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Abstract

We describe a new method to estimate the trilinear period on automorphic rep-
resentations of PGL2.R/. Such a period gives rise to a special value of the triple L-
function. We prove a bound for the triple period which amounts to a subconvexity
bound for the corresponding special value of the triple L-function. Our method is
based on the study of the analytic structure of the corresponding unique trilinear
functional on unitary representations of PGL2.R/.

1. Introduction

1.1. Maass forms. Let H denote the upper half-plane equipped with the stan-
dard Riemannian metric of constant curvature �1. We denote by dv the associated
volume element and by � the corresponding Laplace-Beltrami operator on H.

Fix a discrete group � of motions of H and consider the Riemann surface
Y D �nH. For simplicity we assume that Y is compact (the case of Y of finite
volume is discussed at the end of the introduction). According to the uniformization
theorem, any compact Riemann surface Y with the metric of constant curvature �1
is a special case of this construction.

Consider the spectral decomposition of the operator � in the space L2.Y; dv/
of functions on Y . It is known that the operator � is nonnegative and has a purely
discrete spectrum; we will denote the eigenvalues of � by 0D�0<�1��2� : : : .

For these eigenvalues, we always use a natural (from the representation-the-

oretic point of view) parametrization �i D
1��2

i

4
, where �i 2 C. We denote by

�i D ��i the corresponding eigenfunctions (normalized to have L2-norm one).
In the theory of automorphic forms, the functions ��i are called automorphic

functions or Maass forms (after H. Maass, [Maa49]). The study of Maass forms
plays an important role in analytic number theory, analysis and geometry. We are
interested in their analytic properties and will present a new method of bounding
some important quantities arising from functions �i .
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A specific problem that we are going to address in this paper belongs to an ac-
tive area of research in the theory of automorphic functions that studies an interplay
between periods, special values of automorphic L-functions and representation
theory. One of the central features of this interplay is the uniqueness of invariant
functionals associated to corresponding periods. The discovery of this interplay
goes back to classical works of E. Hecke and H. Maass.

It is well-known that uniqueness plays a central role in the modern theory of
automorphic functions (see [PS75]). The impact that uniqueness has on the analytic
behavior of periods and L-functions is yet another manifestation of this principle.

1.2. Triple products. For any three Maass forms �i ; �j ; �k , we define the
following triple product or triple period:

cijk D

Z
Y

�i�j�kdv:

We would like to estimate the coefficient cijk as a function of parameters
�i ; �j ; �k . In particular, we would like to find bounds for these coefficients as
one or more of the indices i; j; k tend to infinity.

The bounds on the coefficient cijk are related to bounds on automorphic
L-functions as can be seen from the following beautiful formula of T. Watson
(see [Wat], [Ich08]):

(1.2.1)
ˇ̌̌̌Z
Y

�i�j�kdv

ˇ̌̌̌2
D

ƒ.1=2; �i ˝�j ˝�k/

ƒ.1; �i ;Ad/ƒ.1; �j ;Ad/ƒ.1; �k;Ad/
:

Here the �t are the so-called cuspidal Hecke-Maass functions of norm one on the
Riemann surface Y D � nH arising from the full modular group � D SL2.Z/ or
from the group of units of a quaternion algebra. The functions ƒ.s; �i ˝�j ˝�k/
and ƒ.s; �;Ad/ are appropriate completed automorphic L-functions.

It was first discovered by R. Rankin [Ran39] and A. Selberg [Sel89] that
the special case of above mentioned triple product gives rise to an automorphic
L-function (namely, they considered the case where one of the Maass forms is re-
placed by an Eisenstein series). That allowed them to obtain analytic continuation
and effective bounds for these L-functions and, as an application, to obtain one of
the first nontrivial bounds for Fourier coefficients of cusp forms towards Ramanu-
jan’s conjecture. The relation (1.2.1) can be viewed as a far reaching generalization
of the original Rankin-Selberg formula. The relation (1.2.1) was motivated by the
work of M. Harris and S. Kudla ([HK91]) on a conjecture of H. Jacquet.

1.3. Results. In this paper we consider the following problem. We fix two
Maass forms � D �� and �0 D �� 0 as above and consider the coefficients defined
by the triple period:

(1.3.1) ci D

Z
Y

��0�idv

as the �i run over an orthonormal basis of Maass forms.



SUBCONVEXITY OF TRIPLE L-FUNCTIONS 1681

Thus we see from (1.2.1) that the estimates of the coefficients ci are essentially
equivalent to the estimates of the corresponding L-functions. One would like to
have a general method of estimating the coefficients ci and similar quantities. This
problem was raised by Selberg in his celebrated paper [Sel89].

The first nontrivial observation is that the coefficients ci have exponential
decay in j�i j as i !1. Namely, as we have shown in [BR04], it is natural to
introduce the normalized coefficients

di D .�i /jci j
2:(1.3.2)

Here .�/ is given by an explicit rational expression in terms of the standard Euler
�-function (see [BR04]) and, for purely imaginary �, j�j!1, it has an asymptotic
.�/� ˇj�j2 exp.�

2
j�j/ with some explicit ˇ > 0. It turns out that the normalized

coefficients di have at most polynomial growth in j�i j, and hence the coefficients
ci decay exponentially. This is consistent with (1.2.1) and general experience from
the analytic theory of automorphic L-functions (see [BR04], [Wat]). In Section 5
we explain a more conceptual way to introduce the coefficients di which is based
on considerations from representation theory.

