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Abstract

In this paper we solve the following problem in the affirmative: Let Z be a
continuum in the plane C and suppose that h WZ � Œ0; 1�! C is an isotopy starting
at the identity. Can h be extended to an isotopy of the plane? We will provide
a new characterization of an accessible point in a planar continuum Z and use
it to show that accessibility of a point is preserved during the isotopy. We show
next that the isotopy can be extended over small hyperbolic crosscuts which are
shown to remain small under the isotopy. The proof makes use of the notion of
a metric external ray, which mimics the notion of a conformal external ray, but is
easier to control during an isotopy. It also relies on the existence of a partition of a
hyperbolic, simply connected domain U in the sphere, into hyperbolically convex
subsets, which have limited distortion under conformal maps to the unit disk.

1. Introduction

Denote the complex plane by C, the origin by O , the open unit disk by D

and the complex sphere by C� D C[f1g. Suppose that h WZ � Œ0; 1�! C is an
isotopy of a continuum Z � C such that if we denote ht D hjZ�ftg, then h0 D idZ .
We consider the old problem whether the isotopy h can be extended to an isotopy
of the plane.1

A more restrictive form of an isotopy is the notion of a holomorphic motion.
Given a set A � C, a holomorphic motion is a function
f W A�D! C� such that:

(1) for each � 2 D the map f � D f jA�f�g W A! C� is one-to-one,

(2) f O D idA,

(3) for each a 2 A, the map fa D f jfag�D W D! C� is holomorphic.

The first named author was supported in part by NSF-DMS-0405774, and the second named author
by NSERC OGP0005616.

1We are indebted to Professor R. D. Edwards who communicated this problem to us.
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Note that the function f is not initially required to be continuous in a or in the
pair .a; �/. The remarkable �-Lemma states that each holomorphic motion can be
extended to a holomorphic motion F WC��D!C� of the entire sphere. Moreover,
the map F is continuous and the maps F � are quasi-conformal for each �. Partial
results of this type are due to: Bers, Lyubich, Mañé, Royden, Sad, Sullivan and
Thurston [BR86], [Lyu83], [MSS83], [ST86]. The full result is due to Slodkowski
[Slo91]; see [AM01] for a different proof of the above statement and some history
of the problem.

Although the �-Lemma holds for arbitrary (in particular not connected) sets
A, easy examples show that an isotopy of a convergent sequence cannot necessarily
be extended over the plane (see [Fab05, p. 991]). It is also easy to see that our main
result cannot be generalized to higher dimensions because wild balls and spheres
can be isotoped to tame balls and spheres. However, see [EK71] for related positive
results in higher dimensions.

It follows from Rado’s theorem [Wen92, Th. 4.2] that the isotopy h in the first
paragraph can be extended to an isotopy of C if Z is a simple closed curve (see
[Bae27], [Bae28] for related results and [Eps66] for a generalization). Analytic
techniques, in particular, boundary values of conformal maps have been powerful
tools for studying plane continua. However, they appear insufficient to answer
the general question. Suppose that Un is a sequence of proper, simply connected
domains in C and w0 2 Un for all n. Then we say that the domains Un converge to
U in the sense of Carathéodory kernel convergence (with respect to w0) [Pom92,
p. 13], denoted by .Un; w0/! .U;w0/, if:

(1) U D fw0g, or U is a simply connected, proper domain in C such that for each
w 2U there exists a neighborhood Vw of w with Vw �Un for all n sufficiently
large,

(2) for each w 2 @U there exist wn 2 @Un such that limwn D w.

Note that the limit of a sequence of domains depends on the choice of the point
w0. The following theorem is due to Carathéodory [Car12].

THEOREM 1.1 ([Pom92, Th. 18.8]). Let 'n WD!Un be conformal maps onto
simply connected domains Un such that 'n.O/Dw0 and '0n.O/ > 0. If U D fwog,
put '.O/�w0 and otherwise let ' WD! U be the conformal map onto the simply
connected domain U with '.O/D w0 and '0.O/ > 0. Then as n!1,

'n! ' locally uniformly in D” .Un; w0/! .U;w0/:

Suppose that h WZ � Œ0; 1�! C is an isotopy starting at the identity and U t

is the component of C� n ht .Z/ which contains the point 1 at infinity. Then it
follows easily that if tn! t , then .U tn ;1/! .U t ;1/ in the sense of Carathéodory
kernel convergence. One of the main complications addressed in this paper is that
Carathéodory kernel convergence is insufficient to allow us control of the behavior
of the conformal maps 't WD! U t near the boundary of U t . In particular it is not
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clear if the conformal external rays of Zt behave nicely under the isotopy. To this
end we introduce metric external rays which depend only on distance and, hence,
behave well under an isotopy. The existence of metric external rays was alluded to
in [Bel67] and more fully developed in [Ili70], [Bel75]. We define a metric external
ray as the projection of the equidistant set between two disjoint and closed sets in
the covering space of C n fOg by the exponential map. Equidistant sets and metric
external rays were studied in detail by G. Brouwer in [Bro05] and also in [ABO09].
We will use these metric external rays to show that the isotopy can be extended
over conformal external rays.

We will always denote by Z a proper subcontinuum in the sphere C� (or
equivalently in the plane C), by h WZ � Œ0; 1�! C an isotopy such that h0 D idZ
and by U a component of C� nZ (or equivalently CnZ). Given a fixed component
U of C� nZ we may assume, without loss of generality, that U contains the point
at infinity (or is the unbounded component of C nZ) and 1 2 C� n ht .Z/ for
all t 2 Œ0; 1�. Denote by U t the component of C� n ht .Z/ containing the point at
infinity (or the unbounded component of C n ht .Z/). Then U t [ f1g is simply
connected. We always denote by 't W D! U t [f1g the conformal map such that
't .O/D1 and .'t /0.O/ > 0. Then the maps 't are unique and, by Carathéodory
kernel convergence, they are uniformly convergent in t on compact subsets of D.
By slightly abusing the language we will identify points in the boundary S1 of the
disk D with their arguments and call them angles.

We say that x 2 Z is accessible from U if there exists an angle � 2 Œ0; 2�/
such that the (conformal) external ray R� D '.frei� j r < 1g/ lands on x (i.e.,
R� nR� D fxg). Similarly, Rt

�
D 't .frei� j r < 1g/ is a conformal external ray of

Zt in U t . It is well-known that a point x 2Z is accessible from U if and only if
there exists a nondegenerate continuum Y � U such that Y \Z D fxg. Moreover,
in this case '�1.Y n fxg/\ S1 D f�g is a single point and R� lands on x in Z
[Mil99, Cor. 17.10]. It is clearly necessary that the corresponding point xt D ht .x/
remains accessible in ht .Z/ from U t . However, Carathéodory kernel convergence
is insufficient to show this and one of the first steps of the proof is to show that this
is indeed the case. If we assume in addition that x is not a cut point of Z, then there
exists for each t a unique angle � t such that the external ray Rt

� t
of Zt lands on xt .

The next step of the proof is to show that this correspondence of angles is
continuous in t and there exists an isotopy ˛ WS1�Œ0; 1�!S1 of the unit circle such
that if R0

�
lands on x0 in Z0, then Rt

˛.�;t/
lands on xt in Zt for each t . Extending

˛t to an isotopy f t WD! D, defined by f t .rei� /D rei˛.�;t/ does not, however,
provide a proper extension over U 0 since simple examples show that in general
the isotopy H W U 0 � Œ0; 1�! C� defined by H.w; t/D 't ıf t ı .'0/�1.w/ does
not have a continuous extension over Bd.U 0/. The discontinuity at the boundary
follows from the fact that conformal maps 't WD! U t from the unit disk onto the
simply connected domain U t are not uniformly continuous if the boundary of U t

is not locally connected.
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To address this concern we construct a lamination H (a closed collection of
noncrossing hyperbolic chords) in U such that LD .'/�1.H/ is a lamination in the
disk D. Following Thurston [Thu09], we will call each chord in H (or in L) a leaf
and every component of Dn

S
L a gap. Then the collection PD fG˛g of all leaves

and gaps of L partitions the disk into hyperbolically convex subsets. We say that
the laminations H and L are a canonic pair if for each " > 0 there exists ı > 0 such
that if d.x; y/ < ı and there exists ˛ such that x; y 2G˛ , then d.'.x/; '.y// < ".
In other words, the family of maps f'jG˛g is uniformly equicontinuous (here the
map ' is naturally extended over angles corresponding to accessible points). To
show the existence of a canonic pair of laminations we use a construction originally
due to Bell and refined by Kulkarni-Pinkall [KP94]. This construction entails the
consideration of closed round balls B such Int.B/ � U and jB \ @U j � 2. For
each such B we consider the convex hull C.B/ of B \@U in the hyperbolic metric
on U . It can be shown that the collection H of hyperbolic chords contained in the
boundaries of all the sets C.B/, and its collection of preimages L in D, form the
required pair of canonic laminations (see [FMOT08], [BO09, Th. 4.13] for more
details).

Given the angle isotopy ˛ of the circle S1 it is now not difficult to construct
an isotopy ƒ W D� Œ0; 1�! D such that for each hyperbolic chord ˇ 2 L, where
ˇ;  2 S1, ƒ.ˇ; t/ is the hyperbolic chord joining the points ˛t .ˇ/ and ˛t ./.
Let ƒt .L/ D Lt , then Lt is also a lamination in D. Finally we will show in
Theorem 6.1, that the laminations Lt and 't .Lt /DHt form a canonic pair as well.
The existence of the canonic pairs of laminations will ensure the continuity of the
extension HU D 't ıƒt ı .'0/�1 over U .

