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Abstract

In a previous article, we proved a boundary Harnack inequality for the ratio
of two positive p harmonic functions, vanishing on a portion of the boundary of
a Lipschitz domain. In the current paper we continue our study by showing that
this ratio is Hölder continuous up to the boundary. We also consider the Martin
boundary of certain domains and the corresponding question of when a minimal
positive p harmonic function (with respect to a given boundary point w) is unique
up to constant multiples. In particular we show that the Martin boundary can be
identified with the topological boundary in domains that are convex or C 1. Min-
imal positive p harmonic functions relative to a boundary point w in a Lipschitz
domain are shown to be unique, up to constant multiples, provided the boundary is
sufficiently flat at w.

1. Introduction

In this paper, which is the second in a series, we continue our study in [LN07]
concerning the boundary behavior of positive p harmonic functions, p ¤ 2 and
1 < p <1, in bounded Lipschitz domains �� Rn. More specifically, in [LN07]
(see Theorem 1 below) we established the boundary Harnack inequality for positive
p harmonic functions, 1<p <1, vanishing on a portion of the boundary of a Lips-
chitz domain ��Rn, and we carried out an in depth analysis of p capacitary func-
tions in starlike Lipschitz ring domains. As a result of this analysis we were able to
prove Hölder continuity up to the boundary for quotients of p capacitary functions,
p¤ 2 and 1<p<1, in starlike Lipschitz ring domains (see Theorem 2 in [LN07]).
Still at that point in time we were unable to extend our Hölder continuity results
to the quotients of all p harmonic function considered in our boundary Harnack
inequality. The first part of this paper is devoted to this extension (see Theorem 2)
with constants which depend only on p; n, and the Lipschitz constant for �.
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In the second part of this paper we study and resolve the p Martin boundary
problem in certain subsets � � Rn by proving that the quotient of two minimal
positive p harmonic functions in �, minimal relative to w 2 @�, equals a constant.
This implies, in particular, that the Martin boundary can be identified with the topo-
logical boundary at w 2 @�. Our argument consists of first establishing sufficient
criteria for the above statement to hold (see Theorem 3). We then show that this
criteria is fulfilled in a number of interesting cases including the cases when (a) �
is convex and (b) @� is C 1.

To put the results of [LN07] and this paper into perspective, we mention that if
pD 2, i.e., in the case of harmonic functions, the term boundary Harnack inequality
was first coined in [Kem72] and later proved independently by [Anc78], [Dah77],
[Wu78]. This boundary Harnack inequality for positive harmonic functions van-
ishing on a portion of the boundary of a Lipschitz domain was later extended in
[JK82] to nontangentially accessible (NTA) domains, where it is also shown that
the corresponding ratio is Hölder continuous. For p D 2, it follows easily from the
boundary Harnack inequality for harmonic functions that the Martin boundary of
an NTA domain agrees with its topological boundary.

Extension of these results to Lipschitz domains when p ¤ 2, 1 < p < 1

have eluded the experts until now, primarily because the p Laplace operator is
nonlinear when p 6D 2. In fact we believe that the results and techniques of [LN07]
and this paper provide a starting point for far reaching developments concerning
the p Laplace operator in Lipschitz domains and beyond.

To properly state our results we need to introduce some notation. Points in
Euclidean n-space Rn are denoted by x D .x1; : : : ; xn/ or .x0; xn/ where x0 D
.x1; : : : ; xn�1/ 2 Rn�1. We let xE; @E, diam E be the closure, boundary, diameter,
of the set E � Rn, and we define d.y;E/ to equal the distance from y 2 Rn to
E. h�; �i denotes the standard inner product on Rn, and we let jxj D hx; xi1=2 be
the Euclidean norm of x. B.x; r/ D fy 2 Rn W jx � yj < rg is defined whenever
x 2 Rn; r > 0; and dx denotes Lebesgue n-measure on Rn. If O � Rn is open
and 1 � q � 1, then by W 1;q.O/, we denote the space of equivalence classes
of functions f with distributional gradient rf D .fx1 ; : : : ; fxn/, both of which
are qth power integrable on O . Let kf k1;q D kf kq Ck jrf j kq be the norm in
W 1;q.O/ where k � kq denotes the usual Lebesgue q norm in O . Next let C10 .O/
be the set of infinitely differentiable functions with compact support in O and let
W
1;q
0 .O/ be the closure of C10 .O/ in the norm of W 1;q.O/.

Given G a bounded domain (i.e, a connected open set) and 1 < p <1, we
say that u is p harmonic in G provided u 2W 1;p.G/ and

(1.1)
Z
jrujp�2 hru;r�i dx D 0

whenever � 2W 1;p
0 .G/. Observe that if u is smooth and ru 6D 0 in G, then

(1.2) r � .jrujp�2 ru/� 0 in G
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so u is a classical solution in G to the p Laplace partial differential equation. Here,
as in the sequel, r� is the divergence operator. We note that � WE!R is said to be
Lipschitz on E provided that there exists b; 0 < b <1; such that

(1.3) j�.z/��.w/j � b jz�wj; whenever z; w 2E:

The infimum of all b such that (1.3) holds is called the Lipschitz norm of � on E,
denoted k� OkE : It is well-known that if E D Rn�1, then � is differentiable almost
everywhere on Rn�1 and k� OkRn�1 D k jr�j k1.

In the following we let � � Rn be a bounded Lipschitz domain; i.e., we
assume that there exists a finite set of balls fB.xi ; ri /g, with xi 2 @� and ri > 0,
such that fB.xi ; ri /g constitutes a covering of an open neighborhood of @� and
such that, for each i ,

�\B.xi ; 4ri /D fy D .y
0; yn/ 2 Rn W yn > �i .y0/g\B.xi ; 4ri /;(1.4)

@�\B.xi ; 4ri /D fy D .y
0; yn/ 2 Rn W yn D �i .y0/g\B.xi ; 4ri /;

in an appropriate coordinate system and for a Lipschitz function �i . The Lipschitz
constant of � is defined to be M D maxi kjr�i jk1. If � is Lipschitz and r0 D
min ri , then for each w 2 @�, 0< r < r0, we can find points ar.w/2�\@B.w; r/
with d.ar.w/; @�/� c�1r for a constant cD c.M/. In the following we let ar.w/
denote one such point. Furthermore, if w 2 @�, 0 < r < r0, then we let �.w; r/D
@�\B.w; r/ be the naturally defined surface ball. Finally let ei ; 1� i � n denote
the point in Rn with one in the i th coordinate position and zeroes elsewhere.

In [LN07] we proved,

THEOREM 1. Let �� Rn be a bounded Lipschitz domain with constant M .
Given p; 1 < p <1; w 2 @�, 0 < r < r0, suppose that u and v are positive p
harmonic functions in �\B.w; 2r/. Assume also that u and v are continuous
in x� \ xB.w; 2r/ and u D 0 D v on �.w; 2r/. Under these assumptions there
exists c1; 1 � c1 < 1, depending only on p, n, and M , such that if Qr D r=c1,
u.aQr.w//D v.aQr.w//D 1, and y 2�\B.w; Qr/, thenˇ̌̌̌

log
u.y/

v.y/

ˇ̌̌̌
� c1:

In the first part of this paper we refine Theorem 1 and prove:

THEOREM 2. Let �� Rn be a bounded Lipschitz domain with constant M .
Given p; 1 < p <1, w 2 @�, and 0 < r < r0, suppose that u and v are positive
p harmonic functions in �\B.w; 2r/. Assume also that u and v are continuous
in x�\ xB.w; 2r/ and uD 0D v on �.w; 2r/. Under these assumptions there exist
c2, 1� c2 <1, and ˛, ˛ 2 .0; 1/, both depending only on p, n, and M , such that
if y1; y2 2�\B.w; r=c2/, thenˇ̌̌̌

log
u.y1/

v.y1/
� log

u.y2/

v.y2/

ˇ̌̌̌
� c2

�
jy1�y2j

r

�˛
:
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In [LN07], as discussed above, Theorems 1 and 2 were proved in the setting of
starlike Lipschitz ring domains and p capacitary functions. Furthermore, in [LN07]
we were able, by a comparison argument, to establish Theorem 1. While the proof
of Theorem 2 in this paper is our genuinely new contribution (as compared to
[LN07]), we shall also for completeness and to make the paper self-contained,
outline a somewhat simpler proof of Theorem 1.

To describe the key features of the proof of Theorems 1 and 2, suppose x 2�
and let N � � be a neighborhood of x. Moreover, let fu.�; �/; � 2 Œ0; 1�g be
a sequence of positive p harmonic functions with ru.�; �/ 6D 0 and suppose that
u.�; �/ is sufficiently smooth in N � Œ0; 1�. If � D hru; �i, for some � 2 Rn, or
� D u� .�; �/, then � satisfies, at x, the partial differential

(1.5) L� D r � Œ.p� 2/jrujp�4hru;r�i ruCjrujp�2r��D 0:

This follows from differentiating (1.2) for u with respect to fxkgnkD1 or � . In (1.5)
we have written ru for ru.�; �/. (1.5) can be written in the form

(1.6) L� D

nX
i;jD1

@

@xi
Œ bij .x/�xj .x/ �D 0;

where, at x 2N \�,

(1.7) bij .x/D jruj
p�4Œ.p� 2/uxiuxj C ıij jruj

2�.x/; 1� i; j � n;

and ıij is the Kronecker ı. Clearly we also have

(1.8) Lu.x; �/ D .p� 1/r �
�
jrujp�2 ru.x; �/

�
D 0:

Therefore, a first key observation is that u.�; �/, hru.�; �/; �i for � 2 Rn as well
as u� .�; �/ all satisfy the divergence form partial differential equation (1.6). Based
on this insight the proof of Theorems 1 and 2 can be seen as decomposed into the
following well-defined steps.

Step 1. Fix � 2 Œ0; 1� and let u0 D u.�; �/ and L be as in (1.6)–(1.7). Suppose
also that u0 > 0 is p harmonic in �0 \ B.w0; r/ and vanishes continuously on
@�0 \B.w0; r/; where �0 is Lipschitz with constant M 0 and w0 2 @�0. We first
study positive solutions to L vanishing on a portion of @�0. In particular, for this
linear operator we prove a boundary Harnack inequality and Hölder continuity
for the corresponding quotient under the assumption that jru0j satisfies a uniform
nondegeneracy condition in �0 \ B.w0; 2r/. By definition this means that we
assume that there exists a constant ı > 1 such that, for all x 2�0\B.w0; 2r/,

(1.9) ı�1
u0.x/

d.x; @�0/
� jru0.x/j � ı

u0.x/

d.x; @�0/
:

In particular, if this condition is fulfilled then L is a locally uniformly elliptic
operator in �0\B.w0; r/ with ellipticity constant, at x 2�0\B.w0; r/, bounded
above and below by jru0.x/jp�2 � .u0.x/=d.x; @�0//p�2. The proportionality
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constants depend only on p ; n, and ı and in general, in our applications, ı D
ı.p; n;M 0/. We also assume that if x 2�0\B.w0; 2r/, then

(1.10) 0 < jru0j.x/� ı0 hru0.x/ ; �i

for some � 2 @B.0; 1/ and ı0>1. Again, usually ı0D ı0.p; n;M 0/. Given (1.9) and
(1.10), we can use some Rellich inequalities and Carleson measure type estimates
from [LN07, �2] in order to deduce that a theorem in [KP01] can be applied to
elliptic measure defined relative to L. From this theorem and arguments in [LN07,
�3] one eventually obtains the desired boundary Harnack inequality as well as
Hölder continuity for the ratio of solutions to L.

Step 2. The proofs of Theorems 1 and 2 are based on certain deformations of
p harmonic functions, by which we are able to make use of the results established
in Step 1. In this step we describe the deformation technique used in [LN07] to
establish Theorems 1 and 2 for certain starlike Lipschitz ring domains. To sketch
the argument of [LN07] we note that a bounded domain � � Rn is said to be
starlike Lipschitz with center Ox 2� provided

(1.11) @�D f OxCR.!/! W ! 2 @B.0; 1/g

where logR W @B.0; 1/!R is Lipschitz on @B.0; 1/:

We denote the Lipschitz constant for logR by M . Let �i ; i D 1; 2 be two starlike
Lipschitz domains with �1 ��2 and let � > 0 satisfy

d. Ox; @�1/� � � d. Ox; @�1/=4:

We say that Di D�i n xB. Ox; �/; i D 1; 2 are starlike Lipschitz ring domains with
center Ox. Let Ri , i D 1; 2 be the graph functions defining �i , i D 1; 2, and for fixed
p, let 1<p<1, u1, and u2 be the p capacitary functions forD1,D2, respectively.
Furthermore, assume that R1; R2 2 C10 .@B.0; 1// and also that w 2 @�1 \ @�2
and r > 0 are such that

(1.12) B.w; 2r/\D1 D B.w; 2r/\D2

while xB.w; 8r/\ @B. Ox; 2�/D∅. For 0� � � 1 and ! 2 @B.0; 1/, define

(1.13) R.�; !/D ŒR2.!/�
� ŒR1.!/�

1�� :

We then let �.�/ be the starlike Lipschitz domain with center Ox and graph function
R.�; �/. We also define D.�/D�.�/ n xB. Ox; �/ as the corresponding ring domain
and, for fixed p; 1 < p <1, we let u.�; �/; � 2 Œ0; 1�; be the p capacitary function
for D.�/. Then u.�; �/ D 1 on @B. Ox; �/ and u.�; �/ D 0 on @�.�/ in the W 1;p

0

Sobolev sense for � 2 Œ0; 1�. Under these assumptions one can prove (see [LN07,
Lemma 4.5]) that u� .�; �/ is well defined and that

(1.14) log
�
u2.x/

u1.x/

�
D

1Z
0

u� .x; �/

u.x; �/
d�:
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It follows from (1.12) that

(1.15) D.�/\B.w; 2r/DD1\B.w; 2r/ for all � 2 Œ0; 1�;

and from a boundary maximum principle, as well as smoothness of @�.�/; we see
that u� > 0 in D.�/ while u� D 0 continuously on @D1\B.w; 2r/. Furthermore,
using starlikeness of the ring domains it follows (see [LN07, Lemma 2.5]) that
u.�; �/ satisfies (1.9) and (1.10) with constants ıD ı.p; n;M/ and ı0D ı0.p; n;M/

independent of � 2 Œ0; 1�. From these facts and (1.14) we see that the proof of
Theorems 1 and 2, for the starlike Lipschitz ring domains defined above, is reduced
to proving a boundary Harnack inequality and Hölder continuity for u� .�; �/=u.�; �/
with constants depending only on p, n, and the Lipschitz constants for �i , i D 1; 2.
Thus we can use step 1 to conclude Theorems 1 and 2 in the above setting. Finally
we get Theorem 1 for a general bounded Lipschitz domain from the above special
case, a comparison type argument, and the maximum principle for p harmonic
functions. More details on the proof of Theorem 1 are given in Sections 2 and 3.