In [BR04] we proved the following mean-value boundX
j�i j�T

di � AT
2;(1.3.3)

for arbitrary T > 1 and some effectively computable constant A.
The constant A depends on the geometry of � and on parameters � , � 0 of

eigenfunctions �, �0.
According to Weyl’s law for the spectrum of the Laplace-Beltrami operator

� on Y , the number of terms in this sum is of order CT 2. So this formula says
that on average the coefficients di are bounded by some constant.

More precisely, let us fix an interval I �R centered at the point T and consider
the finite set of all Maass forms �i with parameter j�i j inside this interval. Then
the average value of coefficients di in this set is bounded by a constant provided
the interval I is long enough (i.e., of size � T ).

Note that the best individual bound which we can get from this formula is
di � Aj�i j

2. For Hecke-Maass forms this bound corresponds to the convexity
bound for the corresponding L-function via Watson formula (1.2.1).

The central result of this paper is the bound for the sum of the coefficients di
over a shorter interval. Namely, we prove the following

THEOREM 1.3. There exist effectively computable constants B; b > 0 such
that, for an arbitrary T > 1, we have the following boundX

j�i j2IT

di � BT
5
3 ;(1.3.4)

where IT is the interval of size bT 1=3 centered at T .
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The exponent 5=3 above appears for the reason similar to the appearance of the
exponent 1=3 in the asymptotic of the Airy integral (namely, a degenerate critical
point in the phase of an oscillatory integral; see remarks in �2.7.2).

The constant B depends on the geometry of X and on parameters � , � 0 (see
Remark 6.6). The constant b depends on parameters � , � 0 only.

Note that the theorem gives an individual bound di � Bj�i j
5
3 (for j�i j > 1).

Using the Watson formula (1.2.1) and a lower bound of H. Iwaniec jL.1; ��i ;Ad/j
� j�i j

�" (see [Iwa90]), this leads to the following subconvexity bound for the
triple L-function (for more on the relation between triple period and special values
of L-functions, see [Wat], [Ich08]).

COROLLARY. Let � and �0 be fixed Hecke-Maass cusp forms. For any " > 0,
there exists C" > 0 such that the bound

L.1=2; �˝�0˝��i /� C"j�i j
5
3
C"(1.3.5)

holds for any Hecke-Maass form ��i .

The convexity bound for the triple L-function corresponds to (1.3.5) with the
exponent 5=3 replaced by 2. We refer to [IS00] for a discussion of the subconvexity
problem which is at the core of modern analytic number theory. We note that the
above bound is the first subconvexity bound for an L-function of degree 8 which
does not split in a product of smaller degree L-functions. All previous subconvexity
results were obtained for L-functions of degree at most 4.

In [Ven10] A. Venkatesh obtained a subconvexity bound for the triple L-func-
tion in the level aspect (i.e., with respect to a tower of congruence subgroups �.N/
as N !1). His method is quite different from the method we present in this paper
and is based on ideas from ergodic theory.

We formulate a natural

CONJECTURE. For any " > 0 we have di � j�i j".

For Hecke-Maass forms on congruence subgroups, this conjecture is consis-
tent with the Lindelöf conjecture for the triple L-functions (for more details, see
[BR04] and [Wat]).

1.3.1. Remarks. 1. Our results can be extended to the case of a general finite
co-volume lattice � �G (see Remark 7.2.2 for more detail).

2. First results on the exact exponential decay of triple products for a gen-
eral lattice � and holomorphic forms were obtained by A. Good [Goo81] using
Poincaré series. P. Sarnak [Sar94] discovered ingenious analytic continuation of
Maass forms to the complexification of the Riemann surface Y to obtain some-
what weaker results for Maass forms (for representation-theoretic approach to this
method and generalizations, see [BR99] and [KS04]). Our present method seems
to be completely different and avoids analytic continuation.

3. We would like to stress that the bound for the triple product in Theorem
1.3 is valid for a general lattice � , including nonarithmetic lattices. In fact, in our
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method we do not use Fourier coefficients or Hecke eigenvalues through which
one usually accesses values of L-functions for congruence subgroups. Our method
gives estimates for periods of automorphic functions directly and L-functions ap-
pear only through the Watson formula (1.2.1) (the same is true for the method of
Venkatesh [Ven10]).

The paper is organized as follows. The next section is devoted to a detailed
explanation of ideas behind the method of the proof of Theorem 1.3. The main
body of the paper (��3–10) is devoted to the proof. Two Appendices containing
technical calculations conclude the paper. The numbering in the paper is orga-
nized as follows. Each subsection has a unique theorem, proposition, lemma etc.,
and these are numbered by the corresponding section. Equations are numbered
continuously within each section.

2. Outline of the proof

We describe now the general ideas behind our proof. It is based on ideas
from representation theory (for a detailed account of the corresponding setting, see
[BR04] and �4 below). In what follows we sketch the method of the proof whose
technical details appear in the rest of the paper.

