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Hausdorff dimension of the set of singular
pairs

By Yitwah Cheung

Abstract

In this paper we show that the Hausdorff dimension of the set of singular

pairs is 4
3
. We also show that the action of diag(et, et, e−2t) on SL3R/SL3Z

admits divergent trajectories that exit to infinity at arbitrarily slow pre-

scribed rates, answering a question of A. N. Starkov. As a by-product of

the analysis, we obtain a higher-dimensional generalization of the basic in-

equalities satisfied by convergents of continued fractions. As an illustration

of the technique used to compute Hausdorff dimension, we reprove a re-

sult of I. J. Good asserting that the Hausdorff dimension of the set of real

numbers with divergent partial quotients is 1
2
.

1. Introduction

Let Sing(d) denote the set of all singular vectors in Rd. Recall that x ∈ Rd
is said to be singular if for every δ > 0 there exists T0 such that for all T > T0
the system of inequalities

(1.1) ‖qx− p‖ < δ

T 1/d
and 0 < q < T

admits an integer solution (p, q) ∈ Zd+1. Since Sing(d) contains every rational

hyperplane in Rd, its Hausdorff dimension is between d − 1 and d. In this

paper, we prove

Theorem 1.1. The Hausdorff dimension of Sing(2) is 4
3 .

Singular vectors that lie on a rational hyperplane are said to be degenerate.

Implicit in this terminology is the expectation that the set Sing ∗(d) of all

nondegenerate singular vectors is somehow larger than the union of all rational

hyperplanes in Rd, which is a set of Hausdorff dimension d − 1. The papers

[1], [24], [19] and [2] give lower bounds on certain subsets of Sing ∗(d) that,
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in particular, imply H.dim Sing ∗(d) ≥ d − 1. Theorem 1.1 shows that strict

inequality holds in the case d = 2.

Divergent trajectories. There is a well-known dynamical interpretation of

singular vectors. Let G/Γ be the space of oriented unimodular lattices in Rd+1,

where G = SLd+1R and Γ = SLd+1 Z. A path (Λt)t≥0 in G/Γ is said to be

divergent if for every compact subset K ⊂ G/Γ there is a time T such that

Λt 6∈ K for all t > T . By Mahler’s criterion, (Λt) is divergent if and only if the

length of the shortest nonzero vector of Λt tends to zero as t → ∞. It is not

hard to see that x ∈ Rd is singular if and only if `(gthxZd+1) → 0 as t → ∞,

where

gt =

à
et

. . .

et

e−dt

í
, hx =

à
1 −x1

. . .
...

1 −xd
1

í
,

and `(·) denotes the length of the shortest nonzero vector. Thus, x is singular

if and only if (gthxΓ)t≥0 is a divergent trajectory of the homogeneous flow on

G/Γ induced by the one-parameter subgroup (gt) acting by left multiplication.

As a corollary of Theorem 1.1 we obtain

Corollary 1.2. The set D(gt) of points in SL3R/SL3 Z whose forward

trajectory under gt is divergent has Hausdorff dimension 71
3 .

Proof. Let P := {p ∈ G|gtpg−t stays bounded as t → ∞} and note that

every g ∈ G can be written as phxγ for some p ∈ P , x ∈ Rd and γ ∈ Γ.

Since gtph and gth differ by the action of an element from a bounded set,

nondivergence of gth is equivalent to that of gtph. Therefore,

D(gt) = ∪x∈Sing(d)PhxΓ.

Since P is a manifold and Γ is countable, the Hausdorff codimension of D(gt)

in G/Γ coincides with that of Sing(d) in Rd. �

Similarly, as a corollary to Theorem 1.6 below, we have

Corollary 1.3. There is a one-parameter family of compact sets Kδ ⊂
SL3R/ SL3 Z such that the Hausdorff dimension of the set of points whose

forward trajectory under gt eventually stays outside of Kδ is a function that

approaches 71
3 from above as δ → 0.

Our techniques also allow us to answer a question of Starkov [21] concern-

ing the existence of slowly divergent trajectories.

Theorem 1.4. Given any function ε(t) → 0 as t → ∞, there is a dense

set of x ∈ Sing ∗(2) such that `(gthxZd+1) ≥ ε(t) as t→∞.
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Further results about singular vectors and divergent trajectories can be

found in the papers [11], [12], [22], and [23].

Diagonal flows. The notion of a singular vector is dual to that of a badly

approximable vector. Recall that x ∈ Rd is badly approximable if there is a

c > 0 such that ‖qx− p‖ > cq−1/d for all (p, q) ∈ Zd × Z>0. As with Sing(d),

the set BA(d) of badly approximable vectors in Rd admits a characterization in

terms of the flow on G/Γ induced by (gt): x ∈ BA(d) if and only if (gthxΓ)t≥0 is

a bounded trajectory ; i.e., its closure in G/Γ is compact. In [20] Schmidt showed

that H.dim BA(d) = d, which implies that the set B ⊂ G/Γ of points that lie

on bounded trajectories of the flow induced by (gt) has H.dimB = dimG. The

latter statement was later generalised by Kleinbock and Margulis in [9] to the

setting of nonquasi-unipotent homogeneous flows where G is a connected real

semisimple Lie group, Γ a lattice in G, and (gt) a one-parameter subgroup such

that Ad g1 has an eigenvalue of absolute value 6= 1.

Divergent trajectories of these flows have also been investigated. In [6]

Dani showed that if Γ is of “rank one” then the set D ⊂ G/Γ of points that lie

on divergent trajectories of the flow is a countable union of proper submani-

folds, implying that its Hausdorff dimension is integral and strictly less than

dimG. In the case where G = (SL2R)n with n ≥ 2 and Γ is the reducible

lattice (SL2 Z)n with gt inducing the same diagonal flow in each factor, the

Hausdorff dimension of D was shown to be dimG − 1
2 ([5]). Corollary 1.2

furnishes a higher rank example with irreducible Γ, providing further evidence

for the following.

Conjecture. For any nonquasi-unipotent flow (G/Γ, gt) on a finite-vol-

ume, noncompact homogeneous space, the set of points that lie on divergent

trajectories of the flow has Hausdorff dimension strictly less than dimG.1

Results in a similar spirit are also known for the Teichmüller (geodesic)

flow, further reinforcing the analogy with diagonal flows. In this setting, it

is customary to restrict attention to a Teichmüller disk and consider sets of

“directions” (as a subset of the unit circle) that determine bounded or divergent

trajectories. For any Teichmüller disk, the Hausdorff dimension of the set of

bounded directions is always one ([10]), while the Hausdorff dimension of the

set of divergent directions is always at most 1
2 ([15]), with equality in some

cases ([4]), and nonzero generically ([16]).

We briefly sketch the main ideas in the proof of Theorem 1.1. The strategy

is to encode Sing(d) via the sequence of shortest vectors that arise during

1It is a well-known result of G. A. Margulis that a quasi-unipotent flow on a finite-volume

homogeneous space admits no divergent trajectories.
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the evolution of the lattice gthxZd+1 as t → ∞, then recast the problem of

computing Hausdorff dimension into the language of symbolic dynamics. It is

well known that vectors in hxZd+1 that become short under the action of gt
correspond to good rational approximations to x. For an appropriate choice

of the norm on Rd+1, this correspondence becomes exact, with vectors that

become shortest corresponding to rationals that are best approximations to x.

(Lemma 2.4)

We cover Sing(d) with sets of the following form

∆(v) = {x : v is a best approximation to x}.

The diameters of these sets are roughly given by

δ(v)

|v|1+1/d

where δ(v) is a “distortion parameter” measuring the length of the shortest

nonzero vector in some d-dimensional unimodular lattice L(v) that is naturally

associated to v. (2.14)

In estimating these diameters, we are essentially led to the following gen-

eralization of the basic inequalities satisfied by the sequence of convergents of

the continued fraction. (Theorem 2.15)

Theorem 1.5. Let
pj

qj
, j = 0, 1, . . . be the sequence of best approximations

to x relative to some given norm ‖ · ‖ on Rd. Then

(1.2)
‖mj+1‖

qj(qj+1 + qj)
<

∥∥∥∥∥x− pj
qj

∥∥∥∥∥ < 2‖mj+1‖
qjqj+1

where mj+1 ∈ Zd is given by mj,i = pj,iqj+1 − pj+1,iqj .

From the sequence of best approximations, one can easily recover the local

maxima of the shortest vector function. (Lemma 2.17)

Singular vectors are characterised as those x ∈ Rd for which the sequence

of best approximations satisfies limj δ(vj) = 0. (Theorem 2.19)

For each δ > 0 we now have a covering {∆(v)}δ(v)<δ of Sing(d) which

admits a self-similar structure (see §3) defined by

(1.3) σ(v) = {v : v `x v′ for some x ∈ Sing(d)}

where v `x v′ means that v and v′ are successive elements in the sequence

Σ(x) of best approximations to x, with v′ immediately following v.2

2The sets in (1.3) are difficult to describe exactly and for practical reasons, we work with

slightly larger sets that have simpler explicit descriptions.
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Any real s > 0 for which the inequality

(1.4)
∑

v′∈σ(v)
(diam ∆(v′))s ≤ (diam ∆(v))s

holds (for all v) is an upper bound for H.dim Sing(d), although the existence

of such an s is not guaranteed. (Theorem 3.1)

It is well known that Σ(x) can contain arbitrarily long segments of ratio-

nals that lie on the same affine line in Rd. (See [14].) Along such segments,

the distortion parameter is strictly decreasing. (Lemma 2.18)

By passing to the subsequence “Σ(x) formed by the initial elements of these

segments (first acceleration), we obtain a self-similar structure σ̂ for which (1.4)

is nearly satisfied. (Proposition 4.12)

By passing to a further subsequence (second acceleration) along which

the distortion parameter is monotone, we arrive at a self-similar structure σ̂′

that permits nontrivial upper bounds satisfying (1.4) to be obtained. (Propo-

sition 4.13)

For lower bounds, we construct a suitable subcover of the first acceleration

that satisfies certain spacing conditions required by a general lower bound

estimate. (Theorem 3.3)

The arguments used to prove Theorem 1.1 essentially also yield a proof of

the following.

Theorem 1.6. Let DIδ(d) be the set of all x ∈ Rd for which there exists

T0 such that for all T > T0 the system of inequalities (1.1) admits an integer

solution. There are positive constants c1, c2 such that

(1.5)
4

3
+ exp(−c1δ−4) ≤ H.dim DIδ(2) ≤ 4

3
+ c2δ.

As a warm-up to the proof of Theorem 1.1, we include in Section 3 a proof

of the following result of I. J. Good [7] that includes many of the basic features

of the main calculation except for the use of accelerations.3

Theorem 1.7. Let D∞ be the set of real numbers whose sequence (ak) of

partial quotients4 tend to infinity as k →∞. Then H.dimD∞ = 1
2 .

