `q
ä
p

ä
is at least m|1/q−1/p|.

7.2. Uniform bounds for isomorphic embeddings. As we remarked in the

introduction, the Kalton-Werner refinement [KW95] of the result of [JO74]

gives an almost isometric embedding of X into `p when X is a subspace of Lp
(p > 2), not containing `2. By contrast, the main result of the present paper

does not have an almost isometric version, and indeed it is easy to see that

there is no constant K (let alone K = 1 + ε) such that every subspace of Lp
not containing `p(`2) K-embeds in `p ⊕ `2. It is enough to consider spaces X

of the form X =
Ä⊕m

j=1 `2
ä
p
. A straightforward argument, or an application

of the more general result mentioned in the remark above, shows that the

Banach-Mazur distance from X to a subspace of `p ⊕ `2 is at least m1/2−1/p.

If we are looking for a “uniform” version of our Main Theorem, perhaps

it is not unreasonable to conjecture the existence of a constant K such that

every subspace of Lp not containing `p(`2) K-embeds in some space of the

form `p ⊕p
Ä⊕m

j=1 `2
ä
p
. However, no such constant M exists, as is shown

by the following proposition. The structure of the space X considered below

suggests that if there is some uniform version of our main result, then it will

involve independent sums (see [Als99]), rather than, or as well as, `p sums.

The proof of the next result follows a construction due to Alspach and could

be compiled from arguments in [Als99, Ch. 2]. The following is a self-contained

proof.

Proposition 7.3. Let p > 2. For every K > 0 there is a subspace X of

Lp, isomorphic to `2, such that for all m ∈ N, X is not K-isomorphic to a

subspace of `p ⊕p
Ä⊕m

l=1 `2
ä
p
.
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Proof. Fix a constant M > 1. Let {vi, zj,k : i, j, k ∈ N} be a family of

independent random variables in Lp[0, 1] with distributions defined as follows:

for i, j ∈ N, zi,j is N (0, 1), while vi is {0,M}-valued with P[vi = M ] = 1 −
P[vi = 0] = M−p/2. We set xi,j = zi,j

√
vi, noting that

‖xi,j‖pp = E[v
p/2
i |zi,j |

p] = E[v
p/2
i ]E[|zi,j |p] = γpp .

We now define Xi = [xi,j ]j∈N and X = [xi,j ]i,j∈N. We start by calculating the

norm of a general element of X.

Let x =
∑
i,j ci,jxi,j . By independence and properties of the normal dis-

tribution, the distribution of x conditional on v1, v2, v3, . . . is N (0, w), where

w =
∑
i,j c

2
i,jvi. So

(7.3)

‖x‖pp = E [E[|x|p | v1, v2, . . . ]] = γppE
[(∑

i

(∑
j

c2
i,j

)
vi
)p/2]

= γpp

∥∥∥∑ aivi
∥∥∥p/2
p/2

,

where ai =
∑
j c

2
i,j , for i ∈ N. Let us first note that (7.3) implies that (xi,j) is

equivalent to the unit vector basis of `2. Indeed, Jensen’s inequality yields

∥∥∥∑ aivi
∥∥∥p/2
p/2
≥ Ep/2

[∑
aivi

]
=
(∑

aiM
1−p/2

)p/2
=

(
M1/2−p/4

(∑
i,j

c2
i,j

)1/2
)p
.

On the other hand, letting ṽi = vi−E(vi) = vi−M1−p/2, the triangle inequality

in Lp/2 and the fact that for some C <∞ (depending on M and p) the sequence

(ṽi), as sequence in Lp/2, is C-equivalent to the unit vector basis in `2, imply

that ∥∥∥∑ aivi
∥∥∥
p/2
≤M1−p/2∑ ai +

∥∥∥∑ aiṽi
∥∥∥
p/2

≤M1−p/2∑ ai + C
(∑

a2
i

)1/2
≤ (M1−p/2 + C)

∑
ai

and thus ∥∥∥∑ aivi
∥∥∥p/2
p/2
≤
Ä
(M1−p/2 + C)1/2

(∑
i,j

c2
i,j)

1/2
)p
,

which finishes the proof of our claim that (xi,j) is equivalent to the unit basis

of `2.

