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Abstract

We develop a general strategy, based on gauge theoretical methods, to prove
existence of curves on class VII surfaces. We prove that, for b2 D 2, every minimal
class VII surface has a cycle of rational curves hence, by a result of Nakamura, is a
global deformation of a one parameter family of blown up primary Hopf surfaces.
The case b2 D 1 was solved in a previous article. The fundamental object inter-
vening in our strategy is the moduli space Mpst.0;K/ of polystable bundles E with
c2.E/D 0, det.E/D K. For large b2 the geometry of this moduli space becomes
very complicated. The case b2 D 2 treated here in detail requires new ideas and
difficult techniques of both complex geometric and gauge theoretical nature. We
explain the substantial obstacles which must be overcome in order to extend our
methods to the case b2 � 3.
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0. Introduction

The classification problem for class VII surfaces is a very difficult, still un-
solved problem. Solving this problem would finally fill the most defying gap in
the Enriques-Kodaira classification table. By analogy with the class of algebraic
surfaces with kod D �1, one expects this class to be actually very small. This
idea is supported by the classification in the case b2 D 0, which is known: any
class VII surface with b2 D 0 is either a Hopf surface or an Inoue surface [Bog76],
[Bog82], [Tel94], [LYZ94]. On the other hand, solving completely the classifica-
tion problem for this class of surfaces has been considered for a long time to be
a hopeless goal; the difficulty comes from the lack of lower dimensional complex
geometric objects: for instance, it is not known (and there exists no method to
decide) whether a minimal class VII surface with b2 > 0 possesses a holomorphic
curve, a nonconstant entire curve, or a holomorphic foliation.

In his remarkable article [Nak89] Nakamura, inspired by the previous work
of Kato ([Kat77], [Kat78], [Kat83]), and Dloussky [Dlo88], stated a courageous
conjecture, which would in principle solve the classification problem for class VII
surfaces, as we explain below:

THE GSS CONJECTURE. Any minimal class VII surface with b2 > 0 contains
a global spherical shell.

We recall that a (bidimensional) spherical shell is an open surface which is
biholomorphic to a standard neighborhood of S3 in C2. A global spherical shell
(GSS) in a surface X is an open submanifold † of X which is a spherical shell
and such that X n† is connected. Minimal class VII surfaces which allow GSS’s
(which are usually called GSS surfaces, or Kato surfaces) are well understood; in
particular it is known that any such surface is a degeneration of a holomorphic
family of blown up primary Hopf surfaces, in particular it is diffeomorphic to such
a blown up Hopf surface. Moreover, Kato showed [Kat77] that any GSS surface
can be obtained by a very simple construction. First one considers a modification
mDmb ı � � � ım1 W yDb!D of the standard disk D � C2, where m1 W yD1!D

is the blowing up at 0 2 D, and mk is obtained inductively by blowing up in
yDk�1 a point of its (-1)-curve. Second, one performs a holomorphic surgery S

to the resulting manifold yDb in the following way: one removes a closed ball
around a point p 2 yDb belonging to the last exceptional curve of m, and then
identifies holomorphically the two ends of the resulting manifold (which are both
spherical shells). Choosing in a suitable way the identification map s, one gets a
minimal surface. The isomorphism class of the resulting surface is determined by
two parameters: the modification m and the identification map s. Note however
that Kato’s simple description of GSS surfaces does not immediately yield a clear
description of the moduli space of GSS surfaces, because different pairs .m; s/
can produce isomorphic surfaces. Nevertheless this shows that, in principle, the
complete classification of GSS surfaces can be obtained with “classical” methods,
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so the GSS conjecture would solve in principle the classification problem for the
whole class VII.

The existence of a GSS reduces to the existence of “sufficiently many curves”.
This is an important progress which is due to several mathematicians (Kato, Naka-
mura, Dloussky, Dloussky-Oeljeklaus-Toma) who worked on the subject in the last
decades. More precisely one has

THEOREM 0.1. (i) If a minimal class VII surface X with b2.X/ > 0 admits
b2.X/ rational curves, then it also has a global spherical shell.

(ii) If a minimal class VII surface X admits a numerically pluri-anticanonical
divisor, i.e., a nonempty curve C such that c1.O.C // 2 Z�0 c1.K/ mod Tors,
then it also has a global spherical shell.

(iii) If a minimal class VII surface X admits a cycle of curves, then it is a global
deformation (a degeneration) of a one parameter family of blown up primary
Hopf surfaces.

Here by “cycle” we mean either a smooth elliptic curve or a cycle of rational
curves (which includes a rational curve with an ordinary double point). The first
statement is the remarkable positive solution — due to Dloussky-Oeljeklaus-Toma
[DOT03] — of Kato’s conjecture; this conjecture had been solved earlier in the
case b2 D 1 by Nakamura [Nak84]. The second statement is a recent result of
G. Dloussky [Dlo06], whereas the third is due to Nakamura [Nak89]. This impor-
tant theorem shows that, as soon as a minimal class VII surface X with b2.X/ > 0
admits a cycle, it belongs to the “known component” of the moduli space.

In our previous article [Tel05] we proved, using techniques from Donaldson
theory, that any class VII surface with b2 D 1 has curves; using the results of
Nakamura [Nak84] or Dloussky-Oeljeklaus-Toma cited above, this implies that
the global spherical shell conjecture holds in the case b2 D 1. Since the GSS
surfaces in the case b2 D 1 are very well understood, this solves completely the
classification problem in this case. The method used in [Tel05] can be extended to
higher b2, and we believe that, at least for small b2, it should give the existence of
a cycle. Our general strategy has two steps:

CLAIM 1. If X is a minimal class VII surface with no cycle and b2.X/ > 0,
then, for suitable Gauduchon metrics [Gau84], the moduli space Mpst.0;K/ of
polystable bundles E on X with c2 D 0 and det.E/ D K has a smooth compact
connected component Y �Mst.0;K/, which contains a nonempty finite subset of
filtrable points.

Mpst.0;K/ is endowed with the topology induced by the Kobayashi-Hitchin
correspondence from the corresponding moduli spaces of instantons. We will see
that this moduli space is always compact (see �1.4); this is easy to see for b2 � 3,
because in this case the lower strata in the Uhlenbeck compactification are auto-
matically empty [Tel05]. This moduli space is not a complex space, but its stable
part Mst.0;K/ is an open subset with a natural complex space structure. Y will



1752 ANDREI TELEMAN

be defined as the connected component of the canonical extension A, which, by
definition, is the (essentially unique) nonsplit extension of the form

(1) 0 �! K
i0
�! A

p0
��! O �! 0

and is stable when degg.K/ < 0 and X has no cycle of curves. The condition
degg.K/ < 0 is not restrictive; we will show that there exist Gauduchon metrics
with this property.

CLAIM 2. The existence of such a component Y leads to a contradiction.

Both claims might be surprising, and one can wonder how we came to these
statements. The first claim is an obvious consequence of the following more precise
statement, which has been checked for b2 2 f1; 2g: consider the subspace Mst

∅ �

Mpst.0;K/ consisting of those stable bundles which can be written as a line bundle
extension whose kernel (left-hand term) has torsion Chern class.

CLAIM 10. If X is a minimal class VII surface with b2.X/ > 0 and no cycle
then, for a Gauduchon metric g with degg.K/ < 0, the closure Mst

∅ of Mst
∅ in

Mpst.0;K/ is open in Mpst.0;K/ and contains all filtrable polystable bundles except
the bundles of the form A˝R, R˝2DO. These bundles are stable but do not belong
to Mst

∅.

This implies that the connected component Y of A in Mpst.0;K/ is con-
tained in the stable part and is a smooth compact manifold which contains a finite
nonempty set of filtrable bundles, so it has the properties stated in Claim 1.

The main purpose of this article is to show that our 2-step strategy works in
the case b2 D 2. Therefore, we will prove the following result:

THEOREM 0.2. Any minimal class VII surface with b2 D 2 has a cycle of
curves, so it is a global deformation of a family of blown up Hopf surfaces.

We now explain in a geometric, nontechnical way how Claim 10 will be proved
for b2 D 2. We suppose for simplicity that �1.X/' Z; in this case the cohomol-
ogy group H 2.X;Z/ is torsion free and, by Donaldson’s first theorem [Don87], is
isomorphic to Z˚2 endowed with the standard negative definite intersection form.
Let .e1; e2/ be an orthonormal basis of H 2.X;Z/ such that

e1C e2 D�c1.X/D c1.K/ :

Consider first the spaces Mst
∅, M

pst
∅ of stable, respectively polystable, exten-

sions E of the form

(2) 0! L! E! K˝L_! 0

with c1.L/D 0. It is easy to see that, under our assumptions, Mst
∅ can be identified

with D� �P1, where D� � Pic0.X/' C� is the subset of line bundles satisfying
the inequality degg.L/ <

1
2

degg.K/. D
� is a punctured disk. M

pst
∅ can be identified

with the space obtained from the product xD��P1 by collapsing to a point each fiber
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over the circle @ xD. The circle R0 of collapsed fibers is one of the two components
of the subspace of reductions (split polystable bundles) Mred.0;K/.

One also has two 1-dimensional families of extensions corresponding to the
cases c1.L/D ei . When X has no curve in the classes ˙.e1� e2/ (assume this for
simplicity!), the corresponding loci of polystable bundles M

pst
fig

can be identified
with two punctured closed disks xD�i WD xDi n f0ig; the subspaces Mst

fig
of stable

bundles of these types are identified with D�i . There is a natural isomorphism
between the two boundaries @ xDi , and the points which correspond via this isomor-
phism represent isomorphic split polystable bundles. Therefore, one has to glue
the punctured closed disks xD�i along their boundaries and get a 2-sphere minus
two points S n f01; 02g, which is the second piece of our moduli space. The circle
R00 given by the identified boundaries @Di is the second component of Mred.0;K/.
There are two more filtrable bundles in our moduli space, namely the two bundles
of the form A˝R with R˝2 D O. These bundles are stable under the assumption
that degg.K/ < 0 and X has no cycle. Therefore we also have a 0-dimensional
subspace Mst

f1;2g
of stable bundles.

Using another classical construction method for bundles, one gets two more
points, namely the push-forwards B1, B2 of two line bundles on a double cover zX
of X (see �1.3). These points are fixed under the involution ˝� given by tensoring
with the flat Z2-connection defined by the generator � of H 1.X;Z2/.

Under our assumptions (lack of curves!), the four pieces M
pst
∅ , S n f01; 02g,

fB1g, and fB2g are disjoint. Now note that there is an obvious way to put together
these pieces in order to get a compact space (this looks like solving a puzzle!):
one identifies B1, B2 with the missing points 01, 02 of S n f01; 02g and afterward
puts the obtained sphere S at the place of the missing fiber of the P1-fibration
Mst

∅!D� (see Figure 1). The result is a topological space homeomorphic to S4.
Knowing that Mst

∅ is obtained in the described way, it will be easy to prove
that it is open and that it does not contain any bundle of the form A˝R. For the
first statement it suffices to compare the local topology of our 4-sphere to the local
topology of Mpst.0;K/ prescribed by deformation theory; for the second it suffices
to show that a bundle A˝R does not belong to any of the four pieces; this follows
easily using again our assumption concerning nonexistence of curves.

Therefore, the idea of proving Claim 10 (so also Claim 1) is very clear: solving
our puzzle game yields a compact component of the moduli space; the two elements
of Mf1;2g are not needed in the construction of this compact component, so they
belong to a new component (or to two new components). However, the fact that our
4-sphere (the space obtained solving the puzzle game in the most natural way) is
indeed the closure of Mst

∅ is difficult to prove. The point is that one has absolutely
no control on extensions of the form (2) when degg.L/!�1, because the volume
of the section defined by L in the projective bundle P.E/ tends to1 as degg.L/!
�1. In other words, there exists no method to prove that a certain family of
extensions is contained in the closure of another family, so incidence relations
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P1

 

missing fibre

the fibre

identify

Mst
f2g

B2

B1

Mst
∅

Mst
f1g

Figure 1

between families of extensions are difficult to understand and prove. This is one
of the major difficulties in understanding the global geometry of moduli spaces
of bundles on non-Kählerian surfaces. The fact that the above construction gives
indeed the closure of Mst

∅ will follow from:

(i) The holomorphic structure of Mst.0;K/ extends across R00 (see �1.4.5) and,
with respect to the extended holomorphic structure, the complement D of M

pst
∅

in Mpst.0;K/ is a divisor.

(ii) The circles R0 and R00 belong to the same component of the moduli space.
This important result will be obtained using the Donaldson � class associ-
ated with a generator of H1.X;Z/=Tors and a gauge theoretical cobordism
argument.

We still have an important detail to explain: why did we use the two ˝�-fixed
points B1, B2 in solving our puzzle (which should produce the closure Mst

∅) and
not, for instance, the two filtrable elements of Mst

f1;2g
or two nonfiltrable bundles?

The point is that the involution ˝� acts nontrivially on the divisor D, which in our
simplified case is a projective line. Therefore this divisor contains the two fixed
points of this involution.

Note that, without assuming �1.X/ ' Z, the structure of our moduli space
will a priori be slightly more complicated. Two complications arise:
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(i) Mst
∅ contains a disjoint union of components Mc associated with classes c 2

Tors.H 2.X;Z//.

(ii) It is difficult to prescribe the number of fixed points of the involution induced
by ˝� on each component (see �1.3).

However one can easily prove that each component Mc can be obtained from the
product xD�P1 by collapsing the fibers over @ xD to points as above and applying a
(possibly empty) sequence of blow ups in points lying above the center of the disk.
The fiber over this center will be a tree Dc of rational curves, one of which, say
D0c , contains a circle of reductions and consists of extensions of types f1g or f2g
and two fixed points of ˝�. This will slightly complicate our argument, because
we will also have to rule out the case when the bundle A belongs to an irreducible
component D1c ¤ D0c of the tree Dc . But we will see that such a component (if it
exists) consists generically of nonfiltrable bundles, so it suffices to apply Corollary
5.3 in [Tel05], which shows that there cannot exist a family of rank 2 simple bundles
over X parametrized by a closed Riemann surface which contains both filtrable
and nonfiltrable bundles. Note that the existence of a cycle implies �1.X/D Z by
Nakamura’s theorem (see Theorem 0.1(iii) above) hence, a posteriori, the moduli
space Mpst.0;K/ is just a 4-sphere, as explained above.

The first section contains general results concerning moduli spaces of polystable
bundles (projectively ASD connections) on non-Kählerian surfaces. These results
will play an important role in the future attempts to solve the GSS conjecture
in its full generality. Particular attention will be given to the topological prop-
erties of moduli spaces of projectively ASD connections on general Riemannian
4-manifolds with bC D 0, and to the structure of these moduli spaces around the
reduction loci.

The second section is dedicated to the geometry of the moduli space Mst.0;K/

in the case b2D 2. In this section we will prove Claim 10 in full generality (without
any assumption on �1.X/) following the geometric ideas explained above. The
following sections are dedicated to Claim 2: the appearance of a smooth compact
component in the moduli space leads to a contradiction. This contradiction will
be obtained in several steps as follows. In the third section we will show that the
embedding Y �Mst.0;K/ has a universal family F!Y �X . This result will enable
us in the fourth section to apply the Grothendieck-Riemann-Roch theorem to the
sheaves F, End0.F/ and the projection Y �X ! Y ; this will give us important
information about the Chern classes of the family F and about the Chern classes
of Y itself. The most important result is a parity theorem: the first Chern class
of Y is even modulo torsion, i.e., its image in H 2.Y;Q/ belongs to the image of
2H 2.Y;Z/. This is a very restrictive condition; it implies for instance that Y is
minimal. On the other hand, using the results in [Tel05], we see that Y cannot be
covered by curves, so a.Y /D 0. Therefore, we are left with very few possibilities:
a class VII surface with b2 D 0, a K3 surface, or a torus. The case when Y is a
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class VII surface requires a careful examination. This case will be treated in the
fifth section, which contains the final arguments. The other two cases (a K3 surface
or a torus) are Kählerian, so they can be ruled out using the results in [Tel08]; we
will explain briefly the arguments used in [Tel08] for completeness.

Therefore, essentially we make use of the theory of surfaces, so it is not clear
yet how to generalize our arguments to larger b2. On the other hand, by the results
in [LT95], the regular part of any moduli space of stable bundles over a Gaudu-
chon compact manifold is a strong KT (Kähler with torsion) manifold. Therefore,
future progress in the classification of this class of manifolds will be very useful
for extending our program to class VII surfaces with arbitrary b2.

1. General results

1.1. Holomorphic bundles with c2 D 0, detDK on class VII surfaces. In this
section we prove several general results concerning rank 2 bundles with c2 D 0,
detD K on class VII surfaces.

Let X be a class VII surface with second Betti number b. Since bC2 .X/D 0,
the intersection form qX WH

2.X;Z/=Tors�H 2.X;Z/=Tors! Z is definite so, by
Donaldson’s first theorem [Don87], it is trivial over Z. Put

k WD c1.K/D�c1.X/ :

Since Nk WD k mod Tors is a characteristic element for qX and Nk2 D�b, it follows
easily that there exists a unique (up to order) basis .e1; : : : ; eb/ in the free Z-module
H 2.X;Z/=Tors such that

ei � ej D�ıij ; Nk D

bX
iD1

ei :

For instance, when X is a primary Hopf surface blown up at b simple points,
ei are just the Poincaré duals of the exceptional divisors mod Tors. For a subset

I � f1; : : : ; bg DW I0 ;

we put

eI WD
X
i2I

ei ; NI WD I0 n I :

The connected components Picc , c 2 H 2.X;Z/ D NS.X;Z/ of the Picard
group Pic of X are isomorphic to C�. We put

PicT WD
[
c2Tors

Picc ; Pice WD
[
c2e

Picc ;

for a class e 2H 2.X;Z/=Tors. Let g be a Gauduchon metric on X . We will use the
notation Picc<d , Pice<d , PicT<d , etc. for the subspaces of Picc , PicT , Pice defined
by the inequality degg.L/ < d . Similarly for the subscripts � d , D d .
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We recall that a holomorphic vector bundle on a compact Gauduchon manifold
is called polystable if it is either stable, or it decomposes as a direct sum of stable
bundles of the same slope [LT95].