Outline of the paper. In Section 2 we develop the properties of the sequence

of best approximations as well as the characterization of the set of singular

vectors in terms of them. In Section 3 we recall the notion of a self-similar

covering and develop a general lower bound estimate for a certain class of well-

spaced self-similar coverings (Theorem 3.3), ending the section with a proof

3The author would like to thank T. M. Jordan for bringing [7] to his attention.
4This terminology for the terms of the continued fraction is classical.
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of Theorem 1.7. The upper and lower bound calculations for Theorems 1.1

and 1.6 are presented in Sections 4 and 5, respectively. The final section,

Section 6, is devoted to the proof of Theorem 1.4.
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2. Best approximations

Let ‖ · ‖ be any norm on Rd and let ‖ · ‖′ denote the norm on Rd+1 given

by ‖(x, y)‖′ := max(‖x‖, |y|). For any S ⊂ Rd+1, let

`(S) = inf{‖v‖′ : v ∈ S, v 6= 0}

and for any x ∈ Rd, let Wx : R→ R be the function defined by

Wx(t) = log `(gthxZd+1).

Lemma 2.1. The function Wx is continuous, piecewise linear with slopes

−d and +1; moreover, it has infinitely many local minima if and only if x 6∈ Qd.

Proof. For any v 6= 0 the function t → log ‖gtv‖′ is a continuous, piece-

wise linear function with at most one critical point. Its derivative is defined

everywhere except at the critical point and is either equal to −d or +1. For

each τ ∈ R, there is a finite set Fτ ⊂ hxZd+1 such that Wx(t) = log `(gtFτ )

for all t in some neighborhood of τ . Thus, Wx is continuous, piecewise linear

with slopes −d and +1, because it locally satisfies the same property.

Let C be the set of critical points of Wx and note that Fτ can be chosen

so that it is constant on each connected component of R \ C. If x 6∈ Qd then

`(gtFτ ) → ∞ as t → ∞ whereas Minkowski’s theorem implies `(gthxZd+1) is

bounded above for all t. Hence, Ft 6= Fτ for some t > τ so that C ∩ [τ, t] 6= ∅
and since τ can be chosen arbitrarily large, it follows that Wx has infinitely
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many local minima. If x ∈ Qd then x = p
q for some p ∈ Zd, q ∈ Z such that

v = (p, q) satisfies gcd(v) = 1. Observe that we can take Fτ = {hxv} for all

sufficiently large τ . Thus, C is bounded, hence finite, and in particular Wx

has at most finitely many local minima. �

Definition 2.2. Let v be a vector in

Q := {(p, q) ∈ Zd+1 : gcd(p, q) = 1, q > 0}

and τ a local minimum time of the function Wx. We shall say “v realises

the local minimum of Wx at time τ” if Wx(t) = log ‖gthxv‖′ for all t in some

neighborhood of τ . The set of vectors in Q that realise some local minimum

of Wx will be denoted by

Σ(x).

Convention : If x ∈ Qd, then the vector v = (p, q) ∈ Q such that x = p
q belongs

to Σ(x) because it realises the local minimum of Wx at the time τ = +∞.

Notation. Given x ∈ Rd and v = (p, q) ∈ Q we let

(2.1) horx(v) := ‖qx− p‖ and |v| := q.

Remark 2.3. For each v ∈ Σ(x) there is an open interval of times t for

which the minimum in

Wx(t) = min
v∈Q

log max(e−dt|v|, et horx(v))

is realised by v; the converse only holds if this open interval can be chosen to

contain the “balance time” for v given by

βx(v) = − 1

d+ 1
log

horx(v)

|v|
.

Lemma 2.4. Let v ∈ Q. Then v ∈ Σ(x) if and only if for any u ∈ Q
(i) |u| < |v| implies horx(u) > horx(v), and

(ii) |u| = |v| implies horx(u) ≥ horx(v).

Proof. Suppose v ∈ Σ(x), so that it realises a local minimum of Wx. If

u ∈ Q does not satisfy (i) then ‖gthxu‖′ ≤ ‖gthxv‖′ for all t, with strict inequal-

ity for at least some t, which implies that v cannot realise a local minimum of

Wx, a contradiction. Therefore, (i) holds for any u ∈ Q. The argument that (ii)

holds as well is similar. Conversely, suppose (i) and (ii) hold for all u ∈ Q. Let

(τ, ε) be the unique local minimum of t→ ‖gthxv‖′. Let B′ be the closed ‖ · ‖′-
ball of radius ε at the origin. Write it as B × I where B ⊂ Rd and I ⊂ R. Let

Z = B′ ∩ gthxZd+1 and Z∗ = Z \ {0}. Then (i) and (ii) imply Z∗ ⊂ ∂B × ∂I,

which implies v realises the shortest nonzero vector at time τ . (By this we

mean gτhxv is the shortest nonzero vector in gτhxZd+1.) Since there exists a

slightly larger ball B′′ containing B′ such that B′′ ∩ gthxZd+1 = Z, it follows
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that v realises the shortest nonzero vector for an interval of t about τ . Thus,

v realises a local minimum of Wx and v ∈ Σ(x). �

Recall that p
q ∈ Qd is a best approximation to x if

(i) ‖qx− p‖ < ‖nx−m‖ for any (m, n) ∈ Zd+1, 0 < n < q,

(ii) ‖qx− p‖ ≤ ‖qx− p′‖ for any p′ ∈ Zd.
Lemma 2.4 gives a simple dynamical interpretation for the sequence of best

approximations, ordered by increasing height: they correspond precisely to the

sequence of vectors that realise the local minima of Wx.

The study of best approximations has a long history going back to La-

grange, who showed that the sequence of best approximations in the case d = 1

are enumerated by the convergents of the continued fraction expansion. For

further results on best approximations we refer the reader to the articles [13],

[14] and the survey [17].

Notation. For any v ∈ Q let

(2.2) v̇ :=
p

q
∈ Qd, where v = (p, q) ∈ Q.

We shall often ignore the distinction between a vector v ∈ Q and the

rational v̇ corresponding to it. Thus, we may refer to a sequence (vj) in Q as

the sequence of best approximations to x, by which we mean that for every j

the vector vj realises the jth local minimum of Wx. This raises the issue of the

uniqueness of the vector realising a local minimum of Wx, or equivalently, the

existence of best approximations to x of the same height. In the case d = 1,

this can only happen if x is a half integer. In general, there are at most finitely

many local minima that can be realised by multiple vectors in Q. (See the

remark following Theorem 2.11 below.) When referring to “the sequence of

best approximations to x” we really mean any sequence (vj) such that the jth

local minimum of Wx is realised by vj .

The next lemma was proved in [14] for the case d = 2.

Lemma 2.5. If u, v ∈ Σ(x) realise a consecutive pair of local minima

of the function Wx, then they span a primitive two-dimensional sublattice of

Zd+1; i.e., Zd+1 ∩ (Ru+ Rv) = Zu+ Zv.

Proof. Let F = {±u,±v} and denote its convex hull by conv(F ). Let

C(x) be the collection of subsets of Rd+1 of the form

C(r, h) = {(a, b) : ‖a‖ ≤ r, |b| ≤ h}, r > 0, h > 0

that intersects hx(Zd+1\{0}) on the boundary but not in the interior. Observe

that the set of maximal (resp. minimal) elements of C(x), partially ordered by

inclusion, is in one-to-one correspondence with the set of local maxima (resp.

local minima) of the function Wx. Since u and v realise distinct local minima,
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|u| 6= |v|. Hence, without loss of generality, we may assume that |u| < |v|. The

element of C(x) corresponding to the unique local maximum of Wx between

the consecutive pair of local minima determined by u and v is given by the

parameters r = horx(u) and h = |v|. Note that conv(hxF ) is a subset of C(r, h)

and intersects the boundary of C(r, h) in the four points of hxF . Therefore,

(2.3) conv(F ) ∩ Zd+1 = F ∪ {0}.

Since u is primitive, there is a primitive w ∈ Zd+1 such that {u,w} is an

integral basis for L = Zd+1 ∩ (Ru + Rv). Let (c, d) = ϕ(v) where ϕ : L → Z2

is the map that sends u to (1, 0) and w to (0, 1). Replacing w with −w, if

necessary, we may assume d > 0, and by further replacing w with an integer

multiple of u added to it, we may assume 0 ≤ c < d. Note that if c > 0

then (1, 1) lies in the triangle with vertices at (c, d), (1, 0) and the origin. This

would imply that conv(F )∩L contains ϕ−1(1, 1), and since (1, 1) 6∈ ϕ(F ∪{0}),
this violates (2.3). Therefore, c = 0. And since v is primitive, we must have

d = 1. Thus, v = w and L = ϕ(Z2) = Zu+ Zv. �

2.1. Two-dimensional sublattices.

Definition 2.6. For any v ∈ Q, we denote by

L(v)

the set of primitive two-dimensional sublattices of Zd+1 containing v.

There is a natural way to view L(v) as the set of primitive elements in

some d-dimensional lattice. Indeed, consider the exact sequence of real vector

spaces

(2.4) R −→ ∧1Rd+1 ϕ−→ ∧2Rd+1 −→ ∧3Rd+1

where each map is exterior multiplication by v. Since v 6= 0, the kernel of ϕ is

one-dimensional, from which it follows that the image of ϕ, denoted

LR(v),

is a real vector space of dimension d. Similarly, we have an exact sequence of

free Z-modules

Z −→ ∧1Zd+1 −→ ∧2Zd+1 −→ ∧3Zd+1

where the image of the second map is a free Z-module of rank d, denoted

LZ(v).

It is a d-dimensional lattice embedded in LR(v). The set of primitive elements

in LZ(v) is naturally identified with the set

L+(v) = {u ∧ v : u, v ∈ Q,Zu+ Zv ∈ L(v)}
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of oriented, primitive, two-dimensional sublattices of Zd+1 that contain v, as

the next lemma shows.

Lemma 2.7. Let L = Zu + Zv be a two-dimensional sublattice of Zd+1.

Then L is primitive if and only if u ∧ v is primitive as an element of LZ(v);

i.e., u ∧ v 6= dw for any d ≥ 2 and w ∈ LZ(v).

Proof. Let L′ = Zd+1 ∩ spanL so that L is primitive if and only if L′ = L.

Suppose u ∧ v = dw for some d ≥ 2 and w ∈ LZ(v). Write w = u′ ∧ v for

some u′ ∈ Zd+1. Then (du′ − u) ∧ v = 0 so that du′ = u + cv for some c ∈ Z.

Since d ≥ 2, u′ /∈ L. Hence, L′ 6= L. Conversely, suppose L′ 6= L. Choose

u′ ∈ Q so that L′ = Zu′ + Zv. Since L ⊂ L′, we may write u = au′ + bv for

some a, b ∈ Z. Then u∧ v = au′ ∧ v. Since the index of L in L′ is given by |a|,
we have u ∧ v = dw where d = |a| and w = ±u′ ∧ v ∈ LZ(v). Since L 6= L′,

d ≥ 2. �

Identifying
∧1Rd+1 with Rd+1, we note that the kernel of ϕ is given by

the one-dimensional subspace Rv. Thus, ϕ induces an isomorphism of LR(v)

with the space of cosets of Rv in Rd+1. The elements in LZ(v) correspond to

cosets that have nonempty intersection with Zd+1.

Let E+ be the expanding eigenspace for the action of g1. Then

Rd+1 = E+ ⊕ Rv

and the map that sends a coset of Rv to the point of intersection with E+

induces an isomorphism of LR(v) with E+. The norm ‖ · ‖ on Rd, which is

naturally identified with E+, induces a norm on LR(v), which we shall denote

by

‖ · ‖L(v).

