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The distribution of free path lengths
in the periodic Lorentz gas and
related lattice point problems

By JENS MARKLOF and ANDREAS STROMBERGSSON

Abstract

The periodic Lorentz gas describes the dynamics of a point particle in a periodic
array of spherical scatterers, and is one of the fundamental models for chaotic
diffusion. In the present paper we investigate the Boltzmann-Grad limit, where
the radius of each scatterer tends to zero, and prove the existence of a limiting
distribution for the free path length. We also discuss related problems, such as the
statistical distribution of directions of lattice points that are visible from a fixed
position.
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1. Introduction

1.1. The periodic Lorentz gas. The Lorentz gas, which was originally intro-
duced by Lorentz [20] in 1905 to model the motion of electrons in a metal, de-
scribes an ensemble of noninteracting point particles in an infinite array of spherical
scatterers. Lorentz was in particular interested in the stochastic properties of the
dynamics that emerge in the Boltzmann-Grad limit, where the radius p of each
scatterer tends to zero.

In the present and subsequent papers [23], [26], [25] we investigate the peri-
odic set-up, where the scatterers are placed at the vertices of a euclidean lattice
¢ c R? (Figure 1). We will identify a new random process that governs the
macroscopic dynamics of a particle cloud in the Boltzmann-Grad limit. In the
case of a Poisson-distributed (rather than periodic) configuration of scatterers, the
limiting process is described by the linear Boltzmann equation, see Gallavotti [16],
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Figure 1. Left: The periodic Lorentz gas in “microscopic”
coordinates—the lattice & remains fixed as the radius p of the
scatterer tends to zero. Right: The periodic Lorentz gas in “macro-
scopic” coordinates —both the lattice constant and the radius of
each scatter tend to zero, in such a way that the mean free path
length remains finite.

Spohn [35], and Boldrighini, Bunimovich and Sinai [8]. It already follows from
the estimates in [9], [19] that the linear Boltzmann equation does not hold in the
periodic set-up; this was pointed out recently by Golse [18].

The first step towards the proof of the existence of a limiting process for the
periodic Lorentz gas is the understanding of the distribution of the free path length
in the limit p — 0, which is the key result of the present paper. The distribution of
the free path lengths in the periodic Lorentz gas was already investigated by Pédlya,
who rephrased the problem in terms of the visibility in a (periodic) forest [29]. We
complete the analysis of the limiting process in [23], [26] and [25], where we es-
tablish a Markov property, and provide explicit formulas and asymptotic estimates
for the limiting distributions.

Our results complement classical studies in ergodic theory, where one is in-
terested in the stochastic properties in the limit of long times, with the radius of
each scatterer being fixed. Here Bunimovich and Sinai [10] proved, in the case of
a finite horizon and in dimension d = 2, that the dynamics is diffusive in the limit
of large times, and satisfies a central limit theorem. “Finite horizon”” means that
the scatterers are sufficiently large so that the path length between consecutive col-
lisions is bounded; this hypothesis was recently removed by Szdsz and Varju [37]
after initial work by Bleher [2]. For related recent studies of statistical properties
of the two-dimensional periodic Lorentz gas, see also [13], [27], [28]. There is at
present no proof of the central limit theorem for higher dimensions, even in the
case of finite horizon [12], [1].



1952 JENS MARKLOF and ANDREAS STROMBERGSSON

Since the point particles of the Lorentz gas are noninteracting, we can reduce
the problem to the study of the billiard flow

(1.1) 01 :THIHo) > T o), (g, v0) = (g(2), v(2)),

where %, C R? is the complement of the set %% + & (the “billiard domain”), and
T p) =X px Sf‘l is its unit tangent bundle (the “phase space”). %Z denotes the
open ball of radius p, centered at the origin. A point in T!(# p) 1s parametrized by
(g,v), with ¢ € J{,, denoting the position and v € Sf_l the velocity of the particle.
The Liouville measure of ¢; is

(1.2) dv(q,v) = dvolga(q) dVOlScllfl(v)

where volge and VO]S(II—l refer to the Lebesgue measures on R? (restricted to %)

and S‘li_l, respectively.
The free path length for the initial condition (g, v) € T (¥ p) 1s defined as

(1.3) T1(q,v;p) =inf{t > 0:q +1v ¢ H,}.

That is, t1(q, v; p) is the first time at which a particle with initial data (g, v) hits a
scatterer.

From now on we will assume, without loss of generality, that &£ has covolume
one.

THEOREM 1.1. Fix a lattice & of covolume one, let g € R% \ &£, and let A be a
Borel probability measure on Sﬁl_l absolutely continuous with respect to Lebesgue
measure.! Then there exists a continuous probability density Dy g on Rsq such
that, for every £ > 0,

(4 Jim e et ng v 2 6) = [ 0

The limiting density is in fact “universal” for generic ¢; i.e.,

(1.5) D(§) == Py q(8)

is independent of & and ¢, for Lebesgue-almost every ¢. Theorem 1.1 is proved
in Section 4, it is closely related to the lattice point problem studied in Section 3.
The asymptotic tails of the limiting distribution ®¢ 4 (&) are calculated in [25]. In
Section 4 we generalize Theorem 1.1 in several ways. We consider for instance
the distribution of free paths that hit a given point on the scatterer, which will be
crucial in the characterization of the limiting random process in [23].

Theorem 1.1 shows that the free path length scales like ,o_(d ~1_ This suggests
to re-define position and time and use the “macroscopic” coordinates

(1.6) Q). V() = (0 q(p~ @ V1), v(p~ @ Dyy).

IThe condition ¢ € R4 \ & ensures that 71 is defined for p sufficiently small. In Section 4 we also
consider variants of Theorem 1.1 where the initial position is near &, e.g., ¢ € 0K,.
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Figure 2. Left: How many lattice balls of radius p does a random
ray of length 7' = const x p~@~1) intersect? Right: What are the
statistical properties of the directions of the affine lattice points
¥ + « inside a large ball?

We now state a macroscopic version of Theorem 1.1, which is a corollary of the
proof of Theorem 1.1 (see §9.2). Here

(17) T1(Q.V:p) = p' 1 (p™ V0. V1 p)
is the corresponding macroscopic free path length.

THEOREM 1.2. Fix a lattice & of covolume one and let A be a Borel proba-
bility measure on T! ([Rd) absolutely continuous with respect to Lebesgue measure.
Then, for every & > 0,

(8) lim AGQ.V) T '~ - 51(@.Vip 28 = [ o) ae’

with ®(€) as in (1.5).

Variants of Theorem 1.2 were recently established by Boca and Zaharescu
[7] in dimension d = 2, using methods from analytic number theory; cf. also
their earlier work with Gologan [4], and the paper by Caglioti and Golse [11]. Our
approach uses dynamics and equidistribution of flows on homogeneous spaces (the
details are developed in §5), and works in arbitrary dimension. Previous work in
higher dimension d > 2 includes the papers by Bourgain, Golse and Wennberg [9],
[19] who provide tail estimates of possible limiting distributions of converging
subsequences. More details on the existing literature can be found in the survey
[17].

1.2. Related lattice point problems. The key to the understanding of the Boltz-
mann-Grad limit of the periodic Lorentz gas are lattice point problems for thinly
stretched domains, which are randomly rotated or sheared. In Sections 2 and 3
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we discuss two problems of independent interest that fall into this category: the
distribution of spheres that intersect a randomly directed ray, and the statistical
properties of the directions of lattice points (Figure 2). Section 6 discusses the
general class of problems of this type.

Let us for example consider the affine lattice Z2 + e, with the observer located
at the origin. The directions of all lattice points with distance < 7" are represented
by points on the unit circle,

(1.9) MEE Sl formeZ’\{—a), |m+eaf<T

llm + o]
We identify the circle with the unit interval via the map (x, y) — (27) " larg(x +iy),
and therefore the distribution of directions is reformulated as a problem of distri-
bution mod 1 of the numbers
(1.10)

% arg(m+a+i(n+az)), for (m,n)eZ*\{—a}, (m+ai)*+m+az)*><T2.
We label these N = N(7T') numbers in order by

(1.11) L <ENi<énp < <EnnZ<12

and define in addition §x,0 = &y, n — 1. It is not hard to see that this sequence (or

rather: this sequence of sequences) is uniformly distributed mod 1; i.e., for every

1 1
—_—a < < =
><a<b<=gs,

(1.12) i U=/ =Nty €la.b)) _
N —o0 N

b —

This (classical) equidistribution statement follows from the fact that the asymptotic
number of lattice points in a fixed sector of a large disc is proportional to the area
of the sector.

A popular way to characterize the “randomness” of a uniformly distributed
sequence is the statistics of gaps. The following theorem, which is a corollary of
more general results in Section 2, shows that there is a limiting gap distribution
when N — oo.

THEOREM 1.3. For every a € R? there exists a distribution function Py(s) on
R>o (continuous except possibly at s = 0) such that for every s > 0,

(1.13) i TL=J=N:NEnj—Enj-1) =5}

N—o0 N

= Py(s).

We will provide explicit formulas for Py(s), which clearly deviate from the
statistics of independent random variables from a Poisson process, where P(s) =
exp(—s). It is remarkable that, for o ¢ Q2, the limiting distribution P (s) is inde-
pendent of & and coincides with the gap distribution for the fractional parts of \/n
calculated by Elkies and McMullen [14]; cf. Figure 3. There is a deep reason for
this apparent coincidence, which we will return to in the next section.
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Figure 3. Left: The distribution of gaps in the sequence /7 mod
1,n=1,...,7765, vs. the Elkies-McMullen distribution. Right:
Gap distribution for the directions of the vectors (m — /2, n) € R?
withm e Z,n € Z>o, (m — V2)% + n?% < 4900. The continuous
curve is the Elkies-McMullen distribution.

The statistics are different for & € Q2. In particular, P(s) has a jump dis-
continuity at s = 0 for every a € @2, which exactly accounts for the multiplicities
in the sequence (1.11); removing all repetitions from that sequence results in a
limiting gap distribution which is continuous on all Rxq; see Corollary 2.7 below.
In the particular case a = 0, this recovers a result of Boca, Cobeli and Zaharescu
[3], which is closely related to the statistical distribution of Farey fractions (see
also Boca and Zaharescu [5]).

The only previously known result for nonzero values of « is by Boca and
Zaharescu [6], who calculated the limit of the pair correlation function on average
over «. (The pair correlation function is essentially the variance of the probability
E¢ (7, 0) studied in §2.) Contrary to the behavior of the gap probability Pg(s),
the limiting pair correlation function is the same as for random variables from a
Poisson process.?

1.3. Outline of the paper. Sections 2—4 give a detailed account of the main
results of this paper. Section 2 discusses the statistical properties of affine lattice
points inside a large sphere that are projected onto the unit sphere. A dual problem
is the question of the probability that a ray of length 7" pointing in a random di-
rection intersects exactly r lattice spheres whose radius scales as 7~1@=1) The
solution of the latter problem is provided in Section 3, and applied in Section 4
to the distribution of the free path lengths of the Lorentz gas. Both of the above

2Boca and Zaharescu consider a slightly different sequence of directions, which is obtained by
replacing the last condition in (1.10) with max(|m 4+ «1], |n +a2|) < T. This sequence is however not
uniformly distributed modulo one, which explains the discrepancy with the Poisson pair correlation
function observed in [6].
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lattice point problems fall into a general class of lattice point problems in ran-
domly sheared or rotated domains, which are discussed in Section 6. The central
idea for the solution of such questions is to exploit equidistribution results for
flows on the homogeneous spaces SL(d, Z)\ SL(d, R) and ASL(d, Z)\ ASL(d, R),
which represent the space of lattices (resp. affine lattices) of covolume one. We
establish the required ergodic-theoretic results in Section 5. The key ingredient
is Ratner’s theorem [30] on the classification of ergodic measures invariant under
a unipotent flow. We provide useful integration formulas on SL(d, Z)\ SL(d, R)
and ASL(d, Z)\ ASL(d,R) in Section 7 and in Section 8 we apply these to our
limit functions. Detailed proofs of the main limit theorems in Sections 2—4 are
given in Section 9. The proofs for Section 2 are virtually identical to those of the
corresponding theorems in Section 3.

2. Distribution of visible lattice points

2.1. Lattices. Let £ C R? be a euclidean lattice of covolume one. Recall
that £ = Z¢ M for some M € SL(d, R) and that therefore the homogeneous space
X1 =SL({d, Z)\ SL(d, R) parametrizes the space of lattices of covolume one.

Let ASL(d, R) = SL(d, R) x R be the semidirect product group with multi-
plication law

(2.1) (M. &)(M'. &) = (MM' M’ +&").
An action of ASL(d, R) on R? can be defined as
(2.2) y—>y(M.§):=yM+§.

Each affine lattice (i.e. translate of a lattice) of covolume one in R4 can then be

expressed as Z4 g for some g € ASL(d, R), and the space of affine lattices is then

represented by X = ASL(d, Z)\ ASL(d, R) where ASL(d,Z) = SL(d,Z) x 7.

We denote by i1 and p the Haar measure on SL(d, R) and ASL(d, R), respectively,

normalized in such a way that they represent probability measures on X; and X.
If o € Q%, say @ = p/q for p € 7%, q € 7~ ¢, we see that

2.3) (Zd + £)yM - (Zd + B)M
q q
for all
2.4) yel(q):={yeSLd,Z) : y =14 mod g},

the principal congruence subgroup. This means that the space of affine lattices with
o = p/q can be parametrized by the homogeneous space X; = I'(¢)\ SL(d, R)
(this is not necessarily one-to-one). We denote by p, the Haar measure on SL(d, R)
which is normalized as a probability measure on X,.

2.2. Basic set-up. We fix a lattice & C R4 of covolume one, and fix, once
and for all, a choice of My € SL(d, R) such that ¥ = 74 My. Given a € RY we



DISTRIBUTION OF FREE PATH LENGTHS IN PERIODIC LORENTZ GAS 1957

then define the affine lattice
2.5) Po 1= (Z% + a)My = Z°(1, a)(Mp, 0).

Consider the set P7 of lattice points y € &4 inside the ball %‘% of radius 7,
or, more generally, the spherical shell

(2.6) Bh(c)={x eR?:cT <|x|<T}, O<c<l.

For T large there are asymptotically (1 —c?)vol (%‘11 )T? such points, where Vol(%f)
= n4/2 / F(dziz) is the volume of the unit ball. For each T, we study the corre-
sponding directions,

2.7) IylI7ly €S97Y, for y € Pr = Lu NBE(c) \ {0},

where ng_l C R? denotes the (d — 1)-sphere of radius p. It is well known that, as

T — o0, these points become uniformly distributed on S‘li_l: For any set 4l C S‘li_1
with boundary of measure zero (with respect to the volume element VOlsld—l on

S‘li_l) we have

(2.8) lim My €Pr ||)’||_1y € u} _ VOIS?,I(ﬂ)
T—o0 #PT VOIS‘I{_I(Sii_l)

Recall that VOISclI—l (S‘ll_l) =d Vol(%‘f).

2.3. Distribution in small discs. We are interested in the fine-scale distribu-
tion of the directions to points in 7, e.g., in the probability of finding r directions
in a small disc with random center v € Sf_l. We define D7 (0, v) C S‘li_1 to be
the open disc with center v and volume

T4,

(2.9) VOIScll—l @7 (o,v)) = T

The radius of D7 (o, v) is thus < 74 /d=1) (if ¢ > 0). We introduce the counting
function

(2.10) Ner(o,v) =#{y e Pr : ||y||_1y eDr(o,v)}

for the number of points in ®7 (o, v). The motivation for the definition (2.9) is
that it implies, via (2.8), that the expectation value for the counting function is
asymptotically equal to o (for T — oo and o fixed):

(2.11) Ne,r(0,v) dA(v)
s{—1
VOlsiJ—l(@T(O)) 1—c4

~ vol(B< (¢ =
(@) ol 5T 4

VOlS?—l (@T(O))Td =0,
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where A is any probability measure on S‘li_1 with continuous density, and D7 (0) =
D7(0,e1) is the disc centered at e; = (1,0,...,0).

THEOREM 2.1. Let A be a Borel probability measure on Sf_l absolutely con-
tinuous with respect to Lebesgue measure. Then, for every o > 0 and r € Z>, the
limit

2.12) Ecq(r.o):= Tli_)moo/\({v €S9V Ner(o.v)=r))

exists, and for fixed c, o, r the convergence is uniform with respect to ¢ in any
compact subset of R>¢. The limit function is given by

(2.13)
(M e X1 :#(Z2M N &(c,0)) =r1)}) ifa €74
Eca(r,0) = {ing({M € Xy :#(Z2? + )M N C(c,0)) =r})  ifa=2eq?\7¢
(M, &) € X :#(ZM +£)NC(c,0)) =r}) ifagQ,

where

2.14) €(c,0) ={(x1,..., xg) €R? s c <x1 <1, [|(x2, ..., x0)|| < x14(c,0)},

2@=1/2

od
(1—c?)vol(B¢1)

d—1
(2.15) A(c,0)=( ) . vol@9Th =

In particular, E; (r, 0) is continuous in o and independent of £ and A.

In the above, we use the notation fo := 79\ {0}. Although the use of Zﬁf
is superfluous at this point (since €(c, o) does not contain zero), it appears as the
natural object in the proof. This subtlety is due to the fact that for generic M we
have Z¢ M N ¢(0,0) # Z¢ M N¢E(0,0) but Z¢ M NE(0,0) = 7% M NE(0,0).

Theorem 2.1 says that the limiting distribution E, o(7, o) is given by the prob-
ability that there are r points of a random lattice in the cone €(c, o), and E¢ (7, 0)
for o ¢ Q is the corresponding probability for a random affine lattice. Hence in
particular E. (7, 0) is independent of & when o ¢ Q4.

Remark 2.2. We will furthermore prove that when ¢ = 0 the function E¢ (7, o)
is C! with respect to o > 0; see Section 8.5. We expect that the same statement
should also be true for any fixed 0 < ¢ < 1.

Remark 2.3. In the case ¢ = 0, d =2 and a ¢ Q2 our distribution coincides
with Elkies and McMullen’s limiting distribution [14] for the probability of finding
r elements of the sequence /n mod 1 (n=1,..., N) in a randomly shifted interval
of length 6/ N (N — o0). Although the two problems are seemingly unrelated,
the reason for this coincidence is that both results use equidistribution of translates
of different orbits on the space of affine lattices X with respect to the same test
functions.
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Remark 2.4. By a general statistical argument, cf. e.g. [14], [22], Theorem
1.3 is an immediate corollary of Theorem 2.1 in the case d = 2, r = 0, with the
limit function Py (s) explicitly given by
d
(2.16) Py(s) = _d_EO,a(O»S) (s > 0); Py(0):=1.
B
The continuity of Py (s) for s > 0 follows from Remark 2.2.

To exhibit explicitly the group action which will play a central role in the proof
of the above statements, it is convenient to realize Sf_l as the homogeneous space
SO(d — 1)\ SO(d) by setting v = e¢1 K with e; = (1,0,...,0) and K € SO(d).
The stabilizer of e is isomorphic to SO(d — 1) (acting from the right), where
SO(d — 1) is identified with the subgroup

(2.17) (}0 50(5(1)— 1)) C S0(d).

Then

(2.18) D7r(0,v) =D7(0)K ={x : xK ' €D7(0)}
and

(2.19) Ner (o, K) =#@Pr ND1(0)K)

is the number of points in ®7(0) K. Note that N 7 (0, K) is left-invariant under
the action of SO(d — 1) and thus may be viewed as a function on SO(d —1)\ SO(d).
The statement equivalent to Theorem 2.1 is now that, if A is a Borel probability
measure on SO(d) absolutely continuous with respect to Lebesque measure, then

(2.20) Tlim A{K €SO(d) : N¢e1(0,K) =r1}) = E¢ (1, 0).

2.4. Visible lattice points. In the study of directions of affine lattice points it
is natural to restrict our attention to those points that are visible from the origin.
That is, we consider the set of directions without counting multiplicities. Nontrivial
multiplicities are only obtained when the (2-linear span of 1 and the components of
o has dimension < 2. If & ¢ Q¢ then the multiplicities are statistically insignificant;
in fact they can only occur along at most a single line through the origin, and thus
restricting to considering only the visible lattice points still yields the same limit
distribution as in Theorem 2.1.

Hence from now on we will assume e € Q% If @ = 0 then the visible lattice
points are exactly the primitive lattice points, i.e. those points m Mgy € & for which
me Z‘,f, gcd(m) = 1. In the general case o« = g € Q4 (g € Z~o, p € 79), the set
of visible lattice points is:

2.21) Po=29My, 7% :={x e (@ +a)\ {0} : ged(gx) <q}.

From now on in this section we will assume that g € Z~ is the minimal integer
which gives goe € Z¢. Given 0 < ¢ < 1 we set Py = Fo N %‘fw(c); then by a



1960 JENS MARKLOF and ANDREAS STROMBERGSSON

sieving argument using (2.21) and (2.8) one shows that for any set 1 C S{l_l with
boundary of measure zero,

(2.22)
 #y ePrnBEE) 7'y ety volgg—1 (44)
lim d =Kg a1’
T—00 vol BL.(c) Volsii—l(sl )
-1
with Kq :z( Z u(n)n_d) Z t_d:( Z n_d) Z =4,
nx>1 1<t=<q n=1 1<t=q
(n.g)=1 (t.g)=1 (n,g)=1 (.9)=1

When « € 7¢ this specializes to the well-known fact that the asymptotic density
of the primitive points in Z¢ is ¢(d)~!. It follows from (2.22) that if we introduce
the following analogue of (2.10) for visible lattice points:
(2.23)

Ner(@v)=#y ePr Iyl y eDricg o0}, Pr=FaNBI);

then the expectation value for N is again asymptotically equal to o

(2.24) lim / ) lffc,T(o, v)dA(v) =0,
N

T—o0
for any fixedo > 0,0 <c <1 and A as in (2.11).

THEOREM 2.5. Let A be a Borel probability measure on S‘ll_1 absolutely con-
tinuous with respect to Lebesgue measure. Then, for every 0 > 0 and r € Z>o, the
limit
(2.25) Eca(r,o):= lim A({v eS¢~ :Nor(o,v) =r})

T —o00
exists, and for fixed c, r the convergence is uniform with respect to o in any com-
pact subset of R>q. The limit function is given by
(2260 pg({M € Xy : #(ZGM N e,k o) =r)  (a=Le?).

In particular, E. o(r, 0) is continuous in o and independent of £ and A.

Remark 2.6. The function E\O,a(r, o) is C! with respect to o > 0. This is
proved by adapting the arguments of Sections 7.1 and 8.5 to the setting of visible
lattice points.

In dimension d = 2, considering only visible lattice points gives a variant of
Theorem 1.3 with an everywhere continuous distribution function: Take & € Q2,
and consider the set of rescaled directions

(2.27) {% arg(x] +1ix3) : x = (x1,x2) € Zi x¥4x3 < Tz}.
Let us label these M = M(T) numbers in order by

(2.28) 1< Evy <Emo < <Epm < 3
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and define in addition é M0 = é m,m — 1. Note that this is exactly the sequence
which is obtained from (1.11) by removing all repetitions. We now have:

COROLLARY 2.7. There exists a distribution function Py(s) on R>o, contin-
uous on all of Rxo, such that for every s > 0,

(2.29) lim M~ <j<M:M@Ep;—Epmj—1)>s) = Pals).
M—o0

Proof. Just as in Remark 2.4, the limit relation (2.29) follows from Theorem
2.5 together with the fact M ~ lcqfrT2 as T — oo (cf. (2.22)), and Py(s) is
explicitly given by

(2.30) Py(s) := —%EO,N(O, s) (s>0);  Py(0):=1.

Note that Eo,a (0,5) = Eo,«(0, Kq_ls) for all s > 0, since €(0, Kq_ls) is star shaped.
Hence

(2.31) Py (s) = Kq_IPa (Kq_ls) for s > 0.

The continuity of 13“ (s) for s > 0 follows from Remark 2.2, or Remark 2.6. Fur-
thermore, in Section 8.5 we will prove that (for d = 2),

(2.32) Eo4(0,0) =1 —«40, forall o € [0, (2¢9)7"].
and this implies that Py, (s) is also continuous at s = 0. d

When o = 0, Corollary 2.7 specializes to give the limiting gap distribution
for directions of primitive lattice points in Z2, which was proved earlier by Boca,
Cobeli and Zaharescu [3].