2.1. Automorphic representations. Let G denote the group of all motions of
H. This group is naturally isomorphic to PGL2.R/ and as a G-space H is naturally
isomorphic to G=K, where K D PO.2/ is the standard maximal compact subgroup
of G.

By definition, � is a subgroup of G. The space X D �nG with the natural
right action of G is called an automorphic space. We will identify the Riemann
surface Y D �nH with X=K D � nG=K.

We use the standard language of automorphic representations (see [GGPS69]
and �3 below). Let .�;G; V / be an irreducible smooth representation of G. An
automorphic structure on V is a continuous G-morphism � W V ! C1.X/.

The pair .�; �/ consisting of an abstract representation .�; V / and the auto-
morphic structure � will be called an automorphic representation. This terminol-
ogy is slightly more precise then the standard one. We find it more convenient for
our purposes.

We always assume that .�; V / is unitary (i.e., V is equipped with a positive
definite G-invariant Hermitian form P ), and that the automorphic structure � is
compatible with the invariant Hermitian form P .

We will usually present the abstract representation .�; V / by an explicit model.
We will deal mostly with class one irreducible representations of G (i.e., those with
a nonzero K-fixed vector). If .�; V / is a nontrivial class one representation we use
for it the model V D V�, where � 2 iR[ .0; 1/ and V� is the space of smooth even
homogeneous functions on R2 n 0 of the homogeneous degree �� 1 (see [GGV66],
[BR04]). We denote by e� 2V� the function taking constant value 1 on S1�R2n0.
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This gives a K-invariant vector in the representation V� which we call the standard
K-fixed vector in V�. We normalize the invariant Hermitian form P on V� by the
condition P.e�/D 1.

The theorem of Gelfand and Fomin states that all Maass forms (or more gen-
erally automorphic functions) could be obtained as special vectors in appropriate
automorphic representations (see [GGPS69]). Namely, a Maass form � D �.e�/

corresponding to an automorphic structure � on a representation with a model V�
has the eigenvalue �D 1��2

4
.

We translate various questions about Maass forms into corresponding ques-
tions about associated automorphic representations. This allows us to employ
powerful methods of representation theory.

2.2. Let us fix two (nontrivial) automorphic representations .�; �/ and .� 0; �0/.
We assume that both are representations of class one (i.e., V ' V� and V 0 ' V� 0 ,
�; � 0 2 iR[ .0; 1/). These give rise to Maass forms � D �.e� / and �0 D �0.e� 0/.
Let .�i ; Vi ; �i / be a third automorphic representation (which we are going to vary)
with the parameter �i (i.e., Vi ' V�i ).

The triple product ci D
R
Y ��

0�idv extends to a G-equivariant trilinear func-
tional on the corresponding automorphic representations laut

i W V ˝V
0˝Vi ! C.

Next we use a general result from representation theory that such a G-equi-
variant trilinear functional is unique up to a scalar, i.e., that

dim MorG.V ˝V 0˝V 00;C/� 1

for any smooth irreducible representations V; V 0; V 00 of G (see [Oks73], [Pra90],
[Lok01] and the discussion in [BR04]). This implies that the automorphic func-
tional laut

i is proportional to some explicit model functional lmod
�i

. In [BR04] we
gave a description of such a model functional lmod

�
W V ˝ V 0˝ V� ! C for any

� using explicit realizations of representations V , V 0 and V� of the group G in
spaces of homogeneous functions; it is important that the model functional knows
nothing about the automorphic picture and carries no arithmetic information.

Thus we can write laut
i D ai � l

mod
�i

for some constant ai , and hence

(2.2.1) ci D l
aut
i .e� ˝ e� 0 ˝ e�i /D ai � l

mod
�i

.e� ˝ e� 0 ˝ e�i /;

where e� ; e� 0 ; e�i are the standard K-invariant unit vectors in representations
V; V 0 and V�i corresponding to the automorphic forms �, �0 and �i .

It turns out that the proportionality coefficient ai in (2.2.1) carries important
“automorphic” information while the second factor carries no arithmetic informa-
tion and can be computed in terms of �-functions using explicit realizations of
representations V� , V� 0 and V� (see Appendix in [BR04] where this computation is
carried out). This second factor is responsible for the exponential decay, while the
first factor ai has a polynomial behavior in parameter �i . An explicit computation
shows (see loc. cit.) that jci j2 D 1

.�i /
jai j

2, and hence di D jai j2 (where the
function .�/ and coefficients di were defined in �1.3).
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So, from now on we will deal with coefficients di and no longer refer to
coefficients ai and ci at all.

2.3. Hermitian forms. In order to estimate the quantities di , we consider the
space E D V� ˝V� 0 and use the fact that the coefficients di appear in the spectral
decomposition of the following geometrically defined nonnegative Hermitian form
H� on E (for a detailed discussion, see [BR04]).

Consider the space C1.X �X/. The diagonal � WX !X �X gives rise to
the restriction morphism r� W C

1.X �X/! C1.X/. We define a nonnegative
Hermitian form H� on C1.X �X/ by setting H� D .r�/�.PX /, where PX is
the standard L2 Hermitian form on C1.X/. In other words

H�.w/D PX .r�.w//D

Z
X

jr�.w/j
2d�X

for any w 2 C1.X �X/. We call the restriction of the Hermitian form H� to the
subspace E � C1.X �X/ the diagonal Hermitian form and denote it by the same
letter.