Step 3. In this step another deformation technique is introduced in order to
prove Theorem 2 by an argument based on induction. To briefly discuss the argu-
ment one first observes that, due to the arbitrariness of v in the statement of Theo-
rem 2, it suffices, by the triangle inequality, to prove Theorem 2 with u replaced by
u0 and with r replaced by r=c1, for c1 large enough, where u0 is the p capacitary
function for a starlike Lipschitz ring domain D0 such that @� \ B.w; r=c1/ D
@D0 \B.w; r=c1/. Writing (hence redefining) u for u0 we let r 0 D r=.4c21/ and
define u.�; �/; 0� � � 1 to be the p harmonic function in �\B.w; 2r 0/ which has
boundary values on @Œ�\B.w; 2r 0/� equal to �v.�/C .1� �/u.�/ for 0 � � � 1.
Note that u.�; 0/ D u.�/, u.�; 1/ D v.�/ and that we are in fact introducing a new
set of deformations adapted to our problem. We first show (see Lemma 4.3) that
there exists "0 > 0 small such that if for some positive yL, � 2 Œ0; 1� and some s,
0 < s � r 0, we have

(1.16) .1� "0/yL�
u.�; �/

u
� .1C "0/yL in �\B.w; s/;

then (1.9) and (1.10) hold for u.�; �/ with ı D ı.p; n;M/. Next we use �1 D 0 <
�2 < � � �< �m D 1 to divide [0,1] into fŒ�k; �kC1�g; 1� k �m� 1, such that all of
these intervals have a length of "00=2 with the possible exception of the interval con-
taining �mD 1 which is of length � "00=2. From an initial application of Theorem 1,
one deduces that "00 D "

0
0.p; n;M/ can be chosen so small that (see (4.1))

(1.17) 1� "0=2�
u.�; �kC1/

u.�; �k/
� 1C "0=2 in �\B.w; 2r 0/

for every k, 1 � k � m � 1; see (4.23). From (1.16) and (1.17), and the fact
that u.�; �1/D u.�/, it easily follows that u.�; �/ satisfies (1.9) and (1.10) on �\
B.w; r 0=4/ whenever � 2 Œ0; �2� and with constants independent of � . Then, by an
argument similar to the one described in Step 2, we are able to make use of the
results established in step 1 to conclude that Theorem 2 is in fact true in the special
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case of the functions u.�; �1/D u.�/ and u.�; �2/. We then iterate along these lines
and finally prove, by an inductive argument, that Theorem 2 is true for the functions
u.�; �1/D u.�/ and u.�; �m/D v.�/. We stress that our argument heavily depends
on the fact that u is a p capacitary function for which we have good control of ru.

In the second part of this paper we consider the Martin boundary problem for
p harmonic functions in the setting of bounded Lipschitz domains. More specifi-
cally recall that Qu is said to be a minimal positive p harmonic function in a bounded
Lipschitz domain � and relative to w 2 @�, provided that Qu > 0 is p harmonic
in � and Qu has continuous boundary value 0 on @� n fwg. Qu is said to be unique
up to constant multiples if Qv D � Qu, for some constant �; whenever Qv is a minimal
positive p harmonic function relative to w 2 @�. Finally we say that the p Martin
boundary of � can be identified with @� provided each w 2 @� corresponds to a
unique (up to constant multiples) minimal positive p harmonic function. We note
that for p D 2 one can easily use Theorem 1 to get that the Martin boundary of
a bounded Lipschitz domain � agrees with its topological boundary. Indeed, if
w 2 @� and if u; v are minimal harmonic functions corresponding to w, one first
uses Theorem 1 for harmonic functions to show that  D inf� u=v > 0. Next one
applies this result to u�v; v in order to conclude that uD v. Note however that
this argument heavily depends on linearity of the Laplacian and thus the argument
fails for the p Laplacian when p 6D 2. In fact, at this time we cannot prove that the p
Martin boundary of a bounded Lipschitz domain always agrees with its topological
boundary when p 6D 2.

To state our results we need another definition. Let � be a bounded Lips-
chitz domain. We call z� � � a nontangential approach region at w 2 @� if the
intersection of the closure of z� and the closure of � equals w and if, for some
Q� > 0, d.x; @�/� Q�jx�wj for all x 2 z�. To indicate w and Q� we write z�.w; Q�/.
Using Theorem 2 and its proof, it follows (see Lemma 4.28) that if u is a minimal
positive p harmonic function in � relative to w 2 @�, then there exists Q�, Qr , and c
depending only on p, n, and M such that

.a/ u satisfies (1.9) in Œ� n z�.w; Q�/�\B.w; Qr/ with(1.18)

a constant ı D ı.p; n;M/.

.b/ Given y 2 Œ� n z�.w; Q�/�\B.w; Qr/ there exists z 2 @� with

y 2 B.z; jz�wj=c/ and � D �.z/; ı0 D ı0.p; n;M/,

for which (1.10) holds for x 2�\B.z; 2jz�wj=c/.

Our first result on the Martin boundary problem is Theorem 3, which gives suffi-
cient criteria for a minimal positive p harmonic function in a Lipschitz domain �
to be unique (relative to w 2 @�/.

THEOREM 3. Let �� Rn be a bounded Lipschitz domain with constant M ,
and let u; z�.w; Q�/ be as in (1.18). Suppose that there exist a sequence of positive
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numbers f�lg with lim
l!1

�l D 0, a fixed number Qb > 1, and ı > 0 such that (1.9)

holds for all

x 2 O�D
[
l

z�.w; Q�=2/\ ŒB.w; Qb�l/ nB.w; �l= Qb/�:

If Qb D Qb.p; n;M; ı/ is large enough, then u is unique up to constant multiples.

From Theorem 3 we see that the determination of the p Martin boundary at a
boundary point w is reduced, for Lipschitz domains, to proving the existence of a
certain sequence of positive numbers tending to zero and a corresponding minimal
positive p harmonic function satisfying the nondegeneracy condition (1.9) in y�.
We are able to verify this sufficiency condition for a number of interesting cases
and in particular we prove the following theorem.

THEOREM 4. Let �� Rn be a bounded Lipschitz domain. Then the p Martin
boundary of � can be identified with the topological boundary of � in the follow-
ing cases:

1. � is convex;
2. @� is C 1.

Also, if @� has a tangent plane at w, then a minimal positive p harmonic function
relative to w is unique up to constant multiples.

We also consider the exterior Martin boundary problem for a Lipschitz domain
�. In this case, given p, 1 < p <1; we say that u > 0 is a minimal positive p
harmonic function relative to w 2 @�; provided u is p harmonic in Rn n x� with
continuous boundary values 0 on @� n fwg and limx!1 u.x/D 0. In this paper
we do not define minimal positive p harmonic functions relative to1. We prove:

THEOREM 5. Let �� Rn be a bounded Lipschitz domain. Then the p Martin
boundary of Rn n x� can be identified with the topological boundary of � in the
following cases:

1. � is convex;
2. @� is C 1.

Also, if @� has a tangent plane at w, then a minimal positive p harmonic function
in Rn n x� relative to w is unique up to constant multiples.

Concerning proofs, the proof of Theorem 3 is based on a variation of the
deformation technique briefly described in Step 3 above. In this case though, if u
and v are two minimal positive p harmonic functions in � relative to w 2 @�, we
let u.�; �/; 0� � � 1; be the p harmonic function in � nB.w; r 0/ with continuous
boundary values �v.�/C.1��/u.�/ for 0� � � 1. Note that u.�; 0/Du.�/, u.�; 1/D
v.�/. Using the hypotheses of Theorem 3, (1.18), Theorem 2, and an argument
similar to the one described in Step 3 we are able by way of an iterative induction
argument to prove that jru.�; �/j satisfies a uniform nondegeneracy condition in
y� with constants independent of � . Versions of the results described in step 1 are
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then used to establish certain decay estimates for the oscillation of u=v in � n
B.w; r 0/. These estimates are easily seen to imply Theorem 3. We refer to Section
5 for details. Theorem 4 is proved by constructing a minimal positive p harmonic
function in �, relative to w 2 @�, which satisfies the criteria of Theorem 3. A
similar game plan is used to prove Theorem 5.

The rest of the paper is organized as follows. In Section 2 we first state some
basic estimates for p harmonic functions in Lipschitz domains. We then point out
that (1.9) and (1.10) imply that the arguments of Sections 2 and 3 in [LN07] can
be reused to deduce a boundary Harnack inequality and the corresponding Hölder
continuity for the quotients of positive solutions to the partial differential equation
in (1.6) and (1.7). In this section we focus, in particular, on estimates of the decay
for the oscillation of quotients of positive solutions as this is the kind of estimates
we need in the proof of Theorem 3. In Section 3 we prove Theorem 1, while in
Section 4 we develop the deformation technique briefly described in Step 3 above
and in particular we prove Theorem 2. By similar arguments, in Section 5, we get
Theorem 3. Section 6 is devoted to the proof of Theorem 4. At the end of Section 6,
in Corollary 6.22, we also state a local flatness criterion at w 2 @� (more general
than a tangent plane), which implies uniqueness of the corresponding minimal
positive p harmonic function (up to constant multiples). In Section 7 we prove
Theorem 5 and also point out (see closing remarks) that in R2 it is always true that
the boundary of a Lipschitz domain (or its complement) can be identified with the
p Martin boundary of the domain.

2. Estimates for p harmonic functions in Lipschitz domains

In the following we start by stating and proving a number of estimates for
p harmonic functions in a bounded Lipschitz domain � � Rn having Lipschitz
constant M . Recall that �.w; r/ D @� \ B.w; r/ whenever w 2 @�, 0 < r .
Throughout the paper, c will denote, unless otherwise stated, a positive constant
� 1, not necessarily the same at each occurrence, which only depends on p, n, and
M . In general, c.a1; : : : ; an/ denotes a positive constant � 1, not necessarily the
same at each occurrence, which depends on p, n, M , and a1; : : : ; an. If A� B ,
then A=B is bounded from above and below by constants which, unless otherwise
stated, only depend on p; n and M . Moreover, we let maxB.z;s/ u;minB.z;s/ u be
the essential supremum and infimum of u on B.z; s/ whenever B.z; s/� Rn and
whenever u is defined on B.z; s/.

2.1. Basic estimates. For proofs and references to proofs of Lemmas 2.1–2.6
stated below we refer to [LN07].

LEMMA 2.1. Given p; 1 < p <1, let u be a positive p harmonic function in
B.w; 2r/. Then

.i/ rp�n
Z

B.w;r=2/

jrujp dx � c . max
B.w;r/

u/p;
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.ii/ max
B.w;r/

u � c min
B.w;r/

u:

Furthermore, there exists ˛ D ˛.p; n/ 2 .0; 1/ such that if x; y 2 B.w; r/, then

.iii/ ju.x/�u.y/j � c
�
jx�yj
r

�˛
max

B.w;2r/
u:

LEMMA 2.2. Let �� Rn be a bounded Lipschitz domain and suppose that p
is given, 1 < p <1. Let w 2 @�, 0 < r < r0 and suppose that u is a positive p
harmonic function in �\B.w; 2r/ and that u has continuous boundary value 0
on �.w; 2r/. Then

.i/ rp�n
Z

�\B.w;r=2/

jrujp dx � c
�

max
�\B.w;r/

u
�p
:

Furthermore, there exists ˛ D ˛.p; n;M/ 2 .0; 1/ such that if x; y 2�\B.w; r/,
then

.ii/ ju.x/�u.y/j � c
�
jx�yj
r

�˛
max

�\B.w;2r/
u:

LEMMA 2.3. Let �� Rn be a bounded Lipschitz domain and suppose that p
is given, 1 < p <1. Let w 2 @�, 0 < r < r0, and suppose that u is a positive p
harmonic function in �\B.w; 2r/ and that u has continuous boundary value 0
on �.w; 2r/. There exists c D c.p; n;M/ such that if Qr D r=c, then

max
�\B.w;Qr/

u � c u.aQr.w//:

LEMMA 2.4. Let �� Rn be a bounded Lipschitz domain and suppose that p
is given, 1 < p <1. Let w 2 @�, 0 < r < r0, and suppose that u is a positive
p harmonic function in � \ B.w; 4r/ and that u D 0 on �.w; 4r/. Extend u
to B.w; 4r/ by defining u � 0 on B.w; 4r/ n �. Then u has a representative
in W 1;p.B.w; 4r// with Hölder continuous partial derivatives in �\B.w; 4r/.
In particular, there exists � 2 .0; 1�, depending only on p; n, such that if x; y 2
B. zw; Qr=2/, B. zw; 4 Qr/��\B.w; 4r/, then

c�1 jru.x/�ru.y/j � .jx�yj= Qr/� max
B. zw;Qr/

jruj � c Qr�1 .jx�yj= Qr/� u. zw/:

Also if cjru.x/j � u.x/=d.x; @�/ for all x 2 B. zw; 2 Qr/, then

max
B. zw;Qr=2/

nX
i;jD1

juxixj j � c

�
. Qr/�n

Z
B. zw;Qr/

nX
i;jD1

juxixj j
2 dx

�1=2
�

c2u. zw/

d. zw; @�/2
:

LEMMA 2.5. Let 1<p <1. If u is a positive p harmonic function in��Rn,
then u is infinitely differentiable in B.w; r/n fx W ru.x/D 0g for any w 2�, r > 0
such that B.w; r/ ��. Furthermore, assume that w 2 @�, r > 0 and that u has
continuous boundary value 0 on �.w; 2r/. Assume also that, in an appropriate
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coordinate system,

�\B.w; 2r/D fy D .y0; yn/ 2 Rn W yn > �.y0/g\B.w; 2r/;
�.w; 2r/D fy D .y0; yn/ 2 Rn W yn D �.y0/g\B.w; 2r/;

for an infinitely differentiable function �; i.e., � 2 C1.Rn�1/. Then there exist an
open neighborhood N of �.w; 3r=2/ and O"; both depending only on the C 3 norm
of �, p, and n, such that

(a) u has a C1 extension to the closure of N \�\B.w; 3r=2/,

(b) O" d.y; @�/�1 u.y/� jru.x/j � O"�1 d.y; @�/�1 u.y/ whenever
B.y; 2d.y; @�//�N , y 2�\B.w; r/; and x 2�\B.y; 2d.y; @�//.

Next, for fixed p; 1 < p <1, suppose that �� is a starlike Lipschitz ring
domain with center Ox and constant M �. Let u� be the p capacitary function for
the starlike Lipschitz ring domain D�D�� nB. Ox; �/, where c�1d. Ox; @D�/� ��
1
4
d. Ox; @D�/. Then u� D 1 on @B. Ox; �/, u� D 0 on @�� in the W 1;p

0 .��/ Sobolev
sense, and u� is p harmonic in D�.

LEMMA 2.6. Let u�, D�, and p be as above. Then there exists c�, depending
only on p, n, and M �, such that

(i) 0 < jru�.x/j � c�
˝
Ox�x
j Ox�xj

; ru�.x/
˛

if x 2D�,

(ii) .c�/�1u�.x/=d.x; @D�/� jru�.x/j � c�u�.x/=d.x; @D�/ if x 2D�.

Remark. We note from (ii) that u� satisfies the uniform nondegeneracy condi-
tion in (1.9) and a condition akin to (1.10). From basic geometry one in fact easily
sees that (i) of Lemma 2.6 implies (1.10) for some � and u� on �� \ B.w; r/,
whenever w 2 @�� and r � d. Ox; @��/=c. Moreover, suppose as in (1.10) that�0 is
Lipschitz, w0 2 @�0, and that u0 is a positive p harmonic function in�0\B.w0; 2r/
with continuous boundary value 0 on @�0 \B.w0; 2r/. If (1.9) and (1.10) hold
for u0 with � D en; then from the mean value theorem of elementary calculus
we see that u0 is increasing on �0 \ B.w0; r/ in the direction of ! whenever
! 2B.en; c

�1/\@B.0; 1/ and c is large enough (depending only on ı0). Using this
fact and once again basic geometry, we deduce that there exists w00 2�0\B.w0; r/
for which

0 < jru0.x/j � c h w
00�x

j Ow 00�xj
; ru0.x/i

on rays connecting w00 to points in @�0\B.w0; r=c/. Furthermore, d.w00; @�0/�
jw00 � w0j � r and all constants depend only on ı; ı0: Finally we remark that
Lemmas 2.7 and 2.8 stated below were originally proved in [LN07] when u was
the capacitary function for a starlike ring domain. However the proof used only
Lemmas 2.1–2.6 and did not depend on the fact that u was a p capacitary function.
From the above discussion it is easily seen that (1.9) and (1.10) can be used for u in
place of Lemma 2.6. Now Lemmas 2.1–2.6 are standard for positive p harmonic
functions vanishing on the boundary of a Lipschitz domain. Thus (1.9) and (1.10)
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will be the only conditions in our proofs which we need to check in order to apply
Lemmas 2.7 and 2.8.