Consider the moduli space Mpst.0;K/ of holomorphic, g-polystable rank 2
bundles E on X with c2.E/ D 0 and det.E/ D K. The geometry of this moduli
space plays a fundamental role in our arguments. The idea to use this moduli
space is surprising and might look artificial; the point is that, whereas for a class
VII surface with no curves the “classical” complex geometric methods fail, a lot
can be said about the corresponding moduli space Mpst.0;K/, and the geometry of
this space carries important information about the base surface.

The characteristic number �.E/ WD 4c2.E/� c1.E/2 of a bundle E with these
invariants is b2.X/ and, by the Riemann-Roch theorem, it follows that the expected
complex dimension of the moduli space is also b2.X/. As explained in [Tel05], this
moduli space can be identified with a moduli space of oriented projectively ASD
unitary connections via the Kobayashi-Hitchin correspondence. We will endow this
moduli space with the topology induced by this identification (see �1.4 for the main
properties of this topology).

One should not expect this moduli space to be a complex space: in the non-
Kählerian framework, moduli spaces of instantons have complicated singularities
around the reductions, and these singularities are not of a complex geometric na-
ture (see [Tel05] and �1.4 in this article). Denote by Mred.0;K/ the subspace of
reductions (of split polystable bundles) in Mpst.0;K/. The open subspace

Mst.0;K/DMpst.0;K/ nMred.0;K/

is a complex space [LT95].
It is important to note that Mpst.0;K/ comes with a natural involution. Indeed,

the group H 1.X;Z/=2H 1.X;Z/' Z2 is a subgroup of H 1.X;Z2/, and the latter
can be identified with the group of flat line bundles with structure group f˙1g � S1

(see [Tel05]). We denote by � the generator of H 1.X;Z/=2H 1.X;Z/, by ˝� the
corresponding involution on Mpst.0;K/, and by M�.0;K/ the fixed point set of this
involution. We will see that its points correspond to stable bundles whose pull-back
to the double cover zX� associated with � are split (see �1.3).

The filtrable bundles E with c2 D 0, det.E/ ' K can be easily described as
extensions. More precisely, as in [Tel05, Prop. 3.2] one can show that

PROPOSITION 1.1. Let E be a rank 2 bundle on X with c2.E/ D 0 and
det.E/ D K. Then any rank 1 subsheaf L of E with torsion free quotient is a
line subbundle of E and has c1.L/ 2 eI for some I � I0. In particular, if E is
filtrable, it is the central term of an extension

(3) 0! L! E! K˝L_! 0 ;

where c1.L/ 2 eI for some I � I0.
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We recall that an Enoki surface is a minimal class VII surface with b2 > 0
which has a nontrivial effective divisor D>0 with D �DD 0 (or, equivalently, with
c1.O.D// 2 Tors). By the “Main Theorem” of [Eno81] it is known that any Enoki
surface is an exceptional compactification of an affine line bundle over an elliptic
curve and contains a global spherical shell (so also a cycle). Therefore, these
surfaces belong to the “known list”, so they are not interesting for our purposes.
Recall also an important vanishing result (see [Nak90, Lemma 1.1.3]):

LEMMA 1.2. On a minimal class VII surface one has

(4) H 0.U/D 0 for all U 2 Pic.X/ with k � c1.U/ < 0 :

Proof. It suffices to note that k � c1.O.C //� 0 for every irreducible curve C .
This follows easily from the genus formula (see [BHPVdV04, p. 85]) taking into
account that the intersection form of X is negative definite. �

Using Proposition 1.1 and the vanishing lemma stated above, one easily gets
the following important regularity result:

PROPOSITION 1.3. Let X be a minimal class VII surface with b2.X/ > 0

which is not an Enoki surface, and let E be a rank 2 holomorphic bundle on X with
c2.E/D 0, det.E/D K. Then H 2.End0.E//D 0 except when E is an extension of
K˝R by R, where R˝2 ' O.

Proof. An element ' 2 H 0.End0.E/˝K/ n f0g defines a section det.'/ 2
H 0.K˝2/, and this space vanishes for class VII surfaces. Therefore ker.'/ is a
rank 1 subsheaf of E, so E is filtrable. By Proposition 1.1, E fits into an exact
sequence of type (3) with L 2 PiceI for some I � I0.

Consider the diagram

(5)
0 �! L

˛
�! E

ˇ
�! K˝L_ �! 0

# '

0 �! K˝L
id˝˛
���! K˝E

id˝ˇ
���! K˝2˝L_ �! 0 :

Case 1. .id˝ˇ/ ı' ı˛ ¤ 0.

The morphism .id˝ ˇ/ ı ' ı ˛ can be regarded as an element of the space
H 0.K˝2˝L˝�2/. Using Lemma 1.2 we obtain H 0.K˝2˝L˝�2/D 0, except
perhaps when I D I0, in which case the Chern class of K˝2˝L˝�2 is torsion. But
X is not an Enoki surface, so we conclude that in factH 0.K˝2˝L˝�2/D0, except
when L˝2DK˝2. But in this case, any nontrivial morphism L!K˝2˝L_ is an
isomorphism. Therefore, if .id˝ˇ/ı' ı˛ did not vanish, it would split the second
exact sequence, so the first would be also split. This gives E D L˚ .K˝L_/,
where the second summand is a square root of O.

Case 2. .id˝ˇ/ ı' ı˛ D 0.

In this case ' maps ker.ˇ/'L into ker.id˝ˇ/'K˝L. Since H 0.K/D 0,
the induced morphism between the two kernels will vanish; hence there exists a
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well-defined morphism  WK˝L_!K˝E such that 'D ıˇ. The composition
.id˝ˇ/ı vanishes (again becauseH 0.K/D0), so factorizes as D .id˝˛/ı�
for a morphism � W K˝ L_ ! K˝ L, which can be regarded as a section in
H 0.L˝2/. By the same vanishing Lemma 1.2, one has H 0.L˝2/ D 0 except
when I D ∅. Since X is not an Enoki surface, ' can be nonzero only when
L˝2 ' O. �

Finally we recall a result proved in [Tel06]. This result answers the question
whether the canonical extension A can be written as an extension in a different
way, and shows that the answer to this question is related to the existence of a
cycle in X . The result is (see [Tel06, Cor. 4.10, Prop. 4.11]):

PROPOSITION 1.4. If the bundle A can be written as an extension

(6) 0 �!M
i
�! A

p
�! K˝M�1 �! 0

in which the kernel ker.p/�A does not coincide with the standard kernel ker.p0/
of the canonical extension (1), then there exists a nonempty effective divisor D
such that:

(i) M' O.�D/;

(ii) K˝OD.D/' OD;

(iii) c1.O.�D//D eI mod Tors for a subset I � I0;

(iv) h0.K˝OD.D//� h
0.K˝O.D//D 1.

Moreover, one of the following holds

1. D is a cycle,

2. O.�D/' K (i.e., D is an anti-canonical divisor).

Note that any anti-canonical divisor contains a cycle (see [Nak84, Lemma
12.4]). We include a self-contained proof of Proposition 1.4 for completeness:

Proof. Since ker.p/ � A does not coincide with the kernel ker.p0/ � A of
the standard exact sequence (1) the composition p0 ı i W M! O is nonzero. On
the other hand it cannot be an isomorphism because, if it were, i would define a
right splitting of (1). Therefore the image of p0 ı i is the ideal sheaf of a nonempty
effective divisor D and p0 ı i defines an isomorphism M

'
�! O.�D/� O, which

proves the first statement. Since all the sheaves in (1) are locally free, we obtain
an exact sequence

0 �! KD
iD0
��! AD

pD0
��! OD �! 0

of locally free sheaves on D. Since pD0 ı i
D D 0, the restriction iD WMD!AD

factorizes as iD D iD0 ı j
D for a morphism jD W MD ! KD . But i is a bundle

embedding, so the induced maps between fibers M.x/! A.x/ are all injective.
This shows that jD.x/¤ 0 for every x 2D, so jD defines a trivialization of the
line bundle .K˝M_/D'K˝OD.D/. Note that the argument is also valid whenD
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is nonreduced. This proves (ii). Condition (iii) follows directly from Proposition
1.1. Now consider the commutative diagram

H 0.K˝O.D//

#

H 0.K˝OD.D//

# u

�! H 0.A/ �! H 0.O/
@
�! H 1.K/

# # a # v

�! H 0.A.D// �! H 0.O.D//
@D
��! H 1.K˝O.D//

where the horizontal exact sequences are associated with the short exact sequence
(1) and its tensor product with O.D/, whereas the vertical exact sequence is asso-
ciated with the short exact sequence 0!K!K˝O.D/!K˝OD.D/! 0. The
morphism i WO.�D/!A can be regarded as a lift of the canonical section sD a.1/
to H 0.A.D//. Therefore @D.a.1//D 0, so v.@.1//D 0. But @.1/ 2H 1.K/' C

is the extension invariant of the extension (1), which is nonzero by the definition
of this extension. The vertical exact sequence yields an exact sequence

0DH 0.K/ �!H 0.K˝O.D// �!H 0.K˝OD.D// �!H 1.K/' C �! 0 ;

which proves (iv).
We prove now the second part of the conclusion. Taking into account that

a.X/D 0 we have h0.K˝O.D//� 1, so there are two possibilities:

1. h0.K˝O.D//D 0, h0.K˝OD.D//D h
1.OD/D 1.

Using Lemma 2.7 in [Nak84] and the obvious inequality h1.ODred/� h
1.OD/

(the canonical map H 1.OD/! H 1.ODred/ is surjective), we get h1.ODred/ D 1.
Let 0 < C � Dred be a minimal divisor such that h1.OC / D 1. By Lemma 2.3
in [Nak84] the divisor C is a cycle. Write D D C CE with E � 0. Denoting
N WDK˝O.D/ and noting that h2.N/D h0.O.�D//D 0 we get an exact sequence

0!H 0.N.�C//!H 0.N/!H 0.NC /!H 1.N.�C//!H 1.N/

!H 1.NC /!H 2.N.�C//! 0 :

We know that N is trivial on D, so it is also trivial on C �D. Therefore h1.NC /D
h1.OC /D1. Note that c1.N/D e NI (where NI WDI0nI ), so �.N/D0 by the Riemann-
Roch theorem. We have assumed h0.N/D 0 and we know h2.N/D 0, so h1.N/D 0.
Therefore h2.N.�C// D h1.OC / D 1. But h2.N.�C// D h0.K ˝ N_.C // D

h0.�E/. This shows that E D 0, so D coincides with the cycle C .

2. h0.K˝O.D//D 1, h0.K˝OD.D//D h
1.OD/D 2.

Since c1.K˝O.D//D e NI and H 0.K˝O.D//¤ 0, by the vanishing Lemma
1.2 we get that NI D∅, so K˝O.D/ is a flat line bundle. When X is not an Enoki
surface it follows that O.�D/' K. When X is an Enoki surface, it follows easily
that in fact X is a parabolic Inoue surface and D DECC , where E is the elliptic
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curve of X and C is its numerically trivial cycle; it is well-known that this sum is
anti-canonical (see [Tel06] for details). �

For every I � I0 we have a family FI of extensions; the elements of FI ,
which will be called extensions of type I , are in one-to-one correspondence with
pairs .L; "/, where L 2 PiceI and " 2H 1.L˝2˝K_/, so FI is naturally a linear
space over PiceI . We will denote by E.L; "/ the central term of the extension
associated with the pair .L; "/. For L 2 PiceI one has

�.L˝2˝K_/D
1

2
.eI � e NI /.�2e NI /D�.b� jI j/ .b WD b2.X//;

so the dimension of the generic fiber of this linear space is b� jI j; the dimension
of the fiber H 1.L˝2˝K_/ jumps when h0.L˝2˝K_/ or h0.L˝�2˝K˝2/ > 0.
It might happen that the same bundle can be written as extension in many ways, so
in general the loci Mst

I of stable bundles defined by the elements of FI might have
intersection points.

Therefore, it is important to have general rules to decide whether two different
extensions have isomorphic central terms. This problem will be addressed in the
following section in a general framework.

1.2. Morphisms of extensions. In this section we will address the following
questions:

� Under which conditions are the central terms of two different line bundle
extensions isomorphic?

� Is the central term of a given nontrivial line bundle extension simple?

Let L0, L00, M0, and M00 be line bundles on a compact manifold X . Consider
a diagram of the form

(7)
0 �! L0

˛0
�! E0

ˇ 0

�! M0 �! 0

# '

0 �! L00
˛00
��! E00

ˇ 00

��! M00 �! 0

with exact lines.

PROPOSITION 1.5. Suppose that ˇ00 ı' ı˛0 D 0. Then

(i) There exist morphisms u W L0! L00, v W M0! M00 making commutative the
diagram (7).

(ii) If ' W E0! E00 is an isomorphism, then u and v are isomorphisms.

(iii) If H 0.L0_˝L00/D 0, then ' W E0! E00 is induced by a morphism M0! E00,
so it cannot be an isomorphism.

(iv) If H 0.M0_˝M00/D 0, then ' W E0! E00 is induced by a morphism E0! L00,
so it cannot be an isomorphism.
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(v) IfH 0.L0_˝L00/D 0 andH 0.M0_˝M00/D 0, then any morphism ' WE0!E00

is induced by a morphism M0! L00.

Proof. (i) Since ˇ00 ı ' ı ˛0 D 0, ' maps L0 to L00 (defining a morphism
u W L0! L00) and induces a morphism v WM0!M00.

(ii) It is easy to show that, when ' is an isomorphism, u will be a monomor-
phism and v an epimorphism. But any epimorphism of locally free rank 1 sheaves
is an isomorphism. Diagram chasing shows that u is also surjective.

(iii) Suppose that H 0.L0_˝L00/D 0. In this case uD 0, so ' vanishes on
L0, hence it is induced by a morphism � WM0! E00.

(iv) Suppose that H 0.M0_˝M00/D 0. In this case v D 0, so the image of '
is contained in ker.ˇ00/D L00, hence ' is induced by a morphism � W E0! L00.

(v) Suppose thatH 0.L0_˝L00/DH 0.M0_˝M00/D0. Then ˇ00ı�D0, hence
im.�/ is contained in L00, proving that ' is induced by a morphism M0! L00. �

LEMMA 1.6. If L0 ' M00 and the second exact sequence is nontrivial, then
one always has that ˇ00 ı' ı˛0 D 0; hence the conclusions of Proposition 1.5 hold.

Proof. We can suppose L0DM00. If ˇ00ı' ı˛0¤ 0, the composition ˇ00ı' ı˛0

would be an isomorphism, hence a suitable scalar multiple of ' ı˛0 would split the
second exact sequence. �

COROLLARY 1.7 (extensions with isomorphic determinants and central terms).
Suppose that in (7) one has L0 ˝M0 ' L00 ˝M00 ' D and ' W E0 ! E00 is an
isomorphism. Denote by "0 2H 1.M0_˝L0/, "00 2H 1.M00_˝L00/ the invariants
associated with the two extensions. Then one of the following holds:

(i) There exists isomorphisms u W L0! L00, v WM0!M00 making (7) commuta-
tive. In this case "00 D H 1.w/."0/ where w W M0_˝L0 ! M00_˝L00 is the
isomorphism induced by the pair .u; v/.

(ii) D˝L0_˝L00_ is not trivial and H 0.D˝L0_˝L00_/¤ 0.

(iii) D˝L0_˝L00_ is trivial and "0 D "00 D 0.

Proof. When ˇ00 ı' ı˛0D 0, statement (i) will hold by Proposition 1.5. When
ˇ00 ı' ı˛0 ¤ 0 and M00˝L0_ 'D˝L0_˝L00_ is not trivial, (ii) holds obviously.
Finally, when ˇ00 ı ' ı ˛0 ¤ 0 and M00˝L0_ is trivial, using Lemma 1.6 we see
that the second exact sequence splits; hence "00 D 0. Changing the roles and noting
that M00˝L0_ 'M0˝L00_ we obtain "0 D 0. �

COROLLARY 1.8. Let L, M be two line bundles on X .

(i) Denote by E0, E00 the middle terms of the extensions associated with "0, "00 2
H 1.M_˝L/. Suppose H 0.L_˝M/D 0. Then E0 ' E00 if and only if "0; "0

are conjugate modulo C�.

(ii) Suppose H 0.L_˝M/D 0, H 0.M_˝L/D 0. Then any nontrivial extension
of M by L is simple.
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Proof. The first statement is a particular case of Corollary 1.7 (i). For the
second statement , let

0 �! L
˛
�! E

ˇ
�! M �! 0

be a nontrivial extension, and ' W E! E a bundle morphism. By Proposition 1.5 (i)
and the first assumption there exist morphisms u W L! L, v WM!M such that
' ı˛ D ˛ ıu, v ıˇ D ˇ ı'. Since M is a line bundle, we can write v D �idM, for
a constant � 2 C. The endomorphism  WD ' � �idE has the property

ˇ ı D ˇ ı .' � �idE/D v ıˇ� �ˇ D 0 ;

so it factorizes as  D ˛ ı� for a morphism � W E! L. Note that � ı˛ W L! L

cannot be an isomorphism because, if were, a suitable scalar multiple of � would
split the first exact sequence. Therefore � ı˛ D 0, so � vanishes on ˛.L/, which
shows that it is induced by a morphism M!L. This implies �D 0 by our second
assumption. �

1.3. Stable bundles defined by line bundles on double covers. Let .X; g/ be a
compact Gauduchon manifold and � 2H 1.X;Z2/ n f0g. Let �� W zX�!X be the
corresponding double cover, � its canonical involution, and L� the holomorphic
line bundle on X defined by � (regarded as a representation �1.X/! f˙1g �
C�). A push-forward 2 bundle (i.e., a bundle of the form .��/�.M/, where M

is a holomorphic line bundle on zX�) is always polystable. Indeed, choosing a
Hermitian-Einstein metric h on M with respect to the �-invariant metric ��� .g/, one
gets a Hermitian-Einstein metric ��.h/ on ��.M/ (with the same Einstein constant
as h), hence a Hermitian-Einstein metric h˚ ��.h/ on M˚ ��.M/D ��� ..��/�.M//

which descends to .��/�.M/. Conversely, one has the well-known

THEOREM 1.9. Let E be a stable rank 2 bundle on X , such that E˝L� ' E.
Then there exists a line bundle M on zX� such that

(i) Œ����.M/' E;

(ii) ��� .E/DM˚ ��.M/.