We will describe the spectral decomposition of the Hermitian form H� in
terms of Hermitian forms corresponding to trilinear functionals. Namely, if L is a
pre-unitary representation of G with G-invariant Hermitian norm jj jjL, then every
G-invariant trilinear functional l W V ˝ V 0 ˝ L ! C defines a Hermitian form
H l on E by H l.w/ D supjjujjLD1 jl.w˝ u/j

2. For example, the natural pairing
E˝L2.X/! C induces the form H�.

Here is another description of this form (see [BR04]). The functional l W V ˝
V 0˝L! C gives rise to a G-intertwining morphism T l WE! L� which image
lies in the smooth part zL� of L�. Then the form H l is just the pull back of the
Hermitian form on zL� corresponding to the inner product on L.

Consider the orthogonal decomposition L2.X/D
�L

i Vi
�
˚
�L

� V�
�

where
Vi correspond to Maass forms and V� correspond to representations of discrete
series. Every G-invariant subspace L � L2.X/ defines a trilinear functional l W
E˝L! C and hence a Hermitian form H l on E. Hence, the decomposition of
L2.X/ gives rise to the corresponding decomposition

H� D
X

H aut
i C

X
H aut
�

of Hermitian forms (see [BR04]).
We denote by H� the model Hermitian form corresponding to the model tri-

linear functional lmod
�
W V ˝V 0˝V�! C. The uniqueness of trilinear functionals

mentioned in Section 2.2 (i.e., the formula (2.2.1)) implies that H aut
i D diH�i .

This leads us to

The basic spectral identity.

H� D
X
i

diH�i C
X
�

H aut
� :(2.3.1)
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Of course, one can introduce similar model trilinear functionals for the dis-
crete series representations V� and the corresponding coefficients d� via H aut

� D

d�H� . We will not need these in this paper (in fact, in this paper we are trying to
avoid computations with the discrete series representations; see Remark 8.1).

We will mostly use the fact that for every vector w 2 E this basic spectral
identity gives us an inequalityX

i

diH�i .w/�H�.w/(2.3.2)

which turns into an equality if the vector r�.w/ does not have projection to discrete
series representations (for example, if the vector w is invariant with respect to the
diagonal action of K on E).

We can use this inequality to bound coefficients di . Namely, for a given vector
w 2E we usually can compute the values of the weight function H�.w/ by explicit
computations in the model of representations V; V 0; V�. It is usually much more
difficult to get reasonable estimates of the right-hand side H�.w/ since it refers to
the automorphic picture. In cases when we manage to do this we get some bounds
for the coefficients di .

2.4. Mean-value estimates. In [BR04], using the geometric properties of the
diagonal form and explicit estimates of forms H�, we established the mean-value
bound (1.3.3): X

j�i j�T

di � AT
2:

Roughly speaking, the proof of this bound is based on the fact that while the value
of the form H� on a given vector w 2E is very difficult to control, we can show
that for many vectors w the value H�.w/ can be bounded by PE .w/, where PE
is the Hermitian form which defines the standard unitary structure on E.

More precisely, consider the natural representation � D � ˝� 0 of the group
G �G on the space E. Then for a given compact neighborhood U � G �G of
the identity element, there exists a constant C such that for any vector w 2 E,
the inequality H�.�.g/w/� CPE .w/ holds for at least half of the points g 2 U .
This follows from the fact that the average over U of the quantity H�.�.g/w/ is
bounded by CPE .w/=2.

This allows us, for every T � 1, to show the existence of a vector w 2E such
that H�.w/�CT 2 and H�.w/� c for all � satisfying j�j � T . The bound (2.3.2)
then implies the mean-value bound (1.3.3).

2.5. Bounds for sums over shorter intervals. The main starting point of our
approach to the subconvexity bound is the inequality (2.3.2) for Hermitian forms.
For a given T > 1, we construct a test vector wT 2E such that the weight function
� 7!H�.wT / has a sharp peak near j�j D T (i.e., a vector satisfying the condition
(2.6.3) below).
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The problem is how to estimate effectively H�.wT /. The idea is that the Her-
mitian form H� is geometrically defined and, as a result, satisfies some nontrivial
bounds, symmetries, etc. None of the explicit model Hermitian forms H� satisfies
similar properties. By applying these symmetries to the vector wT , we construct
a new vector zwT and from the geometry of the automorphic space X , we deduce
the bound H�.wT /�H�. zwT /.

On the other hand, the weight function H�. zwT / in the spectral decomposi-
tion H�. zwT /D

P
diH�i . zwT / for zwT behaves quite differently from the weight

function H�.wT / for wT . Namely, the function H�. zwT / behaves regularly (i.e.,
satisfies condition (2.7.3) below), while the weight function H�.wT / has a sharp
peak near j�j D T .

