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Abstract

In this note we show that the quotient field of a domain which is Henselian with
respect to a nontrivial ideal is a large field, and give some applications of this fact,
using a specialization theorem for ramified covers of the line over (generalized)
Krull fields.

1. Introduction

For a field K, let K(¢) be the rational function field in ¢ over K, and let
pr; : Gk() — Gk be the corresponding canonical surjective projection between
the corresponding absolute Galois groups. Every finite split embedding problem
EP=(y:Gg — A,a: B — A) for Gk gives rise to the finite split embedding
problem EP; := (y opr, : Gg;) — A,a : B — A) for Gg(). The following are
two main open (and equivalent) problems in Galois Theory, see e.g., [DD97]:

PROBLEM®®. Let K be an arbitrary Hilbertian field. Then every finite split
embedding problem EP for Gk has proper solutions.

PROBLEM". Let K be an arbitrary field. Then for every finite split embedding
problem EP for Gk, the corresponding EP; for G k() has proper solutions.

Positive answers to the above Problems would imply —among other things,
the Inverse Galois Problem and the Shafarevich Conjecture on the freeness of the
kernel of the cyclotomic character. The above Problems have positive solutions
over fields K which are large fields, see e.g. [Pop96, Main Theorems A and B].
The large fields were introduced in loc. cit., and proved to be the “right class”
of fields over which one can do a lot of interesting mathematics, like (inverse)
Galois theory, see e.g. Colliot-Thélene [CTO00], Pop [Pop96], and the survey article
Harbater [Har03], study torsors of finite groups Moret-Bailly [MBO1], study ratio-
nally connected varieties Kollar [Kol99], study the elementary theory of function
fields Poonen—Pop [PP08], etc.! Recall that a field K is called a large field, if
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I'Maybe this is the reason why the “large fields” acquired several other names —google it: ample,
AMPLE, épais, fertile, weite Korper, anti-Mordellic, etc.
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every smooth K-curve C satisfies: If C(K) is nonempty, then C(K) is infinite.
Examples of large fields are the PAC fields, the complete fields like k((x)), the
real /p-adically closed fields, and more generally the Henselian valued fields, the
p-fields, etc. See Pop [Pop96] for more about large fields.

In recent years, Harbater—Stevenson solved Problem®™ over K = k((x, y)) in
a stronger form, see [HSOS5, Th. 1.1], by showing that every nontrivial finite split
embedding problem for Gk has | K| distinct proper solutions. And very recently,
Paran [Par09] solved Problem® over K = Quot(R), where R is a complete Noether-
ian local ring (satisfying some further technical conditions). The methods of proof
in both cases are ingenious and quite technical. These results also seemed to give
further new evidence for the fact that the Problems above can be solved in general,
as it was generally believed that the above fields K = k((x, y)), and more general
K = Quot(R) with R complete Noetherian local and Krull.dim(R) > 1, were not
large fields. Note that these fields are definitely not Henselian valued fields!

The first point of this short note is to prove that actually K = k((x, y)), and
more generally, K = Quot(R) with R a complete Noetherian ring, are large fields,
and that the class of large fields is much richer than previously believed. In par-
ticular, one can deduce Paran [Par09] from the already known fact that Problem®
has a positive answer over large base fields K. Second, I give a lower bound for
the number of distinct solutions of a nontrivial finite split embedding problem over
a Hilbertian large field, a result which represents a wide extension of Harbater—
Stevenson [HSO05]. Finally, using these results, one can generalize Harbater’s
result [Har09, Th. 4.6] (see Theorem 1.3 below), thus giving new evidence for
(a stronger form of) Bogomolov’s Freeness Conjecture as presented in Positsel-
ski [Pos05].

In order to announce the results of this note, we first recall that a commutative
ring R with identity is said to be Henselian with respect to an ideal a, or that R, a
is a Henselian pair, if we denote R := R/a and R[X]— R[X], f(X)+ f(X) the
reduction map (mod a), for every polynomial f(X) € R[X] the following holds:
If @ € R is aroot of f(X) such that f/(@) € R, then there exists a lifting a € R
of @ such that f(a) =0and f’(a) € R*. Intuitively, this means that “simple roots”
of f(X) lift to “simple roots” of f(X). See [Lf] for basic facts about Henselian
rings. The following remarks are in place here:

1) a-adically complete rings with a # (0), in particular the power series rings
R = Ro|[[x1,...,xn]] where Ry is a domain and a = (x1, ..., x,), are Henselian
with respect to a.