The proofs of Theorems 2.1 and 2.5 are virtually identical to those of The-
orems 3.1 and 3.7; we will therefore only outline the differences in Section 9.4.
In [24] we carry out a more detailed statistical analysis of the distribution of visi-
ble lattice points, which yields generalizations of Theorems 2.1 and 2.5, and also
provide explicit formulas and tail estimates of the limiting distributions.

3. The number of spheres in a random direction

We now turn to a lattice point problem that is in some sense dual to the one
studied in the previous Section 2. Its solution will also answer the question of the
distribution of free path lengths in the periodic Lorentz gas, see Section 4 below
for details.

3.1. Spheres centered at lattice points. We place at each lattice point y € £
a ball of small radius p and consider the set %g + $%4. The set of balls with centers
inside the shell (2.6) is

(3.1 (xeR?+y:yeLyNBL(c)\{0}).
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Note that we remove any ball at y = 0 (this is only relevant in the case & € Z9).
Furthermore, we will always keep p <m(%y) :=min{||y|| : y € L \{0}}, so that 0
lies outside each of the balls in our set. We are interested in the number N 7 (p, v)
of intersections of this set with a ray starting at the origin 0 that points in the random
direction v € S‘f’_1 distributed according to the probability measure A. That is,

(32)  Ner(p.v) :=#{y € La NBL(c)\ {0} : Raov N(BE + y) # o).

If p <|y]|, then a ray in direction v hits the ball %g + y if and only if

(3.3) Iy~ y €Dy~ p. )
with the disc
(3.4) D(e.v) =B +0)(1-5)712nsd"1  (0<e<1);

@(l,v):{wESi"_1 cw-v > 0}

We will again use the shorthand ®(¢) = D (e, e1). The radius of this disc is ~ e,
for ¢ — 0. Hence the number of balls hit by a ray in direction v is

Y

eD(lyll~ p.v)¢:
[yl

(5 Ner(pv) = #{y € S N () \ {0} -

compare (2.19).
For any A as in (2.11), one finds for the expectation value as T — 00, p — 0

—1
(3.6) /d lNC,T(,),,,)CM(,,)N/ vol(D(||y |7 p))

s~ yend (@) lyl=o  vol(S{™h)

dvol(y)

N vol(®B4—1) ,_, / dvol(y)
vol(s4—1) @ c) 1y 1971
= vol(B¢ 1) (1 —c)p? I T.
This suggests the scaling p = oT~Y@=1 with ¢ > 0 fixed.

THEOREM 3.1. Let A be a Borel probability measure on S‘ll_1 absolutely con-

tinuous with respect to VOlS]d—l. Then, for every 0 > 0 and r € Z>y, the limit
(3.7) Feq(r,o):= lim A({v € S¢7 1 N7 (aT~V@=D v) =r})
T—o00

exists, and for fixed o, r the convergence is uniform with respect to o in any com-
pact subset of R>o, and with respect to ¢ € [0, 1]. The limit function is given by

(3.8)
(M € X1 #(Z4M N 3(c,0)) =7)}) ifoacz?
Feo(r,o) =3 u,(4M € X, : #((29 + BMn3(co)=r}) ifa=Fte Q4 \ 74
p{(M. &) e X #((ZM +§)N3(c.0)=r}) ifa¢Q?,
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where
(3.9 3(c,0) = {(xl,...,xd) eR?:c < x1 <L |[(x2,....,x0)| < 0}.
In particular, F; o (r, 0) is continuous in o and independent of £ and A.

Remark 3.2. In the case ¢ = 0 the function F o(r,0) is C! with respect to
o > 0; we will prove this in Section 8.3. (We expect the same should be true also
for any fixed 0 < ¢ < 1.) If & ¢ Q¢ then Fe¢ «(r, 0) is independent of a; we denote
this “universal” limit function simply by F.(r, c). We prove in Section 8.3 that
F.(r,0) is C? with respect to o > 0, for any fixed 0 <c¢ < 1.

Remark 3.3. We give tail estimates for F(0,0) and Fo (0, 0) for general
dimension d in [25]. In the special case d = 2, explicit formulas for Fy(r, o) and
Fo,0(r, o) were given in [36], where these limit functions came up in a different set
of problems. Specifically, Fo(r, o) = f£,>***'2(2¢) and Foo(r,0)= fzbf_tfl‘z (40)
in the notation of [36, §7].

3.2. A variation. Instead of rays emerging from the origin we consider now
the family of rays starting at the points pf(v) in direction v, where 8 : S‘ll_1 — R4
is some fixed continuous function. We will keep p so small that, for all y € £, \ {0}
and all v € S‘li_l, the point pB(v) lies outside the ball %g + y. Then the ray

pB(v) + R=ov hits the ball B2 + y if and only if

Yy —pB(v)
|y —pB)|l

compare the analogous argument in the previous section. Hence the number of
balls in (3.1) intersecting this ray is N¢ 7(p, v, B(v)), where

(3.10) eD(ly —pB®) " p.v).

y —
B.11) Ne(p, v, w):=#] y € (La NBF()\{0)—pw : T DIy~ o, )¢
THEOREM 3.4. Let A be a Borel probability measure on S‘ll_1 absolutely con-
tinuous with respect to Lebesgue measure. Then, for every o > 0 and r € Z>g, the
limit

(3.12)  Fogp(r,o):= Tli_)moo/\({v €SI Ner (0T~ VE@D y Bw)) =r})

exists, and for fixed o, B, A, r the convergence is uniform with respect to o in any

compact subset of R>o, and with respect to c €(0, 1]. The limit function is given by

(3.13)

(11 X V) ({(M,v) € X1 xS{™1#(Z4 M N 3y(c.0)) =1}) ifa € Z¢

(g X D({(M,v) € Xg x ST 1 #((Z9 + )M N 34(c,0)) = 1))
ifa=2eq\z¢

1M, §) € X :#(Z9M +§)N3(c,0)) =r}) if e ¢ Q7

FC,d,ﬂ(r’ O—):
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where

(3.14) 3u(c.0) = 3(c.0) + 0 |[Projg,y1 B(v)] - e

(Projgyy1 denotes the orthogonal projection from R4 onto the orthogonal comple-
ment of v, and e = (0,1,0,...,0).) In particular, F; o g(r,0) is continuous in &

and independent of ¥, and if « ¢ QF then Fe o pg(r,0) = Fc(r,0), independently
of B and A.

Remark 3.5. Again, we prove in the case ¢ = 0 that the function F¢ o g(r,0)
is C! with respect to o > 0; see Section 8.3.

Remark 3.6. It will be useful for several of the results in Section 4 below, as
well as in the proofs in [23], to know that

oh—I>n0 Feop(0,0)=1 and UILmOO Feop(r,o)=0,

and that this holds uniformly with respect to the various parameters. This follows
from the following two basic bounds, which we prove in Section 8.4. More exact
asymptotic formulas will be given in [25].

Letvg := Vol(%f_l) = n(d_l)/z/F(%). Then for all o > 0 we have

(3.15) Foqp(0,0)>1—vg(1—c)od!

o0
and thus Z Feop(r,o)<vg(1— c)od_l.

r=1
Furthermore, there exists a constant C > 0 which only depends on r, d (thus C is
independent of ¢, &, B, A) such that for all ¢ > 0 we have

(3.16) Feqp(r,o) <C(l1 —c)_lal_d.

3.3. Spheres centered at visible lattice points. Now assume o = g € @4 and

set
G1D Rerip.v.w) =ty € @) —pw s 15 €Dy~ p0)f.

THEOREM 3.7. Let A be a Borel probability measure on S‘f’_1 absolutely con-
tinuous with respect to Lebesgue measure. Then, for every o > 0 and r € Z>y, the
limit
(3.18) Feqp(r,o):= lim A({v eS¢ : Ner(aT™ V@D v B(v) =r})

T—o0
exists, and for fixed o, B, A, r the convergence is uniform with respect to o in any

compact subset of Rxo, and with respect to ¢ € [0, 1]. The limiting function is given
by

(3.19) Feap(r,0) = (g x V(M v) € XgxS{ ™ - #(ZgM N3y (c, 0)) =1}).

In particular, F; o g(r,0) is continuous in o and independent of ¥.
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Remark 3.8. The function ﬁo,a,ﬂ (r,0) is C! with respect to o > 0. This is
proved by adapting the arguments of Sections 7.1, 8.1 and 8.3 to the setting of
visible lattice points.

3.4. Nonspherical objects. Instead of balls we now consider more general
objects

(3.20) 9p =T VdDg = (x er? ; TVE Dy c 0},

where 9 is a bounded open subset of R? which satisfies the technical condition that,
for Lebesgue-almost every v € S‘li_l, the subset Projg,; 12 C {v}* has boundary
of ((d — 1)-dimensional) volume measure zero. This assumption is readily verified
to hold for any “nice” set 2; for instance it certainly holds whenever 9 is convex,
but also for much more general sets 9.

As before we place translates of 9 at lattice points, and consider the set

(3.21) (x€r+y:yeLyNBL(c)\{0}}.
The number of intersections with a ray starting at the origin in direction v is
(3.22)  Ner(2,0) :=#{y € Lo NBL(c)\ {0} : Rugv N Q7 +y) # 2.

THEOREM 3.9. Let A be a Borel probability measure on Sf_l absolutely con-
tinuous with respect to VOnglz—l. Then, for every r € Z>y, the limit

(3.23) Feu(r.9):= lim A({ve STl Ner(2,0) =71))

exists, and is given by

(3.24)
Axp)({(, M)e S IxX; : #(Z2M N 3(c,2,v)) =r}) ifac 74
A x ug)({(v, M) e S471x X, : #((29 + 2)MN3(c,2,v) =r}) ifa=2 e@?\ 74
A x ) ({(v,8) € ST XX - #(Z9gN3(c,2,v) =r}) ifag¢Q?,

where

(3.25) 3(0,92,v):{x€[R§d:c<x-v<1,[REvﬂ(SZ+x)7é®}.

In particular, F. o(r,2) is independent of £.

The analogous statement holds for visible lattice points. Assume o = g cQ?
and set

(3.26) Ner@,v) :=#{y € Lo NBL(c) : Rogv N Q1 +y) # D).

THEOREM 3.10. Let A be a Borel probability measure on Sf_l absolutely
continuous with respect to Haar measure. Then, for every o > 0 and r € Z>g, the
limit

(3.27) Fog(r,9):= Tli_)moo)&({v eS¢l Ner(@.0)=r))
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exists, and is given by
(3.28) A x ), M) e SI7Vx X, : #(Z8M N 3(c,2,v)) =7}).
In particular, ﬁc,a (r,2) is independent of &.

All statements in this section are proved in Section 9.

4. The periodic Lorentz gas

We now show how the results of the previous Section 3 can be applied to the
distribution of free path lengths (§4.1). We will then generalize these results to
provide joint distributions of free path lengths and exact location of impact on the
scatterer (§4.2), and the distribution of the velocity vector after the first hit (§4.3).

4.1. Free path lengths. Recall that the free path length for the initial condition
(q,v) € T'(3,) is defined as

4.1) T1(q.v;p) =inf{t >0 : g +1v ¢ H,}.

The crucial observation is that if A is any given probability measure on S‘li_1
and0<p<T,(q,v)€ Tl(ﬂ{p), then we have

42) A({v €S Nog4p(p.v) =0}
<A{veS{':nlg.v:p) =T}
<A(veS{™": No,r—p(p, v) = 0}),
where No 7 is as defined in (3.5) with affine lattice £ = &£ — ¢ (thus a =
—qMo_1 mod Z%).
Let

(4.3) Dy (£) = —d%Fo,a(o, g1/

This defines a continuous probability density on R~ ¢ (cf. Remark 3.2). If o ¢ Q4
then @ (£) is independent of & and we write ®(§) for this function (as in (1.5)).
The following is a restatement of Theorem 1.1.

COROLLARY 4.1. Fix a lattice ¥ = 7% My. Let q € R4\ L and @ = —q M1,
and let A be a Borel probability measure on S‘li_1 absolutely continuous with re-
spect to Lebesgue measure. Then, for every £ > 0,

@4 limA(vesiT: p 7l (g vip) 2 ) = / o (§)dE'.
p—0 £

Note here that the condition ¢ ¢ & is ensures that 71 (g, v; p) is defined for all
sufficiently small p. Corollary 4.1 follows directly from (4.2) and Theorem 3.1; cf.
the proof of Corollary 4.2 below.

The analogous result corresponding to the set-up of Section 3.2 is as follows.
As in that section we let 8 : S‘ll ~1 5 R4 be a continuous function, and again let
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A be a Borel probability measure on Sf_l absolutely continuous with respect to
Lebesgue measure.

If ¢ € &, it is possible that the trajectory ¢ + pB(v) + R-ov starts inside
the scatterer (if ||8(v)| < 1), or will hit the scatterer at ¢ (if ||#(v)|| > 1 and v is
suitably chosen). In the first case the corresponding free path length is undefined;
in the second case 71(q + pB(v), v; p) = O(p). The measure of directions with
short free path lengths,

(4.5) A({v e ST (g + pB (), v;p) < Im(%e)})

is independent of p, for p sufficiently small.

In order to avoid these pathological cases we will from now on assume that 8
is such that if ¢ € &, then the ray B(v) + Rxov lies completely outside %f, for each
Ve Sf_l. This assumption will be in force throughout the remainder of Section 4.

Set

d
(4.6) Py p(§) = —d—sFo,a,ﬂ(O, gl/@d=1y

which, unlike &, depends on the choice of the measure A; cf. (3.13). The function
®y,g(£) again defines a continuous probability density on Rx¢; see Remark 3.5.

COROLLARY 4.2. For every &£ > 0,
o0
@7 lim (v ST p" (g + pB(0). vip) Z ) = /s P (E)dE'

In this statement, t1(q + pB(v), v; p) is well-defined for all v € S‘li ~1 50 long
as p is sufficiently small. (For if g € & then, by our assumptions on 8, we have in
particular ||8(v)|| > 1 for all v.)

Proof of Corollary 4.2. Set C =1+ SUPga—1 IIB]l. Generalizing (4.2) we note
that when p is sufficiently small and T is sufficiently large, we have
4.8) A(tv eS{™!: Norrcplp, v, B(2)) = 0})
<Aves{™: n(g+pB().v:ip) = T})
<A({ves{™ : Nor—cplp. v, B()) = 0}),
where N r is as defined in (3.11) with affine lattice £y = & — ¢ (in (4.8) we used
our assumption that if g € & then (8(v) + R>ov) N 9731‘1" =g foralve S‘li_l). In

d—1

particular, writing T = £p' ¢ + Cp and o (p) = T,"~' p we have, for any p > 0
sufficiently small,

4.9 A(vesSi™l: p? (g + pB(v),vip) > E))
>A({veSi™! : Nor (a(p)T, T, v, B(v)) = 0}).

But 71 - oo and o (p) — 51/(‘1_1) as p— 0T; hence by Theorem 3.4 the right-hand
side above tends to Fo g (0, £1/(4=1). This equals féoo Dy, 8(E") dE, because of
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(4.6) and limy 00 Fo,0,8(0,0) = 0 (see Remark 3.6). Hence we have proved

(4.10) 11;33&(@ €SIV pd 7l (g +pB(v). v p) = E}) > [;o Dy p(E)dE'.

But using the last inequality in (4.8) we obtain the same upper bound for the cor-
responding lim sup, and hence (4.7) is proved. O

Remark 4.3. When £ =72, q =0, B(v) = v (say) and A = uniform measure
on S%, Corollary 4.2 specializes to the limit result proved in Boca, Gologan and
Zaharescu [4]. Similarly for & = 72, Theorem 1.2 (which is basically a g-averaged
version of Corollary 4.1; cf. also Corollary 9.4 below) specializes to the limit result
proved in Boca and Zaharescu [7]. The known explicit formulas for the volumes
Fo,0(0,0) and Fy(0,0) in (3.8) in the case d = 2 (cf. [36] and Remark 3.3) indeed
agree, via (4.3) and (4.6), with the limit formulas obtained in [4] and [7] using
methods of analytic number theory.

Analogous results are valid for nonspherical scatterers, as direct corollaries
of Theorem 3.9.

4.2. Location of the first collision. The position of the particle when hitting
the first scatterer is

(4.11) q1(q.v;p):=q +11(q,v:p)v.

We are now interested in the joint distribution of the free path length (considered
in the previous section), and the precise location on the scatterer where the particle
hits.

By definition there is a unique m € & such that ¢ (q, v; p) € Sg_l +m; hence
there is a unique point w; = wi(q, v;p) € Sﬁl_l such that ¢,(q, v; p) = pw; + m.
Let us fix a map K : S‘l"_1 — SO(d) such that vK(v) = e forall v € Sil_l; we
assume that K is smooth when restricted to S‘f’_l minus one point.® It is evident

that —w; K(v) € S/ld_l, with the hemisphere
S/ld_1 ={v=(v1....,vg) €S9 1 v; > 0}.

Recall that we are assuming that § is a continuous function Sf‘l — R9 such
that if ¢ € & then (B(v) + R-ov) N %‘ll =g forall v e S‘ll_l. We will use the
shorthand ¢, g(v) = g + pB(v) for the initial position. For the statement of the
theorem below, we define the following submanifolds of X, and X, respectively:
(4.12)

Xy(y) = {M €EXy: Y€ (24 +ot)M} (for y € R?\ {0} and fixed & € ¢~'Z9);

X(y) :={geX:yeng} (for y € R?).
3For example, we may choose K as K(e;) = I, K(—ey) = —I and K(v) =
E(——Zamsmm}jr”l/z)vJ_) for v € Sf‘l \{e1,—e1}, where v| = (va,..., vy) € R41 and

E(w) = exp (_?w ':) € SO(d). Then K is smooth when restricted to Sjl_l \{—e1}.
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These submanifolds will be studied in Section 7, where we will introduce a natural
Borel probability measure vy on each of them.
We will also use the notation x | = x — (x -e)e for x € R%.

THEOREM 4.4. Fix a lattice ¥ = 7% My. Let ¢ € R and o = —qMo_l. There
exists a function Oy : R-o x ({0} x %‘11_1) x ({0} x R4~1) - R>o such that for
any Borel probability measure A on S‘l’y_1 absolutely continuous with respect to
VOlsid—l, any subset 1 C S/ld_1 with VOIS?—l (0U) =0, and any 0 < &1 < &, we
have

(4.13)

gi_%)t({v esd1: pd=1g (q,50). v:p)€lE1.62). —wi(q, (v), v: p)K(v) €L})

&
= /;1 /LLL /S]d_l q’a(évw,(ﬂ(v)K(v))J_) dA(v)dw d§,

where dw denotes the (d — 1)-dimensional Lebesgue volume measure on {0} x
RE=1. The function ®g is explicitly given by

(4.14)
Oy (6, w,2)
_ {vy({M €eXy(y): @ +a)MN (30,6 1) +2)=2)) ifaeqg'z¢
vy({g € X(») : Z9¢ N (3(0.£.1) +z) = 7}) if a ¢ Q7

wherey =€e1+w+z, and
4.15) 3(c1,¢2,0) = {(x1,...,x7) €RY 1 c1 <x1 <2, | (x2,...,xg)| <0}

Remark 4.5. Note that ®y (£, w,z) is independent of . For @ € Q4 the
function @4 (£, w, z) is Borel measurable, and in fact only depends on (e and) the
four real numbers &, |z||, [|w], z-w. Also for @ € Q¢, if we restrict to ||z|| < 1 [and
ifd =2: z+ w # 0], then Oy (&, w, 2) is jointly continuous in the three variables
£ w,z. Ifa ¢ Q¢ then Oy (&, w, z) is everywhere continuous in the three variables,
and it is independent of both & and z; in fact it only depends on £ and ||w]||. All
these statements will be proved in Sections 8.1 and 8.2. In particular, if & ¢ Q
then the limit in (4.13) is independent of o, 8, A.

Remark 4.6. It follows from (4.13) that
o0
(4.16) / / Py ((,w,z)dwdé =1
0 J{oyxpi—!
holds for almost all z € {0} x R4~ and from (4.13) and Corollary 4.2 that

wn | o / ) Pal6w BWKE)L) 0w = )
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holds for almost all £ > 0. As a consistency check we derive in Section 8.3 (see
Remark 8.12) the relations (4.16) and (4.17) directly from the explicit formula
(4.14). In fact it turns out that (4.16) holds for all z € {0} x R4~ and (4.17) holds
for all £ > 0.

As a preparation for Theorem 4.8 below and for the results in [23], we also
state a version of Theorem 4.4 involving an arbitrary continuous test function.

COROLLARY 4.7. Let A be a Borel probability measure on Sil_l absolutely

continuous with respect to volga—1. For any bounded continuous function f :
1
S{7 xRag x S{7T > R,

@18) lim [ f (0.0 0ig, 4(0). v 0). w1 (g, p(0). v: ) d A (D)

p—0 Jsd—1
ol P R BRLC U

Dy (5. @1, (ﬂ(v)K(v))J_) w1 dA(v)déE dVOlsf—l (w),
where @ = (w1, ...,wq).

Proof. For f with compact support the result follows in a standard way by
approximating f from above and below by linear combinations of characteristic
functions and applying Theorem 4.4. When extending to arbitrary bounded contin-
uous functions f one uses (4.17), (4.6) and Remark 3.6. O

4.3. Velocity after the first collision. 1f a particle moving with velocity v hits
a spherical scatterer at the point ¢; and is elastically reflected, its velocity changes
to

(4.19) v =v9—2(vo-wi)wq,

where wq € S‘f’_1 is the location of the hit relative to the center of the sphere, as
defined in Section 4.2. This implies

V1 =70

(4.20) W)= ——-.
lvi —voll

THEOREM 4.8. Let A be a Borel probability measure on Sf_l absolutely
continuous with respect to VO]S?'—I. For any bounded continuous function f :

S971 xR x S¢S R,
@21) lim |~ f(v0,p? " 11(g,,8(00). v0: P). V14, (v0). vo: p))d A (v0)

0—0 Scli—

Z[d / / f(v0,€,v1) pa,g(v0, &, v1) dA(vo) dEdvolga—1(v1),
S JRsg JS§! 1
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with the probability density py g defined by
(4.22)

Pe.p(v0. €. 1) dvolga—1 (1) = P (§. @ 1. (B(v0)K(v0)) 1) @1 dVolgy—1 (@)

where
(4.23) v1 = (e1—2(e1-@)w)K(vo) ™!, w € Sﬁd_l-

Remark 4.9. The relationship between py g(vo,§,v1) and @ (§, w, z) can
be expressed more explicitly as

(4.24)
1 —d (viK(vo)) L
Pep(@0.£:01) = o1 = vl @ (£ 5 (B0K (w0)) 1)

The function pg, g(vo.§,v1) is independent of the choice of the function K :
S‘I"_1 — SO(d), since @ (&, w, z) only depends on the four real numbers (cf.

A/ 1=(vov1)?
lvi—voll °

Remark 4.5) €, ||w]|, ||z]|, w-z, which in (4.24) can be expressed as &,
V1= (B(vo)-v9)2, (v1:00) (B(v0)v0)—v1-B(v0) respectively.

lvi—voll

5. Equidistribution in homogeneous spaces

This section provides the ergodic-theoretic results, which are the key ingre-
dients in the proofs of the main theorems. These equidistribution theorems are
consequences of Ratner’s classification of measures that are invariant under the
action of a unipotent flow [30], and may in particular be viewed as variants of
Shah’s Theorem 1.4 in [31].

5.1. Translates of expanding unipotent orbits. The following is a special case
of Shah’s Theorem 1.4 in [31]. Let G be a connected Lie group and let I" be a
lattice in G.

THEOREM 5.1. Suppose G contains a Lie subgroup H isomorphic to SL(d, R)
(we denote the corresponding embedding by ¢ : SL(d,R) — G), such that the set
[\T'H is dense in T\G. Let A be a Borel probability measure on R~1 which is
absolutely continuous with respect to Lebesgue measure, and let f : T\G — R be
bounded continuous. Then
5.1

. 1 x e~@d-Dr
g [ (o((00)) (Te ary)))drw= [ ran

where [L is the unique G-right-invariant probability measure on I'\G.