Suppose that fUng is the collection of all complementary domains of X . For
each n let Ln and Hn be a canonic pair of laminations as constructed above.
If for each n Bn is a round ball with Int.Bn/ � Un and jB \ @Unj � 2, then
diam.C.Bn//! 0 as n!1 [FMOT08, Lemma 4.2] and the extension of h is
continuous over the union of all complementary domains.

We denote by exp the covering map exp WC!CnfOg defined by exp.z/D ez .
Given a set X � C we denote by yXD exp�1.X n fOg/ and we use bold face letters
for subsets of yX. However, for points x 2 C n fOg we denote by x a point in
the set exp�1.x/. We also denote by �j W C! R, j D 1; 2, the projections onto
the x-axis and y-axis, respectively. The open ball with center x and radius r is
denoted by B.x; r/ and its boundary by S.x; r/ . For a set A � C we denote by
B.A; "/D

S
fB.a; "/ j a 2 Ag. By a ray R we mean a subset of C homeomorphic

to the real line R. A ray is called a (topological) line if j xR nRj � 1 and xR is not a
simple closed curve. If xR nRD∅, then we say that R is a closed ray or a closed
line.

We will use the following notation throughout: for any set A�Z we denote by
At the set ht .A/. We are initially only interested in extending the isotopy over the
unbounded component U of CnZ. Recall that U t is the component of C� nht .Z/
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containing1 and denote byX t the continuum C�nU t . ThenX t is a nonseparating
plane continuum and, although the isotopy h is not necessarily defined on all of X0,
it is defined on @U 0 D @X0 �Z. We may identify any particular point z 2 Bd.U /
with the origin O , assume that it is fixed under the isotopy and that X t � B.O; 1/
for all t 2 Œ0; 1�. We will denote the Euclidean metric on C by d and the spherical
metric on C� by �. We will denote a point in the complex plane C either as aCb i
or, by its Euclidean coordinates, .a; b/. Finally, given two points x; y 2 C, we
denote by xy the straight line segment joining them.

After submission of this paper some of its ideas were further developed in
subsequent papers. See [FMOT08, ��3 and 4] for more detailed description of the
partition P of a simply connected domain U into hyperbolically convex subsets
and [BO09] where the notion of a canonic pair of laminations (called canonic
foliations in that paper) was first introduced and used explicitly. The authors are
also indebted to the referee for carefully reading the paper and for making many
suggestions to improve the exposition. For the convenience of the reader we have
added an index at the end of the paper.

2. Preliminaries

Crucial to our study is the notion of an equidistant set between two disjoint
closed sets in C. We start with the following definition from [Bro05] (see [ABO09]
for a more accessible reference and related results). Suppose that A and B are two
disjoint closed subsets of the plane. For z 2 C n ŒA[B�, let r.z/D d.z; A[B/.
Then we say that A and B are noninterlaced if for each z 2 C n ŒA [ B�, the
sets A\ S.z; r.z// and B \ S.z; r.z// are contained in two disjoint closed and
connected subsets of S.z; r.z// (one may be empty). Let E.A;B/ D fz 2 C j

d.z; A/D d.z; B/g be the equidistant set between A and B .
Let A and B be two disjoint, closed and noninterlaced sets in C. By Gaston

Brouwer [Bro05, Th. 3.4.4] E.A;B/ is a 1-manifold (see also [ABO09, Cor. 2.2]).
Moreover, if A and B are connected, then E.A;B/ is connected and, hence, it is
either a closed ray in the plane or a simple closed curve. In particular if A and B
are both connected and unbounded, then E.A;B/ is a closed ray which separates C

into two disjoint open and connected sets one containing A and the other containing
B . We will slightly generalize this case by replacing the condition that A and B
are unbounded and connected by the weaker condition that every component of
A[B is unbounded and that A lies above B (see Definition 2.1).

Since O 2X t �B.O; 1/ for all t , maxf�1.yXt /g< 0. It follows from this and
the fact that X is a continuum that for any component C of yX, �1.C/D .�1; mC�

with mC < 0. Moreover, since X is nonseparating, yX is also nonseparating and,
hence, each component C of yX is also nonseparating. To see this note that yX
has a unique complementary domain W such that ��11 .Œ0;1// � W . If V is
any complementary domain of yX, then V must contain a point v 2 V n yX and
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exp.v/ D v 2 C nX . Hence there exists a ray R � C nX joining v to infinity.
Then the lift R of R with initial point v 2 R is a ray in C n yX which intersects W
and V DW as required. These facts will allow us to define what it means for one
component of yX to lie above another component.

Definition 2.1. Let C and D be two distinct components of yX. We say that C
lies above D if there is a path s W Œ0; 1�! ��11 ..�1; 0�/ nC such that the initial
point s.0/ is in D, s.1/DO and if RD s.Œ0; 1�/[ .Œ0;1/� f0g/, then C lies in the
unique unbounded component of C n ŒD[R� which contains the point 1C 2�i .

Moreover, if yX D A[B, where A and B are disjoint closed sets, such that
every component of A lies above every component of B, then we say that A lies
above B. Note that the image of the path s.Œ0; 1�/ in Definition 2.1 is contained in
the complement of C and not necessarily in the complement of yX. This will allow
us to consider otherwise inaccessible components of yX.

LEMMA 2.2. If Cand D are two components of yX, then exactly one of the
following holds:

(1) C lies above D,

(2) D lies above C.

Proof. We show that the notion that C lies above D is independent of the
choice of the path s in Definition 2.1. Hence, let s1; s2 W Œ0; 1�! ��11 ..�1; 0�/nC
be two paths such that s1.0/; s2.0/2D and s1.1/DOD s2.1/. PutR1D s1.Œ0; 1�/[
.Œ0;1/ � f0g/, R2 D s2.Œ0; 1�/ [ .Œ0;1/ � f0g/ and suppose that C lies in the
unbounded component of D[R1 which contains the point 1C 2�i . Suppose first
that R1 and R2 have the same initial point s1.0/D s2.0/. Since ��11 ..�1; 0�/nC
is simply connected, there exists a homotopy j W Œ0; 1�� Œ0; 1�!��11 ..�1; 0�/nC,
with endpoints fixed, between s1 and s2. Since j t misses the connected set C for
each t , it follows that C lies in the component of C n ŒR2[D� containing 1C 2�i .

Next suppose that R1 and R2 have initial points z1 and z2, respectively. Let
UD fB.y; "/ j y 2D and "D .1=3/ d.y; ŒC [��11 .Œ0;1//�/g. Then U is an open
cover of D. Since D is connected, there exists a chain fB1; : : : ; Bng of balls in
U such that z1 2 B1, z2 2 Bn and Bj \BjC1 6D ∅ for j D 1; : : : ; n� 1. Let J
be a piecewise linear arc in [Bj from z1 to z2. Then there exists a path s3 such
that s3.Œ0; 1�//D J [ s2.Œ0; 1�/ is a path with initial point z1 and terminal point O .
Put R3 D s3.Œ0; 1�/[ .Œ0;1/� f0g/. Then C lies in the unbounded component of
C n ŒD[R3� which contains the point 1C 2�i . Hence, C lies in the unbounded
component of C n ŒD[R2� which contains the point 1C 2�i .

Suppose that C and D are any two components of yX. Then UC D C nC and
UDDCnD are open and connected sets homeomorphic to C. Hence there exist two
arcs JC �UD\�

�1
1 ..�1; 0�/ and JD �UC\�

�1
1 ..�1; 0�/ joining points c 2C

and d 2 D to O , respectively. In addition we may assume that JC\JD D fOg. If
D is not contained in the component of CnJC[ .Œ0;1/�f0g/ containing 1C2�i ,
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then C is contained in the component of CnJD[ .Œ0;1/�f0g/ containing 1C2�i
and C lies above D. �

Our goal is to show that the condition that A lies above B is preserved under
the lift of the isotopy ht .

LEMMA 2.3. Suppose ht W Bd.X/! C is an isotopy such that h0 D idBd.X/,
O 2 Bd.X/ and ht .O/DO for all t . Then there exists an isotopy ht W Bd.yX/! C

which lifts ht such that h0 D idBd.yX/.

Proof. For each x 2 Bd.X/ n fOg and each x 2 exp�1.x/ the path hjfxg�Œ0;1�
has a unique lift to a path hx W Œ0; 1�! C with initial point x. Define ht .x/D hx.t/.
By uniqueness of lifts, ht is one-to-one. It now follows easily that ht is an isotopy
of Bd.yX/ lifting ht with h0 D idBd.yX/. �

The following easy lemma follows immediately from the fact that ht .O/DO
for all t and that ht is uniformly continuous.

LEMMA 2.4. Suppose that ht .O/ D O for all t and let ht W Bd.yX/ ! C

be the isotopy which is the lift of ht to Bd.yX/ D exp�1.Bd.X/ n fOg/ such that
h0 D idBd.yX/. Denote ht .x/ by xt . For all " 2 R there exists ı 2 R such that if

there exists t0 2 Œ0; 1� such that xt0 2 yXt0 and �1.xt0/� ı, then �1.xt / < " for all
t 2 Œ0; 1�. In other words, if there exists t0 such that �1.xt0/ � ", then �1.xt / > ı
for all t 2 Œ0; 1�.

Given the existence of the lifted isotopy ht we will use similar notation as for
ht : for any set A � Bd.yX/ we denote by At the set ht .A/. Recall that U t is the
unbounded component of Cnht .Bd.X//, X t DCnU t and yXt D exp�1.X t nfOg/.
Also, if C0 is a component of yX0 choose a point x0 2 Bd.yX0/ \ C0. Then we
denote by Ct the component of yXt containing the point xt D ht .x/. Next we show
that the notion of the component C being above D in yX is preserved throughout
the isotopy h.