2) If K is a Henselian field with respect to a valuation v, and R,, m, are the
corresponding valuation ring and valuation ideal, then R, m, is a Henselian pair.

3) Nevertheless, if R, a is a Henselian pair, then K = Quot(R) is in general
not a Henselian valued field. This happens for instance if R is Noetherian and
Krull.dim(R) > 1.

The generalization of Paran [Par09] is the following:
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THEOREM 1.1. Let R be a domain which is Henselian with respect to some
ideal a # (0). Then K = Quot(R) is a large field. In particular, Problem® has a
positive answer over K.

The generalization of Harbater—Stevenson [HSOS, Th. 1.1], is as follows: De-
note R = k[[x, y]] and K = k((x,y)) := Quot(R). First, K is a large field by
Theorem 1.1 above, and K is Hilbertian by Weissauer’s [Wei82, Th. 7.2], applied
to the Krull domain R. Second, V" := {vy | p € Spec(R), p minimal nonzero} is a
set of discrete valuations which satisfies:

i) The set V', :={v € V| v(a) # 0} is finite for every a € K*.

i) If L|K is finite Galois, then ¥’z x := {v € ¥ | v is totally split in L|K} has
cardinality |V x| = |K]|; see e.g., Theorem 3.4.

A field K endowed with a set V" of discrete valuations satisfying 1), ii), is called a
Krull field.

The point is that the property of K = k((x, y)) being a Hilbertian large Krull
field implies an even stronger/more precise result than [HS0S5, Th. 1.1], as follows
(see §4 for definitions and Theorem 4.3, which strengthens and proves Theorem
1.2 below):

THEOREM 1.2. Let K be a Hilbertian large Krull field. Then every nontrivial
finite split embedding problem for Gk has | K| independent and totally ramified
proper solutions.

Finally, the generalization of Harbater [Har09, Th. 4.6], is the following:

THEOREM 1.3. Let R, m be an excellent two dimensional Henselian local
ring with separably closed residue field k such that the quotient field K := Quot(R)
has char(K) = char(k). If |k| < |R|, suppose that there exists x € m such that
k[[x]] C R. Then Gk is profinite free on | K| generators.

2. Proof of Theorem 1.1

Let C — K be an integral curve over K with x € C(K) a smooth K-rational
point. We show that actually |C(K)| = |K|; thus in particular, C(K) is infinite.
Since any two birationally equivalent curves have isomorphic Zariski open subsets,
it is sufficient to prove the above assertion for any particular K-curve which is
K -birationally equivalent to C and has a smooth K-rational point. Thus by general
algebraic geometry non-sense, without loss of generality, we can suppose the fol-
lowing: C C AZ, and x € C(K) is the origin of A2, and C = V(f) is defined by an
irreducible polynomial f(X1, X») € K[X1, X3] of the form f (X1, X2) =6X»+ f~,
where 6 # 0, and f is a polynomial in X1, X» with vanishing terms in degrees
< 2. Moreover, since K = Quot(R) is the field of fractions of R, after “clearing
denominators”, we can suppose that f € R[X1, X»]; hence § € R, § # 0.
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Let us consider the “change of variables” X1 = §Y1, X5 = §Y5. Then in the
new variables Y7, Y5 the curve C is defined by g(Y1, Y2) = 0, where

g(Y1,Y2) = f(8Y1,8Y2) = 82 + [(8Y1.8Y2) = 83[ Yo+ §(Y1.Y2)]

with g € R[Y1, Y»] having vanishing terms in degrees < 2. Likewise, the K-curve
C is defined in the (Y7, Y>)-affine plane by h(Y71, Y2) := Y2 + g(¥Y1,Y>2) = 0. And
remark that (Y7, Y2) = 0 defines a model, say Cy,, of C over R. The projection
on the Y7 affine line

Cp = Spec R[Y1. Y]/ (h) — Ak

is smooth in a neighborhood of the origin of A%z viewed as an R-rational point
of Ch.

Coming back to the proof of Theorem 1.1, suppose that in the above context,
R is Henselian with respect to a. For every a € a, let us set /14 (X) :=h(a, X). Then
by the definition of / and h, we get: h,(0) € a, and 4,(0) € 1 + a. Thus viewing
this mod a, we get: 0 is a simple root of ha € R[X]. Since R is Henselian with
respect to a # (0), there exists a (unique) b € a such that 4, (b) = 0. Equivalently,
h(a,b)=0,i.., (a, b) defines a K -rational point of C. Moreover, the set of rational
points of this form is in bijection with a. Thus since |a| = |R|, and |R| = | K], it
follows that C(K) has cardinality |K|; in particular C(K) is in infinite, and K is
large. This concludes the proof of Theorem 1.1.

