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Volumes of balls in large Riemannian
manifolds

By Larry Guth

Abstract

We prove two lower bounds for the volumes of balls in a Riemannian

manifold. If (Mn, g) is a complete Riemannian manifold with filling radius

at least R, then it contains a ball of radius R and volume at least δ(n)Rn.

If (Mn,hyp) is a closed hyperbolic manifold and if g is another metric on

M with volume no greater than δ(n)Vol(M,hyp), then the universal cover

of (M, g) contains a unit ball with volume greater than the volume of a

unit ball in hyperbolic n-space.

Let (M, g) be a Riemannian manifold of dimension n. Let V (R) denote

the largest volume of any metric ball of radius R in (M, g). In [6], Gromov

made a number of conjectures relating the function V (R) to other geometric

invariants of (M, g). The spirit of these conjectures is that if (M, g) is “large”,

then V (R) should also be large. In this paper, we prove one of Gromov’s

conjectures: V (R) is large if the filling radius of (M, g) is large.

Gromov defined the filling radius in [5]. Roughly speaking, the filling

radius describes how “thick” a Riemannian manifold is. For example, the

standard product metric on the cylinder S1×Rn−1 has filling radius π/3, and

the Euclidean metric on Rn has infinite filling radius.

Theorem 1. For each dimension n, there is a number δ(n) > 0 so that

the following estimate holds. If (Mn, g) is a complete Riemannian n-manifold

with filling radius at least R, then V (R) ≥ δ(n)Rn.

Our second result involves a closed hyperbolic manifold (M,hyp) equipped

with an auxiliary metric g. Slightly paradoxically, if the manifold (M, g) is

small, then its universal cover (M̃, g̃) tends to be large. For example, if we look

at the universal cover of (M,λ2hyp), then we get the space form with constant

curvature −λ−2. As λ decreases, the strength of the curvature increases, which

increases the volumes of balls. Our second theorem gives a large ball in the

universal cover (M̃, g̃) provided that the volume of (M, g) is sufficiently small.

Theorem 2. For each dimension n, there is a number δ(n) > 0 so that

the following estimate holds. Suppose that (Mn, hyp) is a closed hyperbolic
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n-manifold and that g is another metric on M , and suppose that Vol(M, g) <

δ(n)Vol(M, hyp). Let (M̃, g̃) denote the universal cover of M with the metric

induced from g. Then there is a point p ∈ M̃ so that the unit ball around p in

(M̃, g̃) has a larger volume than the unit ball in hyperbolic n-space. In other

words, the following inequality holds :

V
(‹M,g̃)

(1) > VHn(1).

We spend most of this introduction giving a context for these two results.

At the end, we give a quick overview of the proof.

Many readers may not be familiar with the filling radius. Before looking

at its definition, we give some corollaries of Theorem 1 using more common

vocabulary.

Corollary 1. Let (Mn, g) be a closed Riemannian manifold. Suppose

that there is a degree 1 map from (Mn, g) to the unit n-sphere with Lipschitz

constant 1. Then V (R) ≥ δ(n)Rn for all R ≤ 1.

Corollary 2 (systolic inequality). Let (Mn, g) be a closed aspherical

Riemannian manifold. Suppose that the shortest noncontractible curve in

(Mn, g) has length at least S. Then V (S) ≥ δ(n)Sn.

Corollary 3. Let (Mn, g) be a closed aspherical Riemannian manifold,

and let V (R) measure the volumes of balls in the universal cover (M̃, g̃). Then

V (R) ≥ δ(n)Rn for all R.

Background on filling radius. We next review the definition of filling radius

and some main facts about it. For much more information, see [5]. The filling

radius of a Riemannian manifold is defined by analogy with an invariant for

submanifolds of Euclidean space. Let Mn ⊂ RN be a closed submanifold of

Euclidean space. By a filling of M , we mean an (n+1)-chain C with boundary

M . (If M is oriented, then the standard convention is to use a chain with

integral coefficients, and if M is not oriented, then the standard convention is

to use a chain with mod 2 coefficients.) The filling radius of M in RN is the

smallest number R so that M can be filled inside of its R-neighborhood. For

example, the filling radius of an ellipse is its smallest principal axis. The main

result about filling radius in Euclidean space is the following estimate.

Theorem (Federer-Fleming, Michael-Simon, Bombieri-Simon). If Mn ⊂
RN is a closed submanifold, then its filling radius is bounded in terms of its

volume by the following formula :

Fill Rad(M) ≤ CnVol(M)1/n.

In [3], Federer and Fleming gave a direct construction to prove that the

filling radius of M is bounded by CNVol(M)1/n. Their result is slightly weaker
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than the result above because their constant CN depends on the ambient di-

mension N . In [13], Michael and Simon proved an isoperimetric inequality for

minimal surfaces that implies the above theorem. In [2], Bombieri and Simon

established the sharp constant, which occurs when M is a round sphere.

In [5], Gromov defined an analogous filling radius for a closed Riemann-

ian manifold (M, g). The key observation is that (M, g) admits a canonical

isometric embedding into the Banach space L∞(M). The embedding, which

goes back to Kuratowski, sends the point x ∈M to the function distx defined

by distx(z) = dist(x, z). This embedding depends only on the metric g, and

it is isometric in the strong sense that |distx − disty|L∞ = dist(x, y). Gromov

defined the filling radius of (M, g) to be the infimal R so that the image of M

in L∞ can be filled inside its R-neighborhood. There is a similar definition for

any complete Riemannian manifold.

This definition may seem abstract at first, but [5] contains a number of

estimates that make it a useful tool. Here are a few facts to give a flavor for

it. The filling radius of the Euclidean metric on Rn is infinite, but the filling

radius of the standard product metric on Sn × Rq is finite for n ≥ 1. If there

is a degree 1 map from (M, g) to (N,h) with Lipschitz constant 1, then the

filling radius of M is at least the filling radius of N . The most important result

about filling radius is an analogue of the Euclidean estimate above.

Theorem (Gromov [5]). If (Mn, g) is a complete Riemannian manifold

of dimension n, then its filling radius can be bounded in terms of its volume by

the following formula :

Fill Rad(M, g) ≤ CnVol(M, g)1/n.

In the Euclidean setting, Gromov found a stronger version of the filling

radius estimate. (This result appears near the end of §F of Appendix 1 of [5].)

Theorem (Gromov [5], local volume estimate). Suppose that Mn ⊂ RN
is a closed manifold. If the filling radius of M in RN is at least R, then there

is some point x ∈ RN so that the volume of M ∩B(x,R) is at least cnR
n.

In addition to giving a lower bound for the total volume of M , this result

also controls the way the volume is distributed. It rules out the possibility

that M could have a large total volume distributed in a diffuse way. After

explaining this result, Gromov raised the question whether this local volume

estimate has an analogue for Riemannian manifolds. Our first theorem answers

this question in the affirmative.

Relation to entropy estimates. Our second theorem is related to an in-

equality of Besson, Courtois, and Gallot. Their inequality bounds the entropy

of a Riemannian manifold, which is a way of describing the asymptotic behavior

of the volumes of large balls. In our language, their result goes as follows.
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Theorem (Besson, Courtois, and Gallot [1]). Let (Mn, hyp) be a closed

hyperbolic manifold, and let g be another metric on M with Vol(M, g) <

Vol(M, hyp). Then there is some constant R0 (depending on g), so that for

every radius R > R0, the following inequality holds :

V
(‹M,g̃)

(R) > VHn(R).

Our theorem is not as sharp as the theorem of Besson, Courtois, and

Gallot. The sharp constant in their theorem is a major achievement. (The

result was previously proven by Gromov with a nonsharp constant in [4].) To

complement their theorem, it would be nice to estimate the value of R0. It

even looks plausible that the theorem remains true with R0 = 0! We discuss

this possibility more below.

Our second theorem can be looked at as a step towards estimating R0.

