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Abstract

We give estimates on the number ALH .x/ of conjugacy classes of arithmetic
lattices � of covolume at most x in a simple Lie group H . In particular, we obtain
a first concrete estimate on the number of arithmetic 3-manifolds of volume at
most x. Our main result is for the classical case H D PSL.2;R/ where we show
that

lim
x!1

log ALH .x/
x log x

D
1

2�
:

The proofs use several different techniques: geometric (bounding the number of
generators of � as a function of its covolume), number theoretic (bounding the
number of maximal such �) and sharp estimates on the character values of the
symmetric groups (to bound the subgroup growth of �).

1. Introduction

Let H be a noncompact simple Lie group with a fixed Haar measure �. A
discrete subgroup � ofH is called a lattice if �.�nH/<1. A classical theorem of
Wang [Wan72] asserts that if H is not locally isomorphic to PSL2.R/ or PSL2.C/,
then for every 0< x 2R the number LH .x/ of conjugacy classes of lattices in H of
covolume at most x is finite. This result was greatly extended by Borel and Prasad
[BP89]. In recent years there has been an attempt to quantify Wang’s theorem and
to give some estimates on LH .x/ (see [BGLM02], [Gel04], [GLNP04], [Bel07]
and [BL]).

If H D PSL2.R/ or PSL2.C/, then LH .x/ is usually not finite (and even
uncountable in the first case). Still Borel [Bor81] showed that the number ALH .x/
of conjugacy classes of arithmetic lattices in H of covolume at most x is finite for
every x 2 R.

In this paper we study the asymptotic behavior of ALH .x/ when x!1. Our
first result gives a general upper bound.

The authors acknowledge support from the BSF, ISF, EPSRC and ERC, and the valuable comments
and corrections of the anonymous referee.
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THEOREM 1.1. Assume that H is of real rank one. There exists a constant
b D b.H;�/ such that ALH .x/� xbx for all x� 0.

Theorem 1.1 is also true if the rank of H is greater than one; see Remark 5.1
below and [Gel], but for most higher rank groups much better estimates are given
in [BL]. Our next result shows that Theorem 1.1 is the best possible in general.

THEOREM 1.2. For H D PSO.n; 1/ there exists a constant aD a.n/ > 0 such
that ALH .x/� xax for all x� 0.

One novelty of the current work compared to [BGLM02] and [Gel04] is that
it deals with orbifolds rather than manifolds; i.e., we do not require the lattices to
be torsion free. However, it is clear from the proof that the lower bound remains
valid when restricting only to conjugacy classes of arithmetic torsion free lattices.
Another novelty is that it covers the case of H D PSO.3; 1/ D Isom.H3/, for
which the result translates to: the number of arithmetic hyperbolic 3 orbifolds (or
manifolds) of volume at most x is roughly xcx for large x. Prior to this work no
explicit upper bound was known in this case, as well as for the case H D PSO.2; 1/.
The upper bound obtained here confirms the expected estimate which follows from
the Lehmer conjecture concerning algebraic integers (cf. [Gel04]).

The proofs of Theorems 1.1 and 1.2 allow one to compute concrete constants,
but in general it seems very difficult to obtain sharp estimates for these constants.
The main part of this paper is dedicated to the classical case H D SO.2; 1/ı Š
PSL2.R/ where we obtain a very sharp estimate:

THEOREM 1.3. Let H D PSL2.R/ endowed with the Haar measure induced
from the Riemannian measure of the hyperbolic plane H2 D PSL2.R/=PSO.2/.
Then

lim
x!1

log ALH .x/
x log x

D
1

2�
:

The proof of Theorem 1.3 shows:

COROLLARY 1.4. Let AS.g/ be the number of arithmetic Riemann surfaces
of genus g. Then

lim
g!1

log AS.g/
g logg

D 2:

Let us now describe the main ingredients of the proofs. We start with a result
on the number d.�/ of generators of lattices � , which is of independent interest.

THEOREM 1.5. Let H be a connected simple Lie group of real rank one. Then
there is an effectively computable constant C D C.H/ such that for any lattice
� <H we have d.�/� C � vol.�nH/.

The proof of Theorem 1.5 is geometric and valid for all lattices, not neces-
sarily arithmetic. Note that Theorem 1.5 implies the celebrated Kazhdan-Margulis
theorem [KM68] asserting that there is a common lower bound on the covolumes
of all lattices in H . Indeed, d.�/ � 2) vol.�nH/ � 2

C
. It also has several
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other applications, for instance, it gives a linear bound on the first Betti number
of orbifolds in terms of their volume (cf. [FGT10] and see Remark 2.7 below and
[Gel]).

Another essential component in our proofs is the following.

THEOREM 1.6. Let MALuH .x/ (resp. MALnuH .x/) denote the number of con-
jugacy classes of maximal uniform (resp. nonuniform) irreducible arithmetic lat-
tices of covolume at most x in H D PGL2.R/a �PGL2.C/b . Then:

(i) There exists a positive constant ˛ D ˛.a; b/, and for every " > 0 a positive
constant ˇ D ˇ."; a; b/, such that

x˛ �MALuH .x/� x
ˇ.logx/" ; for x� 0:

(ii) There exist positive constants ˛0 D ˛0.a; b/ and ˇ0 D ˇ0.a; b/ such that

x˛
0

�MALnuH .x/� xˇ
0

; for x� 0:

Some yet unproved number-theoretic conjectures imply that a polynomial up-
per bound is true also in the first case (see [Bel07]).

Theorem 1.6 was proved in [Bel07] for higher absolute rank groups but the
cases of PSL2.R/ and PSL2.C/ which are the most crucial for us were left open;
in particular, Theorem 1.6 answers a question from [Bel07].

The general strategy of the proof of Theorem 1.6 is similar to [Bel07] but
some special considerations are needed for small rank. (Note that in [Bel07] the
proof is easier for very high rank; see Proposition 3.3 there.) The seminal work of
Borel [Bor81], which gives a detailed description of the maximal arithmetic lattices
in PGL2.R/a �PGL2.C/b combined with some ideas of Chinburg and Friedman
[CF86], enables us to prove it. Various number theoretic estimates are needed
along the way.

The fact that the number of maximal arithmetic lattices grows slowly reduces
the problem to the subgroup growth of a given such maximal lattice � .

Recall now that for any finitely generated group � , we have sn.�/� .nŠ/d.�/,
where sn.�/ denotes the number of subgroups of index at most n in � . This,
combined with Theorems 1.5 and 1.6, proves Theorem 1.1. The proof of the precise
bound in Theorem 1.3 requires more.