LEMMA 2.5. Let CD C0 and DD D0 be components of yX0 such that C lies
above D. Then Ct lies above Dt for each t 2 Œ0; 1�.

Proof. It suffices to show that there exists 0 < t0 such that for all t � t0 Ct lies
above Dt . Let RD s.Œ0; 1�/[ .Œ0;1/� f0g/ be a piecewise linear ray landing on
d0 2 D0 which satisfies the conditions of Definition 2.1 and such that R\C0 D∅
and R\D0 D fd0g. Then R[D0 has exactly two complementary domains and
each is homeomorphic to C. Hence there exists an arc A� C n ŒD0[R� joining a
point c0 2C0 to the point 1C 2�i . Choose a < 0 such that A[R � ��1.Œa;1//.
Choose " < .1=3/ d.A [ Œ��11 .Œ2a;1// \ C0�; R [ Œ��11 .Œ2a;1// \ D0�/. Let
0 < t0 such that for each x 2 Bd.yX/\ ��11 .Œ2a;1//, jht .x/� h0.x/j < "=2 and
�1.ht .x// < a for all x 2 ��11 ..�1; 2a�/\Bd.yX/ for all t . Then for all t � t0,
Ct [ c0ct [A is connected, closed and disjoint from Dt [ d0dt [R. The first set
contains an arc A� from ct to the point 1C2�i and the latter set contains a half ray
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R� satisfying the conditions in Definition 2.1 from the point dt 2 Dt to1. Since
1C2�i is above R� and A�\ ŒDt [R��D∅, Ct is above Dt for all t 2 Œ0; t0�. �

LEMMA 2.6. Suppose that yX0DA0[B0, where A0 and B0 are disjoint closed
sets such that A0 lies above B0. Then for each t , yXt D At [Bt and At and Bt are
disjoint, closed and noninterlaced sets.

Proof. By Lemma 2.5, every component of At lies above every component
of Bt for all t . Since ht is an isotopy it only remains to show that At and Bt are
noninterlaced. To see this fix t , let w 2E.At ;Bt / and let K � C nAt [Bt be the
minimal open ball with center w whose boundary S meets both At and Bt . Suppose
that there exist x; x0 2 S \At and y; y0 2 S \Bt such that fy; y0g separates x and
x0 in S . For z 2 yXt , let Cz denote the component of yXt which contains the point z.
Suppose, without loss of generality, that Cy lies above Cy0 . We may suppose that
Cy[Cy0[yy0 separates x from 1C2�i in C. Since Cy[Cy0 does not separate C by
unicoherence, we can choose an arc D in C n ŒCy[Cy0 � irreducible from O to yy0

such that �1.D/� .�1; 0�. Let fdg DD\yy0. Then Cy[yd [D[ Œ0;1/�f0g
separates y0, and hence also x, from 1C 2�i and Cx is below Cy. This contradicts
Lemma 2.5 and completes the proof. �

LEMMA 2.7. Suppose yXD A[B, where A and B are disjoint closed subsets
of C such that A lies above B. Let E be a component of E.A;B/. Then E is a
closed ray. If e 2E and r D d.e;A[B/, then there exist disjoint irreducible arcs
or points JA and JB in S.e; r/ such that A\ S.e; r/ � JA and B\ S.e; r/ � JB,
and E separates JA from JB in C.

Proof. By Lemma 2.6, A and B are noninterlaced. By [Bro05, Th. 3.4.4], E
is a 1-manifold. Let E be a component of E.A;B/, e 2 E and d.e;A[B/ D r .
Since A and B are noninterlaced, there exist disjoint irreducible arcs or points JA
and JB in S.e; r/ such that A\S.e; r/� JA and B\S.e; r/� JB. Let a1 and a2
be the endpoints of JA. For z 2 yX, let Cz be the component of z in yX. Let V be
the component of C n ŒCa1 [JA[Ca2 � containing e and let W D C nV . It follows
from the proof of Lemma 2.6 that W \BD∅.

We prove that E.A;B/\JAD∅ as follows. Suppose that z2 JA nA. We will
show that d.z;A/ < d.z;B/. Choose w2B. If zw\A¤∅, then d.z;A/ < d.z;w/.
If zw\AD∅, then it follows easily that d.z;w/ >minfd.z; a1/; d.z; a2/g. Hence
for all w 2 B, d.z;A/ < d.z;w/ and E.A;B/\JA D∅. Choose b 2 JB\B. Note
that E.A;B/\a1enfegD∅DE.A;B/\ebnfeg. Now E.A;B/ separates a1 and
b. By unicoherence of C (see [Wil63, p. 47]) a component of E.A;B/ separates
a1 and b. Since this component must contain e, E separates a1 and b in C. Hence
E separates Ca1 [ JA and Cb [ JB which both are unbounded sets. Hence, E is
an unbounded closed 1-manifold, i.e., E is a closed ray. �

In Lemma 2.7, �1.A/D�1.B/D .�1; c� for some c < 0. In the next theorem
we shall choose a2A and b2B with �1.a/DcD�1.b/ and 0<�2.a/��2.b/�2� .
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By unicoherence of the plane a component E of E.A;B/ separates a and b in C.
Next we show that E separates A and B in C. Then we prove that E D E.A;B/.
Finally we prove that E is �1-monotone for x � 0.

THEOREM 2.8. Suppose that yXD A[B, where A and B are disjoint, closed,
nonempty sets such that A lies above B. Then E.A;B/ is a closed ray such that
�1.E.A;B//D .�1;1/ and for x > 0, j��11 .x/\E.A;B/j D 1.

Proof. By Lemma 2.7, each component of E.A;B/ is a closed ray which
stretches to �1. For z 2 yX, let Cz be the component of z in yX.

Let a 2 yX be such that �1.a/Dmax.�1.yX// < 0. Without loss of generality,
a 2 A. Let RD aO [ .Œ0;1/� f0g/, then R n fag is a ray disjoint from yX which
lands on a. Note that CnŒR[Ca�DW [V , whereW and V are disjoint, connected,
open and nonempty sets. Without loss of generality, 1C 2�i 2 W . Then every
component of yX\W is above Ca � A. Hence B� V . Since B¤∅, there exists
b 2 B such that �1.b/ D �1.a/ since yX is invariant under upward translation by
2� . By compactness of X \S.O; e�1.a//, we may assume that

�2.a/Dmin.�2.A\��11 .�1.a//// and �2.b/Dmax.�2.B\��11 .�1.a////:

Then 0 < �2.a/��2.b/� 2� and we may assume that 0 < �2.a/� � . For

z 2 Œ�1.a/;1/� i Œ�2.a/;1/; d.z;A/ < d.z;B/

and for
z 2 Œ�1.a/;1/� i .�1; �2.b/�; d.z;B/ < d.z;A/:

By unicoherence of the plane there exists a component E of E.A;B/ which sepa-
rates a and b. Then E separates Ca[ .Œ�1.a/;1/� i �2.a// from

Cb [ .Œ�1.a/;1/� i �2.b// :

So �1.E/D .�1;1/ and

E.A;B/\ .Œ�1.a/;1/� i R/� Œ�1.a/;1/� i Œ�2.b/; �2.a/�:

In particular, E.A;B/\��11 .x/ is compact for x > 0.
In order to show thatE.A;B/ is connected we must first prove thatE separates

A and B. Suppose that C nE DW 0[V 0, where W 0 and V 0 are disjoint, nonempty,
open and connected sets, and 1C 2�i 2W 0. Just suppose there exist y 2 A\V 0.
Since neither of the disjoint closed sets E nor B separates y from 1� 2�i , neither
does their union. Let D � C n ŒE [B� be an arc from y to 1� 2�i 2 V 0. Choose
e 2E such that if r D d.e; yX/, then �1.e/Cr <minf�1.D/g. Let w 2 S.e; r/\B.
Then Cw[we[E 0, where E 0 is the component of E nfeg which projects under �1
over Œ�1.y/;1/, does not separate y from 1� 2�i . It now follows easily that Cy
lies below Cw, a contradiction. Hence, we can conclude that A�W 0 and B� V 0.

We prove next that E.A;B/ D E. For suppose e0 2 E.A;B/ n E. Let
x 2 S.e0; r.e0//\A and let y 2 S.e; :r.e0//\B. Since E separates x and y in C,
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E\.e0x[e0y/¤∅. Without loss of generalityE\e0x¤∅. Let e 2E\e0x. Then
d.x; e/D d.e;A/ < d.e;B/ since .A[B/\B.e0; r.e0//D∅. This contradiction
proves that E.A;B/�E and, hence, E.A;B/DE. It follows that for all z 2W 0,
d.z;A/ < d.z;B/ and for all z 2 V 0, d.z;B/ < d.z;A/.