According to Theorem 2, the stronger hypothesis Vol(M, g) < δ(n)Vol(M,hyp)

implies the conclusion V
(‹M,g̃)

(1) > VHn(1). Our method can be modified to

give a similar estimate for balls of radius R, but as R moves away from 1, the

hypothesis gets stronger (and so the result gets weaker). For each R, there

is a constant δ(n,R) > 0, so that Vol(M, g) < δ(n,R)Vol(M, hyp) implies

V
(‹M,g̃)

(R) > VHn(R). As R goes to infinity, the constant δ(n,R) falls off

exponentially or faster. As R increases, the methods in this paper become less

effective, whereas the methods in [4] and [1] are only effective asymptotically

for very large R. Perhaps there is some way to combine the approaches to get

a uniform estimate for R ≥ 1.

Questions about the sharp constants. It would be interesting to know the

sharp constants in Theorems 1 and 2. In [6], Gromov made the following sharp

conjecture.

Conjecture (Gromov). Let (Mn, g) be a complete Riemannian manifold

with infinite filling radius. Let ωn be the volume of the unit n-ball. Then

V (R) ≥ ωnRn for all R > 0.

Imitating Gromov, we mention conjectures about the sharp constants in

Theorems 1 and 2. I find the conjectures intriguing, but the evidence for them

is not very strong.

Conjecture 1. Let (Mn, g) be a complete Riemannian manifold, and let

(Sn, g0) be a round sphere. We choose the radius of the round sphere so that

the filling radius of (Mn, g) is equal to that of (Sn, g0). Then the following

inequality holds for all R:

V(Mn,g)(R) ≥ V(Sn,g0)(R).
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Conjecture 2. Let (Mn, hyp) be a closed hyperbolic manifold, and let

g be another metric on M with Vol(M, g) < Vol(M,hyp). Then the following

inequality holds for all R:

V
(‹M,g̃)

(R) > VHn(R).

As Gromov pointed out in [6], estimates of V (R) for small R are related

to scalar curvature. If p is a point in a Riemannian manifold (Mn, g), then for

small radii R, the volume of the ball B(p,R) is equal to

ωn[Rn − (6n)−1Sc(p)Rn+2 + o(Rn+2)].

Therefore, the above conjectures imply several important open conjectures

about scalar curvature. The scalar curvature conjectures are known in some

special cases, giving modest evidence in favor of the conjectures above.

Conjecture (Gromov [6]). If (M, g) is a complete Riemannian manifold

with infinite filling radius, then infMSc ≤ 0. Therefore, if N is a closed as-

pherical manifold, then N does not admit a metric of positive scalar curvature.

The last part of the conjecture is known for many particular aspherical

manifolds, but not for all of them.

Conjecture 1A (Gromov [7]). If (Mn, g) is a complete Riemannian

manifold with scalar curvature at least 1, then the filling radius of (M, g) is

bounded by a constant Cn.

Gromov and Lawson proved this conjecture with a nonsharp constant for

n = 3 when H1(M) = 0. (See [5, p. 129] and [9].) Katz extended their method

to 3-manifolds M with π1(M) finite or π1(M) = Z [10]. In higher dimensions,

the conjecture is open.

Conjecture 2A (Schoen [14]). If (Mn,hyp) is a closed hyperbolic n-

manifold and g is another metric on M with scalar curvature at least the

scalar curvature of hyperbolic n-space, then the volume of (M, g) is at least the

volume of (M, hyp).

The conjecture is true for n = 2 by the Gauss-Bonnet theorem. For

n = 3, it follows as a corollary of Perelman’s proof of geometrization. For

n = 4, the conjecture is unknown for hyperbolic manifolds, but LeBrun [11]

proved a completely analogous result for certain other 4-manifolds, including

the product of two hyperbolic surfaces. LeBrun’s proof uses Seiberg-Witten

theory. In higher dimensions, the conjecture is open.

Quick summary of the proof. The main idea of the proof — which is due

to Gromov — is to cover (M, g) with balls, and look at the map from M to the

nerve of the cover. This technique works well if the multiplicity of the covering
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is bounded, because then the dimension of the nerve and the Lipschitz constant

of the map are both under control. If the Ricci curvature of g is bounded below,

then Gromov constructed a cover by unit balls with bounded multiplicity in

[4]. Using this method, he proved the following result on page 130 of [5].

Theorem (Gromov 1983). Suppose that (Mn, g) is a complete Riemann-

ian manifold with filling radius at least R and with Ric ≥ −1. Then V (R) ≥
c(n)Rn for a dimensional constant c(n) > 0.

According to Theorem 1, Gromov’s result continues to hold without the

hypothesis Ric ≥ −1. Our proof follows the outline of Gromov’s proof, but it

is more difficult because we work with no assumptions on the curvature of g.

Without the Ricci curvature bound, we need to work a lot harder to produce

a good cover of (M, g). We carefully construct a cover that has bounded

multiplicity at most points and push Gromov’s ideas to work on this cover.

For Sections 1–5, we assume that (M, g) is closed. In Section 6, we explain

some minor technicalities to deal with the open case.

Throughout the paper, we use the following notation. If U is a region in

(M, g), then we denote the volume of U by |U |. If z is a cycle or chain, then

we denote the mass of z by |z|. If B is shorthand for a ball B(p, r) — the ball

around p of radius r — then 2B is shorthand for B(p, 2r). Unless otherwise

noted, the constants that appear depend only on the dimension n.

1. Good balls and good covers

In this section, we construct a covering of (M, g) by balls with certain

good properties. All the material in this section is due to Gromov and appears

in Sections 5 and 6 of [5].

Let B(p,R) ⊂ M denote the ball around p of radius R. We say that the

ball B(p,R) is a good ball if it satisfies the following conditions:

A. Reasonable growth: |B(p, 100R)| ≤ 104(n+3)|B(p, 100−1R)|.
B. Volume bound: |B(p,R)| ≤ 102n+6V (1)Rn+3.

C. Small radius: R ≤ (1/100).

The exact constants here are not important. Notice that in Euclidean

space we would have |B(p, 100R)| = 104n|B(p, 100−1R)|. The reasonable

growth condition relaxes this bound by replacing 104n with 104(n+3). In the vol-

ume bound, in Euclidean space we would have |B(p,R)| = V (1)Rn. For small

R, our bound 102n+6V (1)Rn+3 is much stronger than the Euclidean bound. So

good balls with small radii have tiny volumes. The only crucial point is that

n+ 3 > n. The other constants were chosen to guarantee the following lemma.

Lemma 1. Let (Mn, g) be a complete Riemannian n-manifold, and let p

be any point in M . Then there is a radius R so that B(p,R) is a good ball.
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Proof. We define the density of a ball B(p,R) to be the ratio |B(p,R)|/Rn.

If B(p,R) does not have reasonable growth, then the density falls off according

to the following inequality:

(∗) Density[B(p, 100−1R)] < 10−12Density[B(p, 100R)].

We consider the sequence of balls around p with radii 10−2, 10−6, 10−10,

and so on. We first claim that one of these balls has reasonable growth. If

the claim is false, then we can repeatedly use inequality (∗) to show that the

density of B(p, 10−4s) is at most 10−12sV (1). Since (M, g) is a Riemannian

manifold, the density of B(p, ε) approaches the volume of the unit n-ball as

ε goes to zero. This contradiction shows that one of the balls in our list has

reasonable growth.

Now we define s so that B(p, 10−4s−2) is the first ball in the list with rea-

sonable growth. Applying inequality (∗) to the previous balls B(p, 10−2), . . .

. . . , B(p, 10−4s+2), we conclude that the density of B(p, 10−4s) is at most

10−12sV (1). In other words, |B(p, 10−4s)| ≤ 10−12sV (1)[10−4s]n. The ball

B(p, 10−4s−2) is contained in B(p, 10−4s), so its volume obeys the following

bound:

|B(p, 10−4s−2)| ≤ 10−4s(n+3)V (1) ≤ 102n+6[10−4s−2]n+3V (1).