For PSL2.R/ the “miracle” is that the covolume of � and the subgroup growth
of � are both controlled by �.�/ – the Euler characteristic of � . The covolume
is �2��.�/ by the Gauss-Bonnet formula, and the number sn.�/ of subgroups
of index at most n in � is n.��.�/Co.1//n, as was proved by Liebeck and Shalev
[LS04]. Thus the contribution of � to ALH .x/ is roughly

s x
�2��.�/

.�/D
� x

�2��.�/

�.��.�/ 1
�2��.�/

Co.1//x

D x.
1
2�
Co.1//x;

which, on the face of it, proves Theorem 1.3. However, there is a delicate point
here: the behavior of the error term o.1/ above depends on � . This can be a
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serious problem: the issue is illustrated in [BL] where it is shown, in contrary to
a conjecture from [BGLM02] and [GLNP04], that for high rank Lie groups the
growth of the total number of arithmetic lattices is strictly faster than those arising
from finite index subgroups of a given lattice. Our next result yields a uniform
bound on the subgroup growth of Fuchsian groups and overcomes this difficulty:

THEOREM 1.7. There exists an absolute constant c such that for every Fuch-
sian group � and for every n 2 N we have

sn.�/� .cn/
��.�/n:

The proof is a modification of the one given in [LS04], it relies heavily on
bounds for the character values of symmetric groups.

Theorems 1.6 and 1.7 imply the upper bound in Theorem 1.3 (see �5). The
lower bounds in Theorems 1.2 and 1.3 are proved by analyzing the subgroup growth
of specific lattices. There is one delicate point which has to be considered here:
finite index subgroups of � may be conjugate in H without being conjugate in � .
An argument which uses the congruence topology of � solves this problem and
provides the lower bounds in all cases (see �5).

Note added in proof. Recently A. Eisenmann [Eis10] proved an analogous
result for H D PSL2.k/, where k is a p-adic field. His result says that if k does
not contain �C ��1 (where � is the p’th root of unity) then lim ALH .x/

x logx D q � 1,
where q is the order of the residue field of k. (Here � is normalized to give value
1 for the maximal compact subgroup of H .)

2. On the number of generators of a lattice

In this section we give a proof of Theorem 1.5. Since the center of H is
finitely generated, replacing H by its adjoint group we may assume it is center
free. We will assume below that H is not locally isomorphic to PSL2.R/. For
H D PSL2.R/ the theorem follows easily from the Gauss-Bonnet formula and the
explicit presentation of lattices there (cf. �4).

Let K <H be a maximal compact subgroup and X DH=K the associated
rank one Riemannian symmetric space. Then H is a connected component of the
group of isometries of X , and by our assumption dimX � 3. For g 2H; x 2 X
we denote by

dg.x/D d.x; g � x/

the displacement of g at x, and by

Min.g/ WD fx 2X W dg.x/D inf.dg/g

the (possibly empty) set where dg attains its infimum. Recall that there are three
types of isometries g of X :
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� g is elliptic if it has a fixed point in X . In this case the set of fixed points
Fix.g/DMin.g/ is a totally geodesic submanifold.

� g is hyperbolic if Min.g/ ¤ ∅ but Fix.g/ D ∅. In this case Min.g/ is an
infinite two-sided geodesic; it is called the axis of g.

� g is parabolic if Min.g/ D ∅. In this case g has a unique fixed point p at
the visual boundary @X of X , inf.dg/D 0 and a geodesic c W R!X satisfies
c.1/D p if and only if limt!1 dg.c.t//D 0.

Moreover, if g1; : : : ; gk 2H are commuting elements which are simultaneously
elliptic (resp. hyperbolic, resp. parabolic), then they have a common fixed point
(resp. axis, resp. fixed point at @X ).

Recall the classical Margulis lemma (cf. [Thu97, Chap. 4]):

LEMMA 2.1. There is a constant "H > 0, depending onH , such that ifƒ<H
is a discrete group generated by f
 2ƒ W d
 .x/� "H g for some x 2X , then ƒ is
virtually nilpotent.

Fix once and for all
"�min

n"H
10
; 1
o
:

Let � be a lattice in H . Denote by M D �nX the corresponding orbifold,
and by � W X !M the canonical (ramified) covering map. For a subset Y �M
let zY D ��1.Y / be its preimage in X D QM .

Let
zN WD [fMin.
/ W 
 2 � n f1g; inf d
 < "g:

Since � acts properly discontinuously on X , zN is a locally finite union of the
sets Min.
/. Note that since H is connected, any g 2H preserves the orientation
of X , and in particular if g is elliptic, then codimX .Fix.g//� 2. As zN is a union
of geodesics (axes of hyperbolic elements) and fixed sets of elliptic elements, the
assumption that dimX � 3 implies that codimX . zN/� 2. It follows that X n zN is
connected.

For 
 2 � n f1g and x 2X n zN set

d 0
 .x/D d
 .x/� inf d
 :

Let f W R>0 ! R�0 be a smooth function which tends to 1 at 0, strictly
decreases on .0; "� and is identically 0 on Œ";1/, and set for x 2X n zN

z .x/ WD
X


2�nf1g; infd
�"

f .d 0
 .x//:

Since f .d 0
 .x//¤ 0) d
 .x/� 2" and � is discrete, there are only finitely many
nonzero summands for each x. Thus z is a well defined � invariant smooth func-
tion onXn zN . Note that z .x/ tends to1 as x approaches zN . Let WM nN!R�0

be the induced function on M nN .
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For a � 0, set
z �a WD fx 2X n zN W z .x/� ag

and  �a D �. z �a/ D fx 2 X n zN W  .x/ � ag. Note that d
 .x/ � " for every
x 2 z �0 and 
 2 � n f1g. Thus, the injectivity radius of M at any point in  �0 is
at least "

2
.

LEMMA 2.2. For x 2X n zN , the gradient r z .x/D 0 if and only if z .x/D 0.

The proof relies on the following simple observations which follow directly
from the fact that X has strictly negative sectional curvature:

(1) If c1.t/; c2.t/ are two disjoint unit speed geodesics with c1.�1/D c2.�1/,
then d.c1.t/; c2.t// is a strictly increasing smooth function of t , and hence
d
dt
d.c1.t/; c2.t// > 0 for every t . In particular, if g � p D p for some g 2

H;p 2 @X and c is a geodesic with c.�1/D p, then d
dt
dg.c.t// > 0 for all

t , provided c is not g invariant.

(2) Suppose that A� X is a closed convex set and let PA W X ! A be the near-
est point retraction. Then d.PA.x/; PA.y// < d.x; y/ for any x; y 2 X nA.
We will say that a geodesic ray c W Œ0;1/! X starting at a point of A is
perpendicular to A if PA.c.Œ0;1//D c.0/. Then if c1; c2 W Œ0;1/!X are
two different unit speed rays perpendicular to A, the function d.c1.t/; c2.t//
is convex and strictly increasing. Hence if c W Œ0;1/!X is perpendicular to
A and g is an isometry which leaves the set A invariant but moves c.t/, then
d
dt
dg.c.t// > 0 for any t > 0.

Note that .1/ and .2/ fail to hold in higher rank symmetric spaces. In rank one
both assertions follow for instance from the well known Flat Strip Theorem: Two
parallel segments in a Hadamard manifold bound a flat parallelogram, in particular,
if the space has strictly negative curvature, then any two parallel segments are
contained in a common geodesic (cf. [Bal95, Cor. 5.8]).