2.2. Boundary behavior of positive solutions to the operator L. Repeating
the arguments of proof of [LN07, �3] the following two lemmas can be proven.

LEMMA 2.7. Let � � Rn be a bounded Lipschitz domain, 1 < p <1; w 2
@�; 0 < r < r0, and assume that u is a positive p harmonic function in � \
B.w; 2r/, continuous in x�\ xB.w; 2r/ with uD 0 on �.w; 2r/. Assume that jruj
satisfies (1.9) and (1.10) in �\B.w; 2r/ with constants ı; ı0 and that �;�.w; 2r/
are as in Lemma 2.5. Let h1; h2 be positive solutions, in �\B.w; r/, to the elliptic
operator L defined in (1.6) and (1.7) and assume that hi D 0; i D 1; 2, continuously
on �.w; r/. Then there exists Oc, depending only on p; n;M; ı and ı0, such that if
Or D r= Oc, then

Oc�1
h1.a Or.w//

h2.a Or.w//
�
h1.y/

h2.y/
� Oc

h1.a Or.w//

h2.a Or.w//

whenever y 2�\B.w; Or/.

LEMMA 2.8. Let �, �, p, u, w, r , Or , ı, ı0 and h1; h2 be as in Lemma 2.7.
There exist ˛; 0 < ˛ < 1, and c�, both depending only on p, n, M , ı, and ı0, such
that if y; y0 2�\B.w; Or=4/, thenˇ̌̌̌

h1.y/

h2.y/
�
h1.y

0/

h2.y0/

ˇ̌̌̌
� c�

�
jy �y0j

r

�˛ h1.a Or.w//
h2.a Or.w//

:

To briefly outline the proof of Lemma 2.7 one sees, from the remark after
Lemma 2.6, that the argument in [LN07, Lemma 2.39] can be used, essentially
verbatim, to show the existence of q > p, depending only on p; n; ı; ı0 and the
Lipschitz constant for �, such that the following reverse Hölder inequality holds
whenever z 2 @� and B.z; 4s/� B.w; 2r/:Z

�.z;s/

jrujq dHn�1
� c s.n�1/.

p�1�q
p�1

/

� Z
�.z;s/

jrujp�1 dHn�1

�q=.p�1/
:

In the last display Hn�1 denotes Hausdorff .n� 1/-measure on @�. Using this
inequality and arguing as in [LN07, Lemma 2.45] we see that there exists a starlike
Lipschitz domain z���\B.z; s/ with center Qz, d. Qz; @�/� c�1s, satisfying

.a/ c Hn�1Œ@ z�\�.z; s/�� sn�1;

.b/ c�1s�1 u. Qz/ � jru.x/j � cs�1 u. Qz/ whenever x 2 z�:

Here c depends only on p, n, and the Lipschitz constant for �. Next in [LN07,
Lemma 2.54] we define

d z�.x/=dx D d.x; @z�/ max
B.x; 1

2
d.x;@z�//

n
jruj2p�6

nX
i;jD1

u2yiyj

o
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whenever x 2 z� , and we use (a) and (b) in the above display, as well as Lemma
2.4, to show that z� is a Carleson measure on z� in the sense that if z 2 @ z� and
0 < t < s=4; then

z�. z�\B.z; t// � c tn�1 .u. Qz/=s/2p�4:

We then use this fact and a theorem in [KP01] to deduce that if z! is elliptic measure
defined with respect to L, u, and .bij / in z�, then z! is an A1 weight with respect
to Hn�1 measure on @ z� (see [LN07, Th. 3.11]). Finally, we use this result for z!
as well as some arguments on elliptic measure (see [LN07, Lemma 3.13]), to get
Lemma 2.7. �

Below we will give the proof of Lemma 2.8. In fact Lemma 2.8 is an easy
consequence of the following estimate for the decay of the oscillation of h1=h2.

LEMMA 2.9. Let �, p, u, w, r , ı, ı0, Oc, and h1, h2 be as in Lemma 2.7.
Define, for 0 < s < Or ,

M.s/DM.s;w/D sup
�\B.w;s/

h1.y/

h2.y/
and m.s/Dm.s;w/D inf

�\B.w;s/

h1.y/

h2.y/
:

There exists � D �.p; n;M; ı; ı0/ 2 .0; 1/ such that if 0 < s < r , then

M.s= Oc/�m.s= Oc/� �.M.s/�m.s//:

Proof. We note that by construction h1 �m.s/h2 � 0 and M.s/h2 � h1 � 0
in �\B.w; s/ and we observe from Harnack’s inequality for positive solutions to
L that each of these functions is either positive or identically zero in �\B.w; s/.

Using Lemma 2.7 applied to the functions h1�m.s/h2 � 0, M.s/h2�h1 � 0,
and h2, we find that if 0 < s < r , then

M.s= Oc/�m.s/� Oc2.m.s= Oc/�m.s//;(2.10)

M.s/�m.s= Oc/� Oc2.M.s/�M.s= Oc//:

If we define  .t/DM.t/�m.t/, we then get, adding the inequalities in (2.10),

 .s/C .s= Oc/ � Oc2. .s/� .s= Oc//

or

(2.11)  .s= Oc/ � Oc2�1
Oc2C1

 .s/:

Clearly (2.11) implies the conclusion of Lemma 2.9 with � D . Oc2�1/=. Oc2C1/. �

Proof of Lemma 2.8. To start with, we note that if y; y0 2�\B.w; Or=4/ and
jy �y0j> Or

1000
, then from Lemma 2.7 we see that Lemma 2.8 holds. Furthermore,

if jy �y0j �minŒ Or
1000

; d.y; @�/=2� we can use Harnack’s inequality and interior
Hölder continuity estimates for h1; h2 to get Lemma 2.8 in this case. If neither of
these two cases occur choose Qy 2 @�\B.w; Or=2/ with jy� Qyj D d.y; @�/. Using
Lemma 2.9, with M.s/ and m.s/ defined with respect to Qy, i.e., M.s/DM.s; Qy/,
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m.s/Dm.s; Qy/, we see for given s, 0 < s < Or=2 that

M.s= Oc; Qy/�m.s= Oc; Qy/� �.M.s; Qy/�m.s; Qy//:

Iterating this relation, starting from s D Or=4 and finishing with s � 4jy �y0j , we
deduce that ˇ̌̌̌

h1.y/

h2.y/
�
h1.y

0/

h2.y0/

ˇ̌̌̌
� M.2jy �y0j; Qy/�m.2jy �y0j; Qy/

� c

�
jy �y0j

r

�˛ h1.a Or.w//
h2.a Or.w//

for some ˛; 0 < ˛ < 1, and c, both depending only on p, n, M , ı, and ı0. This
completes the proof of Lemma 2.8. �

We end this section by stating Lemma 2.12, a variation of Lemma 2.9. This
lemma will be used in the proof of Theorem 3.

LEMMA 2.12. Let � � Rn be a bounded Lipschitz domain, 1 < Ob;w 2 @�,
and 0 < Ob2t < r < r0=4. Assume for p given, 1 < p <1 that u is a positive p
harmonic function in �\ ŒB.w; Ob2t / nB.w; t= Ob2/�, continuous in the closure of
�\ŒB.w; Ob2t /nB.w; t= Ob2/� with uD0 on @�\ŒB.w; Ob2t /nB.w; t= Ob2/�. Assume
also that �.w; 2r/; � are as in Lemma 2.5 and that the uniform nondegeneracy
condition (1.9) holds with u0 replaced by u in �\ ŒB.w; Ob2t / nB.w; t= Ob2/�. Also,
assume that for each z 2 @� \ ŒB.w; Ob2t / n B.w; t= Ob2/� there exist � D �.z/

and c0 D c0.p; n;M/ � 2 such that (1.10) is true with u0 replaced by u in �\
B.z; jz�wj =c0/. Let h1; h2 be positive solutions in �\ ŒB.w; Ob2t / nB.w; t= Ob2/�
to the elliptic operator L defined in (1.6) and (1.7), with respect to u. Moreover,
suppose that hi ; i D 1; 2 extends continuously to the closure of �\ ŒB.w; Ob2t / n
B.w; t= Ob2/� with hi � 0 on @�\ ŒB.w; Ob2t / nB.w; t= Ob2/�. For � 2 .1= Ob2; 1/ ,
define

yM.�/D yM.�;w/D sup
�\ŒB.w; Ob2�t/nB.w;t=. Ob2�//�

h1.y/

h2.y/
;

Om.�/D Om.�;w/D inf
�\ŒB.w; Ob2�t/nB.w;t=. Ob2�//�

h1.y/

h2.y/
:

If Ob D Ob.p; n;M; ı; ı0/ is large enough, then there exists � D �.p; n;M; ı; ı0/ 2
.0; 1/ such that

yM.1= Ob/� Om.1= Ob/� �. yM.1/� Om.1//:

Proof of Lemma 2.12. To begin the proof, we note that the nondegeneracy
assumption (1.9) on u allows us to apply the interior Harnack inequality for positive
solutions to L as in Lemma 2.9, while (1.9) and (1.10) together give the boundary
Harnack inequality in Lemma 2.7 with w; r replaced by

z 2 @�\ ŒB.w; Ob2t / nB.w; t= Ob2/�
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and 0 < s � jz � wj=c0. We also note that h1 � Om.1/h2 and h2 yM.1/ � h1 are
positive solutions to the operatorL in�\ŒB.w; Ob2t /nB.w; t= Ob2/� with continuous
boundary values equal to 0 on @�\ ŒB.w; Ob2t / nB.w; t= Ob2/�. Given 0 <  � 1

to be chosen, we define

zM.1= Ob/D sup
�\ŒB.w; Obt/nB.w;t= Ob/�\fxWd.x;@�/�tg

h1.y/

h2.y/
;

Qm.1= Ob/D inf
�\ŒB.w; Obt/nB.w;t= Ob/�\fxWd.x;@�/�tg

h1.y/

h2.y/
:

Using Lemma 2.7 as in the proof of Lemma 2.9 we get, for  D .p; n;M; ı; ı0/>0
sufficiently small, that

yM.1= Ob/� Om.1/� c�. zM.1= Ob/� Om.1//;(2.13)
yM.1/� Om.1= Ob/� c�. yM.1/� Qm.1= Ob//:

Next if Ob is large enough we can use the interior Harnack inequality in � \
ŒB.w; Ob2t / nB.w; t= Ob2/� to deduce

zM.1= Ob/� Om.1/ � c� . Qm.1= Ob/� Om.1//;(2.14)
yM.1/� Qm.1= Ob/ � c� . yM.1/� QM.1= Ob//:

Combining (2.13), (2.14), and using Lemma 2.7 again we deduce that there exists
a constant Qc D Qc.p; n; ı; ı0/ such that

yM.1= Ob/� Om.1/� Qc. Om.1= Ob/� Om.1//;(2.15)
yM.1/� Om.1= Ob/� Qc. yM.1/� yM.1= Ob/:

Using (2.15) it follows, as in (2.11), that there exists, for ObD Ob.p; n;M; ı; ı0/ large
enough, 0 < � D �.p; n;M; ı; ı0/ < 1; such that

yM.1= Ob/� Om.1= Ob/� �. yM.1/� Om.1//:

This completes the proof of the lemma. �

3. Deformation of starlike Lipschitz ring domains
and the proof of Theorem 1

Recall from Section 1 that a bounded domain � � Rn is said to be starlike
Lipschitz with center Ox 2� provided

@�D f OxCR.!/! W ! 2 @B.0; 1/g

where logR W @B.0; 1/!R is Lipschitz on @B.0; 1/:

If xB. Ox; �/ � �, then we say that D D � n xB. Ox; �/ is a starlike Lipschitz ring
domain with center Ox. If p is fixed, 1 < p <1, then we let OuD Ou.�; p/ be the p
capacitary function for D. That is, Ou� 1 on B. Ox; �/, Ou� 0 on @� in the sense of
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W
1;p
0 .�/ and Ou is p harmonic in D. It is well known that Ou is unique andZ

D

jr Oujp dx D inf
�Z
D

jr� jp dx

�
;

where the infimum is taken over all � 2 C10 .�/ with � � 1 on xB. Ox; �/.
We first prove Theorem 1 with u; v replaced by cCu1; u2, where ui ; i D 1; 2

are the p capacitary functions of starlike ring domains Di D�i n xB. Ox; �/; i D 1; 2,
with D1 �D2. The constant cC is defined below. We assume that the Lipschitz
constant for Di ; i D 1; 2, is bounded above by constants depending only on the
Lipschitz constant for � and that

(3.1) max
n
16r; d. Ox;@�1/

c

o
� � �min

n
d. Ox;@�1/

4
; cr

o
;

where c D c.M; n; p/ � 4. If Ri ; i D 1; 2, denotes the graph function for �i
corresponding to Ox, then we also assume, temporarily, that

(3.2) Ri ; i D 1; 2; is infinitely differentiable on @B.0; 1/.

Next we define, for � 2 Œ0; 1� and ! 2 @B.0; 1/,

R.�; !/D ŒR2.!/�
� ŒR1.!/�

1��

and we let �.�/ be starlike Lipschitz domains with center Ox and graph function
R.�; �/. We also define D.�/D�.�/ n xB. Ox; �/ as the corresponding ring domain.
For fixed p; 1<p <1, let u.�; �/; � 2 Œ0; 1�; be the p capacitary function for D.�/.
From the hypotheses of Theorem 1 and our assumption that D1 �D2, we have

D.�1/�D.�2/ whenever 0� �1 < �2 � 1 and(3.3)

D.�/\B.w; 2r/DD1\B.w; 2r/ whenever � 2 Œ0; 1�.

Extend u.�; �/ to Rn by putting u.�; �/� 0 on Rnn�.�/ and u.�; �/� 1 on xB. Ox; �/.
From Lemma 2.2(ii), we see that each function in the set fu.�; �/; 0 � � � 1g is
Hölder continuous on Rn with the exponent independent of � 2 Œ0; 1�. Next in view
of (3.2) we deduce that Lemma 2.5 holds for u.�; �/; � 2 Œ0; 1�, where N; O" can be
chosen independent of � 2 Œ0; 1�. Finally observe that Lemma 2.6 holds with u�

replaced by u.�; �/ and constants independent of � 2 Œ0; 1�. Using these facts in
[LN07, Lemma 4.5] we prove the following.