In other words, the ball B(p, 10−4s−2) obeys condition B. It has radius 10−4s−2

≤ 10−2, and so it obeys condition C. Therefore, it is a good ball. �

Because of Lemma 1, we can cover (M, g) with good balls. We now use the

Vitali covering lemma to choose a convenient sub-covering with some control

of the overlaps. More precisely, we call an open cover {Bi} good if it obeys

the following properties:

1. Each open set Bi is a good ball.

2. The concentric balls (1/2)Bi cover M .

3. The concentric balls (1/6)Bi are disjoint.

(Recall that if Bi is shorthand for B(pi, ri), then (1/2)Bi is shorthand for

B(pi, (1/2)ri).)

Lemma 2. If (Mn, g) is a closed Riemannian manifold, then it has a good

cover.

Proof. This follows immediately from the Vitali covering lemma. For

each point p ∈ M , pick a good ball B(p). Then look at the set of balls

{(1/6)B(p)}p∈M . These balls cover M . Applying the Vitali covering lemma

to this set of balls finishes the proof. �

We now fix a good cover for our manifold (M, g), which we will use for the

rest of the paper. Our next goal is to control the amount of overlap between
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different balls in the cover. It would be convenient if we could prove a bound

on the multiplicity of the cover. I do not see how to prove such a bound, and

it may well be false. We will prove a weaker estimate in the next section,

bounding the volume of the set where the multiplicity is high. We begin with

an estimate that controls the number of balls of roughly equal radius which

meet a given ball.

Lemma 3. If s < 1, and we look at any ball B(s) of radius s, not nec-

essarily in our cover, then the number of balls Bi from our cover, with radius

in the range (1/2)s ≤ ri ≤ 2s, intersecting B(s), is bounded by a dimensional

constant C(n).

Proof. Let {Bi} be the set of balls in our cover that intersect B(s) and

have radii in the indicated range. We number them so that B1 has the smallest

volume. Now, all of the balls are contained in B(5s), and B(5s) is contained

in the ball 20B1. On the other hand, all the (1/6)Bi are disjoint. So we have∑
i |(1/6)Bi| < |20B1|. Because of the locally bounded growth of good balls,

we have
∑ |Bi| < C|B1|. But since B1 has the smallest volume of all the balls,

we see that the number of balls is at most C. �

2. The volume of the high-multiplicity set

Let m(x) be the multiplicity function of the cover. In other words m(x)

is defined to be the number of balls in our cover that contain the point x. Let

M(λ) be the set of points where the multiplicity is at least λ. We will not

be able to prove an upper bound for the multiplicity of our covering, but we

partly make up for that by bounding the size of the set M(λ) for large λ.

We will prove a bound for the total volume |M(λ)|, but this bound by

itself is not strong enough to prove our theorems. We also need bounds on the

size of M(λ)∩Bi for balls Bi in our cover. For any open set U ⊂M , we define

MU (λ) = M(λ) ∩ U to be the set of points in U with multiplicity at least λ.

We write Nw(U) to denote the w-neighborhood of U : the set of points y ∈M
with dist(y, U) < w.

Lemma 4. There are constants α(n), γ(n), depending only on n, that

make the following estimate hold. For any open set U ⊂ M , any λ ≥ 0,

and any w < (1/100),

|MU (γ log(1/w) + λ)| ≤ e−αλ|Nw(U)|.

Taking U = M , it follows that |M(λ)| < Ce−αλ|M |. If B is a good ball in our

cover with radius r, then we have the following estimate :

|MB(γ log(1/r) + λ)| ≤ e−αλ|B|.
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According to this lemma, it may happen that every point in B has mul-

tiplicity γ(n) log(1/r). However, the set of points in B with multiplicity much

higher than γ(n) log(1/r) constitutes only a small fraction of B.

Proof. Let {Bi}i∈I denote the subset of balls in our cover that intersect U .

We divide this set of balls into layers, using the Vitali covering construction

to choose each layer.

To choose Layer(1): Take the largest ball in the set. (More precisely, take

the ball with the largest radius.) Then take the next largest ball disjoint from

it. Then take the largest ball disjoint from the two already chosen. . . . When

there are no more balls left, stop.

To choose Layer(2): Examine all the balls that are not part of Layer(1).

Take the largest ball available. Then take the largest remaining ball disjoint

from this one. . . .

To choose Layer(d): Examine all the balls that are not part of any previous

layer. Take the largest ball available. . . .

In this way, our set of balls {Bi}i∈I is divided into layers. Each ball in the

set belongs to exactly one layer. Each layer consists of disjoint balls. We define

L(d) to be the union of all the balls in Layer(d). We call Layer(1) the top

layer, and if d2 > d1, we say that Layer(d2) is lower than Layer(d1). Now for

each layer, we define a subset Core(d) ⊂ L(d) which intersects only a bounded

number of balls from lower layers.

To define the core, we first introduce a partial ordering on the balls in a

given layer Layer(d). If Bi, Bj ∈ Layer(d), we say that Bi < Bj if there is

some ball Bk in a lower layer which meets both Bi and Bj , and if the radii

obey the inequalities 2ri ≤ rk ≤ rj . We consider the minimal partial order

that is generated by these relations. In other words, we say that Bi < Bj if

and only if there is a chain of balls Bl1 , . . . , Blm in Layer(d) and a chain of balls

Bk1 , . . . , Bkm+1 in lower layers so that Bi meets Bk1 which meets Bl1 which

meets Bk2 . . . which meets Blm which meets Bkm+1 which meets Bj and so that

the radii obey 2m+1ri ≤ 2mrk1 ≤ 2mrl1 ≤ 2m−1rk2 ≤ · · · ≤ 2rlm ≤ rkm+1 ≤ rj .

Figure 1 illustrates the overlapping balls in case m = 1. The balls drawn in

solid lines belong to Layer(d) and those in dotted lines belong to lower layers.

The smallest ball on the left is Bi, and the largest ball on the right is Bj .

Bi
Bj

Figure 1.



60 LARRY GUTH

We define Max(d) ⊂ Layer(d) to be the maximal elements of this partial

ordering. (A ball Bi is maximal if there is no other ball Bj with Bi < Bj .)

For any ball Bi, we define the core of Bi to be the concentric ball (1/10)Bi.

We define the core of Layer(d) to be the union of the cores of all the maximal

balls in Layer(d):

Core(d) = ∪Bi∈Max(d)
1

10
Bi.

(The balls in Layer(d) are disjoint, so the core is a union of disjoint balls.)

By looking at maximal balls, we buy the following inequality. Let Bi be a

maximal ball in Layer(d) and let x ∈ (1/10)Bi be a point in Core(d). Suppose

that x also lies in a ball Bk from a lower layer. Then the radius rk is pinched in

the range (1/15)ri ≤ rk ≤ 2ri. The upper bound depends on the maximality

of Bi. Suppose that rk > 2ri. Since the ball Bk was not selected to join the

layer Layer(d), there must be some larger ball Bj in Layer(d) intersecting Bk.

But then it follows that Bi < Bj , contradicting the assumption that Bi is

maximal. The lower bound for rk does not depend on maximality. We know

that the concentric balls (1/6)Bi and (1/6)Bk are disjoint. In particular, this

fact implies that the center of Bk lies outside of (1/6)Bi. Now if rk < (1/15)ri,

then the ball Bk lies outside of (1/10)Bi. On the other hand, x lies in (1/10)Bi,

and we get a contradiction.

According to Lemma 3, the number of balls Bk containing x with radii

in the range (1/15)ri ≤ rk ≤ 2ri is bounded by a dimensional constant η(n).

Therefore, the number of balls Bi so that x ∈ Bi and so that Bi ∈ Layer(λ)

with λ ≥ d is at most η(n). Less formally, this estimate says that the core of

Layer(d) is well-insulated from the balls in lower layers.