Proof of Lemma 2.2. Let x be a point in X n . zN [ z �0/. Let †x be the finite
set of elements in � n f1g which contribute nonzero summands to the function z ,
i.e., those � for which f .d 0� .x// > 0. We will show that there is a geodesic c
through x (say, x D c.t0/) such that d

dt
jt0d� .c.t// > 0; 8� 2†x . This will imply

that

r z .x/ � Pc.t0/D
X
�2†x

f 0.d 0� .x//
d

dt

ˇ̌̌
t0
d� .c.t// < 0

and, in particular, that r z .x/¤ 0.
Let �x D h†xi. By Lemma 2.1, �x admits a normal nilpotent subgroup ƒx

of finite index in �x .
Suppose first that �x is a finite group. Let y be a common fixed point of †x .

Then as d� .x/ > 0D d� .y/ for all � 2†x , we derive from observation .2/ above
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(by considering fyg as a closed convex set) that the geodesic pointing from y to x
does the job.

Suppose now that �x is infinite. Let 
 be a nontrivial central element of
the nilpotent group ƒx , and let C�x .
/ be the conjugacy class of 
 in �x . Then
jC�x .
/j � Œ�x Wƒx�, C�x .
/ is contained in the center of ƒx and consists of el-
ements which are simultaneously elliptic, hyperbolic or parabolic. In the first case,
let A be the set of common fixed points of the elements of C�x .
/, in the second
case let A be the common axis, and in the third case let p 2 @X be the common fixed
point at infinity. Note that in the second case, as the geodesic A is �x-invariant,
we derive that �x consists of semisimple elements and A D Min.˛/ D axis.˛/
for every ˛ 2 �x which is hyperbolic. It follows that A does not contain our
point x, for otherwise †x must consist of elliptic elements preserving A and as
�x is infinite, there are ˛1; ˛2 2 †x without a common fixed point. However,
since the ˛i preserve A and d˛i .x/ < ", the element ˛1˛2 is hyperbolic with axis
A and displacement < ", which yields a contradiction (either to the assumption that
x 2 A or to the one that †x has no hyperbolic elements). In the first two cases we
can take c to be the geodesic through x perpendicular to the �x-invariant closed
convex set A, and in the third case we can take c to be the geodesic through x with
c.�1/D p. The result follows from observations .1/ and .2/ above. �

Since limt!0 f .t/D1, it follows that for any finite value a, the injectivity
radius is bounded from below on the closed set  �a. Hence  �a is bounded,
for otherwise it would admit an infinite 1-discrete subset, yielding infinitely many
disjoint embedded balls of a fixed radius in M , contradicting the finiteness of
vol.M/. Therefore  �a is compact for any a <1. Thus the function  is proper.
Applying standard Morse theory we get:

PROPOSITION 2.3. For every positive a,  �a is a deformation retract of
M nN .

Proof. By Lemma 2.2 the proper smooth function  WM nN W! R�0 has no
positive critical values. Thus the proposition follows from [Mil63, Th. 3.1]. �

For a > 0, we will denote by ra WM nN ! �a the retraction induced by the
deformation retract supplied by Proposition 2.3.

COROLLARY 2.4. For every a � 0 the set z �a is nonempty and connected.

Proof. For a > 0 this immediately follows from Proposition 2.3, and for aD 0
it follows since z �0 D

T
f z �a W a > 0g a descending intersection of the sets  �a.

�

Since z �a is �-invariant and � acts freely on it, we conclude:

COROLLARY 2.5. For every a > 0, � is a quotient of �1. �a/ — the funda-
mental group of  �a D �n z �a.
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Now recall that the injectivity radius of M at any point of  �0 is at least "=2.
Let S be a maximal "=2 discrete subset of  �0. For t > 0 denote by �.t/ the volume
of a t -ball in X . Since the "=4-balls centered at points of S are pairwise disjoint and
isometric to an "=4-ball in X , the size of S is bounded by vol.M/=�. "

4
/. Moreover,

since S is maximal, the union of the "=2-balls centered at points of S covers  �0.
Denote this union by U . Since U is a neighborhood of the compact set  �0 and
 is continuous, choosing a0 > 0 sufficiently small, we have  �a0 � U .

LEMMA 2.6. �1. �a0/ is a quotient of �1.U /.

Proof. The inclusion i W  �a0 ! U induces a map i� W �1. �a0/! �1.U /,
and the retraction ra0 restricted to U , ra0 WU ! �a0 induces a map r�a0 W�1.U /!
�1. �a0/. Since ra0 ı i is the identity on  �a0 , we see that r�a0 ı i

� is the identity
on �1. �a0/. It follows that r�a0 W �1.U /! �1. �a0/ is onto. �

Since M is negatively curved, the "=2-balls centered at points of S are convex
and hence any nonempty intersections of such is convex, hence contractible. Thus
these balls form a good cover of U , in the sense of [BT82] (see also [Gel04]), and
the nerve N of this cover is homotopic to U . Now �1.U /Š�1.N/ has a generating
set of size �E.N/ — the number of edges of the 1-skeleton N1. To see this one
may choose a spanning tree T for the graph N1 and pick one generator for each
edge belonging to N1 nT. Finally note that the edges of N correspond to pairs of
points in S which are of distance at most ". Thus the degrees of the vertices of N

are uniformly bounded, in fact, one can show that �.1:25"/=�.0:25"/ is an upper
bound for the degrees. Thus

d.�/� jE.N/j � �.1:25"/=�.0:25"/ � jSj �
�.1:25"/

�.0:25"/2
� vol.M/:

Remark 2.7. It has been recently shown that Theorem 1.5 holds for all semisim-
ple Lie groups, with no rank assumption (see [Gel]).

3. Counting maximal arithmetic subgroups

The main goal of this section is to prove Theorem 1.6. Only the upper bound
is needed for the main result of this paper (and a much weaker estimate suffices).

For simplicity of notation we will assume throughout the proof that H D
PGL2.R/ and remark at various points if nontrivial modifications are needed for
the general case. (For a proof of an even more general result including products
of PGL2.k/, where k is any characteristic 0 local field, see the forthcoming thesis
[Eis10].) We normalize the Haar measure on H so that for a lattice � its covolume
is equal to the hyperbolic volume of the corresponding locally symmetric space.
Borel [Bor81] described in detail the maximal arithmetic lattices in H . We will
follow the exposition of his work in [MR03].

Arithmetic lattices in H are all obtained in the following way: Let k be a
totally real number field of degree d D dk , and A a quaternion algebra over k.
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Assume that for all the archimedean valuations v 2 V1 except for a single one v0,
A ramifies over kv.Š R/, i.e., A.kv/ is isomorphic to the Hamiltonian quaternion
algebra, while A.kv0/ŠM2.R/. Let OD Ok be the ring of integers in k and let
D be an order in A.k/, i.e., D is a finitely generated O-submodule of A.k/ which
is also a subring that generates A.k/ over k. Furthermore, assume that D is a
maximal order in A. Let D� be the group of invertible elements of D. Now, D� is
discrete in

Q
v2V1

.A.kv//
�ŠU.2/d�1�GL2.R/, and its projection � to PGL2.R/

gives a discrete subgroup of PGL2.R/. A subgroup of H D PGL2.R/ which is
commensurable with such � is called an arithmetic subgroup of H . It is always a
lattice, i.e., a discrete subgroup of finite covolume in H . It is nonuniform if and
only if kDQ and A is the split quaternion algebra M2.Q/, i.e., � is commensurable
to PGL2.Z/. All the arithmetic lattices of PGL2.R/ are obtained in this way and
two arithmetic lattices of H are commensurable if and only if they come, in the
process as above, from the same algebra A. So for each such algebra A we can
associate a well-defined commensurability class of arithmetic lattices in H which
is denoted by C.A/.