Finally we prove that E is �1-monotone for x � 0. Suppose e1; e2 2E with
�1.e1/ D �1.e2/ � 0 and �2.e2/ > �2.e1/. Let z1 2 A \ S.e1; r.e1// and let
z2 2 B\S.e2; r.e2//. By [ABO09, Lemma 1.11] e2z2\ e1z1 D∅. (The proof in
[ABO09] is for the spherical metric on the sphere but is also valid for the Euclidean
metric on the plane.) Hence Cz1 [ e1z1[ .Œ�1.e1/;1/� f�2.e1/ig/ separates e2
(and, hence, Cz2) from e1 � �i . It now follows easily that Cz2 � B lies above
Cz1 � A, a contradiction. This completes the proof of the theorem. �

3. Characterizing accessibility

In this section we provide a characterization of accessibility for points in Z
and show that accessibility is preserved under the isotopy h. Recall that the isotopy
h is defined on Z, that U is the unbounded component of CnZ and that X DCnU .
In this section we will always assume thatO 2Bd.X/�Z is fixed under the isotopy
h. Easy examples (e.g., a half ray spiraling around the closed interval Œ�1; 1��f0g)
show that accessibility of O from U is not equivalent to yX being not connected.
Nevertheless the spirit of this idea is correct:

LEMMA 3.1. Suppose that O 2 Bd.X/. Then, the fact that O is accessible
from U is equivalent to the following two conditions:

(1) yXD A[B, where A and B are nonempty, disjoint and closed such that:

A lies above B

and

(2) for all x 2 R there exists y1 < y2 in R such that

��11 .Œx;1//\��12 .Œy2;1/ i/\BD∅ and(2a)

��11 .Œx;1//\��12 ..�1; y1� i/\AD∅:(2b)

Proof. Suppose first that O is accessible, let R be a conformal external ray in
U landing on O and let J be a component of exp�1.R/. Then J is a closed ray in
C n yX such that �1.J/D .�1;1/ and for every vertical line `, J\ ` is compact.
Note that C n J D U [ V , where U and V are disjoint open and connected sets.
We may assume that for some vertical line `, �2.`\U/ has no upper bound and,
since yX is invariant under vertical translations by 2� , that f1C 2�ig � U . Put
AD yX\U and BD yX\V then condition (1) holds. The fact every component of
A lies above every component of B follows from the fact that U and V are open
and connected, and U is “above”V . To see that (2a) and (2b) hold note that close
to infinity R behaves like a radial line segment in the plane and, hence, J behaves
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like a horizontal line segment near C1 so �2.J\ ��11 .Œa;1/// is bounded for
each a 2 R.

Suppose next that conditions (1), (2a), and (2b) hold. By Theorem 2.8, E D
E.A;B/ is a closed ray which runs from �1 to1 and separates A from B.

CLAIM. For every compact arc C � x-axis, ��11 .C /\E is compact.

Proof of the claim. Let C � x-axis be a compact interval. Suppose without
loss of generality that ��11 .C /\E contains points ei with lim�2.ei /DC1. Note
that there exists K > 0 such that for each z 2 ��11 .C /, d.z; yX/ � K. Hence for
each i there exists bi 2 B such that d.ei ;bi / � K and lim�2.bi / D C1. This
contradicts (2a) and completes the proof of the claim.

Now let R D exp.E/. Then R is a closed and connected set in C and it
suffices to show that R\X D fOg. Since �1.E/D .�1;1/, O 2R. Suppose
that x 2X nfOg is also a limit point of R. Choose zi 2 exp.E/ such that lim zi D x

and zi 2E such that exp.zi /D zi . Then d.zi ; exp�1.x//! 0. Since E is closed
and disjoint from yX, the sequence zi cannot be convergent and so lim j�2.zi /j D1.
By choosing a compact arc C in R which contains �1.exp�1.x// in its interior, we
see that E \��11 .C / is not compact. This contradiction completes the proof. �

The characterization Lemma 3.1 allows us to show that an accessible point
remains accessible throughout the isotopy.

THEOREM 3.2. If x 2 Bd.X/ is accessible from U D C nX , then ht .x/ is
accessible from U t , where U t is the unbounded component of C n ht .Bd.X//, for
each t 2 Œ0; 1�.

Proof. Suppose that x0 is an accessible point of X0. We may assume that
x0 DO , ht .O/DO and X t � B.O; 1/ for all t .

By Lemma 3.1 yX0DA0[B0 such that conditions (1), (2a) and (2b) of Lemma
3.1 hold. By Lemma 2.3 we can lift the isotopy ht to an isotopy ht W Bd.yX0/! C

such that h0 D idBd.yX0/. By Lemma 2.5, At lies above Bt for all t . It remains to be
shown that conditions (2a) and (2b) are satisfied for all t . By symmetry it suffices
to show that (2a) holds. Suppose x 2 R. By Lemma 2.4 there exists x0 2 R such
that for all t ,

max �1 ıht Œ��11 ..�1; x0�/\ yX0/� < x:

By (2a) for t D 0, there exists y2 such that

��11 .Œx0;1//\��12 .Œy2;1//\B
0
D∅:

Choose y3 such that for all t ,

max �2 ıht Œ��11 .Œx0;1//\��12 ..�1; y2�/\ yX0� < y3:

Then
��11 .Œx;1//\��12 .Œy3;1//\B

t
D∅

and (2a) holds for all t . Hence by Lemma 3.1, O is accessible for all t . �
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4. Continuity of external angles

Recall that h is an isotopy of a plane continuum Z, U is the unbounded
component of C nZ and X D C n U . Let U t be the unbounded component of
Cnht .Bd.X// and X t D CnU t . Moreover, 't WD!U t [f1g is the normalized
Riemann map such that 't .O/D1, .'t /0.O/> 0 and Rt

�
D 't .frei� j 0� r < 1g/

is a conformal external ray of X t . We construct an isotopy ˛ WS1�Œ0; 1�!S1 such
that if the conformal ray R� � U 0 lands on x, then Rt

˛.�;t/
� U t lands on xt in

X t for each t . This is accomplished in two steps. We first construct in Lemma 4.1
for each t a continuously (in the sense of Hausdorff metric) varying arc Lt � U t

landing on xt . This arc is contained in the image under the exponential map of
the equidistant set constructed in Section 2. The arc Lt can be extended naturally
to a metric external ray of X t but, for the purpose of this paper, the subarc Lt

is sufficient. Then we show in Theorem 4.2 how the arc Lt defines a continuous
function ˛ W Œ0; 1�!S1 such that ifR0

˛.0/
�U 0 lands on x0 inZ0, thenRt

˛.t/
�U t

lands on xt in Zt for each t .

LEMMA 4.1. Let O be an accessible point of X . Then there exists for each
t an arc Lt such that X t \ Lt D fO tg is an endpoint of Lt and the function
ˇ W Œ0; 1�! C.C/ defined by ˇ.t/D Lt is a continuous function to the space C.C/
of compact subsets of C with the Hausdorff metric.

Proof. We assume as usual that ht .O/ D O and X t � B.O; 1/ for all t .
Since every half ray in the plane is tame, we may assume that the positive x-axis
is contained in C nX0. Then yX� C n��12 .f0g/. Let A0 D yX\��12 ..0;1// and
B0D yX\��12 ..�1; 0//. Then yX is the union of these two disjoint closed sets and
A0 lies above B0. Since yX is invariant under vertical translation by 2� , it follows
that E.A0;B0/ is contained in ��12 .Œ�2�; 2��/. By Lemma 2.5, At lies above Bt

for each t . By Theorem 2.8, E.At ;Bt / is a ray which separates At and Bt in C

and �1.E.At ;Bt //D .�1;1/.
Let ti ! t0 2 Œ0; 1�. Then Ati ! At0 and Bti ! Bt0 on compact sets (i.e., K

compact in A0 implies Kti !Kt0). It is easy to check that if ei 2E.Ati ;Bti / and
ei ! e, then e 2E.At0 ;Bt0/.

By Theorem 2.8 jE.At ;Bt /\��11 .1/j D 1. For each t , let M t DE.At ;Bt /\
��11 ..�1; 1�/. Then M t is connected and limM ti DM t0 . Hence Lt D exp.M t /

is the required arc. �

By a crosscut C of a nonseparating continuum X � C we mean an open arc
C � C nX whose closure is a closed arc with distinct endpoints a and b which
are in X . In this case we say that the crosscut C joins the points a and b of
X . By the shadow of C , denoted by Sh.C /, we mean the closure of the bounded
complementary domain of Cn ŒX[C �. Recall that U t is the unbounded component
of C nZt , U 0 D U , X t D C nU t and X0 DX . Hence the isotopy h is defined on
Bd.X/�Z.
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THEOREM 4.2. Suppose that O 2 Bd.X/, ht W Bd.X/ ! C is an isotopy
such that h0 D idBd.X/, ht .O/ D O and diam.X t / < 1 for all t . Let U t be the
component of C� n ht .Bd.X// containing1, let 't W D! U t be the normalized
Riemann map and let Lt be an arc with one endpoint at O such that Lt varies
continuously with t in the Hausdorff metric and Lt \X t D fOg for all t . Then the
function ˛ W Œ0; 1�! S1 defined by ˛.t/D S1\ .'t /�1.Lt / is continuous and the
external ray 't .fre2�i˛.t/ j r < 1g/DRt

˛.t/
lands on O in X t for each t .

We shall refer to the function ˛ W Œ0; 1�! S1 in Theorem 4.2 as the continuous
angle function.

Proof. By [Mil99, Cor. 17.10], ˛ as defined in the statement of the lemma
is a function. It remains to be shown that ˛ is continuous. We will first present
an outline of the proof. Fix " > 0. Let a.t0/ and b.t0/ be endpoints of a crosscut
C.t0/ of X t0 in B.O; 1=2/ such that Lt0 lands in the shadow of the crosscut C.t0/
and diam..'t0/�1.C.t0/// < 2"=3. Choose

ˇ < 1=5 minfd.a.t0/; b.t0//; d.Lt0 ; fa.t0/; b.t0/g/; d.O;C.t0//g:

We shall choose K, a large compact subarc of C.t0/, such that B.Lt0 ; ˇ/\C.t0/
� K and such that Lt � B.Lt0 ; ˇ/ and K \X t D ∅ whenever t is close to t0.
We shall define Kt , a crosscut of X t , which contains a large sub-arc of K together
with two small arcs J.a; t/ and J.b; t/ which join points close to the endpoints
of K to X t such that .'t /�1.Kt / is a small crosscut of D whose shadow contains
˛.t0/ and ˛.t/ for t sufficiently close to t0. This completes the outline of the proof.