The next main point is that Core(d) contains a substantial fraction of the

volume of L(d). We first claim that L(d) ⊂ ∪Bj∈Max(d)10Bj . Suppose that Bi
is any ball in Layer(d). If Bi is itself maximal, then it is contained in the union

∪Bj∈Max(d)10Bj . If Bi is not maximal, then there is some chain of overlapping

balls Bi, Bk1 , Bl1 , . . . , Bkm , Blm , Bkm+1 , Bj , where Bj is maximal, and the radii

obey 2m+1ri ≤ 2mrk1 ≤ 2mrl1 ≤ · · · ≤ 2rkm ≤ 2rlm ≤ rkm+1 ≤ rj . Because the

balls overlap, Bi is contained in the ball with the same center as Bj and with

radius R = rj +2rkm+1 +2rlm +2rkm + · · ·+2rl1 +2rk1 +2ri. According to our

bounds for the radii of the balls, R ≤ rj+2rj+4·2−1rj+4·2−2rj+4·2−3rj+· · ·
≤ 7rj . Therefore, Bi ⊂ 10Bj . Since Bj is maximal, Bi ⊂ ∪Bj∈Max(d)10Bj .

Therefore, L(d) ⊂ ∪Bj∈Max(d)10Bj . Using this inclusion and the reasonable

growth estimates for good balls, we can estimate the volume of Core(d):

|L(d)| ≤ | ∪Bj∈Max(d) 10Bj |

≤
∑

Bj∈Max(d)

|10Bj | ≤ C
∑

Bj∈Max(d)

| 1

10
Bj | = C|Core(d)|.
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We will use these estimates about the core to prove the exponential decay

of the high-multiplicity set. We now introduce some vocabulary that describes

how many times a point is contained in balls from different layers:

Lµ(λ) := {x|x ∈ L(d) for at least µ different values of d in the range d ≥ λ}.

The sets Lµ(λ) are nested: L1(λ) ⊃ L2(λ) ⊃ . . . . Because of the con-

struction of the layers, ∪Bi∈Layer(λ)3Bi contains ∪d≥λ ∪Bi∈Layer(d) Bi = L1(λ).

Because the balls in each layer are disjoint and because of the reasonable

growth bound, we get the following upper bound for |L1(λ)|:

|L1(λ)| = | ∪d≥λ ∪Bi∈Layer(d)Bi| ≤ | ∪Bi∈Layer(λ) 3Bi|

≤
∑

Bi∈Layer(λ)
|3Bi| ≤ C

∑
Bi∈Layer(λ)

|Bi| = C|L(λ)|.

Now we define a function F (λ) which is an average of the volumes of

Lµ(λ):

F (λ) :=
1

η(n)

η(n)∑
µ=1

|Lµ(λ)|.

Our estimates about the core imply that F (λ) decays exponentially. We

proved that each point x in Core(λ) lies in at most η(n) balls from layers

Layer(d) with d ≥ λ. We know that Core(λ) ⊂ L(λ). Therefore, we get the

following estimate:
η(n)∑
µ=1

|Lµ(λ)| − |Lµ(λ+ 1)| ≥ |Core(λ)|.

Using the formula for F (λ), we see that F (λ)−F (λ+1) ≥ (1/η)|Core(λ)|.
Now we plug in our volume estimates for |Core(λ)| and |L1(λ)|:

F (λ)− F (λ+ 1) ≥ (1/η)|Core(λ)| ≥ c|L(λ)| ≥ c′|L1(λ)| ≥ c′F (λ).

Rearranging the equation, we can deduce the exponential decay of F (λ).

For a small constant c′ > 0, depending only on n,

(∗) F (λ+ 1) ≤ (1− c′)F (λ).

To control F (λ) for large values of λ, we combine equation (∗) with some

simple estimates for F (λ) for small values of λ. To control F (λ) for small λ,

we need one more inequality, which says that the large balls are put into the

top layers. More precisely, if a ball Bi of radius ri belongs to Layer(d), then

d ≤ γ log(1/ri) (for a constant γ depending only on n). Because Bi does not

belong to any of the first d − 1 layers, there must be a larger ball in each of

those layers intersecting Bi. All of the balls in our cover have radius at most

(1/100), so the number of different scales of the radii of these balls is log(1/ri).

For each scale, Lemma 3 tells us that there are at most C balls of that scale
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intersecting Bi. Therefore, we can choose a constant γ(n) so that the total

number of larger balls intersecting Bi is at most γ log(1/ri), and d ≤ γ log(1/ri)

as claimed. Thus, if Bi belongs to Layer(d) with d ≥ γ log(1/w), then ri ≤ w.

In other words, all the balls in layers lower than γ log(1/w) have radius at

most w. Since all of our balls intersect U , the union of all the balls in the lower

layers is contained in N2w(U). This argument gives us the following estimate

for F (γ log(1/w)):

F (γ log(1/w)) ≤ |L1(γ log(1/w))| ≤ |N2w(U)|.

Combining this inequality with the exponential decay (∗) we get the following

bound:
F (γ log(1/w) + λ) ≤ e−αλ|N2w(U)|.

Finally, we bound the size of MU (λ) in terms of F . Since each layer

consists of disjoint balls, MU (λ + η(n)) ⊂ Lη(n)(λ), and so |MU (λ + η(n))| ≤
|Lη(n)(λ)| ≤ F (λ). Combining this observation with our last inequality gives

the following:

|MU (γ log(1/w) + λ+ η(n))| ≤ e−αλ|N2w(U)|.

This inequality is equivalent to the one we wanted to prove.

As a special case, we can take U = M . Applying our inequality with

w = (1/100) yields |M(λ)| ≤ Ce−αλ|M |. As another special case, we can take

U = B for a ball B in our cover of radius r. Applying our inequality with

w = r yields

|MB(γ log(1/r) + λ+ η(n))| ≤ e−αλ|2B|.
Since B is a good ball, |2B| < C|B|, and so we get the following inequality:

|MB(γ log(1/r) + λ+ η(n))| ≤ Ce−αλ|B|.

This inequality is equivalent to the one we wanted to prove. �

3. The rectangular nerve

Gromov had the idea to prove estimates about a Riemannian manifold

(M, g) by covering it with balls and considering the induced map from M to

the nerve of the covering. I believe that this idea first appeared in [4]. It is

also discussed in [8, §5.32]. In our case, there is an added wrinkle because

the balls in our covering have a wide range of radii, and we need to choose

a metric on the nerve that reflects the radii of the balls in the covering. In

order to accomplish that, we slightly modify the idea of the nerve, introducing

a “rectangular nerve”.

For each ball Bi of radius ri in our good cover, define φi : M → [0, ri] as

follows. Outside of Bi, φi = 0. Let d be the distance from x ∈ Bi to the center

of Bi. If d ≤ (1/2)ri, then φ(x) = ri. If (1/2)ri ≤ d ≤ ri, then φ(x) = 2(ri−d).

The Lipschitz constant of φi is 2.
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All the φi together map M into the high-dimensional rectangle R with

dimensions r1 × · · · × rD. Because (1/2)Bi covers M , we know that for each

x ∈M , there is some φi so that φi(x) = ri. Therefore, the image of M lies in the

union of certain hyperfaces of the rectangle R: namely those closed hyperfaces

that do not contain 0. As in the simplicial world, we define a nerve N which

will be a subcomplex of the rectangle R. An open face F of R is determined

by dividing the dimensions 1, 2, . . . , D into three categories: I0, I1, and I(0,1).

Then F is given by the equalities and inequalities φi = 0 for i ∈ I0, φi = ri for

i ∈ I1, and 0 < φi < ri for i ∈ I(0,1). We denote I+ = I1 ∪ I(0,1). A face F is

contained in the nerve if and only if ∩i∈I+(F )Bi 6= ∅, and if I1(F ) 6= ∅. We see

that φ maps M into the rectangular nerve N .

Using our bounds for the high-multiplicity set in M , we can bound the

volume of the image φ(M), and also the volume of φ(M) contained in certain

regions of N . If F is an open face in N , then we define Star(F ) to be the

union of all open faces of N which contain F in their closures. In other words,

Star(F ) is the union of F itself together with each higher-dimensional open

face that contains F in its boundary. No lower dimensional faces are contained

in Star(F ). We let d(F ) denote the dimension of F . Each face F is itself a

rectangle with dimensions r1(F ) ≤ · · · ≤ rd(F )(F ).