Now, a quaternion algebra A over k is completely determined by the finite set
of valuations Ram.A/, a subset of the set of all valuations V of k which consists
of those v for which A.kv/ ramifies (i.e., A.kv/ is a division algebra), while for
v 2V nRam.A/, A.kv/ splits (namely, isomorphic to M2.kv/). The subset Ram.A/
must be of even size; in our case it is formed by exactly d � 1 real valuations
and a subset Ramf .A/, possibly empty, of non-archimedean valuations. The set
Ramf .A/ can be identified with a subset of the prime ideals of O. Let �.A/ DQ

P2Ramf .A/ P, the product of all prime ideals at which A ramifies.
Borel showed that the commensurability class C.A/ has infinitely many non-

conjugate maximal elements but only finitely many of them have bounded covol-
ume. The minimal covolume in the class C.A/ is

(1)
8��k

3=2�k.2/
Q

Pj�.A/.N.P/� 1/

.4�2/dk ŒRf;1
�
W .Rf

�/2�Œ2J1 W J2�
I

see [MR03, Cor. 11.6.6, p. 361 and (11.6), p. 333]. (Note that in [MR03, (11.28),
p. 361] the formula is given for PGL2.C/, in which case the factor 8� in the
nominator is replaced by 4�2.)

Here �k is the absolute value of the discriminant of k, �k is the Dedekind
zeta function of k and N.P / denotes the norm of the ideal P , i.e., the order of the
quotient field O=P . For the other notation we refer to [MR03, p. 358]. For our
purpose it is enough to know the following estimates:

(2) 1� ŒRf;1
�
W .Rf

�/2�Œ2J1 W J2�� 2
dCjRamf .A/jhk;

where hk is the class number of k (see [MR03, pp. 358–360]).
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We can now begin with the proof of Theorem 1.6. Assume that x is a large
real number. We first bound the number of possible fields k which can contribute
a maximal arithmetic lattice of covolume at most x. Then, given k, we will bound
the number of possible quaternion algebras A and finally, given k and A, we will
estimate the number of conjugacy classes of maximal lattices in C.A/ of covolume
at most x.

LEMMA 3.1. There exist two constants c1 and c2 such that if for some quater-
nion algebra A over k as above C.A/ contains a lattice of covolume at most x in
PGL2.R/, then dk � c1 log xC c2.

Proof. By [CF86, Lemma 4.3], we know that if � 2 C.A/, then

(3) covol.�/ > 0:69 exp
�
0:37dk �

19:08

h.k; 2; A/

�
;

where h.k; 2; A/ is the order of a certain quotient of the class group of k, in par-
ticular, 1 � h.k; 2; A/ � hk . This lemma is one of the main technical results of
[CF86], its proof uses a variety of number-theoretic techniques.

We obtain

(4) 0:69 exp.0:37dk � 19:08/� x;

and so

(5) dk � 3 log xC 21: �

LEMMA 3.2. There exist constants c3; c4 2 R>0 such that if for some A and
k as above there is � in C.A/ of covolume � x, then �k � c3xc4 .

Proof. Borel and Prasad [BP89, (7) on p. 143] deduced from Brauer-Siegel
theorem and a result of Zimmert that

(6) hk � 10
2
� �
12

�dk
�k :

Combining (1), (2) and (6), we obtain

(7)
8��k

3=2�k.2/
Q
P2Ramf .A/.N.P /� 1/

.4�2/dk2dkCjRamf .A/j102. �
12
/dk�k

� x:

Now N.P/�1
2
� 1 unless jN.P /j D 2, which can happen for at most dk primes

in Ramf .A/ and for those N.P/�1
2
D
1
2

. Also, �k.2/� 1. Thus from (7) we deduce

(8) x �
8��k

1=2

102.4�2/dk22dk . �
12
/dk
D
8�

102

�
1
2

k

.4
3
�3/dk

:

Now, use (5) to deduce that
8�

102
�
1
2

k
� x

�
4

3
�3
�3 logxC21

;

which implies the lemma. �
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We can now appeal to a theorem of Ellenberg and Venkatesh ([EV06], [Bel07,
Appendix]):

THEOREM 3.3. (i) Let N.x/ denote the number of isomorphism classes of
number fields k with �k � x. Then for every " > 0, there is a constant c5."/
such that logN.x/� c5."/.log x/1C" for every x � 2.

(ii) For a fixed d , let Nd .x/ be the number of isomorphism classes of number
fields k of degree at most d with �k � x. Then there exist c05 D c

0
5.d/ and

c005 D c
00
5.d/ such that Nd .x/� c05 � x

c005 for all sufficiently large x.

We can deduce from Lemma 3.2 and Theorem 3.3 that for every " > 0, the
number of number fields k which contribute lattices of covolume at most x is
bounded by xc6."/.logx/" for a constant c6."/ and x � 0. Given one of these
fields k with degree dk , we now estimate the number of relevant A’s. This number
is bounded from above by the number of possible ways to choose an even set of
valuations Ram.A/ consisting of dk�1 real valuations and Ramf .A/, which satisfy

(7). There are dk ways to choose the dk � 1 real valuations. Now, 8��
1
2

k
� 1 and

also �k.2/� 1 by Lemma 3.1, dk � c1 log xC c2, and hence by (7) we get

(9)
1

2jRamf .A/j

Y
P2Ramf .A/

.N.P /� 1/� c7x
c8 ;

for some absolute constants c7 and c8. The number of primes P with N.P /D 2
or 3 is at most 2dk . For them N.P/�1

2
�
1
2

and for all the other primes N.P/�1
2
�

N.P /log4.
3
2
/. We can therefore deduce that

(10)
Y

P2Ramf .A/

N.P /� xc9 ;

for some absolute constant c9.
Note that �.A/D

Q
P2Ramf .A/ P is a square free ideal of norm at most xc9 ,

whose factors determine A modulo the dk choices of the unique real valuation of
k in which A splits.

LEMMA 3.4. Let Ik.x/ denote the number of ideals of Ok of norm less than x.
Then Ik.x/� �k.2/x2 � .

�2

6
/dkx2.

Proof. Ik.x/Da1Ca2C� � �CaŒx� where an is the number of ideals of norm n.
At the same time �k.s/D

P1
nD1 ann

�s . Hence, for every large x, �k.2/x2� Ik.x/.
It is easy to see that �k.2/� �Q.2/

dk and it is well known that �Q.2/D
�2

6
. �

Again, as dk D O.log x/, we can deduce from Lemma 3.4 and (10) that
given k, the number of possibilities for �.A/ is polynomial in x. So all together
we now have a bound of the form xc."/.logx/" for the number of quaternion algebras
which give rise to lattices of covolume � x, or, in other words, for the number of
commensurability classes C.A/ with representatives of covolume at most x. Before
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continuing, let us mention that if one is interested in nonuniform lattices there is
at most one such A (i.e., k DQ and ADM2.Q/) and exactly one when x is large
enough. This is the case for PGL2.R/. For general H D PGL2.R/a � PGL2.C/b

this number is polynomial by Theorem 3.3 (ii) since the degree of the field of
definition of a nonuniform lattice in such H is aC 2b.