Proof. Consider the sheaf of OX -algebras A WD Œ����.O zX�/D OX ˚L�. The
category of O zX�-modules is equivalent (via the functor Œ����) with the category
of A-modules. Composing with the obvious automorphism .u; v/ 7! .u;�v/ of
A one gets a functor .�/0 on the category of A-modules, which corresponds to the
functor ��.�/ on the category of O zX�-modules. Now let f W E˝L� ! E be an
isomorphism. The composition

f ı .f ˝ idL�/ W E˝L˝2� D E �! E

is an automorphism of E, which is stable, hence simple. Multiplying f by a con-
stant if necessary, we can assume that this composition is idE. Therefore, f defines
the structure of a locally free rank 1 A-module M on the sheaf associated with E.
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This proves (i). The bundle ��� .E/ corresponds to the A-module E˝OX A, which
can easily be identified with M˚M0. So ��� .E/'M˚ ��.M/. �

Now suppose that X is a class VII surface with �1.X/' Z, b2.X/D b. Let
� be the nontrivial element of H 1.X;Z2/' Z2, and � W zX!X the corresponding
double cover. zX will also be a class VII surface with �1. zX/' Z and, comparing
the Euler characteristics, we get b2. zX/D 2b. We denote by K, zK the corresponding
canonical line bundles and by k, QkD ��� .k/ their Chern classes. By the coefficients
formula the groups H 2.X;Z/, H 2. zX;Z/ are both torsion free. As explained in
Section 1.1 we can write kD

Pb
iD1 ei , QkD

P2b
sD1 fs where ei �ej D�ıij , fs �ft D

�ıst . Put Qei WD ��.ei /. Using the formulae

Qk D
X
i

Qei D
X
s

fs ; Qei � Qej D�2ıi;j ; Qei � Qk D�2 ;

we see that there exists a partition f1; : : : ; 2bgD[niD1Ji in subsets Ji with jJi j D 2
such that Qei D

P
s2Ji

fs . Writing Ji D fe0i ; e
00
i g we obtain an orthonormal basis

.e01; e
00
1 ; : : : ; e

0
b
; e00
b
/ ofH 2. zX;Z/ such that Qei D e0iCe

00
i . The morphism �� leaves in-

variant each set fe0i ; e
00
i g. The Lefschetz fixed point theorem gives Tr.�� WH 2. zX/!

H 2. zX//D 0, which implies ��.e0i /D e
00
i for any i .

PROPOSITION 1.10. Let X be a class VII surface with �1.X/' Z. Then:

(i) A line bundle M 2 Pic. zX/ satisfies c1.Œ����.M// D k, c2.Œ����.M// D 0 if
and only if there exists I � f1; : : : ; bg such that c1.M/D e0I C e

00
NI
.

(ii) For every I � f1; : : : ; bg there exists a unique line bundle MI 2 Pice
0
ICe

00
NI . zX/

such that det.Œ����.MI //' K, c2.Œ����.MI //D 0.

(iii) The involution˝� on the moduli space Mst.0;K/ has 2b�1 fixed points.

Proof. Write c1.M/ DW c D
P
i n
0
ie
0
i C

P
j n
00
j e
00
j . M satisfies the conditions

in (i) if and only if c[.��c/D 0 and cC ��.c/D Qk. This is equivalent to the system

n0i Cn
00
i D 1 for all i 2 f1; : : : ; ng;

X
i

n0in
00
i D 0 :

We get
P
i n
0
i .1�n

0
i /D 0, hence n0i 2 f0; 1g. This proves the first statement. For the

second statement, the pull-back morphism Pic0.X/! Pic0. zX/ is surjective and
its kernel is generated by the nontrivial square root R of the trivial line bundle O.
Fix M0 2 Pice

0
ICe

00
NI . zX/. Since

det.Œ����.M0˝�
�.L///' det..��/�.M0/˝L/' det.Œ����.M0//˝L2 ;

we find two flat line bundles L1, L2 D L1 ˝ R 2 Pic0.X/ for which it holds
det.Œ����.M0˝ �

�.Li /// ' K. Since ��.R/ is trivial, the claim is proved. For
the third statement, note that Œ����.MI / is stable and that Œ����.MI /' Œ����.MJ /

if and only if either J D I or J D NI . This follows easily by taking the pull-back
of the bundles Œ����.MI / to zX . �
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Note that without assuming �1.X/' Z, counting the fixed points of the invo-
lution ˝� WMst.0;K/!Mst.0;K/ becomes very difficult.

1.4. The moduli spaces M
pst
D .E/, Ma.E/

ASD. Topological properties. The
results obtained so far allow us to describe certain pieces of our moduli space:
spaces of reductions, spaces of extensions and spaces of fixed points under the
natural involution ˝�. In order to understand how these pieces fit together, we
need several important general results about the topology of the moduli spaces of
polystable rank 2 bundles on non-Kählerian complex surfaces.

Let .E; h/ be a Hermitian rank 2 bundle with c2.E/D c on a compact Gaudu-
chon surface .X; g/. We fix a holomorphic structure D on the determinant line
bundle D WD det.E/, and denote by M

pst
D .E/ the moduli space of polystable holo-

morphic structures E on E with det.E/DD (of polystable D-oriented holomorphic
structures). Two such structures are considered equivalent if they are equivalent
modulo the action of complex gauge group GC WD�.X;SL.E//. This moduli space
plays a fundamental role in this article. Its points correspond bijectively to isomor-
phism classes of polystable holomorphic bundles F with c2.F/D c, det.F/' D,
so we will also use the notation Mpst.c;D/ (used more frequently in the complex
geometric literature) for this space.

Denote by a 2 A.det.E// the Chern connection of the pair .D; det.h//. As
in [Tel05] we denote by Aa.E/ (respectively Aa.E/

�) the space of (irreducible)
a-oriented Hermitian connections, i.e., the space of (irreducible) Hermitian con-
nections A on E with det.A/D a. As usual, we denote

Ba.E/ WD
Aa.E/

ı
G; Ba.E/

�
WD

Aa.E/
�ı

G

as the infinite dimensional quotients of these spaces by the (real) gauge group
G WD �.X;SU.E// of .E; h/. The latter quotient becomes a Banach manifold
after suitable Sobolev completions [DK90]. It is convenient to use the action of
the quotient group xG WD G=f˙idE g which is effective on Aa.E/ and has trivial
stabilizers at the irreducible connections.

Let AASD
a .E/ (respectively AASD

a .E/�) be the subspace of (irreducible) solu-
tions of the projectively ASD equation

.ASD/ .F 0A /
C
D 0 ;

and MASD
a .E/ WD AASD

a .E/=G, MASD
a .E/� WD AASD

a .E/�=G the corresponding
moduli spaces. In this formula G WD �.X;SU.E// denotes the (real) gauge group
of .E; h/.

As explained in the introduction and in [Tel05], M
pst
D .E/ is endowed with the

topology which makes the bijection MASD
a .E/!M

pst
D .E/ given by the Kobayashi-

Hitchin correspondence ([Don85], [Tel05] [Buc88], [LY87], [LT95]) a homeomor-
phism. Via this correspondence Mst

D.E/ corresponds to MASD
a .E/�, so it is open

in M
pst
D .E/. Mst

D.E/ can also be identified with an open subspace of the moduli
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space Ms
D.E/ of simple D-oriented holomorphic structures on E, so it has a natural

complex space structure inherited from Ms
D.E/. In general this structure does not

extend to M
pst
D .E/. Understanding the local structure of M

pst
D .E/ around the split

polystable bundles in the non-Kählerian framework is a difficult task. The difficulty
is the following: whereas the germ of Mst

D.E/ at a stable point E 2Mst
D.E/ can be

identified with the universal deformation of E in the sense of holomorphic defor-
mation theory, the local structure at a split polystable bundle (a reduction) cannot
be understood using only complex geometric methods. For instance, the moduli
space described in [Tel05] contains a finite union of circles of split polystable
bundles; although any such bundle E has H 2.End0.E// D 0 (so it satisfies the
naive complex geometric “regularity condition”) it gives a boundary point in the
moduli space (which is a union of compact disks bounded by circles of “regular”
reductions).

In this section we will discuss topological properties of the moduli spaces
M

pst
D .E/ on non-Kählerian surfaces, namely:

(i) compactness properties,

(ii) the structure of such moduli spaces around reduction loci,

(iii) the restriction of the Donaldson �-classes to a boundary of a standard neigh-
borhood of a reduction locus.

Compactness has already been discussed in [Tel05]. Here we will give a
more general result due to Nicholas Buchdahl. The structure of the ASD instanton
moduli spaces around reduction loci and the behavior of the Donaldson �-classes
around these loci have been extensively studied in [Tel07] with gauge theoretical
methods. For completeness we will give here short, self-contained proofs of the
results we need. We will not make use of the general (but difficult) results about
normal neighborhoods of reduction loci in Ba [Tel07]; instead, in Sections 1.4.2
and 1.4.3 we will “blow up” the reduction loci in a Donaldson moduli space, and
we will show that the Donaldson �-classes extend to the blow up. As explained
in the introduction, we are interested in the classes �./ associated with elements
 2 H1.X;Z/=Tors. The result we need states that, if X is a class VII surface
with b2.X/ D 2 and  is a generator of H1.X;Z/=Tors, then the restriction of
�./ to the (suitably oriented) boundary of a standard neighborhood of a circle
of reductions is the fundamental class of this boundary. This result will give us
important information about the position of the circles of reductions in the moduli
space (see Proposition 2.8).

The results in Sections 1.4.2 and 1.4.3 hold under the assumption that the
reductions are regular, i.e., that the second cohomology spaces of their deformation
elliptic complexes vanish. It is important to have a complex geometric criterion for
this regularity condition, which can be checked for instantons associated with split
polystable bundles. This problem will be addressed in Section 1.4.4, in which we
will compare the deformation elliptic complex of a split polystable bundle to the
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deformation elliptic complex of the corresponding reducible instanton. The main
result states that, on non-Kählerian surfaces, the second cohomology spaces of the
two complexes can be identified. Note that this result does not hold in the Kählerian
case: on a Kählerian surface a reducible instanton has always nonvanishing second
cohomology (so it can never be regular); see Corollary 1.20.

In Section 1.4.5 we will apply our general results to the moduli space Mpst.0;K/

on a class VII surface with b2 D 2, and we will show that (for suitable Gauduchon
metrics) this moduli space is a topological 4-manifold and that the complex struc-
ture of Mst.0;K/ is smooth and extends smoothly across a part of the reduction
locus.

1.4.1. Compactness properties. Endowed with the topology induced by the
Kobayashi-Hitchin correspondence M

pst
D .E/ has the following important properties

inherited from MASD
a .E/ (see [DK90]):

(i) it is Hausdorff in all cases;

(ii) it is compact when �.E/ WD 4c2.E/� c1.E/2 � 3.

The second statement easily follows, using the general properties of the Uhlenbeck
compactification of an instanton moduli space, and the well-known Chern class
inequality for bundles admitting projectively ASD connections [DK90], [Tel05]:
when �.E/� 3, all lower strata in the Uhlenbeck compactification are automati-
cally empty, so MASD

a .E/ will be compact.
For the class of moduli spaces on which we will focus in this article, one has

the following general result1:

THEOREM 1.11. Let X be a class VII surface, K its canonical line bundle,
and K the underlying C1-line bundle of K. Let .E; h/ be a Hermitian rank 2
bundle on X with c2.E/D 0, det.E/DK. Then M

pst
K .E/ is compact.

Proof. We have to prove that MASD
a .E/ is compact, where a is the Chern

connection of the pair .K; det.h//. One has �.E/ D c1.K/2 D �b2.X/, so the
statement is obvious for b2.X/� 3. For the general case, note that a stratum in the
Uhlenbeck compactification of MASD

a .E/ has the form Sk.X/�MASD
a .Ek/, where

Sk.X/ stands for the k-th symmetric power of X , det.Ek/ D det.E/ D K, and
c2.Ek/D c2.E/� k D�k. We claim that MASD

a .Ek/D∅ for any k > 0. Using
again the Kobayashi-Hitchin correspondence, it suffices to prove that there does not
exist any holomorphic 2 bundle E on X with det.E/DK and c2.E/ < 0. Identifying
E with the corresponding locally free coherent sheaf and using the Riemann-Roch
Theorem, one easily obtains �.E/ > 0, so h0.E/ > 0 or h0.K˝E_/ > 0. In both
cases E would be filtrable, so it would fit into an exact sequence of the form

0! L! E! K˝L_˝IZ! 0 ;

1In the first version of this article we stated this compactness result only for b2 � 3; this case is
sufficient for the purposes of this article and has already been explained in [Tel05]. The fact that this
result can be extended to the case b2.X/ > 3 has been noticed by Nicholas Buchdahl.
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for a holomorphic line bundle L on X and a codimension-2 locally complete inter-
section Z �X . We now use the same method as in the proof of [Tel05, Prop. 3.2]:
writing c1.L/D

P
liei mod Tors (where .ei /i is the basis considered in Section

1.1 and li 2 Z), one obtains that 0 > c2.E/ D jZj C
Pb2.X/
iD1 li .li � 1/, which is

obviously a contradiction. �

1.4.2. The structure of MASD
a .E/ around the reductions. Let .X; g/ be a closed,

connected, oriented Riemannian 4-manifold with bC.X/D 0, .E; h/ a Hermitian
rank 2 bundle on X , and L ,!E a line subbundle of E (endowed with the induced
metric). A connection A 2Aa.E/ will be called L-reducible if it admits a parallel
line subbundle L0 �E isomorphic to L. The goal of this section is to describe the
moduli space MASD

a .E/ around the subspace MASD
a .E/L of L-reducible instantons.

In [Tel07] we have shown that
A neighborhood of MASD

a .E/ around the reduction locus MASD
a .E/L can be

identified with the moduli space associated with an abelian moduli problem of
Seiberg-Witten type.

This identification has two important consequences:

� It describes explicitly a fundamental system of open neighborhoods of the re-
duction locus MASD

a .E/L in MASD
a .E/, called standard neighborhoods. Under

suitable regularity conditions any such neighborhood can be identified with
the total space of a fiber bundle whose basis is a b1-dimensional torus, and
whose fiber is a cone over a complex projective space. This generalizes the
well-known theorem concerning the structure of a Donaldson moduli space
around an isolated reduction [FU91], [DK90].

� It allows to compute explicitly the restriction of the Donaldson �-classes to
the boundary of a standard neighborhood of MASD

a .E/L in MASD
a .E/.

We explain this formalism briefly. Put M WD L? and S WD L ˝M_ '

L˝2˝D_, where D WD det.E/. The gauge group GL WD Aut.L/' C1.X; S1/

acts on the space of Hermitian connections A.L/ in the usual way

u.db/D u ı db ıu
�1
D db �u

�1du;

and on the space A1.S/ of S -valued 1-forms via the map

Aut.L/D C1.X; S1/ 3 u 7! u2 2 C1.X; S1/D Aut.S/

induced by the identification S D L˝2˝D_.
The affine map ‰ WA.L/�A1.S/!Aa.E/ defined by

ˆ.b; ˛/D Ab;˛ WD

�
b ˛

�˛� a˝ b_

�
is equivariant with respect to the group morphism

 W GL WD Aut.L/' C1.X; S1/! G ; u 7!

�
u 0

0 u�1

�
:
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The connection Ab;˛ is projectively ASD if and only if

FC
b
�
1

2
FCa D .˛^˛

�/C ; dC
b2˝a_

˛ D 0 :

Consider the moduli space Ma.L/ of pairs .b; ˛/ 2 A.L/ � A1.S/ solving the
system

.A/

8<:
.d�
b2˝a_

; dC
b2˝a_

/˛ D 0

FC
b
�
1
2
FCa D .˛^˛�/C ;

modulo the gauge group GL. This abelian moduli problem has been introduced
in [Tel05] and studied extensively in [Tel07]. The factor group xGL WD GL=f˙1g

acts freely on the subspace A.L/ � .A1.S/ n f0g/ of irreducible pairs, and acts
with stabilizer xS1 WD S1=f˙1g ' S1 on the complement. The subspace of Ma.L/

consisting of solutions with ˛ D 0 is a b1.X/-dimensional torus. Indeed, this
subspace can be identified with the quotient

Ta.L/ WD
Ta.L/

ı
GL

of the space Ta.L/ of connections b 2A.L/ solving the equation

FC
b
�
1

2
FCa D 0 :

As explained in [Tel05], [Tel07] this equation is equivalent to the condition

Fb D
1

2
.�2�i� CFa/ ;

where � denotes the g-harmonic representative of the Chern class c1.S/. Since
we assumed bC.X/D 0, this form is ASD. It is well-known that the moduli space
of Hermitian connections with fixed curvature on a Hermitian line bundle is a
iH 1.X;R/=2�iH 1.X;Z/-torsor, so it can be identified with this b1-dimensional
torus. The identification is well-defined, up to translations. We will identify Ta.L/
with its image in Ma.L/ via the map Œb� 7! Œb; 0�.

The following important lemma states that a neighborhood of the reduction
locus MASD

a .E/L in MASD
a .E/ can be identified with a neighborhood of Ta.L/

in Ma.L/, so studying the Donaldson space MASD
a .E/ around the reduction locus

MASD
a .E/L reduces to studying Ma.L/ around the torus Ta.L/.