Let E− be the contracting eigenspace for g1. Since dimE− = 1, the kth

exterior power decomposes into two eigenspaces for gt∧kRd+1 = Ek+ ⊕ Ek−,

where Ek+ and Ek− are naturally identified with
∧kE+ and

∧k−1E+, respec-

tively. Let e1, . . . , ed+1 be the standard basis vectors for Rd+1. The operation

of wedging with ed+1 induces an isomorphism between Ek+ and Ek+1
− ; in par-

ticular, we have an isomorphism of E2
− with E1

+, which is naturally identified

with Rd through the isomorphisms with E+. The norm ‖ · ‖ on Rd induces

a norm on E2
−, which may be extended to a seminorm on all of

∧2Rd+1 by

defining the (semi)norm of an element to be the norm of the component in E2
−.

This seminorm will be denoted by

| · |.
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Given L ∈ L(v) we may form an element u ∧ v ∈ LZ(v) by choosing any

pair in Q such that L = Zu + Zv. This element is well defined up to sign, so

it makes sense to talk about the norm of L as an element in LR(v) and also as

an element of
∧2Rd+1; denote these, respectively, by

‖L‖L(v) and |L|.

There is a simple relation between these norms. Note that the action of hx on

an element in
∧2Rd+1 preserves the component in E2

−. Now let u′, v′ be the

respective images of u, v under hv̇. Then u′ ∧ v′ = |v|u′+ ∧ ed+1, where u′+ is

the component of u′ in E+. Note that u′+ is precisely the point where the coset

of Rv corresponding to L intersects E+. Note also that its norm is given by

horv̇(u). It follows that

(2.5) ‖L‖L(v) = horv̇(u) =
|L|
|v|
.

The image of LZ(v) under the isomorphism of LR(v) with E+ is simply

the image of Zd+1 under the projection of Rd+1 = E+ ⊕ Rv onto E+, i.e. the

projection along lines parallel to v. Alternatively, it can be described as the

set of all components in E+ of vectors in hv̇Zd+1. Its volume is given by

vol
Ä
LZ(v)

ä
=

1

|v|
.

Since L+(v) is a discrete subset of a normed vector space, there exists an

element of minimal positive norm. While this element may not be unique, we

shall choose one for each v ∈ Q, once and for all, and denote it by

L(v).

The corresponding element in L(v) will be denoted by the same symbol.5

Since the norm of the shortest nonzero vector in a unimodular lattice in Rd is

bounded above by some constant µ0 (depending on ‖ ·‖) we have for all v ∈ Q,

(2.6)
|L(v)|
|v|1−1/d

≤ µ0.

Let us mention a form of (2.5) that is symmetric with respect to u and

v. Let dist(·, ·) denote the metric on Rd induced by the norm ‖ · ‖. Then

horv̇(u) = |u|dist(u̇, v̇) so that

(2.7) dist(u̇, v̇) =
|u ∧ v|
|u||v|

.

Let us extend the notation v̇, |v| and horx(v) introduced in (2.2) and (2.1)

to the set Ec+ = Rd+1 \ E+. Then (2.7) holds for all u, v ∈ Ec+. It will be

5We shall often blur the distinction between elements in L+(v) and L(v), leaving it to the

context to determine which meaning is intended.
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convenient to allow overscripts on the arguments of dist(·, ·) to be dropped;

formally, we are extending dist : Rd×Rd → R to a function that is defined on

E × E where E is the disjoint union of Rd and Ec+. These conventions allow

for more appealing formulas such as

|u ∧ v| = |u||v| dist(u, v), horx(v) = |v|dist(v,x).

2.2. Domains of approximation. We now investigate the sets

∆(v) := {x ∈ Rd : v ∈ Σ(x)}

for v ∈ Q. By Lemma 2.4,

∆(v) =
Ä
∩|u|<|v| ∆u(v)

ä
∩
Ä
∩|u|=|v| ∆u(v)

ä
,

where the sets ∆u(v), defined only for u ∈ Q \ {v}, are given by

∆u(v) = {x ∈ Rd : horx(u) > horx(v)}.

We note that ∆u(v) is bounded if and only if |u| < |v|.

Lemma 2.8. For any (distinct) u, v ∈ Q with |u| ≤ |v| we have

dist(x, u) > dist(u+ v, u) ∀x ∈ ∆u(v).

Here, dist(u+ v, ·) means dist(ẇ, ·) where w = u+ v.

Proof. By definition, x ∈ ∆u(v) if and only if

dist(v,x) < λdist(u,x) where λ =
|u|
|v|
≤ 1.

Let w = u+ v. Since dist(u, v) = dist(u,w) + dist(w, v) and

dist(v, w) =
|v ∧ w|
|v||w|

=
|u|
|v|

Ç
|u ∧ w|
|u||w|

å
= λ dist(u,w),

the triangle inequality implies

(1 + λ) dist(u,w) ≤ dist(u,x) + dist(v,x) < (1 + λ) dist(u,x)

and the lemma follows. �

Remark 2.9. It follows easily from Lemma 2.8 that the infimum of

{dist(u,x) : x ∈ ∆u(v)}

is realised at the rational point corresponding to u + v. It can similarly be

shown that the supremum is realised by the rational point corresponding to

v − u. In the case when ‖ · ‖ is the Euclidean norm, the set ∆u(v) is the open

Euclidean ball having these points as antipodal points.
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Lemma 2.10. For any L ∈ L+(v) there are unique vectors u± ∈ Q satis-

fying L = u± ∧ v and |u±| ≤ |v|. These vectors satisfy |u+| < |v| if and only

if v = u+ + u−, if and only if |u−| < |v|. Similarly, |u+| = |v| if and only

if 2v = u+ + u−, if and only if |u−| = |v|. Furthermore, if L = L(v) then

|u+| < |v| provided

(2.8) |v| > µd0
λd0
,

where λ0 is the length of the shortest nonzero vector in Zd with respect to the

norm ‖ · ‖.

Proof. Existence and uniqueness of u± are clear. If |u+| < |v| then v−u+
satisfies the conditions defining u− so that v−u+ = u−. Similarly, if |u+| = |v|
then 2v − u+ = u−. Finally, if L = L(v) and |u+| = |v| then v − u+ ∈ Zd and

is also the shortest nonzero vector in LZ(v), represented as a subset of E+ via

the projection of Zd+1 along lines parallel to v. Since LZ(v) contains Zd, we

have

λ0 = ‖v − u+‖ =
|L(v)|
|v|

.

From (2.6) it follows that λ0 ≤ µ0
|v|1/d , which is precluded by (2.8). �

Let B(x, r) ⊂ Rd denote the open ball at x of radius r.

Theorem 2.11. For any v ∈ Q satisfying (2.8),

(2.9) B
(
v̇,
r

2

)
⊂ ∆(v) ⊂ B(v̇, 2r) where r =

|L(v)|
|v|2

.

Proof. Consider u ∈ Q with |u| ≤ |v| and u 6= v. Let λ = |u|
|v| and µ > 0.

For any x ∈ B(v̇, µr),

dist(x, v) <
µ|L(v)|
|v|2

≤ λµ |u ∧ v|
|u||v|

= λµ dist(u, v)

so that

dist(x, u) > (1− λµ)
|u ∧ v|
|u||v|

.

Thus, x ∈ ∆u(v) provided

µ ≤ 1− λµ.
Since λ ≤ 1, this holds for µ = 1

2 . This establishes the first inequality in (2.9).

Let L ∈ L(v) and choose u± as in Lemma 2.10 so that |u−| ≤ |u+|. For

any x ∈ ∆u−(v),

dist(x, v) <
|u−|
|v|

dist(x, u−) ≤ |u−|
|v|

Ç
dist(x, v) +

|L|
|u−||v|

å
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so that Ç
1− |u−|

|v|

å
dist(x, v) <

|L|
|v|2

.

If |u+| < |v| then it follows that

(2.10) dist(x, v) <
|L|
|u+||v|

≤ 2|L|
|v|2

.

The second inequality in (2.9) now follows by setting L = L(v) and application

of Lemma 2.10. �

As a corollary of Theorem 2.11 we get

(2.11) diam ∆(v) � |L(v)|
|v|2

≤ µ0
|v|1+1/d

,

where µ0 is the constant satisfying (2.6). Here, A � B means C−1B ≤ A ≤ CB
for some constant C.

Remark 2.12. For `p-norms (1 ≤ p ≤ ∞), ∆(v) 6⊂ B(v, 2r) implies L(v) is

a well-rounded lattice with the standard bases as minimal vectors; consequently

∆(v) ⊂ B̄∞(v, r2), where B̄∞ denotes a (closed) ball with respect to the sup

norm.

Remark 2.13. If u, v ∈ Q are distinct vectors that realise the same local

minimum of Wx, then Theorem 2.11 and (2.6) imply

dist(u, v) ≤ 2|L(u)|
|u|2

+
2|L(v)|
|v|2

≤ 4µ0
|v|1+1/d

,

provided |u| = |v| > µd0
λd0

. Since u− v ∈ Zd,

λ0 ≤ ‖u− v‖ = |v|dist(u, v) ≤ 4µ0
|v|1/d

so that the condition

|v| > 4dµd0
λd0

implies v is uniquely determined by the local minimum that it realises. Thus,

the tail of the sequence of best approximations is uniquely determined, a fact

already observed in [13].

Theorem 2.14. Let v ∈ Σ(x) and suppose u ∈ Q is such that |u| < |v|.
Then

(2.12)
1

2
dist(u, v) < dist(u,x) < 2 dist(u, v).
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Proof. Let L ∈ L(v) contain u. Then |u ∧ v| = b|L| for some positive

integer b. By Lemma 2.8,

dist(x, u) > dist(u+ v, u) =
b|L|

|u+ v||u|
≥ b|L|

2|u||v|
≥ 1

2
dist(u, v).

Let u± be as in Lemma 2.10 and note that |u+| < |v| as a consequence of

|u| < |v|. From the first inequality in (2.10) we have

dist(x, u) ≤ dist(u, v) + dist(v,x)

<
b|L|
|u||v|

+
|L|
|u+||v|

=

Ç
1 +

|u|
b|u+|

å
dist(u, v).

If b ≥ 2, then the expression in parentheses is at most 2. If b = 1, then u = u±
and the same is true again. Thus, dist(x, u) < 2 dist(u, v). �

Theorem 1.5 is a consequence of the following:

Theorem 2.15. Let
pj

qj
be the sequence of best approximations to x and

set vj = (pj , qj) and Lj+1 = Zvj+1 + Zvj . Then

(2.13)
|Lj+1|

qj(qj+1 + qj)
<

∥∥∥∥∥x− pj
qj

∥∥∥∥∥ < 2|Lj+1|
qjqj+1

.

Proof. The first inequality follows by an application of Lemma 2.8 with

u = vj and v = vj+1, while the second inequality follows by a similar applica-

tion of Theorem 2.14. �

It can be shown that |Lj | ≤ C|L(vj)| for all j (and x), where C is a

constant that depends only on the norm ‖ · ‖. Using this, we may rewrite

(2.13) as

‖qjx− pj‖ �
δ(vj+1)

q
1/d
j+1

,

where

(2.14) δ(v) = |v|1/d‖L(v)‖L(v) ≤ µ0.

As we shall see, x ∈ Sing(d) if and only if δ(vj) → 0 as j → ∞. See Theo-

rem 2.19 below.