Note that in the first part of the argument above we did not use the fact that
R is Henselian with respect to a, and the above argument can be generalized to
arbitrary dimensions:

PROPOSITION 2.1. Let K = Quot(R) be the quotient field of some infinite do-
main, and X — K be an integral d -dimensional K -variety with a smooth K -rational
point x € X(K). Then X is birationally equivalent to a K -hypersurface H C A}‘?H
which contains the origin, and such that H is defined over R. The projection on
the first d -coordinates H — A% is smooth in a Zariski neighborhood of the origin
viewed as an R-rational point of H.

Moreover, if R is Henselian with respect to an ideal a # (0), then the image

of the canonical projection H(R) — A% (R) = R? contains a®.

3. Two basic facts

A) Totally split primes/valuations.

Notation 3.1. Let R be a domain, K := Quot(R), and L|K be a finite Galois
extension. Let S C L be a finite Gal(L|K)-invariant R-subalgebra having quotient
field Quot(S) = L and satisfying S N K = R.

1) We denote by 8 € S a generator of L|K having its minimal polynomial
po(X)=X"+a,_1 X" ' +...+ a9 € R[X], and discriminant §4 € R.

2) By general Hilbert decomposition theory, the following are equivalent:
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a) p € Spec(R) is totally split in S|R.
b) There exists 6 as above such that g ¢ p and pg(X) has a root in Ry,

c) There exists 6 as above and «y, ..., o, € Ry with o; # «j (mod py) such that
Po(X) =] [(X —an) = pg(X)  (modpy).
w

3) A way to generate the above context is as follows: Let 8 € S and pg € R[X]
be as at point 1) above. Set h(T,U)=T"+a,_1T" U+ -4+a; TU" 1 +aoU".
Then for every r,s € R, s # 0, one has s” pg(r/s) = h(r,s). And if p € Spec(R)
satisfies: 5,89 & p and h(r, s) € p, then p is totally split in L|K.

We will apply the remarks above to get a lower bound for the cardinality of
the set of totally split prime ideals in L|K as follows:

4) Let m € Spec R, k C R be a system of representatives for R /m, and denote
k*® := k\m. For a fixed nonzero x € m, we say that a formal series of the form
E(X):=)_, e, X" with &, € k is x-adically convergent in R if and only if there
exists rg(x) € R such that for all n > 0 one has: rgx) — >, ., &vx” € X"R;
and if so, we say that rg(x) is an x-adic limit of E(X). Note that if ), &, X"
and ), 7, X" are x-adically convergent series, as above, having a common limit
r € R, then &, = n, for all n (proof by induction on n). In particular, if €, (X) is
the set of all the x-adically convergent series £(X) in R, and €, (x) € R contains
exactly one x-adic limit 7g(y) for each E(X) € €,(X), then €,(X) — €, (x),
E(X) + rg(x), is one-to-one. Therefore we have [€,(X)| < |R]|.

5) Let ? be a set of prime ideals p C m, p # m, of R such that the subset
P(x):={peP|xep}isnonempty for every x € m. Finally, for the finite Galois
extension L|K denote Py |k :={p € P | p is totally splitin L|K }.

LEMMA 3.2. In the above Notation 3.1, let r, x € m satisfy P(r)NP(ax) = I,
where a = agdy. Let ¥ = X7, . C R be an infinite subset satisfying the following
conditions:

1) Pu)NPlarx) =S forallu € 3.
i) P(u —v) C P(x) for all distinct u,v € X.

Then Pk has cardinality |Pp k| > |Z|.

Proof. Since h(T,U) =T" +an—1T" U +---+aoU" € R[T, U], we have
h(ru,ax) € m for u € X, because r, x € m. Hence by the hypotheses on %, there
exists p,, € P such that h(ru,ax) € p,. We first claim that r, u, a, x & p,,. Indeed,
since h(T,U) € R[T, U], and h(ru, ax) € p,, we have: If ax € py, then (ru)" € py;
hence ru € py; and if ru € p,, then ag(ax)” € py; hence ax € p,, because agpla
in R. Thus, finally ru € p,, if and only if ax € p,,. Since P(r) N P(ax) = & and
P(u) NP(arx) = & by hypothesis, we finally must have ru, ax & py,.
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We conclude that h(ru,ax) € p, implies r,u,a,x & py, and in particular,
09 & pu. Therefore, by point 3) above we get: If h(ru,ax) € py, then p,, is totally
splitin L|K.