Let us set

(5.2) n_(x) = ((}0 1;_1) ,0) € ASL(d, R)
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and

—(d-1)
(5.3) o = ((e to ) ,0) € ASL(d, R).

tO et 1 d—1
Theorem 5.1 implies the following.

THEOREM 5.2. Let A be a Borel probability measure on R4~ which is abso-
lutely continuous with respect to Lebesgue measure, and let f : X — R be bounded
continuous. Then, for every o € R% \ Q¢ and every M € SL(d, R),

s gim [ £ M0 drw) = [ f@) duto).

Proof. Let G = ASL(d,R), I' = ASL(d, Z) and define the embedding
(5.5) ¢:SLd,R)>G, M (z,0)(MMM~',0)(1,, —a).

We now wish to establish that T\T'H with H = ¢(SL(d, R)) is dense in ['\G. To
this end it suffices to show that

(5.6) (v.m)(14,0)(MM,0) = (yMM, (e +m)MM)

are dense in ASL(d, R), as y, m and M vary over SL(d,Z), 7% and SL(d, R), re-
spectively. It is evident that this in turn is equivalent to showing that {(ec 4+ m)y 1}
is dense in RY.

Letting C C R¢ /7 be the closure of the image of a SL(d, Z) C R? under the
natural projection R? — R¥ /74 our task is to show C = R? /74 . Since o ¢ Q¢

there is a choice of y € SL(d, Z) either a permutation matrix or ((1’ o ) which gives

w = (wq,...,wy) :=ay € C with w; ¢ Q. Then by choosing y’ = (,10 lda—l) €
SL(d, 7Z) with appropriate a € 7971 the point wy’ can be made to lie arbitrarily
close to (w1,0,...,0)in [REd/Zd. Hence since C is closed we have (wy,0,...,0) €
C.Nowlety =(y1,...,yq)€R? and £ > 0 be given. Then there is m € Z\ {0} such
that |[mw;— y1 || < & (where || x|| = inf, ez |x —n| as usual). Letting y” be any matrix
in SL(d, Z) with top left entry m we have (mwy, *,...,%*) = (w1,0,...,0)y”
€ C, and hence since C is right SL(d, Z) invariant and mw; ¢ @, an argument as

above shows (mwy,0,...,0) € C. Finally by choosing (again) y"" = ( boa ) €

0 14—y
SL(d, Z) with appropriate @ € Z¢~1, the point (mwy,0,...,0)y” € C can be
made to lie arbitrarily close to (mwq, y2,...,y4). Since ¢ is arbitrary and C is

closed we obtain y € C. Hence C = R4 / 7%, as desired.
Having established the required density, Theorem 5.1 implies that for any
bounded continuous f : X — R

5 im [ FMadn @)@ (ad) i) = [ Pt

Choosing the test function f (g) = f(g(M,aM)) completes the proof. O
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We now extend Theorem 5.2 by considering sequences of test functions with
additional parameter dependence.

THEOREM 5.3. Let A be a Borel probability measure on R4~ which is abso-
lutely continuous with respect to Lebesgue measure. Let f : RI“1x X — R be
bounded continuous and f; RiI-1x X > Ra family of uniformly bounded (i.e.,
| ft| < K for some absolute constant K), continuous functions such that f; — f
as t — oo, uniformly on compacta. Then, for every a € R4 \@d, M € SL(d,R),

(5.8) lim » fi(x. (g, 0) (M, 0)n_(x)®") dA(x)

t—>00 Rd
- / F(x.9) du()dA(x).
RA—1xX

Proof. Let us first assume that f; and f have support in the compact set
% c R4~! x X. Hence the convergence f; — f is uniform and all functions are
uniformly continuous. Therefore, given § > 0 there exist € > 0, #p > 0 such that

(5.9 f(x0,8)—8=<f(x,8) < f(x0,8)+§
and
(5.10) f(x0.8) =8 = fi(x.g) < f(x0.8)+§

for all x € xo +[0,€)97L, ¢ > 1y. Now
(5.11)/ fi(x,(1g,0)(M,0)n_(x)®")dA(x)
Rd—1

= Z /ek+[0,e)dl ft(x»(ld,“)(M,O)n_(x)q)t)d/\(x)

kezd—1
= Z / fek, (14,0)(M,0)n_(x)®")dA(x)+ 6.
kezd—1 ek+[0,e)d—1
By Theorem 5.2,
(5.12) lim flek,(14,0)(M,0)n_(x)®")dA(x)

100 Jek+[0,6)4—1

- / Flek.g)du(g) / dA(x)
X ek+[0,6)d—1
<o L 0 MA@,
and so

(5.13) limsup/Rd_1 fi(x,(1z,0)(M,0)n_(x)d")dA(x)

t—>00

<[ [, e drdnte) + 2,
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An analogous argument shows
(5.14) liminf/ fi(x,(14,00)(M,0)n_(x)d")dA(x)
t—>00 Rd_l

> / / f(x, 2)dA(x)dpu(g) —25.
X Rd—l
It therefore follows that the limit exists and

15 tim [ Sl (o) (4,016 dA)

=[X/Rd—1 f(x,g)dA(x)du(g).

We now extend the result to bounded continuous test functions f;, uniformly
bounded by | f;| < K. Given § > 0 we choose compact sets %; C R~! and
¥, C X so large that (1—A(H1)) 4+ (1—u(2)) <8/K. Letcy : R4~ — [0, 1] and
¢y : X — [0, 1] be continuous functions which have compact support and satisfy
Xy, < c1and x, < ca, respectively. Write
(5.16)

Jr= ftl + fzz’ with ftl(xug) = c1(x)c2(g) fr (x, g), ft2 = fi _ftl-

Then f,' is compactly supported as in the previous paragraph. For f,> we have,
using Theorem 5.2,

(5.17) limsup | £, (14, 0) (M, 0)n_(x)D")| dA(x)
Rd—l

t—>00

< K(1—A(¥1))+lim sup /% K(1—c2((17,0)(M,0)n_(x)®")) dA(x)

t—>00

:K(l—/\(?{l))—i-K/X(l—Cz(g)) du(g)

< K(l —A(%l)) + K(l —/L(f]fz)) <.

This upper bound shows that the statement of the theorem can be extended from
compactly supported to bounded test functions. O

5.2. Spherical averages. We will now show that the statement of Theorem
5.3 (and thus of Theorem 5.2) holds when n_(x) is replaced by

0 X
(5.18) (E(x),0) = (exp (_ O Od—l) ,0).
In fact we can prove a more general fact with almost no extra effort:
COROLLARY 5.4. Let D C R~ be an open subset and let E1 : D — SO(d)
be a smooth map such that the map D > x — e E1(x)" ! e S‘fl_1 has nonsingular
differential at (Lebesgue-)almost all x € D. Let A be a Borel probability measure

on D, absolutely continuous with respect to Lebesgue measure. We then have, for
any bounded continuous function f : D x X — R and any family of uniformly
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bounded continuous functions f; : D x X — R such that f; — [ ast — oo,
uniformly on compacta, and for every a € R4 \@d, M e SL(d,R),
(5.19)

lim / Fi(x, (1g. @) (M, 0)(E1 (x), 0)®) dA(x) = / Fx.8) dpn(g)dA(x).
D DxX

t—>0o0

Remark 5.5. Taking E1(x) = E(x) as in (5.18) is indeed a valid choice in
Corollary 5.4, for note that e 1 E(x) ™! = (cos lx1l, —Slﬁﬂ)ﬁ I x), and one checks that
this map has nonsingular differential except when || x| € {x, 27,37, ... }.

Proof of Corollary 5.4. We first prove that if xo € D is any point where
the map x + e E1(x)~! has nonsingular differential, then there is some open
neighborhood Dy C D of x¢ such that (5.19) holds when D is replaced by D¢ or
by any Borel subset of Dy.

To see this, write Eg = E1(x¢) and

(5.20)

=B = (4 ) = (00 ). ccrvwerit
Then E»(xo) = 1 and thus c(x¢) = 1 and v(x ) = 0. Furthermore, the map x —
(c(x),v(x)) € Sd_1 has nonsingular differential at x = x, since (¢(x), v(x)) =
e1Ex(x)"! = (e1E1(x)" 1) Eo, and thus also the map x — ¥ := —c(x) 'v(x) €
R4~1 must have nonsingular differential at x = x¢. Hence there exists some
bounded open neighborhood Dy, of x¢ with D_(/) C D such that ¢(x) > 1/2 for all
x € Dy and such that x — X is a diffeomorphism of D{, onto a bounded open
subset 56 C R?~1, Now for each x € D{, we have

(5.21)

i ) 3) ) (5 2) )

since writing out 'E5(x)E>(x) = 14 one gets the relations cw + vA = 0 and
2+vv=1,vizw—¥4A=0andc—%'v=c"1.
Hence also

(5.22) (El(x),O)CI)t — (Eo,O)n—(X)th ((tvc(&x))e_dt A(x)) ,0) .

Now fix Dy as an open nelghborhood of x¢ such that Dy C D/, and consider
any Borel subset B of Dgy. Write B C Do C D/ for the images of B and Dy
under x — X. Let us assume A(B) > 0, and let X be the measure on R?~! which
corresponds to A(B)~! 1|z under the diffeomorphism x +— ¥; then X is a Borel
probability measure with bounded support and absolutely continuous with respect
to Lebesgue measure. Since DocC ﬁé, we may choose a continuous cutoff function
h:R4=1 [0, 1] such that X5, = h < X By
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If f; and f are given as in the statement of the corollary, we may define a
family of continuous functions f; : R¢~! x X — R and a continuous function
f :R471 x X — R through

~ _1 ~
(5.23)  fi(%,g) = h(®)f, (x,g ((tvc((;))e—dt A?x)) ,o)) if % € D)

~ -1 ~
F(E.g) = hiE)f (x,g((c({()) A?x))’o)) if ¥ e B):
fi(®.¢)=f(¥.g):=0 if ¥ ¢ D).

(We here view x € Dy as a function of ¥ € 56.) We then have f;(%,g) — f (%, )
as t — oo, uniformly on compacta. Applying Theorem 5.3 for A, f;, f, and with
M replaced by M Ey, we get

(5.24) lim ﬁ(i, (14, a)(MEq, O)n_(i)QDt) dX(F)
1—>00 Rd—1
— [, FGodudie.
RI-1xX
Here the left-hand side equals, using A= X| 7 and (5.22),
(5.25)  lim /~ fi (x, (14.0)(M. 0)(E; (x), o)qf) dA(F)
—>00 B

=A(B)! tl_i)rxolo/B fi (x, (1g.0)(M,0)(E1(x). 0)@’) dA(x),

and the right-hand side equals (using the right invariance of )

(5.26) [B 2 du()d (@) = A(B)! /B S 8 du()dA(x).

This proves our claim: (5.19) holds when D is replaced by any Borel subset B of
Dy. We have proved this under the assumption A(B) > 0, but it is trivially true
also in the case A(B) = 0.

Now the proof of Corollary 5.4 is completed by a simple covering argument:
Given ¢ > 0 there is some compact subset K C D such that A(K) > 1 — ¢ and the
map Dsx e Ei(x) L e S‘ll_1 has nonsingular differential at every x € K.
Then by what we have proved and since K is compact, there exists a finite family
D1, ..., Dy of open subsets of D which cover K and which have the same property
as Do above. Set By := D1NK and, recursively, B; :=(D; NK)\(B1U---UBj_1)
for j =2,...,n. Then each B; is a Borel subset of D; so that (5.19) holds when
D is replaced by B;. Furthermore, K is the disjoint union of By, ..., B,; hence by
adding we obtain that (5.19) holds when D is replaced by K. Using A(K) > 1—¢
and our assumption that the family f; is uniformly bounded, we obtain (5.19) upon
letting ¢ — 0. O
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5.3. Characteristic functions. We recall the definition of limits of a family of
sets {€;}s>1,, Where ¢ is a fixed real constant:

(5.27) liminf€; := () (€.  limsup%;:= (] [ J%s.

t>to s>t t>to s>t
We will also use the notation

(5.28) lim(inf%,)° := | J (ﬂ%s)o, limsup &, := (1) | %s.

t>tg \s>t 1>t s>t

Note that lim(inf€;)° is open and lim sup é; is closed.
If {€;}s>1, is a decreasing family and € = ﬂtzto%t we write €; | €; if
{€t}1>1, 1s an increasing family and € = Utzto € we write €; 1 €.

THEOREM 5.6. Let A be a Borel probability measure on R4~ which is ab-

solutely continuous with respect to Lebesgue measure, and let €; be a family of
subsets of RE™1 x X . Then, for o € R4 \(I;Dd and M € SL(d, R),
(5.29)

fimint [ e, (e (e )M O 20) = [ du(gdao).

=00 lim(inf€;)°

and

(5.30)
timsup [z, (v (L (M. 0n-0)0dA) = [ du(e)dr),

t—oo JRI— lim sup €

If, furthermore, the set lim sup €; \ lim(inf €;)° has measure zero, then
(5.31)

lim / e, (6. (1g. ) (M. 0)n_(x) &) d A (x) = / du(g)dA(x).

=00 Jpd—1 limsup €

Proof. We begin with the proof of (5.30). Define the closed set

(5.32)

Clearly €; C %t C %,, fort >t;. So

(5.33) limsup . l)(%,(x,(ld,oc)(M,O)n_(x)CID’)al)\(x)

t—>o0 JRE—

< lim sup lim sup / Xz, (x,(1g.0)(M,0)n_(x)d)dA(x).
RA—1

tj—>00 t—00

It follows from Theorem 5.3 (for a constant family of test functions f = f;) by a
standard probabilistic argument in which characteristic functions are approximated
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by bounded continuous functions f (see e.g., [33, Chap. IIT]) that
(5.34)
lim sup/ Xz, (x, (17, 0)(M,0)n_(x)®")dA(x) < /~ du(g)dAi(x).
1 %tl

t—>o00 JRA—

Since %tl J limsup €;,

(5.35) limsup | du(g)dA(x) = / du(g)dA(x),

n—oo J%, limsup¢;
and (5.30) follows. Relation (5.29) is established by taking complements, and
(5.31) then follows from (5.29) and (5.30). O

Remark 5.7. Let E1 : D — SO(d) be any map as in Corollary 5.4; then the
assertions of Theorem 5.6 also hold with n_(x) replaced by (E1(x),0): Let A be
a Borel probability measure on D, absolutely continuous with respect to Lebesgue
measure, and let €; be a family of subsets of Rl x X. Then, for a € R4 \@d
and M € SL(d, R),

(5.36)

timint [ ge, (v, (10 )M OE).00) 20 = [ du()dico)
D lim(inf €;)°

t—>00

and we have corresponding analogues of (5.30) and (5.31). The proof is exactly as
the proof of Theorem 5.6, except that Corollary 5.4 is used in place of Theorem 5.3.

5.4. Corresponding results for SL(d, R). By following the same line of argu-
ments as for ASL(d, R), one can prove the analogous equidistribution results for
any homogeneous space I'\ SL(d, R) with I" a lattice in SL(d, R). The lattices
relevant for our application are the congruence subgroups I' = I'(g). The main
results are as follows (cf. Theorem 5.3, Corollary 5.4, Theorem 5.6 and Remark
5.7 above).

THEOREM 5.8. Let A be a Borel probability measure on R~ which is ab-
solutely continuous with respect to Lebesgue measure. Let f : RZ™1 x X —R
be bounded continuous and f; : R4~ x X4 — R a family of uniformly bounded,

continuous functions such that f; — f ast — oo, uniformly on compacta. Then,
for every M € SL(d, R),

I ox ) [fe @D 9

(5:37)  lim, Rd—1 Ji (x’M (to 1d_1)( )} e’ld_l)) dA(x)
= [ M) dig D).
RI—1xX,

COROLLARY 5.9. Let E1 : D — SO(d) be any map as in Corollary 5.4,
let A be a Borel probability measure on D, absolutely continuous with respect to
Lebesgue measure, and let f : D x Xg — R and f; : D x X4 — R be uniformly
bounded continuous functions such that f; — f ast — oo, uniformly on compacta.
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Then, for every M € SL(d, R),

. e~@-Dr
(5.38) zlggo/th (x,MEl(x)( 0 etld—l)) dA(x)

= [ degOnda).
DxXy

THEOREM 5.10. Let A be a Borel probability measure on RA=1 which is ab-
solutely continuous with respect to Lebesgue measure, and let €; be a family of
subsets of R4—1 x Xy. Then, for every M € SL(d, R),

<300 Lt u 1 x e—(d=1)t 0 d
(5.39) %H_l)é.l} RI—1 X&; (x’ (to ld—l)( ‘0 etld—l)) )
. / dpg(M)dA(x),
lim(inf€;)°

and

5.40) i pLox (e 0 dx
(5.40) lﬂgpfﬂ%d-lx%t(x’ (t0 1d—1)( ‘0 etld—l)) )

< /1 dpg(M)dA ().

imsup €;

If, furthermore, the set lim sup é; \ lim(inf €;)° has measure zero, then

. 1 x e~@-r
4D lim a1 1o (x’M(to 1d_1)( ‘0 efld_l)) dA(x)
=/ dug(M)dA(x).
lim sup €

Remark 5.11. Let Eq1 : D — SO(d) be any map as in Corollary 5.4; then the
assertions of Theorem 5.10 hold with ( tlo 1 ;‘_1 ) replaced with E7(x): Let A be a

Borel probability measure on D, absolutely continuous with respect to Lebesgue
measure, let €; be a family of subsets of R x Xy, and let M € SL(d, R). Then

(5.42) “;ﬂé%f/DX%r (x’MEl(x)( ‘0 e’ld—l)) )

= | dg(M)dA(x),
lim(inf €;)°
and we have corresponding analogues of (5.40) and (5.41).

Note that these statements for SL(d, R) are in fact consequences of the mixing
property of diagonal one-parameter subgroups of SL(d, R) on I'\ SL(d, R) (cf. the
arguments used in [15], [21]), and do not require an application of Ratner’s theory.
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6. Lattice points in thin sets

6.1. Affine lattices with irrational «. In the following we consider subsets B
of RA—1 x R4 : we use the notation

(6.1) Bl = ((x}xRHNB

which we identify with a subset of R4 by projection onto the R4 component. Our
goal in this section is to study, for a given affine lattice, the limit distribution of
the number of lattice points contained in such a set B, after it has been deformed,
thinly stretched, and then sheared (or rotated) by a random amount. As we will
see in Section 9, the problems discussed in Sections 2 and 3 correspond to special
cases of the present question.

THEOREM 6.1. Let A be a Borel probability measure on RA=Y yphich is ab-

solutely continuous with respect to Lebesgue measure, and let °B; be a family of
subsets of[Rid_l x R such that U;B; is bounded. Then, forr € Z>q, o € R4 \@d
and M € SL(d, R),

62) TiminfA (b € RO #(B e d T (x) N (29 +o)M) = 1))

> (A x /L)({(x,g) eR¥IxX : #((1im(inf‘B,)°)|x ﬂng) > r})

and

(6.3) lim supx({x e R (B[, @' n_(x) N (29 + @) M) > r})

t—>00
<(Ax ,u)({(x, g) € R x X :#((limsup B)lx N ng) > r})
If, furthermore, the set lim sup B, \ lim(inf B;)° has Lebesgue-measure zero, then

64 Jim 2({x R #(Bi[x @ n_(x) N (2! +@)M}) = 1))

=(A x,u)({(x,g) eRTIx X ¢ #((limsupB,)|x N29g) > r})

We will require the following lemma for the proof of Theorem 6.1. Given a
set B C R~! x R? and an integer r € Z~¢, we define the subset

6.5) %(%,r)z{(x,g)eRd_lxX :#(‘B|xﬂng)zr}.
LEMMA 6.2. Fixr € Z~g. Then the following statements hold:
1) IfACB, then€(A,r) CECB,r).
(ii) IfB; is a decreasing family of bounded sets, then N;E(By, r) = E€(Ns By, r).
(iii) If B¢ is an increasing family of sets then U;€(B;, r) = €(Us By, 1).
(iv) If B is open, then € (8, 1) is open.
(v) If B is closed and bounded, then €(8, r) is closed.



DISTRIBUTION OF FREE PATH LENGTHS IN PERIODIC LORENTZ GAS 1981

(vi) If B has zero Lebesgue measure, then € (B, r) has zero measure with respect
1o volga—1 X /L.

Proof of (1). Clear. O

Proof of (i1). By (1), Ns€(B;,r) D €(N;By, r). To prove the opposite inclu-
sion, let (x, g) € R%~! x X be an arbitrary point outside €(N;B;, r), where g €
ASL(d, R) is a fixed representative for a point in X. Then #((ﬂt’Bt)|x N ng) <r.
Because of our assumptions there is a bounded set € C R? such that B;|, C € for
all 1 > 1 (for some constant 7y € R). Let F be the finite set F :={m € Z% : mg € ¢},
andlet F/:={meZ% :mg e (N;B;)|x} C F. Then#F’ <r. Foreachm € F\ F’
there is some ¢ > f¢ such that mg ¢ B;|y; thus for all sufficiently large r we have
mg ¢ B, |y forallm € F\ F'. Hence for these 7 we have #(B|x ﬂng) <#F'<r.
Hence (x, g) ¢ N;€(By, r). O

Proof of (iii). It follows from (i) that U;€(B;,r) C €(UsB;,r). To prove
the other inclusion, take an arbitrary point (x, g) € €(U;B;,r). Then there are

r distinct vectors my, ..., m, € 7% with mjg € (UsBy)|x = Us(By|x). Hence
for ¢ sufficiently large we have m;g € B;|x forall j =1,...,r. Hence (x, g) €
Ut%(%t,l’). O

Proof of (iv). Assume that 5 is open. Take (x¢, go) € €(B, r), where gg €
ASL(d, R) is a fixed representative for a point in X. Then there exist r distinct
points m1,...,m, € Z% satisfying mjgo € Blx,, i.e. (xo,m;go) € B. Writing
Q= ﬂ;=1]3._1(%) where f; : RI~1xASL(d,R)> (x, g)— (x, m;g)e RY-1xRY,
we have (x¢, go) € €2, and each (x, g) € Q projects to a point in €(*8, r). Also Q2
is an open subset of R¥~! x ASL(d, R), each J; being continuous. Since (xo, go)
was arbitrary in ‘€(*8, r) we conclude that €(°B, r) is open. O

Proof of (v). Assume that B is closed and bounded. Take (x¢, go) € R4 1 x X
outside €(B, r), where again gog € ASL(d, R) is a fixed representative for a point
in X. Then #(*B|x, NZ4%gy) <r.

Let U; be a neighborhood of the identity in SL(d, R) such that |[yM — y| <
Lyl forall y e RY, M € Uy. Let R =sup{|[y|| : ¥ € Uyepa—1Bl|x}. Then
U = U; x B% is a neighborhood of the identity in ASL(d, R) = SL(d, R) x R?,
and for each y € R? with ||y| > 4R and g = (M, ) € U we have

66) lygll=lyM+El=Ilyl—lyM—yl—I&1>3lyl-R>R.

Hence y g ¢ B|, holds automatically for all g € U, x € R¥~1 and all y € R¢ with
|y|l > 4R. Let F be the finite set of points m € Z¢ which satisfy |[mgo| < 4R
and mgo ¢ B|x,. For each m € F we choose some open sets Vy, C R4=1 and
V! < R? such that (x¢, mgo) € Vi x Vy, C [B. Now set

6.7) U’ =(g0U) N (ﬂ {g € ASL(d,R) : mg e V,;,}); V=1 Vm

meF meF
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These are open subsets of ASL(d, R) and R?, respectively, and (x¢, go) € V x U’.
Furthermore, if (x, g) € V x U’ then by construction mg ¢ B|x for each m € 7¢
with mgo ¢ B|x,. and thus #(Z%g NB|x) < r since #(Z% go N B|x,) <r. Hence
each (x, g) € V x U’ projects to a point in RA=1 x X outside €(°B, r).