LEMMA 1.12. Suppose c1.M/ ¤ c1.L/. The map x‰ W Ma.L/! MASD
a .E/

induced by ‰ maps homeomorphically

(i) the torus Ta.L/ onto MASD
a .E/L,

(ii) a sufficiently small open neighborhood VL of Ta.L/ in Ma.L/ onto an open
neighborhood UL of MASD

a .E/L in Ma.L/ such that

(8) x‰.VL nTa.L//�MASD
a .E/� :
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Proof. (i) Surjectivity: By definition, a connection A 2 MASD
a .E/L splits

as a direct sum A D b0 ˚ .a ˝ b0
_
/ with respect to an A-parallel orthogonal

decomposition E D L0 ˚M 0, where L0 ' L (which implies M 0 ' M ). Since
c1.L/ ¤ c1.M/, this decomposition is unique (including the order). Consider
two Hermitian isomorphisms � W L0 ! L, � W M 0 ! M such that the induced
Hermitian automorphism v W E ! E belongs to G (i.e., it has determinant � 1).
Then v.A/D‰.b; 0/, where b WD �.b0/, which shows that ŒA� 2 x‰.Ta.L//.

Injectivity: If Œ‰.b/� D Œ‰.b1/� there exists u 2 G such that u ı d‰.b/ D
d‰.b1/ ıu. Writing u as a matrix with respect to the splitting E D L˚M , we see
that u12 2 A

0.Hom.M;L// is b1˝ .b˝ a_/-parallel, so u12 D 0 because L and M
are not isomorphic. Similarly one obtains u21D 0, hence u11 2GL and u11.db/D db1 .

(ii) Step 1. x‰ is a local homeomorphism at any point Œ.b; 0/� 2 Ta.L/.
We use the standard procedure used in gauge theory to construct local models

(see [DK90, �4.2.2]). Put AbD‰.b; 0/D b˚.a_˝b/. The stabilizer xGAb of Ab is
the circle  . xS1/. Consider the affine subspaces Sb�A.L/�A1.S/,†Ab �Aa.E/

Sb WD .b; 0/Cf.ˇ; ˛/ 2 iA
1.X/�A1.S/j d�ˇ D 0g ;

†Ab WD AbC i ker d�Ab

D AbC

��
ˇ ˛

�˛� �ˇ

�
.ˇ; ˛/ 2 iA1.X/�A1.S/; d�ˇ D 0; d�

b2˝a_
˛ D 0

�
:

Now, Sb (respectively †Ab ) is L2-orthogonal in .b; 0/ (respectively in Ab) to the
orbit GL � .b; 0/ (respectively to the orbit G � Ab). We denote by SA

b
, †ASD

Ab
the

subspaces of Sb , †Ab of points solving the equations .A/ and .ASD/ respectively,
and by SA

b;�
, †ASD

Ab;�
the open subspaces defined by the inequality k.˛; ˇ/kL2

k
< �

(for a fixed sufficiently large Sobolev index k). Using standard gauge theoretical
arguments ([DK90, �4.2.2, Prop. 4.2.9]) we see that for sufficiently small � D
�.b/ > 0, the natural maps

SA
b;�
ı
xS1
!Ma.L/ ;

†ASD
Ab;�

ı
 . xS1/

!MASD
a .E/

are homeomorphisms onto open neighborhoods Vb , Ub of the orbits Œb; 0� and ŒAb�
in Ma.L/ and MASD

a .E/ respectively. But ‰ maps SA
b;�

isomorphically onto †ASD
Ab;�

,
so x‰ defines a homeomorphism Vb! Ub .

Step 2. Ta.L/ has a fundamental system of compact neighborhoods in Ma.L/.
Indeed, by the well-known bootstrapping procedure used to prove compact-

ness in Seiberg-Witten theory [KM94], it follows that

W "
WD fŒb; ˛� 2Ma.L/j k˛k1 � "g

is compact for any " > 0. Using the compactness of the W "s, and the fact that x‰
is injective on Ta.L/ and local homeomorphic around Ta.L/, it easily follows (by
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reductio ad absurdum) that for sufficiently small "0 > 0, x‰ remains injective on
W "0 . It now suffices to take VL �W

"0 \ .
S
b2Ta.L/

Vb/.
Equality (8) follows directly from the second part of [DK90, Prop. 4.2.9]. �

Remark 1.13. The proof of Lemma 1.12 shows that the Kuranishi local model
of a point Œb� 2 Ta.L/ in the moduli space Ma.L/ is identified via x‰ with the
Kuranishi local model of ŒAb� in the moduli space MASD

a .E/. Therefore, x‰ defines
an analytic isomorphism of real analytic spaces around Ta.L/.

Lemma 1.12 can be interpreted in the following way: in a neighborhood of the
reduction locus MASD

a .E/L �MASD
a .E/, the ASD-moduli problem is equivalent to

the abelian moduli problem (A). Therefore, it suffices to describe a neighborhood
of the torus Ta.L/ in Ma.L/. For this purpose it is convenient to introduce polar
coordinates in the ˛-direction. In other words, consider the surjection

q WA.L/�S.A1.S//�R!A.L/�A1.S/ ; q.b; a; �/ WD .b; �a/ ;

where S.A1.S// � A1.S/ denotes the Lp-unit sphere of A1.S/, and p 2 2N>0.
Note that the Lp-unit sphere S.A1.S/k/ in the L2

k
-Sobolev completion A1.S/k is

a real analytic hypersurface of this Hilbert space (if k is sufficiently large), because
it is the fiber over the regular value 1 of the real analytic map ˛ 7!

R
X .˛; ˛/

p=2volg .
The pull-back PDE system q�.A/ on the new configuration space is

.zA/

(
.d�
b2˝a_

; dC
b2˝a_

/a D 0

FC
b
�
1
2
FCa D �2.a^ a�/C ;

for triples .b; a; �/ 2A.L/�S.A1.S//�R.
In order to understand the idea behind this construction in an elementary ex-

ample, consider the standard action of S1 on Cn. A simple way to describe the
structure of the quotient Cn=S1 around the singular orbit � D f0g is to introduce
polar coordinates writing z D �z, with z 2 S2nC1, � 2 R. S1 acts freely on the set
of pairs .�; z/, so the difficulty caused by the appearance of nontrivial stabilizers
disappears. In this way we see immediately that Cn=S1 can be obtained from the
cylinder Œ0;1/�Pn�1

C
(which is a smooth manifold with boundary) by collapsing

the boundary f0g �Pn�1
C

to a point.
The gauge group xGL acts freely on the whole space of triples .b; a; �/. Put

zB.L/ WDA.L/�S.A1.S//�Rı
xGL

;

denote by zMa.L/ � zB.L/ the moduli space of solutions of (zA), and consider its
subspaces

yMa.L/ WD fŒb; a; �� 2 yMa.L/j � � 0g ; yTa.L/ WD fŒb; a; �� 2 zMa.L/j �D 0g :

For b 2 Ta.L/ we denote by CC
b2˝a_

the elliptic complex associated with
the ASD connection b2˝ a_ on S . With this notation, we can state the following
lemma, which describes the geometry of Ma.L/ around the reduction torus Ta.L/.
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LEMMA 1.14. With the assumptions and notation of Lemma 1.12 suppose
also that, for every b 2 Ta.L/, one has H 2.CC

b2˝a_
/D 0. Then:

(i) The assignment Ta.L/ 3 b 7! H1
b
WD H1.CC

b2˝a_
/ descends to a complex

vector bundle HL of rank �c1.S/2C .b1� 1/ over the torus Ta.L/.

(ii) yTa.L/ can be identified with the projectivization P.HL/.

(iii) After suitable Sobolev completions the map ẑ defined by the left-hand side of
.zA/ is a submersion at any solution .b0; a0; 0/, so zMa.L/ is a smooth manifold
at any point Œ.b0; a0; 0/� 2 yTa.L/.

(iv) The map r W zMa.L/! R defined by the projection on the �-component is a
submersion at any point Œ.b; a; 0/� 2 yTa.L/, so yMa.L/ has the structure of a
smooth manifold with boundary @ yMa.L/D yTa.L/ around this subspace.

(v) Ma.L/ is obtained from yMa.L/ by collapsing to a point every fiber of the
projective bundle @ yMa.L/D P.HL/! Ta.L/.

(vi) Ta.L/ admits a fundamental system of neighborhoods which can be identified
with cone bundles over P.HL/.

(vii) When �c1.S/2 C .b1 � 1/ D 2 (respectively �c1.S/2 C .b1 � 1/ D 1) the
moduli space Ma.L/ has the structure of a topological manifold (respectively
with boundary) around the torus of reductions Ta.L/.

Proof. (i) Since c1.L/¤ c1.M/, the line bundle S is not topologically trivial,
so H 0.CC

b2˝a_
/D ker db2˝a_ D f0g for any connection b. Taking into account

the hypothesis, we see that .H1
b
/b2Ta.L/ is the family of kernels associated with a

smooth family of surjective elliptic operators

ıb WD .d
�

b2˝a_
; dC
b2˝a_

/ W A1.S/ �! A0.S/˚A2C.S/ ;

so the union HL WD
S
b2Ta.L/

fbg�H1
b

is the total space of a complex vector bundle
over Ta.L/. Using the identity ıu.b/ D u2 ı ıb ı u�2, we see that HL is gauge
invariant. We define HL to be the quotient of HL by the based gauge group

GL;x0 WD fu 2 GL j u.x0/D 1g � GL

associated with a point x0 2 X . The space Ta.L/ is a GL;x0-principal bundle
over Ta.L/, so this quotient is a vector bundle over the basis Ta.L/ (see [DK90,
p. 195]).

(ii) The cokernel of GL;x0 ,!
xGL is xS1 ' S1, which acts trivially on Ta.L/

and acts in the standard way on the fibers of HL.
(iii) This follows using standard transversality arguments, which we explain

briefly. Let � D .b0; a0; 0/ be a solution of .zA/ and .u; v/ 2 ŒA0.S/�A2
C
.S/��

iA2
C
.X/ a pair which is L2-orthogonal to im.d� ẑ /. Using variations Pa 2 Ta0 WD

Ta0.S.A
1.S/// of a0 and the surjectivity of the operator ıb0 we obtain uD 0. The

important point here is that ıb0.Ta0/ D ıb0.A
1.S// because ıb0 vanishes on the
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complement Ra0 of Ta0 in A1.S/. Using variations Pb of b0 and the surjectivity of
dC we obtain v D 0.

(iv) The tangent space T� . ẑ�1.0//D ker.d� ẑ / contains the line f0g�f0g�R,
which is obviously mapped surjectively onto R via the projection on the third factor.

(v) is obvious. To prove (vi) note that, by (ii), (iii), and (iv), yTa.L/ has
a fundamental system of neighborhoods in yMa.L/ which can be identified with
P.HL/� Œ0; "�, such that the projection on the second factor corresponds to r . It
suffices to apply (v).

(vii) The condition�c1.S/2C.b1�1/D2 implies rk.HL/D2. In this case the
cone over P1

C
' S2 is D3, so the cone bundle of P.HL/ is a .b1C 3/-dimensional

topological manifold around its tautological section. When �c1.S/2C.b1�1/D 1,
the cone bundle over P.HL/ can be identified with Ta.L/� Œ0; "�. �

Combining Lemmas 1.14 and 1.12 we obtain the following result concerning
the structure of the Donaldson moduli space around the reduction locus MASD

a .E/L.
Geometrically, the meaning of this result is very simple: replacing in MASD

a .E/ the
reduction locus MASD

a .E/L (which is a torus) with the projective bundle P.HL/,
we get a space which has a natural structure of manifold with boundary around
P.HL/.

COROLLARY 1.15 (Blowing up reduction loci). Let L ,!E be a line subbun-
dle of E such that 2c1.L/ ¤ c1.E/ and H 2.CCsu.E/;A/ D 0 for any L-reducible
instanton A.

(i) The reduction locus MASD
a .E/L can be identified with the torus Ta.L/.

(ii) The union yMASD
a .E/L WD ŒMASD

a .E/ nMASD
a .E/L� [ P.HL/ has a natural

structure of manifold with boundary @ yMASD
a .E/L D P.HL/ around P.HL/.

It comes with a continuous map yMASD
a .E/L!MASD

a .E/ which is the identity
on the complement of P.HL/, and whose restriction to this subspace is the
bundle projection P.HL/! Ta.L/.

(iii) The reduction locus MASD
a .E/L has a fundamental system of neighborhoods

U"
L which can be identified with cone bundles over P.HL/ and have the prop-

erty U"
L nMASD

a .E/L �MASD
a .E/�.

(iv) The union
yMASD
a .E/�L WDMASD

a .E/�[P.HL/

has the structure of manifold with boundary P.HL/ around P.HL/.

(v) When �c1.S/2 C .b1 � 1/ D 2 (respectively �c1.S/2 C .b1 � 1/ D 1) the
moduli space MASD

a .E/ is a topological manifold (respectively with boundary)
around the reduction locus MASD

a .E/L.

The Chern class c1.D/ is an integral lift of the Stiefel-Whitney class w WD
w2.su.E//. Choosing a subbundle L ,!E defines a new integral lift of w, namely
OwL D c1.L

˝2˝D_/. Together with a fixed orientation O1 of H 1.X;R/ this lift
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defines an orientation OL of the regular part of the moduli space M�a.E/ (see [DK90,
�7.1, p. 283]). The restriction of OL to ŒU"

L�
� WDU"

LnMASD
a .E/L is just the obvious

orientation induced by the natural complex orientations of the fibers P.HL;Œb�/ and
the orientation of the base Ta.L/ induced by O1. The rule explained in [DK90, loc.
cit.] states that

LEMMA 1.16. The orientations OL1 , OL2 associated with two line subbundles
Li ,!E compare according to the parity of .c1.L2/� c1.L1//2.

1.4.3. Donaldson classes around the reductions. We recall (see [DK90]) that
the quotient V WD ŒA�a.E/� su.E//�=xG can be regarded as an SO.3/ vector bundle
over B�a.E/�X ; this is the Donaldson universal vector bundle. The Donaldson
map � WHi .X;Q/!H 4�i .B�a.E/;Q/ (see [DK90, Def. 5.1.11]) is defined by

�.�/ WD �
1

4
p1.V/=� :

In general the �-classes do not extend across the reduction loci MASD
a .E/L. How-

ever these classes do extend in a canonical way to the blown up moduli spaces
yMASD
a .E/�L and, in the conditions of Corollary 1.15, the obtained classes in the

cohomology of the boundaries P.HL/ can be computed explicitly. The point is that
V extends in a natural way across the boundary P.HL/�X of yMASD

a .E/�L �X ,
and this extension has an obvious S1-reduction (i.e., an obvious splitting as the
sum of a complex line bundle and a trivial R bundle). To see this it suffices to note
that the pull-back of V via the natural map ŒzB.L/�>0��X !B�.E/�X splits as
iR� ŒS

ŒyB.L/�>0��X
�, where S is the universal complex line bundle

S WDA.L/�S.A1.S//�R�Sı
xGL

;

which is defined on the whole of zB.L/ �X . The restriction S P.HL/�X
is the

line bundle fS.HL/�Sg =xGL over P.HL/�X . The Chern class of this restriction
can easily be computed as in Seiberg-Witten theory (see [Tel07, Cor. 2.5]). Using
these facts we obtain (see [Tel07, Cor. 2.6] ):

LEMMA 1.17. Let  2 H1.X;Q/ and ı./ 2 H 1.Ta.L/;Q/ the associated
class via the obvious isomorphism. The Donaldson class�./ extends to yMASD

a .E/�L,
and the restriction of this extension to the boundary P.HL/ is �p�.ı.// [ h,
where p W P.HL/! Ta.L/ is the bundle projection and h 2 H 2.P.HL/;Q/ is
the Chern class of the S1 bundle S.HL/! P.HL/. When b1 D 1, c1.S/2 D�2,
and  is a generator of H1.X;Z/=Tors, this class is (up to a universal sign) the
fundamental class of the boundary @ yMASD

a .E/L, with respect to the orientation OL

defined by L and the orientation O1 of H 1.X;R/ associated with  .

In order to explain in a geometric way the role played by these gauge the-
oretical results in this article, consider again a minimal class VII surface with
b2.X/D 2, �1.X/' Z, and the corresponding moduli space Mpst.0;K/ described
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in the introduction. We now know that (under suitable regularity conditions) this
space is a compact topological 4-manifold containing two circles of reductions
R0 D Ta.L

0/, R00 D Ta.L
00/. In the introduction we claimed that the circles R0,

R00 must belong to the same connected component of the moduli space. Indeed, if
not, one would get two compact oriented manifolds with boundary yM0, yM00 hav-
ing the closed 3-manifolds P.HL0/, P.HL00/ ' S

1 � S2 as boundaries. But this
is impossible because, for a generator  of H1.X;Z/=Tors, the Donaldson class
�./ extends to yM0, yM00, and its restriction to the two boundaries is nontrivial. The
same idea will be used in the proof of Proposition 2.8 concerning the structure of
Mpst.0;K/ on a general minimal class VII surface with b2 D 2.

1.4.4. Comparing deformation elliptic complexes. Let .X; g/ be a Gauduchon
surface, F an Euclidean rank r bundle, and B an ASD connection on F . Now, our
goal is to compare the cohomology of the elliptic complex

.CCB / 0 �! A0.F /
dB
��! A1.F /

d
C

B
��! A2C.F / �! 0

of B with the Dolbeault elliptic complex associated with the operator x@B on its com-
plexification F C. The complexified bundle F C comes with an induced Hermitian
structure and an induced Hermitian connection (denoted by the same symbol B)
which will also be ASD, because the two curvature forms coincide via the obvious
embedding A2.so.F // ,! A2.su.F C//. The holomorphic bundle .F C; x@B/ is a
polystable bundle of degree 0. We have an obvious morphism of elliptic complexes

(9)

0 �! A0.F /
dB
��! A1.F /

d
C

B
��! A2

C
.F / �! 0

# j0 '# j1 # j2 WD p
02

0 �! A0.F C/
x@B
��! A01.F C/

x@B
��! A02.F C/ �! 0 :

Denote by H j .B/, H j .x@B/ the corresponding cohomology spaces.