Claim. Let I C X be a finite set of cardinality |/| > n. Then
ﬂuel@(h(ru,ax)) = .

By contradiction, let p € @(h(ru,ax)) for all u € I. By Notation 3.1, 2)
and 3), applied to p, there exist @y, ...,a, € Ry such that

h(T.U) =] [(T —euU) € Ry[T. U]
w

satisfies: h(T, U)—E(T, U) €pp[T, U]. Since h(ru,ax) € p forall u € I, it follows
that fz(ru, ax) € py, for all u € 1. On the other hand, ﬁ(ru, ax) = ]_[M(ru —axoy,),
hence for every u € I there exists , such that ru —axay, € py. Since |1| > n,
there exists u # v in I such that p, = py, and ru —axoy,, rv —axoy, € pp.
Hence ru —rv =r(u —v) € py, ie., r(u —v) € p. Since r,u,a,x ¢ p by the
discussion above, we get u — v € p. But P(u — v) € P(x) by hypothesis, hence
X € p, contradiction! The claim is proved.

To conclude, let @5, := Uyex P (h(ru, ax)), and £, := {u € | h(ru, ax) € p}
forp e Pyx. Then the map ¢ : Py — 22, p > Xy, has the properties: Upegpy Xy = X;
and |Zy| <n for all p € Px. By cardinal arithmetic, and taking into account that
X is infinite, we see that the set {X, | p € Px} has cardinality | 2|, thus concluding
the proof. O

LEMMA 3.3. In the above Notation 3.1, suppose that for every nonzero ro € m,
there exists r1 € m such that P(ro) N P(r1) = &. Then for every nonzero x € m,
the following holds: |Pp k| > |€,(X)| = Ro |R/m|.

Proof. For L|K and the corresponding a := a¢dg as in Lemma 3.2, choose
r € m such that P(r) N P(ax) = &. We claim that the set X := k® 4+ xE,(x)
satisfies the conditions 1), ii), from loc. cit.: First, if u := g9 + xE(x) € X with
g0 €m, xE(x) € m, then u € m. Thus P(u) = @, and X satisfies i). Second, for
u #vin X, one has u —v = +x"[(¢;, —ny) + xr] for some p > 0 with g, # 1,
in k, and r € R. Since g, # ny, we get &, # 7, in R/m; hence g, — 7, # 0
in R/m. But then &, —n,, & m, and therefore, (¢, —ny) + xr ¢ m. Therefore,
Pu—v) = P(xH*) C P(x); hence X satisfies condition ii). Conclude by taking
into account that | X| > [x€,(x)| = |, (X)|, and by applying Lemma 3.2. O

THEOREM 3.4. Let R be a domain whose interal closure R in K := Quot(R)
is a Krull domain, e.g. R is Noetherian, or itself a Krull domain. Let V' be the set
of valuations v on K defined by the localizations of R at its minimal nonzero prime
ideals. Then K endowed with V' is a Krull field, provided there exists a prime ideal
m C R of height > 1, a set of representatives k C R for R/m, and a nonzero x € m,
such that |€,(x)| = |R|. This holds, if one of the following is true:
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i) |R| = Ro; 0r |R| = |R/m|;0or R<2%0 and all Y,y X", N CN, belong
to €, (X).

ii) m is countably generated and Nym™ = (0), and all ), e, X", &5 € k, belong
to €, (X).

The hypothesis ii) is satisfied if R is complete with respect to a finitely generated
nonzero ideal a C m, and R/ a is either Noetherian or a Krull domain; for example,
R = Ro[[X1,...,Xn]], where Ry is a Noetherian or a Krull domain such that
n + Krull.dim(Ryp) > 1.

Proof. First we prove that either of the conditions i), ii), implies |€,(x)| = |R|:
Let x C R be a system of representatives for R /m, which in case ii) equals the given
one, respectively such that 0, 1 € « in case i). Then in the case i), it follows directly
from the hypothesis and (elementary) cardinal arithmetic that |€,(x)| = |R|. In
case ii), let (x;);es be a system of generators of m with |/| <Ry, and let M be the
set of all the (formal) monomials in the x;’s. Then |M | = 8. Further, the m-adic
completion morphism R — Ris injective, because N, m" = (0). Since every & € R
is represented by a series of the form ), a,u with u € M and a, € k, we get:
|R| < |§| < kM| < |k|®o. On the other hand, €, (x)| = |«|¥°, and |€.(x)| < |R|.
Finally, |R| = |k|®0 = |€,(x)], as claimed.