Lemma 5. There are constants C(n) and β(n) > 0, depending only on n,

so that the volume of φ(M) ∩ Star(F ) obeys the following inequality :

|φ(M) ∩ Star(F )| < CV (1)r1(F )n+1e−βd(F ).

Also, |φ(M)| < C|M |.

Proof. The set φ−1[Star(F )] is contained in B1, the ball with radius r1 =

r1(F ). By the good ball estimate, B1 has volume at most CV (1)rn+3
1 . The

Lipschitz constant of φ at a point x ∈ B1 is bounded by 2m(x)1/2. According to

Lemma 4, the set of points in B1 with multiplicity more than γ log(r−11 )+λ has

volume bounded by e−αλ|B1|. Adding up the contributions from the regions

of different multiplicity, we see that |φ(B1)| < CV (1)rn+2
1 . Now, by Lemma 3,

it follows that r1(F ) < Ce−βd(F ). Plugging in, we get the lemma.

To prove the last claim, we apply the same argument, using the bound for

|M(λ)| in Lemma 4. �

We should make some remarks about this inequality. In our paper, it turns

out to be natural to compare |φ(M)∩Star(F )| with r1(F )n. According to our

inequality, the ratio |φ(M) ∩ Star(F )|/r1(F )n is at most CV (1)r1(F )e−βd(F ).

In other words, the ratio becomes favorable if V (1) is small, or if r1(F ) is small,

or if d(F ) is large.

To finish this section, we explain the connections between the rectangular

nerve and the filling radius and simplicial volume of M .
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Lemma 6. If φ∗([M ]) = 0 in N , then the filling radius of (Mn, g) is at

most 1.

Proof. Let A be a chain in N filling φ(M). The filling A consists of

the following data: an abstract chain A with ∂A = M , together with a map

f : A→ N with f |∂A = φ. By abuse of notation, we identify M with its image

in L∞(M) under the Kuratowski embedding. Using the above data, we will

construct a filling of M in its 1-neighborhood.

First, we construct a map ψ from A to L∞(M). We pick a fine trian-

gulation of A, subordinate to the faces of N . We begin by defining ψ on the

vertices of the triangulation. Each vertex v lies in some face F of the nerve N .

We pick a ball Bi so that the index i lies in I+(F ). Then we define ψ(v) to

be the point pi which is the center of the ball Bi. Next we define ψ on each

simplex by extending it linearly.

Because our triangulation of A is subordinate to the faces of N , each edge

of A joins two points that lie in a common closed face of N . Therefore, ψ maps

the endpoints of any edge to the centers of two overlapping good balls. The

distance between the centers is at most (2/100). Each simplex of A is mapped

to a simplex in L∞(M) whose edges have length at most 2/100. Also, each

vertex is mapped into M ⊂ L∞(M). Therefore, the image ψ(A) lies in the

2/100 neighborhood of M .

We are not finished, because the map ψ restricted to M is not the Kura-

towksi embedding. To finish the proof, we will homotope M to ψ(M) inside of

the 2/100-neighborhood of M . Let p be a point of M . Let ∆ be the smallest

simplex of our triangulation that contains p, and let y1, . . . , ym be the vertices of

∆. The map ψ sends each yi to the center pi of some ball Bi containing yi. The

map ψ sends p to a point on the linear simplex in L∞ spanned by the points pi.

The distance from p to ψ(p) is at most the largest distance from p to any of the

pi. Since each triangle is small, we can assume that the distance from p to yi is

less than 1/100. Also, since each good ball has radius at most 1/100, the dis-

tance from yi to pi is at most 1/100. Combining these inequalities, the distance

from p to ψ(p) is at most 2/100. Therefore, the Kuratowski embedding can be

homotoped to the map ψ inside the 2/100 neighborhood of M in L∞(M).

Combining this homotopy with the chain ψ(A), it follows that M bounds

inside its 2/100 neighborhood. In other words, the filling radius of (M, g) is at

most 2/100 < 1. �

Lemma 7. If (M, g) is a closed aspherical manifold with systole at least 1,

then there is a map ψ : N → M so that the composition ψ ◦ φ : M → M is

homotopic to the identity.

Proof. This proof is essentially the same as Gromov’s from [4, pp. 85–86],

which uses the standard simplicial nerve instead of the rectangular nerve.
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We slightly homotope φ to a map φ′ which is simplicial with respect to

some fine triangulations of M and N . We can assume that the triangulation

of N is subordinate to the faces of N .

We begin by defining the map ψ from N to M . We define the map one

skeleton at a time. For each vertex v of N , we consider the smallest face

F ⊃ v, and we pick an index in I+(F ). Then we map v to the center of Bi.

Now each edge E of N joins two vertices lying in the same closed face. If the

boundary of E is v1 ∪ v2, then it follows that we have mapped v1 and v2 to

two overlapping balls from our covering. Since each ball has radius at most

(1/100), the distance between the centers is at most (2/100), and we may map

E to an arc of length at most (2/100). Now the boundary of each 2-simplex

has been mapped to an arc of length at most (6/100). Since the 1-systole of

(M, g) is at least 1, the image curve is contractible, and so we can extend our

map to each 2-simplex. Since M is aspherical, we can then extend the map to

each higher-dimensional simplex. This completes the construction of ψ.

Next we have to show that ψ ◦ φ′ is homotopic to the identity. We have

to define a map H on M × [0, 1] with H(m, 0) = ψ ◦ φ′(m) and H(m, 1) = m.

We define H one skeleton at a time. For each vertex v, φ′(v) is a vertex of the

triangulation of N lying very near to φ(v). We let F (v) denote the smallest

face of N containing φ′(v). It may not be the case that φ(v) lies in F (v), but

at least φ(v) lies in a face bordering F (v). Therefore, ψ ◦ φ′(v) is the center

of some ball Bi overlapping some other ball Bj containing v. Since each ball

in our cover has radius at most (1/100), the distance from ψ ◦ φ′(v) to v is at

most (3/100). We define H on v × (0, 1) by mapping the interval to a curve

from ψ ◦ φ′(v) to v, with length at most (3/100).

Next we look at an edge E of the triangulation of M . The map φ′ either

collapses E to a point or maps it onto an edge of the triangulation of N .

Therefore, ψ ◦ φ′(E) is either a point or an arc of length at most (2/100). We

have already defined H on the boundary of E× (0, 1). The restriction of H to

the boundary is a curve of length at most (8/100) plus the length of E. We

can assume the length of E is at most (1/100). Since the 1-systole of (M, g) is

at least 1, this curve is contractible, and so we can extend H to E × (0, 1) for

every edge E.

Finally, since M is aspherical, we can extend H to ∆ × (0, 1) for each

2-simplex ∆ of M , and then for each higher-dimensional simplex. Therefore,

ψ◦φ′ is homotopic to the identity. Since φ′ is homotopic to φ, ψ◦φ is homotopic

to the identity. �

4. Filling cycles in the rectangular nerve

Using the bounds proved in the last section, we will now show that if V (1)

is sufficiently small, then φ∗([M ]) = 0 in the rectangular nerve N .
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Lemma 8. For any β > 0 and any integer n > 0, there is a small positive

ε(β, n) that makes the following statement true. Let z be an n-cycle in the

rectangular complex N . Suppose that for every face F in N ,

|z ∩ Star(F )| < εr1(F )ne−βd(F ).

Then [z] = 0 in N .

Proof. Let D be the dimension of N . We will construct a sequence of

homologous cycles z = zD ∼ zD−1 ∼ · · · ∼ zn. The cycle zk will be contained

in the k-skeleton of N . Moreover, every cycle will obey the following estimate,

slightly weaker than the estimate that z obeys:

|zk ∩ Star(F )| < 2εr1(F )ne−βd(F ).

In particular, for each n-face F , the cycle zn obeys the following estimate:

|zn ∩ F | < 2εr1(F )n.