Let C.t0/, a.t0/, b.t0/ and ˇ be defined as above and let Oa.0/ and Ob.0/ be the
endpoints of .'t0/�1.C.t0//. Then ˛.t0/ belongs to the interval . Oa.0/; Ob.0//� S1

which is contained in the closure of .'t0/�1.Int.Sh.C.t0////. Then j Ob.0/� Oa.0/j<
2"=3. Choose ı1>0 such that ı1<.1=5/min.j Ob.0/�˛.t0/j; j˛.t0/�Oa.0/j; "=4; ˇ/.
Let � <

p
� <minfı1; 1g such that 2�p

ln.1=�/
< ı1 and

.'t0/�1.B.a.t0/; 2
p
�/\C.t0//� B. Oa.0/; ı1/;(4.1)

.'t0/�1.B.b.t0/; 2
p
�/\C.t0//� B. Ob

.0/; ı1/;(4.2)

and there is just one componentK of C.t0/nŒB.a.t0/; �=2/[B.b.t0/; �=2/� which
meets both S.a.t0/; �=2/ and S.b.t0/; �=2/.

Next, using Lemma 4.1, the continuity of h and Theorem 1.1, choose ı2 > 0
such that for all jt � t0j< ı2:

(i) Lt � B.Lt0 ; �=2/,

(ii) d.ht ; ht0/ < �=2,

(iii) X t \K D∅ and

(iv) d..'t /�1jK ; .'t0/�1jK/ < ı1.
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By [Pom92, Prop. 2.2] there exist � � r; s �
p
� such that if J.a; t/ is

a component of S.a.t0/; r/ nX t which meets K and J.b; t/ is a component of
S.b.t0/; s/ nX

t which meets K, then

(4.3) diam.'t /�1.J.z; t//�
2�p

ln.1=�/
< ı1 for z 2 fa; bg:

Then K [ J.a; t/ [ J.b; t/ contains a crosscut C.t/ of X t and Lt lands
in the shadow of C.t/. Since the endpoints of C.t/ are joined by a subarc of
J.z; t/ � B.z;

p
�/ to K it follows from (4.1), (4.2), (4.3) and (iv) that the end-

points of .'t /�1.C.t// are within 3ı1 < .3=20/" of the endpoints Oa.0/ and Ob.0/
of .'t0/�1.C.t0//. Then for jt � t0j< ı2, ˛.t0/ is in the shadow of .'t /�1.C.t//,
't .Lt / lands in this shadow and the distance between the endpoints of .'t /�1.C.t//
is less than 6ı1C 2"=3 < .6=20C 2=3/" < " as desired. �

THEOREM 4.3. Suppose ht is an isotopy of the boundary of a nonseparating
continuum X � C such that h0 D idBd.X/. Let U t be the component of C� n

ht .Bd.X// containing 1 and let 't W D! U t denote the normalized Riemann
map. Then there exists an isotopy ˛ W S1 � Œ0; 1�! S1 such that ˛0 D idS1 and if
R0
�

lands on x0 2 Bd.X0/, then Rt
˛.�;t/

lands on xt 2 Bd.X t / for each t .

Proof. Suppose that R0
�

lands on x0 2 Bd.X0/. By Theorem 4.2, there exists
a continuous function ˛� W Œ0; 1�! S1 such that ˛� .0/ D � and Rt

˛� .t/
lands on

xt 2 Bd.X t / for each t . Let A be the set of angles in S1 such that for each � 2A,
R0
�

lands on a point x.�/2Bd.X0/. Define ˛ WA� Œ0; 1�! S1 by ˛.�; t/D ˛� .t/.
Then ˛ is a circular order preserving isotopy of A such that ˛0 D idA. Since A is
dense in S1, ˛ can be extended to an isotopy of all of S1. �

We will refer to the isotopy ˛ as the continuous angle isotopy .

5. Extension over hyperbolic crosscuts

Suppose U is an arbitrary component of C n Z and h W Z � Œ0; 1� ! C is
an isotopy such that h0 D idZ . Then there exists a path  W Œ0; 1�! C such that
.0/2U and .t/2CnZt for all t . Then we denote by U t the component of CnZt

which contains the point .t/. Note that U t is independent of the choice of the
path  . Hence, by applying an inversion and rotations of the sphere if necessary,
we may assume that U t is the component of C� nZt which contains the point
1 for all t 2 Œ0; 1�. We have shown in the previous section that if there exists a
crosscut in U 0 joining the points a0 and b0, then for each t there exists a crosscut
in U t joining the points at and bt . We will show next that we can choose for each
t a natural crosscut C t joining these points such that the isotopy h can be extended
over X0[C 0. For this purpose we will use hyperbolic geodesics defined by the
Poincaré metric on D.
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Suppose that a0 and b0 are the landing points of the external rays R0
�.a/

and R0
�.b/

in C n X0. By Theorem 4.2, there exist continuous angle functions
˛ W Œ0; 1� ! S1 and ˇ W Œ0; 1� ! S1 such that for each t , Rt

˛.t/
and Rt

ˇ.t/
land

on at and bt in Zt , respectively. Let Gt be the hyperbolic geodesic joining the
points ˛.t/ and ˇ.t/ in D (i.e., Gt is the intersection of the round circle through
the points ˛.t/ and ˇ.t/ with D which crosses S1 perpendicularly at both of these
points). Let C t D 't .Gt /. We will call C t the hyperbolic crosscut of X t joining
the points at and bt . In the final part of this section we will consider Z as a subset
of the sphere and show that the isotopy h W Bd.X0/� Œ0; 1�! C� can be extended
to an isotopy H W fBd.X0/[C 0g � Œ0; 1�! C� such that H t .C 0/D C t , where
C t is the hyperbolic crosscut of X t in U t joining at to bt . We will make use of
the following well-known theorem [Pom92, Th. 4.20]2.

THEOREM 5.1 (Gehring-Hayman theorem). There exists a universal constant
K such that for any conformal map ' W D! C, if z1; z2 2 D,  is an arc in D

from z1 to z2, and S is the hyperbolic geodesic from z1 to z2, then diam.'.S//�
K diam.'.//.

We may assume that U is the unbounded component of Z, that O 2Z is an
arbitrary accessible point in Bd.U /, thatZt �C�nf1g for all t and that the isotopy
h fixes the point O . Recall that X D C nU is a nonseparating plane continuum.
Hence Bd.X/ � Z and h is defined on Bd.X/. Each angle � 2 S1 corresponds
to a prime end of C� nX . By a fundamental chain fCj g of crosscuts we mean a
sequence of crosscuts of X such that lim diam.Cj / D 0, Ci � Sh.Cj / for i > j
and the arcs Ci are all pairwise disjoint. A naturally defined equivalence class of
fundamental chains is called a prime end of C� nX (see [Mil99, p. 164] for further
details).

LEMMA 5.2. Let h be an isotopy of Bd.X/, O 2 Bd.X/ and ht .O/DO for
all t . Suppose that R0

�
is a conformal external ray of X0 landing on O . Then the

isotopy h can be extended to an isotopy H W ŒBd.X/[R0
�
�� Œ0; 1�! C such that

H t .R0
�
/ is an external ray of X t landing on O .

Proof. By Theorem 4.2, there exists a continuous angle function ˛ W Œ0; 1�!S1

such that ˛.0/D � and the (conformal) external ray Rt
˛.t/

lands on O for each t .
Extend the isotopy h over R0

˛.0/
by

(5.1) H.z; t/D 't ı �t ı .'0/�1.z/

for z2R0
˛.0/

, where �t is the rotation of D by the angle ˛.t/�˛.0/. By Carathéodory
kernel convergence, H is an isotopy of every compact subset of R0

˛.0/
. Hence it

suffices to show that if zi!O in R0
˛.0/

and ti! � , thenH.zi ; ti /!ODH.O; �/.

2We are indebted to Paul Fabel for this reference.
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To see this fix " > 0. Recall that Rt
˛.t/

is a ray which runs from1D 't .O/ to
its landing point O 2 Bd.X t /. It suffices to show that there exists an open disk B
containing O with simple closed curve boundary S (constructed below) and ı > 0
such that for all t with jt � � j < ı, if zt is the first point of Rt

˛.t/
(tracing Rt

˛.t/

from 1) on S and if CRt
zt

is the component of Rt
˛.t/
n zt from zt to O , then

CRt
zt
� B.O; "/.

Let K be the universal constant from Theorem 5.1. By Lemma 4.1 there exists
a continuously varying arc Lt � C nX t landing on O in X t for each t such that
.'0/�1.L0/\S1 D f�g. Choose a fundamental chain of crosscuts C �n of X� for
the prime-end ˛.�/. Then both L� and R�

˛.�/
cross C �n essentially (that is X [C �n

separates the endpoints of L� and also the ends of the ray R�
˛.�/

). Hence we can
choose n sufficiently large and a simple closed curve S containing O in its bounded
complementary domain B such that C �n � S , ŒL� [R�

˛.�/
�\ ŒS n C �n � D ∅ and

diam.S/ < "=K. From now on fix this n and let a and b be the endpoints of C �n .
For t close to � , let wt be the first point (tracing Lt from O) of Lt on S . Let

C t be the component of S nX t containing the point w� . Choose

� < .1=3/d.fa; bg; ŒL� [R�˛.�/�/

and let C t� be the component of C t nŒB.a; �/[B.b; �/� which containsw� . Choose
ı > 0 such that if jt � � j< ı, then

(1) w� 2 C n ŒX t [B.a; �/[B.b; �/�,

(2) C t� D C
�
�,

(3) Lt � B.L� ; �/,

(4) if zt is the first point (tracing Rt
˛.t/

from1) of Rt
˛.t/

on S , then zt 2 C t�.