We note two special cases of (7.3). First, if x = xi ∈ Xi for some i (thus

ci′,j = 0 for all i′ 6= i and all j),

‖xi‖p = γp
(∑

j

c2
i,j

)1/2
.
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In particular, ‖xi‖p = 1 if and only if
Ä∑

j c
2
i,j

ä1/2
= γ−1

p . Secondly, if x =

n−1/2∑n
i=1 xi, where the xi are normalized elements of Xi,

‖x‖p = n−1/2γpE
[( n∑

i=1

(∑
j

c2
i,j

)
vi
)p/2]1/p

= n−1/2E
[( n∑

i=1

vi
)p/2]1/p

=

∥∥∥∥n−1
n∑
i=1

vi

∥∥∥∥1/2

p/2
.

Now, by the weak law of large numbers, n−1∑n
i=1 vi converges in proba-

bility to the constant E[v1] = M1−p/2. Because these averages are uniformly

bounded (by M), the convergence holds also for the Lp/2-norm. So as n→∞,

∥∥∥∥n−1
n∑
i=1

vi

∥∥∥∥
p/2
→M1−p/2.

Summarizing, we can say that if xi are Lp-normalized elements of Xi, then

(7.4)

∥∥∥∥n−1/2
n∑
i=1

xi

∥∥∥∥
p

=

∥∥∥∥n−1
n∑
i=1

vi

∥∥∥∥1/2

p/2
→M (2−p)/4 as n→∞.

Let T = (T`)
m
`=0 : X → Y = `p ⊕p

Ä⊕m
`=1 `2

ä
p
, with T0 : X → `p and

Ti : X → `2, for ` = 1, 2 . . . ,m, be an isomorphic embedding. We assume that

‖T (x)‖ ≥ ‖x‖ for all x and shall show that ‖T‖ ≥M (p−2)/4.

We note that for each i, the sequence
Ä
T0(xi,j))

ä∞
j=1

is a weakly null se-

quence in `p. So by taking vectors of the form

x′i,k = γ−1
p k−1/2

k∑
r=1

xi,jr(k),

with jk−1(k−1) < j1(k) < j2(k) < · · · < jk(k), we construct an Lp-normalized,

weakly null sequence (x′i,k)
∞
k=1 in Xi with ‖T0(x′i,k)‖p → 0 as k →∞.

Passing to a subsequence, we may assume that for all i ∈ N and all

` = 1, 2 . . .m the sequence T`(x
′
i,k)) tends to a limit µi,` as k → ∞. Since

‖T (x′i,k)‖ ≥ 1 and ‖T0(x′i,k))‖p → 0, it must be that ‖µi‖p ≥ 1, where µi =

(µi,`)
m
`=1. Passing to a subsequence in i, we may assume that µi converges to

some µ ∈ Rm, as i→∞, with ‖µ‖p ≥ 1.
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For ` = 1, 2 . . .m and n ∈ N we observe that

lim
k1→∞

lim
k2→∞

. . . lim
kn→∞

‖n−1/2T`
Ä n∑
i=1

x′i,ki

ä
‖2

= lim
k1→∞

lim
k2→∞

. . . lim
kn−1→∞

n−1/2
(∥∥∥T`Ä n−1∑

i=1

x′i,ki

ä∥∥∥2
+ µ2

i,`

)1/2

= . . . = n−1/2
( n∑
i=1

µ2
i,`

)1/2
≡ µ̃n,`.

Since µ̃n → µ, as n→∞, where µ̃n = (µ̃n,`)
m
`=1, we deduce that

(7.5)

lim
n→∞

lim
k1→∞

lim
k2→∞

. . . lim
kn→∞

∥∥∥∥n−1/2T
( n∑
i=1

x′i,ki

)∥∥∥∥
Y

= lim
n→∞

‖µ̃n‖p = ‖µ‖p ≥ 1.