Next we prove that K endowed with V" is a Krull field. By hypothesis we
have: Every v € 1 is a discrete valuation with valuation ring of the form 0, := iéq
with q C R a minimal nonzero prime ideal; and every nonzero r € R is contained
in only finitely many g as above. In particular, since R is infinite, |V'| < |R|. Let
nCRbea prime ideal above m having height > 1. Since R/m C R /n canonically,
we can choose a set of representatives w C R for R /n containing the above set
of representatives k for R/m. Let P be the set of all the minimal nonzero prime
ideals q C n of R, and W C ¥ be the set of all the valuations in ¥ defined by
the q € . Since R is a Krull domain, the hypothesis of Lemma 3.3 is satisfied
for n and ?. Hence by loc. cit. we have: If L|K is a finite Galois extension, then
|PLik| > |[€w(x)], or equivalently, W' x| > |[€,(x)[. On the other hand, since
k € w, one obviously has |€,(x)| > |€,(x)|. Further, since W C ¥, one has
Wk €V k- Thus taking into account all the above (in)equalities we finally get
R > V] > [Vpix| 2 [Weik| 2 [0()] > [£c(x)] = |R|. Since |R| = || = K|,
we conclude that |V x| = | K|, as claimed. O

B) Specializations of Galois covers.

Notation 3.5. Let K be a base field, and B a finite group. Let ¢ : X — P}( be a
finite ramified B-cover, with branch locus S C IP’}(. Suppose that X is smooth, and
[P’}( is the projective ¢-line, i.e., P}( = SpecK[t] USpecK[%] such that S C SpecK[¢].
Let x(X) be the function field of X; hence x(X)| K(¢) is a Galois extension with
Gal(k(X)| K(1)) = B.
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1) Let K4 be the relative algebraic closure of K in x (X ). Then A:=Gal(K4|K)
shall be called the arithmetical quotient of B, and C := Aut 1. (X) the geometric
A

part of B. One has:
a) The A-cover P}(A — [P’}( is étale.
b) The C-cover X — [P’}(A is such that X is geometrically integral over Ky.

Hence, first, the inertia groups of ¢ are contained in C, and second, they generate C.

2) Let X1am C X be the ramification locus of ¢, and Xy C X;ay be the fiber
of p at s € S; let es := |I| > 1 be the order of the inertia group I at x > s.

e From now on suppose that K is Hilbertian and «(x)|K is separable for all
X € Xram.

3) Let K,|K be a minimal Galois extension such that X, C X(K,). For
s € S, consider the set ¥ of all the valuations v of K which are totally split in the
field extension K,|K and have vK # £ - vK for all prime numbers £ | e;.

4) Let H, C K be a Hilbertian set such that for all b € Hy, the fiber of ¢ at
t = b is irreducible, and the resulting Galois extension K |K is linearly disjoint
from K, over K4. Hence Gal(Kp|K) = B = Gal(/c(X )| K (t)) in a canonical way.

5) Finally, for b € H,, and v € ¥, let ¥ := {w | w prolongs v to Kp}, and
for every w € ¥y, let I, be the inertia group at w|v.

THEOREM 3.6. There exists a finite subset X, C K> such that for every sys-
tem of independent rank-one valuations (Vs)ses with vs € Vs and vs(Ey) = 0, there
exists b € Hy satisfying:

1) Foreverys€ S, one has {L, | w € V', } = {Ix | x € X5} canonically inside C.
2) In particular, Gal(Kp | K4) is generated by the I, with w €V, and s € S.

Proof. We begin by a preparation along the following three main steps:

Step 1. Let A":=Gal(Ky|K), and B':=Bx4 A’. Then when X':= X x g, Ky,
the resulting ¢’ : X’ — P is a ramified B’-cover dominating both the étale A’-cover
I]j’}{w — IP}(, and the ramified B-cover ¢ : X — [P’}<. The geometric part of ¢ is
C’ = C x4 {1} = C, and under this identification, the inertia groups of ¢’ are
identified with those of ¢; precisely, if X’ > x’ +> x € X are above s € S, then
Lo = I x4 {1} = L.