Since (x ¢, go) was an arbitrary point outside € (B, r) we conclude that € (8, r)
is closed. O

Proof of (vi). Assume that 28 has Lebesgue measure zero. Note that
6.8)  (volga_1 x,u)({(x, 2) eRY™ X ASL(d,R) : B|, NZ%g # @})

< Z (volga—1 Xu)({(x,g) e R4! X ASL(d,R) : mg € ‘B|x})

mezd
:meZZd /Rd—l /SL(d,[RE) /Rdl (m(M’ §e %|x)dVOIR" (&)dp1(M)dvolga—1(x),

where [ is the indicator function. The innermost integral equals volgs (*B|x ), since
m(M,&) = mM + &. But vol(Bl,) = 0 holds for almost every x € R¥~1, and
thus the total integral is zero. Hence, a fortiori, € (8, ) has measure zero. O

Proof of Theorem 6.1. If r = 0 then the statements are trivial; thus from now
on we may assume r > 0. Define the decreasing family of sets

(6.9) e, :=%(U %s,r).

s>t

These sets are clearly closed (cf. Lemma 6.2(v)). Then

(6.10)  lim supx({x e R (B, @' n_(x) N (29 + @) M) > r})

t—>00

§limsup/ﬂw_1 Xz, (x,(ld,oc)(M, O)n_(—x)cpf) dA(x)

t—00
<[ duarw.
lim sup €
due to Theorem 5.6. (To be precise, to treat “n_(—x)” as above, one applies
Theorem 5.6 to A" and %/L’ defined through A’(B) = A(—B) for B ¢ R?~1, and
€, ={(—x,g2): (x,g) €¢;}.) In view of Lemma 6.2(ii),

(6.11) limsup%t = m%t :%(ﬂ U %S,r) = ¢€(limsup ‘B, r),
t

t s>t

and hence

(6.12) . du(g)dA(x) = /% du(g)dA(x)

lim sup €; (lim sup B;,r)

=(Ax M)({(x,g) eRI"lx X :#((limsupTﬂx ﬂng) > r}),
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which proves (6.3). The proof of (6.2) is analogous, using Lemma 6.2(iii) and
(iv). Finally (6.4) follows using Lemma 6.2(vi) for » = 1, since A is absolutely
continuous with respect to volgs—1, and

(6.13) ¢(lim sup B, r)\ é(lim(inf B,)°, r) C€(lim sup B, \lim(inf B;)°, 1).

Theorem 6.1 is easily generalized to multiple families of sets:

THEOREM 6.3. Let A be a Borel probability measure on R~ which is ab-
solutely continuous with respect to Lebesgue measure. For each j = 1,...,m, let
%gj ) be a family of subsets of R~ x R such that U,%Ej ) is bounded. Then, for
any ri,....rm € Zso, @ € R4\ Q% and M € SL(d, R),

(6.14)
liminfk({x eRIH(BY 0 ()N @ +)M) =1y, j=1.... m})

t—>00

> ()Lx,u)({(x, 2) €RIU X #((lim(inf BY)%) | nZ9g) >y, j=1.... m})
and

(6.15)
limsup)t({x e RY! :#(%Ej)lxcb"n_(x)ﬂ(zd +a)M)=r;, j = lm})

t—>00

S(Axu)({(x,g)eRd_lxX:#((limsup%gj))hﬂldg) >rj, j= 1m}>

If, furthermore, each set lim sup %Ej ) \lim(inf %ﬁ-" ))° (j=1,...,m) has Lebesgue-
measure zero, then

(6.16)
lim )L({x eRI (B o n_ ()N @ +)MY) >y, j = 1m})

t—>0o0

:()LX/,L)({(x,g)eRd_lxX :#((limsup%ﬁj))lxﬂldg)zrj, j zlm})

Proof. We may throw away each j for which r; = 0. Thus from now on
rj > 0 for each j. Define the decreasing family of sets

(6.17) ﬂ (U%(’) r,)

s>t
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These sets are clearly closed (cf. Lemma 6.2(v)). Now (6.10) generalizes in the
obvious way. In view of Lemma 6.2(ii),

(6.18)

lim sup é; =ﬂ%t m ﬂ%(U B8y ):
t

j=11 s>t

<(NU»".0)

t s>t

s u::)§

Il
_

%(hmsup ‘ng), rj>,
J

and hence (6.12) carries over to give a proof of (6.15). The proof of (6.14) is
analogous, using Lemma 6.2(iii) and (iv), and noticing that

(6.19) ktjjé%((s@%gj))ﬂrj) :Jéu%((g%gj))o,rj).

Finally (6.16) follows using Lemma 6.2(vi) for r = 1, since A is absolutely contin-
uous with respect to volge—1, and

m - m
620) ([ €(timsup B, 7))\ (1) (imGinf B0, r5) )
j=1 j=1
m - 7 .
c | #(timsup BY) \ lim(inf B{)°, 1).
j=1
This concludes the proof. O

Remark 6.4. The assertions of Theorem 6.1 and Theorem 6.3 also hold if
n_(x) is replaced by (Eq(x),0)~! where E1 : D — SO(d) is any map as in
Corollary 5.4. Specifically, if A is any Borel probability measure on D, absolutely
continuous with respect to Lebesgue measure, then for any given families 9735” ) ¢
R4—1 x R? as above, and any rj €Zs9,0 € R?\ Q7 and M € SL(d, R), we have

6.21)
litn_l)ioréfk({x e D #(BY L& (B (x).0 N @ +a)M) > 1), j=1.... m})

2(/\X;L)<{(x,g)erX :#((lim(inf%gj))°)|xﬂldg)zrj, j =1,...,m}),

and corresponding relations for the lim sup and the limes; cf. (6.15) and (6.16).
The proof is exactly as the proofs of Theorem 6.1 and Theorem 6.3, except that
Remark 5.7 is used in place of Theorem 5.6.

6.2. The case of rational . Using the same strategy of proof, the above re-
sults can be readily established for & € Q¢ if the space X is replaced by X, ¢ and
the measure pu by g, for some g with o € q_IZd . In the proofs one uses the
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following analogue of (6.5):
(6.22) €,(B.r) = {(x, M) eRIT s X, 1 #(B N (24 + )M \ {0}) > r}.

The reason for removing the point 0 is so as to make all of Lemma 6.2 valid in the
present setting. (Specifically, in the proof of the analogue of Lemma 6.2(vi) we
need to note that [g ; py I (mM € €) dju1(M) = 0 holds for each subset € C R4

of measure 0. This is true for each m € R? exceptm =0.)
We thus have the following.

THEOREM 6.5. Let A be a Borel probability measure on RA=Y yphich is ab-
solbgtely continuous with respect to Lebesgue measure. For' each j =1,...,m, let
%ﬁf ) be a family of subsets of R x RY such that ut%ﬁf ) is bounded. Then, for
anyri,...,rm € Zso, 0 = g e Q? and M e SL(d, R),

(6.23)
nminm({x eRIL#(BY | 0 n_(x)N@Z +a) M\{O}) =1, j =1, ... m})

t—>00

> ()Lx,uq)({(x,M/) eRITIx X,

#(timGnf B N (@4 + )M \{0}) > 1), j=1,... m})
and

(6.24)
lim sup A({x eR?1 :#(%Ej)|x<I>_tn_(x)ﬂ(Zd+oc)M\{0}) >rj, j=1,... ,m})

t—00

< (Axuq)({(x,M’) eRITIx X, :
#((limsup‘ng)ﬂx ﬂ(Zd +a)M/\{0}) >rj, j= 1m}>

If, furthermore, each set lim sup %gj) \lim(inf Sng))" (j=1,...,m) has Lebesgue-
measure zero, then

(6.25)

lim x({x eR (B 0 n_(x)N @ +) M\{0}) = 7). j=1.... m})

t—>00
—( xuq)({(x,M’) R x X, :
#((limsup%gj)ﬂx n(z? +a)M'\{0})=r;, j=1,... m})

Remark 6.6. The assertion of Theorem 6.5 holds if n_(x) is replaced by
(E1(x),0)"!, where E; : D — SO(d) is any map as in Corollary 5.4. Compare
Remark 6.4.

6.3. Visible lattice points. In the case of rational «, all results are equally
valid for Zz in place of (Z¢ + ) \ {0}.
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THEOREM 6.7. Let A be a Borel probability measure on R4~ which is ab-
solutely continuous with respect to Lebesgue measure. For each j =1,...,m, let
%gj) be a family of subsets of R9~! x R? such that U,%EJ) is bounded. Then, for
any ri,...,rm € Zso, & = g € Q% and M € SL(d, R),

(6.26)
liminfA({x € R 4B | d () NZeMY >y, j=1.....m})
—>00

>(Ax pug){(x, M) eRTI x X,
#(lim(inf B)°)x NZEM) = 1), j=1,....m}),
and

(6.27)
limsup A({x € R #(%gj)|x<b_tn_(x) ﬂiZM) >rj, j=1,...,m})

t—00

< (Axpug)({(x. M) e R x X,
#((limsupB) , NZIMY > rj, j=1,....m}).

If, furthermore, each set lim sup %Ej) \lim(inf‘ng))o (j=1,...,m)has Lebesgue-
measure zero, then

(628) lim A({x € R #(BY 0 n_(x0)NZEM) =1, j=1.....m})

= (A xpg)({(x. M) e RIT 5 X, -
#((limsup‘ng))|x ﬂzzM') >ri,j=1,...,m}).

Remark 6.8. Just as in previous remarks, the assertion of Theorem 6.7 holds
if n_(x) is replaced by (E1(x),0)”!, where E1 : D — SO(d) is any map as in
Corollary 5.4.

7. Integration formulas on X and X,

In this section we prove some formulas for integrals and volumes in the spaces
(X, ) and (X4, ;tg), which we will need to be able to generalize a technique which
was introduced in Elkies and McMullen [14] in the case of d = 2 and (X, ) (cf.
also [36]). The goal is to obtain a more precise understanding of the explicit limit
functions described in our main theorems; we will achieve this in Section 8.

Recall that we have fixed p, as the Haar measure on SL(d, R) normalized
to be a probability measure on X; = I'(¢)\ SL(d, R). This implies, via a well-
known volume formula by Siegel, that 1 can be explicitly given as the measure
on SL(d, R) which satisfies

(7.1) dm(M)?z(@(2);(3)...z<d))_1(det(xm)‘ddxudxu ----- dxqa
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when parametrizing GL*(d, R) as (xij) = tY4M e GLY(d, R), with M € SL(d, R),
t > 0; cf, e.g., [34], [21]. From this it follows that

(7.2) Hg = Iq_l,lu; where I, :=[["(g) : T'(1)].

and also that the Haar measure p on ASL(d,R) which we have normalized by
w(X) =1, is explicitly given by

(7.3) du(M. &) =dpu(M)dg,  (M.§) € ASL(d.R).

where d& =dé&;----- d§&, is the standard Lebesgue measure on R .
The following lattice average formula is also due to Siegel (at least on X7).
Recall that we always keep d > 2.

PROPOSITION 7.1. Let F e LY(R?), g € Z~ and o € g~ 7%. Then

(7.4) /X FkM)dpg(M) = /R Fx)dx.

a kezd +a\{0}

Proof. If a € Z% then one easily reduces to the case ¢ = 1, and then the
formula is proved in Siegel, [34]. (Cf. also [21, §3.7].)

From now on we assume & ¢ Z4 (and thus Z¢ +a\ {0} = 7% + o). Write o = fl’
with p € Z¢. Let % C SL(d, R) be a fundamental domain for SL(d, Z)\ SL(d, R)
and choose representatives 7; € SL(d, Z) so that SL(d, Z) = Jl"zl I'(q)T; (with

|| denoting disjoint union); then |_|;q=1 T; % is a fundamental domain for I'(g).
Hence

a5 [ X FGM)dugn) = 1; IZ/ > FT;M)dpa (M)

Xq kezd+a kezd +a

=1 ZF(q_lneM)dm(M),
T =1

where ny,n,,--- € 7% \ {0} is an enumeration (with multiplicities taken into ac-
count) of the points m 7, form € p+q7%,j€{l,..., 14}. Forevery y e SL(d, 7),
the list m1y,n2y,... can be obtained as a permutation of ny,ns,.... (To see
this, note that given y € SL(d, Z) there are elements y1,...,ys, € I'(q) and a
permutation p of {1,..., I} such that Tjy = y; Ty;) forall j €{1,...,I4}. Also
note (p + qu))/j = p +¢Z%.) Recall that each orbit for the action of SL(d, Z)
on 7% \ {0} equals 179 for some t € Z~, where Z9 as before denotes the set
of primitive lattice points in 7% . 1t follows that for each ¢ € Z~¢ there is some
multiplicity m; € Z>¢ such that the sequence n1,n», ... visits each point in 179
exactly m; times. Now the above integral may be rewritten as

(7.6) 1! Z m; Y F(g 'teM)du (M).

X1i=1 cezd
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Arguing as in [21, pp. 1150-1151] we find that this equals

o0 d

! me g o 90
(1.7) qu(d);ld [RdF(q x)dx—lqg(d);td /RdF(x)dx.

Finally an argument as in [21, p. 1152 (top)] shows that the constant in front of the
me _

integral must actually be 1,1i.e. Y 72, = g¢ 14¢(d), and the proof is complete.
O

The identity Y 72, % =g 14¢(d) can of course also be proved by a more
explicit computation: One easily reduces the situation to the case where ¢ is the
minimal denominator of the given & € Q?; in other words o = g where p =
(p1.....pg) € Z% has ged(q, p1. ..., pg) = 1. Then note that the SL(d, Z/qZ)-
orbit of p + qu in 74 /qu equals

(7.8) V={x—|—qu :x=(x1,...,xd)GZd,gcd(q,xl,...,xd)=1}CZd/qu,

and since #SL(d, Z/qZ) = I, we see that the sequence ni,n,, ... visits exactly
those points in 7% which belong to the preimage of V, and each such point is
visited exactly I, /#V times. Hence

> I I
R ma X =i Y pte)e .
=

t>1,(,q9)=1 elq

On the other hand #V = ¢¢ > elq p(e)e™?, and the identity follows.

7.1. The submanifolds X,(y) of X4. Fix @ = p/q € Q¢. Given any y €
RZ\ {0} we define

(7.10) Xy(p):={M e Xy :ye@ +a)M)}.

This set can be given the structure of an embedded submanifold in X, of codimen-
sion d, and with a countably infinite number of connected components. To see this
we first note that X, (y) = Ukezd+a\{0} X4(k,y), where

(7.11) Xq(k,y):={T(q)M € X4 : M € SL(d.R), kM = y}.

One checks that for any k, k' € 7% + & \ {0}, we have Xq(k,y) = Xq(K', y) if
k' € kT'(q); whereas X, (k,y) N X,(k’, y) = @ whenever k' ¢ kT'(¢). Hence if
S is any subset of Z¢ + & \ {0} containing exactly one representative from each
orbit of the right action of I'(¢) on Z% + a \ {0}, then we can express X4(y)asa
disjoint union

(7.12) Xg(n) = || XqUk. y).
keS
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To describe each X, (k, y) further we set

(7.13)

H={geSLd.R) : e1g=e;} = {(tlv g) v eRITL AeSL(d—l,[Ra)}.

This is a closed subgroup of SL(d, R) which is isomorphic with ASL(d — 1, R) (as
defined in (2.1)) through

(7.14) H > (tlv g) = (A7 vt A7) e ASL(d — 1, R).

We let ug be the Haar measure on H given by dug(g) = dugd_l)(A) dv, with
A, v asin (7.13), ,ugd_l) the Haar measure on SL(d — 1, R) from (7.1), and d v the
standard Lebesgue measure on RI=1 In particular, in dimension d = 2 we have
H={(1%):veR} and we set dup = dv.

Now fix some My, My € SL(d,R) suchthat k =e My, y =e1M,. Then
Xq(k, y) is the image of M, YHM, c SL(d,R) under the standard projection
m : SL(d,R) — X4, and hy,hy € H give the same point JT(Mk_lthy) =
TL’(Mk_ll’ley) if and only if 1 and &, belong to the same left (MkI‘(q)Mk_1 NH)-
coset. This gives an identification of sets

(7.15) X, (k. y) = M;! ((MkF(q)Mk_l N H)\H)My.
Since M I'(q) M, 1N H is a discrete subgroup of H, the quotient space
(MgT ()M ' N H)\H

is a connected (d2 —d — 1)-dimensional manifold, and hence X, (k, y) inherits a
natural structure as a connected (d? — d — 1)-dimensional manifold. One verifies
that this structure does not depend on the choice of M\, or My (since left or right
multiplication by any fixed H -element gives a diffeomorphism of H). Since the
map H > h +— Mk_thy € SL(d, R) is an immersion we see that X, (k, y) is a
connected immersed submanifold of X,. Hence since the union (7.12) is disjoint
we have now given X, (y) a structure as an immersed submanifold of X, with a
countably infinite number of connected components. (X4(y) is even an embedded
submanifold of X, but we will not need this fact.)

Note that the measure pg induces a Borel measure on each quotient space
(MgT(q)M;7' N H)\H, which we also call jugr. We endow X, (y) with the Borel
measure vy defined on each X4(k,y) as coming from (1;¢(d))™ g under the
identification (7.15). This measure vy is independent of the choices of S and
matrices My, My, as is easily seen from the fact that gy is both left and right
invariant.

LEMMA 7.2. Forany y € R?\ {0}, T € SL(d, R) and any Borel subset € C
X4(y) we have vy (€) = vyr (€T).
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Proof. For any given subset ¢’ C X, (k, y) we have €'T C X, (k, yT), and if
we choose My = M, T in the above definitions then these two subsets correspond
to exactly the same subset of (M I'(q) M, 1'n H)\ H under the identification(s)
(7.15). The lemma follows trivially from this. O

PROPOSITION 7.3. Let € C Xy be any Borel set; then y +— vy (€ N X4(y)) is
a measurable function of y € R4\ {0}. If U C R \ {0} is any Borel set such that

€ CUyer Xq(y), then

(7.16) () < /U by (€0 Xg(3) dy.

Furthermore, if forall y # y, € U : Xg(y1) N X4(y,) N€ = @, then equality
holds in (7.16).

The following lemma will be required for the proof.

LEMMA 7.4. For each y € R? \ {0}, choose some M, € SL(d,R) with
e1My =y. Then for every f € LY(SL(d, R), iq) we have

(7.17) JM)dpg(M) = ———
SL(d,R) ! 148(d) Jra\ (o}
Proof. First of all the integral [,; f(hMy) dpg (h) (if it exists) only depends
on f and y, and not on the choice of M, since for a given y the matrix M is
uniquely determined up to left multiplication by an element from H, and pg is
right H-invariant. Hence we may fix the following specific choices of My, for

y=0U1,...,yq) with y; > 0:

(] 1My s i) ay.

!/

Y1 y

) .
(7.18) My, =M;" = _ 1
y y ) " =T,

) with y' = (y2,....v4);

and for y = (y1,..., yg) with y; <O:
(7.19) My =M} Ko.  where Ko =diag[~1,~1.1.....1] € SL(d.R).

We may leave M, unspecified when y; = 0, since these y’s form a subset of
R? \ {0} of Lebesgue measure zero.

Write G = SL(d,R), Gt = {mjr) € G : myy >0} and G~ = {(mjy) €
G : my1 < 0}. Then the map (h,y) — M = hMJ(,O) gives a diffeomorphism
from H x {y € R4 y1 > 0} onto GT (indeed, the inverse is easily com-
puted explicitly and seen to be smooth). Furthermore, in this parametrization
we have, via a standard computation similar to, e.g., [21, (3.70), case r = 1],
dpg(M) = (14¢(d)) " dugs (h)d y. Hence

/ FOM) dug(M) = (It (d))™! / / F(hMy) dps () dy.
G+ { H

y€ERY : y1>0}
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Similarly one verifies

[ FOM) dug(M) = (It (d))™! f f FhMy) dpgr (h) dy.
G~ {y H

€R? : y1 <0}

and (7.17) follows by addition of these two. O

Proof of Proposition 7.3. Let % C SL(d, R) be a (measurable) fundamental
domain for I'(¢)\ SL(d, R), in the set theoretic sense. That is, we assume F N yF
= @ for all y € I'(¢g), and UyeF(q) yF = SL(d, R). For each y € R? \ {0}, fix
some M, € SL(d,R) with e;My = y. Now forany y € R4 \ {0} we have, via
(7.12), (7.15) and the definition of vy,

T2 N Xy = U@ Y [t (4 M) i ),

kes’ 7

where %1 C H is any fixed fundamental domain for (Mg I'(q) M, Y'NH)\H, ¢
denotes the pre-image in SL(d, R) of ¢ C Xy, and Xs, 18 its characteristic function.
We may choose %1 = H N %, where %, C SL(d, R) is any fixed fundamental
domain for (MgT"(¢)M; ' 0 H)\ SL(d, R), and such an %, may be fixed as % =
My, (I_lyes(k) )/9*7) My_l, where S®)  T'(¢) is any set of coset representatives for
(T'(g)n Mk_lHMk)\F(q). Hence, since €y C SL(d, R) is left I'(¢) invariant,

(7.21)
vy (EN X)) = LL@n™ 3 Y /H Komeg (v Mic My dpugr (h).

keS yes®

But for each k € S and y € S%®) we have e\ Myy = ky = e1 My, and thus
Myy = hoMjg,, for some hg € H; hence using the invariance of .y we see that
we may replace y ' M k U with M k_yl inside the integrand. Furthermore, given
v, ¥" € T'(q) we have the following chain of equivalent statements:

(7.22) (T(@)NM ' HMy)y = (D(q) "M "HMy)y' <’y ™' € My ' HMy
e eMyy'y 'M =e1 <= ky' =ky.

Hence by the definition of S and S®) as k and y run through the double sum in
(7.21), ky visits each vector in Z% + a \ {0} exactly once. Hence

(723) vy ENXGON = U@ 3 [ ey (M 0y dpa ()
kezd+a\(0y " T

Here for each k the function R \ {0} > y — Sy Xt ovegy (MM y) dpe (h) is
measurable (this is implicit in Lemma 7.4); hence also the above sum (7.23) is
measurable as a function from y € R? \ {0} into R>o U {oo}.
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Now to prove (7.16), note that the assumption on U implies

%0 = U Ck-

kez9 +a\{0}

where € :={M €€y : kM € U}. We have by (7.23),
024 [ vy Xy dy

—(t@y Y /U /H Yoreg (M hMy) dpg () d y,

kez9 +a\{0}

and for any k, y, h appearing in the above expression we have k (M, 'hMy) =y
e U, so that Mk_thy € €y must hold whenever Mk_thy € €p. Also for every
y e R9\ (U U{0}) we have k(Mk_thy) =y ¢ U, sothat Mk_thy ¢ €. Hence

(7.25) /U vy(ENXy(y))dy

—ai@at Y " | oy (4 M) s by

kezd +a\{0}

= > ug(Mp(FnEy))
k€79 +a\{0}

= Y mg(FNEr) = g (FNEo) = g (®),
kez9 +a\{0}

where we used Lemma 7.4, the invariance of ug, and €0 = Ugezd 14\ (03 €k~ (To
avoid any confusion in the last step: Recall that we use 4 to denote both a Haar
measure on SL(d, R) and the corresponding probability measure on X,.) Hence
(7.16) is proved. To prove the final statement about equality, note that the condition
Vy #y,€U: Xq(y1) N Xg(y,) N€ =@ implies that the sets €y are pairwise

disjoint, and thus Y~ c7a 1o\ g0y Hq (F N €x) = g (€). O
PROPOSITION 7.5. For each y € R% \ {0} we have vy(Xq(y)) =1

Proof. Let us write & = g with p = (p1,.... pg) € Z%. We first show that
without loss of generality we may assume gcd(q, p1, ..., pg) = 1, i.e. that g is the
minimal denominator of the given vector « € Q¢ Indeed, any other denominator
of & can be written as ¢’ = gq1, with g1 € Z>»; for each such ¢’ there is a canonical
covering map 7 : X4 — X4 of index [I'(¢") : T'(q)] = 14/ 14, and it follows straight
from the definition (7.10) that X,/ (y) = 771 (X4(»)), i.e. X,7(y) is a covering

of the manifold X, (y) of index [I'(¢’) : T'(¢)]. Furthermore, the measure vj(,q) on

X4(y) lifts to [T'(¢') : F(q)]vj(,q/) on Xy (y) (in an obvious notation). Hence if
vgq)(Xq (y)) = 1 then also vg,q )(Xq/(y)) =1, as desired.
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Thus from now on we assume gcd(g, p1,..., pg) = 1. By (7.12) and (7.15),

(7260 vy(Xg(¥) = Ut @)™ Y (MxT (@M ' 0 H)\H).
keS

Given k = (ky,....kg) € 7% +a \ {0}, set 1y := ged(gky.qka, ..., qkg) € Z~o.
Then (gq/tx )k is a primitive vector in 7%, and hence there is some y € I'(1) so that
(q/tx)k = e1y. For each § > 0 we define g5 = diag[§,67!,1,...,1] € SL(d,R).
Then we may choose My as My := g;, /4y (since this gives e1 My = k). With
this choice we have MiI'(q)M; " = g,k/ql‘(q)gtj‘l/q, since I'(¢) is normal in
[(1). Note that : H > h > gy, /qhgtll/q € H gives an automorphism of H, and
hence My T'(q) M, 'N H = a(I'(g) N H). Furthermore, one verifies by a quick
computation that o scales the Haar measure with a factor (g/ )%, ie. wy(e(A) =
(q/tx)? g (A) for any measurable A C H. Hence

d
(7.27) vy (Xq(y)) = % >t un ((Tg) N H\H).
keS

For each k = (ki,...,kg) € Z% + a \ {0} we have (¢, q) = 1, since gk €
p+qZ% and ged(q. p1.. ... pg) = 1. On the other hand, given any ¢ € Z~¢ with
(t,q) =1 we may choose t* € Z so that t*¢ = 1 mod ¢; then gcd(q, t* p1,...,t*pg)
= 1 since (g, t*) = 1, and thus there exists some primitive vector m int* p +qu, 4
and then k = (1 /q)m € 7% +a\ {0} has t = t. Furthermore, we claim that Tk, =tk,
holds if and only if k;I"'(¢) = k2I"(¢). To prove the nontrivial direction of this
claim we assume that k1, ko € 7% + &\ {0} have 7 := tk, =tk,. Then (¢/t)k; is a
primitive vector in Z¢ and hence there are some y1, y» € I'(1) with (¢/1)k j=e1y;.
Now both vectors ey, belong to t* p + qu with ¢* as before; hence ey yz_l =
e1 mod 74, so that y1y; ! = (3 ’f‘;) with x; = 1 mod ¢ and x’ € gZ%~!. Re-
ducing mod ¢ we also see that A mod ¢ lies in SL(d — 1,Z/qZ); hence there is
some A’ € SL(d —1,Z) so that A’ = Amod ¢ [32, p. 21]. Now (& %) e I'(1),
and this matrix has the same projection as y1y2_1 inSL(d,Z/q7) =~ T(1)/T'(q).
Hence yg := )/1_1( tlv 2,))/2 belongs to I'(g), and we see that e1y1y9 = €1)2, and
thus k1I'(¢) = k2T (), as desired.