LEMMA 1.18. Let B be an ASD connection and suppose that F has no non-
trivial B-parallel section. Then

(i) The operators ƒgd cBdB W A
0.F /! A0.F /, iƒgx@B@B W A0.F C/! A0.F C/

are isomorphisms.

(ii) The natural morphisms

H1B W D fa 2 A
1.F /j dCB .a/D 0;ƒgd

c
BaD 0g !H 1.B/ ;

H1x@B
W D f˛ 2 A01.F C/j x@B.˛/D 0;ƒg@B˛ D 0g !H 1.x@B/

are isomorphisms.

Proof. (i) Note first that, since B is ASD, one has the identities

x@Bx@B D 0 ; @B@B D 0 ; ƒgx@B@B D�ƒg@Bx@B ; ƒgd
c
BdB D�ƒgdBd

c
B :
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Suppose that ' 2 ker.iƒgx@B@B/, with ' 2 A0.F C/. Using the same method as
in the proof of [Tel05, Prop. 4.3] one gets iƒgx@@j'j2 D�jdB'j2, which implies
that j'j2 is constant and dB' D 0 by the maximum principle. Therefore ' D 0,
since F (so also F C) has no nontrivial B-parallel section by assumption. The same
argument proves the injectivity of ƒd cBdB . It suffices to note that the two operators
have vanishing index (because they have self-adjoint symbols).

(ii) For the first isomorphism, one has to prove that for every F -valued 1-form
a 2 ker.dCB / there exists a unique ˇ 2A0.F / such that iƒgd cB.aCdBˇ/D 0. This
follows from (i). The same argument applies for the second morphism. �

The following comparison theorem is known in the Kählerian framework
[Kob87].

PROPOSITION 1.19. Suppose that F has no nontrivial B-parallel section.
The diagram (9) induces isomorphismsH 0.B/DH 0.x@B/D 0,H 1.B/DH 1.x@B/,
H 2.B/DH 2.x@B/.

Proof. H 0.x@B/D 0: since .F C; x@B/ is a polystable bundle of degree 0, any
x@B -holomorphic section is parallel [Kob87].

.j1/� is an isomorphism: it suffices to note that the map H1B ! H1
x@B

given by

a 7! a01 is an isomorphism.
.j2/� is an isomorphism: the surjectivity is obvious. For the injectivity, con-

sider an element .a20Ca02Cu!g/2ker.dCB /
�. This means @Ba02Cx@B.u!g/D0,

which implies @Bx@B.u!g/D 0. Using the properties of the operator iƒgx@B@B and
its adjoint ([Tel05]), it follows that u is B-parallel so, under our assumption, uD 0.
Here the Gauduchon condition x@@!g D 0 plays a crucial role. This shows that

ker.dCB /
�
D fa20C a02j a0;2 2 A0;2.F C/; a2;0 D Na0;2; @Ba

02
D 0g

which is obviously identified with ker.x@�B W A
02.F C/! A01.F C// via j2. �

Now let B be any ASD connection on F . Consider the B-parallel decompo-
sition F D ŒX �H 0.B/�˚F?. Let B? be the connection induced on F?. One
has obvious isomorphisms:

H 1.B/DH 1.B?/˚ ŒH 0.B/˝H 1.X;R/� ;

H 2.B/DH 2.B?/˚ ŒH 0.B/˝H 2
C.X;R/� ;

H 0.x@B/DH
0.B/C; H 1.x@B/DH

1.x@B?/˚ ŒH
0.x@B/˝H

01.X/� ;

H 2.x@B/DH
2.x@B?/˚ ŒH

0.x@B/˝H
02.X/� :

Applying Proposition 1.19 to B?, one gets the following important

COROLLARY 1.20.

(i) If g is Kählerian, then H 1.B/DH 1.x@B/, and H 2.x@B/ is a subspace of real
codimension h0.B/ in H 2.B/.
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(ii) If b1.X/ is odd, then H 1.B/ is a subspace of real codimension h0.B/ in
H 1.x@B/, and H 2.B/DH 2.x@B/.

We apply these results to the Euclidean bundle F WD su.E/ associated with
a Hermitian bundle E endowed with an oriented integrable projectively ASD con-
nection A 2Aa.E/. The deformation complex of A is just the complex CCsu.E/;A
of the pair .su.E/; A/, whereas the deformation elliptic complex of an oriented
holomorphic structure E on E is the Dolbeault complex of the pair .End0.E/; x@E/.

COROLLARY 1.21. Let .E; h/ be a Hermitian rank r bundle on a Gauduchon
surface .X; g/ with b1.X/ odd, and let E be the oriented polystable holomorphic
structure on E associated to A via the Kobayashi-Hitchin correspondence. The
second cohomology of the deformation elliptic complex of A can be identified with
the second cohomology of the deformation elliptic complex of E.

1.4.5. The structure of Mpst.0;K/ around the reductions. Let X be a class VII
surface with b2.X/D 2 and g a Gauduchon metric on X . We denote

k WD
1

2
degg.K/

(the slope of the bundles in our moduli space). The subspace Mred.0;K/ of reduc-
tions has two disjoint parts

R0 WD
n

L˚ .K˝L_/ L 2 PicTDk

o
; R00 WD

˚
L˚ .K˝L_/ L 2 Pice1

Dk

	
which are disjoint unions of � WD jTors.H 2.X;Z//j circles.

It is certainly impossible to extend the complex space structure of Mst.0;K/

across R0, because any neighborhood of a point L˚ .K˝ L_/ 2 R0 contains
holomorphic curves (namely projective lines of stable nontrivial extensions of K˝

L0_ by L0, where L0 is close to L and has degg.L
0/ < k).

The purpose of this section is to show that, if X is minimal, Mpst.0;K/ has a
natural smooth holomorphic structure around R00, extending the complex structure
of Mst.0;K/. The idea is very simple. Perturbing the metric in a convenient way,
one gets a new moduli space M

pst
gt .0;K/ which can be homeomorphically identified

with the old Mpst.0;K/. This homeomorphism maps R00 into the smooth locus of
Mst
gt
.0;K/ and its inverse maps R00gt into the smooth locus of Mst.0;K/. Our main

tool will be the following easy

LEMMA 1.22. Let f W U1 ! U2 be a homeomorphism between Hausdorff
paracompact topological spaces and Fi �Ui closed sets such that f .F1/\F2D∅.
Suppose that Ui nFi are endowed with structures of complex manifolds such that

f U1n.F1[f
�1.F2//

W U1 n .F1[f
�1.F2// �! U2 n .F2[f .F1//

is biholomorphic. Then there exist unique structures of complex manifolds on Ui
for which f is biholomorphic.
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Proof. We define a holomorphic atlas A1 on U1 by A1 D B1 [ C1 where
B1 is a holomorphic atlas of U1 n F1 and C1 is the set of maps of the form
h ı f W f �1.U /! V , where h W U ! V � Cn is a holomorphic chart of U2 nF2.
Such a map is holomorphically compatible with B1 and the domains of these maps
cover F1. Similarly we define a holomorphic atlas on U2 and, with respect to these
atlases, f will be biholomorphic. �

Now suppose that X is a minimal class VII surface with b2 D 2. By the
vanishing Lemma 1.2, we know that h2.K_ ˝ L˝2/ D 0, for every L 2 Picei ,
i D 1; 2. Note that degg.K

_˝L˝2/D 2.degg.L/� k/. Since X cannot contain
curves with arbitrary small volume and K_˝L˝2 is not topologically trivial, it
follows that there exists " > 0 such that h0.K_˝L˝2/D 0 for every L 2 Picei<kC".
Therefore, by the Riemann-Roch theorem, one gets h1.K_ ˝L˝2/ D 1 so, for
every L 2 Picei<kC", there exists an essentially unique nontrivial extension E.L/ of
K˝L_ by L.

For every � 2 .k� "; kC "/ we define

'� W ŒPice1 �>k�"
<kC" �! fIsomorphism classes of bundles on Xg

by

L 7!

8<:
E.L/ when degg.L/ 2 .k� "; �/
L˚ .K˝L_/ when degg.L/D �
E.K˝L_/ when degg.L/ 2 .�; kC "/ :

LEMMA 1.23. If " is sufficiently small, then '� is injective for every � 2
.�"; "/.

Proof. The bundles Ei WD'�.Li /associated to two line bundles Li2 ŒPice1 �>k�"
<kC"

are given by two extensions

0 �!M
.1/
i �! Ei �!M

.2/
i �! 0 :

The g-degree of M
.j /
i belongs to .k�"; kC"/. Since X cannot contain curves of ar-

bitrary small volume, we see that, for sufficiently small ",H 0
��

M
.j /
1

�_
˝M

.k/
2

�
D 0

except when M
.j /
1 'M

.k/
2 . The result now follows from Corollary 1.7. �

Let hi be the harmonic representative of the de Rham class ei . For any suffi-
ciently small t > 0, the form !g C t .h1� h2/ is the Kähler form of a Gauduchon
metric gt on X . Note that

(10) deggt .L/D

(
degg.L/ 8L 2 PicT [Pic Nk;
degg.L/C .�1/

i t 8L 2 Picei ; i 2 f1; 2g :

When we pass from g to gt the stability properties of all bundles are preserved,
except certain type f1g and type f2g extensions. More precisely:
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LEMMA 1.24. For sufficiently small " > 0, the following holds: for every
t 2 .0; "/ one has

im.'kCt /�M
pst
gt .0;K/ ; 'kCt

�
ŒPice1 �>k�"

<kC" n ŒPice1 �DkCt

�
�Mst

gt
.0;K/ ;(11)

M
pst
gt .0;K/ n'kCt

�
ŒPice1 ��k

�kCt

�
DM

pst
g .0;K/ n'k

�
ŒPice1 ��k

�kCt

�
:

Proof. When deg.L/DkC t , the bundle 'kCt .L/ is obviously a split gt -poly-
stable bundle. Now suppose that deg.L/ ¤ kC t . The bundle E D 'kCt .L/ is
defined as the central term of a nontrivial extension 0!M

u
�! E

v
�! N! 0 with

degg.M/; degg.N/ 2 .k� "; kC "/. By the definition of 'kCt , the monomorphism
u does not gt -destabilize E. Suppose there existed a gt -destabilizing morphism
w WS!E with torsion free quotient. The destabilizing condition reads deggt .S/�
1
2

deggt .K/ D k. By Proposition 1.1 we may assume c1.S/ 2 eI with I � f1; 2g.
Therefore deggt .S/� deg.S/C t by (10). One has

degg.S
_
˝N/D�degg.S/C degg.N/

� �deggt .S/C t C degg.N/� �kC t C .kC "/ :

ThereforeH 0.S_˝N/D 0 if " is sufficiently small and S 6'N. But for S'N

we have v ıw D 0, because otherwise the extension defined by .u; v/ would split.
In all cases we get v ıw D 0, so w would factorize through a morphism S!M,
so it cannot gt -destabilize E. This proves the two inclusions in (11).

For the third formula in (11), note first that the subsets of split polystable
bundles in the two sets coincide. Now suppose that E belongs to the left-hand
set, but is nonsplit. Therefore it is gt -stable. If E was not g-stable there would
exist a monomorphism u W S! E with degg.S/� k and torsion free quotient. By
Proposition 1.1 u is a bundle embedding and c1.S/2 eI , where I � f1; 2g. Since E

is gt -stable we get by (10) that c1.S/2e1[e2 and degg.S/C.�1/
i t < k if S2Picei .

This would imply E 2 'kCt

�
ŒPice1 ��k

�kCt

�
, which contradicts the choice of E. This

proves that E is g-stable. E cannot belong to 'k

�
ŒPice1 ��k

�kCt

�
, because the bundles

in this set are not gt -polystable. The other inclusion is proved similarly. �

PROPOSITION 1.25. Let X be a minimal class VII surface with b2 D 2. Then

(i) For a sufficiently small neighborhood U00 of R00, U00 nR00 is contained in
Mst.0;K/ and is a smooth complex manifold.

(ii) The holomorphic structure of U00 \Mst.0;K/ extends across R00 such that
im.'k/ is a holomorphic curve.

Proof. The proof of Proposition 1.3 shows that, if E is any extension of type
f1g or f2g and X is minimal, then H 2.End0.E// D 0. Therefore, for any E in a
sufficiently small open neighborhood U00 of R00, one will still have H 2.End0.E//
D 0. We can choose this neighborhood such that U00\R0 D∅. This proves (i).
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For (ii) choose t 2 .0; "/, and consider the following symmetric relation be-
tween the moduli spaces of polystable bundles associated with g and gt :

RtD
n
.E;E0/ 2M

pst
g .0;K/�M

pst
gt .0;K/

ˇ̌̌
h0Hom.E;E0/¤ 0; h0Hom.E0;E00/¤ 0

o
:

When E is polystable with respect to both metrics, it is in relation only with it-
self. Using Lemma 1.24 it is easy to check that Rt is in fact one-to-one. The
corresponding bijections are continuous by elliptic semicontinuity, so Rt defines
a homeomorphism rt . Put U00t WD rt .U

00/�M
pst
gt .0;K/. U00t nR00gt is also a smooth

complex manifold, because a point in this set is either an element of U00 nR00, or an
extension of type f1g or f2g. The claim now follows directly from Lemma 1.22. �

Taking into account the proofs of Lemma 1.22 and Proposition 1.25, it fol-
lows:

LEMMA 1.26. Let Y be a complex manifold, � W Y �!Mpst.0;K/ and y0 2 Y
a point such that �.y0/ 2R00. The map � is holomorphic at y0 with respect to the
holomorphic structure given by Proposition 1.25 if and only if rt ı � (which maps
y0 to a gt -stable extension) is holomorphic at y0.

Around the other part R0 of the reduction locus, the holomorphic structure
does not extend. However, using Corollary 1.21 and Corollary 1.15, we get

PROPOSITION 1.27. Suppose that H 2.End0.E// D 0 for all E 2 R0. Then
Mpst.0;K/ has the structure of a topological manifold around R0.

2. The moduli space Mpst.0;K/ in the case b2 D 2

Let X be a class VII surface with b2.X/D 2, g a Gauduchon metric on X and
k WD 1

2
degg.K/. The subspace Mred.0;K/ of reductions (split polystable bundles)

in the moduli space is a finite union of circles. For every c 2 Tors, d 2 e1 we
denote

R0c WD
˚
L˚ .K˝L_/ L 2 PiccDk

	
; R00d WD

n
L˚ .K˝L_/ L 2 PicdDk

o
;

and we put R0 WD
S
c2Tors R0c , R00 D

S
d2e1

R0
d

. One has Mred.0;K/ D R0 [

R00. The filtrable bundles can also easily be classified. In our case we have only
four extension types: ∅, f1g, f2g, and I0 D f1; 2g. Using the Riemann-Roch
Theorem and Serre duality we obtain the following formulae for the dimension of
the extension space Ext1.K˝L_;L/DH 1.K_˝L˝2/:
(12)

h1.K_˝L˝2/D

8<:
2C h0.K_˝L˝2/C h0.K˝2˝L˝�2/ for type ∅ ;

1C h0.K_˝L˝2/C h0.K˝2˝L˝�2/ for types f1g; f2g ;
h0.K_˝L˝2/C h0.K˝2˝L˝�2/ for type I0 :

Using the vanishing Lemma 1.2, one gets

LEMMA 2.1. Suppose that X is minimal. Then h0.K˝2 ˝L˝�2/ D 0 for
type ∅, type f1g, and type f2g extensions, whereas h0.K_˝L˝2/D 0 for type I0
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extensions. Moreover, when X is not an Enoki surface, h0.K˝2˝L˝�2/D 0 for
type I0 extensions, except the case when L˝2 D K˝2, i.e., when L has the form
R˝K for a square root R of O.

Therefore, under these assumptions, for any square root R we get an (essen-
tially unique) nontrivial extension of type I0

0 �! K˝R �!AR �!R �! 0 :

One has AR D A˝R, where A WD AO is the “canonical extension” introduced
in the introduction. Recall from [Tel05] that, for every c 2 Tors2.H 2.X;Z//, the
space Picc contains two square roots of O, which are conjugate by the square root
R0 2 Pic0.X/ associated with the standard representation � W �1.X/! Z2.

For the other right-hand terms in (12), we see that the problem simplifies
further as soon as L defines an extension with semistable middle term E. More
precisely:

LEMMA 2.2. Let g be a Gauduchon metric on X . There exists " > 0 such
that for any line bundle L on X with degg.L/ <

1
2

degg.K/C " one has H 0.K_˝

L˝2/D 0.

Proof. Indeed, if H 0.K_ ˝L˝2/ ¤ 0, the vanishing locus of a nontrivial
section would be an effective divisor of volume less than 2". Therefore, if " is
sufficiently small, this divisor will be empty, which would imply L˝2 'K. But Nk
is not divisible by 2 in H 2.X;Z/=Tors. �

From now on we will always suppose that X is minimal and is not an Enoki
surface.

LEMMA 2.3. There exists a Gauduchon metric g on X such that degg.K/ < 0.

The following short proof is due to Nicholas Buchdahl2. A different proof
can be obtained using Lamari’s description of the pseudo-effective cone of a non-
Kählerian surface [Tel06], [Lam99].

Suppose that g is a Gauduchon metric with d WD degg.K/ > 0 and let � be a
real (1,1)-form representing the Chern class of K in Bott-Chern cohomology. One
has

R
X � ^ � D k

2 D�b (where again b WD b2.X/). We claim that the dd c-closed
form � WD !g C

d
b
� satisfies all the conditions in Buchdahl’s positivity criterion

(see [Buc00, p. 1533]), namely:

(i)
R
X �^ � > 0,

R
X �^! > 0, where ! is a strictly positive dd c-closed .1; 1/-

form;

(ii)
R
C � > 0 for every irreducible curve C �X with C 2 < 0.