In the same way, on the valuation theoretical side, Ké := Ky K} is the composi-
tum of Kj and K. Since Ky|K and Kj|K are linearly disjoint over K4, we have
Gal(K'| K) = Bx4 A". Let vs € Vs, and w'|vy a prolongation to K, and w := w’|,,.
Then by general decomposition theory, I,s projects onto I, under B’ — B. On the
other hand, since vy € U is totally split in K,|K (by the definition of V), hence
in K4 = Kp N K, too, we have: I,y CC’,and I, C C. Since C' = C x4 {1} =C
canonically, we have I,y = I;,.

Therefore, mutatis mutandis, we can and will suppose that K, = Ky; i.e., all
ramified points of X — P} are Kq-rational. Set S’ := § xg Ky.
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Step 2. Let R be the integral closure of K4[t] in k(X). For s’ € S’ above
s € S, let x € X be a fixed point above s’. Since R is a Dedekind ring, we can
choose u € R satisfying:

e vp (u)=1,and vy, (u—1)=1"foro € C\Iy; and k(X) = Kq(¢)[u].
Hence for s € S, s’ € §” and x € X; as above, one has: v, (ou) =1 forall o € I, and
U, (0(u—1)) =1foro € C\I. Let f(U,1) € K4(t)[U] be the minimal polynomial
of u over K4(¢). One has f(U,1):=U? +ay_1(t)U .-+ ao(t) € K4[U. 1]
by that fact that u € R, and recalling that e; = |I|, the following hold:

(*) vy, (ao(t)) = 1; and vy, (am(l)) > 1 for m < es; and vy, (aes(t)) =0.

Let py(t) :=t —0y € K4[t] define s”. Then the 6y € Ky, s’ € S’, are distinct simple
roots of ag(¢) by condition (x) above. In particular, the following hold:
(%) ae(6s) # 0; and ag(t) = py(t) by (t) in Ky[t] with by (6y) # 0 in Ky.

In particular, setting Ry := R[1/by (t)], we have: x is the only zero of u in
SpecRy/, and u is a uniformizing parameter at x in Ry/. Therefore, u is a prime
element of Ry, and a uniformizing parameter at x € SpecR,,. Hence there exist
integers (, v > 0, and ug € R for o € C, such that the following hold:

a) If o € Ix, then 0 (u) = u ugy /by (1)* in Ry, with ugy /by (t)* € RJ;. In par-
ticular, there exists tigy’ € R such that gy tigsy = by (¢)V (for v large enough).
b) If 0 € C\ Iy, then o () = 1 + v Ugs/ by ()" in Ry, with ugs /by (t)* € Ry .

And since Ugy, ligs € R, their minimal polynomials fos/(U, t), f;s/(U, t) actually
belong to K4[U, ¢].

Let o =Z[ay,...,0,] C K with ; # 0 be a Z-algebra of finite type such that
denoting by ok, its integral closure in K4, the following hold: First, the ramified
B-cover¢: X—>P}( is defined over 0. Second, f(U, 1), ps(¢), fos'(U, 1), ]QS/(U, t)
belong to ok, [U, t] forall s" € S" and o € C. Third, 6y, ae,(6s), by (6s), 1/ae,(6s),
1/bs (6s) belong to ok, forall s’ € S" and s € S.

Definition of the set £,. We define X, C K* to be the set of generators
E(p = {al,.. . ,ar}.

Notice that ae,(6y). by (6s) € 0%, for all s’ € S’. Hence if v € ¥ satisfies
v(Xy) =0, then o C 0y; and if v* prolongs v to an algebraic closure K* of K, then
0k, C Oye, and in particular, a, (6y), by (6s) are v*-units.

Step 3. Recall that for v € ¥, one has by definition: First, vK # £ -vK for
£|es; hence there exists mg € K* such that v(mrs) > 0 and v(m) has order ¢ in
vK/(es - vK). Second, v is totally split in K4|K; hence since v has rank one, K
is dense in K4 endowed with v®. By Geyer [Gey78], we have: Since (vs)ses are
independent by hypothesis, there exists b € H, such that vZ(b — 6y) = vs(ms) > 0,
s € S. Further, since a,(t), by (t) have vi-integral coefficients, and vi (b —6y) > 0,
and ae,(05), bs (6s) are vi-units, it follows that a (D), by (b) are vi-units too. Re-
calling that Kp <= K with Gal(Kj| K) = B is the fiber of X — I]J’}( att = b, we have:
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Claim. Let w be the restriction of v{ to Kp. Then Iy = I, inside B.