Now fix k and A, or, equivalently, Ram.A/. We need to count the maximal
lattices within the class C.A/. In [MR03, �11.4] a class m.A/ of lattices in C.A/

is described which essentially gives the maximal subgroups in C.A/, namely, it
contains all the maximal ones but maybe some more. We will show that even the
total number of all of them is polynomial in x. An element of m.A/ is denoted by
�S;D where D is a maximal order in A (in [MR03] it is denoted by O but we prefer
to use D as O for us is the ring of integers in k) and S is a finite set of finite primes
of k disjoint from Ramf .A/. When S is the empty set we get the group �∅;D. This
is a group of the minimal covolume in C.A/ whose covolume is given by (1). Up
to conjugacy, the number of such groups is the same as the number of conjugacy
classes of maximal orders D in A. This number is called the type number of A
(cf. [MR03, �6.7]). The type number is a power of 2 [MR03, Cor. 6.7.7]) which
divides hk2dk�1 (see [MR03, eq. (6.13) p. 221]). Recall that dk DO.log x/ (by
Lemma 3.1). On the other hand by (6), hk � 102. �12/

dk�k , and, by Lemma 3.2,
�k is polynomially bounded in x. Thus, the type number of A is also polynomially
bounded in x. We can therefore fix D and count the number of possibilities for S .
The exact form of �S;D is described in [MR03, �11.4], but for our current purpose
what is only relevant is its covolume which is given by Theorem 11.5.1 on page
357 there:

PROPOSITION 3.5.
covol.�S;D/
covol.�∅;D/

D2�m
Y
P2S

.N.P /C1/ for some 0�m�jS j.

Recall that the covolume of �∅;D is given by (1), but at this point we do not
need it. Just recall that a well known result of Siegel asserts that for all lattices � in
PGL2.R/, covol.�/� �

42
. (Note that in both casesGDPSL2.R/ andGDPGL2.R/

we have used the measure induced from the hyperbolic structure on G=K D H2.
Now the lattice of minimal covolume in PGL2.R/ has as fundamental domain
the pull back of the triangle .�

2
; �
3
; �
7
/ while its intersection with PSL2.R/ is of

minimal covolume there but needs two copies of that triangle.) We can deduce
now that if covol.�S;D/� x, thenY

P2S

N.P /C 1

2
�
42

�
x:

Arguing exactly as we did in (9), (10) and Lemma 3.4 when bounding the possibil-
ities for Ramf .A/ we deduce that the number of possibilities for S is polynomial
in x (in fact, it is even easier now as we do not need to exclude the primes 2 and 3).
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If H D PGL2.R/a � PGL2.C/b , instead of Siegel’s theorem we can use the
Kazhdan-Margulis’ theorem [KM68] or Borel’s result [Bor81, Th. 8.2] which
implies that covolumes of arithmetic lattices in H are bounded from bellow by
a positive constant which depends only on H . This finishes the proof of the upper
bounds in both parts of Theorem 1.6.

The proof of the lower bounds is much easier but it requires a detailed de-
scription of the groups �S;D above. As the lower bounds are not really needed for
the main results, we only sketch the argument assuming that the reader is familiar
with Section 11.4 of [MR03].

For the lower bound in case (a) of Theorem 1.6 we could vary the algebra
A and easily deduce that for some ı > 0, there are at least xı nonconjugate (and
also not commensurable after conjugation) maximal arithmetic lattices in PGL2.R/
with covolume at most x, but such a proof would not work for the nonuniform case
where all arithmetic lattices are commensurable (after conjugation) and there is
only one ADM2.Q/. For a proof which works in both cases fix k, A and D so that
C.A/ is a commensurability class of arithmetic lattices in H . We need to show that
there exist sufficiently many subsets S with

Q
v2S qv � x

c and �S;D is maximal.
For the group �S;D to be maximal there should exist an element a2k such that Qv.a/
is odd for v 2 S (here Qv.a/ denotes the logarithmic valuation on kv), a is positive
at the ramified real places of A, and Qv.a/ is even for v 2 Vf n .Ramf .A/[S/ (see
the discussion in �11.4 of [MR03] for more details).

Let p be a rational prime and let Sp be the set of places v 2 Vf such that
Qv.p/ is odd. Assume that p is unramified in k which is the case for all sufficiently
large primes. Then Sp consists of the prime ideals of k which divide p, so if
p1 ¤ p2, then Sp1 ¤ Sp2 . To every such p we can assign a maximal arithmetic
subgroup �p D �Sp;D which contains an element odd at v for v 2 Sp and even at
the remaining places in Vf nRamf .A/. Then for p1 ¤ p2 the groups �p1 and �p2
are nonconjugate maximal arithmetic subgroups of H . By Borel’s volume formula
(see (1) and Proposition 3.5)

covol.�p/� c1
Y
v2Sp

.qvC 1/;

where c1 D c1.k; A/ is a positive constant.
The set Sp contains at most dk places of k and

Q
v2Sp

qv �p
dk . This implies

that

covol.�p/� c1.2p/dk :

Thus, if p � 1
2
.x=c1/

1=dk D xc2 , then covol.�p/ � x. As k is fixed and so is dk ,
it follows from the prime number theorem that for a large enough x there exists a
constant ı > 0 such that there are at least xı such primes p and hence such �p’s.

This finishes the proof of the theorem. �
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Remark 3.6. Theorem 1.6 gives a solution to Problem 6.5 of [Bel07] and
implies that we can now remove the restriction that the group H has no simple
factors of type A1 in the main result there.

Remark 3.7. With the estimate of Lemma 3.2 at hand we can essentially repeat
all the steps of the proof of Theorem A in [BP89] for the groups G defined over
number fields and having the absolute rank one. The only missing ingredient,
which is an analogue of a number-theoretic result from Section 6.1 in [BP89] for
the groups of type A1, is now available because of Lemmas 3.1 and 3.2. This
allows us to remove the restriction on the absolute rank from the statement of the
Borel-Prasad’s theorem, which can be now formulated as follows:

Theorem 3.8. Let c > 0 be given. Assume k runs through the number fields.
Then there are only finitely many choices of k, of an absolutely almost simple al-
gebraic group G0 defined over k up to k-isomorphism, of a finite set S of places
of k containing all the archimedean places, of arithmetic subgroup � 0 of G0S DQ
v2S G0.kv/ up to conjugacy, such that �0S .G

0
S=�

0/� c.

We refer to [BP89] for the definition of the measure �0S with respect to which
the covolumes of arithmetic subgroups are computed (the so-called Tits measure),
introduction and more details on this important result. Note that an analogous
result for the groups over the global function fields is not true. For example, one
can show that the covolume of SLn.FqŒt�1�/ in SLn.Fq..t/// tends to zero if either
n or q!1 (see [BP89, �7.12]).

4. Uniform bounds for Fuchsian groups and characters of Symmetric groups

In this section we study the subgroup growth of finitely generated nonelemen-
tary discrete subgroups of PGL2.R/, the so called Fuchsian groups.