2In 2004, Nicholas Buchdahl pointed out to me that in [Tel05] one can assume that degg .K/ < 0
without loss of generality.
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Indeed,
R
X �^�D

R
X �^!D

R
X !

2
gC

d2

b
>0, and for every curve C �X one hasR

C �D
R
C !C

d
b
c1.K/ � ŒC ��

R
C !, because c1.K/ � ŒC �� 0 by Lemma 1.2. Using

Buchdahl’s positivity criterion, it follows that there exists a smooth real function '
such that �Cdd c' is strictly positive. The (1,1)-form �Cdd c'C"� is dd c-closed
and strictly positive for sufficiently small " > 0; but

R
X .�Cdd

c'C"�/^�D�"b,
which shows that, with respect to the corresponding Gauduchon metric, K has
negative degree. �

Now, we are able to prove the following important:

PROPOSITION 2.4. If degg.K/ < 0 then the following holds:

(i) The moduli space Mpst.0;K/ is a compact topological manifold which has
a natural smooth holomorphic structure on Mpst.0;K/ nR0, extending the
standard holomorphic structure on Mst.0;K/.

(ii) If none of the classes �e1 or �e2 is represented by a cycle, then the bundles
AR (where R˝2 D O) are stable.

Proof. (i) By Proposition 1.3, one hasH 2.End0.E//D0 for every g-polystable
bundle E with c2.E/ D 0, det.E/ D K. Indeed, since degg.K/ < 0, a bundle E

with these invariants and nonvanishing H 2.End0.E// cannot be g-semistable. The
claim now follows from Theorem 1.11 and Propositions 1.25 and 1.27.

(ii) Using Corollary 1.7 we see that AR cannot be written as an extension of
type ∅ (when X is not an Enoki surface). By Proposition 1.4 it cannot be written
as an extension of type fig (when �ei is not represented by a cycle). Therefore,
under our assumptions, it could only be destabilized by a line bundle of the form
K˝R0, with R0˝2 D O. But degg.K˝R0/D deggK< k when degg.K/ < 0. �

Consider the three vector bundles

F�k
I WD

a
L2Pic

eI
�k

H 1.K_˝L˝2/ ; I D∅; f1g; f2g:

We see that F�k
I is a bundle over PiceI

�k (which is a finite union of punctured closed
disks). According to (12), Lemma 2.1, and Lemma 2.2, F�k

∅ is a rank 2 bundle,
whereas F�k

f1g
, F�k
f2g

are line bundles. We denote by P.F�k
I / the projectivizations of

these bundles. P.F�k
∅ / is a P1 bundle over PicT�k, whereas P.F�k

f1g
/, P.F�k

f2g
/ can

be identified with Pice1
�k, Pice2

�k respectively, so they are finite unions of punctured
closed disks.

Let …∅ be the space obtained by collapsing to points the fibers of P.F�k
∅ /

over the boundary PicTDk of the base PicT�k. …∅ is a topological manifold, because
collapsing the fibers over PicTDk is equivalent to gluing a finite union of copies of
.S1 �D3/ by identifying in the obvious way the boundary of this union with the
boundary of P.F�k

∅ /. Let C0 �…∅ be the subset formed by the points correspond-
ing to collapsed fibers (which is just a copy of the finite union of circles PicTDk),
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and denote by …c∅, C0c the component of …∅ (respectively C0) corresponding to
c 2 Tors.

We assign a bundle E.p/ to each point p 2…∅ in the following way: E.p/

is the split polystable bundle L˚ ŒK˝L_� if p is the collapsed fiber over L, and
E.p/ is the bundle E.L; "/ if deg.L/ < k and pD .L; Œ"�/ with "2H 1.K_˝L˝2/.

PROPOSITION 2.5. (i) E.p/ is polystable for every p 2…∅, and is stable
when p 2…∅ nC0. The map '∅ W…∅!Mpst.0;K/ given by '∅.p/D E.p/

has the properties:

(a) identifies homeomorphically C0c with the circle of reductions R0c for every
class c 2 Tors,

(b) is injective.

(ii) Assuming that degg.K/ < 0, it holds that

(a) '∅ is a holomorphic open embedding on …∅ nC
0;

(b) '∅ maps homeomorphically …∅ onto an open subspace of Mpst.0;K/.

Proof. (i) It is clear that E.p/ is a split polystable bundle when p 2 C0, and
that the induced map C0c ! R0c is a homeomorphism for every c 2 Tors. When
p 2…∅ nC

0, then E.p/ is the nontrivial extension E.L; "/ with L 2 PicT<k. E.p/ is
not destabilized by L, but a priori it could be destabilized by another line bundle.
This would imply that E.p/ can be written as an extension in a different way. Using
Proposition 1.1, we see that this new extension is of one of the four types ∅, f1g,
f2g, or I0. By Corollary 1.7, this would imply that X has a curve in one of the
classes 0, e1, e2, or e1C e2. This is not possible, because X is minimal (so the
vanishing Lemma 1.2 applies) and is not an Enoki surface. A similar argument,
based on Corollaries 1.7 and 1.8 proves injectivity.

(ii) (a) It is easy to construct a classifying holomorphic bundle on P.F<k
∅ /�X

which induces '∅. This proves that '∅ is holomorphic on …∅ n C0. But, when
degg.K/ < 0, the space Mst.0;K/ is a smooth complex surface, by Proposition 1.3.
Since '∅ is injective, it is a holomorphic open embedding on …∅ nC

0.
(ii) (b) This is a delicate point, because we endowed Mpst.0;K/ with the topol-

ogy induced by the Kobayashi-Hitchin correspondence from the corresponding
moduli space of oriented ASD connections (see the comments at the beginning of
�1.4). By Proposition 2.4, Mpst.0;K/ is a topological manifold. This substantial
simplification of the problem is specific to the case b2 D 2.

We prove first continuity: continuity on …∅ nC
0 is clear by (ii) (a). Continuity

at the points of C0 easily follows by elliptic semicontinuity taking into account the
compactness of Mpst.0;K/. But …∅ and Mst.0;K/ are both topological manifolds,
so '∅.…∅/ is open in Mst.0;K/ and '∅ W…∅! '∅.…∅/ is a homeomorphism,
by the Brouwer invariance of domain theorem. �

Let M0 be the union of the connected components of Mpst.0;K/ which inter-
sect '∅.…∅/. For c 2 Tors denote by Mc the connected component of Mpst.0;K/
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(or, equivalently, of M0) which contains the circle R0c . One can write

(13) M0
D

[
c2Tors

Mc :

Our next goals are

� to prove that Mc ¤Mc0 for c ¤ c0,

� to describe geometrically the components Mc .

The main point is that any Mc is compact and contains a family of projective
lines parametrized by a punctured disk. The idea is to prove that Mc nR

0
c can be

identified with an open subset of a (possibly blown up) ruled surface.
We will need the following simple

LEMMA 2.6. Let g W .P1 n f0g/�P1!Z be a holomorphic open embedding
into a connected compact complex surface Z. There exists a ruled surface r W
S ! P1 over P1 and a modification � W Z! S (which is either an isomorphism
or obtained by iterated blowing-ups at points lying above 0 2 P1) such that g

factorizes as gDj ıg0, where g0 W .P1nf0g/�P1
'
! r�1.P1nf0g/ is a trivialization

of r over P1 n f0g, and j W r�1.P1 n f0g/! Z is the obvious open embedding
inverting � on r�1.P1 n f0g/. In particular U WD im.g/ is Zariski open.

Proof. Fix p0 2 P1 n f0g an put C0 WD g.fp0g � P1/. By [BHPVdV04,
Prop. 4.3, p. 192] we get a (locally trivial) ruled surface r W S ! B over a compact
curve B and a modification � WZ! S such that C0 does not meet any exceptional
curve of � and �.C0/ is a fiber of r . It is easy to see that any other projective line
g.fpg �P1/ also has these two properties. Therefore we have an induced injective
holomorphic map u W P1 n f0g ' C! B . Such a map can only exist when B is
rational, and in this case it extends to an isomorphism v WP1!B . The exceptional
divisor of � lies over the singleton B n im.u/. �

Lemma 2.6 has a generalization for nonconnected, noncompact surfaces. For
a finite setA put PA WDA�P1 (the disjoint union of jAj copies of P1), and for a2A
put Pa WD fag �P1. We denote by D, Dr the open disk of radius 1, respectively r
(where r 2 .0; 1/), by D�, D�r the corresponding punctured disks, and by �.r; 1/
the annulus of biradius .r; 1/.

COROLLARY 2.7. Let Y be an arbitrary (not necessarily connected or com-
pact) complex surface and let g WD� �PA! Y be a holomorphic open embedding
such that

(i) g..D nDr/�Pa/ is closed in Y for every a 2 A,

(ii) Y ng.�.r; 1/�PA/ is compact.

Then

1. any component of Y0 2 �0.Y / with Y0\ im.g/D∅ is compact;

2 �0.g/ W A! �0.Y / is injective;
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3. let Ya be the connected component of Y which contains g.D� �Pa/. There
exists a modification �a W Ya ! D � Pa (which is either an isomorphism
or obtained by iterated blowing-ups at points lying above 0 2 D) such that
g D��Pa

D ja ıga, where ga WD��Pa!D��Pa is a biholomorphism over
D� and ja WD� �Pa! Ya is the obvious open embedding inverting �a on
D� �Pa.

Proof. Let Y0 be a connected component of Y . If Y0\ im.g/D∅, then Y0 is
compact by condition (ii). When Y0\ im.g/¤∅, there exists a subset A0 �A and
a holomorphic open embedding g0 WD� �PA0 ! Y0 still satisfying properties (i)
and (ii) in the hypothesis. Let � be the complement of xDr in P1. We glue ��PA0
to Y0 via the restriction g0 �.r;1/�PA0

and we get a connected, compact, complex
surface Z0 with an open embedding f0 W .P1 n f0g/�PA0 ! Z0. Condition (i)
assures that Z0 is Hausdorff. By Lemma 2.6 the image f0..P1 n f0g/ � Pa/ is
Zariski open in Z0, for every a 2 A0. Since a connected surface cannot contain
two disjoint nonempty Zariski open sets, we get that jA0j D 1. The third statement
follows now directly from Lemma 2.6. �

PROPOSITION 2.8. Suppose degg.K/ < 0. Then

(i) Mc1 ¤Mc2 for c1 ¤ c2;

(ii) Mc nR
0
c has a natural smooth holomorphic structure and Mc n'∅.…

c
∅/ is a

divisor Dc ;

(iii) Dc is a smooth rational curve or a tree of smooth rational curves;

(iv) For every c 2 Tors there exists a unique d.c/ 2 e1 such that R00
d.c/
�Mc ; one

has R00
d.c/
� Dc and the assignment Tors 3 c 7! d.c/ 2 e1 is a bijection.

Proof. By Proposition 2.4 we know that Mpst.0;K/ nR0 is a smooth open
complex surface with jTors.H 2.X;Z/j ends (towards the removed circles R0c). We
apply Corollary 2.7 to the open embedding

'∅ W P.F
<k
∅ /!Mpst.0;K/ nR0 :

Corollary 2.7 applies because the bundle F<k
∅ is trivial; indeed, by a theorem of

Grauert [Gra58], on a Stein manifold the classification of holomorphic bundles
coincides with the classification of topological bundles. This proves (i), (ii), and
(iii).

For (iv) we need results from Donaldson theory (see ��1.4.3 and 1.4.2). Ev-
ery component Mc contains a single component R0c of R0. Suppose that it also
contains j components R00

d1
; : : : ;R00

dj
of R00, with j � 0. Removing standard

neighborhoods xU 0c , xU 00
di

of the j C 1 circles of reductions (or equivalently blowing
up these reduction loci as in �1.4.2) we see that the sum of the fundamental classes
of the resulting (oriented) boundary components is homologically trivial in the
moduli space B�a of irreducible oriented connections. Here we use the boundary
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orientations induced by the orientation OL0 of the moduli space (see �1.4.2) which
corresponds to a line bundle L0 with torsion Chern class. Let �./ be the Donald-
son �-class associated with a generator  2H1.X;Z/=Tors. Using Corollary 1.15
and Lemmas 1.16 and 1.17 we obtain

h�./; Œ@ xU 0c�i D ˙1 ; h�./; Œ@
xU 00d �i D �1

for any c 2 Tors and d 2 e1. The sign difference comes from the relation between
the orientations OL0 , OL1 associated with line bundles Li having c1.L0/ 2 Tors,
respectively c1.L1/ 2 e1 [ e2 (see Lemma 1.16). Therefore j D 1, so Mc D

'∅.…
c
∅/[Dc contains a single component R00

d.c/
of R00. This component is con-

tained in Dc , because, by Proposition 2.5, im.'∅/ cannot intersect R00. Finally,
we have d.c1/¤ d.c2/ for c1 ¤ c2, because R00

d.ci /
belong to different connected

components of Mpst.0;K/. �

Remark 2.9. The involution ˝� leaves invariant every divisor Dc as well as
the irreducible component D0c which contains the circle R00

d.c/
.

Indeed, ˝� obviously leaves invariant '∅.…
c
∅/ and R00

d.c/
. �

A posteriori (after proving the existence of a cycle) we obtain �1.X/ D Z

by Theorem 0.1 (iii). This gives TorsD f0g, so by (13) the space M0 has a single
component M0D'∅.…

0
∅/[D0. We will see that �1.X/DZ also implies D0DD00

(see Proposition 2.15 below), hence the divisor D0 is in fact irreducible and smooth.
Therefore M0 can be identified with the space obtained from xD �P1 by collapsing
the fibers over S1 to points. This space is homeomorphic to S4 as explained in
the introduction. This makes clear why the assumption �1.X/D Z (made in the
introduction in order to avoid technical complications) simplifies considerably the
proof.

COROLLARY 2.10. M0 D Mst
∅, where Mst

∅ denotes the set of stable bundles
which can be written as extensions of type ∅.

This follows immediately from Proposition 2.8 (ii).
Our next purpose is to determine the position and the shape of the locus

M
pst
f1g
[M

pst
f2g

of polystable extensions of types f1g and f2g in the moduli space. We know by
formula (12) and Remarks 2.1 and 2.2 that, under our assumptions, for every line
bundle L with c1.L/ 2 e1[ e2 there exists a unique nontrivial extension E.L/ of
K˝L_ by L. We define the map

'12 W Pice1 �! fIsomorphism classes of bundles on Xg
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by

L 7!

8<:
E.L/ when degg.L/ < k

L˚ .K˝L_/ when degg.L/D k

E.K˝L_/ when degg.L/ > k :

PROPOSITION 2.11. Suppose that degg.K/ < 0, and

� the classes �e1, �e2 do not contain any cycle;

� the classes˙.e1� e2/ do not contain any effective divisor.

Then:

(i) '12 takes values in Mpst.0;K/ nR0, is holomorphic, injective and identifies
Pice1 with M

pst
f1g
[M

pst
f2g

;

(ii) for every d 2 e1 the map '12 identifies PicdDk with R00
d

;

(iii) for every c 2 Tors the map '12 defines an open embedding Picd.c/! Dc ;

(iv) the closure of the component '12.Picd.c// in the moduli space is precisely the
irreducible component D0c of Dc ;

(v) D0c is obtained from '12.Picd.c// by adding two points B1
c , B2

c which are fixed
under the involution˝�.

Proof. (i) We have already mentioned above that an extension of type f1g
or f2g cannot be written as an extension of type ∅. Since X is not an Enoki
surface, we see by Corollary 1.7, that an extension of type f1g can be written as an
extension of type f2g if and only if both of them are split. The condition that �ei
is not represented by a cycle guarantees that an extension of type fig cannot be
written as a nontrivial extension of type I0 D f1; 2g (see Proposition 1.4), whereas
the condition that .ej � ei / is not represented by an effective divisor guarantees
that an extension of type fig cannot be written as an extension of the same type in
a different way. Therefore, the stability condition for E.L/ reduces to deg.L/ < k.
This also proves injectivity. The holomorphy follows from the properties of the
holomorphic structure on Mpst.0;K/ nR0 established in Proposition 1.25.

(ii) This is obvious.
(iii) Since '12.Picd.c// contains the circle R00

d.c/
, it is contained in the con-

nected component Mc of the moduli space which contains this circle (see Proposi-
tion 2.8). On the other hand '12.Picd.c// does not intersect the locus '∅.…∅/ of
type ∅ extensions, so it is contained in the complement Dc DMc n'∅.…

c
∅/. Since

'12 is holomorphic and injective, the statement follows.
(iv) D0c was defined as the irreducible component of Dc containing the circle

R00
d.c/

.

(v) It suffices to note that both D0c and '12.Picd.c// are invariant under ˝�.
�
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We will need a similar description of M
pst
f1g
[M

pst
f2g

in the more difficult case
when one of the classes ˙.e1� e2/ does contain an effective divisor. Since X is
not an Enoki surface, only one of these classes, say e2 � e1 is represented by an
effective divisor.

LEMMA 2.12. Suppose that e2� e1, is represented by an effective divisor A.

(i) A is a smooth rational curve.

(ii) One has that E.L/' E.K˝L_.�A// for every L 2 Pice1 .

Proof. (i) If X had two irreducible curves, then X possesses a global spherical
shell by the result of Dloussky-Oeljeklaus-Toma [DOT03] mentioned in Theorem
0.1 in the introduction. In this case the possible configuration of curves is known,
and in all cases e2 � e1 is either not represented by an effective divisor, or it is
represented by a smooth rational curve. If X has only one irreducible curve, then
this curve will be A (because e2 � e1 is not a divisible class in H 2.X;Z/=Tors).
Therefore A is irreducible, so it is either a smooth rational curve or a rational
curve with a node (see [Nak84, Lemma 2.2, Th. 10.2]). But in the latter case A
has arithmetic genus 1, whereas the adjunction formula gives pa.A/D 0; so only
the first case is possible.