It follows that (7.27) may be rewritten as

q? na((T(g) N H)\H) .
1,2 (d) 2

(7.28) Vy (Xq(Y)) =
(D=1

Butnote sz ((I(q) N H)\H) = #((T(@) N E)\(C()N H)) e (D)0 HO\ ),
where the second factor equals one by the definition of p g, and the first factor is
seen to equal #H(Z/qZ) with H(Z/qZ) = {( 11,, g) € SL(d,Z/qZ)} (for this

#This can for example be shown using Dirichlet’s theorem on arithmetic progressions, for by
that theorem we may findm; € t*p; +qZ, j =1,..., d such that m; = r; gcd(p;, q) with prime
numbers g <ry <rp <---<rg;thenm = (mq,..., mg) liesin t* p + qu and is primitive.
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one uses the surjectivity of the map SL(d — 1,7) — SL(d — 1,7Z/q7); cf. [32,
p. 21]). Also note that we have a decomposition of SL.(d,Z/qZ) analogous to
the decomposition of SL(d, R) in the proof of Lemma 7.4: Take V C 7% /q7¢
to be as in (7.8). For each y € V' we fix a matrix My € SL(d,Z/qZ) whose
first row equals y. (Such a matrix exists, for we may lift yq,..., y; to integers
satisfying ged(y1, ..., vqg) = 1, cf. footnote 4 above, and then apply [34, VIIL.1-
2].) One then verifies that the map H(Z/qZ)xV > (h,y)+— hM, € SL(d,Z/qZ)
is a bijection. Hence I, = #SL(d,Z/qZ) =#H(Z/qZ) - #V . Finally recall that
#V =q? Yogm@)e and Yoy g qp=1 17 = (d) Loy i(e)e™?. Hence we
obtain

O

(7.29) vy (Xg(p)) = 242 "#H2/q2) Zu() =

#V -#H(Z/qZ)

We next prove an analogue for X,(y) of Siegel’s lattice average formula,
Proposition 7.1.

PROPOSITION 7.6. Assume d > 3 and o = § with p = (p1,...,pg) € 7¢

and ged(q, pi, ..., pg) = 1. If F : R? — R is a bounded measurable function of
compact support, then for any y € R4 \ {0} we have

(7.30) /X( > F(m+a)M)dvy(M)
q\y

mez4
:/ Fydx+ Y 4 Y F(fy),
x€R4 t>1 acitqz !
@.q9)=1 (a,)=1

where all sums and integrals are absolutely convergent.
We require the following lemma.

LEMMA 7.7. Let F : R? — R be a bounded measurable function of compact
support. If d = 2 then we furthermore require that F(xe1 + mey) is a measurable

function of x € R for each fixed m € 7. Let a = (a1,...,0q) with o1 € R and
o2,...,0g €Z. Then
(7.31) > F(m+a)M)dpy(M)
C@NE\H =,
d—
_ it {1 (Ceer FU+ aen) + oepa Fx) d) d>3
drez F(€+aner) + 3 uengoy Jn F(xe1 +mez)dx d =2.

Proof of Lemma 7.7. The right-hand side in (7.31) is clearly absolutely con-
vergent; it will be clear from the proof that the left-hand side is also absolutely
convergent.
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We first give the proof in the case d > 3. Write @ = (a1, @’) € Rx Z¢~! and

express M € H as M = (tlv 1\2 );then
1

132 @ +oM=|] |] ((ﬁ—i—al) +(m+o) ', (m +a/)M1),

teZ mezd—1

and a fundamental domain for (I'(¢) N H)\ H is given by
M eH :vel0,q) !, My e F},

where % is any fixed fundamental domain for I'(g)\ SL(d — 1, R). Set Fi(x,y) =
Y ez F(x + £, y) where in the right-hand side we identify R4 with R x R~ in
the obvious way. Since o’ € 7971 the integral in the left-hand side of (7.31) can
now be expressed as

(7.33) [/ Z F1(a1+mtv,mM1)du1(M1)dv.
F J[0,q)4 !

mez4—1

Note that f[o,q) Fi(a +bx,y)dx = qu/Z Fi(x,y)dx forany a € R and b €
Z 4¢. Thus, defining F>(y) := fR/Z Fi(x,y)dx = [ F(x,y)dx (sothat F5(y) is
defined for almost every y € R~1, and the function F, is measurable, by Fubini’s
theorem), we have fve[o,q)d—l Fi(a1 +m'v, y)dv = g% 1 F>(y) for each m
7471\ {0}, and hence (7.33) equals

03 ¢ (A0 X Bmd)duon)
F

mez4—1\{0}

The integrand in (7.34) only depends on the I"(1)-coset of M1, i.e. the integration
over &% may be replaced by Iq(d_l) times an integral over I'(1)\ SL(d — 1,R) =
X l(d_l); hence by Proposition 7.1 (applied for “d —1” and “g = 1”) we get

(735) " (R0 + [

L BDIY),
yeRe™

which gives the formula (7.31).

In the remaining case d = 2 we obtain as before (7.33) and (7.34), but with
the inner integration sign removed and instead just taking M; = 1 in the formulas.
Now (7.34) agrees with (7.31), and we are done. O

Proof of Proposition 7.6. We first prove the absolute convergence. It will be
clear from the proof below that it suffices to prove that the right-hand side of (7.30)
is absolutely convergent. This is clear for the integral; thus we turn to the double
sum. Assume |F(x)| < B for all x € R and take C > 0 such that F(ry) = 0
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whenever r < —C or r > C (for our given y € R¢ \ {0}). Then

(7.36) Z Y )F( ))SZz—d(Hch—H)B
t>1

act+qZ
(tq) 1 (a,)=1

This is obviously absolutely convergent, since d > 3.
We now prove the identity. In view of (7.12) and (7.15) the left-hand side of
(7.30) decomposes as

(7.37)
(@)Y / S F(m + )M hMy) djug ().

kes Y (M T(@)M; ' NH)\H mezd

For each fixed k € S we now perform the same manipulations as in the proof
of Proposition 7.5, just before (7.27); we thus get (since 74 y 1= 74 for every

y €(1))

(7.38)

qu(d) Z O /F(q)nH)\H F((m + ey hg, o My) di (b),

mez4

where yg is any map in I'(1) with (g¢/tx)k = e1yx. Now note (foreach k € S C
7% + «\ {0}) that oc)/k_l € (k+ Z”l))/k_1 = (tx/q)e1 + 7¢%. Hence Lemma 7.7
applies, giving

2d-1p (d 1)

q 17 —1
(7.39) = Iy F({+—)ei1g M
I(d)é'(d) I;S‘ (ZXEZ: (( q) 1ou/q y)
+/xeu;ed F(xg;}/ny)dx)
2d— 1I(d 1)

=q,(d)§(d) Y ul(XF ((f_,i]H)y)Jr/xERdF(x)dx)'

keS tez

But we saw in the proof of Proposition 7.5 that when k runs through S then 7
visits each t € Z~¢ with (¢, g) = 1 exactly once, and no other numbers. Also from
that proof we have Iéd) =#H(Z/qZ)-#V = (qd_llq(d_l)) g4 Zem wu(e)e™?,
and recall }°,5 1 (1. 0)=1 =4 =¢(d) D el w(e)e™. Hence we get

(7.40)
1

_ /xeRdF(x)dH( > o Y (),

t>1,(t,q9)=1 t>1,(t,q)=1 Ltez
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In the last double sum we substitute ¢ = (£,1); thus £ = ely, t = et; with
(£1,t1) = 1, and the double sum becomes

74 Y Y e Y F(((Zl—q+1)y)

e>1  1>1 tez n
(e.9)=1 (t1,9)=1 1,t1)=1
—d —d a
— ¢ F(— )
(X ) X a3 A%
e>1 t1>1 ac€t1+qZ
(e;q)=1 (t1,9)=1 (a,t1)=1
Hence we obtain the desired formula. O

We next turn to the case d = 2. In this case the integral in the left-hand side
of (7.30) typically diverges. This is e.g. true for every continuous function ' > 0
which is not identically zero along the line Ry, as is seen by following the proof

of Proposition 7.6 and noting that the sum Y ;>1 72 ger+4qz F(‘t—’y) now
(t,9)=1 (a,1)=1
diverges. However we can prove that the integral in the left-hand side of (7.30) is

finite if X, (y) is replaced by any subset

(7.42) Xfw= | Xk (0€Z-0).

keS;t <ty

PROPOSITION 7.8. Let o = p/q with p = (p1, p2) € Z? and ged(q, p1. p2)
= 1. Let y € R?\ {0} and let § € R? be any of the two vectors orthogonal to y with
171 =y~ . Let F : R? — R be a nonnegative, bounded measurable function
of compact support such that F(xy +uy) is a measurable function of x € R for
each fixed u € R. Then for any tg € Z~¢ we have

(7.43) /X Wi > F(m+a)M)dvy(M)

mez?
a v .
= Z 12 Z F(;y)ikq_1 Z ( Z t_l)/F(xy—I——y)dx.
1<t<ty act+qZ vezZ\{0} tlv R q
.g)=1 (a,t)=1 (t,q)=1

Proof. This follows by imitating the proof of Proposition 7.6 but noting the
special form of Lemma 7.7 when d = 2, and using the restriction fx < fo from
(7.42) in the treatment of the £-sum from (7.31). When treating the constant factor
in front of the (“new”) second term, one uses the fact that Z(t’ =1 t72>1. O

7.2. The submanifolds X(y) of X. These are analogous to the submanifolds
X4(y) of Xy, but we will see that many details are quite a bit simpler. Given any
y € R4 we define

(7.44) X(y):={geX:yezig).



1998 JENS MARKLOF and ANDREAS STROMBERGSSON

We will write I' = ASL(d, Z) throughout this section. Since Z¢ = 0I" we actually
have

(745) X(y)={T'g : g€ ASL(d.R), 0g =y} ={['(M,y) : M € SL(d.R)}.

Furthermore, one checks that My, M, € SL(d, R) give the same point I'(M1, y) =
I'(M3, y) in X if and only if SL(d,Z)M = SL(d, Z) M>. Hence we get an iden-
tification of the sets X(y) and X; = SL(d, Z)\ SL(d, R), through

(7.46) X(y)={(M.,y) : M € X1}.

This gives X(y) the structure of an embedded submanifold of X, of dimension
d? — 1. We endow X(y) with the Borel probability measure vy which comes from
w1 on X1 under the identification (7.46). Hence, automatically, vy (X(y)) = 1.

LEMMA 7.9. Forany y € R%, h € ASL(d, R) and any Borel subset € C X(y)
we have vy (€) = v, (€h).

Proof. This follows easily using the fact that p; is invariant under the (right)
action of SL(d, R) on X;. d

PROPOSITION 7.10. Let € C X be any Borel set; then y +— vy (€ N X(y))
is a measurable function from R? 1o R. IfU C RY s any Borel set such that

€ CUyey X(»), then

(747) (%) < /U vy (€N X(p) dy.

Furthermore, if forall y | # y, € U : X(y1) N X(y,) N€ = @, then equality holds
in (7.16).

Proof. Let us denote by %; C SL(d, R) a (measurable) fundamental domain
for I'(1)\ SL(d, R), in the set theoretic sense. Then

(7.48) Fi={(M.&): MeF, £ecl0,1)M)

is a fundamental domain for I"\ ASL(d, R). Now by the definition of vy we have
for each y € R,
(7.49)

vy(ENX()= [ Xeo(M.y)dp1(M) =

X (M, y)dp1(M),
F SL(d,R)

(F1 <R4)Ngg
where € denotes the pre-image in ASL(d, R) of € C X. But the set (F; x RY)NE,
is u-measurable, and recall from (7.3) that du(M, &) = du1(M)dé&; hence by
Fubini’s theorem, (7.49) shows that y - vy, (€ N X(y)) is a measurable function
with respect to the Lebesgue measure on R,
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Next, to prove (7.47) we note that (7.49) implies

(7.50) /;] vy(€NX(y)dy

=[] oo M) i () dy = (@1 x V) 1),
R4 JSL(d,R)

where we again used (7.3) in the last step. But it follows from our assumption
¢c yeu X (y) that each point in € C X has at least one representative in
(F1 x U) Ny C SL(d,R). Hence u((F1 x U) N€g) > wu(é) and (7.47) is
proved. To prove the final statement about equality, note that the condition Yy #
yo€U:X(y;)NX(yy) N€ = & implies that each point in € has exactly one
representative in (%1 x U) Ny, and thus u((F1 x U) N€g) = u(é). O

PROPOSITION 7.11. If F e LY(R?) and y € R? then

(7.51) / Z F(mg)dvy(g)ZF(y)-i-[ F(x)dx.
X() mez4 R<
Proof. This follows directly from (7.46) and Proposition 7.1 (with a = 0,
qg=1D. O

7.3. A thin region seldom contains an extra lattice point. It will be impor-
tant for our applications of Proposition 7.3 and Proposition 7.10 to know that if a
bounded set U C R is thin in at least one direction (i.e. contained between two
parallel hyperplanes close together) then a random lattice with a vertex in U is
unlikely to have another vertex in U. Precisely, we will need an upper bound on
the integral in (7.52) below. Since this integral is obviously monotone with respect
to the set U, it suffices to consider the case when U is a translate of a cylinder
3(c1, ¢z, 0) (cf. (4.15)) with ¢ — ¢1 small.

LEMMA 7.12. Assume o € ¢~17%, fix C > 1 and write U = z + 3(c1, ¢2, C).
Then if d > 3 we have

(7.52) /va ({M € X,(») : #(UN @24 + @) M) > 2}) dy < (c2—c1)?,

uniformly over all z € {0} x R4~ and C~' < ¢1 < ¢p. If d = 2 then the same
integral is

(7.53) L (c2—c1)? 10g(2+(cz—cl)_1),

uniformly over all z € {0} x [-C,C] and C~! < ¢y < ¢ < C. (In the first bound
the implied constant depends only on C, d; in the second bound it depends only on
C.q)

Proof. As in the proof of Proposition 7.5, we may assume gcd(q, p1,--., Pq)
= 1, without loss of generality. Take z € {0} x[R{d_l, Cl<cy<cpandletU =z+
3(c1,¢2,C). Foreach y e U and M € X4(y) wehave ) ,,c7a yu(m+a)M)>1
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by the definition of X,4(y), and the same sum is > 2 whenever #(U N (7% + @) M)
> 2. Hence, using also vy (X4(y)) = 1 (see Proposition 7.5), we have for each
yeU,

(7.54) vy ({M € X,(») : #(UN @2 + ) M) > 2})

5—1+/X Sy (m+a)M) dvy (M),
qly

)mGZd

If d > 3 then this is, by Proposition 7.6,

(755 =—l+vol)+ » 4 3 XU(C?IJ’)

t>1 a€t+qZ
t.9)=1 (a,t)=1
o0 a
—d
= (02 01)+E E xu\;Y
t=2 ac’Z

(a,t)=1

where in the second step we used C~! < ¢ < ¢, to get Yoaezxulay) <1+
O(cp —c1). If some t > 2 gives nonvanishing contribution to the last sum then we
must have ¢ Sy € U either fora =1 + 1 or a =t — 1. In the first case it follows

that t'Hcl < "Hyl < ¢ SO thatt >
1

; in the second case it follows that

contribution only if % y1 < ¢ (implying a < t(02 /c1)) and 2y1 > ¢ (implying
a > t(c1/c2)); the number of such a’s is < #(Z N (ti—;,ti—?)) <1+ z‘(c2 - C—‘
hence the sum in (7.55) is

aso = Y (13- = ¥ fd(””?ii)’

1 C2
t>max(2

) t>max(2,x~1)

’<2 (1

where x = c —1. Hence if x < 5 L then the full expression in (7.55) is (when d > 3)

— d—
(7.57) < O(ca—cy) + O(xd_l) n O(xd_l) — O(Cz—Cl + (Czc 01) 1),
1

whereas if x > % we get

(7.58) <O0(c2—c1)+O0(1+x) = o(CZ_ClJrZ_Z),
1

Using C~! < c¢1 < ¢y the above is < O(cs — c1), in both cases. Hence we have
proved

(7.59)
vy ({M € X,(y) : #(UNZ4 +a)M) > 2}) <O(cz—c1), Vyel,
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where the implied constant depends only on C and d. Since this bound is uniform
over y € U we obtain (7.52) by integration.

We now turn to the case d = 2. We take z € {0} x [-C,C]and C~! <¢; <
¢z < C. Take tg € Z>10, to be fixed later. Recall the definition of Xy(’)(y), (7.42).
The left-hand side in (7.54) is

(7.60)
E/Xc(,to)(J’)(_l—i_ Z xu((m +OL)M)) dvy(M)+V01(Xq(y)\X(§t0)(y))_

mez7?

Imitating the proof of Proposition 7.5 one shows that the last volume is < 7, L
Hence by Proposition 7.8 the above is

(761) =-1+0@H+ Y 2 Y )(U(;—Zy)

1<t<tg ac?
(a,t)=1
_ _ v
+q7! Z (Zt 1)/XU(xy+—y)dx.
vez\{0} 1|v R q

Arguing along the same lines as before we find, with x = £2 —1,

(762) —1+ > 72 )" xv(?y)

1<t<ty ( ae)Z .
a,t)=

<O0(ca—c1)+ Z 1_2(1 +tx

max(2,x~1)<t<tg

24 x
14+x

) < 0((c2 — ¢1) log to).

Finally we treat the last sum in (7.61). Let L = /4C2 + (c2 —c1)2, the
length of the diagonal of U. If |7 §|| > L then Jr xU (xy + gj)) dx = 0 for all
y € U. Hence only v € Z\ {0} with |[v| < Lg|y|~' = Lq||y| give contributions
to the last sum in (7.61), and since || y|| < ¢z + ||z]| + C < 3C and L < /5C
it follows that these v’s are bounded in absolute value by a constant which only
depends on C, g. Hence the last sum in (7.61) is

(7.63) <o Y /

L
)(U(xy + —y) dx.
R q
vezZ\{0}

Now for each v € Z~( for which the integral is nonzero, there exists some x’ € R
such that x"y + ”T_l y €U (since y € U and U is convex); hence if the contribution

from our v equals f;l 2 dx then U must contain the triangle with vertices x’y +
vT_ljh x1y + 357 and xpy + gj), which has area

1 1 1
E(Xz —xDyll- =1yl = =2 —x1).
q 2q
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Note also that distinct v’s lead to pairwise disjoint triangles inside U ; hence the
total contribution in (7.63) from positive v’s is < 2gArea(U). Similarly for the
negative v’s. Combining our bounds we have now proved that for each y € U the
left-hand side in (7.54) is

(7.64) <O(tg" + (c2—c1)logty).

Choosing o = max (10, [(c2 —c1)~']) and integrating over all y € U we obtain the
bound (7.53). O

The corresponding bound in the case « ¢ Q“ is as follows:

LEMMA 7.13. Letd > 2 and C > 1 and write U = z + 3(c1, c2, C). Then
(7.65) / vy ({g e X(y) : #(UNZ%) > 2}) dy < (c2—c1)%
U

uniformly over all z € {0} x RA=Y and ¢y < 5. (The implied constant depends only
onC,d.)

Proof. This follows by arguing as in the first part of the proof of Lemma 7.12
(up until (7.55)) but using Proposition 7.11 in place of Proposition 7.6. O

8. Properties of the limit functions

8.1. An important volume function, for o € Q4. In this section we will prove
some “quasi-continuity” properties of the limit function ®4 (&€, w, z) in Theorem
4.4, and for some more general functions. These considerations will be of impor-
tance for the proof of Theorem 4.4.

Given r € Z>o and o € ¢~17% we introduce the function

8.1) fi(ci,c2,0,2,y)
= vy ({M € Xy(y) : #((Z¢ + @)M N (3(c1,¢2,0) +2)) =1})
in the domain
(8.2) Q={{c1.c2,0.z,y) e RxRx R x ({0} XRd_l) x R4
:0<ci1<c2=<Yy1, 050}.

Arguing as in the first paragraph of the proof of Proposition 7.5 we see that although
the function f, depends on the given vector & € Q“, it does not depend on the
choice of denominator g of o; hence from now on in this section we will always
assume that ¢ is the minimal denominator of &, so that Propositions 7.6 and 7.8
apply. We also write, for £ > 0 and z, w € {0} x RA-1,

(8.3) Fré,w,z):= (0,6, 1,z,6e1 +w+2).

Thus the function @4 (&, w, z) in Theorem 4.4 is the same as Fo (&, w, z).
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LEMMA 8.1. Forany K = ( [10 I?l ) € O(d) we have

(84) fr(claC2307ZKsyK):fr(cl’czvasz’y)’

and for any § > 0 we have
835  fr(18T 2877 067,672,867 y) = fr(cr, 2,02, p).

Proof. If K1 € SO(d —1) then the first claim follows immediately from Lemma
7.2 with T = K, using 3(c1, ¢2,0)K~! = 3(cy, c2, 0). Similarly the second claim
follows from Lemma 7.2 using
(8.6)

3(c1,¢2,0)Ty ' = 3(c18771, ¢2897 1, 667Y), for Ty := diag[s'™9,6,....4].

To extend the first claim to general K1 € O(d — 1) it now suffices to treat the
single case K = Ky := diag[l,...,1,—1]. Fix some y € SL(d, Z) such that
ayKo = a, and thus (Zd +a)yKo= 7% +o. Thena: M yKoMKj gives a well-
defined diffeomorphism from X, onto X,, and one checks by a straightforward
computation that for any Borel subset € C X,(y) we have a(€) C X;(y Ko) and
vy (€) = vyk,(a(€)). Applying this with

€ ={M € X,(y) : #(2' + )M N (3(c1,¢2,0) +12) =71}
we get fr(c1,¢2,0,2,y) = fr(c1,c2,0,2Ko, y Ko), as desired. O

Remark 8.2. 1t follows that F(§,wK,zK) = F,(§, w, z) for all K as in the
lemma, and hence F; (€, w, z) only depends on the four real numbers &, ||z||, |[w]],
zZ-w.