LEMMA 3.4. Let u.�; �/ be as above. Then u� .x; �/D @
@�
u.x; �/ exists contin-

uously whenever .x; �/ 2
S
t2Œ0;1�D.t/� ftg. Moreover, u� .�; �/ extends continu-

ously to ND.�/ for � 2 Œ0; 1�, and

(i) u� .�; �/ is a solution to (1.6) in D.�/ with bij defined relative to u.�; �/,

(ii) u� . OxCR.�; !/!; �/D�R.�; !/h!;ru. OxCR.�; !/!; �/i log.R2=R1/.!/
when OxCR.�; !/! 2 @�.�/ and u� � 0 on @B. Ox; �/,

(iii) log
�u2.x/
u1.x/

�
D
R 1
0
u� .x;�/
u.x;�/

d� whenever x 2D1\B.w; 2r/.
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To continue the proof of Theorem 1 for the functions u1 and u2, we note from
(3.3) and the maximum principle for p harmonic functions that u.�; �1/� u.�; �2/
in D.�1/. Using this fact, (3.3), and Lemma 3.4(ii) we see that

(3.5) u� � 0 in D.�/ and u� D 0 on @D.�/\B.w; 2r/:

From (3.3) and Lipschitzness of logRi ; i D 1; 2 we also see that log.R2=R1/� c.
Using this fact, the fact that both u� .x; �/ and h Ox� x;ru.x; �/i both satisfy (1.6)
in D.�/; Lemma 2.6 (ii) for u.�; �/ and the maximum principle for solutions to
(1.6), we get

(3.6) 0� u� .x; �/� ch Ox� x;ru.x; �/i in D1\B.w; 2r/:

From (3.6), (3.1), and Lemma 2.6(i) we conclude that

(3.7) 0� u� .ar.w/; �/� cr jru.ar.w/; �/j � c
2u.ar.w/; �/;

where ar.w/ is defined below (1.4) and once again, c D c.p; n;M/ is independent
of �: From the remark after Lemma 2.6 we see that Lemma 2.7 can be applied with
h1 D u� .�; �/; h2 D u.�; �/ whenever � 2 Œ0; 1�. From this lemma, (3.7), Lemma
3.4 (iii), and Harnack’s inequality we conclude that

log.u2=u1/� c in B.w; Or/

when (3.2) holds. In the last display, Or D r= Oc as stated in Lemma 2.7. The smooth-
ness assumption in (3.2) is removed by a standard approximation argument, using
the fact that the constants in the above argument depend only on p; n, and the
Lipschitz constants for �1; �2. If Qr D Or , then we conclude that Theorem 1 is valid
when uD cCu1; v D u2, where cC is chosen so that cCu1.aQr.w//D u2.aQr.w//.

To continue the proof of Theorem 1, let �;M;w; r; u and v be as in Theorem
1 and put w0 D wC r

4
en. We observe that if c0 is large enough (depending on p,

n, and M ) and if we define r 0 D r=c0, then the domain �1 � �, obtained from
drawing all open line segments from points in �.w; r 0/ to points in B.w0; r 0/ is
starlike Lipschitz with center w0 and Lipschitz constant bounded by c.n;M/. Let,
for y 2�.w; r 0/, R.!/D jy �w0j if ! D .y �w0/=jy �w0j. We also define, for
i D 0; 1; 2, the sets Ki D f.y �w0/=jy �w0j W y 2�.w; 2�ir 0/ g and introduce L
as the supremum of R over the set K0 D�.w; r 0/. Choosing c0 large enough, we
may assume

(3.8) 100r 0 � r=4� L� r:

From our construction we observe that, for some c (depending on p; n, and M ),

(3.9) minfd.K2; @B.0; 1/ nK1/; d.K1; @B.0; 1/ nK0/g � c�1:

Let 0� ˛ � 1; ˛ 2C10 .R
n/, with ˛� 1 on K2 and ˛� 0 on @B.0; 1/nK1. Using

(3.9) we see that we can choose ˛ so that

(3.10) jr˛j � c�1:
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Let

logR2.!/D
�
˛ logR C .1�˛/ log.2L/ when ! 2K0
log.2L/ when ! 2 @B.0; 1/ nK0

:

Using (3.10) it is easily shown that

(3.11) k logR2 Ok@B.0;1/ � c .k logR Ok@K0 C 1/:

Let �2 be the starlike Lipschitz domain with center at w0 and the graph func-
tion R2. Let Di D �i nB.w0; r 0=4/; i D 1; 2 and let ui be the corresponding p
capacitary function. Note from (3.8) and the definition of ˛ that D1 � D2 and
D1\B.w; r

0=4/DD2\B.w; r
0=4/. Also (3.1) is valid with �D r 0=4 and OxDw0.

Finally observe that the Lipschitz constants for Di ; i D 1; 2, can be estimated above
by the Lipschitz constant for �. From our construction, the fact that L � 100r 0,
Lemma 2.3, and Harnack’s inequality, we deduce first that

(3.12) u1 � cmin.u; v/� cmax.u; v/� c2u2

on @Œ�1\B.w; 3r 0=4/� and second, from the weak maximum principle, that this
inequality also holds in �1\B.w; 3r 0=4/. From our earlier work we now conclude
Theorem 1. �

4. Deformation of p harmonic functions and proof of Theorem 2

In this section we develop a new iterative deformation technique for p har-
monic functions in Lipschitz domains which we then use to prove Theorem 2 by
induction. Throughout this section we assume that �� Rn is a bounded Lipschitz
domain with constant M , w 2 @� and that p, 1<p <1, is given. In the following
we will assume that u; v are positive p harmonic functions in �\B.w; 2 Or/, for
some 0 < Or < r0, which are continuous in x�\ xB.w; 2 Or/ and vanish on �.w; 2 Or/.
We will also assume, for technical reasons, that

(4.1) u� v=2� Oc1u in �\ xB.w; 2 Or/

for a constant Oc1. Note that if (4.1) is not fulfilled, then we can multiply v by a
positive constant to get this inequality, using Theorem 1, with Or replaced by Or=c1.
To define the deformations we let 0 < r 0 � Or . We define u.�; �/; 0� � � 1; to be p
harmonic in �\B.w; 2r 0/ and such that, for 0� � � 1,

(4.2) u.x; �/D �v.x/C .1� �/u.x/; for x 2 @Œ�\B.w; 2r 0/�:

4.1. Deformation of positive p harmonic functions vanishing on the boundary.
In this subsection we prove the following two lemmas.

LEMMA 4.3. Assume that � � Rn is a bounded Lipschitz domain, w 2 @�,
and that p, 1 < p <1, is given. Let u and v be positive p harmonic functions
in �\B.w; 2 Or/, continuous in x�\ xB.w; 2 Or/ with u D 0 D v on �.w; 2 Or/. Let
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0 < r 0 � Or and assume that u.�; �/; 0 � � � 1; is the p harmonic function in
�\B.w; 2r 0/ with boundary values as in (4.2). Also suppose that u satisfies (1.9)
and (1.10) in �\B.w; 2 Or/ for some ı, ı0, and �. Then there exists "0 2 .0; 1=4/
such that if

.1� "0/yL�
u.�; O�/

u.�/
� .1C "0/yL

in �\B.w; s/ for some O� 2 Œ0; 1�; yL; 0 < yL<1, and s, 0 < s � r 0, then (1.9) and
(1.10) also hold for u.�; O�/ in �\B.w; s=4/. In particular,

Oı�1
u.x; O�/

d.x; @�/
� hru.x; O�/; �i � jru.x; O�/j � Oı

u.x; O�/

d.x; @�/

whenever x 2�\B.w; s=4/ and Oı > 1 depends only on p, n, M , and ı; ı0.

LEMMA 4.4. Let��Rn; p; w; Or; r 0; u; v, and u.�; �/ be as in the statement of
Lemma 4.3. Assume also that u, v satisfy (4.1) and that �, � are as in Lemma 2.5
with r replaced by Or . Let � 0; O� 2 Œ0; 1�, � 0< O� and let s be such that 0<s� r 0. Finally
assume that the last display in Lemma 4.3 holds whenever x 2�\B.w; s=4/ and
O� 2 Œ� 0; O��. Then there exist constants Qc2, Oc2, and ˛, depending only on p, n, M ,
and the Oı in Lemma 4.3, such that if x; y 2�\B.w; s= Qc2/, thenˇ̌̌̌

log
�
u.x; O�/

u.x; � 0/

�
� log

�
u.y; O�/

u.y; � 0/

�ˇ̌̌̌
� Oc2

�
jx�yj

s

�˛
:

Proof of Lemma 4.3. Let x 2 � \ B.w; s=4/. Using Lemma 2.4 and the
Harnack inequality, we see that

jru.z1; O�/�ru.z2; O�/j � ct
� max
B.x;td.x;@�//

jru.�; O�/j(4.5)

� c2t� u.x; O�/=d.x; @�/;

whenever z1; z2 2 xB.x; td.x; @�// and 0� t � 1=2. Here c depends only on p; n.
Clearly (4.5) implies the upper bound in (1.9) with u0 replaced by u.�; O�/. Thus we
only have to prove the bound from below for hu.�; O�/; �i in order to get (1.9). To
prove this bound we argue by contradiction, and we start by supposing that there
exists a point x 2�\B.w; s=4/, such that for � > 0 to be chosen,

(4.6) hru.x; O�/; �i � � u.x; O�/=d.x; @�/;

where � is the unit vector in (1.10) corresponding to u. From (4.5) with z D z1,
x D z2, and (4.6), we deduce

(4.7) hru.z; O�/; �i � Œ�C c2t� � u.x; O�/=d.x; @�/

whenever z 2 B.x; td.x; @�//. Integrating, it follows that if y D xC td.x; @�/�
and t D �1=� , then

(4.8) u.y; O�/�u.x; O�/� c0�1C1=� u.x; O�/:
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In (4.8), c0 depends only on p; n. We also deduce, using (1.9) and (1.10) for u and
the mean value theorem, that for z as above and c� (depending only on p, n, M ,
and ı), that the following is true with y D xC td.x; @�/�:

(4.9) c�.u.y/�u.x//� �1=�u.x/:

Using the point y, we note that if "0; yL are as in Lemma 4.3, then from (4.8) and
(4.9) we find that

.1� "0/yL�
u.y; O�/

u.y/
�

�
1C c0�1C1=�

1C �1=�=c�

�
u.x; O�/

u.x/
(4.10)

� .1C "0/

�
1C c0�1C1=�

1C �1=�=c�

�
yL < .1� "0/yL

provided 1= Qc � �1=� � Qc "0 for some large Qc depending only on ı, ı0, p, n, and
M . With Qc now fixed we put "0 D 1= Qc2 and we assume that the hypotheses of
Lemma 4.3 hold for this "0. Then, in order to avoid the contradiction in (4.10),
at y, it must be true that

hru.x; O�/; �i �
u.x; O�/

Qc� d.x; @�/

whenever x 2�\B.w; s=4/. This completes the proof of Lemma 4.3. �

Proof of Lemma 4.4. Using Lemma 2.5 and (1.9) applied to u.�; �/ we see
that

(4.11) u.�; �/ is C1 in �\B.w; 3r 0=2/

whenever � 2 Œ� 0; O��. From (4.1) we also observe that

(4.12) c�1u.�; �1/�
u.�; �2/�u.�; �1/

�2� �1
D v�u � c u.�; �1/

on @.�\B.w; 2r 0// whenever �1; �2 2 Œ0; 1�. From the boundary maximum prin-
ciple for p harmonic functions this inequality also holds in �\B.w; 2r 0/. Using
(4.1) and (4.12) for fixed x 2�\B.w; s=4/, we have that �!u.x; �/; � 2 Œ0; 1�
is Lipschitz with norm � cu.x/. Thus u� .x; �/ exists almost everywhere in Œ0; 1�.
Let .x�/ be a dense sequence of B.w; s=4/ and let W be the set of all � 2 Œ0; 1� for
which u� .xm; �/ exists, in the sense of difference quotients, whenever xm 2 .x�/.
Then H 1.Œ0; 1� nW /D 0, where H 1 is linear Lebesgue or Hausdorff one measure.
To continue we let, for �; t 2 Œ� 0; O��,

U.x/D U.x; �; t/D
u.x; t/�u.x; �/

t � �
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and define, whenever x 2�\B.w; s=4/,

Aij .x/D Aij .x; �; t/(4.13)

D

Z 1

0

aij Œ�ru.x; t/C .1��/ru.x; �/� d�; 1� i; j � n;

aij .�/D j�j
p�4 Œ.p� 2/�i �j C ıij j�j

2� for � 2 Rn n f0g:

We note that, whenever � 2 Rn n f0g,

.i/ c�1j�j2
�
jru.x; t/jC jru.x; �/j

�p�2
�

nX
i;jD1

Aij .x/�i�j(4.14)

.ii/
nX

i;jD1

jAij .x/j � c

�
jru.x; t/jC jru.x; �/j

�p�2
:

In (4.14) the constant c depends only on p; n. Using Lemma 2.5, the assump-
tion that jru.�; O�/j satisfies the uniform nondegeneracy condition (1.9) in � \
B.w; s=4/, with constant Oı independent of � 2 Œ� 0; O�� and (4.11), we see that U is a
solution, whenever x 2�\B.w; s=8/, to the following locally uniformly elliptic
PDE with C1 coefficients

(4.15) QLU.x/D

nX
i;jD1

@

@xi
ŒAij .x/ Uxj �D 0:

From (4.11)–(4.15) we see that U is a bounded, with bound independent of �; t 2
Œ� 0; O��, C1 solution to QL in �\B.w; s=8/: Moreover, U � 0 on �.w; s=4/. Let
U � 0 on B.w; s=4/ n �. Using (4.12) with �1; �2 replaced by �; t , Lemma
2.4 for u.�; �/, and standard Hölder continuity estimates in � \ B.w; s=8/, we
see that U is Hölder continuous in B.w; s=8/ with constant and exponent in-
dependent of �; t 2 Œ� 0; O��. Since .u.x; t/ � u.x; �// D .t � �/.v.x/ � u.x//

on @.� \ B.w; 2r 0//, it follows, from the maximum principle for p harmonic
functions, that u.x; t/!u.x; �/ uniformly in the closure of � \ B.w; s=4/ as
t ! � . Using these facts and Schauder type estimates for the operator zL, it
follows that there exists a subsequence of fU.�; �; t/g, fU.�; �; tk/g, with tk!�
as k!1, which converges uniformly in B.w; s=8/, to a function f D f .�; �/ with
f 2 C1.�\B.w; s=8//. Furthermore, f is a solution to the

(4.16) L� D

nX
i;jD1

@

@xi
Œ bij .x/�xj .x/ �D 0;

in �\B.w; s=8/, where at x 2�\B.w; s=8/ and for 1� i; j � n,

(4.17) bij .x/D jru.x; �/j
p�4Œ.p� 2/uxi .x; �/uxj .x; �/C ıij jruj

2.x; �/�:
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Now, ıij is the Kronecker ı. Moreover, we note that

.i/ f is a solution to (4.16) and (4.17) in �\B.w; s=8/;(4.18)

.ii/ f is continuous in B.w; s=8/ with f � 0 on B.w; s=8/ n�,

.iii/ f .xm; �/D u� .xm; �/ whenever xm 2�\B.w; s=8/; � 2W;

.iv/ c�1 � f .�; �/=u.�; �/� c on �\B.w; s=8/:

For xm 2 .x�/, xm 2 �\B.w; s=8/ we see, using (4.18) and the fact that
H 1.Œ0; 1� nW /D 0,

(4.19) log
�
u.xm; O�/

u.xm; � 0/

�
D

O�Z
�0

f .xm; �/

u.xm; �/
d�:

We now observe that it follows, from the assumption that jru.�; O�/j satisfies (1.9)
and (1.10) in �\B.w; s=4/ with constants independent of � 2 Œ� 0; O�� and from
(4.18), that Lemma 2.8 applies to h1.�/D f .�; �/, h2.�/D u.�; �/. Furthermore, all
constants are independent of � . Therefore, using Lemma 2.8 and (4.18)(iii), we
conclude that there exist Qc2, Oc2, and ˛ depending only on p, n, M , Oı and Oı0, such
that

(4.20)
ˇ̌̌̌
log
�
u.xm; O�/

u.xm; � 0/

�
� log

�
u.xk; O�/

u.xk; �
0/

�ˇ̌̌̌

�

O�Z
�0

ˇ̌̌̌
u� .xm; �/

u.xm; �/
�
u� .xk; �/

u.xk; �/

ˇ̌̌̌
d� � Oc2

�
jxm� xkj

s

�˛
;

whenever xm; xk 2 .x�/ and xm; xk 2�\B.w; s= Qc2/. As .x�/ is a dense sequence
in �\B.w; s= Qc2/ it follows, from (4.20) and continuity, that the conclusion of
Lemma 4.4 is valid whenever x; y 2 B.w; s=c2/. �

4.2. Proof of Theorem 2. In this section we prove Theorem 2 by an induction
argument making iterative use of Lemmas 4.3 and 4.4 and in the following we will
use the notation of Theorem 2. To start with we let w0 D wC r

4
en and observe, as

in the proof of Theorem 1, that if c0 is large enough, depending on the Lipschitz
constant M , then the domain �0�� obtained from drawing all open line segments
from points in �.w; r=c0/ to points in B.w0; r=c0/ is starlike Lipschitz with center
w0 and Lipschitz constant bounded by c.M/. Let Qr D r

4c0
and let u0 be the p

capacitary function for D0 D�0 n xB.w0; Qr=4/. Then D0 is a starlike Lipschitz ring
domain and we note that we can also assume, by choosing c1 D c1.M/ > c0 large
enough, that

(4.21) �.w; r=c1/D @D
0
\B.w; r=c1/:
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Furthermore, from Lemma 2.6 and the remark after this lemma we see, for c1 large
enough, that

(4.22) Equations (1.9) and (1.10) hold for u0 in D0\B.w; r=c1/

with ı; ı0 depending only on p, n, and M .