The regularity of the function H�. zwT / coupled with the mean-value bound
(1.3.3) allows us to prove a sharp upper bound on the value of H�. zwT / by purely
spectral considerations (in the cases that we consider there is no contribution from
discrete series). We do not see how to get such sharp bound by geometric consid-
erations working on the automorphic space X �X .

Using this bound for H�. zwT / and the inequality H�.wT / �H�. zwT /, we
obtain a nontrivial bound for H�.wT / and, as a result, the desired bound for the
coefficients di .

We now describe this strategy in more detail.

2.6. Proof of Theorem 1.3. We only consider the case of representations of
the principal series, i.e., we assume that V D V� , V 0 D V� 0 for some �; � 0 2 iR;
the case of representations of the complementary series can be treated similarly.

We denote by � and �0 the corresponding automorphic realizations of V and
V 0. We choose an orthonormal basis fengn22Z in V consisting of K-types and
similarly an orthonormal basis fe0ng in V 0.

Vectors wn D en ˝ e0�n 2 E D V ˝ V
0 will play an important role in our

computations.
Let us set

SD 2.j� jC j� 0j/C 1(2.6.1)

the constant depending on parameters of representations V and V 0 only. For a
given T � S, we choose an even integer n such that jT � 2nj � 10 and set

wT D wn D en˝ e
0
�n:(2.6.2)

In fact, all we need is that jT � 2nj remain bounded as T !1.
By a direct computation involving stationary phase method, we show in Sec-

tion 9.2 that the following lower bound holds

First spectral bound: There exist constants b; c > 0 such that

H�.wT /� c T
�5=3 for j�j 2 IT ;(2.6.3)

where IT is the interval of length bT 1=3 centered at the point T .
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This inequality together with the bound
P
i diH�i .wT / � H�.wT / (see

(2.3.2)) imply the bound X
j�i j2IT

di � CT
5=3H�.wT /;(2.6.4)

for some constant C .
Now we claim that the quantity H�.wT / is uniformly bounded by some con-

stant D which does not depend on T . Namely we can write

H�.wT /D

Z
X

j�.en/j
2
j�0.e0�n/j

2 d�X �
1

2

�
jj�.en/jj

4
L4.X/

Cjj�0.e0�n/jj
4
L4.X/

�
:

Hence the necessary bound follows from the following result which, we feel,
is of independent interest.

THEOREM 2.6. For a fixed class one automorphic representation � W V !
C1.X/, there exists a constant D > 0 such that jj�.en/jjL4.X/ �D for all n.

This finishes the proof of Theorem 1.3. �
Remark. One would expect that L4-norms of K-types for representations of

the discrete series are uniformly bounded as well. It is a very interesting and deep
question to study dependence of the constant D in Theorem 2.6 on the parameter
� of the automorphic representation and on the subgroup � (for a discussion, see
Remark 6.6). Moreover, it would be interesting to identify (as a norm on an abstract
representation �� ) the G-invariant (non-Hermitian) norm which the L4-norm on
X induces on the representation �� via automorphic isometry �� (see a discussion
in [BR99]).

Another interesting question is an analog of the above theorem for a cuspidal
representation for a nonuniform � . Specifically, we would like to know whether
L4-norm of K-types are uniformly bounded for a fixed cuspidal representation
(compare to Remark 2, �7.2.2).

2.7. L4-norms of K-types. We now explain the proof of the uniform bound
for L4-norm of K-types (i.e., Theorem 2.6).

Let xV be the complex conjugate to V representation. The representation xV
is also an automorphic representation with the realization N� W xV ! C1.X/ (see
details in �6.1). For the proof of Theorem 2.6 it is enough to consider the setup
described above (i.e., the space E, forms H�, H�, etc.) for the special case when
V 0 is isomorphic to the representation xV .

We only consider the case of representations of the principal series, i.e., we
assume that V DV� and V 0D xV DV�� for some � 2 iR; the case of representations
of the complementary series can be treated similarly.

Choose an orthonormal basis fengn22Z in V consisting of K-types. We denote
by fe0n D e�n D c.e�n/g the complex conjugate basis in xV (note that e0n is of the
K-type n).
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For a given n 2 2Z, we set

wn D en˝ e
0
�n and zwn D wnCwnC2:(2.7.1)

With such a choice of test vectors we have the following bounds.

Geometric bound:

(2.7.2) H�.wn/�H�. zwn/:

Second spectral bound: There exists a constant C 0 such that
(2.7.3)

H�. zwn/�

(
C 0.1Cjnj/�1j�j�1CC 0j�j�3 for all S� j�j � 4jnj;

C 0j�j�3 for all j�j> 4jnj:

Here S is as in (2.6.1).
Using the bound (2.7.3) we will get the following sharp estimate of H�. zwn/

(see Proposition 6.5):

(2.7.4) H�. zwn/�D

with some explicit constant D > 0 (for the proof, see �7.1). Bounds (2.7.4) and
(2.7.2) imply the bound for the L4-norm of K-types since in this case H�.wn/D
jj�.en/jj

4
L4

.
The bound (2.7.4) follows from the identity H�. zw/ D

P
diH�i . zw/ (see

(2.3.1)), the spectral bound (2.7.3) and the mean-value bound (1.3.3) for the coeffi-
cients di . The low spectrum contribution for j�i j � S is bounded by an argument
based on the Sobolev restriction theorem (see �7.2.2) . We also use the fact that
there are no contribution to H�. zw/ coming from the discrete series since the vector
zw is �K-invariant.