We will now prove our main technical result about f;(c1,c2,0,z,y) being
not too far from continuous. For N € Z>, we let §n be the set of rational numbers
strictly between 0 and 1 and with denominator < N; that is,

(8.7) Svn={L:hkez 0<h<k=<N}.
Given (c1,¢2,0,z,y) € Q and § € §y we define
1 if y €871z +3(c1.¢2.0))
(8.8) 5(0) = S(cl,cz,a,z,y)(‘s) = ) _1
0 if y 67 (z+ 3(c1,¢2,0)).

For C > 1 we write
(8.9)
o i {{(cl,cz,o,z,w €Q : ozl Iyl <C: €7V <lyllyal} ifd =2
Herca,002,y) €Q 2o fzll Iyl =C: CTH <y} if d >3.
PROPOSITION 8.3. Fixd > 2 andr € Z>¢. Given C > 1 and & > 0 there exist
some n > 0and N € Z>» such that

(8.10) frci,ca,0,2,y)— fr(cy, ¢y, 0’2 y))| <e
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holds for all {c1,c2,0,2,y),(c}.ch.0",2,y') € Qc satisfying |c1 — cj| < n,
leo—chl <mlo—o | <nllz=2|| <. lly —y'| <nand s, cr02,y)8) =
S<Ci ,cé,a’,z’,y’) (8)f07" all 5 € 3]\]

Proof. For certain technical statements in the following proof to be correct we
need to introduce the notation g(cl, c2,0):=1{x1€1:c1 <X1 <cC2}wheno =0, but
:=3(c1,¢2,0) when o > 0. Let C > 1 and ¢ > 0 be given. If d > 3 then we choose
0 < n1 <1 so small that Vol(%g1 +8:’;(cl,cz,0)) < % forall (c1,c2,0,z,y) € Q¢
(this is possible since {(c1,c¢2,0,2,y) € Q¢ implies 0 <c¢; <c; <C and 0 <
C); if d = 2 then we instead set 7; = min(1, &/(20C Zlg|v|54c2q th t_l)).
We will denote by || A]| the operator norm of any d x d matrix A, viz. ||A| =

. 0
SUp,sa—1 [V A|. Take n € (0, min(Z, £)) so small that MO — 7 < T for

allw e ey + B4 0 where M,S,O) is as in (7.18). If d > 3 we take N so large that
YantiTd < £,if d =2 we take N so large that vy (X4(y) \ X;N)(y)) <3
(cf. (7.42)).

Let (c1,¢2.0,2,y),(c],c5,0',2’, y') be any two points satisfying all assump-
tions in the proposition, for our fixed n, N. Then ||y —y’|| <n < Cn||y ||, and hence
by our choice of n we can find some T € SL(d, R) such that

(8.11) y=yT and |T-I|<d- (<25
(namely: let T = K_lM”(g)",ly/K,1 K for some K € SO(d) with y = ||y|e1K).

-1_ A I : I .
Then also || T I < —[T=I] < 39C" Hence, since the constraints in ¢ imply

that z 4+ 3(c1, ¢2,0) is contained in %_ﬁfc, we have:

(8.12) [xT —x|l <% Ix7T~'—x| <1, Vx €z+3(c1,¢2,0)

(and similarly for z’ + 3(c{. c5.0”)).
Now by Lemma 7.2 we have

(8.13) fr(Ci,Cé,O/,z/,y')
= vy ({M € Xo(p) : #(@ + )M T N (2 +3(c}. 5. 07) = r})
=vy(IM € Xy(y) : #((Z% +@)M N (2" 4+ 3(c}. . aNT™Y) = 1)),

and hence

8.14) | fr(c1,c2,0,2,¥)— fr(ci, ch, 0", 2/, y))

<vy({M e X4(y) : (29 + )M NU) > 1}),

where U is the symmetric set difference

(8.15) U=(z43(c|.cho)TV Az +3(c1,c2,0)).
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But (8.14) is < [y _(,) Zmez« Xu ((m +a)M) dvy, and by Propositions 7.6 and
7.8 this is

(8.16) ifd > 3: <vol(U)+szZXU( v);

ac’Z
e N
—d
®.17) ifd=2 =5+ Z ZXU( y)
t=1 ac’Z
Z Zt /)(U(xy—l—zji)dx.
q
vezZ\{0} tlv
We now claim that

(8.18) U C%_%’l—i- 8(z+3(cl,cz,o)).

Indeed, using |c1 —cil. |2 — 5], o — 0|, |z — 2’|l < n one verifies

(8.19) z+3(c1,¢2,0) C (z’+§(c’1,c£,0’)) +%‘31n and
7 +3(c}.ch.0") C (z+ 3(c1. 2.0)) + BY,

Hence using (8.12) and 1 < % we have

(8.20) (z4 3(c1.¢2,0))T C (7’ +3(cl’02’0))+%m/2 and
(2 +3(ct, 3,00 T C (24 31, 02,0)) + B 5,

and since |T — 1| < % implies B¢ /2 T c®d

m we also get

(8.21) (z +3(cl,cz,0)) - (z’ —{—g(c/l,cé,o/))T_l +%;711'

Our claim (8.18) follows easily from (8.20) and (8.21), using also the convexity of
the set (z’ + 3(0/1,65, 0’))T_1.

To see this take x € U. Then either x € (z/ 4+ 3(c}.c5.0"))T™! and x ¢
z + 3(c1,¢2,0); and in this case (8.20) shows that there exists a point x’ €
z + g(cl,cz, o) with ||[x" — x| < n1/2. Then some point on the line segment
between x and x’ must lie in 8(2 + 3((:1,(:2, 0))—q.e.d. Or else we have x ¢
(z’ +3(c’1,c§,0’))T_1 and x € z + 3(cy, cz,o) (Thus o > 0 and 3(cy,c2,0) =
g(cl,cz, 0).) Then, since ( + 5(61,02, ’)) is convex, there is a hyperplane
1 ¢ R4 through x such that (z/ + 3(c1 ,¢%,0”))T~! lies in one of the closed half
spaces determined by I1. Let x’ be that point which lies in the other half space,
on the normal line to IT through x, with ||x’ — x| = n;. Then (8.21) implies
x' ¢ z+ 3(c1, c2,0) and hence by our assumption on x, some point on the line
segment between x and x’ must lie in 3( + 3(01 ca, 0)) —q.e.d.

If d > 3 then (8.18) implies that vol(U) < £, by our choice of 7.

Next we will show that §y € U with § € @ implies that § has a large de-
nominator. For each § > 1 we have 6y ¢ z + 3(c1,c2,0) since y; > ¢z, and
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also 8y ¢ (z/ + 3(c}. ch,0") T~ ! since §yT =8y’ ¢ (z' + 3(c}, ¢}, 0")); hence
o6y ¢ U. Similarly §y ¢ U for each § < 0. Also if § € §y then our assumption
S(c1,c0,0,2,) (8) = S(c! )02 y) (6) implies that the point §y either lies in both
sets z + 3(c1,c2,0) and (z/ + 3(c]. cé,cr/))T_l, or else in none of them; thus
8y ¢ U. Hence it follows that § y € U for rational § can only hold if 0 < § < 1 and
8’s denominator is larger than N.

It follows from this that if d > 3 then the sum in (8.16) is < .-y 4 < 5
and hence since vol(U) < £ we have now shown that (8.14) is < ¢, i.e. the proof
of the proposition is complete.

If d = 2 then it follows that the first sum in (8.17) vanishes, and it remains to
bound the second sum in (8.17). Since U C %ic we get nonvanishing contributions
in that sum only when |v| < 4Cq||y| < 4C?2q. Furthermore, it follows from (8.18)
that U is contained in the union of two translates of [0, c; —c1 4+ 211] X [0, 211]
and two translates of [0, 211] x [0, 20 + 271]. Using now the condition |y,| > C ™!
we see that for each translate B of [0, c; —c1 +211] x [0, 2n1] and any w € R?, the
interval {x € R : xy + w € B} has length < 2#n1/|y2| <2Cn1, and hence the total
contribution from B to the v-sum in (8.17) is < Y"1 _jy1<ac24 (X spo t~H2Cn,,
and by our choice of 1y this is < {5. Similarly using |y;]| > C ~1 one finds that
the total contribution from each vertical side is also < %. Hence in total (8.17) is
<5+0+ 5+ 15+ 15 + 19 < & and the proof is complete. O

We now point out several consequences of Proposition 8.3. First, the follow-

ing technical lemma will be quite convenient to use in our proof of Theorem 4.4.

LEMMA 8.4. Given any C, ¢ and corresponding n, N as in Proposition 8.3,
then forall ¢, € >0and w, z € {0} xR~ satisfying C™1 <¢ <& <c+min(n, c/N)
and &£ + |w| + ||z|| < C [and ifd =2: |lw +z| > C1], we have
(822)  [f0.c.l.zfer +w+z)— Fy(6.w.2)
= |/ 0.¢c.1.z.6e1 +w+z)— (0§, 1,2, 6e1 + w+2)| <e.
Proof. The assumptions imply that both (0, ¢, 1,z,ée;+w—+2z) and (0, &, 1, z,

£e1+ w+ z) belong to Q ¢, and these 5-tuples differ only in the second coordinate,
by an amount < 5; hence by Proposition 8.3 we only need to check that

S(0,¢,1,2,6¢ 1 +w+2) () = S(0.6,1,2.6¢ | +w+2) (6)

holds for every § € §n. Fix § € §n; our task is now to prove that the point
£e1 + w + z either belongs to both or none of the two sets §~1(z + 3(0, ¢, 1))
and §~1(z + 3(0,&,1)). Note that § < &¥=L: thus using 0 < ¢ —¢ < ¢/N we
have £ < §71c as well as £ < §71£. Hence the two containment relations are both
equivalent with |[w +z — 8§ !z|| < 87!, and we are done. O

We next prove several lemmas relating directly to the function F;..

LEMMA 8.5. Fy (&, w, z) is Borel measurable.
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Proof. We first take d > 3. It suffices to prove that the restriction of F; to any
given compact subset K of Rxq x ({0} x R~1) x ({0} x RZ~1) is Borel measurable.
Using Proposition 8.3 we see that on K we can obtain F, as a uniform limit of
functions which take only a finite number of values, each level set being a finite
union of sets of the form

(8.23) BN{{§. w.z) € K : 500.6,1,2,6e 1 +w+z)(8) =50(8), VS €N},

with B a box region and s¢ some function from §u to {0, 1}. Since each such
level set is a Borel set we have thus expressed (F;)|x as a uniform limit of Borel
measurable functions, and we are done.

We now turn to the case d = 2. In this case an application of Proposition
8.3 as above shows that the restriction of F; to any given compact subset K of
{(€,wey,zer) 1 w+ z # 0} is Borel measurable. Next, by a computation using
the set-up from Proposition 7.5 one finds

(8.24) F,(g,—zez,zez):( 3 [_2)_1 32

t>1 t>1
(t.q9)=1 t.q9)=1

X I #ZN(nx,nx + L)) =r)dx.
[ > ) =r)
qé(z—1)<nt<q&(z+1)

In particular, Fy (&, —ze5, ze3) is constant on any set of the form

8.25) Mgy 4, = {(E,Z) cq€é(z—1) €lar, a1 + 1),
Q$(2+1)€(02,az+1]} (ay,a2 €7).

This implies that also the restriction of F; to {{£, we,, ze,) : w4+ z = 0} is Borel
measurable, and we are done. O

In particular, this proves the claim about Borel measurability in Remark 4.5. This
shows that we may freely change order of integration in the right-hand side of the
limit formula (4.13).

Next we prove the claim about continuity in Remark 4.5.

LEMMA 8.6. Ifwe keep ||w|| <1 and ||z|| <1 [andifd =2: z+ w # 0] then
the function F, (&, w, z) is jointly continuous in all three variables.

Proof. This is a simple consequence of Proposition 8.3 once we note that
5(0,6,1,2,6¢ 1 +w—+z)(§) = 1 holds for any £ > 0, w € {0} x %f‘l, z € {0} x %f‘l,
and any § € Fy. This fact follows from 0 < § < §7 & and |w +z —§71z|| <
|w]|+ @ T=D|z]| <1+ @S 1=1)=8§"1. d

LEMMA 8.7. For any fixed z, w [if d = 2: assume z + w # 0], the function
Fr (&, w, 2) is continuous in the variable £ > 0.
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Proof. This follows directly from Proposition 8.3 once we note that for any
d € IN, the function s(o ¢ 1,z g , +w+z) (6) is independent of §. Indeed, since § < 1,
S(0.£.1,2.8¢ | +w+z)(8) = 1 holds if and only if ||w +z —§~1z|| <8~ L. O

LEMMA 8.8. Let W be any bounded Borel subset of {0} x RA=L; then the
integral [, Fr(€, w,z) dw exists for all § > 0, z € {0} x R4~ and is jointly
continuous in these two variables. In fact, given any € > 0 and B > 1 there is some
v > 0 such that

(8.26) [W}Fr(é,w,z)—Fr(S',w,z/)}dw<8

holds forall €,€'€[B™!, B],z,7'¢ {O}X%é_lsatisﬁzing |E—&|<vand | z—2'| <v.

Proof. Since 0 < F,(§,w, z) < 1, the existence of the integral follows from
the Borel measurability proved in Lemma 8.5.

To prove (8.26), let ¢ > 0 and B > 1 be given. Applying Proposition 8.3 with
&' := (24voly_, (W)) e in place of & and with C =max(2B+supycy ||wl|, 4/€"),
we get that there are some 77> 0 and N € Z such that | Fy (§, w,z)— F(§', w,z')|
< ¢ holds for all £, € [B™',B], w € W and z,z’ € {0} x %%_1 satisfying
6~ < Zand 22|l < L and 50,6712 g7 -+w-2) (8) = 5(0.6.1,2.6¢ 1 +u+2) 6):
V8 € §n. If d =2 then we must also require |[w +z|| > C ! and |[w +z'|| > C 1.
The s-conditions are seen to hold if and only if, for each § € §u, either both or
none of |[w— (7' —1)z| <8 ' and |w—(§~! = 1)z/|| < 87! are true. For each
8 € §N, the set of exceptional w’s is thus seen to lie in a union of two translates
of the region §~! (%f;ﬁz_z/|| \ B9~1). Hence, since ' < N and §y is finite,
there is some v € (0, %] such that the volume of the total set of exceptional w’s is
less than &’ whenever ||z —z’|| < v. For d = 2 we also have to consider the set of
exceptional w’s satisfying ||w +z|| < C ™1 or |w +z|| < C~!; this set has volume
< 4C~1 < ¢. Hence, since the integrand in (8.26) is everywhere < 1, we see that
for any £, &’ € [B™1, B] and z, 2z’ € {0} x%%‘l satisfying |€ —&’| < v (or just < 7)
and ||z — Z/|| < v, the integral in (8.26) is < (2 + voly;_1(W))e’ = &, as desired. [

8.2. An important volume function, for o ¢ Q?. The questions treated in the
last section become much simpler if we consider the submanifolds X(y) in place
of X4(y). Indeed, let us define, in analogy with (8.1) above:

(8.27)

fr(crca.o.z,y)i=vy({g € X(y) : #(ng N(3(c1.¢2,0) +2)) =r}),
with the same domain  as before, and for £ > 0 and z, w € {0} x R ™1,
(8.28) Fré,w,z):= f,(0,6,1,z,6e1 +w + 2).

It will be clear from the context which case of functions f;, Fy ((8.1), (8.3)
or (8.27), (8.28)) we are referring to.
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LEMMA 8.9. f.(c1,c2,0,z2,y) in (8.27) satisfies the same invariance rela-
tions as in the X4(y)-case (see Lemma 8.1), and also

fr(c1,¢2,0,2,y) = fr(c1,¢2,0,0,y —z).

Proof. Cf. the proof of Lemma 8.1 but use Lemma 7.9 in place of Lemma 7.2,
and also use the transformation & = (15, —z) € ASL(d, R). d

Hence F; (&, w, z) in fact only depends on & and ||w||. (In particular, this is
true for Oy (&, w, z) = Fo(§, w, z), as pointed out in Remark 4.5.)

PROPOSITION 8.10. The function fy(c1,c2,0,z,y) in (8.27) is continuous
everywhere in Q.

Proof. This follows by the same method of proof as in Proposition 8.3, but
the details are much simpler: Using Proposition 7.11 in place of Proposition 7.6
one finds that (8.16) is now replaced by

(8.29) fr(ci,c2,0,2,y) = fr(ch.cp.0" 2/, y")| < vol(U) + yu (y),
and as before one sees that yy(y) = 0 and that vol(U) can be made arbitrarily
small by taking (ci,c5,0”,z', ') close to (c1,¢2,0,z, y). O

We end by remarking some relations which will be useful in Proposition 8.13
below and in our discussion of explicit formulas in [26]. First, using (7.46) and
the definition of vy just below (7.46) we see that

(8.30)

frlciicz,002,y) = i ({M € X1 : #(ZM N (z— y + 3(c1,¢2,0))) =7}).
In particular, we have
(8.31) Fr(g,w,z) =i ({M € X1 :#(ZM N (=Eey —w + 3(0,£, 1)) =r}).

Here —£e1 — w + 3(0, &, 1) may be replaced by its pointwise negate, §e1 + w —
3(0, £, 1), and since w € {0} x R4~ this set is seen to equal w + 3(0, £, 1). Hence

(832)  Fr(k,w,z)=pui({Me Xy : #(ZM N (w+3(0,£,1)) =r}).

One may note that this volume is a special case of the limit function F; ¢ g(r,0)
obtained in Theorem 3.4 for & = 0. Indeed, using the relation
g1 0 1 1
(w+3(0,¢, 1)) 0 gl/@-n) = ga—Tw 4 3(0,1,£a-T1)

we see that Fy(§,w,z) = Fpog(r, Eﬁ) holds for any choice of function B(v)
such that HPI‘Oj{v}J_ ,B(v)” = |lw| forall v € S‘li_l.
8.3. Differentiability properties.

PROPOSITION 8.11. For any fixed o, B, A, r (and ¢ = 0) as in Theorem 3.4
with o € Q4, the function Fo o g(r,0) defined in (3.13) is C! with respect to o > 0.
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Proof. In analogy with (3.14) we define
3v(c1.¢2,0) :=3(c1,¢2,0) + 0 ||Projgyy1 B(v) ] -2,
so that 3,(c,0) = 3y(c, 1,0). Then

_ ¢’ 0
3u(c’c, ' ¢ Ta) = 34(c, 1,0) (to C/—l/(d—l)ld_l)

for all ¢’ > 0, and hence, using also the invariance of ji4, we have
(8.33) Feap(r,o)= (g x)({(M,v) € XgxS{™":
#((Zd +a)M ﬂ3v(cod_1,0d_1, 1)) = r})
To simplify the notation we write 0 = & 7T, Now, for any £ > 0 and h > 0,
(8:34) (Foap(r, (E+1)7T) = Foqp(r§71)/h

=h"! / Mq({M €Xy: #((Zd + )M N3,(0,€, 1) <,
N
#((Z9 + )M 13,00, +h. 1)) = r}) dA(v)

- gd—1 Mq({M € Xg - #((Z% + )M N3,(0.£.1)) =1,

#((Z9 + )M N 3,(0.6 +h. 1)) > r}) dA(v).

If r > 1, then using Proposition 7.3 and Lemma 7.12 we find (cf. the discussion of
(9.53) below) that the first term in the right-hand side of (8.34) equals, as &7 — 0,

(835 O(hlog(h™"))
E+h
+h‘1/ f / Jr-1(0.8. 1.2y 8'er + w+ zy) dw dE' dA(v).
sd—1 Jg {0yxa{~!

where z, 1= HPI'Oj{v}L B(v) H -e>. This tends to

/s‘{—l /{o}x%f{—l Fr(.w.z0) dwdA(v)

as h — 0, by Lemma 8.4. Treating the second term in (8.34) in the same way we
obtain

(836)  lim A~ (Foap(r, (§ +h)TT) = Foup(r§71))

h—07t
= [ [y (w20~ v 20) dwdi o).

This is valid also for r = 0 if we define F_; := 0. Inspecting the proof just carried
out and using the uniformity in the statements of Lemma 7.12 and Lemma 8.4
we see that the convergence in (8.36) is uniform with respect to £ in any compact
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subset of R~ . Hence the formula (8.36) is also valid in the limit # — 0™, and
Lemma 8.8 gives that Fy o g(r,0) is indeed C! with respect to . We also note
that (8.36) gives an explicit formula for the derivative. O

Remark 8.12. The explicit formula for the derivative, (8.36), specializes to
the formula (4.17) in Remark 4.6 in the case r = 0. (For recall (4.6), Fo(¢, w,z) =
®y (¢, w, ), and Remark 8.2.)

We also note that the argument in the above proof applies without changes to
the case when A is a (not absolutely continuous) probability measure which gives
mass one to a single point. Hence for each z € {0} x R¢~! we have

(8.37) (M e Xy : (2% +a)M N (3(0,£1)+2) = 2})

:_/ o Py (&, w,z)dw;
{0} x%BY

in particular the derivative in the left-hand side is a continuous function of £, cf.
Lemma 8.8. The set in the left-hand side of (8.37) has u4-measure tending to 1
as £ — 0T and tending to 0 as § — oo, cf. the proof of Remark 3.6 in Section 8.4.
Hence, integrating (8.37) over £ € R~ we deduce the formula (4.16) in Remark

4.6, [o° f{o}x%f—l Dy, w,2)dwdé =1.

Next we turn to the case a ¢ Q. Recall that in this case Fe o pg(r,0) is inde-
pendent of 8, A, &, and we have introduced the notation F,(r, o) for this function.

4
dé“q

Proposition 8.13 and the ensuing remarks carry over directly to the case o ¢ Q9,
with the usual changes of notation. However, we can say more:

PROPOSITION 8.13. For any fixed 0 <c <1 and r € Z>q the function F.(r,0)
is C2 with respect to o > 0.

Proof. The function F,(r, o) satisfies the invariance relation
Fe(r.0) = Fo(r. o (1 —¢)7T),

which follows directly from the definition (3.8), using the right ASL(d, R)-invari-
ance of p. Hence we may from now on assume ¢ = 0.

Arguing as in the proof of Proposition 8.11 we prove that Fy(r, o) is C! with
respect to . The explicit formula (8.36) is still valid (with F, (&, w, z) now being
given by (8.28), (8.27)), although the integration over S‘f—l may be skipped since
in this case Fy (&, w, z) is independent of z. Rewriting (8.36) using (8.32) we get

d 1
(8.38) %Fo(r,éﬂ)
:/{} pi({M € Xy : #(Z9M N (w' +3(0,£, 1)) =r —1}) dw’
0yxB§ !

_/{0} (M e Xy H(ZOM N4 30.8.1) =) dw”
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But here the right-hand side can again be differentiated with respect to &, by re-
peating the argument in the proof of Proposition 8.11 (with “ec = 0” and letting w’
play the role of z, in that proof); this leads to

(8.39)

L Fotr.gat -

(Ol 0) (oz 0)
w,w 2F,.” w, w
dg? (O}t /{O}X%f—l( e Gww) - ¢.w.w)

+F@=0 (s . w’)) dwdw',

where “Fr(azo)” means “F; asin (8.3), (8.1) witha =0, g = 1” (and we understand

Fg:o) :=0and ngo) :=0). Hence (for our & ¢ Q%) Fy(r, o) is indeed C? with
respect to o; cf. Lemma 8.8. O

Remark 8.14. The formula (8.39) generalizes [36, eq. (34)] from d = 2 to
general d.

8.4. A uniform bound. In this section we prove the two bounds in Remark
3.6. If « € Q% we note that for each v € Sf_l we have, by Proposition 7.1,

(8.40) pa({M € Xy : (Z? +@)M N 3y(c,0) = B})
=1 [ M@+ )M N 30(e.0)) dug (M)
Xq

=1 —V01(3,,(c, o)) =1-v4(1 —c)(rd_l.

Integrating over v € S‘li_1 with respect to the measure A (cf. the definition (3.13))
we obtain the first bound in (3.15); the second one follows using Z?io Fe o.(r.0)
=1.

In the case « ¢ Q@4 the bound (3.15) follows using (7.3), (7.48) and a compu-
tation as in (8.40), noticing [rg 1ya 5s #((ZTM +£)N3y(c,0)) d& =vol(3,(c,0))
for each M € F;.