To start the proof of Theorem 2 we note, by the arbitrariness of v in the statement
of Theorem 2, that it follows from the triangle inequality that it suffices to prove
Theorem 2 with u replaced by u0, and r replaced by r=c1 for c1 large enough. Thus
in the following we write u for u0 and assume that (4.22) holds for u. As argued
above we can also assume that (4.1) holds with Oc1 having the same dependence as
c1. Based on these arguments we can conclude that Lemmas 4.3 and 4.4 apply to
the pair u; v with Or D r=.2c1/ and r 0 D r=.4c21/.

Proof of Theorem 2. In the following we will first prove Theorem 2 assuming
that �;� are as in Lemma 2.5 and we then, in the final argument, remove the
smoothness assumption on �.

To start with we observe, as in the beginning of the proof of Lemma 4.4,
that it follows from (4.1) and the boundary maximum principle for p harmonic
functions that (4.12) is valid in �\B.w; 2r 0/ for �1; �2 2 Œ0; 1�. Thus for "0 as in
Lemma 4.3 there exists "00; 0 < "

0
0 � "0; with the same dependence as "0, such that

if j�2� �1j � "00, then

(4.23) 1� "0=2�
u.�; �2/

u.�; �1/
� 1C "0=2 in �\B.w; 2r 0/:

Let �1D 0 < �2 < � � �< �mD 1 and consider [0,1] as divided into fŒ�k; �kC1�g; 1�
k � m� 1. We assume that all of these intervals have a length of "00=2 with the
possible exception of the interval containing �m D 1 which is of length � "00=2.
We let r1 D r 0 and we note that it follows, from our choice of "00 and the fact that
u.�; �1/D u, that the hypotheses of Lemma 4.3 are satisfied whenever O� 2 Œ�1; �2�
with yLD 1 and s D r1. Thus, combining Lemmas 4.3 and 4.4, we see thatˇ̌̌̌

log
�
u.x; �2/

u.x/

�
� log

�
u.y; �2/

u.y/

�ˇ̌̌̌
D

ˇ̌̌̌
log
�
u.x; �2/

u.x; �1/

�
� log

�
u.y; �2/

u.y; �1/

�ˇ̌̌̌
(4.24)

� Oc2

�
jx�yj

r1

�˛
;

whenever x; y 2�\B.w; r2/ and where we have introduced r2 D r1= Qc2. We can
now continue by induction and to do this we assume that we have shown, for some
2� k �m, that

(4.25)
ˇ̌̌̌
log
�
u.x; �k/

u.x/

�
� log

�
u.y; �k/

u.y/

�ˇ̌̌̌
� .k� 1/ Oc2

�
jx�yj

rk�1

�˛
;

whenever x; y 2�\B.w; rk/. Here Oc2; ˛ are as in Lemma 4.4, and rk� rk�1� Ocrk
for some Oc D Oc.p; n;M/ > 1. If k Dm we quit, but assuming k < m we choose,
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using the induction hypothesis in (4.25), � and r 0
k
� rk so thatˇ̌̌̌

u.x; �k/

u.x/
�
u.y; �k/

u.y/

ˇ̌̌̌
� �

u.x; �k/

u.x/
;

whenever x; y 2�\B.w; r 0
k
/. We fix a x 2�\B.w; r 0

k
/ and choose � > 0 small

enough to ensure that if y 2�\B.w; r 0
k
/ and if � 2 Œ�k; �kC1�, then

(4.26) .1� "0/
u.x; �k/

u.x/
�
u.y; �/

u.y/
� .1C "0/

u.x; �k/

u.x/
:

To estimate the magnitude of � we observe that if � 2 Œ�k; �kC1�, then

u.y; �/

u.y/
D
u.y; �/

u.y; �k/
�
u.y; �k/

u.y/
� .1C "0=2/.1C �/

u.x; �k/

u.x/
:

Thus if � D "0=4 and if "0 is small enough, then the right-hand inequality in
(4.26) is valid. A similar argument gives the left-hand inequality in (4.26) when
� D "0=4 and "0 is small enough. Also since ˛ is independent of k; k � 2="00,
and "00 D "00.p; n;M/, we deduce from (4.25) that one can take r 0

k
D rk= Qc for

Qc D Qc.p; n;M/ large enough. From (4.26) we find that we can apply Lemma 4.3
with yL D u.x;�k/

u.x/
; s D r 0

k
, and O� replaced by an arbitrary � 2 Œ�k; �kC1�. Hence,

first applying Lemma 4.3 we see that the assumptions of Lemma 4.4 are fulfilled
and secondly we can conclude that the conclusion of Lemma 4.4 is valid for all
� 2 Œ�k; �kC1� with s D r 0

k
. Asˇ̌̌̌

log
�
u.x; �kC1/

u.x/

�
� log

�
u.y; �kC1/

u.y/

�ˇ̌̌̌
�

ˇ̌̌̌
log
�
u.x; �kC1/

u.x; �k/

�
� log

�
u.y; �kC1/

u.y; �k/

�ˇ̌̌̌
C

ˇ̌̌̌
log
�
u.x; �k/

u.x/

�
� log

�
u.y; �k/

u.y/

�ˇ̌̌̌
we can, defining rkC1 D r 0k= Qc2 D rk=. Qc2 Qc/, make use of the induction hypothesis
to conclude that if x; y 2�\B.w; rkC1/, then

(4.27)
ˇ̌̌̌
log
�
u.x; �kC1/

u.x/

�
� log

�
u.y; �kC1/

u.y/

�ˇ̌̌̌
� Oc2

�
jx�yj

rk

�˛
C .k� 1/ Oc2

�
jx�yj

rk�1

�˛
� k Oc2

�
jx�yj

rk

�˛
:

From (4.27) and induction we conclude that (4.25) is valid for all k 2 f2; : : : ; mg.
In particular, applying (4.25) with k Dm we see that Theorem 2 is valid.

Finally we remove the assumption that � is infinitely differentiable. To do this
we put u� 0� v in B.w; 2r/n� and note that both functions are now continuous
in xB.w; 2r/. Let �" be a bounded Lipschitz domain defined as in Theorem 2 with
� replaced by �" 2C1.Rn�1/, where ��"<�"<� in fx0 2Rn�1 W jx0�w0j<2rg
and kjr�"jk1 � kjr�jk1. �" can be constructed by convoluting � � "=2 with
a suitable approximation of the identity. Let u"; v", be the positive p harmonic
functions in �" \ B.w; 2r/ which satisfy u" D u; v" D v on @ŒB.w; 2r/ \�"�.
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From our choice of �" we have u" D 0 D v" on B.w; 2r/ \ @�". From basic
estimates, using Lemma 2.1, it follows that u"; v" converge to u; v, uniformly on
compact subsets of �\B.w; 2r/, as "!0. Since c2 in Theorem 2 depends only
on p; n and the Lipschitz norm of r�", it follows that we can prove Theorem 2
for u"; v", and then take limits to get Theorem 2 for u; v. The proof of Theorem 2
is therefore complete. �

For use in the proof of Theorems 3 and 4 we note the following consequence
of the argument outlined above.

LEMMA 4.28. Let � � Rn be a bounded Lipschitz domain. Given p; 1 <
p <1; w 2 @�, 0 < r < r0, suppose that u is a positive p harmonic function in
�\B.w; 2r/. Assume also that u is continuous in x�\ xB.w; 2r/ and u D 0 on
�.w; 2r/. Then there exist � 2 @B.0; 1/ and c3; ıC > 1, both of which only depend
on p, n and M such that

ı�1C
u.x/

d.x; @�/
� hru.x/; �i � jru.x/j � ıC

u.x/

d.x; @�/
;

whenever x 2�\B.w; r=c3/. Moreover, � can be chosen independently of u.

5. Deformation of Martin functions and proof of Theorem 3

In this section we develop an iterative deformation technique for minimal
positive p harmonic functions in Lipschitz domains which eventually will be used
to prove Theorem 3. The technique is similar to the one developed in the previous
section. Throughout this section we assume that �� Rn is a bounded Lipschitz
domain with constant M , w 2 @�, and that p, 1 < p <1, is given. We let u
and v be minimal positive p harmonic functions relative to w 2 @� and we note,
using Lemma 2.2, that u; v have Hölder continuous extensions to Rn n fwg defined
by putting uD 0D v on Rn n�. Using Theorem 1, Harnack’s inequality and the
maximum principle for p harmonic functions we can also conclude that

a < lim inf
x!w

u.x/=v.x/� lim sup
x!w

u.x/=v.x/ < ca

for some a > 0 and for a constant c depending only on p, n, and M . Hence if
we redefine u D u=a, then we can assume that u=v is bounded from below and
above in �n fwg by c�1 and c respectively. In analogy with (4.1) we can therefore
assume, for technical reasons, that

(5.1) u� v=2� Oc1u

in � n fwg for a constant Oc1. To define the deformations we let 0 < r 0� Or . We
define u.�; �/; 0� � � 1; to be p harmonic in �\ ŒB.w; 2 Or/nB.w; r 0=2/ and such
that, for 0� � � 1,

(5.2) u.�; �/D �v.�/C .1� �/u.�/ on @Œ�\B.w; 2 Or/ nB.w; r 0=2/�:
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5.1. Deformation of minimal positive p harmonic functions. We here state
versions of Lemmas 4.3 and 4.4, namely Lemmas 5.4 and 5.5 stated below, adapted
to the new set of deformations defined through (5.2). The proof of Theorem 3 will
be based on these lemmas. Recall from Section 1 that z�.w; Q�/ � � is said to
be a nontangential approach region, at w 2 @�, if d.x; @�/ > Q�jx �wj for all
x 2 z�.w; Q�/. From Lemma 4.28 we see that if 0 < r 0� Or and if Qu is a positive p
harmonic function in �\ ŒB.w; 2 Or/nB.w; r 0=2/� with continuous boundary values
0 on @�\ ŒB.w; 2 Or/ nB.w; r 0=2/�, then there exist Q� > 0 and c > 1, depending
only on p, n, and M , such that

.a/ Qu satisfies (1.9), with a constant ı D ı.p; n;M/ and with(5.3)

u0 replaced by Qu, in Œ� n z�.w; Q�/�\ ŒB.w; Or/ nB.w; r 0/�,

.b/ if y 2 Œ� n z�.w; Q�/�\ ŒB.w; Or/ nB.w; r 0/�; there exists x 2 @�

with y 2 B.x; jx�wj=c/ and � D �.x/; ı0 D ı0.p; n;M/;

for which (1.10) holds on �\B.x; 2jx�wj=c/.

LEMMA 5.4. Assume that � � Rn is a bounded Lipschitz domain, w 2 @�
and that p, 1 < p < 1, is given. Let r 0 � Or and suppose Ou; Ov are positive p
harmonic functions in �\ ŒB.w; 2 Or/ nB.w; r 0=2/�, continuous on the closure of
� \ ŒB.w; 2 Or/ n B.w; r 0=2/� with Ou D 0 D Ov on @� \ ŒB.w; 2 Or/ n B.w; r 0=2/�.
Let Ou.�; �/; 0� � � 1; be the p harmonic function in �\ ŒB.w; 2 Or/ nB.w; r 0=2/�
with boundary values � OvC .1� �/ Ou. Let b > 2 be given and suppose also that
Ou satisfies (1.9) for some Qı > 0 in z�.w; Q�=2/ \ ŒB.w; bs/ n B.w; s=b/�, where
2r 0<s=b<bs <min.r0=2; Or=2/ and Q� is as in (5.3). Then there exists "02 .0; 1=4/,
depending only on p, n, and M such that if

.1� "0/yL�
Ou.�; O�/

Ou.�/
� .1C "0/yL

in �\ ŒB.w; bs/ nB.w; s=b/� for some O� 2 Œ0; 1�; yL; 0 < yL<1, then

Oı�1
Ou.x; O�/

d.x; @�/
� jr Ou.x; O�/j � Oı

Ou.x; O�/

d.x; @�/

for all x 2�\ ŒB.w; b1=2s/ nB.w; s=b1=2/� and some Oı D Oı.p; n;M/.

LEMMA 5.5. Let �� Rn, p, w, b, Or , r 0; s; Ou, Ov, and Ou.�; O�/ be as in Lemma
5.4. Let l; i 2 ZC, i � l , and let sk; 1� k � l be a decreasing sequence of positive
numbers such that 2br 0 < sk < sk�1=b <

1
2b2

min.r0; Or/ for 2 � k � i . Suppose
also that �� B.w; Or/ and that (5.1) holds with u; v replaced by Ou; Ov. Put

zM.s; � 0; O�/D sup
�nB.w;s/

log
�
Ou.y; O�/

Ou.y; � 0/

�
; Qm.s; � 0; O�/D inf

�nB.w;s/
log
�
Ou.y; O�/

Ou.y; � 0/

�
:

Let � 0; O� 2 Œ0; 1�, � 0 < O� and assume that the conclusion of Lemma 5.4 holds for
Ou.�; O�/ on �\ ŒB.w; b1=2s/ n B.w; s=b1=2/� whenever O� 2 Œ� 0; O�� and s 2 fskgi1,
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with constant Oı independent of O� . If b D b.p; n;M; Oı/ is large enough, then there
exists � D �.p; n;M; Oı/, � 2 .0; 1/, such that

zM.s1; �
0; O�/� Qm.s1; �

0; O�/� c� i :

Moreover, the constant c depends only on the constant in (5.1).