2.3. Characterisation of singular vectors. The sequence of critical times

of the function Wx are ordered by

τ0 < t0 < τ1 < t1 < . . . ,

where τj (resp. tj) is the jth local maximum (resp. minimum) time. Note

that the first critical point τ0 is a local maximum because as t → −∞ we

have Wx(t) = t+ log ‖v−1‖, where v−1 is any nonzero vector in Zd of minimal

‖ · ‖-norm.
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Definition 2.16. For u, v ∈ Q and x ∈ Rd, let εx(u, v) and τx(u, v) be

defined by

εx(u, v)1+1/d = |v|1/d horx(u),

τx(u, v) = − 1

d+ 1
log

horx(u)

|v|
= −1

d
log

εx(u, v)

|v|
.

Lemma 2.17. For any u, v ∈ Q with |u| < |v| and for any x ∈ ∆(v)

there is a unique time τ when ‖gτhxu‖′ = ‖gτhxv‖′, given by τ = τx(u, v).

Moreover, the common length is given by εx(u, v).

Proof. Since |u| < |v| and x ∈ ∆(v) we have horx(u) > horx(v). This

implies the existence of τ . Let ε = εx(u, v). The point (τ, log ε) is where

the lines y = −d(t − a) and y = (t − b) meet, where a = 1
d log |v| and b =

− log horx(u). Since

(t, y) =

Å
ad+ b

d+ 1
,
ad− bd
d+ 1

ã
,

we have

log ε =
1

d+ 1
log |v|+ d

d+ 1
log horx(u),

τ =
1

d+ 1
log |v| − 1

d+ 1
log horx(u)

from which it follows that

ε1+1/d = |v|1/d horx(u) and e−(d+1)τ =
horx(u)

|v|
. �

Lemma 2.18. Assume x 6∈ Qd and set δj = εx(vj−1, vj)
1+1/d, where (vj)

is the sequence of best approximations to x. Then x ∈ DIδ(d) if and only if

δj < δ for all sufficiently large j.

Proof. Write vj = (pj , qj) so that Lemma 2.17 implies

‖qjx− pj‖ = horx(vj) =
δj+1

q
1/d
j+1

.

If δj < δ then (pj , qj) solves (1.1) for all qj < T ≤ qj+1. It follows that δj < δ

for all large enough j implies x ∈ DIδ(d). Conversely, suppose x ∈ DIδ(d) so

that there exists T0 such that (1.1) admits a solution for all T > T0. Suppose j

is large enough so that qj+1 > T0. Let (p, q) be a solution to (1.1) for T = qj+1.

Then q < qj+1, implying that

‖qjx− pj‖ ≤ ‖qx− p‖ < δ

q
1/d
j+1

from which it follows that δj < δ. �
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The next theorem gives a characterization purely in terms of the sequence

of best approximations, without explicit reference to x. It allows us to translate

the problem of computing Hausdorff dimension into the language of symbolic

dynamics.

Theorem 2.19. Assume x /∈ Qd and for each j ≥ 1 set

ε
1+1/d
j =

|vj−1 ∧ vj |
|vj |1−1/d

,

where (vj)j≥0 is the sequence of best approximations to x. Assume δ > 0

and ε > 0 are related by δ = ε1+1/d. Then x ∈ DIδ/2(d) implies εj < ε

for all sufficiently large j, which in turn implies x ∈ DI2δ(d). In particular,

x ∈ Sing(d) if and only if εj → 0 as j →∞.

Proof. By Lemma 2.18 it suffices to show

1

2
ε
1+1/d
j ≤ εx(vj−1, vj) ≤ 2ε

1+1/d
j

which holds by Theorem 2.14. �

3. Self-similar coverings

Let X be a metric space and J a countable set. Given σ ⊂ J × J and

α ∈ J we let σ(α) denote the set of all α′ ∈ J such that (α, α′) ∈ σ. We say

a sequence (αj) of elements in J is σ-admissible if αj+1 ∈ σ(αj) for all j; also

we let Jσ denote the set of all σ-admissible sequences in J . By a self-similar

covering of X we mean a triple (B, J, σ) where B is a collection of bounded

subsets of X, J a countable index set for B, and σ ⊂ J × J such that there is

a map E : X → Jσ that assigns to each x ∈ X a σ-admissible sequence (αx
j )

such that for all x ∈ X
(i) ∩B(αx

j ) = {x}, and

(ii) diamB(αx
j )→ 0 as j →∞,

where B(α) denotes the element of B indexed by α.

Theorem 3.1 ([5][Th. 5.3]). If X is a metric space that admits a self-

similar covering (B, J, σ), then H.dimX ≤ s(B, J, σ) where

(3.1) s(B, J, σ) = sup
α∈J

inf

®
s > 0 :

∑
α′∈σ(α)

Ç
diamB(α′)

diamB(α)

ås
≤ 1

´
.

In many applications, X is a subset of some ambient metric space Y and we

are given a self-similar covering (B, J, σ) of X by bounded subsets of Y rather

than X. For any bounded subset B ⊂ Y we have diamX B ∩ X ≤ diamY B

but equality need not hold in general. To compute s(cB, J, σ) one would also

need an inequality going in the other direction. While such an inequality may
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not be difficult to obtain, it is both awkward and unnecessary: Theorem 3.1

remains valid in this more general situation if the diameters in (3.1) are taken

with respect to the metric of Y . The proof of this more general statement does

not follow directly from Theorem 3.1, but the argument given in [5] applies

with essentially no change and will not be repeated here.

For lower bounds, we shall use

Theorem 3.2. Let B be a collection of nonempty compact subsets of a

metric space Y indexed by a countable set J . Suppose X ⊂ Y and σ ⊂ J × J
are such that

(i) For each α ∈ J , σ(α) is a finite subset of J with at least 2 elements

and for each α′ ∈ σ(α) we have B(α′) ⊂ B(α).

(ii) For each (αj) ∈ Jσ , we have diamB(αj) → 0 and the unique point in

∩B(αj) belongs to X .

(iii) There exists ρ > 0 such that for any α ∈ J and for any pair of distinct

α′, α′′ ∈ σ(α)

(3.2) dist(B(α′), B(α′′)) ≥ ρdiamB(α).

(iv) There exists s > 0 such that for every α ∈ J ,

(3.3)
∑

α′∈σ(α)
[diamB(α′)]s ≥ [diamB(α)]s.

Then H.dimX ≥ s.

Theorem 3.2 is a special case of the next theorem, which allows for a

spacing condition with weights.

Theorem 3.3. Suppose (i) and (ii) of Theorem 3.2 holds, and there exists

a function ρ : J → (0, 1) such that

(iii′) For any α ∈ J and for any pair of distinct α′, α′′ ∈ σ(α),

(3.4) dist(B(α′), B(α′′)) > ρ(α) diamB(α).

(iv′) There exists s > 0 such that for every α ∈ J ,∑
α′∈σ(α)

[ρ(α′) diamB(α′)]s ≥ [ρ(α) diamB(α)]s.

Then the s-dimensional Hausdorff measure of X is positive. In particular,

H.dimX ≥ s.

Proof. Fix any α0 ∈ J and let

E = E(α0)

be the set of all x ∈ X such that ∩B(αj) = {x} for some σ-admissible sequence

(αj) starting with α0. Let J0 = {α0} and Jk = ∪α∈Jk−1
σ(α) for k > 0. Note
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that

E = ∩k≥0Ek where Ek = ∪α∈JkB(α).

Since each Jk is finite, E is compact. Let J ′ = ∪k≥0Jk.

Claim. For any finite subset F ⊂ J ′ such that BF = {B(α)}α∈F covers E,

(3.5)
∑
α∈F

[ρ(α) diamB(α)]s ≥ [ρ(α0) diamB(α0)]
s.

To prove the claim, it is enough to consider the case where BF has no

redundant elements; i.e., B(α) ∩ E 6= ∅ for all α ∈ F , and B(α) 6⊂ B(α′) for

any distinct pair α, α′ ∈ F . It follows by (i) that the elements of BF form a

disjoint collection.

Proceed by induction on the smallest k such that F ⊂ J0∪· · ·∪Jk. If k = 0,

then F = {α0} and (3.5) holds with equality. For k > 0, first note that for

any α′ ∈ F ∩Jk we have σ(α) ⊂ F where α is the unique element of Jk−1 such

that α′ ∈ σ(α). Indeed, given α′′ ∈ σ(α), B(α′′) ∩ E 6= ∅ implies that B(α′′)

intersects B(α′′′) for some α′′′ ∈ F . We cannot have B(α′′) ⊂ B(α′′′) because

otherwise B(α′) would be a redundant element in BF ; therefore, α′′′ 6∈ Ji for

any i < k. Since α′′′ ∈ F , we have α′′′ ∈ Jk so that α′′ = α′′′ ∈ F .

Let F ′ = F ∩ (J0 ∪ · · · ∪ Jk−1) and let ‹F be the subset of Jk−1 such that

F ∩ Jk is the disjoint union of σ(α) as α ranges over the elements of ‹F . Then

(iv) implies ∑
α∈F

[ρ(α) diamB(α)]s ≥
∑

α∈F ′∪F̃

[ρ(α) diamB(α)]s

and the claim follows by the induction hypothesis applied to F ′ ∪ ‹F .

Now suppose U is a covering of E by open balls of radius at most ε. Since

E is compact, there is a finite subcover U0 and without loss of generality we

may assume each element of U0 contains some point of E. For each U ∈ U0
let (αk) be the sequence determined by a choice of x ∈ U ∩ E and requiring

x ∈ B(αk), αk ∈ Jk for all k. Let k0 be the largest index k such that U ∩ E ⊂
B(αk). Then there are distinct elements α′, α′′ ∈ σ(αk) such that U intersects

both B(α′) and B(α′′) so that (iii) implies

diamU ≥ dist(B(α′), B(α′′)) ≥ ρ(αk) diamB(αk).

Let F be the collection of αk associated to U ∈ U0. Then∑
U∈U

(diamU)s ≥
∑
α∈F

[ρ(α) diamB(α)]s ≥ [ρ(α0) diamB(α0)]
s.

Since ε > 0 was arbitrary, it follows that E (and therefore also X) has positive

s-dimensional Hausdorff measure. �
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Divergent partial quotients. In this section, we prove Theorem 1.7 as an

illustration of the basic technique. The rest of this section is independent of

the other parts of the paper and may be skipped without loss of continuity.

Let DN be the set of all irrational numbers whose sequence of partial

quotients satisfies ak > N for all sufficiently large k. Given p/q ∈ Q with

q ≥ 2 let p−/q− < p+/q+ be the convergents that precede p/q in the two

possible continued fraction expansions for p/q. They are determined by the

conditions

p±q − pq± = ±1, 0 < q± < q

and we note that q = q+ + q−. Let v = (p, q) and set

IN (v) =

ñ
Np+ p−
Nq + q−

,
Np+ p+
Nq + q+

ô
.

This interval consists of all real numbers that have p/q as a convergent and

such that the next partial quotient is at least N . (In particular, we note that

I1(v) = ∆(v).) The length of the interval is∣∣∣IN (v)
∣∣∣ =

∣∣∣∣Np+ p−
Nq + q−

− p

q

∣∣∣∣+ ∣∣∣∣pq − Np+ p+
Nq + q+

∣∣∣∣
=

1

(Nq + q−)q
+

1

(Nq + q+)q
=

2N + 1

(Nq + q−)(Nq + q+)

so that

(3.6)
2

(N + 1)q2
≤
∣∣∣IN (v)

∣∣∣ ≤ 2

Nq2
.