Our constant ε will be less than 1/2, so we conclude that |zn ∩ F | < |F |.
Therefore, zn is homologous to a cycle lying in the (n− 1)-skeleton of N , and

hence [zn] = 0.

Now we describe the inductive step, getting from zk to zk−1. Let F be

a k-dimensional face of N . Consider zk ∩ F , which defines a relative cycle in

F , and we replace it with the minimal relative cycle with the same boundary.

Performing this surgery on each k-face F , we get a new n-cycle z′k, homologous

to zk, and still contained in the k-skeleton of N .

We examine the intersection z′k ∩ F for a k-dimensional face F . Since z′k
was chosen to minimize volume, it follows that |z′k ∩ F | ≤ |zk ∩ F |. By the

inductive hypothesis, |zk ∩ F | ≤ 2εr1(F )ne−βk. Using this volume estimate,

we can show that z′k lies near to the boundary of F . Suppose that x ∈ z′k
and that the distance from x to ∂F is s. By the monotonicity formula, it

follows that ωns
n ≤ |z′k ∩ F | ≤ 2εr1(F )ne−βk. Rearranging this formula, we

get the following inequality, bounding the distance from any point in z′k to the

boundary ∂F :

(1) s/r1(F ) ≤ [2ω−1n εe−βk]1/n.

Following Gromov in [5], we define a map that pulls a small neighborhood

of the (k − 1)-skeleton of N into the (k − 1)-skeleton. Our map will be called

Rδ, and it depends on a number δ in the range 0 < δ < 1/2. The basic map is

a map from an interval [0, r] to itself, which takes the set [0, δr] to 0, and the

set [r − δr, r] to r and linearly stretches the set [δr, r − δr] to cover [0, r]. The

Lipschitz constant of this map is (1−2δ)−1. Now we apply this map separately

to each coordinate φi of the big rectangle R. The resulting map is Rδ.

The map Rδ has the following nice properties. It maps the nerve N into

itself. The map R0 is the identity, and so each Rδ is homotopic to the identity
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(in the space of self-maps of N). Therefore, the map Rδ moves any cycle to

a homologous cycle. The preimage R−1δ [Star(F )] = Star(F ) for any face F .

Since the Lipschitz constant of Rδ is [1 − 2δ]−1, the following estimate holds

for any n-cycle y:

(2) |Rδ(y) ∩ Star(F )| ≤ (1− 2δ)−n|y ∩ Star(F )|.

Also, for sufficiently big δ, the map Rδ takes z′k into the (k− 1)-skeleton of N .

In particular, if δ ≥ [2ω−1n εe−βk]1/n, then inequality (1) guarantees that Rδ(z
′
k)

lies in the (k − 1)-skeleton of N . We define δ(k) = [2ω−1n εe−βk]1/n, and then

we define zk−1 = Rδ(k)(z
′
k).

We have to check that zk−1 obeys the volume estimate in the inductive

hypothesis. Let F be a face of N with any dimension. First we claim that it

obeys the following estimate:

|zk−1 ∩ Star(F )| ≤
D∏
l=k

(1− 2δ(l))−nεr1(F )ne−βd(F ).

This estimate follows from three observations. First, by hypothesis,

|zD ∩ Star(F )| ≤ εr1(F )ne−βd(F ).

Second, |z′k ∩ Star(F )| ≤ |zk ∩ Star(F )|. Third, by equation (2),

|zk−1 ∩ Star(F )| ≤ (1− 2δ(k))−n|z′k ∩ Star(F )|.

So to make the induction work, we have to choose ε sufficiently small that the

following estimate holds:

∞∏
l=n+1

(1− 2δ(l))−n =
∞∏

l=n+1

(1− 2[2ω−1n εe−βl]1/n)−n < 2.

The product converges because of the exponential decay in the term e−βl,

and by taking ε > 0 sufficiently small, we can guarantee that it is less than 2.

The value of ε here depends on n and β. �

We now have enough ammunition to prove Theorem 1 for closed manifolds.

Theorem 1 (closed case). For each dimension n, there is a number δ(n)

> 0 so that the following estimate holds. If (Mn, g) is a closed Riemannian

n-manifold with filling radius greater than R, then V (R) ≥ δ(n)Rn.

Proof. By scaling, it suffices to prove the theorem when R = 1. We

consider the map φ from M to the rectangular nerve N of a good cover.

According to Lemma 5, the image obeys the following estimate for each face

F of N :

|φ(M) ∩ Star(F )| < CV (1)r1(F )n+1e−βd(F ).
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The constants C and β in this equation depend only on n. Let ε(β, n) be

the number defined in Lemma 8. Hence there is some number δ(n) so that if

V (1) < δ, then we get the following estimate for each face F of N :

|φ(M) ∩ Star(F )| < εr1(F )ne−βd(F ).

According to Lemma 8, this estimate implies that the cycle φ(M) is homologous

to zero in N . Now, according to Lemma 6, the filling radius of (M, g) is at

most 1. �

We now prove two of the corollaries from the introduction.

Corollary 1. Let (Mn, g) be a closed Riemannian manifold. Suppose

that there is a degree nonzero map F from (Mn, g) to the unit n-sphere with

Lipschitz constant 1. Then V (R) ≥ δ(n)Rn for R ≤ 1.

Proof. In [5, p. 8], Gromov proved that the filling radius of (M, g) is at

least the filling radius of the unit n-sphere. Theorem 1 then implies that

V (R) > δ(n)Rn for R ≤ 1. �

Corollary 2 (systolic inequality). Let (Mn, g) be a closed aspherical

Riemannian manifold. Suppose the shortest noncontractible curve in (Mn, g)

has length at least S. Then V (S) ≥ δ(n)Sn.

Proof. In [5, §1], Gromov proved that the filling radius of (M, g) is at least

S/6. According to Theorem 1, V (S/6) ≥ δ(n)(S/6)n. For a smaller constant

δ(n), V (S) ≥ V (S/6) ≥ δ(n)Sn. �

5. Estimates for simplicial norms

In this section, we consider the consequences of a weaker upper bound on

V (1), such as V (1) < 10ωn. In this case, it does not follow that φ∗([M ]) = 0

in N . Instead, we get an upper bound for the simplicial norm of φ∗([M ]) in

Hn(N).

At this point, we recall the relevant facts about simplicial norms. For

more information, see [4]. Suppose that C is a rational k-cycle in M . We can

write C as a finite sum
∑
ai∆i, where ai is a rational number and ∆i is a

map from the k-simplex to M . We say that the size of C is equal to the sum∑ |ai|. The size of C is just the number of simplices counted with multiplicity.

Then we define the simplicial norm of a homology class h ∈ H(M,Q) to be the

infimal size of any rational cycle C in the class h. We will write the simplicial

norm of h as ‖h‖. For a closed oriented manifold M , the simplicial volume of

M is defined to be the simplicial norm of the fundamental class [M ].

We will use two facts about the simplicial norm. The first fact is that it

decreases under any mapping. In other words, if φ : M → N is a continuous

map between spaces, then ‖φ∗(h)‖ ≤ ‖h‖. This property follows immediately
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from the definition. The second fact is that the simplicial volume of a closed

oriented hyperbolic manifold is bounded below by the volume of the manifold.

We state this result as a theorem.

Theorem (Thurston; see [4]). Suppose that (M, hyp) is a closed hyper-

bolic n-manifold. Then the simplicial volume of M is at least c(n)Vol(M,hyp).

(In fact, the simplicial volume of M is equal to c(n)Vol(M,hyp) for an

appropriate constant c(n), but we do not need this fact.)

Now we suppose that (Mn, g) is a closed orientable Riemannian manifold.

Let N be the rectangular nerve constructed from a good cover of (M, g), and

let φ : M → N be the map to the rectangular nerve.

Lemma 9. For each number V0 > 0 and each dimension n, there is a

constant C(V0, n) so that the following estimate holds. If (M, g) has V (1) < V0,

then the simplicial norm ‖φ∗([M ])‖ ≤ C(V0, n)Vol(M, g).