Proof of Lemma 5.4. The proof of Lemma 5.4 is similar to the proof of Lemma
4.3. In this case though, we see from (5.3) that Lemma 5.4 holds when x 2 Œ� n
z�.w; Q�/� \ ŒB.w; b1=2s/ n B.w; s=b1=2/� with constant ı D ı.p; n;M/. Hence
it only remains to prove the conclusion of the lemma for points in z�.w; Q�/ \
ŒB.w; b1=2s/ nB.w; s=b1=2/�. We therefore let

x 2 z�.w; Q�/\ ŒB.w; b1=2s/ nB.w; s=b1=2/�

and note that there exists D.n;M; b/>0 such thatB.x; d.x; @�//\B.w; s=b/
D∅ and such that B.x; d.x; @�//� z�.w; Q�=2/\B.w; bs/. Using Lemma 2.4
and the Harnack inequality we see that

jr Ou.z1; O�/�r Ou.z2; O�/j � ct
� max
B.x;td.x;@�//

jr Ou.�; O�/j(5.6)

� c2t� Ou.x; O�/=d.x; @�/

whenever z1; z2 2 xB.x;  td.x; @�// and 0 � t � 1=2. Here c depends only on
p; n and b. Based on (5.6) we see, as in the proof of Lemma 4.3, that we only
have to prove bounds from below for the gradient of Ou.�; O�/. To do this we suppose
that there exists a point x 2 z�.w; Q�/\ ŒB.w; b1=2s/ nB.w; s=b1=2/� such that, for
� > 0 to be chosen,

(5.7) jr Ou.x; O�/j � � Ou.x; O�/=d.x; @�/:

From (5.6) with z D z1, x D z2 and (5.7) we deduce

(5.8) jr Ou.z; O�/j � Œ�C c2t� � Ou.x; O�/=d.x; @�/

for z 2 B.x; td.x; @�//. Integrating, it follows that if y 2 @B.x;  td.x; @�//,
with jx�yj D  td.x; @�/, t D �1=� , then

(5.9) j Ou.y; O�/� Ou.x; O�/j � c0�1C1=� Ou.x; O�/:

Constants in (5.8) and (5.9) depend only on p; n and b. On the other hand, (5.6)
also holds with Ou.�; O�/ replaced by Ou. Let �D r Ou.x/

jr Ou.x/j
. Then we see, using (5.6),

(5.3) and the uniform nondegeneracy assumption on jr Ouj, that

hr Ou.z/; �i � .1� c �/jr Ou.x/j in B.x; �1=� /:

Integrating we get, for y D xC �1=�d.x; @�/�, that

(5.10) c�. Ou.y/� Ou.x//� �1=� Ou.x/
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with a constant c� depending only on p; n;M; Qı and b. Using this value of y in
(5.9), we can now repeat the argument following (4.9) to get

.1� "0/yL�
Ou.y; O�/

Ou.y/
< .1� "0/yL

provided 1= Qc � �1=� � Qc "0 for some large Qc. With Qc now fixed, we put "0D 1= Qc2

and assume that the hypotheses of Lemma 5.4 hold for this "0. Then in order
to avoid the contradiction in the above display at y, it must be true, for all x 2
z�.w; Q�/\ ŒB.w; b1=2s/ nB.w; s=b1=2/�, that

jr Ou.x; O�/j �
Ou.x; O�/

Qc� d.x; @�/
:

Lemma 5.4 is therefore proved. �

Proof of Lemma 5.5. The proof of Lemma 5.5 follows the same lines as the
proof of Lemma 4.4, and in this case we start by assuming that

(5.11) @�\B.w; 2bs1/ is the graph of a C1 function �.

From the hypotheses on Ou.�; O�/ and Lemma 2.5 we see, for � 2 Œ� 0; O��, that

(5.12) Ou.�; �/ is C1 in �\ ŒB.w; b1=2s/ nB.w; s=b1=2/� whenever s 2 fskgi1.

Note that the assumption �� B.w; Or/ implies

�\ ŒB.w; 2 Or/ nB.w; r 0=2/�D� nB.w; r 0=2/:

Hence, using this assumption and (5.1) we observe, for �1; �2 2 Œ0; 1�, that

(5.13) c�1 Ou.�; �1/�
Ou.�; �2/� Ou.�; �1/

�2� �1
D Ov� Ou � c Ou.�; �1/

on �\@B.w; r 0=2/. Therefore, using the maximum principle for p harmonic func-
tions it follows that this inequality also holds in � n xB.w; r 0=2/. More generally,
if � is a real number, t � r 0=2, and

g D � Ou.�; �2/ ˙
Ou.�; �2/� Ou.�; �1/

�2� �1
� 0 on �\ @B.w; t/;(5.14)

then g � 0 on � n xB.w; t/;

as we see using the maximum principle for p harmonic functions and the assump-
tion that �� B.w; Or/. We can now repeat the proof of Lemma 4.4 for all points
x 2 �\ ŒB.w; b1=2s/ n B.w; s=b1=2/� whenever s 2 fskgi1. In particular, using
(5.1) and (5.13) for fixed x 2� n xB.w; r 0=2/, we have that �!Ou.x; �/; � 2 Œ0; 1�
is Lipschitz with norm � c Ou.x/. Thus Ou� .x; �/ exists almost everywhere in [0,1].
Let .x�/ be a dense sequence of � n xB.w; r 0=2/ and let again W be the set of all
� 2 Œ0; 1� for which Ou� .xm; �/ exists, in the sense of difference quotients, whenever
xm 2 .x�/. Repeating the arguments in (4.13)–(4.19) we see that

log
�
Ou.xm; O�/

Ou.xm; � 0/

�
D

O�Z
�0

f .xm; �/

Ou.xm; �/
d�
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whenever xm 2 .x�/, xm 2� n NB.w; r 0=2/, and where f has the following prop-
erties,

.i/ f is a solution to (4.16) and (4.17) in(5.15)

�\ ŒB.w; b1=2s/ nB.w; s=b1=2/�; s 2 fskg
i
1;

.ii/ f .xm; �/!0 as xm!@� n xB.w; r 0=2/; � 2W ,

.iii/ f .xm; �/D Ou� .xm; �/ whenever xm 2 .x�/; � 2W;

.iv/ c�1 � f .xm; �/= Ou.xm; �/� c whenever xm 2 .x�/; � 2W;

.v/ if Og D � Ou.�; �/˙f .�; �/� 0 on �\ @B.w; b1=2s/,

then Og � 0 on � n NB.w; b1=2s/:

Note that .v/ (which does not appear in (4.18)) follows from (4.14) and (i)–(iv).
From (4.15) we deduce

(5.16) log
�
Ou.xm; O�/

Ou.xm; � 0/

�
� log

�
Ou.xk; O�/

Ou.xk; �
0/

�
D

O�Z
�0

�
f .xm; �/

Ou.xm; �/
�
f .xk; �/

Ou.xk; �/

�
d�:

To estimate the integrand in (4.16) we put

Osc.t/D sup
�n xB.w;t/

f .�; �/

u.�; �/
� inf
�n xB.w;t/

f .�; �/

u.�; �/

whenever s=b1=2 � t � b1=2s and s 2 fskgi1. From (4.15)(v) we note that Osc.�/
is nonincreasing as a function of t on its domain. From (5.3), the conclusion of
Lemma 5.4, and (4.15) we see that Lemma 2.12 can be applied with ObDb1=4; tD sk
and h1.�/ D f .�; �/, h2.�/ D Ou.�; �/ whenever � 2 Œ� 0; O��. Doing this we see that
there exists � D �.p; n;M; Oı/, � 2 .0; 1/, such that

Osc.sk�1=b
1=2/� Osc.b1=2sk/� � Osc.sk=b

1=2/

for 2� k � i . Iterating this inequality for k D 2; : : : ; i , we deduce from (4.16) thatˇ̌̌̌
ˇlog

�
Ou.xm; O�/

Ou.xm; � 0/

�
� log

�
Ou.xk; O�/

Ou.xk; �
0/

�ˇ̌̌̌
ˇ�

O�Z
�0

ˇ̌̌̌
f .xm; �/

Ou.xm; �/
�
f .xk; �/

Ou.xk; �/

ˇ̌̌̌
d�(5.17)

� c� i

whenever xk; xm 2�\@B.w; s1/. Since u.�; O�/; u.�; � 0/ are positive and continuous
in �, it first follows that (4.17) holds for xk; xm 2�\ @B.w; s1/ and thereupon,
from the maximum principle for p harmonic functions, that Lemma 5.5 is true
when (5.11) holds.

The smoothness assumption on � is removed in the same way as it was re-
moved in the proof of Theorem 2. Indeed, let �" be as defined below (4.27) and let
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˛ 2 C10 .R
n�1/ with ˛ D 1 on fx0 2 Rn�1 W .x0; �.x0// 2 B.w; bs1/g while ˛ � 0

on the complement of fx0 2 Rn�1 W .x0; �.x0// 2 B.w; 3bs1=2/g. Define �" by

�"\B.w; 2bs1/

D fy D .y0; yn/ 2 Rn W yn > Œ.1�˛/�C˛�"�.y0/g\B.w; 2bs1/;
�" nB.w; 2bs1/D� nB.w; 2bs1/:

Put Ou D Ov D 0 outside of � and let Ou"; Ov" be positive p harmonic functions in
�" \ ŒB.w; 2 Or/ nB.w; r

0=2/� with continuous boundary values Ou" D Ou; Ov" D Ov.
From Lemmas 2.2–2.4 we see that Ou"; Ov"!Ou; Ov uniformly in the closure of �"\
ŒB.w; Or/nB.w; r 0/� and r Ou" converges uniformly to r Ou on�.w; Q�=2/\ŒB.w; Or/n
B.w; r 0/�: Also, r Ou".�; �/ converges uniformly to r Ou.�; �/ on .�.w; Q�=2/�Œ� 0; O��/\
ŒB.w; Or/nB.w; r 0/�. Using these facts and (5.3) for Ou".�/; Ou".�; O�/, we see, for " suf-
ficiently small, that (1.9) holds for Ou"; Ou".�; O�/ in�"\ŒB.w; b1=2s/nB.w; s=b1=2/�
whenever s 2 fskgi1 and O� 2 Œ� 0; O��, with constants depending only on p, n, M , and
Oı. Applying Lemma 5.5 to Ou"; Ov" in �" and letting "!0, we conclude that Lemma
5.5 holds for Ou; Ov. This completes the proof of Lemma 5.5. �

5.2. Proof of Theorem 3. We now prove Theorem 3. Recall that u and v are
minimal positive p harmonic functions, for given p, 1 < p <1, relative to w 2
@�. To start the proof of Theorem 3 we assume that there exists a nonincreasing
sequence of positive numbers f�lg and Qb > 1 such that liml!1 �l D 0 and such
that

(5.18) ı�1
u.x/

d.x; @�/
� jru.x/j � ı

u.x/

d.x; @�/

for all x in [l �.w; Q�=2/ \ ŒB.w; Qb�l/ n B.w; �l= Qb/�. From (1.18) and (5.18)
we see that (5.18) holds in [l�\ ŒB.w; Qb�l/ nB.w; �l= Qb/� with ı replaced by
Oı D Oı.p; n;M; ı/: We also choose Or so large that �� B.w; Or/. We shall show, for
given O" > 0, that there exists �; 2r 0 < � <min.O"; Or/; such that

(5.19)
ˇ̌̌̌
log

�
u.x/

v.x/

�
� log

�
u.y/

v.y/

�ˇ̌̌̌
� O" when x; y 2� nB.w; �/:

Since O" is arbitrary it will then follow that v D �u for some � 2 .0;1/.
(5.19) will be proved using Lemmas 5.4 and 5.5 in a fashion similar to the

proof of Theorem 2. To begin, we note that we can, without loss of generality,
assume that Qb�lC1<�l= Qb for lD1; 2; : : : , and that 2r 0<�l= Qb< Qb�l < 1

2
min.r0; Or/

for all l under consideration. We also assume that the technical condition in (5.1)
is fulfilled and we define u.�; �/; � 2 Œ0; 1� to be the p harmonic functions in � n
B.w; r 0=2/ with boundary values as in (5.2). Using the same argument as in the
proof of Theorem 2 (see (4.23)), it follows for "0 as in Lemma 5.4 that there exists



BOUNDARY BEHAVIOR AND THE MARTIN BOUNDARY PROBLEM 1937

"00, 0 < "00 � "0; with the same dependence as "0, such that if j�2� �1j � "00, then

(5.20) 1� "0=2�
u.�; �2/

u.�; �1/
� 1C "0=2 in � nB.w; r 0/:

Again we let �1 D 0 < �2 < � � �< �m D 1 be the subdivision of [0,1] into intervals
fŒ�k; �kC1�g; 1� k �m� 1, of length "00=2 or less. Using the assumption on u in
(5.18) and combining Lemmas 5.4 and 5.5 we see, for l > i , using s1D�l�i ; si D�l ,
in Lemma 5.5 that if Qb is large enough, then there exists � D �.p; n;M; ı/ 2 .0; 1/
such that

zM.�l�i ; �1; �2/� Qm.�l�i ; �1; �2/� c�
i :(5.21)

We shall prove that for given i and k 2 f2; : : : ; mg there exists lk D lk.p; n;M; ı/2
ZC such that if l > lkC i , and �l= Qb > 2r 0; then

(5.22) zM.�l�lk�i ; �1; �k/� Qm.�l�lk�i ; �1; �k/� .k� 1/c� �
i

for a constant c� which is independent of l and i . Since m � 2="00 and "00 is
independent of l; i , we can then use (5.22) for k Dm and the fact that u.�; �m/D
v; u.�; �1/D u to conclude from (5.22), for l; i large and r 0 sufficiently small, that
(5.19) holds. Thus to complete the proof of Theorem 3 it suffices to prove (5.22).
Using (5.20) and (5.21) we see that (5.22) is true for k D 2 with lk D l2 D 1.
To proceed by induction, we assume that we have established (5.22) for some k,
2 � k � m, and if k D m then we quit. Assuming k < m we define l 0

k
> lk by

putting i D l 0
k
� lk in (5.22), where i is chosen so large that, for l > l 0

k
, we haveˇ̌̌̌

u.x; �k/

u.x/
�
u.y; �k/

u.y/

ˇ̌̌̌
� �

u.x; �k/

u.x/

whenever x; y 2� nB.w; �l�l 0
k
/. We fix a x 2� nB.w; �l�l 0

k
/ and choose � > 0

small enough to ensure that if y 2� nB.w; �l�l 0
k
/ and if � 2 Œ�k; �kC1�, then

(5.23) .1� "0/
u.x; �k/

u.x/
�
u.y; �/

u.y/
� .1C "0/

u.x; �k/

u.x/
:

To estimate the magnitude of � we observe, as in the proof of Theorem 2, that if
� 2 Œ�k; �kC1�, then

u.y; �/

u.y/
D
u.y; �/

u.y; �k/
�
u.y; �k/

u.y/
� .1C "0=2/.1C �/

u.x; �k/

u.x/
:

Thus if � D "0=4 and if "0 is small enough, then the right-hand inequality in
(5.23) is valid. A similar argument gives the left-hand inequality in (5.23) when
� D "0=4 and "0 is small enough, l 0

k
� lk can be chosen to depend only on "0

and � and hence on p, n, M , and ı only, assuming Qb is large. From (5.23) we
find that we can apply Lemma 5.4 in �\ ŒB.w; Qb�

l�Ql
/ nB.w; �

l�Ql
= Qb/� with O�

replaced by an arbitrary � 2 Œ�k; �kC1� provided that Ql is such that �
l�Ql
= Qb > �l�l 0

k

and yLD u.x;�k/
u.x/

. Since the sets in the set fB.w; b�j / nB.w; �j =b/g11 are disjoint,
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it follows that if lkC1 D l 0k C 1, then the assumptions of Lemma 5.5 are fulfilled
in � \ ŒB.w; Qb1=2�l�lkC1/ n B.w; �l�lkC1= Qb

1=2/� for � 2 Œ�k; �kC1� whenever
l > lkC1. Applying Lemma 5.5 with s1 D �l�lkC1�iC1; si D �l�lkC1 , we get

zM.�l�lkC1�i ; �k; �kC1/� Qm.�l�lkC1�i ; �k; �kC1/� c��
i(5.24)

provided 2r 0 < �l�lkC1�i . Finally we note that if x; y 2�nB.w; �l�lkC1�i /, thenˇ̌̌̌
log

u.x; �kC1/

u.x/
� log

u.y; �kC1/

u.y/

ˇ̌̌̌
is dominated by

zM.�l�lkC1�i ; �k; �kC1/� Qm.�l�lkC1�i ; �k; �kC1/

C zM.�l�lkC1�i ; �1; �k/� Qm.�l�lkC1�i ; �1; �k/� kc��
i

as we see from (5.24), (5.22) and the fact that by construction lkC1 > lk . We can
therefore first conclude, for l > lkC1C i , that

zM.�l�lkC1�i ; �1; �kC1/� Qm.�l�lkC1�i ; �1; �kC1/� kc��
i

and then, by induction, that (5.22) is valid for all k 2 f2; : : : ; mg. The proof of
Theorem 3 is now complete. �

Finally in this section we observe that our proof implies the following corol-
lary.