The first and second conditions follow from the continuity of h and the third from
the continuity of Lt . The last condition follows from Carathéodory kernel conver-
gence: recall that d.R�

˛.�/
; S nC � /D �>0. Let v 2R�

˛.�/
\B such that the compo-

nent ofRt
˛t .�/
nfvg from v toO is contained inB and let .'� /�1.v/D r0 exp.˛.�//.

By Carathéodory kernel convergence, I t D 't .fr exp.˛.t// j 0 � r � r0g/ con-
verges to the segment from v to 1 in R�

˛.�/
. Hence d.I t ; S n C � / > �=2 and

d.I t ; v/ < .1=2/d.v; S/ for t close to � , and (4) hold for ı sufficiently small.
By (2), (3) and (4), the sub-arc At of C t joining the points wt and zt , is

contained in C nX t . Hence the union of the arcs At and Œwt ; O�� Lt is an arc in
ŒC nX t �[fOg, joining zt to O , of diameter less than "=K. By Theorem 5.1, the
terminal segment CRt

zt
� B.O; "/ as required. �

In the remaining part of the paper we will consider Z as a subset of the unit
sphere C� � R3 with spherical metric �. Hence the distance between two points
z; w 2C� is the length of the shortest arc in the great circle which is the intersection
of C� and the plane through z, w and the origin in R3.
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Since every hyperbolic crosscut is conformally equivalent to a diameter of D

it follows that we can extend the isotopy ht over any hyperbolic crosscut C 0 � U 0

joining two points a0 and b0 in Z0 to an isotopy H W Z0 [C 0 ! C� (since in
this case the point at infinity is not fixed, the range of the isotopy must be the
sphere). Note that if Ci is a convergent sequence of hyperbolic crosscuts whose
limit contains a nondegenerate subcontinuum Y � Z, then this extension of the
isotopy over [Ci is not necessarily continuous at Y . However, we can extend over
a suitable compact set of hyperbolic crosscuts in U as follows.

Suppose that H is a collection of disjoint hyperbolic crosscuts in U such
that the set

S
c2H C is compact and there exists " > 0 such that for each C 2

H, diam.C / � ", then we call H a compact set of disjoint hyperbolic crosscuts
in U . Let aC and bC denote the endpoints of C 2 H, let ˛C and ˇC be the
corresponding endpoints of .'0/�1.C / and let A0 denote the union of all pairs
of the angles f˛C ; ˇC g for C 2 H. Let ˛t be the continuous angle isotopy and
let At D ˛t .A0/. Then for each t 2 Œ0; 1�, the collection of hyperbolic chords
˛t .˛C /˛

t .ˇC /, C 2 H, is a compact lamination in the unit disk in the sense of
Thurston [Thu09]. We will denote the family of all such chords by Lt . We will say
that L0 D L is the pullback of the lamination H to the unit disk. We will call each
element of Lt (Ht ) a hyperbolic geodesic in Lt (Ht ) and we denote the union of
all hyperbolic geodesics in Lt (Ht ) by Lt

�

(Ht� , respectively). Note that any two
distinct hyperbolic geodesics in Lt meet at most in a common endpoint and there
exists ı > 0 such that for each t and each chord in Lt , diam.˛t .˛C /˛t .ˇC // > ı.
Let ƒt WL0!Lt be the linear isotopy on L which extends ˛t such that ƒt maps
each chord ˛0.˛C /˛0.ˇC / in L linearly onto the chord ˛t .˛C /˛t .ˇC / in Lt . Then
the following theorem follows.

THEOREM 5.3. Suppose that HDH0 is a compact set of disjoint hyperbolic
crosscuts in U 0. Then the isotopy h W Z0 � Œ0; 1� ! C� can be extended to an
isotopy H W ŒZ[H��� Œ0; 1�! C� such that H t .H�/DHt� D 't .Lt

�

/ and H is
defined by:

H t .z/D

(
ht .z/; if z 2Z0;

't ıƒt ı .'0/�1.z/ if z 2H�,

where L is the pullback of H and ƒt is the linear extension of the angle isotopy ˛t

over L.

We will say that the extended isotopy H defined in Theorem 5.3 is the linear
extended isotopy which preserves hyperbolic crosscuts in H.

6. Existence of short crosscuts

It follows from the results of the previous section that if C is the hyperbolic
crosscut of Z which joins the points a and b in a complementary domain U of
Z in C�, then we can extend the isotopy to an isotopy H of Z [ C such that
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H t .C /D C t is the hyperbolic crosscut joining the points at and bt . We need to
show that if the crosscut C has small diameter, then the crosscut C t also has small
diameter. If C is contained in the component U of C� nZ, then we denote by U t

the component of C� nZt which contains C t .
Given a hyperbolic crosscut C of a continuum Z � C�, we say that C is a

ı-hyperbolic crosscut if the diameter of C is less than ı. Note that we see Z as a
subset of the sphere C� with the spherical metric �.

THEOREM 6.1. For each " > 0 there exists ı > 0 such that if x; y 2Z can be
joined by a ı-hyperbolic crosscut C � U , where U is a component of C� nZ, then
if HC WZ [C ! C� is the linear extended isotopy which preserves the hyperbolic
crosscut C and H t

C .C / D C
t is the hyperbolic crosscut joining xt to yt in U t ,

then C t is an "-hyperbolic crosscut.

Proof. The main idea of the proof is a variant of the following notion. Let
S �C be a simple closed curve. Call a complementary domain U of S odd if there
exists an arc J � C� such that J is transverse to S , one endpoint of J is1, the
other endpoint is in U and jJ \S j is odd. Given an isotopy p W S1� Œ0; 1�!C the
odd components of C� npt .S1/ change continuously. (See [OT82, Lemmas 2.2
and 2.3] where this idea was used for a continuous family of paths pt W S1! C.)

We will first provide an overview of the proof. By Theorem 5.3 for every
component U of C� nZ and every hyperbolic crosscut C � U joining points x
and y in Bd.U /, we can extend the isotopy h to an isotopy HC W Z [C ! C�

such that H t
C .C / D C

t is a hyperbolic crosscut joining the points xt and yt in
Bd.X t /. Suppose that the theorem fails for some " > 0. We first note that we
may assume that O 2 Z, ht .O/ D O for all t 2 Œ0; 1� and there exists ı > 0

such that if ht .z/ D zt 2 Zt \ B.O; ı/ for some t , then zs 2 B.O; "=3K/ for
all s 2 Œ0; 1�, where K is the Gehring-Hayman constant from Theorem 5.1. We
will show that there exist a component U D U 0 of C nZ and three accessible
points x; y;w in Bd.U / such that the hyperbolic geodesic C D C 0, which joins
x0 to y0 in U 0, is contained in B.O; ı/ and such that for all t , fxt ; ytg � B.O; ı/
while wt 2 C nB.O; ı/, and for some v the hyperbolic geodesic C v D H v

C .C /,
joining xv to yv, C v nB.O; "=2/¤∅. By Theorem 5.1 if there exists a crosscut
A in U v , homotopic to C v in U v with endpoints fixed, joining xv to yv such that
A� B."=2K/ then C v � B.O; "=2/, a contradiction.

To see that such an arc A exists we proceed as follows. Put D D B.O; ı/
and P t DD [C t , then P t depends continuously on t . Components of C� nP t

consist of two kinds: those that can be connected by an arc J � C� nD to the
point wt such that every intersection of J and C t is transverse and jJ \C t j is
even, and those for which jJ \ C t j is odd. Call the latter ones odd domains of
C� nP t . Note that both even and odd domains of C� nP t may contain points of
Zt . Let Qt be the union of P t and all odd domains of C� nP t . We will show that
Qt is continuous in t and, even though odd domains may contain points of Zt , if
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zt 2Zt \Qt , then

(6.1) �.zt ; O/ < "=2K:

This means that if we can join two points of C t by an arc J contained in Y t n
B.O; "=2K/, where Y t is an odd domain of C� nP t , then J � U t . We will use
this fact to obtain the required arc A.

Choose an arc M � U t , joining xt to yt , satisfying similar conditions as C t

(in particular (6.1) but now with regard to odd domains of D [M ; see below)
such that all intersections of M with the boundary of B.O; "=2K/ are transverse
and nD jM \Bd.B.O; "=2K/j is minimal. If nD 0 we are done, hence we may
assume that n > 0 and then n � 2. In this case we change the set P t DD [C t

to P tM DD [M and define odd regions of C� nP tM as above but now counting
intersections with M rather than C t . Similarly, we define the set QtM as the union
of P tM and all odd domains of C� n P tM . Finally we construct a shortcut J �
YM nB.O; "=2K/, where YM is an odd domain of C� nP tM , joining two points
j1; j2 2M such that if we replace the subarc of M between j1 and j2 by J , then
we obtain a new crosscut M 0 � U t , satisfying all required conditions, joining xt

to yt with jM 0\Bd.B.O; "=2kj< n. This contradiction with the minimality of n
will complete the proof. This completes the outline of the proof.

We proceed with the details; suppose the theorem fails for " > 0. Then there
exist xn; yn 2Z0 DZ and a sequence of 1=n-hyperbolic crosscuts Cn in comple-
mentary domains Un joining them and tn 2 Œ0; 1� such that the points xtnn and ytnn
are not joined by an "-hyperbolic crosscut in U tnn . Without loss of generality, the
origin O 2Z, limCn D fOg and ht .O/DO for all t . Then there exists 0 < "0 < "
and wn 2 Bd.Un/, accessible from Un, such that �.wtn; O/ > "

0 for all n and all
t 2 Œ0; 1�.