Let BN be the collection of intervals IN (v) for v ∈ Q, |v| ≥ 2. Let σN (v) be

the set of all v′ ∈ Q of the form av+v±, where v± = (p±, q±) and a > N . Then

(BN , Q, σN ) is a self-similar covering of DN . The map E is realised by sending

x ∈ DN to a tail of the sequence of convergents of x. For any v′ ∈ σN (v) we

have

N

(a+ 1)2(N + 1)
≤

∣∣∣IN (v′)
∣∣∣∣∣∣IN (v)
∣∣∣ ≤ N + 1

a2N
,

where a is the greatest integer less than |v
′|
|v| . Note that there are two elements

of σ(v) associated with each a > N .

To estimate Hausdorff dimension we need to consider the expression

∑
v′∈σ(v)

∣∣∣IN (v′)
∣∣∣s∣∣∣IN (v)
∣∣∣s .

For any 0 < s < 1, ∑
a>N

2(N + 1)s

a2sN s
≤ 4

(2s− 1)N2s−1 ,
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which is ≤ 1 provided

(3.7) logN ≥ 1

2s− 1
log

4

2s− 1
.

Let s+ = s+(N) be the unique s such that (3.7) holds with equality. Note

that if y = x log x then in the limit as x → ∞ we have log y ' log x so that

x ' y
log y . Here, the notation A ' B means the ratio tends to one. It follows

that, in the limit as N →∞ we have

1

2s+ − 1
' logN

log logN

so that applying Theorem 3.1 we now get

H.dimDN ≤
1

2
+
c log logN

logN

for some constant c > 0.

Let σ′N (v) be the subset of σN (v) consisting of those v′ for which b |v
′|
|v| c ≤

2N . For distinct v′, v′′ ∈ σ′N (v) with v′ = (p′, q′), v′′ = (p′′, q′′) we have

(3.8)

∣∣∣∣∣p′q′ − p′′

q′′

∣∣∣∣∣ ≥ 1

q′q′′
≥ 1

(2N + 1)2q2
,

whereas ∣∣∣I(v′)
∣∣∣ ≤ 2

N(q′)2
≤ 2

N3q2

from which we see that the gap between I(v′) and I(v′′) is at least (assuming

N ≥ 72)
1

9N2q2
− 4

N3q2
≥ 1

18N2q2
≥ 1

36N

∣∣∣IN (v)
∣∣∣.

Thus, (3.2) holds with ρ = 1
36N . For any 0 < s < 1 we have (using N ≥ 2)

∑
N<a≤2N

2N s

(a+ 1)2s(N + 1)s
≥ 1

2s− 1

Ç
1

(N + 2)2s−1
− 1

(2N + 2)2s−1

å
≥ 1

3(2s− 1)(N + 2)2s−1
≥ 1

6(2s− 1)N2s−1

which is ≥ 1 provided

(3.9) logN ≤ 1

2s− 1
log

1/6

2s− 1
.

Let s− = s−(N) be the unique s such that (3.9) holds with equality. It follows

that in the limit as N →∞ we have

1

2s− − 1
' logN

log logN
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so that applying Theorem 3.2 we now get

H.dimDN ≥
1

2
+
c log logN

logN

for some constant c > 0. This establishes the following (cf. [7]).

Theorem 3.4. There are c2 > c1 > 0 such that for all N ≥ 72

1

2
+
c1 log logN

logN
≤ H.dimDN ≤

1

2
+
c2 log logN

logN
.

In particular, H.dimD∞ ≤ 1
2 .

For the opposite inequality, consider the set D′M ⊂ D∞ of real numbers

whose partial quotients satisfy

dlog qke ≤ ak+1 < Mdlog qke,

where qk is the height of the kth convergent. Let B be the collection of intervals

IN(v)(v) for v ∈ Q where

N(v) = dlog |v|e.
It will be convenient to simply write I(v) for IN(v)(v) and N for N(v).

Let σ′M (v) be the set of all v′ ∈ Q of the form av + v± with

(3.10) N ≤ a < MN.

Then (B, Q, σ′M ) is a self-similar covering of D′M . From (3.6) we have

1

N |v|2
≤ |I(v)| ≤ 2

N |v|2

so that for any v′ ∈ σ′M (v),

N |v|2

2N ′|v′|2
≤ |I(v′)|
|I(v)|

≤ 2N |v|2

N ′|v′|2

where N ′ = N ′(v′) = dlog |v′|e. Note that for any v′ ∈ σ′M (v),

N |v| ≤ a|v| ≤ |v′| ≤ (a+ 1)|v| ≤MN |v|.

For distinct v′, v′′ ∈ σ′M (v) (with v′ = (p′, q′) and v′′ = (p′′, q′′)),∣∣∣∣∣p′q′ − p′′

q′′

∣∣∣∣∣ ≥ 1

q′q′′
≥ 1

M2N2|v|2
,

whereas

|I(v′)| ≤ 2

N ′|v′|2
≤ 2

N3|v|2
≤ 1

4M2N2|v|2

provided |v| > e8M
2
. This implies the gap between I(v′) and I(v′′) is at least

1

2M2N2|v|2
≥ 1

4M2N
|I(v)|
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which leads us to define

ρ(v) =
1

4M2N
.

For |v| large enough, N ′ ≤ log |v′|+ 1 ≤ log |v|+ log(MN) + 1 ≤ 2N . For such

v, we now compute, using s = 1
2 and noting that there are two v′’s for each a

in the range (3.10),∑
v′

ρ(v′)s|I(v′)|s

ρ(v)s|I(v)|s
≥ 1√

2

∑
v′

N |v|
N ′|v′|

≥ 1√
2

∑
a

1

a+ 1

≥ 1

2
√

2

MN−1∑
a=N

1

a
≥ logM

2
√

2
≥ 1,

provided M ≥ e2
√
2. Theorem 3.3 now implies that H.dimD∞ ≥ 1

2 .

This completes the proof of Theorem 1.7.

The lower bound on H.dimD∞ can also be obtained using the following

result of H. Reeve.

Theorem 3.5 ([18]). Let Aδ be the set of all real numbers whose continued

fraction satisfies

(3.11) ak+1 > qδk

for all sufficiently large k. Then H.dimAδ = 1
2+δ .

In contrast, the classical theorem of Jarnik [8] and Besicovitch [3] asserts

that the set Bδ of all real numbers whose continued fraction satisfies (3.11) for

infinitely many k has H.dimBδ = 2
2+δ . Thus, the Hausdorff codimension of

Aδ as a subset of Bδ is strictly positive, which is in the spirit of the conjecture

mentioned in the introduction.

4. Upper bound calculation

In the rest of the paper, we assume d = 2.

Definition 4.1. For each v ∈ Q, let

ε(v)3/2 :=
|L(v)|
|v|1/2

and define

Qε := {v ∈ Q : ε(v) < ε}.

Definition 4.2. For each v ∈ Q, let

L∗(v) := L(v) \ {L(v)}.

Fix, once and for all, an element L̂ ∈ L∗(v) such that |L̂| is minimal, and

denote this element by

L̂(v).
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An important consequence of the assumption d = 2 is the following.

Lemma 4.3. For any v ∈ Qε,

(4.1)
|v|
|L(v)|

≤ |L̂(v)| ≤ (1 + ε3)
|v|
|L(v)|

and

(4.2) |L̂(v)| > ε−3/2|v|1/2 and |L̂(v)| > ε−3|L(v)|.

Proof. Let L = L(v) and L̂ = L̂(v). We may think of them as vectors in

the plane of lengths |L| and |L̂|, respectively, such that the area of the lattice

they span is |v|. Without loss of generality we may assume L is horizontal.

The vertical component of L̂ is then |v|
|L| so that

|v|
|L|
≤ |L̂| ≤ |v|

|L|
+ |L|,

giving (4.1). If |L| < ε3/2|v|1/2, then the vertical component of L̂ is greater

than ε−3/2|v|1/2, giving the first inequality in (4.2). From this and v ∈ Qε, the

second inequality in (4.2) follows. �

By Theorem 2.19, for any x ∈ Sing ∗(d) and any ε > 0 the elements

v ∈ Σ(x) belong to Qε if |v| is large enough. Let Bε = {∆(v)}v∈Qε and define

σε ⊂ Qε ×Qε

to consist of all pairs (v, v′) such that |v| < |v′| and v and v′ realise a consecutive

pair of local minima of the function Wx for some x ∈ Sing ∗(d). For each

x ∈ Rd, we fix, once and for all, a sequence (vj) in Σ(x) such that each local

minimum of Wx is realised by exactly one vj , and, by an abuse of notation, we

shall denote this sequence by the same symbol

Σ(x).

Then it is easy to see that (Bε, Qε, σε) is a self-similar covering of Sing ∗(d)

for any ε > 0: the map E can be realised by sending x to a tail of Σ(x).

However, Theorem 3.1 does not yield any upper bound because it happens

that s(Bε, Qε, σε) = ∞ for all ε > 0, the main reason being that there is no

way to bound the ratios

diam ∆(v′)

diam ∆(v)

away from one.
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4.1. First acceleration.

Definition 4.4. Suppose that Σ(x) = (vj). We define“Σ(x)

to be the subsequence of Σ(x) consisting of those vj+1 such that

vj+1 /∈ Zvj + Zvj−1.

Lemma 4.5. The sequence “Σ(x) has infinite length if and only if x does

not lie on a rational affine line in Rd.

Proof. Suppose ` is a rational affine line that contains x. Let L ⊂ Zd+1 be

the (primitive) two-dimensional sublattice that contains all v ∈ Q such that

v̇ ∈ `. The shortest nonzero vector in gthxZd+1 is necessarily realised by a

vector in L for all large enough t. This means vj ∈ L for all large enough j,

which in turn implies that “Σ(x) is a finite sequence. Conversely, if “Σ(x) is

finite, then there is a two-dimensional lattice L ⊂ Zd+1 that contains vj for

all large enough j. Let ` be the affine line that contains v̇j for j large. Then

x = lim v̇j ∈ `. �

Lemma 4.6. Let “Σ(x) = (uk) where x does not lie on a rational line. Let

δ > 0 and ε > 0 be related by δ = ε1+1/d. Then x ∈ DIδ/2(d) implies ε(uk) < ε

for all sufficiently large k, which in turn implies x ∈ DI2δ(d). In particular,

x ∈ Sing(d) if and only if ε(uk)→ 0 as k →∞.

Proof. Let Σ(x) = (vj) and for each j, let Lj = Zvj + Zvj−1 and

εj =
|Lj |

|vj |1−1/d
.

Given uk there are indices i < j such that uk = vi, . . . , vj = uk+1. Suppose

that j > i + 1. Then vi+1 ∈ Li so that Li+1 ⊂ Li and we have equality

by Lemma 2.5. It follows by induction that Lj−1 = · · · = Li, from which it

follows that εi > · · · > εj−1. Therefore, ε(uk) < ε for all sufficiently large k if

and only if ε(vj) < ε for all sufficiently large j. The lemma now follows from

Theorem 2.19. �

Definition 4.7. For any u ∈ Q, let

V(u)

be the set of vectors in Q of the form au + bṽ where a, b are relatively prime

integers such that |b| ≤ a and ṽ ∈ Q is a vector that satisfies L(u) = Zu+ Zṽ,

|ṽ| < |u| and L(ṽ) 6= L(u). The set

Vε(u)

is defined similarly, except that we additionally require ṽ ∈ Qε and |ṽ| < ε|u|.
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Lemma 4.8. Let u, u′ ∈ “Σ(x) be consecutive elements with |u| < |u′|. Let

ṽ, v ∈ Σ(x) be the elements that immediately precede u and u′, respectively.