By classical work of Fricke and Klein, the orientation-preserving Fuchsian
groups � (i.e., those contained in PSL2.R/) have a presentation of the following
form:
(11)
generators W a1; b1; : : : ; ag ; bg ; .hyperbolic/; x1; : : : ; xd .elliptic/;

y1; : : : ; ys .parabolic/; z1; : : : ; zt .hyperbolic boundary elements/

relations W x
m1
1 D � � � D x

md
d
D 1;

x1 � � � xd y1 � � �ys z1 � � � zt Œa1; b1� � � � Œag ; bg �D 1;

where g; d; s; t � 0 and mi � 2 for all i . The number g is referred to as the genus
of � . Define �.�/D ��.�/, where �.�/ is the Euler characteristic of � (in the
rest of this section we reserve the letter � for characters of symmetric groups).
Then for � as above we have

�.�/D 2g� 2C

dX
iD1

�
1�

1

mi

�
C sC t:

It is well known that �.�/ > 0.
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The non-orientation-preserving Fuchsian groups have presentations as fol-
lows, with g > 0:

(12)

generators W a1; : : : ; ag ; x1; : : : ; xd ; y1; : : : ; ys; z1; : : : ; zt

relations W x
m1
1 D � � � D x

md
d
D 1;

x1 � � � xd y1 � � �ys z1 � � � zt a
2
1 � � � a

2
g D 1:

In this case we have

�.�/D��.�/D g� 2C

dX
iD1

�
1�

1

mi

�
C sC t;

and, again, �.�/ > 0.
We call Fuchsian groups as in (11) oriented, and those as in (12) nonoriented.
The Fuchsian groups with s D t D 0 are the uniform lattices; these are more

challenging ones since the other Fuchsian groups are free products of cyclic groups.
In this section we prove Theorem 1.7 which provides a uniform bound on the

subgroup growth of Fuchsian groups.
The novelty of Theorem 1.7 is that it holds for all n (not just for large n, where

large may depend on �), and that it uses �.�/ as the only parameter. For a fixed
group there are more refined asymptotic results (see [LS04]), but it is the uniform
version above which is crucial for our applications.

We shall now embark on the proof of Theorem 1.7. We assume throughout
this section that � is an oriented Fuchsian group with the presentation given in
(11). The proof in the nonoriented case (12) is very similar, hence omitted.

A major tool in our proof is character theory of symmetric groups (see [Sag01]).
We begin with some relevant notation and results.

Denote by Irr.Sn/ the set of all irreducible characters of Sn. By a partition of
a positive integer n we mean a tuple �D .�1; : : : ; �r/ with �1 � �2 � � � � � �r � 1
and

Pr
iD1 �i D n. Denote by �� the irreducible character of Sn corresponding to

the partition �.
The following result of Fomin and Lulov [FL95] plays a key role in our proof.

PROPOSITION 4.1. (Fomin-Lulov [FL95]) Fix an integer m� 2. Suppose n is
divisible by m, say nD am, and let � 2 Sn be a permutation of cycle-shape .ma/.
Then for any irreducible character � of Sn, we have

j�.�/j �
aŠma

.nŠ/1=m
��.1/1=m:

Consequently we have

j�.�/j � bn1=2 ��.1/1=m;

where b is some absolute constant.
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We note that the second assertion follows from first using Stirling’s formula.
In fact, as noted in [FL95], we even have j�.�/j � bn1=2�1=.2m/ ��.1/1=m. In the
rest of this section b denotes the constant above.

We shall also frequently use the Murnaghan-Nakayama Rule [Sag01, p. 180].
By a rim r-hook � in a �-tableau, we mean a connected part of the tableau contain-
ing r boxes, obtained by starting from a box at the right end of a row and at each
step moving downwards or leftwards only, which can be removed to leave a proper
tableau denoted by �n�. If, moving from right to left, the rim hook � starts in row
i and finishes in column j , then the leg-length l.�/ is defined to be the number of
boxes below the ij -box in the �-tableau.

LEMMA 4.2. (Murnaghan-Nakayama Rule) Let �� 2Sn, where � is an r-cycle
and � is a permutation of the remaining n� r points. Then

��.��/D
X
�

.�1/l.�/��n�.�/;

where the sum is over all rim r-hooks � in a �-tableau.

In order to apply the Murnaghan-Nakayama Rule it is useful to estimate the
number of rim r-hooks in a tableau. We quote Lemma 2.11 from [LS04]:

LEMMA 4.3. For any positive integer r and any partition � of n, the number
of rim r-hooks in a �-tableau is at most

p
2n.

We now deduce the following.

LEMMA 4.4. Let � D �� 2 Sn be a permutation of order m, where � has
cycle-shape .ma/ and � permutes the remaining n�ma points. Let C.�/ be the
number of cycles in � . Then for any � 2 Irr.Sn/ we have

j�.�/j � b.2n/C.�/=2�.1/1=mn1=2:

Proof. Applying the Murnaghan-Nakayama Rule repeatedly for each cycle in
� and Lemma 4.3, we see that

j�.�/j �
X
j�i .�/j;

where �i 2 Irr.Sma/, the sum has at most .2n/C.�/=2 terms, and �i .1/� �.1/. By
Proposition 4.1, j�i .�/j � b�i .1/1=mn1=2 � b�.1/1=mn1=2. This implies that

j�.�/j � b.2n/C.�/=2�.1/1=mn1=2

as required. �

For a permutation � 2 Sn we let �Sn denote its conjugacy class. We now
deduce the following.

PROPOSITION 4.5. Let m� 2 be an integer. Then for any positive integer n,
any permutation � 2 Sn satisfying �m D 1 and any character � 2 Irr.Sn/, we have

j�Sn j � j�.�/j< b.nn/1�1=m ��.1/1=m � .2e/n:
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Proof. Let � have cycle-shape .ma11 ; : : : ; m
ak
k
/, where

P
miai D n, m1 >

m2> � � �>mk andm1Dm (allowing the possibility that a1D 0). SetAD
Pk
iD2 ai .

Since

j�Sn j D
nŠQk

iD1m
ai
i

Qk
iD1 ai Š

�
nŠQk
iD1 ai Š

;

Lemma 4.4 implies that

(13) j�Sn j � j�.�/j �
nŠQk
iD1 ai Š

.2n/A=2b�.1/1=mn1=2:

Since na

aŠ
< ea for any positive integer a, we have n

P
aiQ
ai Š

< e
P
ai . Let B DPk

iD1 ai . Then

nŠQk
iD1 ai Š

�
nnQk
iD1 ai Š

D
nBQk
iD1 ai Š

nn�B < eBnn�B :

In view of (13) this implies that

j�Sn j � j�.�/j< eBnn�B.2n/A=2b�.1/1=mn1=2

� bnn�BCA=2�.1/1=meB2A=2n1=2:

Now, for i � 2 we have mi �m=2 (since mi is a proper divisor of m), so a1mC
Am=2�

Pk
iD1 aimi D n. Thus

B �A=2D a1CA=2� n=m:

We also have eB2A=2n1=2 � en2n=22n=2 D .2e/n. Hence

j�Sn j � j�.�/j< bnn�n=m�.1/1=m.2e/n;

which proves the result. �

We shall also use the following.