2.7.1. Proof of the geometric bound (2.7.2). The inequality (2.7.2) easily fol-
lows from the pointwise bound on X . Namely, in the automorphic realization,
the vector wn D en ˝ e0�n is represented by a function whose restriction un D
r�.�E .wn// to the diagonal is nonnegative (see also �6.2)

un.x/D �.en/.x/ � N�.e
0
�n/.x/D j�.en/.x/j

2
� 0:

From this we see that

H�.wT /D

Z
X

jun.x/j
2d�X �

Z
X

jun.x/CunC2.x/j
2d�X DH�. zwT /: �

2.7.2. Sketch of proof of the spectral bounds (2.6.3) and (2.7.3). Proof of
these bounds is carried out by the standard application of the stationary phase
method and the van der Corput lemma. It constitutes the main technical bulk of
the paper. We will use the explicit form of the kernel defining Hermitian forms
H� in the model realizations of representations V , V 0 and V�. Namely, we use the
standard realization of these representations in the space C1even.S

1/ of even func-
tions on S1 (see [BR04] and �2.1). Under this identification, the basis fengn22Z
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becomes the standard basis of exponents fen D eintg, where 0 � t < 2� is the
standard parameter on S1.

In [BR04, �5], we described how to write down an invariant functional for
principal series representations. Namely, let V D V� , V 0 D V� 0 with �; � 0 2 iR. In
the circle model of representation V� , V� 0 , V�, the following kernel on the space
V� ˝V� 0 ˝V� ' C

1..S1/3/ defines an invariant functional kernel on .S1/3:

K�.x; y; z/Dj sin.x�y/j
�1����0C�

2 j sin.x�z/j
�1��C�0��

2 j sin.y�z/j
�1C���0��

2 ;

where x; y; z2S1. We denote this functional by lmod
�

. Using the kernelK�.x; y; z/,
we can define the Hermitian forms H� on E 'C1.S1�S1/ by the corresponding
oscillatory integral (over .S1/4; see �8.2). This allows us to use the stationary
phase method in the proof of bounds (2.6.3) and (2.7.3).

Here appears the main difference between test vectors wn and zwn. It mani-
fests itself in the form of the oscillating integrals computing H�.wn/ and H�. zwn/.
Namely, both of these integrals have the same phase function which has a degen-
erate critical point. The main difference between them is that for the vector wT
the corresponding integral has a nonzero amplitude at this critical point (this gives
the crucial lower bound (2.6.3)) and for zwT the amplitude vanishes at the critical
point (resulting in bounds (2.7.3)).

In fact, we will use the values of H�.w/ only for �K-invariant vectors w 2E.
This considerably simplifies our computations since we can reduce them to two
repeated integrations in one variable and use the stationary phase method in one
variable.

Remarks. 1. The existence of vectors satisfying spectral conditions (2.6.3)
and (2.7.3) allows us to shorten the summation over the spectrum, comparatively
to the range of the summation in the convexity bound (1.3.3). This is necessary if
one wants to deduce a subconvexity bound from the Bessel inequality of Hermitian
forms (2.3.2) since the convexity bound (1.3.3) is essentially sharp (see [Rez01]).
This approach to the subconvexity is reminiscent of the classical amplification
method introduced by Selberg (see [Mic03], [MV06] for the review of the state
of the art subconvexity results). Usually one uses a variant of a trace formula to
control the so-called off-diagonal terms arising after shortening the sum. In our
approach there is no use of the Selberg or the Kuznetsov trace formulas. Instead,
we use the hidden symmetries of the diagonal form H�.

2. The origin of our exponent 5=3D 2.1=2C 1=3/ in the main Theorem 1.3
(i.e., the bound (1.3.4)) is directly related to the exponent 1=3 in the well-known
properties of the Airy function. In fact, we reduce the proof of the crucial lower
bound (2.6.3) to the asymptotic of the Airy integral (see Proposition 9.1).

3. After obtaining results presented in this paper, we realized that there exists
another possible approach to bounds for triple and other periods of automorphic
functions. It is based on the notion of strong Gelfand pairs (see [Gro91] and refer-
ences therein). This approach is presented in [Rez08].
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There is one technical complication in the approach based on Gelfand pairs,
though. We where not able to produce the desired family of test vectors which is
also �K ��K-invariant. Without this property one has to consider terms in the
spectral decomposition (2.3.1) coming from the discrete series representations. It
is more cumbersome to study model trilinear functionals on discrete series as these
representations do not have nice geometric models. As a result, in this paper we
use another property of the form H�, the extra positivity provided by the Cauchy-
Schwartz inequality (see �2.7.1), instead of the associated Gelfand pairs structure.
We hope to return to this subject elsewhere.

3. Representation-theoretic setting

3.1. We recall the standard connection between Maass forms and representa-
tion theory of PGL2.R/ (see [GGPS69]). Most of the material in the next three
sections is taken from [BR04], where it is discussed in more detail.