Then v ∈ V(u), provided L(u) = Zu+ Zṽ 6= L(ṽ).

Proof. Suppose Σ(x) = (vj) so that u = vi, v = vj , ṽ = vi−1 and u′ = vj+1

for some indices i ≤ j. We shall argue by induction on j ≥ i to show that

(i) vj = au+ bṽ for some integers −a < b ≤ a, and

(ii) vj − vj−1 = a′u+ b′ṽ for some integers −a′ ≤ b′ ≤ a′.
This is clear if j = i. For j > i, since vj ∈ Zvj−1 + Zvj−2, Lemma 2.5 implies

that (vj , vj−1) is an integral basis for Zvj−1 + Zvj−2. Since |vj | > |vj−1| >
|vj−2|, there is a positive integer c such that

vj = cvj−1 + vj−2, or vj = cvj−1 + (vj−1 − vj−2).

In either case vj = mu + nṽ, where (m,n) = (ca + a′, cb + b′) satisfies −m <

n ≤ m by the induction hypothesis. Similarly, vj − vj−1 = m′u + n′ṽ where

(m′, n′) = (ca − a′, cb − b′) satisfies −m ≤ n ≤ m, again, by the induction

hypothesis. The lemma now follows from (i). �

Definition 4.9. For any ε > 0, define

σ̂ε ⊂ Qε ×Qε

to be the set consisting of pairs (u, u′) for which there exists v ∈ Vε(u) such

that L(u′) = Zu′ + Zv ∈ L∗(v).

Corollary 4.10. Let δ = ε3/2 where 0 < ε < 1. Then (Bε, Qε, σ̂ε) is a

self-similar covering of DIδ/2(2).

Proof. Let Σ(x) = (vj) for a given x ∈ DIδ/2(2). Lemma 4.6 implies that

for all large enough j,

‖Zvj + Zvj−1‖L(vj) =
|vj−1 ∧ vj |
|vj |1/2

< ε3/2 < 1

so that L(vj) = Zvj +Zvj−1 and ε(vj) < ε. Lemma 4.8 now implies that “Σ(x)

is eventually σ̂ε-admissible. �

Our next task is to estimate s(Bε, Qε, σ̂ε). For this, we need to enumerate

the elements of σ̂ε(u) for any given u ∈ Qε.

Definition 4.11. For any v ∈ Q and L′ ∈ L∗(v), let

Uε(v, L′)

be the set of u′ ∈ Qε such that L′ = L(u′) = Zu′ + Zv.
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Note that, by definition, for any u′ ∈ σ̂ε(u) there exists a v ∈ Vε(u) and

an L′ ∈ L∗(v) such that u′ ∈ Uε(v, L′). Hence, for any f : Qε → R+∑
u′∈σ̂ε(u)

f(u′) ≤
∑

v∈Vε(u)

∑
L′∈L∗(v)

∑
u′∈Uε(v,L′)

f(u′).

Notation. We write A � B to mean A ≤ CB for some universal constant

C. The notation A � B used earlier in (2.11) is equivalent to A � B and

B � A. We write A � B to mean the same thing as B � A.

Proposition 4.12. There is a constant C such that for any u ∈ Qε, and

for any s > 4/3 and any r < 6s− 3, we have

(4.3)
∑

u′∈σ̂ε(u)

Ç
ε(u)

ε(u′)

år Ç
diam ∆(u′)

diam ∆(u)

ås
≤ C(6s− 3− r)−1ε6s−3−r

(3s− 4)2(ε(u))6−3s−r
.

Proof. Given v ∈ Vε(u) there are a, b ∈ Z with |b| < a and ṽ ∈ Qε such

that v = au+bṽ, |ṽ| < ε|u|, L(u) = Zu+Zṽ and L(u) 6= L(ṽ). Note that ṽ ∈ Qε
implies |L̂(ṽ)| > ε−3/2|ṽ|1/2 and since L(u) 6= L(ṽ), we have |L(u)| ≥ |L̂(ṽ)|, so

that u ∈ Qε now implies

|u| > ε−3|L(u)|2 > ε−6|v|,

so that

|v| � a|u|.
Since |ṽ| < |u| and (u, ṽ) is an integral basis for L(u), there are at most two

possibilities for ṽ, so that given u and the positive integer a, there are at most

O(a) possibilities for v. It follows that for any q > 2,

(4.4)
∑

v∈Vε(u)

|u|q

|v|q
�
∑
a

1

aq−1
� 1

q − 2
.

Let L+(v) be the set of elements in L(v) considered with orientations,

and think of it as a subset of
∧2Z3. Note that addition is defined for those

pairs L,L′ ∈ L+(v) whose Z-span contains all of L+(v). Let L and L̂ be the

elements in L+(v) corresponding to a fixed choice of orientation for L(v) and

L̂(v), respectively. Each L′ ∈ L∗(v) can be oriented so that, as an element

in L+(v) we have L′ = ãL̂ + b̃L for some (relatively prime) integers ã, b̃ with

ã > 0. Let

L̂m = L̂+mL, m ∈ Z.

There is a unique integer m such that L′ = Lm or L′ is a postive linear

combination of L̂m and L̂m+1. In any case, for each L′ ∈ L∗(v) there is an

integer m (and an orientation for L′) such that

L′ = a′L̂m + b′L, a′ > b′ ≥ 0.
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Note that v ∈ Qε implies

|L̂m| ≥ |L̂| > ε−3/2|v|1/2 > ε−3|L|
so that

|L′| � a′|L̂m|.
Let N =

õ
|L̂|
|L|

û
so that |L̂m| � |L|(N + |m|) and

∑
m∈Z

|L̂|p

|L̂m|p
� |L̂|

p

|L|p
∑
m≥1

1

(N +m)p

� |L̂|
p

|L|p

(
N∑
m=1

1

Np
+
∑
m>N

1

mp

)

� |L̂|
p

|L|p

Ç
1

Np−1 +
1

(p− 1)Np−1

å
� p

p− 1

|L̂|
|L|

.

Since there are at most O(a′) possibilities for L′ given v, m and a′, and since

|L||L̂| � |v|, it follows that for any q > 2,

(4.5)
∑

L′∈L∗(v)

1

|L′|q
�
∑
m∈Z

1

|L̂m|q
∑
a′

1

(a′)q−1
� 1

q − 2

|L|q−2

|v|q−1
.

Associate to each u′ ∈ Uε(v, L′) the positive integer

c =

¢
|u′|
|v|

•
>
ε−3|L′|2

|v|
≥ ε−3 |L̂|

2

|v|
≥ ε−3 |v|

|L|2
> ε−6.

Since |u′| � c|v| and there are 2 possibilities for u′, given v, L′ and c, and since

c > ε−3|L′|2
|v| , it follows that for any p > 1,

(4.6)
∑

u′∈Uε(v,L′)

1

|u′|p
� 1

|v|p
∑
c

1

cp
� ε3p−3

(p− 1)|v||L′|2p−2
.

Using (4.6), (4.5), and (4.4) with p = 2s− r
3 and q = 3s− 2, we obtain

∑
v∈Vε(u)

∑
L′∈L∗(v)

∑
u′∈Uε(v,L′)

Ç
|L′|
|L|

ås− 2r
3
Ç
|u|
|u′|

å2s− r
3

�
∑

v∈Vε(u)

∑
L′∈L∗(v)

(6s− 3− r)−1ε6s−3−r|u|2s−
r
3

|L|s−
2r
3 |v||L′|3s−2

�
∑

v∈Vε(u)

(6s− 3− r)−1ε6s−3−r|u|2s−
r
3 |L|2s−4+

2r
3

(3s− 4)|v|3s−2

� (6s− 3− r)−1ε6s−3−r|L|2s−4+
2r
3

(3s− 4)2|u|s−2+
r
3

.

This completes the proof of the proposition. �
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Proposition 4.12 implies there exists C > 0 such that for any s > 4
3 ,

(4.7)
∑

u′∈σ̂ε(u)

Ç
diam ∆(u′)

diam ∆(u)

ås
≤ Cε6s−3

(3s− 4)2(ε(u))6−3s
.

However, this still does not imply s(Bε, Qε, σ̂ε) <∞ for any ε > 0.

4.2. Second acceleration. Let σ̂′ε ⊂ Q × Q be the set of all pairs (u, u′)

satisfying u ∈ Qε and u′ ∈ ⋃j≥1 σ′′j (u), where

σ′′1(u) := σ̂ε(u)(u), σ′′j (u) :=
⋃
{σ̂ε(u)(u′) : u′ ∈ σ′j−1(u)},

σ′1(u) := σ̂ε(u), σ′j(u) :=
⋃
{σ̂ε(u′) : u′ ∈ σ′j−1(u)}.

Proposition 4.13. s(Bε, Qε, σ̂′ε) = 4
3 +O(ε3/2).

Proof. To simplify notation, we denote the diameter of a set by | · |. Given

s > 4
3 , we apply Proposition 4.12 to ensure that if ε > 0 is sufficiently small,

then by (4.7), for any u ∈ Qε,∑
u′∈σ̂ε(u)

|∆(u′)|s

|∆(u)|s
≤ 1

2

Ç
ε

ε(u)

å6−3s
and(4.8)

∑
u′∈σ̂ε(u)

Ç
ε(u)

ε(u′)

å6−3s |∆(u′)|s

|∆(u)|s
≤ Cε9s−9

(3s− 4)2
≤ 1

2
.

We may choose ε so that ε9s−9 � (3s− 4)2; hence s = 4
3 +O(ε3/2).

For each u′ ∈ σ′′j (u) there are u1, . . . , uj−1 ∈ Qε such that

u1 ∈ σ̂ε(u), . . . , uj−1 ∈ σ̂ε(uj−2), and u′ ∈ σ̂ε(u)(uj−1).

Also, ∑
u′∈σ′′j (u)

|∆(u′)|s

|∆(u)|s
≤
∑
u1

|∆(u1)|s

|∆(u)|s
· · ·

∑
uj−1

|∆(uj−1)|s

|∆(uj−2)|s
∑
u′

|∆(u′)|s

|∆(uj−1)|s
(4.9)

≤ 1

2

∑
u1

|∆(u1)|s

|∆(u)|s
· · ·

∑
uj−1

|∆(uj−1)|s

|∆(uj−2)|s

Ç
ε(u)

ε(uj−1)

å6−3s

≤ 1

22

∑
u1

|∆(u1)|s

|∆(u)|s
· · ·

∑
uj−2

|∆(uj−2)|s

|∆(uj−3)|s

Ç
ε(u)

ε(uj−2)

å6−3s

≤ · · · ≤ 1

2j
,

so that ∑
u′∈σ̂′ε(u)

|∆(u′)|s

|∆(u)|s
≤
∑
j≥1

∑
u′∈σ′′j (u)

|∆(u′)|s

|∆(u)|s
≤
∑
j≥1

1

2j
≤ 1

and therefore s(Bε, Qε, σ̂ε) ≤ s. �
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Now we verify that (Bε, Qε, σ̂′ε) is a self-similar covering of Sing ∗(2). For

any x ∈ Sing ∗(2), let E(x) be any choice of a subsequence (wi) of “Σ(x) such

that ε(wi) is strictly decreasing to zero as i → ∞, and such that the initial

element w0 is chosen so that for all v that occur after w0 in the sequence Σ(x),

we have ε(v) < ε. The existence of this subsequence is implied by Lemma 4.6.