LEMMA 4.6. Fix a real number s > 0. ThenX
�2Irr.Sn/

�.1/�s! 2 as n!1:

In particular,
P
�2Irr.Sn/ �.1/

�s � C.s/ for all n, where C.s/ is a number depend-
ing only on s.

This result is proved in [LS04] (see Theorem 1.1 there) following earlier re-
sults for the case s � 1. Here we apply it for a rather small value of s, namely
s D 1

42
, which is the minimal value of �.�/ for a Fuchsian group � .

Next we study the space of homomorphisms Hom.�; Sn/ from a Fuchsian
group � to Sn by splitting it into subspaces whose sizes can be estimated. Let
g; d; s; t; m1; : : : ; md be as in (11) and let �D �.�/.
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Let g1; : : : ; gd 2 Sn be permutations satisfying gmii D 1 for each i . Let
Ci D g

Sn
i (1� i � d ) be their conjugacy classes in Sn. Write CD .C1; : : : ; Cd /.

Define

HomC.�; Sn/D f� 2 Hom.�; Sn/ W �.xi / 2 Ci for 1� i � dg:

Suppose now that � is a uniform lattice. The following formula, which essen-
tially dates back to Hurwitz [Hur02], connects jHomC.�; Sn/j with characters of
symmetric groups:

(14) jHomC.�; Sn/j D .nŠ/
2g�1
jC1j � � � jCd j

X
�2Irr.Sn/

�.g1/ � � ��.gd /

�.1/d�2C2g
:

This formula includes the case d D 0 in which � is a surface group, HomCDHom
and empty products are taken to be 1.

In fact, formula (14) holds for any finite group G in place of Sn; its proof
is carried out by counting solutions in G of the equations corresponding to the
defining relations of � . See, for instance, Section 3 of [LS04] for details and for a
similar formula for nonoriented Fuchsian groups.

LEMMA 4.7. With the above notation we have

jHomC.�; Sn/j � c1b
d .nn/�C1.2e/dn;

where c1 is some absolute constant.

Proof. Suppose first that � is uniform. We use formula (14) above. By
Proposition 4.5, we have

jCi jj�.gi /j � b.2e/
n.nn/1�1=mi�.1/1=mi

for all i D 1; : : : ; d . This yields

jHomC.�; Sn/j � .n
n/2g�1bd .2e/dn.nn/

Pd
iD1.1�1=mi /

X
�2Irr.Sn/

�.1/
Pd
iD1 1=mi

�.1/d�2C2g
:

Since �D 2g� 2C
Pd
iD1.1� 1=mi /, we conclude that

jHomC.�; Sn/j � b
d .2e/dn.nn/�C1

X
�2Irr.Sn/

�.1/��:

By Lemma 4.6 and a well known Siegel’s inequality �� 1=42, we haveX
�2Irr.Sn/

�.1/�� �
X

�2Irr.Sn/

�.1/�1=42 � c1;

where c1 D C.1=42/. The result follows by combining the two inequalities above.
It remains to deal with Fuchsian groups with sC t > 0. Let r D 2gC sC t �1,

Zm denote a cyclic group of order m, and Fr a free group of rank r . Then we have
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a free product decomposition

� ŠZm1 � � � � �Zmd �Fr :

It follows immediately that

(15) jHomC.�; Sn/j D .nŠ/
r
dY
iD1

jCi j:

We claim that if � 2 Sn satisfies �m D 1, then

(16) j�Sn j � en.nn/1�1=m:

Indeed, let a1; : : : ; ak be the multiplicities of the cycle lengths of � and let B DPk
iD1 ai be the number of cycles in � . Then, as in the proof of Proposition 4.5,

we have

j�Sn j �
nŠQ
ai Š
� eBnn�B :

Since all cycle lengths of � are at mostm, we have n=m�B � n. Thus eBnn�B �
ennn�n=m, proving the claim.

Recall that Ci D g
Sn
i and gmii D 1. Therefore, using the claim, we obtain

jCi j � e
n.nn/1�1=mi

for all i D 1; : : : ; d . Plugging this in (15) we conclude that

jHomC.�; Sn/j D .nŠ/
redn.nn/

P
.1�1=mi / � .nn/rC

P
.1�1=mi /edn:

Since r C
P
.1 � 1=mi / D �C 1 the result follows (with an even better upper

bound). �

We can now provide upper bounds for jHom.�; Sn/j. Given d define d1 D
max.d; 1/.

LEMMA 4.8. There exists an absolute constant c2 such that, with the above
notation, we have

jHom.�; Sn/j � .nn/�C1c
d1n
2

for all n.

Proof. We clearly have

jHom.�; Sn/j D
X

C

jHomC.�; Sn/j;

where the sum is over all possible CD .C1; : : : ; Cd /. Now, Sn has p.n/ conjugacy
classes, where p.n/ is the partition function, and each summand jHomC.�; Sn/j

can be bounded as in Lemma 4.7. This yields

jHom.�; Sn/j � p.n/d � c1bd .nn/�C1.2e/dn:
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It is well known that p.n/� c
p
n

3 � cn3 for some absolute constant c3. This yields

jHom.�; Sn/j � c1.nn/�C1cdn4 ;

for the absolute constant c4 D 2ebc3. This easily implies the required conclusion
(with c2 D c1c4). �

We can now draw conclusions to the subgroup growth of Fuchsian groups.

PROPOSITION 4.9. There exists an absolute constant c5 such that with the
above notation we have

sn.�/� n
�nc

d1n
5

for all n.

Proof. For a positive integer n, denote by an.�/ the number of index n sub-
groups of � . Define

Homtrans.�; Sn/D f� 2 Hom.�; Sn/ W �.�/ is transitiveg:

It is well known that an.�/D jHomtrans.�; Sn/j=.n� 1/Š (see, for instance, [LS03,
1.1.1]). Obviously, jHomtrans.�; Sn/j � jHom.�; Sn/j, so applying Lemma 4.8 we
obtain

an.�/� .n
n/�C1c

d1n
2 =.n� 1/Š

and hence
sn.�/� n � .n

n/�C1c
d1n
2 =.n� 1/Š:

Since n �nn=.n� 1/Š� cn6 for some absolute constant c6, we obtain

sn.�/� c
n
6 � .n

n/�c
d1n
2 ;

which implies the conclusion (with c5 D c2c6). �

We can finally prove the main result of this section, namely Theorem 1.7.
Note that �D 2g�2C

Pd
iD1.1�1=mi /��2Cd=2. This yields d � 2�C4,

and so
d1 � d C 1� 2�C 5:

Next, since �� 1=42, we have 5� 210�, and so 2�C5� 212�. This implies that

d1 � 212�:

Applying Proposition 4.9, we obtain

sn.�/� n
�nc

212�n
5 � .cn/�n;

where c D c2125 .
This completes the proof of Theorem 1.7. �

We did not make an attempt to optimize the constants appearing here and in
Theorem 1.7 in particular.
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Remark 4.10. It is intriguing that there are no uniform lower bounds on the
subgroup growth of Fuchsian groups. For example, let � be a triangle .p; q; r/-
group with p; q; r distinct primes which are greater than n (so � has a presentation
as in (11) with gD sD t D 0, d D 3 andm1Dp;m2D q;m3D r). Then one easily
sees that sn.�/D 0. Since n can be arbitrarily large no uniform lower bounds exist.