3.1.1. Automorphic space. Let H be the upper half-plane with the hyperbolic
metric of constant curvature �1. The group SL2.R/ acts on H by fractional lin-
ear transformations. This action allows to identify the group PSL2.R/ with the
group of all orientation preserving motions of H. For reasons explained below (see
Remark 4.2), we would like to work with the group G of all motions of H; this
group is isomorphic to PGL2.R/. Hence throughout the paper we consider the
group G D PGL2.R/ and denote by K its standard maximal compact subgroup
K D PO.2/. We have natural identification G=K D H.

We fix a discrete co-compact subgroup � � G and set X D � n G. We
fix a G-invariant measure �X on X . For simplicity, we normalize it to have the
total mass one. The group G acts on X (from the right) and hence on the space
of functions on X . Let L2.X/ D L2.X; d�X / be the space of square integrable
functions and .…X ; G;L2.X// the corresponding unitary representation. We will
denote by PX the Hermitian form on L2.X/ given by the inner product.

3.1.2. Automorphic representations. Let .�;G; V / be an irreducible smooth
Fréchet representation of G (see [Cas89], [Wal88] where they are called smooth
representations of moderate growth).

Definition. An automorphic structure on .�; V / is a continuous G-morphism
� W V ! C1.X/.

We call an automorphic representation a pair .�; �/ of a representation and
the automorphic structure on it. In this paper we always assume that .�; V / is
irreducible, admissible and also assume that .�; V / is unitary. This means that
V is equipped with a G-invariant positive definite Hermitian form P , and V is
the space of smooth vectors in the completion L of V with respect to P . An
automorphic structure � W V ! C1.X/ is assumed to be normalized, i.e., we
assume that P D ��.PX /.
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3.1.3. Automorphic representations and Maass forms. Let .��; G; V�/ be a
representation of the generalized principal series corresponding to �2C. The space
V� is the space of smooth even homogeneous functions on R2 n 0 of the homoge-
neous degree ��1 (which means that f .ax; ay/D jaj��1f .x; y/ for all a 2Rn0)
with the action of GL.2;R/ given by ��.g/f .x; y/D f .g�1.x; y//j detgj.��1/=2

(see [GGV66]).
In explicit computations it is often convenient to pass from the plane model

to a circle model. Namely, the restriction of functions in V� to the unit circle
S1 � R2 defines an isomorphism of the space V� with the space C1even.S

1/ of
even smooth functions on S1, so we can think about vectors in V� as functions on
S1. The constant function 1 on S1 corresponds to the standard unit K-invariant
vector e� 2 V�. We normalize the invariant Hermitian form P by the condition
P.e�/D 1. For �2 iR, this corresponds to the standard Hermitian form hf; giV� D
1=2�

R
S1 f Ngd� on (even) functions on S1.

Suppose � W V ! C1.X/ is an automorphic structure on V�. Then �� D
�.e�/ 2 C

1.X/K D C1.Y / is a Maass form with the eigenvalue �D 1��2

4
.

This construction, which is due to Gelfand and Fomin, gives a one-to-one
correspondence between Maass forms and class one automorphic representations
(and more generally between automorphic forms and automorphic representations
of G). We refer to [GGPS69] for a more detailed discussion (see also [BR04]).

3.1.4. Decomposition of the representation .…X ; G;L2.X//. It is well-known
that for a compact X , the representation .…X ; G;L2.X// decomposes into a di-
rect (infinite) sum of irreducible representations of G with finite multiplicities (see
[GGPS69]). We will fix one such decomposition and call it the automorphic spec-
trum of X . We can write

L2.X/D .˚iLi /˚ .˚�L�/

where Li are irreducible representations corresponding to Maass forms (including
the trivial representation), and L� are irreducible representations of discrete series.

For us it will be convenient to write this decomposition as the following de-
composition of the Hermitian form PX on C1.X/

(3.1.1) PX D
X
i

Pi C
X
�

P� ;

where Pi D pr�i .PX / and P� D pr�� .PX /.

4. Triple products

We introduce now our main object of study.

4.1. Automorphic triple products. Suppose we are given three automorphic
representations .�j ; Vj ; �j /, j D 1; 2; 3 of G

�j W Vj ! C1.X/ :
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We define the G-invariant trilinear form laut
V1;V2;V3

W V1˝V2˝V3! C by the
formula

laut
V1;V2;V3

.v1˝ v2˝ v3/D

Z
X

�v1.x/�v2.x/�v3.x/d�X ;

where �vj D �j .vj / 2 C
1.X/ for any vj 2 Vj .

Let .�; V; �/ and .� 0; V 0; �0/ be two fixed automorphic representations of class
one. For any automorphic representation .�i ; V�i ; �i / of class one, we have the
automorphic trilinear functional

laut
V;V 0;V�i

W V ˝V 0˝V�i ! C:

In particular, the triple periods ci in (1.3.1) can be expressed in terms of this
form as

ci D l
aut
V;V 0;V�i

.e˝ e0˝ e�i /;(4.1.1)

where e 2 V , e0 2 V 0, e�i 2 V�i , are standard K-fixed unit vectors.