The sequence E(x) is σ̂′ε-admissible by construction. It follows that (Bε, Qε, σ̂′ε)
is a self-similar covering of Sing ∗(2), and by Theorem 3.1 we can conclude that

H.dim Sing ∗(2) ≤ 4

3
.

We now describe how the preceding argument can be modified to give an

upper bound estimate on H.dim DIδ(2). First, modify the definition of σ̂′ε by

replacing the subscript ε(u) (in the formula of σ′′j ) with 2ε(u). This affects the

second step (4.9) of the main calculation by introducing a factor 26−3s < 4,

which can be offset by choosing ε > 0 in the proof of Proposition 4.13 so

that (4.8) holds with the constant 2 replaced by 8. The statement of Proposi-

tion 4.13 remains true, albeit with different implicit constants.

Let DI∗δ(2) denote the set DIδ(2) with all rational affine lines removed.

Set δ = ε3/2

2 . For any x ∈ DI∗δ(2), let E(x) be any choice of a subsequence

(wi) of “Σ(x) such that ε(wi) is monotone (increasing or decreasing), and such

that the initial element w0 is chosen so that for all v that occur after w0 in the

sequence Σ(x) we have ε(v) < ε, and for any i we have ε(wi) < 2ε(w0). Again,

the existence of E(x) is ensured by Lemma 4.6, and it is σ̂′ε-admissible by

construction. We have thus shown that (Bε, Qε, σ̂′ε) is a self-similar covering of

DI∗δ(2). Theorem 3.1 and Proposition 4.13 now imply that there is a constant

C > 0 such that for any 0 < δ < 1,

H.dim DIδ(2) ≤ 4

3
+ Cδ.

5. Lower bound calculation

Lemma 5.1. Let 0 < ε < 1
2 . Suppose u ∈ Q, L′ ∈ L∗(u), and u′ ∈ L′ is

such that L′ = Zu′ + Zu and |u′| > ε−3|L′|2. Then L′ = L(u′), u′ ∈ Qε, and

∆(u′) ⊂ ∆(u).

Moreover, if u ∈ Qε then |u′| > ε−6|u|.

Proof. Since the norm of L′ ∈ L(u′) is

‖L′‖L(u′) =
|L′|
|u′|1/2

< ε3/2 < 1,

we have L′ = L(u′) and ε(u′) < ε so that u′ ∈ Qε. Let L = L(u) and note that

since L′ 6= L, we have

|L′| ≥ |L̂(u)| ≥ |u|
|L|

.
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Then

dist(u̇, u̇′) =
|u ∧ u′|
|u||u′|

<
ε3

|u||L′|
≤ ε3|L|
|u|2

.

The fact that the Euclidean length of the shortest nonzero vector in any two-

dimensional unimodular lattice is universally bounded above by
√

2 implies

that

(5.1) ε(u)3 < 2 for any u ∈ Q.

Therefore,

|L′||u|2

|L||u′|2
≤ ε6|u|2

|L||L′|3
≤ ε6|L|2

|u|
< 2ε6

so that
ε|L|
|u|2

+
2|L′|
|u′|2

< (ε3 + 4ε6)
|L|
|u|2

<
|L|

2|u|2
.

Theorem 2.11 now implies ∆(u′) ⊂ ∆(u). If u ∈ Qε, then

|u′| > ε−3|L′|2 > ε−3|u|2

|L|2
> ε−6|u|. �

Definition 5.2. For each u ∈ Q, let

Nε(u)

be the set of u′ ∈ Q such that Zu′ + Zu ∈ L∗(u) and |u′| > ε−3|u ∧ u′|2.

Note that for any u′ ∈ Nε(u) we have

|L(u′)|
|u′|1/2

≤ |u ∧ u
′|

|u′|1/2
< ε3/2

from which it follows that Nε(u) ⊂ Qε.

Theorem 5.3. Let 0 < ε < 1
3 . Suppose (uk) is a sequence in Q satisfying

uk+1 ∈ Nε(uk) for all k ≥ 0. Then :

(a) The limit x := limk u̇k exists and uk ∈ Σ(x) for all k.

(b) x ∈ DIδ(2), where δ = 2ε3/2.

(c) If ε(uk)→ 0 as k →∞ then x ∈ Sing(2).

(d) For all sufficiently large t,

(5.2) W (t) + log(1− ε6) ≤Wx(t) ≤W (t),

where

W (t) = log `(gthx{uk}) = log min
k≥0
‖gthxuk‖′.
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Proof. Apply Lemma 5.1 with L′ = Zuk+1+Zuk to conclude that ∩k∆(uk)

is nonempty, and uk ∈ Qε for all k ≥ 1. Moreover, |uk| → ∞ so that

diam ∆(uk) → 0 and (a) follows. Lemma 5.1 also implies L(uk+1) = Zuk+1 +

Zuk, so that by Theorem 2.14, we have

(5.3) εx(uk, uk+1)
3/2 ≤ 2

|uk ∧ uk+1|
|uk+1|1/2

= 2ε(uk+1)
3/2 < δ.

Hence, Lemma 2.17 implies the local maxima of the piecewise linear function

W are all bounded above by log δ. Since Wx ≤ W (by monotonicity of `),

it follows that the local maxima of Wx are bounded by log δ, eventually. By

Theorem 2.19, this means x ∈ DIδ(2), giving (b). If ε(uk)→ 0 then Wx(t)→
−∞, so that x ∈ Sing(2). This proves (c).

Since Wx ≤W , the second inequality in (5.2) actually holds for all t. For

the first inequality, we consider a local maximum time t for W . Thus for some

index k, if we set u = gthxuk and u′ = gthxuk+1, then ‖u‖′ = ‖u′‖′. The

corresponding local maximum value is log ε′, where ε′ is the common ‖ · ‖′-
length of u and u′. To prove the first inequality in (5.2) we need to show that

for any w ∈ gthxZ3,

(5.4) ‖w‖′ ≥ (1− ε6)ε′.

Lemma 5.1 implies (for k ≥ 1) |u′| > ε−6|u|. Hence, ‖u′ ± u‖′ ≥ |u′ ± u| ≥
(1− ε6)ε′. Note that ‖au′+ bu‖′ ≥ ε′ for any pair of integers with |a| 6= |b|. (If

|a| < |b| then ‖au′+ bu‖′ ≥ |b|‖u‖′− |a|‖u′‖′ ≥ ε′; the case |b| < |a| is similar.)

This establishes (5.4) for w ∈ Zu+ Zu′. Let ‖ · ‖e denote the Euclidean norm

on R3. For any v ∈ R3 we have

‖v‖′ ≤ ‖v‖e ≤
√

2‖v‖′.

The Euclidean area of a fundamental parallelogram for Zu+ Zu′ is

‖u ∧ u′‖e ≤ ‖u‖e‖u′‖e ≤ 2(ε′)2

so that for any w ∈ gthxZ3 \ (Zu+ Zu′) we have

‖w‖′ ≥ ‖w‖e√
2
≥ 1

2
√

2(ε′)2

which is > ε′ since

ε′ ≤ 32/3ε(uk+1) < 32/3ε <
1
3
√

3
<

1√
2
.

Thus (5.4) holds for all w ∈ gthxZ3 and this establishes (5.2) for any local

maximum time of W .

Finally, suppose t0 < t2 are consecutive local maximum times and let t1
be the unique local minimum time between them. By the preceding, we know

(5.2) holds at t0 and t2. Since Ẇ (t) = −d for all t ∈ (t0, t1) while all one-sided

derivatives of Wx are bounded below by −d on the same interval, we conclude
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that (5.2) holds for t ∈ [t0, t1]. Here, we are using the fact that (5.2) holds for

t = t0. Similarly, using the fact that (5.2) holds for t = t2, and the fact that

Ẇ (t) = +1 on (t1, t2) while all one-sided derivatives of Wx are bounded above

by +1, we conclude that (5.2) holds for all t ∈ [t1, t2]. From (5.3) we see that

τx(uk, uk+1) = −1

2
log

εx(uk, uk+1)

|uk+1|
≥ 1

2
log |uk+1|+

1

3
log δ

from which it follows easily that W has infinitely many local minima. There-

fore, (5.2) holds for all t beyond the first local maximum time, proving (d). �

We assume, for each u ∈ Q, orientations for L(u) and L̂(u) have been

chosen so that we may think of them as elements of
∧2Z3.

Definition 5.4. Given u∈Q and integers a ≥ b ≥ 0 such that gcd(a, b)=1,

we set

L′ = a′L̂(u) + b′L(u).

Additionally, given 0 < ε < 1 and an integer c ≥ 1 satisfying

Mε < c < 2Mε − 1, where Mε =
ε−3|L′|2

|u|
,

we define ψε(u, a, b, c) to be the unique u′ ∈ Q such that

L′ = u′ ∧ u and

ú
|u′|
|u|

ü
= c.

Note that ψε(u, a, b, c) ∈ Nε(u) because L′ = L(u′). Note also that c > Mε

implies ψε(u, a, b, c) ∈ Qε while c < 2Mε − 1 implies ψε(u, a, b, c) /∈ Qε/2.

Therefore, we always have

ψε(u, a, b, c) ∈ Nε(u) ∩Q′ε where Q′ε := Qε \Qε/2.

Lemma 5.5. Let 0 < ε < 2−7. If u′ = ψε(u, a, b, c) and u′′ = ψε(u, a
′, b′, c′)

are such that (a, b) 6= (a′, b′) or |c− c′| ≥ 20, then

(5.5) dist(∆(u′),∆(u′′)) ≥ ε9

211N3
diam ∆(u),

where N = max(a, a′).

Proof. Let L = L(u), L̂ = L̂(u) and L′ = u′ ∧ u. Note that by (4.1),

|L′| ≤ 2a|L̂| ≤ 4N |u|
|L|

.

Theorem 2.11 implies

diam ∆(u) ≤ 4|L|
|u|2
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and also ∆(u′) ⊂ B(u̇′, 2r′), where

r′ =
|L′|
|u′|2

≤ |L′|
c2|u|2

<
|L′|

M2
ε |u|2

=
ε6

|L′|3
.

If (a, b) = (a′, b′), then

dist(u̇′, u̇′′) =
|u′ ∧ u′′|
|u′||u′′|

>
20|L′|

(c+ 1)2|u|2
>

5|L′|
M2
ε |u|2

=
5ε6

|L′|3
,

so that

dist(∆(u′),∆(u′′)) ≥ ε6

|L′|3
≥ ε6|L|3

26N3|u|3
≥ ε9|L|

29N3|u|2
,

giving (5.5) in the case (a, b) = (a′, b′). If (a, b) 6= (a′, b′), let L′′ = u′′ ∧ u and

note that

sin∠πu(L′)πu(L′′) =
|u|

|L′||L′′|
≥ |L|2

16N2|u|
≥ ε3

27N2

and

dist(u̇, u̇′) =
|u ∧ u′|
|u||u′|

≥ |L′|
2Mε|u|2

=
ε3

2|u||L′|
≥ ε3|L|

8N |u|2
so that

dist(u̇′, u̇′′) ≥ ε6|L|
210N3|u|2

.