Finally, we can provide a lower bound on sn.�/ in terms of �.�/ which holds
for all n larger than some number depending on �:

PROPOSITION 4.11. Let � be a Fuchsian group. Then we have

sn.�/� .nŠ/
�.�/ for all sufficiently large n:

Proof. A somewhat stronger result, namely an.�/ � .nŠ/�.�/ � nb for every
fixed b and for all large n is given in Theorem 4.6 of [LS04]. However, the proof
given there only works for Fuchsian groups with torsion. The remaining Fuchsian
groups are free groups and surface groups. For the free group � D Fd (d � 2) it
is well known that an.�/� .nŠ/d�1 � nD .nŠ/�.�/ � n. For surface groups � it is
known that an.�/� 2.nŠ/�.�/ �n (see [MP02]). This implies the result. In fact, it
follows that for any constant c < 1 and for any Fuchsian group � we have

an.�/� cn.nŠ/
�.�/; for all sufficiently large n;

and this lower bound is the best possible. �

5. Proof of the main results

We can use now the results of Sections 2, 3 and 4 to prove the main theorems.

5.1. The proof of Theorem 1.1. Recall from [LS03, Lemma 1.1.2] that if �
is a finitely generated group with d.�/ generators, then sn.�/ � nd.�/n where
sn.�/ denotes the number of subgroups of index at most n in � . Let now H

be a fixed rank one simple Lie group. By Theorem 1.6 and [Bel07], MALH .x/D
MALuH .x/CMALnuH .x/� xa logx . Now, every arithmetic lattice � of covolume at
most x is contained in a maximal latticeƒ of covolume, say, y� x, and Œƒ W��� x

y
.

Hence

ALH .x/�MALH .x/ �maxfsx
y
.ƒ/ W y � x; covol.ƒ/D yg;

where ƒ runs over the finitely many conjugacy classes of arithmetic lattices of
covolume at most x. By Theorem 1.5, for such ƒ, d.ƒ/� Cy for some constant
C D C.H/; hence

sx
y
.ƒ/�

�
x

y

�d.ƒ/x
y
�

�
x

y

�Cy x
y
:

Now by Kazhdan-Margulis theorem (which also follows from Theorem 1.5 as we
noted in the introduction), y � C 0 for some C 0 D C 0.H/, and hence

ALH .x/� xa logx
�
x

C 0

�Cx
� xbx

for some constant b when x� 0. �
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Remark 5.1. As mentioned in Remark 2.7, Theorem 1.5 holds also for higher
rank semisimple Lie groups, thus the proof shows that Theorem 1.1 is valid in
general. We refer to [BL] for better estimates in the higher rank case.

5.2. The proof of Theorem 1.2. Fix n � 2. In [Lub96] it was shown that
H D PSO.n; 1/ has an arithmetic lattice � which is mapped onto the free group
on two generators. Let L.n/ be the set of subgroups of � of index at most n. Then

jL.n/j D sn.�/� sn.F2/� nŠ

(see [LS03, Cor. 2.1.2] for the right-hand side inequality). Thus, if covol.�/D v0,
� contains at least nŠ sublattices of covolume at most nv0. We should prove that
not too many of them are conjugate in H .

To prove this we argue as follows: Let C.n/ be the set of congruence sub-
groups of � of index at most n. By [Lub95], jC.n/j � nc0 logn= log logn for some con-
stant c0. There is a map � WL.n/!C.n/ sending a subgroup in L.n/ to its closure in
the congruence topology of � . There are therefore at least nŠ

nc0 logn= log logn � n
c1n sub-

groups in L.n/ with the same congruence closure. If �1 and �2 are two such sub-
groups with congruence closure �0 which are conjugate in H , say �1 D g�2g�1,
then g 2 CommH .�/, the commensurability group of � in H . As � is arith-
metic, CommH .�/ acts by k-rational morphisms (more precisely, in the adjoint
representation it has entries in k, where k is the number field over which � is
defined); hence g preserves the congruence topology. Thus, g normalizes �0, i.e.,
g 2 NH .�0/. Recall that NH .�0/ is itself a lattice in H (cf. [Rag72]), hence by
Kazhdan-Margulis theorem (or by Theorem 1.5) has covolume at least C 0. This
implies that at most c2n subgroups like �2 can be conjugated to �1 in H . Thus, H
has at least nc1n=c2n� nc

0
1n conjugacy classes of arithmetic lattices of covolume

at most nv0. This proves Theorem 1.2.

5.3. The proof of Theorem 1.3. We shall prove a more precise statement:

THEOREM 5.2. Let H D PSL2.R/ and ALH .x/ be the number of conjugacy
classes of arithmetic lattices in H of covolume at most x. Then there exist 6 < r <
s 2 R such that

.rx/
1
2�
x
� ALH .x/� .sx/

1
2�
x

for all sufficiently large x.

Proof. We will prove first the upper bound. As in the proof of Theorem 1.1
above, ALH .x/�MALH .x/ �maxfsx

y
.ƒ/g. Again, by Theorem 1.6, MALH .x/�

xb logx , but this time we also know that yD covol.ƒ/D�2��.ƒ/ and by Theorem
1.7, sx

y
.ƒ/� .c x

y
/��.ƒ/

x
y . Thus altogether

ALH .x/� xb logx
�

�
c
x

y

���.�/ x
�2��.�/

� .sx/
1
2�
x

for a suitable constant s, as y � �
21

(by Siegel’s theorem).
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To prove the lower bound, take � to be the arithmetic lattice in H D PSL2.R/
of the lowest covolume ( �

21
), namely the .2; 3; 7/-triangle group. By Proposition

4.11, sn.�/� n��.�/n for n� 0. Again using the congruence topology of � and
the upper bound on the number of congruence subgroups from [Lub95], we can
deduce, as in the proof of Theorem 1.2 above, that � has at least

n��.�/n

.nc0 logn= log logn/.c2n/
� .c3n/

��.�/n

subgroups of index at most n which belong to differentH -conjugacy classes, where
the constant c3 could be taken 1� " for arbitrary positive ". Each such subgroup is
a lattice of covolume at most x WD n � covol.�/D�2��.�/n. Thus we have found
at least �

c3
x

covol.�/

���.�/ x
�2��.�/

�

�
c3

�=21
x

� x
2�

conjugacy classes of arithmetic lattices in H of covolume at most x. This finishes
the proof of Theorem 5.2 and consequently of Theorem 1.3. �

Let us remark that the use of the .2; 3; 7/-triangle group was made only to
ensure that r > 6. For proving the lower bound of Theorem 1.3 we could use any
arithmetic lattice in PSL2.R/.

Proof of Corollary 1.4. The genus g surfaces are in one to one correspon-
dence with the conjugacy classes of torsion free lattices in PSL2.R/ of covolume
4.g� 1/� . Thus Theorem 1.3 implies the upper bound in Corollary 1.4. The proof
of the lower bound is similar to the proof of the lower bound in Theorem 1.3, just
choose as a starting arithmetic lattice one which is torsion free and then count its
finite index subgroups. �
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