COROLLARY 5.25. Let p, �, Ou, Ov, r 0, and Or be as in Lemma 5.5 and suppose
that (1.9) holds for Ou in � n B.w; r 0/. There exists c D c.p; n;M; ı/ > 1 and
aD a.p; n;M; ı/, 0 < a � 1=2 such thatˇ̌̌̌

log
Ou.y1/

Ov.y1/
� log

Ou.y2/

Ov.y2/

ˇ̌̌̌
� c

�
r

min.jy1�wj; jy2�wj/

�a
whenever r � cr 0 and y1; y22�nB.w; r/. Moreover, there exists OıD Oı.p; n;M; ı/
> 1 such that (1.9) holds for Ov in � nB.w; cr/.

Proof. The display in Corollary 5.25 follows from Lemmas 5.4 and 5.5, and
iteration, as in the proof of Theorem 3. The uniform nondegeneracy of jrvj in
� nB.w; cr/ is a consequence of the above display and the same argument as in
the proof of Lemma 5.4. �

6. Proof of Theorem 4

In this section we use Theorem 3 to prove Theorem 4. Throughout the section
we assume that � � Rn is a bounded Lipschitz domain and that w 2 @�. To
prove Theorem 4 we have to construct a minimal positive p harmonic function in
� relative to w 2 @� satisfying the criteria stated in Theorem 3. We supply such
constructions when � is convex and when @� is C 1. We treat each case separately.
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To start with we assume that � is a bounded convex domain. In this case
we fix p; 1 < p <1, and we let fwmg11 be a sequence of points in �, tending
nontangentially to w, and we put

sm D d.wm; @�/=8; mD 1; 2; : : : ;

Dm D� n xB.wm; sm/;

um D the p capacitary function for Dm.

We claim that there exists c > 1, depending only on p; n, such that

(6.1) um.x/� chwm� x;rumi whenever x 2Dm:

Indeed, suppose for the moment that

(6.2) @� is C1:

Using Lemmas 2.5 and 2.6 we see that um.x/ as well as hwm � x;rum.x/i sat-
isfy the partial differential equation in (1.6) and (1.7) in Dm. Moreover, from
barrier type estimates and Lemma 2.5 one easily sees that cjrumj � s�1m on
@B.wm; sm/, where c depends only on p; n. Also from Lemmas 2.5 and 2.6 we
have hwm � x;rumi > 0 in NDm. Comparing the boundary values of um.x/ and
hwm � x;rumi, we get (6.1) when (6.2) holds. If (6.2) is not true, then we can
choose a sequence f�0j g of convex domains with C1 boundaries which converges
to� in the sense of Hausdorff distance. Let f j g be the corresponding p capacitary
functions for �0j n xB.wm; sm/ and put  j D 0 in Rn n�0j . Using Lemmas 2.2–
2.4 we see that f j g converges, uniformly on Dm, to um and fr j g converges to
rum, uniformly on compact subsets of Dm. Applying (6.1) with um replaced by
 j , j D 1; 2; : : : , using uniform convergence and the fact that the constant in (6.1)
depends only on p; n, we get (6.1) for um.

Fix Ox 2 � and consider the sequence um=um. Ox/;m D 1; 2; : : : If we let
m!1, then from Lemmas 2.2–2.4 we see that a subsequence of this sequence
converges, uniformly on compact subsets of �, to a minimal positive p harmonic
function u relative to w in � and u. Ox/D 1. Also, (6.1) implies that

(6.3) u.x/� chw� x;ru.x/i

for all x 2 � where c is the constant in (6.1). Let z�.w; Q�/ be the nontangential
approach region in (5.3) defined with respect to w and �. Using (6.3) we see that
(1.9) holds for u in z�.w; Q�/ with a constant ı D ı.p; n;M/. Applying Theorem
3 we can therefore conclude that Theorem 4 is true when � is a bounded convex
domain.

We now move on to the case of C 1-domains, and in the following we will
simply let u be an arbitrary minimal positive p harmonic function in � relative to
w 2 @� and we will prove, for u, the existence of f�lg and Qb as in the statement
of Theorem 3. To do this we let, for simplicity, w D 0, and we note that we can
assume, after a rotation if necessary, that there exists r1 D r1.�/ for given � > 0
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(sufficiently small) such that if 0 < r � r1; then

(6.4) B.0; nr/\fy W yn � �rg ��; B.0; nr/\fy W yn � ��rg � Rn n�:

Extend u to a continuous function in Rn n f0g by putting u� 0 on Rn n .�[f0g/.
Let

QD fy W jyi j< r; 1� i � n� 1g\ fy W �r < yn < rg nB.0;
p
� r /

and let v1 be the p harmonic function in Q with the following continuous boundary
values:

v1.y/D u.y/ if y 2 @Q\fy W 2�r � yng;

v1.y/D
.yn� �r/

�r
u.y/ if y 2 @Q\fy W �r � yn < 2�rg :

Comparing boundary values and using the maximum principle for p harmonic
functions, we deduce

(6.5) v1 � u in Q:

Let �."/D exp.�1="/. To complete the proof of Theorem 4 we will make use of
the following lemmas.

LEMMA 6.6. Let 0 < "� O", let � D �."/ be as above and let Q� be as in (5.3).
If O" is small enough, then there exists O� D O�.p; n;M/; 0 < O� � 1=2, such that if
O�D �1=2�

O�r , then

1 � u.y/=v1.y/ � 1C "

whenever y 2 z�.0; Q�=16/\ ŒB.0; O�/ nB.0; 4
p
�r/�:

LEMMA 6.7. Let v1, ", O", O� , r , and � be as in Lemma 6.6 and let Q� be as in
(5.3). If O" is small enough, then there exist � D �.p; n;M/; 0 < � � O�=10; and
Oı D Oı.p; n;M/ > 1 such that if �D �1=2�4�r; b D ��� , then

Oı�1
v1.x/

d.x; @�/
� jrv1.x/j � Oı

v1.x/

d.x; @�/

whenever x 2 z�.0; Q�=4/\ ŒB.0; b�/ nB.0; �=b/� and 0 < "� O".

Lemmas 6.6 and 6.7 are proved below but here we indicate how the proof
of Theorem 4 in the case of C 1-domains follows from these lemmas. Indeed,
using Lemmas 6.6 and 6.7 and arguing as in the proof of Lemma 5.4, we see for O"
sufficiently small and fixed, 0 < "� O", that there exists Qı > 1, depending only on
p, n, and M , such that

(6.8) Qı�1
u.x/

d.x; @�/
� jru.x/j � Qı

u.x/

d.x; @�/

in z�.0; Q�=2/\ ŒB.0; b1=2�/ nB.0; �=b1=2/�. Fix " so small that b1=2 D ���=2 >
Qb.p; n;M; Qı/D Qb.p; n;M/, where Qb is as in Theorem 3. Choosing � 2 f�lg with
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liml!1 �l D 0 we conclude from (6.8) and Theorem 3 that Theorem 4 is valid in
the C 1-case.

Proof of Lemma 6.6. From (6.5) we observe that it suffices to prove the right-
hand side inequality stated in Lemma 6.6. We note that if y 2 @Q and u.y/ 6D v1.y/,
then y lies within 4�r of a point in @�. Also, max@B.0;t/ u is nonincreasing as a
function of t > 0 as we see from the maximum principle for p harmonic functions.
Using these notes and Lemmas 2.1–2.3, we see that

(6.9) u� v1C c�
˛=2 u.

p
�en/

on @Q, where ˛ is the exponent of Hölder continuity in Lemma 2.2. By the maxi-
mum principle for p harmonic functions this inequality also holds in Q.

Using the interior Harnack inequality and Lemmas 2.1–2.3, we also find that
there exist ˇ D ˇ.p; n;M/� 1 and c D c.p; n;M/ > 1 such that

(6.10) maxf .z/;  .y/g � c .d.z; @Q/=d.y; @Q//ˇ minf .z/;  .y/g

whenever z 2Q, y 2Q\B.z; 4d.z; @Q// and  D u or v1. Also, from Lemmas
2.1–2.3 applied to v1 we deduce that

(6.11) v1.2
p
� ren/� c�1 u.

p
� ren/:

Let O�; O� be as in Lemma 6.6. From (6.9)–(6.11) we see that if y 2 Q�.0; Q�=16/\
ŒB.0; O�/ nB.0; 4

p
� r/�; then

(6.12) u.y/� v1.y/Cc�˛=2u.
p
�en/� .1Cc

2�˛=2�
O�ˇ /v1.y/� .1C"/v1.y/

provided that O" is small enough and O�ˇ D ˛=4. Thus Lemma 6.6 is true. �

Proof of Lemma 6.7. Using Lemmas 2.1–2.3 and Harnack’s inequality, we
note that there exist  D .p; n;M/ > 0; 0 <  � 1=2, and c D c.p; n;M/ > 1

such that

(6.13) u.x/� c.s=t/u.sen/

provided x 2 Rn n B.0; t/; t � s, and sen 2 � with d.sen; @�/ � c�1s: Using
(6.13) with t D r; s D

p
�r , we find that

(6.14) v1 � c �=2 u.
p
�ren/ on @Q n xB.0;

p
� r /;

where c depends only on p, n, and M . Let Qv be the p harmonic function in
Q with continuous boundary values Qv D 0 on @Q n xB.0;

p
� r/ and Qv D v1 on

@Q \ @B.0;
p
�r/. From the maximum principle for p harmonic functions and

(6.14) it follows that

(6.15) 0 � Qv � v1 � QvC c�
=2u.

p
�ren/ in Q:

From Lemmas 2.1–2.3 we observe that

(6.16) Qv.2
p
�ren/� c

�1 v1.
p
�ren/D c

�1u.
p
�ren/:
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Using (6.15), (6.16), and (6.10) applied to  D Qv we obtain for �D �1=2�4�r; �
small, b D ��� , and Ob D 8b2, that

(6.17) Qv � v1 � .1C c�
=2�6�ˇ / Qv � .1C "/ Qv

on z�.0; Q�=8/\ ŒB.0; Ob�/ nB.0; �= Ob/�; provided that O" is small enough and � D
minf=.24ˇ/; O�=10g.

Next let v be the p harmonic function in

Q0 D fy W jyi j< r; 1� i � n� 1g\ fy W �r < yn < rg n xB.2
p
� ren;

p
� r /

with continuous boundary values v D 0 on @Q0 n xB.2
p
�en;

p
� r/ while v D 1

on @B.2
p
� ren;

p
� r /. Arguing as in the proof of (6.1) we see that

(6.18) v.x/� ch2
p
� ren� x;rv.x/i

when x 2Q0, where c D c.p; n/. Clearly this inequality implies that there exists
c D c.p; n; �/� 1, for given �; 0 < �� 1=2, such that

(6.19) c�1
v.x/

d.x; @Q0/
� jrv.x/j � c

v.x/

d.x; @Q0/

in zQ0.0; �/ nB.0; 10
p
� r/, where zQ0.0; �/ is the nontangential approach region

defined relative to 0, �, and Q0 as in Section 1. Using Lemma 4.28 and (6.19) for
suitable �D �.p; n/ we conclude that (6.19) actually holds in Q0 nB.0; 10

p
�r/.

We now use (6.19) and Corollary 5.25 applied to v; Qv with �; r 0 replaced by
Q0; 10

p
�r in order to get, for some aD a.p; n/ > 0 and c D c.p; n/ > 1, that

(6.20)
ˇ̌̌̌
log

�
Qv.x/

v.x/

�
� log

�
Qv.y/

v.y/

�ˇ̌̌̌
� c

� p
� r

min.jxj; jyj/

�a
whenever x; y 2Q0\B.0; r=4/ nB.0; c

p
�r/. Using (6.20), (6.19), and arguing

as in the proof of Lemma 5.4, it then follows that there exists � D �.p; n/ > 20
such that

(6.21) c�1
Qv.x/

d.x; @�/
� jr Qv.x/j � c

Qv.x/

d.x; @�/

in z�.0; Q�=8/\ ŒB.0; r=2/ nB.0; �
p
� r/�. Finally, note that if 0� "� O" and if O" is

sufficiently small, then r=2 > b2� > �=b2 > �
p
� r . Hence, if O" is small enough

then we can use (6.21), (6.17), and the same argument as in Lemma 5.4 to conclude
that Lemma 6.7 is valid. The proof of Theorem 4 is now complete in the C 1-case.

To complete the proof of Theorem 4 we observe that if @� has a tangent plane
at 0 2 @�, then Lemmas 6.6 and 6.7are valid for r; O"; sufficiently small. Using the
argument in the paragraph below Lemma 6.7 we get that u is unique up to constant
multiples. �

Finally in this section we note, without proof, that Theorem 3 and Lemmas
6.6 and 6.7 imply a stronger result. In order to state this result let h.E; F / be the
Hausdorff distance between E and F defined as the infimum of the set of all �
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such that every point of E lies within � of a point of F and vice versa. Let w 2 @�
and put

f .r/D inf
P
h .@�\B.w; r/; P \B.w; r// ;

where P is an .n� 1/-dimensional plane containing w. Then the following is true.

COROLLARY 6.22. There exists � D �.p; n;M/ > 0 such that if

lim inf
r!0

r�1f .r/� �.p; n;M/;

then minimal positive p harmonic functions relative to w are unique up to con-
stants.