(ii) We first prove that, when L 6' K˝ L_.�A/, the canonical morphism
s WK˝L_.�A/!K˝L_ admits a lift i WK˝L_.�A/! E.L/, or equivalently,
that the canonical section � 2 H 0.O.A// has a lift in H 0.E.L/˝K_ ˝L.A//.
Consider the following diagram with exact lines and an exact column (compare
with the proof of Proposition 1.4):

H 0..K_˝L˝2/.A//

#

H 0..K_˝L˝2/.A/A/

# u

�! H 0.E.L/˝K_˝L/ �! H 0.O/
@
�! H 1.K_˝L˝2/

# # a # v

�! H 0.E.L/˝K_˝L.A// �! H 0.O.A//
@A
��! H 1.K_˝L˝2.A//:

The section � D a.1/ 2 H 0.O.A// has a lift in H 0.E.L/˝K_ ˝L.A// if and
only if @A ı a.1/D v."/ vanishes, where " 2H 1.K_˝L˝2/ n f0g is the invariant
of the extension defining E.L/. But when L 6' K˝L_.�A/, one has

h0..K_˝L˝2/.A//D 0; h0..K_˝L˝2/.A/A/D h
1.K_˝L˝2/D 1;

so u is an isomorphism and v vanishes. This proves the existence of a lift i of s.
Using [Tel06, Prop. 4.8, 5] it is easy to see that i is a bundle embedding. The
corresponding extension of L.A/ by K˝L_.�A/ with central term E.L/ cannot
be trivial, because there exists no nontrivial morphism L.A/! E.L/. �

Using Lemma 2.12 one obtains:
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PROPOSITION 2.13. Suppose that degg.K/ < 0, and

� the classes �e1, �e2 do not contain any cycle,

� the class e2� e1 is represented by an effective divisor A.

Put aD c1.O.A// 2H 2.X;Z/, a WD degg.O.A// 2 R. Then:

(i) For every d 2 e1 the map

'd W ŒPicd ��k�a
�k ! fIsomorphism classes of bundles on Xg ;

defined by

L 7!

8<:
L˚ .K˝L_/ when degg.L/D k

E.L/ when k� a< degg.L/ < k

.K˝L_.�A//˚L.A/ when degg.L/D k� a ;

maps continuously ŒPicd ��k�a
�k into M

pst
f1g

.

(ii) The involution d 7! k � a � d on H 2.X;Z/ is identity on the class e1 �
H 2.X;Z/. The involution � W Pice1 ! Pice1 given by L 7! K ˝ L_.�A/

leaves invariant every connected component of Pice1 .

(iii) For d 2 e1 let Dd be the disk

Dd WD
ŒPicd ��k�a

�k
ı
�

and C d the punctured 2-sphere C d WDDd[ud Pick�d�k where ud is the natural
isomorphism between the boundaries acting by ud .L/DK˝L_ for L2PicdDk

(see Figure 2). The map

 12 W
a
d2e1

C d ! fIsomorphism classes of bundles on Xg

given by

L 7!

�
E.L/ when L 2 ŒPice1 �>k�a

<k [Pice2<k

L˚ .K˝L_/ when L 2 Pice1
Dk

maps injectively
`
d2e1

C d onto M
pst
f1g
[M

pst
f2g

.

(iv) For every c 2 Tors, the map  12 induces an open holomorphic embedding
C d.c/! D0c . The complement D0c n 12.C

d.c// is a point Bc which is fixed
under the involution˝�.

Proof. We denote by a the Chern class of O.A/ and by a the degree of O.A/.
(i) Let L 2 Pice1 . It suffices to note that a subbundle of E.L/ is isomorphic

either to L or to K˝L_.�A/. This follows from Corollary 1.7 as in the proof of
Proposition 2.11. Continuity at points L 2 ŒPicd �>k�a

�k is obvious, whereas conti-
nuity at points L 2 PicdDk�a easily follows from Lemma 2.12 (ii).
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[Picd]≥k−a
≤k Dd := [Picd]≥k−a

≤k /ι

Pick−d
≤k

ud

1

Figure 2

(ii) Statement (i) shows that the circles R00
d

and R00
k�a�d

belong to the same
component of the moduli space. Therefore, by Proposition 2.8, (iv). one has d D
k� a� d . The second statement follows from the first.

(iii) and (iv) are proved using similar arguments as in the proof of Proposition
2.11. �

The following simple lemma concerns the geometry of the tree of rational
curves Dc . Recall that we denoted by D0c the irreducible component which contains
the circle R00

d.c/
of reductions.

LEMMA 2.14. Let D1c be an irreducible component of the tree Dc which is
different from D0c (if such a component exists).

(i) When the hypothesis of Proposition 2.11 holds, then D1c \D0c is either empty
or coincide with one of the two singletons fBi

cg.

(ii) When the hypothesis of Proposition 2.13 holds, then D1c \D0c is either empty
or the singleton fBcg.

Proof. Suppose that D1c \D0c D fF0g, where F0 2 D0c does not coincide with
any of the bundles fBi

cg (respectively Bc). According to Propositions 2.11 and
2.13, the bundle F0 is a (possibly split) extension of type f1g or f2g. Therefore the
set of points of D1c which correspond to filtrable bundles is nonempty, but finite: it
consists of F0 and possibly some of the (finitely many) bundles AR. Here we use
essentially the fact that, for c ¤ c0, the projective lines D0c , D0c0 belong to different
connected components of the moduli space, so D1c cannot be another component
of the filtrable locus M

pst
f1g
[M

pst
f2g

.
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If F0 is a nonsplit extension (and hence stable), we get already a contradiction,
because there cannot exist a family of rank 2 simple bundles on X parametrized
by a closed Riemann surface which contains both filtrable and nonfiltrable bundles
(see [Tel05, Cor. 5.3]). If F0 is a split extension L˚ .K˝L�1/ with L 2 Pice1 ,
degg.L/ D k, we have to take into account the way in which the holomorphic
structure of Mpst.0;K/ around R00 has been defined (see �1.4.5). The inclusion
D1c ,!Mpst.0;K/ is (by definition) holomorphic if, replacing F0 by the nontrivial
extension E.L/, we obtain a holomorphic curve in Mst

gt
.0;K/ for small t > 0 (see

Lemma 1.26). This reduces the problem to the case when F0 is not split. �

PROPOSITION 2.15. Suppose that �1.X/ D Z. Then the subspace M0 of
Mpst.0;K/ contains a single component M0 D '∅.…

0
∅/[D0. Moreover, one has

D0 D D00, so D0 is an irreducible smooth rational curve, and M0 can be identified
with the space obtained from xD� �P1 by collapsing to a point each fiber over @ xD.

Proof. By the hypothesis and the coefficients formula we have thatH 2.X;Z/'

Z, so TorsD f0g. Using (13) we get the first statement. For the second, suppose
that D0 had more than one connected component. D0 is connected, so there exists
an irreducible component D10 ¤ D00 which intersects D00. By Lemma 2.14 the
intersection point will be a fixed point of the involution ˝�. Since the tree D0 is
obtained by successive blow ups applied to a smooth ruled surface, it cannot contain
triple crossings, so D10 will also be invariant under this involution. Therefore ˝�
would have at least three fixed points, which contradicts Proposition 1.10. �

We come back to the case of a general minimal class VII surface with b2 D 2
which is not an Enoki surface.

PROPOSITION 2.16. Suppose that none of the classes �e1, �e2, or �e1�e2 is
represented by a cycle. Choose a Gauduchon metric g on X such that degg.K/ < 0.
Then

(i) the bundles AR are stable, and the map Tors2.Pic.X//!Mst.0;K/ defined
by R 7!AR is injective;

(ii) the bundles AR do not belong to M0;

(iii) the subspace Mpst.0;K/nM0 is a smooth compact complex surface whose only
filtrable points are AR, where R˝2 D O.

Proof. (i) The stability of AR was stated in Proposition 2.4. The injectivity of
the map R 7!AR is a direct consequence of Proposition 1.4. Indeed, if AR 'AR0

with R 6'R0, then A'AR˝R0 , so A can be written as an extension with kernel
K˝ ŒR˝R0� 6' K. Therefore, by Proposition 1.4 there would exist a cycle in the
class �e1� e2.

(ii) By Corollary 1.7 and Proposition 1.4 we easily see that, under our as-
sumptions, AR cannot be isomorphic to a type ∅ extension. Therefore, if AR

belongs to M0, it will belong to one of the divisors Dc , c 2 Tors. We claim that it
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belongs precisely to the irreducible component D0c which contains the circle R00
d.c/

.
Indeed, if it belonged to another component, say D1c , this component would be con-
tained in the stable locus (use Lemma 2.14) and would contain both filtrable and
nonfiltrable points (because the filtrable locus of type ∅, f1g or f2g is contained in
'∅.…∅/[ .[c2TorsD

0
c/). This would contradict Corollary 5.3 in [Tel05]. Therefore

AR 2 D0c , as claimed. On the other hand, since AR is not isomorphic to a type
f1g or a type f2g extension, we see by Propositions 2.11 and 2.13 that it must be
isomorphic to either one of the two points Bi

c , or with the point Bc . But these
points are fixed under the involution ˝� whereas, by (i), AR is not fixed under this
involution.

(iii) This follows directly from (ii). �
We denote by Ms.0;K/ the moduli space of simple bundles E on X with

c2.E/D 0 and det.E/D K.

THEOREM 2.17. Suppose that X has no cycle. Then there exists a connected,
compact, smooth, complex surface Y and an open embedding f W Y ,!Ms.0;K/,
y 7! Ey , with the properties

(i) H 2.End0.Ey//D 0 for any y 2 Y ;

(ii) the set of filtrable bundles in f .Y / contains the bundle A and is contained in
the finite set fARj R

˝2 D Og.

Proof. The claim follows directly from Proposition 2.16 and Lemma 2.3 . �
Remark (the case degg.K/ > 0). The existence of Gauduchon metrics g with

degg.K/ < 0 simplifies considerably the proof, but it is not absolutely necessary.
In the case degg.K/ > 0, one can still prove Theorem 2.17 using ideas similar to
those developed in the case b2 D 1 [Tel05].

3. Universal families

The goal of this section is to prove that the open embedding f W Y !Ms.0;K/

whose existence is given by Theorem 2.17 (under the assumption that X had no
cycle) is induced by a universal family F on Y �X , whose determinant is isomor-
phic to p�X .K/˝ p

�
Y .N/, where N is a line bundle on Y . In the next section we

will apply the Grothendieck-Riemann-Roch Theorem to this family, and we will
see that its Chern classes must satisfy a set of very restrictive relations.

Let E be a rank 2 bundle on a compact complex surface X and let L be a fixed
holomorphic structure on the determinant line bundle L. We denote by Ms.E;L/

the moduli space of simple holomorphic structures on E which induce L on L,
modulo the complex gauge group GC WD �.X;SL.E//3.

Let Y be any complex manifold and � W Y !Ms.E;L/ be a holomorphic map.
Put �.y/D Ey . A universal family for the pair .�;N/ (where N is a holomorphic

3We emphasize here that we consider holomorphic structures which induce precisely L on LD
det.E/, not only a structure which is isomorphic to L.
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line bundle on Y ) is a holomorphic rank 2 bundle F on Y �X , together with an
isomorphism det.F/ '�! p�Y .N/˝p

�
X .L/ such that F fyg�X ' Ey for all y 2 Y .

PROPOSITION 3.1. Let T be a holomorphic line bundle on X such that

� �.E˝T/D�1;

� h0.Ey ˝T/D h2.Ey ˝T/D 0 for every y 2 Y .

Then

(i) for two representatives E1y , E2y of the isomorphism class �.y/, the two lines
H 1.Eiy ˝T/˝2, i D 1, 2 and the two planes Eiy.x/˝H

1.Eiy ˝T/ i D 1, 2
can be canonically identified, for any y 2 Y , x 2X ;

(ii) the assignments

y 7!H 1.Ey ˝T/˝2 ; .y; x/ 7! Ey.x/˝H
1.Ey ˝T/

descend to a holomorphic line bundle NT
� on Y and a universal family FT

� for
the pair .�;NT

� / respectively.

Proof. The determinant line bundles of all the Eys coincide (not only are
isomorphic!) with L. Two different holomorphic SL.2/-isomorphisms E1y ! E2y
differ by composition with �idE1y

, which operates trivially on the tensor products

H 1.Eiy ˝T/˝2, Eiy.x/˝H
1.Eiy ˝T/.

For the second statement suppose for simplicity that Ey is regular (i.e., it holds
H 2.End0.Ey//D 0) for all y 2 Y . This case is sufficient for our purposes. We de-
note by Hs

reg.E;L/ the space of regular simple holomorphic structures (integrable
semiconnections) on E which induce the fixed holomorphic structure L on det.E/,
and we denote by Ms

reg.E;L/ the corresponding open part of the moduli space
Ms.E;L/. After suitable Sobolev completions Hs

reg.E;L/ becomes a Banach com-
plex manifold. On the bundle p�X .E/ over the product Hs

reg.E;L/�X we intro-
duce the tautological holomorphic structure E (which is trivial in the Hs

reg.E;L/-
directions). This holomorphic structure is GC-invariant but, unfortunately, it does
not descend to a holomorphic bundle on Ms

reg.E;L/�X , because the center f˙1g
of GC operates nontrivially on p�X .E/ but trivially on its base Hs

reg.E;L/ � X .
However one can factorize E by the based gauge group GC

x0
and get a bundle

F on zMs
reg.E;L/ � X , where zMs

reg.E;L/ WD Hs
reg.E;L/=GC

x0
is a holomorphic

principal PSL.2;C/ bundle over Ms
reg.E;L/. Denote by Ms

0.E;L/, zM
s
0.E;L/ the

open subspaces of Ms
reg.E;L/ and zMs

reg.E;L/ consisting of isomorphism classes
ŒE� for which h0.E˝T/ D h2.E˝T/ D 0, and denote by � and p the projec-
tions of zMs

0.E;L/�X on the two factors. By the Grauert local triviality theorem
and the assumption, the sheaf R1.�/�.F˝p�.T// is a line bundle on zMs

0.E;L/,
which we denote by R. The bundles R˝2, F ˝ R descend to Ms

0.E;L/ and
Ms
0.E;L/�X respectively, because the SL.2;C/-actions on these bundles induce

well-defined PSL.2;C/-actions which lift the free PSL.2;C/-actions on zMs
0.E;L/
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and zMs
0.E;L/�X . We denote by NT, FT the obtained bundles. By the hypothesis

(and our simplifying regularity assumption) the map � W Y !Ms.E;L/ takes values
in Ms

0.E;L/. It suffices to put NT
� WD �

�.NT/ ; FT
� WD .f � idX /�.FT/ : �

Remark 3.2. Let X be a class VII surface, and choose E such that c2.E/D 0,
c1.E/D c1.KX /. Then any holomorphic line bundle T on X with c1.T/2 D�1
satisfies the condition �.E˝T/D�1. Therefore, Proposition 3.1 applies as soon
as

h0.T˝Ey/D h
2.T˝Ey/D 0 for all y 2 Y :

This remark applies to the embedding f W Y ,!Ms.0; Y / obtained in Theorem
2.17. Indeed, since the only filtrable points on Y have the form AR it is easy to
see that h0.T˝Ey/D h

2.T˝Ey/D 0 for all y 2 Y . Therefore

COROLLARY 3.3. For any holomorphic line bundle Ton X with c1.T/2D�1
there exists a universal family FT

f
for the pair .f;NT

f
/.

4. Grothendieck-Riemann-Roch computations

Let F be a universal family for the obtained map f W Y ,!Ms (see Corollary
3.3). In this section we will see that, applying the Grothendieck-Riemann-Roch
Theorem to the bundles F and End0.F/ and the proper morphism Y �X ! Y , we
will obtain important information about the Chern classes of F and also about the
Chern classes of Y itself.

Let X be a class VII surface with b2 D 2, Y an arbitrary compact complex
surface, and L a holomorphic line bundle on Y . Throughout this section we will
consider a holomorphic rank 2 bundle F on Y �X with the following properties

(i) det.F/' p�Y .N/˝p
�
X .K/, where N is a line bundle on Y ;

(ii) c2.F fyg�X /D 0, for all y 2 Y .

The Künneth decompositions of the Chern classes c1.F/, c2.F/ in rational coho-
mology have the form:

c1.F/D �˝ 1C 1˝ k ; c2.F/D c˝ 1C s˝ t C
X
i

�i ˝ ei C � ˝ � ;

where

(a) �D c1.N/, k D c1.KX /,

(b) c WD c2.F Y�fxg/ for any x 2X ,

(c) t , � are generators of H 1.X;Z/ and H 3.X;Z/=Tors respectively such that

h� [ t; ŒX�i D �ht [ �; ŒX�i D 1 ;

(d) s 2H 3.Y;Z/=Tors, � 2H 1.Y;Z/,

(e) .e1; e2/ is a basis of H 2.X;Z/=Tors such that e2i D�1 and k D e1C e2,

(f) �i 2H 2.Y;Z/=Tors.
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It is convenient to write formally F as F˝p�Y .M/, where M is a formal line bundle
on Y of Chern class �

2
. The Chern classes of the formal rank 2 bundle F will be

c1.F/D 1˝ k ;

c2.F/D c2.F/�
1

2
�˝ k�

1

4
�2˝ 1

D
1

4

(
U ˝ 1CS ˝ t C 2

X
i

Mi ˝ ei C 4� ˝ �

)
;

where

U WD 4c � �2 ; Mi D 2�i � � ; S D 4s :

Let T be a holomorphic line bundle of Chern class � on X . Our next purpose is
to compute the Chern character ch

�
pY Š.F˝p

�
X .T//

�
. Using the multiplicative

property of the Todd class and of the Chern character, the Grothendieck-Riemann-
Roch Theorem gives

ch.pY Š.F˝p�X .T//D .pY /�
�
ch.F˝p�X .T/[p

�
X .td.X//

�
D .pY /�

�
.ch.F/[ .pX /�.ch.T/[ td.X//

�
:

Remark 4.1. The non-Kählerian version of the Grothendieck-Riemann-Roch
Theorem [OTT85] for proper analytic maps gives an identity in the Hodge algebra,
not in rational cohomology. In this section we will use a cohomological version
of this Grothendieck-Riemann-Roch Theorem, which can be deduced from the
index theorem for families of coupled Spinc-Dirac operators. Our fiber X is not
Kählerian, so the operator 1=

p
2.x@Cx@�/ does not coincide with the corresponding

coupled Spinc-Dirac operator; however the difference is an operator of order 0, so
the usual index formula applies. We will need this formula only for sheaves E for
which Ri ..pY /�.E// are locally free.