On the other hand, as we have already noted above (7.4),∥∥∥n−1/2
n∑
i=1

x′i,ki

∥∥∥ =
∥∥∥n−1

n∑
i=1

vi
∥∥∥1/2

p/2
→M (2−p)/4, as n→∞,

Comparing this with (7.5), we conclude that ‖T‖ ≥M (p−2)/4 as claimed. �

8. Concluding remarks

A natural question remains, namely to characterize when a subspace X ⊆
Lp (2 < p <∞) embeds into `p(`2). We do not know the answer. In light of the

[JO81] `p ⊕ `2 quotient result (see paragraph 7.1 above) we ask the following.

Problem 8.1. Let X⊆Lp (2<p<∞). If X is a quotient of `p(`2), does X

embed into `p(`2)?

Extensive study has been made of the Lp spaces, i.e., the complemented

subspaces of Lp which are not isomorphic to `2 (see e.g. [LP68] and [LR69]). In

particular there are uncountably many such spaces [BRS81] and even infinitely

many which embed into `p (`2) [Sch75]. Thus it seems that a deeper study of

the index in [BRS81] will be needed for further progress. However some things,

which we now recall, are known.

Theorem 8.2 ([Pe l60]). If Y is complemented in `p, then Y is isomorphic

to `p.

Theorem 8.3 ([JZ72]). If Y is a Lp subspace of `p, then Y is isomorphic

to `p.

Theorem 8.4 ([ÈW76]). If Y is complemented in `p ⊕ `2, then Y is iso-

morphic to `p, `2 or `p ⊕ `2.
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Theorem 8.5 ([Ode76]). If Y is complemented in `p(`2), then Y is iso-

morphic to `p, `2, `p ⊕ `2 or `p (`2).

We recall that Xp is the Lp discovered by H. Rosenthal [Ros70]. For p > 2,

Xp may be defined to be the subspace of `p⊕ `2 spanned by (ei +wifi), where

(ei) and (fi) are the unit vector bases of `p and `2, respectively, and where

wi → 0 with
∑
w

2p/p−2
i = ∞. Since `p ⊕ `2 embeds into Xp, the subspaces of

Xp and of `p ⊕ `2 are (up to isomorphism) the same. For 1 < p < 2 the space

Xp is defined to be the dual of Xp′ where 1/p+ 1/p′ = 1. When restricted to

Lp-spaces, the results of this paper lead to a dichotomy valid for 1 < p <∞.

Proposition 8.6. Let Y be a Lp-space (1 < p < ∞). Either Y is iso-

morphic to a complemented subspace of Xp or Y has a complemented subspace

isomorphic to `p(`2).

Proof. For p > 2 it is shown in [JO81] that a Lp-space which embeds in

`p ⊕ `2 embeds complementedly in Xp. Combining this with the main theorem

of the present paper gives what we want for p > 2. When 1 < p < 2, the space

Xp is defined to be the dual of Xp′ and so a simple duality argument extends

the result to the full range 1 < p <∞. �

It remains a challenging problem to understand more deeply the structure

of the Lp-subspaces of Xp and `p ⊕ `2.

Theorem 8.7 ([JO81]). If Y is a Lp subspace of `p ⊕ `2 (or Xp), 2 <

p <∞, and Y has an unconditional basis, then Y is isomorphic to `p, `p⊕ `2,

or Xp.

It is known [JRZ71] that every Lp space has a basis but it remains open

if it has an unconditional basis.

Theorem 8.8 ([JO81]). If Y is a Lp subspace of `p⊕ `2 (1 < p < 2) with

an unconditional basis, then Y is isomorphic to `p or `p ⊕ `2.

So the main open problem for small Lp spaces is to overcome the uncon-

ditional basis requirement of Theorems 8.7 and 8.8.

Problem 8.9. (a) Let X be a Lp subspace of `p ⊕ `2 (2 < p < ∞). Is X

isomorphic to `p, `p ⊕ `2, or Xp?

(b) Let X be a Lp subspace of `p ⊕ `2 (1 < p < 2). Is X isomorphic to `p
or `p ⊕ `2?
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