Proof. The proof of this lemma is a modification of the proof of Lemma 8.

According to Lemma 5, we have the following bound for the volume of φ(M)

in various regions of N :

(A) |φ(M) ∩ Star(F )| < C1V (1)r1(F )n+1e−βd(F ).

In this formula, C1 and β are dimensional constants, and F can be any face

of the rectangular nerve N . We let ε = ε(β, n) be the same constant as in the

proof of Lemma 8. We now divide the faces of N into thick and thin faces as

follows. If C1V0r1(F ) < ε, then we say that F is thin, and otherwise we say

that F is thick.

We begin with some simple estimates about the thick and thin simplices. If

F is thin, then any higher-dimensional face containing F in its boundary is also

thin. Also, the dimension of a thick face is bounded by d(V0, n), a constant

depending only on n and V0. This estimate on the dimension follows from

Lemma 3, because if I(0,1)(F ) contains d(F ) indices, then the corresponding

d(F ) balls contain a common intersection. If B1 is the smallest of these balls,

Lemma 3 guarantees that r1 < C[log d(F )]−1. But by definition of a thick face,

r1(F ) ≥ cε/V0.
As before, we let D be the dimension of N , and we define zD to be the

n-cycle φ(M). We will construct a sequence of homologous n-cycles zD ∼
zD−1 ∼ · · · ∼ zn, with zk lying in the k-skeleton of N . For any thin face F ,

the cycle zk will obey the same estimate as in Lemma 8:

|zk ∩ Star(F )| < 2εr1(F )ne−βd(F ).

The construction is similar to the one in Lemma 8, but there is an extra

wrinkle having to do with the thick simplices. First, we show that zD obeys the
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estimate that we want. Because of the definition of thin faces and the estimate

in equation (A), |zD ∩ Star(F )| < εr1(F )ne−βd(F ) for each thin face F .

Now we suppose we have constructed zk for some k > n, and we describe

the construction of zk−1. Pick a k-dimensional face F . If F is thin, then

we define z′k ∩ F to be a minimal cycle with boundary ∂(zk ∩ F ) ⊂ ∂F . As

in the proof of Lemma 8, z′k ∩ F lies within the s(F )-neighborhood of ∂F ,

where s(F ) = r1(F )[2ω−1n εe−βk]1/n. If F is a thick face, then we define z′k by

removing zk ∩ F and replacing it by a chain in ∂F with the same boundary

as zk ∩ F . According to the deformation theorem of Federer-Fleming, we can

choose a chain with volume bounded by G(V0, n)|zk∩F |. (The constant in the

Federer-Fleming construction depends on the dimension d(F ). We noted above

that for a thick face d(F ) is bounded by d(V0, n). Also, the Federer-Fleming

construction gives a certain constant if we do it in a cube. We have to do it in

a rectangular face. If the dimensions of the rectangular face are very uneven,

then the constant can blow up. In our case, though, r1 is bounded below by

a constant depending only on n and V0, and all the dimensions are bounded

above by (1/100). Therefore, the stretching factor G(V0, n) depends only on

the dimension n and V0.)

We proceed as in the proof of Lemma 8. We define δ(k) as [2ω−1n εe−βk]1/n,

and we define zk−1 as Rδ(k)(z
′
k). The cycle zk−1 is homologous to zk and lies

in the (k−1)-skeleton of N . By the same calculation as in Lemma 8, it follows

that zk−1 obeys the volume estimate for thin faces F : |zk−1 ∩ Star(F )| <
2εr1(F )ne−βd(F ).

To get at the simplicial norm, we consider the cycle zn. It lies in the

n-skeleton of N . The cycle zn is homologous to a sum of n-faces of F ,
∑
i ciFi,

where |ci| ≤ |zn ∩ Fi|/|Fi|. Taking the barycentric triangulation of each face,

it follows that the simplicial norm of zn is bounded by C
∑
i |ci|. If Fi is a thin

n-face, then the bound |zn ∩Star(Fi)| < 2εr1(Fi)
n guarantees that ci = 0. For

thick faces, ci may be nonzero. If Fi is a thick n-face, then the volume |Fi| is

bounded below, and so it follows that
∑ |ci| < C(V0, n)|zn|.

To bound |zn|, we consider the increase of volume |zk|/|zk+1|. We form

zk from zk+1 by a surgery in each (k+1)-face — yielding z′k+1, followed by

applying Rδ(k). For k > d(V0, n), all the surgeries occur in thin faces, and

therefore each surgery decreases the volume of the cycle. The application of

Rδ(k) increases volume by at most a factor [1− 2δ(k)]−n. Therefore,

|zd(V0,n)| <
∞∏

k=d(V0,n)

[1− 2δ(k)]−n|zD|.

By the same calculation as in Lemma 8, the last expression is bounded by

2|zD|.
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If k < d(V0, n), then we have the following much weaker volume bound:

|zk−1| ≤ G(V0, n)[1− 2δ(k)]−n|zk|.

Therefore, the volume |zn| < 4G(V0, n)d(V0,n)|zD|. Finally, by Lemma 4, the

volume |zD| is bounded by C(n)|(M, g)|. Assembling all the inequalities, we

see that the simplicial norm of φ∗([M ]) is bounded by C(V0, n)|(M, g)|. �

Now we have enough ammunition to prove our second theorem.

Theorem 2. For each dimension n, there is a number δ(n) > 0 so that

the following estimate holds. Suppose that (Mn, hyp) is a closed hyperbolic

n-manifold and that g is another metric on M , and suppose that Vol(M, g) <

δ(n)Vol(M, hyp). Let (M̃, g̃) denote the universal cover of M with the metric

induced from g. Then the following inequality holds :

V
(‹M,g̃)

(1) > VHn(1).

Proof. First we consider the special case that M is oriented and that each

noncontractible curve in (M, g) has length at least 1. In this case, V
(‹M,g̃)

(1) =

V(M,g)(1). We will assume that V(M,g)(1) is at most VHn(1) = V0, and we need

to prove that Vol(M, g) ≥ δ(n)Vol(M,hyp).

As usual, we choose a good cover of (M, g). We let N be the rectangular

nerve of the cover and let φ : M → N be the map to the rectangular nerve con-

structed in Section 3. According to Lemma 9, C(n, V0)Vol(M, g) ≥ ‖φ∗([M ])‖.
We have assumed that the shortest noncontractible curve in (M, g) has length

at least 1. According to Lemma 7, there is a map ψ : N → M so that

ψ◦φ : M →M is homotopic to the identity. In particular, ψ∗(φ∗([M ])) = [M ].

Since the simplicial volume decreases under maps, it follows that ‖φ∗([M ])‖
is equal to ‖[M ]‖, the simplicial volume of M . Finally, since M is closed

and oriented, Thurston’s theorem guarantees that the simplicial volume of M

is at least c(n)Vol(M,hyp). Putting together these inequalities, we see that

Vol(M, g) ≥ C(n, V0)
−1c(n)Vol(M,hyp). Since V0, the volume of the unit ball

in Hn is itself a dimensional constant, we see that Vol(M, g) ≥ δ(n)Vol(M,hyp)

as desired.

Next we consider the general case, with no restriction on the lengths of

noncontractible curves in (M, g). Again, we assume that V
(‹M,g̃)

(1) ≤ V0, and

we have to prove that Vol(M, g) ≥ δ(n)Vol(M, hyp). Since M admits a hy-

perbolic metric, the fundamental group of M is residually finite. (The group

of isometries of hyperbolic n-space is a subgroup of SL(N,C) for sufficiently

large N , and any finitely generated subgroup of SL(N,C) is residually finite

according to [12].) Therefore, we can choose a finite cover (M̂, ĝ) so that M̂

is oriented and so that every noncontractible closed curve in M̂ has length at

least 1. Let ‘hyp be the pullback of the hyperbolic metric on M to M̂ . By
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assumption, V
(‹M,g̃)

(1) ≤ V0. Since the universal cover of (M̂, ĝ) is the same as

that of (M, g), it follows that V
(“M,ĝ)

(1) ≤ V0. Now by the first case, we can

conclude that Vol(M̂, ĝ) ≥ δ(n)Vol(M̂,‘hyp).