Let K be the universal constant from Theorem 5.1. Choose 0 < ı < "0=3

such that if ht .z/ 2 B.O; ı/ for some t 2 Œ0; 1�, then hs.z/ 2 B.O; "=3K/ for
all s 2 Œ0; 1�. Choose n0 such that Cn0 � B.O; ı/ and fxsn0 ; y

s
n0
g � B.O; ı/ for

all s 2 Œ0; 1�. From now on we fix this n D n0 and, hence, we can omit n from
the notation. In particular we have a fixed component U of C� nZ, three points
x; y;w 2 Bd.U / with x and y joined by the hyperbolic crosscut C �U \B.O; ı/,
with xs; ys 2 B.O; ı/ and ws 2 C nB.O; ı/ for all s 2 Œ0; 1�. By Theorem 5.3 we
can extend the isotopy h to an isotopy H of Z [C such that H t .C /D C t is the
hyperbolic crosscut joining xt to yt in U t � C� nZt for each t .

Let D be the closed ı-ball centered at O . For each t 2 Œ0; 1�, let P t D
D [C t . Since Bd.P t / is contained in S.O; ı/[C t , which is a finite union of
arcs, Bd.P t / contains no continuum of convergence and each sub-continuum of
Bd.P t / is locally connected and arcwise connected [Why42, V.2.1].

Since C t is an arc, the components fTig of C t nD form a null sequence. For
each i , Ti is an arc and Ti \D consists of the endpoints of Ti . Each point of
C� nP t can be joined to wt by an arc in C� nD which meets P t in a finite set.
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Suppose that V is a component of C� nP t . We say that V is an odd domain
(respectively even domain) of C� nP t if there is a closed arc A� C� nD from wt

to a point in V such that jA\C t j is odd (respectively, even) and A is transverse
to C t at each point of A\C t . This definition is independent of the choice of the
arc and the point in V .

LetQt DP t[
S
fV jV is an odd domain of C�nP tg. The boundary of each

odd domain V of C� nP t is a simple closed curve which meets D and there exists
a Ti such that Ti is contained in Bd.V / and Ti [D separates V from wt in C nD.
Also each Ti is contained in the boundary of exactly one odd domain of C� nP t .
Since the odd domains form a null family, Qt is a locally connected continuum.

Let ti converge to t 2 Œ0; 1�. We prove that limQti DQt . Note that limP ti D

P t . Let z 2 C� nP t . It suffices to prove that z 2Qt if and only if z 2Qti for all
sufficiently large i . Let A� C� nB.O; �.O; z// be a piecewise linear arc from z

to wt which witnesses whether or not z 2Qt . Then A meets only finitely many,
without loss of generality T1; : : : ; Tn, of the open arcs Tj . Let H W Z [C ! C�

be the extended linear isotopy of Theorem 5.3 such that H t .C / D C t . Let ı <
ı0 <min.�.z;O/; 2"0=3/ then for all i sufficiently large B.O; ı0/[Tj separates z
from wt if and only if B.O; ı0/[H ti ..H t /�1.Tj // does for each j D 1; : : : ; n
and Tj \A¤∅ if and only if H ti ..H t /�1.Tj //\A¤∅ for all j .

Note that jTj \Aj is odd if and only if B.O; ı0/[ Tj separates z from wt .
Fix any large i and choose an arc M very close to A which witnesses whether z
is in Qti . Then jM \H ti ..H t /�1.Tj //j D jA\Tj j mod 2 for j D 1; : : : ; n and
M \H ti ..H t /�1.Tj //D∅ for all j > n. Hence z 2Qti if and only if z 2Qt as
desired.

Let zt 2 Qt \Zt . We prove that �.zt ; O/ < "=3K. We may assume that
zt 62 fxt ; ytg [D. Let s0 D inffs 2 Œ0; 1� j zs 2 Qs nDg. Since Q0 D D and
Zs \C s D∅ for all s, zs0 2D. Hence, by the choice of ı, �.O; zt / < "=3K.

It remains to prove the following:

CLAIM. U t \B.O; "=2K/ contains an arc A such that A\Zt D fxt ; ytg.

The difficulty in showing that such an arc exists is a consequence of the fact
that both even and odd domains of C� nP t may contain points of Zt . Hence the
required arc A� U t must “weave around Zt” while at the same time staying close
to O . The proof below shows that this is possible.

Proof of the claim. Fix t 2 Œ0; 1�. Then C t �U t is an arc such that C t \Zt D
fxt ; ytg. After a small perturbation of C t we may assume that C t \S.O; "=2K/
is finite and all intersections are transverse. Then C t satisfies conditions (1)-(3)
below. Note that the definition of an odd domain of C� n P t was with respect
to P t DD [C t . In what follows we will use the same definition but now with
respect to P tM DD[M , where M � U t [fxt ; ytg is an arc homotopic to C t in
U t [fxt ; ytg with endpoints fixed such that:

(1) M n fxt ; ytg � U t and xt and yt are endpoints of M ,
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(2) M \S.O; "=2K/ is finite and all intersections are transverse,

(3) for each odd domain V of C� nP tM and each zt 2Zt \V , �.zt ; O/ < "=3K,

(4) nD jM \S.O; "=2K/j is minimal.

If nD 0 we are done. Note that nD 1 is impossible since all intersections of
S.O; "=2K/ and M are transverse and both endpoints of M are in B.O; "=2K/.
Hence, assume n > 1. Let QtM D P

t
M [

S
fV j V is an odd domain of C� nP tM g.

Let Si be all components of S.O; "=2K/ nM . Since each component of M nD is
an arc which locally separates the plane, points on one side of such a component
are in an even domain and points on the other side are in an odd domain. Hence,
each arc Si is contained in a complementary domain Vi of C� n P tM and these
domains are alternately even and odd moving around the circle S.O; "=2K/. In
particular, n is even. We may order M so that xt < yt and we write intervals in
M as in R.

Let MD fMig be the collection of all components of M nB.O; "=2K/. We
can define a partial order � on M by M1 �M2 if M2 separates M1 from wt in
C nB.O; "=2K/. Assume that M1 D .a1; b1/ (with a1 < b1) is a minimal element
of M. Then M1[B.O; "=2K/ bounds a disk V1 whose closure meets B.O; "=2K/
in an arc S1 � S.O; "=2K/ and S1 \M D fa1; b1g. Then S1 is either contained
in an even or an odd domain of C� nP tM .

Subcase 0. Suppose that Zt \ S1 D ∅ (by (3) this must be the case if S1
is contained in an odd domain). In this case choose a01 < a1 < b1 < b01, with
a01 in B.O; "=2K/\M very close to a1 and b01 in B.O; "=2K/\M very close
to b1, and an arc S 01 � B.O; "=2K/ very close to S1 from a01 to b01 such that
S 01\Z

t D∅. Then Zt is disjoint from the bounded complementary domain B of
the simple closed curve F D S 01[ .a

0
1; b
0
1/. Hence there exists a homotopy of the

plane which is the identity on Zt [S 01[ Œx
t ; a01�[ Œb

0
1; y

t � and shrinks B to S 01. Let
M 0 D S 01[ ŒM n .a1; b1/�. Then z 2Zt lies in an odd domain of C� nP tM if and
only if z lies in an odd domain of C� n ŒD [M 0�. Thus M 0 satisfies (3). Clearly
M 0 satisfies (1-2) and since jM 0\S.O; "=2Kj< n we have a contradiction with
the minimality of n.

Hence we may assume that S1[V1 is contained in an even domain and Zt \
S1 6D ∅. Then there exists M2 D .a2; b2/ 2 M (with a2 < b2) such that M2 is
the immediate successor of M1 in M (i.e., no element of M between M1 and M2

separates M1 from1). Let V2 be the component of C� n ŒV1[B.O; "=2K/[M2�

whose closure contains the arc .a1; b1/. Since M2 is the immediate successor of
M1 in M, there exists an arc J � ŒV2 nM� [ fj1; j2g with one endpoint of J ,
j1 2 .a1; b1/ and the other endpoint of J , j2 2 .a2; b2/. Moreover, since V1 was
even, J is contained in an odd domain and J \Zt D ∅. We will examine the
circular (counterclockwise) order <C of the four points a1; b1; a2; b2 around the
circle S.O; "=2K/.
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Figure 1. Subcase 1 in the proof of Theorem 6.1

Subcase 1. a2 <C a1 <C b1 <C b2. We have either a1 < b1 < a2 < b2
(see Figure 1) or a2 < b2 < a1 < b1. Since wt 2 Zt \ Bd.U t /, Zt \ S1 6D ∅
and M \Zt D fxt ; ytg, in either case (see the gate theorems in [Bec74, p. 36]),
the simple closed curve F D J [ Œj1; j2� (where Œj1; j2� is the arc in M with
endpoints j1 and j2) separates xt from yt . (To see this note (see Figure 1) that the
points a1 and b2 are separated by F . Since the subarcs Œx; a1� and Œb2; y� of M
are disjoint from F , F also separates x and y.) Since Zt \F D∅, this contradicts
the connectedness of Zt .