Considering the component of L′ perpendicular to L, as in the proof of

Lemma 4.3, we get

|L′| ≥ a|u|
|L|
≥ N |u|
|L|

,

so that

2r′ <
2ε6

|L′|3
≤ 27ε6|L|3

N3|u|3
<

28ε6|L|
|u|2

by (5.1). Since ε < 2−7, it follows that

dist(∆(u′),∆(u′′)) ≥ (
1

210
− 29ε3)

ε6|L|
N3|u|2

≥ ε6

213N3
diam ∆(u)

which easily implies (5.5). �

Proposition 5.6. There is a constant c > 0 such that for 0 < δ < 2−10,

H.dim DIδ(2) ≥ 4

3
+ exp(−cδ−4).

Proof. Fix a parameter N to be determined later and set

σε(u) = {ψε(u, a, b, c) : a ≤ N, 20|c}.

Fix u0 ∈ Q, let U0 = {u0}, and recursively define

Uk+1 =
⋃
u∈Uk

σε(u)
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where ε is defined by δ = 3ε3/2. Note that

Ek =
⋃
u∈Uk

∆(u)

is a disjoint union, by Lemma 5.5. We have Ek+1 ⊂ Ek by Lemma 5.1, and

by Theorem 5.3(a), there is a one-to-one correspondence between the points of

E = ∩Ek and the sequences (uk) starting with u0 and satisfying uk+1 ∈ σε(uk)
for all k. Theorem 5.3(b) implies E ⊂ DIδ(2). The hypotheses (i)–(iii) of

Theorem 3.2 now hold with

ρ =
ε9

211N3
.

Before checking (iv), we note that given 1 ≤ a ≤ N we have φ(a) choices for b

such that a ≥ b ≥ 0 and gcd(a, b) = 1, where φ is the Euler totient function.

It is well known that

lim inf
n→∞

φ(n) log log n

n
> 0.

Now, for (iv) we compute (assuming s > 4
3)

∑
u′∈σε(u)

|L′|s|u|2s

|L|s|u′|2s
�
∑
L′

|L′|s

|L|s
∑
c

1

c2s

�
∑
L′

|L′|s

|L|s

Ç
ε3|u|
|L′|2

å2s−1

� ε6s−3|u|2s−1

|L|s|L̂|3s−2
∑
a′

φ(a′)

(a′)3s−2

� ε9s−6
∫ N

e

dx

x3s−3 log x
.

Note that as p→ 1+,∫ ∞
e

dx

xp log x
�
∑
k≥1

∫ ek+1

ek

dx

xpk
=
∑
k≥1

e−k(p−1)

(p− 1)k
(1− e−(p−1))

=
1− e−(p−1)

p− 1
log

1

1− e−(p−1)
� log

1

p− 1
.

Thus, we conclude that there is a constant C > 1 such that for any s > 4
3

satisfying

ε9s−6
∣∣∣∣log

Å
s− 4

3

ã∣∣∣∣ > C

the condition (iv) of Theorem 3.2 holds by choosing N large enough (depending

on ε). Since δ = 3ε3/2, the proposition follows. �

This completes the proof of Theorem 1.6.
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We now describe how to modify the preceding argument to obtain the

lower bound in Theorem 1.1. Fix a parameter C > 1 to be determined later

and choose positive sequences εk → 0 and Nk →∞ such that for all k,

εk < 2−7, Nk ≥ 1, and ε6k log logNk > C.

We shall also assume that the sequences are slowly varying and that the ratio

of consecutive terms is bounded above and below by positive constants, say 2

and 1
2 . For example,

Nk = k + 1, εk =
1

27 log log log(k + C ′)
,

where C ′ > 1 is chosen large enough depending only on C. The definitions of

the sets Uk are modified by the formula

Uk+1 =
⋃
u∈Uk

σεk+1
(u).

With E defined the same way as before, Theorem 5.3(c) now implies E ⊂
Sing(2). For each u ∈ Uk set

ρ(u) =
ε9k+1

211N3
k

so that (i)–(iii) of Theorem 3.3 hold. The main calculation in the proof of

Proposition 5.6 with s = 4
3 now yields∑

u′∈σεk+1
(u)

|L′|s|u|2s

|L|s|u′|2s
� ε6k+1 log logNk

so that (iv) of Theorem 3.3 holds provided C was chosen large enough at the

beginning. It follows that

H.dim Sing(2) ≥ 4

3
.

This completes the proof of Theorem 1.1.

6. Slowly divergent trajectories

In this section, we prove

Theorem 6.1. Given any function W (t)→ −∞ as t→∞ there exists a

dense set of x ∈ Sing ∗(2) with the property Wx(t) ≥ W (t) for all sufficiently

large t.

This affirmatively answers a question of A.N. Starkov [21] concerning the

existence of slowly divergent trajectories for the flow on SL3R/ SL3 Z induced

by gt.
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Lemma 6.2. Given δ > 0 and a function F (t) → ∞ as t → ∞, there

exists t0 > 0 and a monotone function f(t)→∞ as t→∞ such that

(i) f(t) ≤ F (t) for all t > t0, and

(ii) f(t+ f(t)) ≤ f(t) + δ for all t > t0.

Proof. We may reduce to the case where F (t) is a nondecreasing func-

tion. Let t0 be large enough so that y0 = F (t0) > 0 and for k > 0 set

tk = tk−1 + yk−1 and yk = min (F (tk), yk−1 + δ). Since yk ≥ y0 > 0 for all k,

we have tk → ∞ and therefore also yk → ∞. Let f(t) = yk for tk ≤ t < tk+1

so that f(t) = yk ≤ F (tk) ≤ F (t) since tk ≤ t and F (t) is nondecreasing.

Moreover, tk+1 = tk + yk ≤ t+ f(t) < tk+1 + yk ≤ tk+1 + yk+1 = tk+2 so that

f(t+ f(t)) = yk+1 ≤ yk + δ = f(t) + δ. �

Definition 6.3. For any v ∈ Q,

τ(v) := −1

3
log
|L(v)|
|v|2

= −1

2
log

ε(v)

|v|
.

Lemma 6.4. There exists C > 0 such that for any 0 < ε′ < 1 and any

u ∈ Q, there exists u′ ∈ Nε′(u) such that

(i) | log ε(u′)− log ε′| ≤ C , and

(ii)
∣∣∣τ(u′)− τ(u) + 2 log ε′ − | log ε(u)|

∣∣∣ ≤ C .

Proof. Let L′ = L̂(u) and let u′ ∈ Q be determined by L′ = u ∧ u′ and

|u′| > (ε′)−3|L′|2 ≥ |u′| − |u|.
Then u′ ∈ Nε′(u) by the first inequality. By Lemma 4.3 and (5.1)

|u′| > |L′|2 ≥ |u|2

|L(u)|2
> 2|u|

so that ε(u′)3 � |L
′|2
|u′| � (ε′)3, giving (i). Since

τ(u′)− τ(u) =
1

2
log
|u′|
|u|
− 1

2
log

ε′

ε(u)
+O(1)

= 2| log ε′|+ | log ε(u)|+O(1)

(ii) follows. �

Proof of Theorem 6.1. Let f̃ be the function obtained when Lemma 6.2 is

applied to F = −W (t) and some given δ > 0 to be determined later. Set

f = 3−1f̃ and note that f satisfies

(i) 3f(t) ≤ −W (t) for all t > t0, and

(ii) f(t+ 3f(t)) ≤ f(t) + δ for all t > t0.

Since f(t) → ∞, given any A > 0 we can choose t0, perhaps even larger, so

that, in addition to (i) and (ii), f also satisfies

(iii) f(t+ 3f(t) +A) ≤ f(t) + 2δ for all t > t0.
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We claim there is a constant B such that for any u ∈ Q1 satisfying

(6.1) |f(τ(u)) + log ε(u)| ≤ B

and such that |u| is larger than some constant depending only on f , there

exists u′ ∈ σ̂1(u) such that

|f(τ(u′)) + log ε(u′)| ≤ B.

Indeed, given u satisfying (6.1), we let u′ be obtained by applying Lemma 6.4

with ε′ < 1 determined by

| log ε′| = f
Ä
τ(u) + | log ε(u)|

ä
.

Then, if A ≥ 3B we have

| log ε′| ≤ f(τ(u)) + 3f(τ(u)) + 3B

≤ f(τ(u)) + 2δ

≤ | log ε(u)|+B + 2δ.

By Lemma 6.4,

τ(u′) ≤ τ(u) + 2| log ε′|+ | log ε(u)|+ C

≤ τ(u) + 3| log ε(u′)|+ 2B + C + 4δ

≤ τ(u) + 3f(τ(u)) + 5B + C + 4δ

so that if A ≥ 5B + C + 4δ,

f(τ(u′)) ≤ f(τ(u)) + 2δ

≤ | log ε′|+ 2δ

≤ | log ε(u′)|+ C + 2δ.

Now,

| log ε′| ≥ f(τ(u)) ≥ | log ε(u)| −B
so that

τ(u′) ≥ τ(u) + 3| log ε(u)| − 2B − C.
Assuming |u| large enough so that 3| log ε(u)| ≥ 2B + C, we have

f(τ(u′)) ≥ f(τ(u))

≥ f
Ä
τ(u) + 3f(τ(u)) +A

ä
− 2δ

≥ f
Ä
τ(u) + 3| log ε(u)|+A− 3B

ä
− 2δ

≥ | log ε′| − 2δ

≥ | log ε(u′)| − C − 2δ.

Setting A = 6C + 14δ, we see that the claim follows with B = C + 2δ.

Given any nonempty open set U ⊂ R2, we can choose u0 ∈ Q such that

∆(u0) ⊂ U . Indeed, choose any x0 ∈ U \ Q2 and let u0 ∈ Σ(x0) be such



HAUSDORFF DIMENSION OF THE SET OF SINGULAR PAIRS 165

that |u0| is large enough, so that ∆(u0) ⊂ U . Let δ be chosen large enough

at the beginning so that (6.1) holds for u = u0. Let Σ0 = (uk) be a sequence

constructed by recursive definition and use of the claim. Since

(6.2) τ(uk+1) = τ(uk) + 3| log ε(uk)|+O(1)

and ε(uk) � exp(−f(τ(uk))) by construction, by choosing |u0| large enough

initially we can ensure that ε(uk) <
1
3 for all k so that τ(uk) increases to infinity

as k → ∞. Since f(t) → ∞ as t → ∞, this implies ε(uk) → 0 as k → ∞. By

construction, uk+1 ∈ Nεk(uk) so that Theorem 5.3(c) implies

x := lim
k
u̇k ∈ Sing(2).

If x lies on a rational line, then Wx(t) ≤ − t
2 + C for some constant C and all

large enough t. It is clear that we could have, at the start, reduced to the case

where, say, W (t) > − log t for all t, so that x ∈ Sing ∗(2).

Let D = | log(1− 3−6)|. Theorem 5.3(d) implies that

−Wx(t) ≤ 3| log ε(uk)|+D

≤ 3f(τ(uk)) + 3B +D

≤ −W (τ(uk)) + 3B +D

≤ −W (t) + 3B +D

for all t ∈ [τ(uk), τ(uk+1)]. It is clear that we could have chosen f initially to

satisfy (i′) 3f(t) ≤ −W (t) − 3B − D for all t > t0 instead of (i). With this

choice, we conclude Wx(t) ≥W (t) for all t > t0. �
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