Now if the covering map, π : M̂ →M has degree D, then

Vol(M, g) = (1/D)Vol(M̂, ĝ)

and Vol(M, hyp) = (1/D)Vol(M̂,‘hyp). Therefore, the last inequality implies

that Vol(M, g) ≥ δ(n)Vol(M, hyp). �

Remark. There is a slightly more general result that holds with the same

proof. It applies to products of hyperbolic manifolds. Suppose that Mn is

a product of closed manifolds, M = M1 × · · · ×Md, and that each manifold

Mi admits a hyperbolic metric hypi. Let prod denote the product metric

hyp1 × · · · × hypd. If (M, g) has volume less than δ(n)Vol(M,prod), then

V
(‹M,g̃)

(1) ≥ V
(‹M,fiprod))(1).

6. Open manifolds

So far, we have proved Theorem 1 for closed manifolds. Theorem 1 also

holds for all complete Riemannian manifolds. In this section, we deal with the

general case. It requires only minor technical modifications from the closed

case. We encourage the reader not to take this section too seriously.

First, we review the definition of the filling radius of a complete manifold.

The original definition appears on page 41 of [5]. Let (Mn, g) be a complete

Riemannian manifold. The Kuratowski embedding maps a point x ∈M to the

function distx. Since M may not be compact, this function is unbounded. Nev-

ertheless, it defines a measurable function, and the triangle inequality implies

that |distx−disty|∞ = dist(x, y). The image of the Kuratowski embedding lies

in an affine copy of L∞(M), namely all functions of the form distx + f , where

f ∈ L∞(M).

Since (M, g) is complete, any ball of finite radius is compact. The Kura-

towski embedding is an isometry, and so the inverse image of any compact set

lies in a ball of finite radius and is compact. In other words, the Kuratowski

embedding is proper. Therefore, the image of M defines a cycle in the sense

of locally-finite homology theory. The filling radius of (M, g) is the infimal R

so that this cycle bounds a locally finite chain inside its R-neighborhood. (If

the cycle does not bound within its R-neighborhood for every finite R, then

the filling radius is infinite.)

Most of the lemmas apply smoothly to complete manifolds with this def-

inition, but a couple of them require some minor discussion.

Lemma 1 is local and applies immediately on a complete manifold.
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Lemma 2 also holds on a complete manifold, but the proof requires a

minor trick. Let K1 ⊂ K2 ⊂ . . . be an exhaustion of M . Consider the set

of all balls B(p,R/6) such that p ∈ Ki and B(p,R) is a good ball. The balls

B(p,R/6) cover Ki, and we can find a finite subset of them that covers Ki.

Applying the Vitali covering lemma, we get a good cover of Ki. Repeating this

procedure for each i, we get a sequence of covers including more and more of

M . If we restrict attention to the balls meeting a given compact set K ⊂ M

the set of possible covers is compact, which we can check as follows. Clearly,

the set of possible centers p ∈ K is compact. We can find a radius r so that

any ball of radius less than r centered in K has volume at least (1/2)ωnr
n.

Therefore, every good ball has radius at least r and at most 1/100. Also,

every good ball has volume at least (1/2)ωnr
n. Therefore, the number of balls

meeting K is bounded. We can therefore choose a subsequence so that the ball

coverings restricted to K converge. Now, we again consider an exhaustion of

M by compact sets and diagonalize to give a sequence of good coverings of Ki

that converge on all of M . Their limit is our good covering.

Lemma 3 is local and applies immediately on a complete manifold. As long

as U is bounded, Lemma 4 is local, and in this case it applies on a complete

manifold. Lemma 5 follows immediately from Lemma 4. It also holds on a

complete manifold, except possibly for the last estimate of the volume of φ(M).

This estimate is not used in the proof of Theorem 1 anyway. Lemma 6 follows

for complete manifolds with the same proof. Lemma 7 is not part of the proof

of Theorem 1.

The most annoying technical problem occurs in Lemma 8. The problem

occurs because the nerve N may contain rectangles of every dimension. Any

given point will lie in only finitely many balls, but as the point goes to infinity

this number may blow up.

In the original proof of Lemma 8, we had a cycle z in N , and we built a

sequence of cycles z = zD ∼ zD−1 ∼ · · · ∼ zn, where D was the dimension of N

and zk lay in the k-skeleton of N . In general, the dimension of N is not finite,

but is only locally finite, and we must proceed a little differently. Instead, we

construct an infinite sequence of cycles, · · · ∼ zk+1 ∼ zk ∼ zk−1 ∼ · · · ∼ zn,

with zk lying in the k-skeleton of N , so that the sequence zk converges to z as

k tends to infinity.

In a region of N where the dimension is less than k, we define zk to be

the infinite composition Rδ(k+1) ◦ Rδ(k+2) ◦ . . . applied to z. (This infinite

composition is defined to be the limit of the maps Rδ(k+1) ◦ · · · ◦ Rδ(N) as N

goes to infinity. The sequence of maps converges uniformly on compact sets.)

In a region where the dimension of N is at least k, we define zk from zk+1 as

in the proof of Lemma 8. Every cycle zk is homologous to z by a locally finite

chain in N , and the rest of the argument in Lemma 8 applies as before.
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With these modifications, we get the proof of Theorem 1 in the general

case.

Theorem 1 (general case). For each dimension n, there is a number

δ(n) > 0 so that the following estimate holds : If (Mn, g) is a complete Rie-

mannian n-manifold with filling radius at least R, then V (R) ≥ δ(n)Rn.

Finally, we prove a corollary about universal covers.

Corollary 3. Let (Mn, g) be a closed aspherical Riemannian manifold,

and let V (R) measure the volumes of balls in the universal cover (M̃, g̃). Then

V (R) ≥ δ(n)Rn for all R.

Proof. In [5, p. 43], Gromov proved that the universal cover of M has

infinite filling radius. Applying Theorem 1, we get the corollary. �

7. A question about Uryson width

We say that the Ursyon k-width of a metric space X is at most W if there

is a continuous map π from X to a k-dimensional polyhedron whose fibers

have diameter at most W . The Uryson width is another way of measuring

how “thick” a manifold is, in a similar spirit to the filling radius. Gromov

proved in [5] that Uryson (n − 1)-width of a Riemannian manifold (Mn, g)

controls its filling radius. It is an open problem to understand how the volume

of a Riemannian manifold constrains its Uryson width.

Question. Is there a dimensional constant C(n) so that every closed Rie-

mannian manifold (Mn, g) has Uryson (n−1)-width at most C(n)Vol(M, g)1/n?

This question is analogous to Gromov’s estimate for the filling radius.

There is another question, analogous to Theorem 1.

Question. Is there a dimensional constant c(n) so that every closed Rie-

mannian manifold (Mn, g) with Uryson (n− 1)-width at least W has V (W ) ≥
c(n)Wn?

An affirmative answer to the second question is stronger than an affirma-

tive answer to the first question.

It looks plausibe that our proof of Theorem 1 can be modified to bound

the Uryson (n−1)-width of M instead of its filling radius, giving an affirmative

answer to the second question. To bound the Uryson width, we would modify

the proof of Lemma 8. For each k-face F of N , we make z′k∩F the image of zk
under a MAP that fixes the boundary zk ∩ ∂F and minimizes volume subject

to the boundary restriction. I believe that z′k should be a minimal cycle plus a

measure 0 region that can be pushed as close to ∂F as the minimal cycle piece.

Then our argument gives a sequence of homotopies of the map φ, ending with
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a map π into the (n− 1)-skeleton of N . If π(x) belongs to a face F , then φ(x)

must have belonged to Star(F ). Therefore, if I+(F ) contains an index i, then

π−1(F ) ⊂ φ−1[Star(F )] lies in Bi. Since each ball in our cover has radius at

most (1/100), it would follow that the Uryson (n − 1)-width of (M, g) is at

most (2/100).
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