The bound (3.16) is a direct consequence of the following lemma.

LEMMA 8.15. If r € Z>¢ and B is any translate of a cylinder 3(c1,c2,0) (cf.
(4.15)) in R? of volume V , then

@41)  pug({MeXy : (2 +a)MNB)<r}) < V™, Vaeq 7%
and p({geX :#Z%nB)<r}) <V
The implied constants depend only on r, d.

Proof. The proof uses the methods in [21, §3.6], but note that we work with
a slightly different notation in the present paper. We will prove the first bound
in (8.41); the proof of the second bound is quite similar. Since both sides in the
inequality remain invariant if B is replaced by BMj for any My € SL(d, R), we
may assume without loss of generality that B is a translate of a cylinder 3(c1, ¢2,0)
with co —c1 = 0.
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Every element M € SL(d, R) has a unique Iwasawa decomposition M = nak,
where n belongs to the group N of upper triangular matrices with 1s on the diagonal,
a is diagonal with positive diagonal elements, and k € SO(d). We let Fy be the
set of all matrices in N for which all entries above the diagonal lie in the interval
(—%, %], and introduce the following Siegel set (denoting a = diaglay, ..., ag]):

(8.42)
$ = {nak neTN, 0<ajt1< 2 (j=1....d =), keSO(d)}.

It is known that ¥ contains a fundamental domain for X; = SL(d, Z)\ SL(d, R);
we fix & C & to be one such fundamental domain (in the set-theoretic sense).
Choose representatives 7; € SL(d, Z) so that SL(d, Z) = |_|;-"=1 I'(q)T; (disjoint
union); then |_|;-”:1 T; % is a fundamental domain for X, = I'(¢)\ SL(d, R).

Now let M be any element in |_|;71=1 T;%. Choose j so that Tj_lM € 7,
let the Iwasawa decomposition of this matrix be T/._IM = nak, and let the row
vectors of the same matrix be by,...,b € RY. Then using n € ¥y and nak e &
we see that ||bg| < Z;i=1 aj Lgayforeachk =1,...,d. Using T; € SL(d, Z)
we see that #((Z¢ +a«)M N B) = #((Zby + --- + Zbs) N (B —aM)). Choose
£1,...,65 € Rso that £1by +--- 4+ £5b; is the center of the cylinder B —aM,
and take my,...,my € Z so that & —my, € (—%, %] for each k. Then the distance
from £1b1 +--- 4+ £4b4 to any of the lattice points m1by +---+mgbg + jbg,
for j =0,...,r,is < 1(|b1]| +-- -+ 1ball) + rllball <a, a1. Hence using our
assumption ¢z —¢1 = o0, we see that if a1 <4, V'1/4 then all these lattice points
lie in B —aM, so that #((Z¢ + «)M N B) > r. Hence the left-hand side in (8.41)
is < Zj wg({M : Tj_lM =nak €%, a; > V1/4}). Using (7.2) and the invariance
of ;1 we see that this is < i ({M =nak € ¥ : a; > V1/9}), and as in [21, §3.6]
we see that this is << V1. d

8.5. Analogous results for Section 2. In this section we indicate how most
parts of the development in Sections 8.1-8.3 carry over to the setting of Section 2.3,
leading to a proof of the claim in Remark 2.2 that the function E¢ (7, 0) is c!
with respect to 0.

For any 0 <c¢; <c¢p and 0 > 0 we let

(8.43)
&(c1,c2,0) =4 (x1,...,xq) € R? : ¢q <x1 <ca, (x2,....x0)|| <ox1y¢,
so that in particular €(c, o) (cf. (2.14)) equals €(c, 1, A(c,0)) up to a set of mea-

sure zero. (The reason for using “<” in (2.14) is to make (9.66) below true without
modification also when 0o, =0.) Givenr € Z>p and @ € q_IZd we now introduce
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the function

(8.44) gr(c1.c2,0,2,y)
= vy ({M € Xg(y) : #((Z¢ + )M 0 (€(c1.c2.0) +2)) =7})

with domain €2 as in (8.2). Therefore, g,(c1,c2,0,z,y) is defined exactly as
fr(c1,¢2,0,z,y) in (8.1) except that we use €(c1, ¢2,0) in place of 3(c1,c2,0).
We also write, in analogy with (8.3), for £ > 0 and z, w € {0} x IRd_l,

(8.45) Gr(§,w,z)=g,(0,1,z,e1 +w+2).

Now the discussion in Section 8.1 up to and including Proposition 8.3 carries over
to the case of g,(c1,c2,0,z,y) with very minor changes. In particular, if we
replace 3(c1,¢2,0) by €(c1, ¢2,0) in the definition of s(§), (8.8), and replace the
definition of Q¢ in the case d = 2 (cf. (8.9)) by

(8.46)
Qc :={(c1.c2,0,2, ) €Q : o |z|l. Iy =C; C" <y1l. |y2 Loy},

then the statement of Proposition 8.3 holds with g,(c1,c¢2,0,2,y) in place of
fr(c1,c2,0,2,y). Using this, one then also proves that the statements of Lem-
mas 8.4, 8.5 and 8.8 hold with g,, G, in place of f,, Fy, with the only difference
that in Lemma 8.4 the condition “[and if d = 2: |w + z|| > C 1" must be replaced
with “land if d =2: ||w +z|| —§| = C™']".

Similarly, in the case & ¢ Q4 the discussion in Section 8.2 up to and including
Proposition 8.10 carries over in the obvious way to the function

(8.47)
gr(c1.c2.0.2,y) == vy ({g € X(y) : #(Z9g N (€(c1.c2.0) +2)) =T}).

Also the formulas (8.30) and (8.31) carry over, but (8.32) does not carry over, since
the cone €(0, &, 1) does not have the necessary symmetry.

Now Proposition 8.11 carries over, i.e. the function Eg (7, 0) is C! with
respect to o > 0 for any fixed « € R? and r € Z>y, as claimed. We remark that
in the proof of this we actually only need (8.44) with z = 0. The analogue of the
formula (8.36) is

(8.48)
d vol @971 g\
d—EEO,,,(r, O g )—/{O}X%g_l(Gr_l(s,w,())—G,(é,w,O))dw.

Finally we turn to the special case d = 2 and & € Q2 (say & € ¢~ 'Z? with ¢
minimal). We intend to prove (2.32) in Section 2.4, i.e. that Eg (0,0) =1—«40
holds for all o [(), (Zq)_l]. Clearly, by (8.48), it suffices to prove that if 0 < £ <
(2¢)""/2 and |w]| < & then Go(&, we3,0) = ky; i.e.,

(8.49) vw({M € Xg(w) : (Z> + )M N€(0,£,1) = 3}) = kg,



DISTRIBUTION OF FREE PATH LENGTHS IN PERIODIC LORENTZ GAS 2015

where w = £e; + wep. Let M € SL(2, R) be a representative for an arbitrary
element in X, (w). Then there is some k € 72 + « \ {0} such that kM = w. Set
t = ged(gk); then £k is a primitive vector in Z2, and thus 7% = Z%k + Zh for some
h € 7*. Hence (7% +a)M = (2> + k)M =Z72kM +ZhM +kM C Rw+ZhM.
Also Rw+nhM =Rw :I:nqt—&.ez, and from this one verifies (using 0 < £ < (2¢q)"Y/2,
|w| < &) that each line Rw +nhM (n € Z\ {0}) lies outside €(0, &, 1). Hence

(8.50) (7% +a)M NE(0,£, 1) =Rw N (Z%2 +a)M NE(0, £, 1)
= (w+Z%w) N €(0, £, 1).

This set is empty if and only if # < g. Hence by mimicking the proof of Proposition
7.5 we find that the left-hand side of (8.49) equals

(8.51)
2
9% 1u ((C(q) N H)\H) o ! o
1,8) X=X ) X e
4 1<t=<q n>1 1<t=<q
(t,9)=1 (n,q)=1 (t,9)=1

and we are done.

9. Proof of the limit theorems in Sections 1-4

9.1. Proofs for Section 3. We first prove Theorem 3.4 (and thus Theorem 3.1,
which is a special case). Theorem 3.4 will be derived as a direct consequence of
the general limit theorems in Section 6, and our only serious task in the present
section will be to compute the upper and lower limits of an appropriate family of
subsets of R?—1 x R4 (see Lemma 9.2 below). In fact we will carry this out for a
generalized version of Theorem 3.4, see Theorem 9.1 below. This generalization
is interesting in its own right, and its proof is also a useful preparation for the
demonstration of Theorem 4.4 in Section 9.3.

First let us fix a parametrization of the sphere: Let D be a bounded open
subset of R¥~! and let E; : D — SO(d) be a smooth map such that v = v(x) :=
e1E1(x) e S‘ll_1 gives a diffeomorphism from D to S‘ll_1 minus one point.’
The fact that we miss one point in S‘li ~1 will not matter for us since the measure A
is absolutely continuous.

Now for any subset 3 C S'ld_1 ={z¢€ S‘li_1 :z-e;>0}and any w € R?,
p > 0 such that pw lies outside all the balls %g +y (y € £\ {0}), we define

O-1) 8o, x, w):=#y € (LaNBF©)\10)—pw: y E1(x) €R=0e 1+t |,

where we write 3| :={z| :zeU}withz] :=z—(z-e1)e; =(0,22,...,2q)
forany z = (z1,...,z4) € R%. Note that Ngu%(p, x,w) is the number of points

SFor example, we may choose D = %%_1 and E1(x) = KO_1 E(—x) for any fixed Ko € SO(d),
where E(x) = exp (79x de_l )
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yeLy ﬂ%% (c)\ {0} such that the ray pw +R~ov (v = v(x)) hits the ball %g +y,
with the extra condition that —wy, E1(x) € &, where w, = p~!(pw + yv —y) €
S‘f’_1 and 7y =inf{t >0 : pw+1v € %g + y}. Here wy is the location of the
point where the ray first hits the y-sphere, relative to its center y. Hence, similarly
as in Section 4.2, wy always satisfies —wy E1(x) € S’ld_l. In particular, we have

E)
(92) ‘NC,T(p’v(x)7w) :‘N‘C,}‘ (pvwi)v

so that N/ 0 7(p, X, w) generalizes our notation from (3.11). We will write A and B
also for the lifts of A and B to the variable x. Thus A is a Borel probability measure
on R?~1 with bounded support (in fact A = A|p), which is absolutely continuous
with respect to Lebesgue measure. Furthermore § is a continuous function from
D to RY.

THEOREM 9.1. For every subset {1 C S'ld_1 with VOlsil—l (L) = 0 and for all
0 >0andr € Z>o, the limit

9.3)  FY) g(r.o)= Jim A({xeD : N (@T V@D x B(x)) =r})

exists, and for fixed o, B, A, r, 3\ the convergence is uniform with respect to ¢ in
any compact subset of R>o and with respect to ¢ € [0,1]. The limit function is
given by

94) FY)g0m.0)

e MM x) € XgxD M@+ )M N3O (e Lo p)le) = 1)) ifa=L el
UM, §) € X #(Z9M +£)N3W (e, 1,0) =r}) ife ¢ @,

where

9.5 3%rc.0)={y=01.....v0) €R? 1 cr <y1<ca, y  €otly};
38 (cr.c2,0.8)={(x.y) e DxR? : y €30 (c1, c2.0)+ (0 B(x) E1(x)) L}

In particular, F, 0 co ﬂ(r 0) is continuous in o and independent of ¥, and if & ¢ Q
then it is also mdependent of B and A.

Theorem 3.4 follows from Theorem 9.1 by taking 4 = S'ld_l. Indeed, we

have 3(5/1 d_l)(c, 1,0) = 3(c, o) (except if o = 0, but then both sets are of measure
zero), and in the case o € Q4 the volume in (9.4) equals
(9.6)

/D na({M € Xg : #(@ + )M N (3(c,0) + (0B()E1(x)1)) = r}) dA(x).
Here we may replace “(o B(x)E1(x))L” with “o|| Projg,x)L B(x)]| - €27, since

1
(if d > 3) there is a rotation ( 0 I(;) € SO(d) which takes the second vector to the
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first, and p4 is invariant under the diffeomorphism X, > M — M (tlo ](;) € Xy.

(If d = 2: Then either the two vectors are equal, or they correspond to each other

under ((1) _01 ); in the latter case one chooses yo € SL(2, Z) with ayg ((1) _01 ) =« and

then uses the fact that M — yo (§ %) M ({ 0) is a well-defined automorphism
of X, onto itself, which preserves u,.) Hence we obtain the volume in (3.13).

Proof of Theorem 9.1. To prove the desired uniformity, it suffices to show that,
given any continuous functions R~o > 7 +— or € R>g and R5¢9 > T + cr € [0, 1]
such that 050 = lim7_ o 07 and coo = lim7_, o, cT exist, we have
9.7

. - 1) — - b1t
Jim A(tx € RO NS L (or T VD x Bx)) = 1)) = FY, 4(r.000).

where the right-hand side is given by (9.4).
In the following we let SL(d, R) and ASL(d, R) act on R¢~! x R? by leaving
the first entry fixed and acting as usual on the second entry:

9.8) g:le_lledeRd_lde, (x,y)—~>(x,yg2).

Set, forany 0 > 0,0 <c; <c, T >0,

9.9) 331 c2.0.8) = (x.y) e DxR? . 1T < |yl <ol

1 1 71 0
y—O'T d_lﬂ(X)El(X)€R>Oel+O'T d_lul} ( t0 Tl/(d_l)ld_l).

We then have for all x € D,
9.10) N (eTVE=D x B(x))
=#(3%0(c. 1,0, B)|x @ (E1(x)™1,0) N (29 + @) Mo \ {0}),

with 7 = e@=1? 5o long as T is large enough so that the left-hand side is defined.
Now taking Lemma 9.2 (with ¢, 7 = 1) below into account, we see that (9.7)
and Theorem 9.1 follow immediately from the Theorems of Section 6. O

The flexibility of taking ¢ 7 # 1 in the following lemma is not needed for
the proof of Theorem 9.1, but it will be convenient later.

LEMMA 9.2. Let or,c1,T.C2,T be continuous functions of T > 0 with o > 0,
0<ci,r <carforall T >0,and such that all three limits 000 = limr_, 0T,
Cl,00 =liM7 500 C1,17 aNd €2 00 = limT 00 C2, T exist. Then the union

i
UTleg")(Cl,T, c2,7.07.B)

is bounded, and

9.11) lim(inf 332 (c1 7, e2.7, 07, B))° D 3 (€100, €2,001 To0s B)°
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and

9.12) limsup 35 (c1,7. 2,7, 07, B) € 3 (c1,00. €2,00: 000, B)
(closures and limits taken in RA—1 x [R{d), where
38 (c1.e2.0.8) := 3 (c1. 2.0, B)

(cf. 95) if e <o, but 39(cr, 1,0, )= {(x,y) e DxRY 1 y € ({er} xotly) +
(O'ﬂ(X)El(X))J_}. Furthermore, the boundary ofg(u) (c1,¢2,0, B) intersects D x
R in a set of Lebesgue measure zero.

Proof. Let C =1+ supp ||B]|. Take T > 0 and consider an arbitrary point
(x,y) € 33217, cor, 07, B). Set y' = Tyrey + T~y ; then ¢1,7T <
[yl <c2rT and y’ —JTT_ﬁﬂ(x)El(x) € Ropeq + UTT_ﬁilJ_. From
these we conclude
(9.13)

__d_
—orT a-Tsup|Bll <yi1<c2r and (y—orB(x)E1(x))L €oril].

Since 4| C %‘11 the last relation implies ||y | || < Cor. The first claim of the lemma
follows from the inequalities noted so far.
Now let n > 0 be given, and take T so large that ¢1, 7 > ¢1,00 — g, Ca,T <

C2,00 + 1, CO’TT_ﬁ < % and |07 — 0so| < n/C hold for all T > Ty. Let
T > Ty and consider any point (x, y) € 3§%1)(c1,T,cz,T,0T, B). Then by (9.13)
we have y; > —CO’TT_ﬁ > —%, but using ||y’|| = ¢1,7T we also conclude

|yi| >c1,7 —Cor 775 > Cl,00 — %”. Together these two inequalities imply in
particular that y1 > ¢1,00 — 1. Also, by (9.13), y1 < c2,17 < €2,00 + 1. From (9.13)
we also see that there is some w € 4| such that (y —orB(x)E1(x))1 = orw.
Thus

9.14) (¥ —00oB(x)E1(x)) L = OcoW + (0T — 0oo)(w + (B(x) E1(x)) 1),
and here Hw + (ﬂ(X)El(x))J_H < C and |oT — 00| < n/C, so that
(9.15) (¥ —00oB(xX)E1(x)) L € Ooolly + B
Hence we have proved that for each 7" > T, we have
©16) 3317 ca7.07.B)
C {(x,y)EDx[R{d D Cloo—N<Yy-€1<C200+1,
(¥ = 0ooB(x) E1 (x)) L € 00ty + |

We have seen that such a Ty exists for any 7 > 0; this fact leads easily to (9.12).
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We now turn to (9.11). Assume (x¢, yg) € E(ﬂ)(cl,oo, 2,00, 00, B)°, and
take 1 > 0 so that
(917) (xO + %gn_l) X (yO + %‘2117) C 3(u)(cl,001 C2,OO? 0009 ﬂ)

Then we must have 0o > 0 and ¢1,00 < ¢2,00. Take T so large that each of the
following five inequalities hold when T' > Tp:

or > 0; Uﬁ—l‘< d ; UTT_ﬁ<i;
(9.18) or o0 ) ¢
1,7 <Cl,o0 +1; 2,7 —CoocT™ a1 >3 00— 1.

We then claim
9.19)  (xo+By ) x (yo+B) C 37 (crr o 0m. 8, VT =To,
This implies (xo, y) € lim(inf3g§1)(clgr, c2,7.0T.B))°, and hence (9.11) will be

proved, since (x¢, y,) was arbitrary in 3@ (€1,005 €2.,00, 000, B)°.
To prove (9.19), let (x, y) be an arbitrary point in (x¢ + 9]3571_1) x(yo+ %g),

and take T > Ty. Write y' = Tyje; + T_ﬁyJ_. Using COTT_ﬁ < n we get
920) Ty —opT @ TB(x)Ei(x)-e1 > Tn—orT @ sup 8] > 0.
Next (9.17) implies (y —ocofB(X)E1(x))1 + ({O} X %Zi_l) C 0codd 1 . In particular,

|y LIl < Coco, and using |‘(’T;°T°—1‘ <&weget|‘%°—l}-||yl|| < n and hence

o,
©9.21) (v = 00eB()Er ()1 + (22 = 1)y 1 € oootly.

or
In other words (y —orB(x)E1(x))1 € orily, and thus
9.22) (v —or T~ 7T (x) Ex(x))L € op T~ 78y
Finally (9.17) gives ¢1,00 + 1 < y1 < 2,00 — 1), and using ¢1,7 < ¢1,00 + 1 and
C2,00 =N <C2T — CaooT_ﬁ we obtain
(9.23) c1,rT = /Il < ca,rT.
But (9.23), (9.20), (9.22) imply (x, y) € 3%%(c1 7, 2.7, o7, B), and hence (9.19)
is proved.

Finally, the fact that (D x R?) N 33w (c1,c¢2,0, B) has Lebesgue measure
zero follows from

(9.24)

(D xR N33 (c1.c2.0.B)

C{(x.y)eDxRY : yrerefer.cal, yy €0(Bx)E1(x)) L + ({0} xBIT))
U{(x,y)eDxR? ici<y-e1 <ca y, €o(B(x)E1(x)1L + (0},

using d(44 ) = (d4) 1, and our assumption that Volsflz_1 (au) = 0. O
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The proof of Theorem 3.7 is almost identical to the proof of Theorem 3.4,
using the theorems of Section 6.3.

We proceed to the proofs of Theorems 3.9 and 3.10. To be in line with the
notation used in the previous proofs, we again write v = e E1(x)~! (x € D), and
write A also for the lift of A to the variable x. Set

(9.25) 37(c,2)={(x,y) e DxR? : ¢T <|y| <T,

T-! 0
R>0€10(QTE1(x)+y)#®}( t0 Tl/(d—l)ld 1)'

For the counting function defined in (3.22) we have
(9.26)
Ner (2. e1E1(x)™) =#(37(c.2) [ @ (E1(x)™",0) N (Z¢ + ) Mo \ {0})

with T = e@~1?_ The primitive case is analogous.
Theorems 3.9 and 3.10 are again a consequence of the theorems in Section 6
and the following lemma.

LEMMA 9.3. The union Ur>137(c,2) is bounded, and we have

(9.27) lim(inf 37(c,2))° D 3(c,2)°, limsup 37(c,2) C 3(c,2),

where
(9.28) 3(c,2):= {(x,y) eDxR? :c< yi<l, (ya,...,y4) € —(QEl(x))J_}

is a bounded set whose boundary intersects D x R? in a set of Lebesgue measure
zero.

Proof. This is very similar to the proof of Lemma 9.2 (but slightly easier,
since ¢ and 2 are kept fixed). To prove the last statement one first verifies that

9.29) (D xR%)Nd3(c,2)
& eDxR e}y, e—QE()1)
U{(x,y) e DxR? : yi€le, 1],y € —8((82E1(x))J_)}.

Here the first set clearly has measure zero, and the second set has measure

(9.30) (l—c)/ DVOle—l(a((ElEl(x))J_))dx,

which is zero exactly because of the technical assumption made just below (3.20).
d

Lemma 9.3 is applied in the following way: If & € Q¢ then by (9.26), Remark
6.6 and Lemma 9.3 the limit in (3.23) exists, and equals

9.31) /D/X I(#(B(c,&)|xﬂ(2d+a)M)=r>duq(M)d/\(x).
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But we have from (9.28), since v = e E1(x)~!:

9.32)  3(c,lx={yeR! :c<y-e1 <1, Re1NQE1(x)+y)# 2}
={yeR? ic<y-v<1, RunN@+y)#2E1(x).

Hence by substituting M = M’E;(x) in the inner integral in (9.31) we obtain the
formula stated in Theorem 3.9. The proof in the case a ¢ Q¢ is entirely similar,
and so is the proof of Theorem 3.10.

9.2. Averaging over a. Naturally, one can also prove a-averaged (or g-aver-
aged) versions of all the limit results obtained in the present paper. In this section
we discuss this to the extent necessary to give a proof of Theorem 1.2.

We first give an averaged version of Corollary 4.1. Recall that if o ¢ Q then
®y (£) is independent of &, and we write ® () for this function.

COROLLARY 9.4. Fix a lattice ¥ = 7% My and let A be a Borel probability
measure on T! (Rd) = R9 x S‘lll_1 which is absolutely continuous with respect to
Lebesgue measure volga x VOlsflj—l. Then, for every & > 0,

o0
033 lmA(llq. 0 €T'0) 1 7 n(q.vi) =€) = L (&) ds'
Proof. By the theorem of Radon-Nikodym we have
dA(q.v) = f(g.v) dg dvolgg—1(v)

for some nonnegative function f € L'(R? x S‘li_l) with || £l 1 = 1. By Fubini’s
theorem, the left-hand side of (9.33) equals

O30 g [ ([ 16" v 2 6) fg.v) dvolgg 1 ) d.
0—>0 JRpd S‘{_' 1

where the indicator function / ( . ) is interpreted as zero whenever ¢ ¢ J,. For

almost every ¢ € R? we have f(q,-) € Ll(Sf_l) and —qMO_1 ¢ Q% and for each

such (fixed) point ¢, Corollary 4.1 implies that the inner integral in (9.34) tends to

(9.35) ( /S AR dvolsiz_l(v)) : /s T 0@ dE as p—o.

By Lebesgue’s Bounded Convergence Theorem (with ¢ +— f 591 f(gq,v)d VOIS(lifl(v)

as a majorant function), we may change the order between lim,_,¢ and fIRd in
(9.34), thus obtaining (9.33). O

Proof of Theorem 1.2. Let M be the set of nonnegative functions f € L! (R4 x
S‘li_l) with || f||; 1 = 1. By the Theorem of Radon-Nikodym and (1.7), our task is
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to prove that for each f € M we have

. T 7041 CoY >
(9.36) p%/%pfsf_l (p n(q,v,p)_é)

pAE=D £(d=14 ) dvolgg—1 (v) dq = /:’ (&) d¢E'.