Subcase 2. b2 <C a1 <C b1 <C a2. Then either a1 < b1 < a2 < b2 or
a2<b2<a1<b1. SinceM \Zt Dfxt ; ytg, wt 2Zt \Bd.U t / and Zt \S1 6D∅,
xt and yt are contained in the unbounded component of F D J [ Œj1; j2� and the
proof proceeds as in Subcase 0, where F is now J [ Œj1; j2�. To see this note that
since M \Zt D fxt ; ytg, wt 2Zt \Bd.U t / and Zt \S1 6D∅, a1 and b2 are now
contained in the same component of C nF as Zt . Then M 0 D .M n Œj1; j2�/[J
is an arc with endpoints xt and yt , M 0 \ Zt D fxt ; ytg and M 0 is homotopic
to M with fixed endpoints in U t [fxt ; ytg, M 0 is transverse to S.O; "=2K/ and
jM 0 \ S.O; "=2K/j < jM \ S.O; "=2K/j. Moreover, if z 2 Zt is in an odd
domain of C� nP tM 0 , then z is also in an odd domain of C� nP tM and (3) holds.
This contradicts the minimality of M .

Up to interchanging clockwise with counterclockwise, these are all the cases.
This completes the proof of the claim.
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Hence for each t there exists a crosscut M.t/, homotopic to C t , joining xt

to yt in U t such that diam.M.t// < "=K. By Theorem 5.1, the diameter of the
hyperbolic crosscut C t is less than " for all t . This contradiction completes the
proof. �

7. Extending the isotopy over C

Now that we know how to extend the isotopy over hyperbolic crosscuts, it
remains to define the extension over all complementary domains U of Z. Easy ex-
amples show that if we choose the hyperbolic crosscuts without care the extension
may not be continuous. Fortunately a suitable set of hyperbolic crosscuts exists
(see [FMOT08, ��3 and 4] for more details). Fix a component U of C� nZ and
let B be the collection of all maximal open balls B.z; r/ � U (that is open balls
in the spherical metric and such that jS.z; r/\Zj � 2). Let C be the collection
of all centers of such balls and for c 2 C let r.c/ be the corresponding radius.
Note that for each c 2 C, B.c; r.c// is conformally equivalent with the unit disk
D and, hence, can be endowed with the hyperbolic metric. Let F.c/ be the convex
hull of the set S.c; r.c//\X in B.c; r.c// using the hyperbolic metric on the ball
B.c; r.c//. The following theorem is due to Kulkarni and Pinkall:

THEOREM 7.1 ([KP94]). For each z 2 U there exists a unique c 2 C such that
z 2 F.c/.

Note that the collection of chords in the boundaries of all F.c/ form a “lami-
nation”of U . As in [Thu09] we will call the chords in this lamination leaves.

Then two such leaves do not cross each other (i.e., if `¤ `0 are leaves, then
`\ `0\U D∅) and any convergent sequence of leaves is either a leaf, or a point
in Z. In particular, the subcollection of leaves of diameter greater or equal to " is
compact for each " > 0. Consider the “lamination”of the disk D obtained by pulling
back all these leaves to the unit disk under the conformal map ' WD!U . Note that
in this case it is possible that uncountably many distinct leaves join the same pair
of angles ˛; ˇ 2 S1. Nevertheless, this collection of leaves will naturally provide
us with the required collection of hyperbolic crosscuts by simply replacing each
leaf C in the lamination by the unique hyperbolic crosscut G joining its endpoints
such that G and C are homotopic in U with endpoints fixed. The collection H of
such hyperbolic crosscuts will be called the hyperbolic KP-lamination of U 0. The
union of all the hyperbolic crosscuts in H will be denoted by H�. A gap G of H is
a component of U nH�. By Theorems 5.3 and 6.1 we can extend the isotopy h over
H�. To finish the proof we must extend the isotopy over all gaps. The following
lemma follows from a result by Jørgensen [Pom92, p. 91].

LEMMA 7.2 ([FMOT08, Lemma 4.2]). Suppose that c 2 C and C is the chord
in the boundary of F.c/ joining the points a; b 2 Bd.U /. Let G 2H be the hyper-
bolic geodesic in U , which is homotopic to C with endpoints fixed, joining the
points a and b. Then G � B.c; r.c//.
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THEOREM 7.3. Suppose that ht is an isotopy of a plane continuum Z, which
we consider as a subset of the sphere C�, with h0 D id jZ . Then there exists an
extension to an isotopy H t W C�! C� such that H 0 D idC� .

Proof. Let fUng be all the components of C� nZ. For each n let Hn be the
hyperbolic KP-lamination of Un. Since the diameter of maximal balls contained
in distinct components Un converges to 0, it follows from Lemma 7.2 that for any
sequence Cn 2Hn, such that Un ¤ Um when n¤m,

(7.1) lim diam.Cn/D 0:

By Theorems 6.1 and 5.3 we can extend the isotopy h ofZ to an isotopyHn of
Z[H�n such thatHn preserves the hyperbolic crosscuts in H0

n (i.e.,H t
n.H

0
n/DHt

n).
It remains to extend the isotopy over all gaps of the laminations Hn.

At this point it will be convenient to use the Cayley-Klein model3 of the
hyperbolic disk. The homeomorphism g W D! D defined by g.r; �/D . 2r

1Cr2
; �/

(in polar coordinates) maps a point in the Poincaré model of the disk to the cor-
responding point in the Cayley-Klein model. This homeomorphism is the identity
on the boundary S1 of D and preserves radial line segments. For any two points
�1; �2 2 S

1 the hyperbolic geodesic G joining �1 to �2 is mapped to the Euclidean
straight line segment �1�2, which is a chord of the unit disk with endpoints �1 and
�2. Recall that Ln D '

�1.Hn/ is the hyperbolic pullback lamination of Hn in the
unit disk D. Fix n and put Ln D L. Let E D g.L/ be the Euclidean lamination
in the disk D where each hyperbolic chord in L is replaced by the corresponding
Euclidean chord. Then it is easy to extend the angle isotopy ˛ W S1� Œ0; 1�! S1 to
an isotopy ‚n W D� Œ0; 1�! D of the entire closed disk as follows. First extend ˛
linearly over all leaves E (i.e., ‚tn maps the Euclidean chord � 2 E linearly onto
the Euclidean chord joining the points ˛t .�/˛t ./. Denote the resulting lamination
‚tn.E/ by Et . Next extend ‚tn over all gaps by mapping the barycenter bG of each
gap G of E to the barycenter btG of the corresponding gap Gt of Et . The map can
now be extended over all of G by mapping, for each x 2 Bd.G/ the straight line
segment xbG linearly onto the straight line segment ‚tn.x/b

t
G . Now extend h over

Un by

Hn.x; t/D

(
h.x; t/; if x 2 Bd.Un/;

't ıg�1 ı‚tn ıg ı'
�1.x/; if x 2 Un:

LetH D[Hn. ThenH WC��Œ0; 1�!C� is continuous by (7.1) and Theorem
6.1. Hence H is the required extension of h. �

Theorem 7.3 shows that we can extend an isotopy h of a planar continuum
Z, starting at the identity, to an isotopy H W C� � Œ0; 1�! C� of the sphere. Let
U denote the component of C� nZ containing the point at infinity. By composing
the isotopy H by an isotopy K of the sphere such that K0 D idC� and Kt jC�nU D

3We are indebted to Nandor Simanyi for suggesting the Cayley-Klein model.
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idC�nU , and Kt .H t .1//D1 for all t 2 Œ0; 1� we obtain an isotopy which extends
h and fixes the point at infinity. Hence the following theorem follows.

THEOREM 7.4. Suppose that ht is an isotopy of a plane continuum Z � C

with h0 D id jZ . Then there exists an extension to an isotopy H t W C! C such that
H 0 D id .
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accessible, 2107
angles, 2107
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C, Complex plane, 2105
C�, complex sphere, 2105
C, set of centers of maximal balls, 2127
canonic pair, 2108
Carathéodory kernel convergence, 2106
closed ray, 2108
continuous angle function, 2117
continuous angle isotopy, 2118
crosscut, 2116

hyperbolic, 2119
joins, 2116

D, unit disk, 2105
d , Euclidean metric, 2109
domain

even, 2124
odd, 2124

E, Euclidean lamination in D, 2128
E.A;B/, equidistant set, 2109
equidistant set, 2109
exp, exponential map, 2108
external ray

conformal, 2107
lands, 2107
metric, 2116

fundamental chain, 2119

gap, 2127
Gehring-Hayman Theorem, 2119

H, lamination of U , 2127
h, lifted isotopy, 2111
h WZ � Œ0; 1�! C, isotopy, 2105, 2107
holomorphic motion, 2105
H�, union of all leaves in H, 2127
ht D h� idZ�ftg, 2105
hyperbolic crosscut, 2119

compact set of, 2121
hyperbolic KP-lamination, 2127

isotopy, 2105
continuous angle, 2118
linear, 2121
linear extended, 2121

Kulkarni-Pinkall Partition, 2127

L, pull back lamination in D, 2121
lamination, 2121

Euclidean in D, 2128
hyperbolic in D, 2121
hyperbolic in U , 2121
pullback, 2121

lands, 2107
leaves, 2127
lies above, 2110
line

closed, 2108
topological, 2108

linear extended isotopy, 2121
L�, union of all leaves in L, 2121
Lt , 2116

noninterlaced, 2109
normalized Riemann map, 2116

O , Origin, 2105

�j , projection to x- and y-axis, 2108
prime end, 2119

ray, 2108
closed, 2108

�, spherical metric, 2109
R� , conformal external ray, 2107
Rt
�

, conformal external ray in U t , 2107
r.z/D d.z;Z/, 2109

S1, unit circle, 2107
shadow, 2116
S.x; r/, boundary ball, 2108

topological line, 2108

't , conformal map onto U t , 2107

X DX0, complement of unbounded
component of C nZ, 2109

yX, lift of X , 2108
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x point in yX, 2108
X t , complement of unbounded

complementary domain of Zt , 2109
xy, straight line segment, 2109

Zt D ht .Z/, 2105
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