Indeed, since ag(b) = (b—by) by (b), and w(b—0y) = v3(b—by) = vs(mw5) > 0,
one has w(ao(b)) = w(ms) > 0. Hence f(U,b) =U" +--- 4 ap(b) has a root
£y such that w(£y) > 0. Let R C R be the integral closure of 0y [¢] in R. Since
0k, is integral over o, and u, ugy, Uy are integral over ok, [t] (by the definition
of 0 and og,), it follows that u, ugy, Ugs are integral over o[t] C Oy [t]; hence
U, Ugy, Ugs’ € R. Let Op be the integral closure of 0y, in K. Then B acts on G,
and the B-equivariant projection ¥ : R — K}, defined by (u,t) — (§y,b), has
a B-equivariant restriction ¥ : %% — 0p. Recall that ag(t) = (t — 0y) by (¢) in
ok, [t], hence in Oy [t], and by (D) € 0. Therefore, the canonical B-equivariant
projections W and v, have canonical prolongations to C-equivariant projections
Wy o Ry — Kp, and Yy : Ry — Op, where Ry 1= R[1/by (¢)]. Hence we have:

a) If 0 € Iy, then 0 (§y) = &¢ ¥ (Uay) /by (D) in O and Y (uos') /by (B)* € Op .
b) If o€ C\Ix, then o (§5/) =1+&5 ¥ (Uos) /by (D) in Op and ¥ (ugs') /s (b)H € Op.

And for 0 € Iy, we have ¥ (Usy) Y (ligs’) = by (b)” € O3 hence ¥ (ugs) € 0.
Therefore:

a)’ If o € Iy, then w(o(§y)) = w(§y) > 0.
b)” If 0 € C\Iy, then w(o(£y)) = 0.

On the other hand, ao(b) = Nk, |k, (Es) = [[yec 0(€5), and w(ao(b)) = w(my).
Hence the following hold: First, w(ms) = w(ao(b)) = |Ix| w(§s); hence since
w(ms) = vg(y) has order e; = | I | in vs K/ (es - vs K) we get e(w]|vg) > |I|; thus
|Iw| > |L|. Second, if o € C\ Iy, then by b)” we have: 0 =w (0 (§y)) = (woo)(£y);
hence o & Dy, because w(&s) > 0; and since vy is totally split in K4|K, one has
Dy C C; thus Dy, C L. Hence since |Dy| > |Iy| > |Ix|, we conclude that
|Dy| = |IL|. Therefore, Dy, = I, = I, C Dy, thus proving the claim.

To 1): Recall that by Hilbert decomposition theory, one has ¥, = B/ D,
and Xy = B/Dy as B-sets. Since Dy, = I, = Iy, we see that V3 projects
B-equivariantly onto X, the fibers being isomorphic to Dy /I.. This concludes
the proof of assertion 1).

To 2): Since I, with x € X, s € S, generate C, the same is true for [, with
w € Vy, and s € S, by assertion 1). Hence by Hilbert decomposition theory, Kp | K4
has no nontrivial subextension in which all the vg, s € S, are unramified. O

4. A generalization of Theorem 1.2

Definition/Remarks 4.1. Let R be an infinite cardinal.

1) A field K endowed with a set of nonequivalent valuations " shall be called
a generalized R Krull field, respectively a generalized Krull field provided X = |K|,
if the following hold:
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i) If ¥ C K* has cardinality |X| < R, then ¥’y := {v € ¥ | v(X) # 0} has
|°VE| <N,
ii) For every finite Galois extension L|K, and every integer n > 1, the set

Viikn :=1v €V | v totally splitin L|K, vK # £-vK for £ |n, £>1}

has [V gnl = R.
Note that in particular, the Krull fields are exactly the generalized R Krull fields
with respect to sets V" of discrete valuations.

2) Prominent examples of Krull fields are the following:

a) The global fields (by the Chebotarev Density Theorem).

b) The function fields K|k with tr.deg(K|k) > 0. (Indeed, by point 3 below, it
is sufficient to consider the case K = k(¢1,...,t;) is a rational function field,
etc.)

¢) The quotient fields of domains R as in Theorem 3.4.
3) The class of generalized X Krull fields is closed under finite field extensions.

Definitions/Notation 4.2. For an embedding problem
EP=(y:Gg — A, «: B — A)

over K, let K4 be the fixed field of ker(y); hence Gal(K4|K) = A canonically.
And for proper solutions B of EP, let Kg be the fixed field of ker(B); hence
Gal(Kg|K) = B canonically.