In our case, one has

td.X/D 1�
k

2
; ch.T/[ td.X/D 1C

1

2
.2� � k/C

1

2
.�2� �k/ŒX� :

We get

pY �
�
ch.F/[p�X .ch.T/[ td.X//

�
D pY �

�
ch.F/[p�Y ch.M/[p�X .ch.T/[ td.X//

�
D ch.M/[ .pY /�

�
ch.F/[

�
1C

1

2
.2� � k/C

1

2
.�2� �k/ŒX�

��
:

Writing formally

ch.S/ WD .pY /�

�
ch.F/[

�
1C

1

2
.2� � k/C

1

2
.�2� �k/ŒX�

��
;
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one will have ch.pY Š.F˝p�X .T///D ch.M/ch.S/, where ch.S/ is given by

ch0.S/D �2 ;(14)

ch1.S/D�
1

2

X
i

�iMi ; �i WD �ei ;

ch2.S/D�
1

24
.1C 3�2/U �

1

48

X
i

M 2
i C

1

6
s[ � :

These formulae are obtained as follows. Putting ci WD ci .F/, i D 1, 2, we have

ch.F/D 2C c1C
1

2
.c21 � 2c2/C

1

6
.c31 � 3c1c2/C

1

24
.c41 C 2c

2
2 � 4c

2
1c2/ :

The known formulae for the Chern classes of F give:

c21 D�2˝ ŒX� ; c31D0 ; c1c2 D
1

4
.U ˝ k� 2

X
i

Mi ˝ ŒX�/ ;

c21c2 D�
1

2
U ˝ ŒX� ; c22D

1

4

 
�

X
i

M 2
i ˝ ŒX�C 2.S [ �/˝ ŒX�

!
:

In the computation of c1c2 we used that t [H 2.X;Z/D 0 in H 3.X;Z/=Tors; this
follows from Poincaré duality. Therefore

ch.F/D 2.1˝ 1/C 1˝ k

C
1

2

"
�2˝ ŒX��

1

2
ŒU ˝ 1CS ˝ t C 2

X
i

Mi ˝ ei C 4� ˝ ��

#

�
1

8

"
U ˝ k� 2

X
i

Mi ˝ ŒX�

#

C
1

12

"
1

4
Œ�
X
i

M 2
i ˝ ŒX�C 2.S [ �/˝ ŒX��CU ˝ ŒX�

#
:

Regrouping with respect to the degree of the X component, this reads:

ch.F/D
�
2.1˝ 1/�

1

4
U ˝ 1

�
C

�
�
1

4
S ˝ t

�
C

(
1˝ k�

1

2

X
i

Mi ˝ ei �
1

8
U ˝ k

)

Cf��˝ �gC

(
�1C

1

4

X
i

Mi �
1

48

X
i

M 2
i C

1

24
.S [ �/C

1

12
U

)
˝ ŒX� :
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Taking the product with
�
1C 1

2
.2� � k/C 1

2
.�2� �k/ŒX�

�
and projecting on Y we

get as claimed ch0.S/D �2, ch1.S/D�12
P
i �iMi , and

ch2.S/D�
1

8
.�2� �k/U �

1

16
.2� � k/kU �

1

48

X
M 2
i C

1

24
S [ � C

1

12
U

D U

�
1

12
�
1

8
�2C

1

16
k2
�
�
1

48

X
M 2
i C

1

24
S [ �

D U

�
�
1

24
�
1

8
�2
�
�
1

48

X
M 2
i C

1

6
s[ �:

PROPOSITION 4.2. For any universal family F for the map f W Y !Ms given
by Theorem 2.17 one has the identities U D�M 2

j , s[ � D 0.

Proof. Chose T D O. We know that H i .Ey/ D 0 for all y 2 Y ; hence in
this case pY Š.F˝ p�X .T// D 0. Therefore (since ch.M/ is invertible) we have
ch.S/D 0, which gives

(15) �
1

24
U �

1

48

X
i

M 2
i C

1

6
s[ � D 0 :

Now choose T such that � D ej . In this case h0.T˝Ey/D h
2.T˝Ey/D 0

and h1.T˝Ey/D 1. Therefore pY Š.F˝p�X .T// can be written as �H for a line
bundle H on Y . Writing hD c1.H/ we get

ch.S/D�ch.H/ch.M/�1 D� exp
�
h�

�

2

�
:

This gives ch2.S/D�12ch1.S/2 (which is equivalent to the vanishing of the sec-
ond Chern class of the line bundle H), so we have

�
1

24
U �

1

48

X
i

M 2
i C

1

6
s[ � D�

1

8
M 2
j �

1

8
U :

Combined with (15), this proves the claimed formulae. �

For the endomorphism bundle End0.F/ one has

c2.End0.F//D 4c2.F/� c1.F/2

D 4.c˝ 1C s˝ t C
X
i

�i ˝ ei C � ˝ �/

� .�2˝ 1C 2�˝ k� 2˝ ŒX�/

D .4c � �2/˝ 1C 4s˝ t C 4� ˝ � C 2
X
i

.2�i � �/ei C 2˝ ŒX�

D U ˝ 1CS ˝ t C 2
X
i

Mi ˝ ei C 4� ˝ � C 2˝ ŒX� :
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Since End0.F/ is isomorphic to its dual, its odd Chern classes vanish. The
Chern character of End0.F/ is ch.End0.F//D3�c2.End0.F//C 1

12
c2.End0.F//2.

We get

.c2.End0.F//2 D�4
X
i

M 2
i ˝ ŒX�C 4U ˝ ŒX�C 8S� ˝ ŒX� ;

ch.End0.F//D 3�
h
U ˝ 1CS ˝ t C 2

X
i

Mi ˝ ei C 4� ˝ � C 2˝ ŒX�
i

C
1

12

h
� 4

X
i

M 2
i ˝ ŒX�C 4U ˝ ŒX�C 8S� ˝ ŒX�

i
D .3�U ˝ 1/�S ˝ t � 2

X
i

Mi ˝ ei � 4� ˝ �

C
1

3

�
�

X
i

M 2
i CU C 8s� � 6

�
˝ ŒX�;

ŒpY ��.ch.End0.F//[ td.X//D ŒpY ��
h
ch.End0.F//[

�
1�

k

2

�i
D
1

3

�
�

X
i

M 2
i CU C 8s� � 6

�
�

X
i

Mi :

Therefore, setting U WD .pY /Š.End0.F//, we have

ch0.U/D�2 ; ch1.U/D�
X
i

Mi ; ch2.U/D
1

3

�
U �

X
i

M 2
i C 8s�

�
:

Since the image of Y by the obtained open embedding f W Y ,! Mst.0;K/ is
contained in the regular part of the moduli space, we get

ch.T 1;0Y /D chfR1.pY �/.End0.F//g D �chfpY Š.End0.F//g D �ch.U/ :

In particular

cQ
1 .T

1;0
Y /DM1CM2 D 2.�1C �2� �/ 2 2imŒH 2.Y;Z/!H 2.Y;Q/� :

In other words

PROPOSITION 4.3. The Chern class c1.Y / is even modulo torsion, so the
intersection form of Y is even. In particular Y is minimal.

5. End of the proof

Using the results proved in the previous sections, now we will show that the
assumption “X has no cycle” leads to a contradiction.

THEOREM 5.1. Any minimal class VII surface with b2 D 2 has a cycle repre-
senting one of the classes 0, �e1, �e2, or �e1� e2.

Proof. If X is an Enoki surface, it possesses a homologically trivial cycle
and is a GSS surface. Now suppose that X is not an Enoki surface. If X has
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no cycle we have proved that there exist a smooth compact complex surface Y
and an embedding f W Y ,! Ms whose image is contained in the regular locus
and contains a finite nonempty set of filtrable points. Moreover, we know that f
admits a universal family F! Y �X whose determinant line bundle has the form
p�Y .N/˝p

�
X .K/ for a line bundle N on Y . By the results in [Tel05], we see that

Y cannot be a union of curves, because if it were, one could find a curve which
passes through a filtrable point, normalize it if necessary, and get a family, which
contradicts Corollary 5.3 in [Tel05]. Therefore a.Y /D 0. Since the intersection
form of Y is even by Proposition 4.3, we are left with the following possibilities:

(i) Y is a class VII surface with a.Y /D 0 and b2.Y /D 0;
(ii) Y is a K3 surface with a.Y /D 0, or a torus with a.Y /D 0.

Case 1: Y is a class VII surface with a.Y /D 0 and b2.Y /D 0. Suppose that
Y is a class VII surface with b2.Y / D 0. Using the formula U D �M 2

j proved
in Proposition 4.2, we see that the class U D 4c � �2 2 H 4.Y;Z/ vanishes. In
other words, the bundles Fx on Y have trivial characteristic number �.Fx/ D
4c2.F

x/� c1.F
x/2. Choose a Gauduchon metric on Y in order to give sense to

stability. By Theorem 1.3 in [Tel08], the set

X st
WD fx 2X j Fx is stableg

is Zariski open in X . Note that, in our non-Kählerian framework, this statement is
not obvious. The point is that in our case the parameter space of the holomorphic
family .Fx/x2X is compact. Stability with respect to a Gauduchon metric is always
an open condition, but in general not Zariski open [Tel08].

Case 1a: The family .Fx/x2X is generically stable (X st ¤ ∅). In this case
we get a map ∅ ¤ X st! Mst.0;N/. Since �.Fx/ D 0, it is easy to see that the
moduli space Mst.0;N/ is 0-dimensional. Indeed, the expected dimension of the
moduli space vanishes, whereas the nonregular points are nontrivial line bundle
extensions (use the same argument as in [Tel05, Prop. 3.7]). Using the Riemann-
Roch Theorem and the methods explained in Section 2, we see that the set of line
bundles L 2 Pic.Y / for which h1.L˝2˝N_/¤ 0 is discrete, and one always has
h1.L˝2 ˝N_/ � 1, so the space of line bundle extensions in Mst.0;N/ is also
discrete.

Therefore the map X st!Mst.0;N/ is constant; let F0 be this constant. We
use the same argument as in the proof of Corollary 4.2 in [Tel08]: the sheaf
L WD ŒpX ��.p

�
Y .F

_
0 /˝F/ on X has rank 1, because it is a line bundle on X st.

One obtains a tautological morphism p�X .L/˝ p
�
Y .F0/ ! F, which is a bun-

dle isomorphism on X st � Y . Its restriction to a fiber X � fyg is a morphism
L˝O˚2X ' L˝F0.y/! Fy , which is a bundle embedding on X st. This would
imply that all our bundles Fy are filtrable, which is not the case.

Case1b: The family .Fx/x2X is not generically stable (X stD∅). In particular,
in this case all the bundles Fx are filtrable. The idea is to show that the maximal
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destabilizing line subbundle of Fx is independent of x for generic x 2X . Using
the methods introduced in [Tel08], consider the Brill-Noether locus of the family

BNX .F/ WD f.x;U/ 2X �Pic.Y /j H 0.U_˝Fx/¤ 0g ;

(which is a closed analytic set of X �Pic.Y /) and its compact subsets

BNX .F/�d WD f.x;U/ 2 BNX .F/j degg.U/� dg :

We denote by pPic the projection of X � Pic.Y / on Pic.Y /. Since X is compact,
it is easy to see, by the open mapping theorem, that degg ıpPic is locally constant
on BNX .F/. The reason is that degg is pluriharmonic on Pic.Y / and the sets
BNX .F/�d are compact (see [Tel08, Rem. 2.13] for details).

Denote by C the set of irreducible components of BNX .F/. For any C 2 C

define dC 2R by degg ıpPic.C /DfdC g, and note that C is closed in BNX .F/�dC ,
so it is compact. The projections on X of all these components (which are analytic
subsets of X) cover X , so there exists C 2 C with pX .C / D X . Choose an
irreducible component C0 with this property such that dC0 is maximal. Such a
component exists because, for any d 2 R, the set fC 2 Cj dC � dg is finite.

The set

Z WD pX

h [
fC2Cj dC>dC0g

C
i

is a finite union of analytic subsets of dimension � 1, and for any x 2X nZ, one
obviously has

(16) degmaxg.F
x/D dC0 ;

where we used the notation degmaxg.F
x/ WD supfdegg.L/j H

0.L_˝Fx/¤ 0g.
Note that, for a filtrable rank 2 bundle F, the invariant degmaxg.F/ is well-defined
and the supremum in the definition of this invariant is attained at some line bundle
(see [Buc88, Lemma 4], and [Tel08, Def. 2.6, Rem. 2.7]). Formula (16) shows that,
for every .x;L/ 2C0 and x 2X nZ, the line bundle L is a “maximal destabilizing
line bundle” of Fx .

In our case Pic.Y / can be identified with a finite union of copies of C�, and
with respect to suitable identifications Picc.Y /' C�, the restriction of degg to a
component Picc.Y / has the form �! ln j�j. Since degg ıpPic is locally constant on
BNX .F/, it follows that pPic is locally constant on BNX .F/, too. Let L0 2 Pic.Y /
be the line bundle which corresponds to C0. We obviously have that h0.L_0 ˝Fx/

> 0 for all x 2 X . Using the fact that the bundles Fx are nonstable, it is easy to
see that h0.L_0 ˝Fx/ � 2 for any x 2 X nZ, and equality occurs if and only if
Fx ' L0˚L0 (see [Tel08, Lemma 4.1]). Let U � .X nZ/ be the open Zariski
subset where the map x 7! h0.L_0 ˝Fx/ takes its minimal value. The sheaf

T WD ŒpX ��.p
�
Y .L

_
0 /˝F/
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has rank 1 or 2 and is locally free on U . The obvious morphism

p�X .T/˝p
�
Y .L0/! F

is a bundle embedding on U �Y . Restricting this morphism to fibers fyg �X , we
get a morphism T!Fy which is a bundle embedding on U . When T has rank 2,
it follows that the bundles Fy have all the same type (filtrable or nonfiltrable) as
the reflexivization of T. When T has rank 1, the bundles Fy contain all a rank 1
subsheaf, hence they are all filtrable. But our manifold Y contains both filtrable
and nonfiltrable points. �

Case 2. Y is a K3 surface with a.Y /D 0, or a torus with a.Y /D 0. This case
is ruled out by Corollary 1.6 in [Tel08], which states:

Let .Y; g/ be a compact Kähler manifold, X a surface with b1.X/ odd and
a.X/ D 0. Let E ! X � Y be an arbitrary family of rank 2 bundles on Y
parametrized by X . Then there exist a locally free sheaf T0 on X of rank 1 or 2, a
nonempty Zariski open set U �X and, for every y 2 Y , a morphism ey WT0! Ey
which is a bundle embedding on U .

Therefore, such a family cannot contain both filtrable and nonfiltrable bun-
dles. For completeness, we explain below briefly the outline of the proof of this
statement in the special case when Y is a K3 surface or a bidimensional torus.
This assumption implies that any moduli space of simple oriented bundles on Y is
smooth. Indeed, since KY is trivial, we have that h2.End0.S//D h0.End0.S//D 0
for any simple bundle S on Y , by Serre duality.

Suppose that the family E is generically stable, i.e., X st ¤ ∅. E induces a

holomorphic map X st f�! Mst.E/, where E denotes a differentiable rank 2 bundle
over Y and Mst.E/ stands for the moduli space of stable holomorphic structures
on E. In our special case we know that det.E/ ' p�X .K/˝ p

�
Y .N/ by Corollary

3.3, so f factorizes through a morphism X st!Mst
N.E/, but we do not need this

property.
The pull-back of the Petersson-Weil Kähler form of Mst.E/ is a form � 2

A
1;1
R .X st/, which is closed and positive (in the nonstrict sense). By [Tel08, Th. 1.4],

this form extends as a closed positive current pw.E/ on X . Let R be the residual
part of this current with respect to the Siu decomposition. When f has rank 2 at
a point x0 2 X st, R is smooth and strictly positive at x0, so ŒR�2 > 0 by the self-
intersection inequality given by [Tel08, Th. 5.3]. This contradicts the assumption
b1.X/ odd (see the signature theorem, [BHPVdV04, Th. 2.14]).

When f has generically rank 1, first note that the level sets CS � X
st, S 2

im.f / of f are all 1-dimensional, by the semicontinuity theorem for the fiber
dimension. The Brill-Noether locus BS WD fx 2X j h

0.S_˝Ex/ > 0g is a closed
analytic set of X . One has CS D X st \ BS (recall that for two nonisomorphic
stable bundles Si of the same rank and degree, one has h0.S_1 ˝S2/ D 0). For
any S 2 im.f / choose an irreducible component DS of BS which intersects X st.
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Two such curves are distinct, because they are disjoint on X st. We conclude that X
contains infinitely many curves, which contradicts a.X/D 0. When f is constant,
we proceed as in Case 1a above. The case X st D ∅ is treated as Case 1b, using
the fact that Pic.Y / is Kählerian. �

Acknowledgements: I have benefited from useful discussions with many math-
ematicians, who took their time trying to answer my questions and to follow my
arguments. I am especially indebted to Nicholas Buchdahl for his careful and
professional comments. He kindly pointed out to me that the compactness theorem
stated in [Tel06] holds for arbitrary b2 (see Theorem 1.11) and came with a short
proof of Lemma 2.3. I learned a lot about the properties of the “known” class
VII surfaces from Georges Dloussky, Karl Oeljeklaus, and Matei Toma, who also
explained me their recent result about surfaces with b2 curves. I also had extensive
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