7. Proof of Theorem 5 and closing remarks

In this section we first prove Theorem 5. To this end we let � be a bounded
Lipschitz domain and we let p, 1 < p <1, be given. Recall from Section 1, in
the case of the Martin boundary problem for the exterior of �, that u > 0 is said
to be a minimal positive p harmonic function relative to w 2 @� provided that u
is p harmonic in Rn n x� with continuous boundary value zero on @� n fwg and

lim
x!1

u.x/D 0:

7.1. Proof of Theorem 5. If @� is C 1, then the proof of Theorem 5 is es-
sentially the same as the proof of Theorem 4. To briefly outline the proof, one
first proves analogues of Lemmas 5.4 and 5.5 for Rn n x�. In fact, the proof
of Lemma 5.4 is unchanged if � is replaced by Rn n x�. Also, the proof of
Lemma 5.5 follows with minor changes if one assumes that Ou; Ov are positive p
harmonic functions in Rn n Œx�[ xB.w; r 0=2/� with continuous boundary values 0
on .@�[f1g/\ŒRnn xB.w; r 0=2/�. Indeed, in this case one can define u�.�; �/; � 2
Œ0; 1� to be the p harmonic function in .Rn n x�/\ ŒB.w; 2 Or/ n xB.w; r 0=2/� with
boundary values � Ov C .1 � �/ Ou, and one can then let Or!1 to get Ou.�; �/ sat-
isfying (5.13) in Rn n Œx� [ xB.w; r 0=2/� and (4.14) with � replaced by Rn n x�.
We then deduce (4.15) and (4.16) with � replaced by Rn n x� and next that the
function Osc(�) defined below (4.16) is nonincreasing as a function of t on its
domain. This fact, (4.16), Lemma 2.12 and iteration imply (4.17) and Lemma 5.5,
as previously explained. The proof of Theorem 3 with � replaced by Rn n x�,
follows from Lemmas 5.4 and 5.5 without any essential modifications. Finally,
in the case when @� is C 1, the construction of f�lg and u satisfying (1.9) in
.Rn n x�/\

S
l B.w;

Qb�l/ nB.w; �l= Qb/ is no different than the corresponding con-
struction in Theorem 4.

Next we consider the case when � is convex. We assume, as we may, that
w D 0 2 @�. Also, using convexity of � we assume, as we may, that there exists
a Lipschitz function � W Rn�1!R with Lipschitz norm �M and the property that,
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after a rotation if necessary,

.a/ �.x0/� �.0/D 0; x0 2 Rn�1;(7.1)

.b/ @�\B.0; 4r0/D f.x0; �.x0// W x0 2 Rn�1g\B.0; 4r0/;

.c/ .Rn n x�/\B.0; 4r0/D f.x0; xn/ W xn > �.x0/; x0 2 Rn�1g\B.0; 4r0/:

Given 0 < � and 0 < r < r0�4; let G.�; r/ be the union of all open line segments
drawn from ren to points in @�\B.0; r=�4/. We shall need the following lemma.

LEMMA 7.2. Given �; 0 < � < 10�10; there exists rC.�/; 0 < rC < �4r0;

such that if 0 < r < rC, then G.�; r/� Rn n x�.

Proof. Note from (7.1) that if �0 D �0.M; n/ is small enough, then

K ��; where K D fy 2 B.0; r0/ n f0g W �hy; eni � .1� �0/jyjg:

Let !0 2 @B.0; 1/ and let l D fsen C t!0; 0 < t < 1g be the ray drawn from
sen with direction !0. If 0 < s < r0�4, and G.�; s/ 6� Rn n x�, then there exist
!0 2 @B.0; 1/ and 0< t1 < t2 such that Pi D senC ti !0 2 @�nK for i D 1; 2. Let
yO be the interior of the set obtained from drawing all line segments from P1 to

points in K. From convexity of � we see that the line segment l1 � l connecting
P2 to infinity cannot intersect �. In this case we claim that there exists 0 < � D
�.M; n; �/ such that if ! 2 @B.0; 1/\B.!0; �/, then any line segment l 0 of the
form f�en C t!; 0 < t < 1g, for 0 < � < �5s, can intersect @� \ B.0; �=�4/
in at most one point. Indeed, if l 0 intersects @�\B.0; �=�4/ in two points, then
there is a line segment l 00 � l 0 connecting one of these points to1 which does not
intersect �. On the other hand, it is easily seen, for � D �.M; n; �/ small enough,
that l 00 must intersect yO; which is a contradiction. Thus our claim is true. From our
claim, we conclude that if a ray drawn from sen in a given direction !0 intersects
@�\B.0; s=�4/ in two points, then every ray drawn from �en in the direction
! intersects @�\B.0; �=�4/ in at most one point for ! 2 @B.0; 1/\B.!0; �/.
Let E be the set of all points !0 2 @B.0; 1/ for which there are two intersections
as just described. Using a well-known covering lemma we can cover E by balls,
B.!i ; �/; 1� i �N;with !i 2E; in such a way that the ballsB.!i ; �=10/; 1� i �N
are pairwise disjoint. It follows that N � c��n so that for rC.�/ small enough, we
must have G.�; r/� Rn n x�. �

To continue the proof of Theorem 5, fix r; 0 < r < �2rC.�/, and let K� be the
cylinder defined by K�D f.x0; xn/ W jx0j< r=�2; xn < r=�2 g: Put H DH.�; r/D
K�\.Rnn x�/ and observe from (7.1) that if y 2@H\K�, then y 2B.0; r=�4/\@�
for � D �.M; n/ > 0 small enough. Thus by Lemma 7.2 the open line segment
from ren to y is in H . From this observation we see that

(7.3) H is open and starlike with respect to ren.

Next, for fixed p; 1 < p <1, let u be a minimal positive p harmonic function
in Rn n x� relative to 0: If 0< �< 1=2, then let U.�/� Rn n x� be the nontangential
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approach region to 0 defined by

U.�/D fx 2 .Rn n x�/\B.0; r0/ W d.x; @�/ > Q� jxjg:

From Theorem 2 we see that there exists Q�D Q�.p; n;M/ > 0, such that if

W D .Rn n x�/\ ŒB.0; r0/ nU. Q�/�;

then

.a/ u satisfies (1.9) in W with a constant ı D ı.p; n;M/,(7.4)

.b/ given y 2W there exists z 2 @� n f0g with y 2 B.z; jzj=c/,

� D �.z/; and ı0 D ı0.p; n;M/, for which (1.10) holds

on .Rn n x�/\B.z; 2jzj=c/.

Let v1 be the p harmonic function in H n xB.0; r/ with continuous boundary values
v1 � 0 on @H n xB.0; r/ while v1 � u on @B.0; r/ \H . To finish the proof of
Theorem 5 we need the following lemmas (compare with Lemmas 6.6 and 6.7).

LEMMA 7.5. Given " > 0 small, let v1 be defined as above. Then there exist
�0D�0.p; n;M; "/ and � D �.p; n;M/; 0<�; �0<10

�10; such that if 0<� ��0
and if �D ��2�r; b D ��� ; then

1� "� v1=u� 1

in U. Q�=4/\ ŒB.0; 4b�/ nB.0; �=.4b//�.

LEMMA 7.6. Let ", v1; �, and b be as in Lemma 7.5. If �1 D �.p; n;M/ is
small enough and 0 < � < �1; then there exists Qı D Qı.p; n;M/ > 1 such that

Qı�1
v1.x/

d.x; @�/
� jrv1.x/j � Qı

v1.x/

d.x; @�/

for x 2 U. Q�=2/\ ŒB.0; b�/ nB.0; �=b/�:

To get Theorem 5 from Lemmas 7.5 and 7.6, we observe, as in the proof
of Lemma 5.4, that since Qı depends only on p, n, and M , we can choose " > 0
sufficiently small and deduce that

(7.7) Oı�1
u.x/

d.x; @�/
� jru.x/j � Oı

u.x/

d.x; @�/

in U. Q�/\ ŒB.0; b1=2�/ nB.0; �=b1=2/�. Here Oı > 1 depends only on p, n, and M .
From (7.4) we see that (7.7) holds in .Rn n x�/\ ŒB.0; b1=2�/ nB.0; �=b1=2/�.

Choosing b sufficiently large and � 2 f�lg with liml!1 �l D 0 we conclude
from (7.7) and the analogue of Theorem 3 for Rn n x�, that Theorem 5 is valid when
� is convex.

Proof of Lemma 7.5. Comparing boundary values we see that the right-hand
inequality in Lemma 7.5 is a consequence of the maximum principle for p har-
monic functions. To get the left-hand inequality extend u to a continuous function
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on Rn n f0g by putting u � 0 on x� n f0g. We note from Lemmas 2.1–2.3, the
fact that lim

x!1
u.x/D 0 and Harnack’s inequality, as in (6.13), that there exist

 > 0; 0 <  � 1=2, and c D c.p; n;M/� 1 such that

(7.8) u.x/� c.s=t/u.sen/

provided x 2 Rn nB.0; t/ and r0 � t � s. Using (7.8) with t � r=�2, s D r , and
Lemmas 2.1–2.3, we see that

(7.9) v1 � u� c�
2u.ren/

on @H n xB.0; r/ and hence, by the boundary maximum principle, this inequality
also holds in H n xB.0; r/: Now from Harnack’s inequality we see, as in (6.10), that
for some ˇ D ˇ.p; n;M/; c D c.p; n;M/� 1;

(7.10) u� c�1.r=t/ˇu.ren/ in B.0; t/\U. Q�=4/

whenever r0 � t > 2r . Let t D ��2�r D �, b D ��� and let � D �.p; n;M/ > 0

be defined through the relation 3ˇ� D  . Then, using (7.9) and (7.10), we see that

(7.11) v1=u � 1�
c�2 u.ren/

u
� 1� c2�2�3ˇ� � 1� "

in U. Q�=4/\B.0; 4b�/ nB.0; �=.4b// provided � � �0.p; n;M; "/. The proof of
Lemma 7.5 is now complete. �

Proof of Lemma 7.6. Let Qv be the p harmonic function in H nB.ren; r=4/
with continuous boundary values Qv D 0 on @H and Qv D 1 on @B.ren; r=4/. Using
(7.3) and arguing as in (6.1)–(6.3), we deduce the existence of c D c.p; n/ such
that

(7.12) Qv.x/� c hren� x;r Qv.x/i for x 2H n xB.ren; r=4/:

Clearly (7.12) implies for given � > 0 that there exists Qc D Qc.p; n; �/� 1 such that

(7.13) Qc�1
Qv.x/

d.x; @H/
� jr Qv.x/j � Qc

Qv.x/

d.x; @H/

in QH.0; �/ n xB.0; 4r/, where QH.0; �/ denotes the nontangential approach region
defined relative to H , 0, and �. Using Lemma 4.28 we see that (7.13) actually
holds in H nB.0; 4r/ for �D �.p; n;M/ > 0 sufficiently small. In view of (7.13)
we can now apply Corollary 5.25 to Qv; v1 in H n xB.0; 4r/ with r 0 D 4r (see also
(6.19) and (6.20)). For some cD c.p; n;M/ > 1 and aD a.p; n;M/; 0 < a� 1=2,
we get that

(7.14)
ˇ̌̌̌
log

�
Qv.x/

v1.x/

�
� log

�
Qv.y/

v1.y/

�ˇ̌̌̌
� c

�
r

min.jxj; jyj/

�a
whenever x; y 2 B.0; 2r=�/ nB.0; cr/. Using (7.13) and (7.14), and arguing as in
the proof of Lemma 5.4, it follows that there exists O� D O�.p; n;M/ such that

(7.15) c�1
v1.x/

d.x; @H/
� jrv1.x/j � c

v1.x/

d.x; @H/
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in H \U. Q�=2/\ ŒB.0; r
�
/nB.0; O�r/�: Finally from (7.15) we deduce the existence

of �1.p; n;M/ > 0 such that Lemma 7.6 is valid. The proof of Lemma 7.6 and
Theorem 5 in the convex case is now complete. Moreover, the proof that a Martin
boundary function is unique at a point where @� has a tangent plane is unchanged.
In fact, Corollary 6.22 defined relative to Rn n x� remains true. The proof of Theo-
rem 5 is therefore complete. �

7.2. Closing remarks. We note that our arguments in Theorems 4 and 5 ac-
tually show that there exist a minimal positive p harmonic function u relative to
w 2 @� and a � > 0 such that (1.9) holds for u in �\B.w; �/ (Theorem 4) or
.Rn n x�/\B.w; �/ (Theorem 5). Thus we could have proved a weaker version
of Theorem 3. On the other hand the full generality of Theorem 3 is needed in
Corollary 6.22. Moreover, Theorem 3 gives us more flexibility in studying the
Martin boundary of more general domains such as the complement of a Cantor
set. Also, we believe that the conclusions of Theorems 4 and 5 are most likely
valid when � is a bounded Lipschitz domain in Rn; n � 3, and that Theorem 3
(or even more general forms of it) could eventually lead to a proof in the Lipschitz
case. In fact we tried to use this idea together with compactness and blow-up type
arguments to prove Theorem 4. However we could not rule out the possibility
that there exists, for a minimal positive p harmonic function u relative to w in
@�, a snowflake type surface S connecting a point in � to w with ruD 0 on S .
Furthermore, the PDE in (1.6) and (1.7) degenerates at points where ruD 0, and
therefore at such points it is not clear how to prove even basic interior estimates for
solutions. Finally we end this paper by outlining the proof of the following remark.

Remark 7.16. The conclusions of Theorems 4 and 5 are valid for bounded
Lipschitz domains �� R2.

To prove Remark 7.16, let fwmg be a sequence of points in � with

lim
m!1

wm D w 2 @�:

Given p; 1 < p <1, let um be the p capacitary function for

� n xB.wm; d.wm; @�/=2/; mD 1; 2; : : : :

Then from [L] we have rum 6D 0 in � n xB.wm; d.wm; @�/=2/ and rum is k D
k.p/; 0 < k < 1; quasi-regular in � n xB.wm; d.wm; @�/=2/ for mD 1; 2; : : : . Let
Qum D um=um. Ox/, where Ox is a fixed point in �. From Lemmas 2.1–2.4 we see
there exists a subsequence f Qumj g of f Qumg such that f Qumj g; fr Qumj g converges to
u;ru uniformly on compact subsets of �. Moreover, u is p harmonic in � with
continuous boundary value 0 on @� n fwg. Since u. Ox/ = 1, it follows that u is a
minimal p harmonic function in �, relative to w. Now a uniformly convergent
sequence of nonzero k quasi-regular mappings on compact subsets of � must be
either � 0 or not vanish anywhere on �. Thus

(7.17) ru.x/ 6D 0 when x in �:
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From (7.17) and quasi-regularity of ru we see, as in [BL, Lemma 2.26 .C/], that
f D log jrujC�; �D constant is a solution to a divergence form uniformly elliptic
PDE in � for which positive solutions satisfy a Harnack inequality. Using this fact
and Lemmas 2.1–2.3 it follows, as in [BL, Lemma 2.26], that

(7.18) c�1
u.x/

d.x; @�/
� jru.x/j � c

u.x/

d.x; @�/
in �;

for some c D c.p; n;M/� 1. From (7.18) we see that the hypotheses of Theorem
3 are satisfied in �. Hence Theorem 4 is true when �� R2. Essentially the same
proof also gives Theorem 5.
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Danijela Damjanović and Anatole Katok. Local rigidity of partially

hyperbolic actions I. KAM method and Zk actions on the torus . . . . . . . . 1805–1858
Jorge Lauret. Einstein solvmanifolds are standard . . . . . . . . . . . . . . . . . . . . . 1859–1877
Pascal Collin and Harold Rosenberg. Construction of harmonic

diffeomorphisms and minimal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1879–1906
John Lewis and Kaj Nyström. Boundary behavior and the Martin

boundary problem for p harmonic functions in Lipschitz domains . . . . . . 1907–1948
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