1) A family of proper solutions {8 };ecs of EP is called independent, if for
all j € J one has: Kp; and the compositum L; := U, ; K are linearly disjoint
over Ky4.

2) If K endowed with V" is a generalized X Krull field, a proper solution 8 of
EP is called totally ramified, if Kg|K4 has no proper subextension in which all the
v € V" are unramified.

THEOREM 4.3. Let K endowed with a set of rank-one valuations V' be a
generalized R Krull field. Suppose that K is large and Hilbertian. Then every
nontrivial finite split embedding problem for Gk has at least X independent and
totally ramified proper solutions.

Proof. Let EP = (y : Gk — A, @ : B — A) be a nontrivial finite split
embedding problem over K, and EP; = (y opr, : Gx() — A, a: B — A) be the
nontrivial finite split embedding problem for Gg(;). By Theorem A of Pop [Pop96],
EP; has proper regular solutions 8;, which means that if K4 C K(¢)g, are the fixed
fields of ker(y) in K*®, respectively of ker(B;) in K(¢)°, then K(¢)g, N K* = Ky.
Moreover, if ¢ : X — P}( is the B-ramified cover defining B; : Gg(;) — B, then
sorting through the proof of loc. cit., one can see that the ramification points of
¢ are actually K,-rational, where K,|Ky is some cyclotomic extension. Hence
Theorem 3.6 is applicable here.
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Using Zorn’s Lemma, let {f;};<s be a maximal set of independent proper
solutions of EP, given by specializing ¢ as in Theorem 3.6. Note that these solu-
tions are totally ramified by assertion 2) of loc. cit. We claim that |J| > R. Indeed,
by contradiction, suppose that |J| < X. For every B, set Kg, = K[§;], and let
pi(T)=T"+aj,1T" ! +---+aj;o € K[t] be the minimal polynomial of £;,
and §; € K* its discriminant. If v € V satisfies: p;(T) € 0y[T] and v(§;) = 0,
then v is unramified in Kg|K. Hence denoting X; := {5;, aj,0,...,ajn—1 } N K™,
the following hold: If v is ramified in K, |K, then v(X;) # O; or equivalently one
has Vj :={v € V| v is ramified in Kg,[K} S {v |v(Z;) #0} =:Vx,.

Thusif ¥y :=UjesX;, wehave Vg, :={v €V |v(Z)) #0} = UjesVy;.
Therefore we get V' y :=U;esV; C Ujeﬂfgj =:T'g,. Since each X; is finite, and
we supposed that |J| < R, it follows that £ ; = U,y X; has cardinality |X | <R.
But then by condition i) in the definition of V', we have [V's , | < R; hence |17 <R
because 1"y € %'y, . Hence by condition ii) in the definition of V', and with K, and
es as in Notation 3.5, one has: [V |k \Vs| > X for each s € S. Since S is finite,
we can choose a system of independent valuations (vs)ses With vs € Vg ko, \ Vs
For this system (vs)ses, consider a solution 8 of EP as given by Theorem 3.6. Let
L j|K be the compositum of all the Kg., j € J. We claim that Ly N Kg = Ky.
Indeed, since vy &V'y, the vg, s € S, are unramified in K B; |K, for all j € J; hence
in L y|K. Thus, the v are unramified in Ly N K g too. But then by assertion 2) of
Theorem 3.6, we get Ly N Kg = K4. Now, the family of distinct totally ramified so-
lutions {B}U{B, } ;e is independent and contradicts the maximality of {8, };cs. O

5. Proof of Theorem 1.3

First, K is large, by Theorem 1.1; and Hilbertian by Weissauer [Wei82, Th. 7.2],
because the integral closure of R is a Krull domain with Krull.dim > 1. Hence
every split nontrivial embedding problem for Gg has | K| proper solutions by The-
orems 1.2 and 3.4. Second, the same is true correspondingly for G g, by [Har09,
Th. 2.4]. Finally, cd(K®) < 1, by Colliot-Théléne—Ojanguren—Parimala [CTOP02,
Th 2.2], and [Har09, Th. 4.4], if char(K) > 0. One concludes by applying [HSO05,
Th. 2.1].

Thanks. 1 would like to thank D. Harbater, M. Jarden, and others for inspira-
tion and discussions; and E. Paran for pointing out a gap in the first version of the
manuscript, and the referee for his useful comments.
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