In fact it suffices to prove (9.36) when f € M is continuous and of compact support,
since the subset of such functions is dense in M with respect to the L!-norm.

Using the ¥-periodicity of 71 (-, v; p), the double integral in (9.36) can be
expressed as

d—1 .
(9.37) /Fm{p/s?_ll(p n(qo,v,p)zé)

X{pd(d—l) Z f(pd_lq,v)}dVO]Scll—l(v)qus
g€qo+<

where F C R? is a fundamental parallelogram for &. But for f continuous and
of compact support, the expression within the brackets in (9.37) tends to h(v) :=
Jra f(g,v)dq as p— 0, uniformly with respect to v € S‘li_1 and gy € F. Thus
Theorem 1.2 follows from Corollary 9.4, applied with

dA(g,v) = xr(q)h(v)dgq dvolsllz—1(v). O

9.3. Proofs for Section 4.

Proof of Theorem 4.4.

As in Section 9.1 we fix a smooth map E1 : D — SO(d) such that v = v(x) =
e Ei1(x)" e S‘li_1 gives a diffeomorphism between the bounded open set D C
RY~1 and S¢~! minus one point. However we now make the extra requirement
that £1(x) = K(v(x)) forall x € D .6

We again write A and $ also for the lifts of A and B to the variable x. Now
the measure appearing in the limit in (4.13) equals, with ¢, g(x) = ¢ + pB(x):

938) A({x € Dz p7 (g, p(x). v(x): p) € [£1.62).
—w1(g,p(x), v(x); p) € UE1(x)'}).
This is well defined for p small; more specifically, if p is sufficiently small then
(gp,8(x),v(x)) € TI(TJ{,,) for all x € D, so that t1(q, g(x),v(x);p) and (if
71 < 00) wi(q, g(x), v(x); p) are defined. (For recall that if ¢ € & then by our
assumption on 8 we have ||B(x)| > 1 everywhere.)
For technical reasons we will prove Theorem 4.4 under the extra assumption
that £y > 0. This is no loss of generality, for once that proof is complete, the

%For example, we may choose D = %%_1 and E1(x) = K(e1E(x)Kp) where E(x) =
exp (—Qx 0 dx_l ) and Ko is any fixed matrix in SO(d) such that v = —e 1 Ky is the unique point

where K (v) is not smooth.
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remaining case £; = 0 follows by a simple limit argument, using Corollary 4.2 in
the form lim, 9 A({v € S{l_l Tl <E) =1 Fo,4,8(0, g1/{d=1)) ogether
with the fact that limg_, o Fo o g(0, g1/(d=1) — 1 (cf. Remark 3.6).

The measure in (9.38) can be bounded from above and below using the count-
ing function N gu% (p, x, w) (cf. (9.1)), taken with respect to the affine lattice £, =
¥ —q, as follows. We will use the shorthand notation

a—1
(s

)
NC,T(p’x’w) ::NC,T (p’x7w)v

which is natural in view of (9.2). Let C =1+ supp ||B]|. Now forany 0 < &; < &>
and any p > 0 so small that §1p'"¢ —Cp >0, &1p' "4 + Cp < &2p' =9 — Cp and
(gp,8(x),v(x)) € Tl(f7{p) for all x € D, we have:

9.39) A({x €D : Nor, (p,x,B(x)) =0,
N (0. x. B()) = 1. Ney.3(p.x. B(x) < 1})
<A({xeD:p? (g, 5(x).v(x):p) € [£1.E2).
—w1(q,,5(x). v(x): p) € UE1 (x)7"})
<A({x €D : No1,(p.x, B(x)) =0, NVp (p.x, B(x)) = 1}),

where 7} > 0, ¢; € [0, 1] are defined through 71 = c2T> = 373 = El,ol_d + Cp,
T=&p' ™ = Cp, T3 =Ts =£2p' ™ + Cp, Ty = esTs = £1p' = = Cp.

In order to prove (9.39), let x be any point in D with No 1, (0, x, B(x)) =0,
Ng?Tz (0, x,B(x)) >1and N¢,,75(p, x, B(x)) < 1. To show the first inequality in
(9.39) it suffices to prove that these conditions imply 7 := 71(g, g(x), v(x); p) €
(0791, p'798) and w1 = wi(g, 8(x). v(x): p) € —~UE  (x)7.

N (p, x, B(x)) > 1 that there is some y € £y \ {0} with

c2,T2
§1p'74 + Cp = |yl < &2p"~? = Cp and (y — pB(x))E1(x) € R>oe1 + ptly.
Since U C S’ld_l, it follows that there exist w € { and ¢ > —p such that

It follows from

(y —pB(x))E1(x) =te1 + pw.
This implies in particular that ||y || —Cp <t < ||y | + Cp, and thus
(9.40) 1p' ™ <t <gp'

Sety':=y+q €<%\ {q)andrecall v = v(x) = e E1(x)"!; then our equality
says

(9.41) q,p(x)+1v= y' —pwEq(x)"L.

This implies 71 < ¢. Furthermore, using No 7, (p, x, B(x)) = 0 together with our
requirement that if g € & then (8(v) + R>ov) N %‘11 =g forall v € S‘li_l, we
conclude &; pl_d <1.
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We claim that in fact ;7 = ¢ holds. Assume the opposite; then we have
£10179 <11 <t <£p 9. By the definition of 7; there exists some y” € ¥ \ {0}
such that pB(x) + (11 + &)v € %g + y” for all sufficiently small ¢ > 0. Then
|»” || <71+ Cp, and also since No,7, (p, x, B(x)) =0 we must have ||y"|| > T} =
c3T3; hence we see that y” — pB(x) lies in the set defining N¢, 75 (p, X, B(x)).
But y — pB(x) also lies in this set, and from 71 < ¢ we see that y # y”. Hence
Nes,15(0. x, B(x)) > 2, contradicting our assumptions. Having thus proved 71 =t
we obtain w; = —wE;(x)7! by the definition of w1, and hence both

w; € —UE;(x)7! and 7] € [Elpl_d,szpl_d).

Hence the proof of the first inequality in (9.39) is completed.

The proof of the second inequality in (9.39) is easier, and we leave it to the
reader.

Continuing onwards, let us note the following mild generalization of (9.10).
Forallo >0,¢>0,c¢’>0,x € D and any T > 0 so large that the left-hand side
is defined, we have

942) N (0T~ 71, x, ﬂ(x))
:#( (e e T g, )] ® (El(x)_l,O)ﬂ(Zd+a)Mo\{0}),

with T'/¢’ = e@=D?_This follows directly from (9.10) combined with the invari-
ance relation

T c’ 0
943) 37 (c'e.c’ ¢’ g, B) = g%‘)(c,l,o,ﬂ)(to c’_l/(d_l)ld_l)’

which can be verified straight from the definition (9.9).

1
In (9.39), introduce o1, ..., 05 through p = o; T] 4=1 Using (9.42) and Ty =
c2 Ty = c3T3 we see that when p is sufficiently small, the left-hand side in (9.39)
can be expressed as

(9.44) A({xeD #3776, 0616 701 )|z & (E1(x) . 0)
N@Z? + )My \ {0})
HEW, E5 (G) a0y, B0 (E1<x)—1,0)ﬂ(l"+°t>Mo\{°}>21’
#3776 (61, 5. (57T 03, B)c @7 (B4 (x) ™, )N +a) Mo\ {0}) < 1} )

with e@ D7 = T /&1, and using the notation

(S/d 1

-36 T(cl c2 Gﬂ) _-3 (01»02,0,,3)
Recall that all ¢j, 0;, T; are functions of p, and, when p — 0, we have T; — oo,

1 T
o1 = &', 02,03 > &7, and ¢z, ¢3 — £ /£ Note that e~V =Ty /¢ =
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pl_d + Egl p is strictly decreasing as a function of p for small p > 0; hence for small
p (& large 1) we may instead view p as a function of 7; then also all ¢;, o, T; are
functions of . Now, using an obvious shorthand notation, we have the following
sieving type identity for (9.44):

945) A({xeD :#F) =0, #F% > 1,#F5) <1})
=A({x #F2 = 1) —a({x - #FY) =1, #F2) > 1))
A({x  #F2 > 1, #F53) = 2})
wa(fx o #FD) > 1,888 =1, #F8) = 2)).

To each of the four terms in the right-hand side we can now apply the Eq(x)-
variant of Theorem 6.3 (see Remark 6.4) and its analogue for rational & (Theorem
6.5, Remark 6.6), in conjunction with Lemma 9.2. If & € g~'Z¢ then we obtain
that as p — 0, (9.44) tends to

(9.46) (A x Mq)({(x, M)eDx X, : #(3(0.61.1. )l N (24 + a)M) =0,
#3062, 1) N@ +)M) = 1 #(3(E1. 62, 1. B N@! +a)M) <1}).

(Note that here we need not remove 0 from the set Z¢ + a, since 0 is anyway
not contained in any of the sets 3(0, &1, 1, B)|x or 3(£1,&, 1, B)|x.) In the case
oad Q¢ we obtain the same expression but with p, X and 7% in place of g, Xq4
and 7% + a.

Similarly, the right-hand side in (9.39) can be expressed as (using also 74 =
¢5T5)

(9.47) A({x e D : #(37,6,(0.61. 6 T 04 B)]x " (E1(x)~". 0)
N(Z% 4+ a)My \ {0}) = 0,
#(3mre, (€1, 5L (5105, Bl 7 (E1 (1), 0) N (@7 +@) Mo\ 03) = 1})
with e@~D?f = T, /&, and as p — O this is seen to tend to (if & € ¢g~17%)
9.48) (A x Mq)({(x, M)e D x X, : #(3(0.£1. 1. )| N (2 + ) M) =0,

#3916, 1 B)lx N (27 +@)M) = 1}),

Hence we conclude: Given any 0 < £ < &;, the lim inf of the expression (9.38)
as p — 0 is bounded below by (9.46), and the lim sup is bounded above by (9.48)
(both with the usual modifications if & ¢ Q7). In order to get successively sharper
bounds we will now split the original interval [£1, &) into many small parts, and
apply the bounds just proved to each part. We will also use the results on integrals
over (X, u) and (Xg4, g) which we developed in Sections 7 and 8. We will give
the details for the case a € ¢~'Z%, but exactly the same proof with very small
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changes of notation works also in the case o ¢ Q?; in particular all expressions
below containing fo(...) of Fyp(...) will remain unchanged, except that they refer
to the definitions (8.27), (8.28) in place of (8.1), (8.3); also some of the continuity
issues below are slightly easier in the case & ¢ Q“ since we can refer to Proposition
8.10 for all that we need.

Thus from now on we assume o € q_lld. Recall that we have defined ((8.1)
with r = 0)

(9.49)
foler.e2.0.2. ) = vy ({M € Xq(») : (3(c1.¢2.0) +2)N(Z¢ +a)M = 2})

and Fo(§,w,z) = fu(0,€,1,2,6e1 + w + z). (And Fy(&, w, z) is the same as
Dy (&, w, z) in (4.14) in Theorem 4.4.) Our goal now is to prove that the expression
in (9.38) tends to

&
(9.50) / / / Fo(§,w,zy)dwdédA(x),
xeD 1 Uy

where zy := (B(x)E1(x))1. Recall that we have already seen in Lemma 8.5
that the function Fy (&, w, z) is Borel measurable on the (¢, w, z)-product space; in
particular we are allowed to freely change order of integration in (9.50); hence our
present aim is equivalent with proving the limit formula (4.13) in Theorem 4.4.

Let 0 < &1 < & be given once and for all. Take ¢ > 0 arbitrary (we will take
¢ — 0 in the end). Fix a constant C so large that C > 1 +&; +supp, |8, C > &}
and if d = 2 then also require 2C ~! < . Next choose > 0 and N € Z5, as in
Proposition 8.3, for » = 0 and our fixed C and ¢; if necessary shrink 7 further so
that n < &;/N. By Lemma 7.12 we may also assume, after possibly shrinking 7
further, that for every set U = 3(cy,¢2, 1) + z with z € {0} x %‘é‘l and ¢1 < ¢
satisfying £ <c; <c¢p <& and ¢; — 1 <1, we have

9.51) /va({M € Xy(») : #(U n(z? +a)M) > 2}) dy <e(ca—c1).

We fix a splitting §; = 01 < 6 < --- < 6, = & of the interval [£1, &) such
that 0; 41 —6; <nforeach j =1,2,...,n—1. Note that (9.38) can be expressed
as

n—1

952) Y A({xeD : p? T ri(g,p(x), v(x); p) €6;,641),
j=1

wi(g, (%), v(x); p) € —UE1(x)"}).
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We now apply (9.46) and (9.48) for the lim inf and lim sup of each term in this sum.
We get that the lim inf of the total expression is

(9.53) > Z[ i ,uq({M e X, #((3(0.6,.1) + 2) N (2% + @)M) =0,
j_ xXe

#((3Y0;.041. ) +2x) N4 +a)M) > 1,
#((3(6). 6741, D) +22) N @4 + )M) = 1}) dA(x),

where 3 (c1,c2,0) is defined as in (9.5).
We will next apply Proposition 7.3 to bound each term from below. Let us fix
jel{l,...,n—1} and x € D for the moment, set

954) §= {M € X, #((3(0.6;.1) + zx) N (Z¢ + @)M) =0,
#((3X(O. 0741, D) +22) N @ +a)M) =1}

and denote by S’ the subset of S which appears in (9.53) for our fixed j, x. Set
U= 3(1“0(9]',9]41, 1) + zy; then S C UyeU Xy(y)and also Vy, # y, e U :
Xy(y1)NXg(y) NS =@, since U C 3(6;,0j+1.1) + zx. Hence Proposition
7.3 applies, yielding

.55 11g(S") = /U by (8" 0 Xy (3)) dy = /U vy (S N Xg(y)) dy

—/U vy({M € X,(») : #((3(9j,9,+1, 1)+ zy) N (2¢ —I—a)M) > 2}) dy

Here the first integral in the right-hand side equals

6j+1
/ / J0(0,0;, 1,2y, Ee1 +w+zx)dwdE
0; Uy

(recall (9.49)), since each M € X,(y) with y € U automatically fulfills
#H(3WG;, 0,41, 1) +2z) N2 +a)M) > 1;

and the second integral is bounded from above by £(6;+1 — 6;), by (9.51). Adding
this over all j and x we have now proved that the total expression in (9.53) is

(9.56) = —e(é2— 51)

J+1
/ / [ 0.6 12 801t w etz dwdgdd )
eD

Now for each (x, j, £, w) which appears in the above integral, and which satisfies
|w+ zx| > C~1if d =2, Lemma 8.4 applies, and yields

(9.57) | f0(0,6), 1,25, Ee1 +w +2x) — Fo(€, w, zy)| <e.
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If d =2 we note that the set {w : ||w + zx| < C~'} has measure <2C~! <¢
(w.r.t. the 1-dimensional Lebesgue measure d w), and for these w’s the difference
in (9.57) is certainly < 1, since 0 < fy, Fo < 1 everywhere. Hence (9.56) is

(9.58) z—zs(gz—gl)+/€D f;/u (—8+Fo(é,w,zx))dwde)L(x).

In conclusion, we have proved that this last expression is a lower bound for the
lim inf of (9.38). But this is true for any ¢ > 0; hence the liminf is in fact

&
(9.59) Z/ / / Fol6,w,zy)dwd&édA(x).
xeD J& Uy

The treatment of the lim sup is similar but a bit easier: With S and U as before
we need only notice that by the upper bound in Proposition 7.3 we have

(9.60) /Lq(S)f/(.va(SﬂXq(y))dy

nol e
:/ Z/ / f0(0.0;.1,zx. §e1 4+ w +zx) dw d§ dA(x).
xeDj=1 0; [0

Now Lemma 8.4 is applied as before, and we obtain that the lim sup of (9.38) is

(9.61) 58(52—51)+/xw /52/il (e—i—Fo(é,w,zx))dwdek(x).

Hence, by letting ¢ — 0 and combining with our result for lim inf, we have finally
proved our claim that (9.38) tends to (9.50) as p — 0. This completes the proof of
Theorem 4.4. O

Proof of Theorem 4.8. Let A and f be given as in the statement of the theorem.
By (4.19), the left-hand side of (4.21) equals

(9.62) gi_lg}) , 1g(vm,Od_lfl(qp,ﬁ(vo),vo;,O),wl(tlp,/s(vol1)0:/0))61)t(1)()),

N

where g(vo, &, wy) = f(vo, &, v9—2(vg- wl)wl). Using Corollary 4.7 we obtain

o) = [ [ ] 1 (00:6.00 =200 @K (@) k(w0 )
<@ (£.0 1. (B00)K(v0)) 1) @1 dA(v0) d§ dvolgg 1 (@).

Now change the order of integration by moving the integral over € S/ld_1 to
the innermost position, and then apply the variable substitution (4.23) in the in-
nermost integral; note that this gives a diffeomorphism @ — v from S’ld_1 onto
S‘f’_1 \{vo} (the inverse map is given by @ = %ﬁﬁo)). Recalling (4.22) we

then see that (9.63) equals the right-hand side of (4.21), and we are done. O
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9.4. Proofs for Section 2. Introduce E1: D — SO(d) as in Section 9.1 and
write A also for the lift of A to the variable x € R~ as before. Set

9.64) Cr(c,0)={y eRI\{0} : cT < |yl <T, |yll"'y €eDr(0)}
71 0
“\ 1 V@01, )
Then

(9.65) Ner(0,e1E1(x) ™) =#(Cr(c,0) @7 (E1(x)™1,0)N(Z9 +a) Mo\ {0}),
with T = e@—D1_ Ag before, Theorem 2.1 and Theorem 2.5 now follow from the
theorems in Section 6 and the following lemma.

LEMMA 9.5. Fix 0 < c¢ < 1. Let o7 be a continuous nonnegative function of
T > 0 such that the limit 6o = lim7 oo OT exist. Then the union Ur>1€r(c,oT)
is bounded, and

(9.66) lim(inf €7 (c,07))° D €(c, 000)°, limsup €7 (c,07) C €(¢, 0s0),

where €(c,0) is as in (2.14). The boundary of €(c, o) has Lebesgue measure zero.
Proof. From (2.9) we have ®7(o7) = (e1 + %‘riT) N Sﬁl_l where

doso ﬁ
= A(c,o as T — oo.
(1—c9) Vol(%f_l)) (€, 0oo)

In particular, for T sufficiently large, if y is any point in €7 (c,or), and y’ =
Tyie1 + T‘ﬁyr then ||y'|| "'y’ € Dr(or) implies y| > 0 and

rT,/4—r%

2
2—rT

thus y; >0 and ||y | || < (A(c,000) + 1)y1, Where n > 0 can be made arbitrarily
small. With these observations the proof of Lemma 9.5 is easily completed by
mimicking the proof of Lemma 9.2. O

9.67) TaTrp — (
Y1

Iyl <

Index of notation

L x]=x—(x-eq1)ey 1969
ASL(d,R) =SL(d,R) x R4 1956
A(c,0) the constant in (2.15) 1958
%g open ball of radius p, centered at the origin 1952
%?(c) ={x¢€ RY:cT < llx|| < T}, spherical shell 1957
By =({x}xRH)NB 1980
&(c,0) the cone in (2.14) 1958
&(cy,¢2,0) the cone in (8.43) 2013
Cr(c,0) the set in (9.64) 2029

D open subset of R4 1 1974, 2015



fr(c1,¢2,0,2,y)
Fr(§,w,2)

SN
gr(c1,¢2,0,2,y)
Gr(§ w,z)

H

Iq

%,

lim(inf €;)°
lim sup €

£

Lo

P

n—(x)
NC,T(U’ v)
NC,T(U7 K)
NC,T(Ps v)
Ne,r(p.v, w)
N (o x, w)
NC,T(U7 v)
NC,T(Qv v)
Pea,g(v0,€,v1)

P ()

ﬁu(s)
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small disc on S‘f’_1 of radius < 7~4/(d—1)
=Dr(0o,e1)
small disc on Sf_l of radius ~ €
=9(e,e1)
=(1,0,...,0)
=(0,1,0,...,0)
={(x,g) eRIx X : #(B|x NZ%) > r}
the family of sets in (6.9) or (6.17)
amap D — SO(d)
limiting probability for N 7(0,v) =r
limiting probability for N e,T(Ov)=r1
limiting probability for N¢ 7 (p, v) =r
= Feo(r,o) forany o ¢ Q9,

universal limiting probability
limiting probability for N¢ 7(p, v, B(v)) =71
limiting probability for N 9’1% (p,x,B(x))=r
limiting probability for N¢ 7(2,v) =r
the volume function in (8.1) or (8.27)
= fr(0,&,1,z,e1 +w +2)
={2:hkeZ 0O<h<k<N}
the volume function in (8.44) or (8.47)
=gr(0,&1,z,6e1 +w+2)
={geSL.R) : e1g =e1}
=[(g):T(D)]
complement of the set 973;‘5 + % in R4

(the “billiard domain™)
= Ursto(Nsxr %s)o
= Ne>toUs>t €5
= 79 My, euclidean lattice of covolume 1
= (Zd + a) My, affine lattice of covolume 1
set of visible lattice points
element in ASL(d, R)
=#yePr : |yl7'y €Dr(0.v)}
=#PrNDT(0)K)
number of spheres in direction v
as above, but includes shift by pw

generalized version of N 7 (p, v, w)

analogue of N'¢ 7 (0, v) for visible lattice points

number of 2’s in direction v

joint limiting distribution for free path lengths
and velocities

limiting gap distribution for directions of
lattice points

limiting gap distribution for directions of
visible lattice points

= Lo NBE() \ {0}

=P NBL(c)

orthogonal projection from R onto the orthogonal

complement of v

1982,
1974, 2015,

2002,
2002,

1957

1962

1980
1983
2022
1958
1960
1962

1963
1963
2016
1965
2008
2008
2003
2014
2014
1989
1987

1952
1977
1977
1956
1957
1959
1971
1957
1959
1962
1963
2015
1960
1965

1971

1954

1961
1957
1959

1964
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q1(q,v;p)
q,8®)
s‘?fl
S/ld—l
5(8)

Ik
wi(g,v;p)

31)(67 U)
3(c1.¢2.0)
3(c1,¢2,0)
3 (c1,e2,0)
3 (e, ¢2,0,8)
3(;1)(01,02, 0. B)
3(c,2)
3r(c,9)

I'(¢)

kq

m

IH

Iq

V

Vy

t1(g,v; )

Pt

O (&), Dy q(8)
Oy (§)

g, 8(6)

Dy (£, w,2)

(Dt
XA
Q
Qc

location of first collision in R?

initial position ¢ + pB(v)

unit sphere in R4

the hemisphere {v = (v1,...,v4) € S‘li_l 1 vg >0}

see (8.8)

= ged(gk1, gka, ..., qkg)

location of first collision on S‘li_1

= ASL(d, Z)\ ASL(d, R), space of affine lattices

= SL(d, Z)\ SL(d, R), space of lattices

=T'(¢)\SL(d.R)

submanifold of X

submanifold of X4

connected component of X4 (y)

subset of X4 (y)

=27\{0}

= Zg , set of primitive lattice points

={x €@ +2)\ {0} : ged(gx) <q}

the cylinder in (3.9)

the cylinder in (3.14)

the cylinder in (4.15)

modification of 3(c1,c2,0)

generalized cylinder in (9.5)

generalized cylinder in (9.5)

the set in (9.9)

the set in (9.28)

the set in (9.25)

principal congruence subgroup

the constant in (2.22)

Haar measure on ASL(d, R), probability measure on X

Haar measure on H

Haar measure on SL(d, R), probability measure on X,

Liouville measure

volume measure on X4 (y) or X(y)

=inf{r > 0:q +tv ¢ ¥y}, free path length

the Lorentz flow

limiting distribution for the free path length

alternative notation for ®¢ 4 (§)

limiting distribution for the free path length

joint limiting distribution for free path length
and impact location

element in ASL(d, R)

characteristic function of a set

domain of f;(c1,c¢2,0,z,y)
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1968
1968

1968
2003
1993
1968
1956
1956
1956
1968
1968
1988

1997
1958
1959
1959
1963
1964
1969
2004
2016
2016

2017
2020
2020
1956
1960
1956
1989
1956
1952
1989, 1998
1952
1952
1952
1966
1967

1969
1972

2002
2003, 2014
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