4.2. Uniqueness of triple products. The central fact about invariant trilinear
functionals is the following uniqueness result:

THEOREM. Let .�j ; Vj /; where j D 1; 2; 3; be three irreducible smooth ad-
missible representations of G. Then dim HomG.V1˝V2˝V3;C/� 1.

Remark 4.2. The uniqueness statement was proven by A. Oksak in [Oks73]
for the group SL.2;C/ and the proof could be adopted for PGL2.R/ as well (see
also [Mol79] and [Lok01]). For the p-adic GL.2/, more refined results were ob-
tained by D. Prasad (see [Pra90]). He also proved the uniqueness when at least
one representation is a discrete series representation of GL2.R/.

There is no uniqueness of trilinear functionals for representations of SL2.R/
(the space is two-dimensional). This is the reason why we prefer to work with
PGL2.R/.

We note, however, that the absence of uniqueness does not pose any serious
problem for the method we present. All what is really needed for our method is
the fact that the space of invariant functionals is finite-dimensional.

4.3. Model triple products. In Section 8.1, we use an explicit model for rep-
resentations .�; V /, .� 0; V 0/ and .�i ; Vi / to construct a model invariant trilinear
functional. The model functional will be given by an explicit formula. We call it
the model triple product and denote it by lmod

V;V 0;V�i
, or simply lmod

�i
, if � and � 0 are

fixed.
These model functionals are defined for any three irreducible unitary repre-

sentation of principal series of G, even if these are not automorphic.
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By the uniqueness principle for representations �; � 0; �i , there exists a con-
stant ai D aV;V 0;V�i such that:

(4.3.1) laut
V;V 0;Vi

D ai � l
mod
V;V 0;V�i

:

The constant ai depends on the automorphic realization of abstract represen-
tations �; � 0 and ��i , and on the choice of the model functional lmod

�i
D lmod

V;V 0;V�i
.

From now on we will work with the coefficients di D jai j2.

4.3.1. Exponential decay. Relations (4.1.1) and (4.3.1) give rise to a formula
for the triple product coefficients ci

ci D l
aut
�i
.e˝ e0˝ e�i /D ai � l

mod
�i

.e˝ e0˝ e�i /:

Let us explain how one can deduce the exponential decay for the coefficients ci
using this identity.

The value of the model triple product functional lmod
�i

.e˝e0˝e�i / constructed
in Section 8.1 is given by an explicit integral. In [BR04, App. A], we evaluated this
integral in terms of the standard Euler �-function by a direct computation in the
model and showed that jlmod

�
.e�˝e� 0˝e�/j

2D 1=.�/, where .�/ is as in Section
1.3. After applying the Stirling formula to that expression, one sees that it has an
exponential decay in j�j. Hence, in order to obtain bounds on the coefficients
ci , one needs to bound coefficients di D jai j2. In [BR04] we showed that the
coefficients di are at most polynomial. This explains the exponential decay of
coefficients ci . We note that the coefficients di encode deep arithmetic information,
e.g., special values of L-functions.

5. Hermitian forms

5.1. Hermitian forms and trilinear coefficients di . We explain now how to
obtain bounds for the coefficients di

Our method is based on the fact that these coefficients appear in the spec-
tral decomposition of some geometrically defined Hermitian form on the space E
which is essentially the tensor product of spaces V and V 0. This form plays a
crucial role in what follows.

More precisely, denote by L and L0 the Hilbert completions of spaces V and
V 0, consider the unitary representation .…;G�G;L˝L0/ of the group G�G and
denote by E its smooth part; so E is a smooth completion of V ˝V 0.

Denote by H.E/ the (real) vector space of continuous Hermitian forms on E
and by HC.E/ the cone of nonnegative Hermitian forms.

We will describe several classes of Hermitian forms on E; some of them have
spectral description, others are described geometrically.

Let W be a smooth unitary admissible representation of G. Any G-invariant
functional l WV˝V 0˝W !C defines aG-intertwining morphism T l WV˝V 0!W �

which extends to a G-morphism

T l WE! SW ;
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where we have identified the complex conjugate space SW with the smooth part of
the space W � (see �6.1).

The standard Hermitian form (scalar product) P D PW on the space W in-
duces the Hermitian form xP on SW . Using the operator T l we define the Hermitian
formH l on the spaceE byH l D .T l/�. xP /, i.e.,H l.u/D NP .T l.u// for any u2E.

Remark. We note that if the representation of G in the space W is irreducible
and l 6D 0, then starting with the Hermitian form H l , we can reconstruct the space
W , the functional l , and the morphism T l uniquely up to an isomorphism.

5.1.1. Forms H�. Let us introduce a special notation for the particular case
we are interested in. For any � 2 iR[ .0; 1/, consider the class one representation
W D V�, choose the model trilinear functional lmod

�
W V ˝V 0˝V�! C described

in Section 8.1 and denote the corresponding Hermitian form on E by Hmod
�

or
simply by H�. Accordingly, let H aut

i be the form corresponding to the automorphic
functional. We have H aut

i D di �H
mod
�i

, where di D jai j2 D jaV;V 0;Vi j
2 are as in

(4.3.1). This is the definition of the coefficients di we are going to work with.

5.2. Diagonal form H�. Consider the space C1.X �X/. The diagonal � W
X ! X �X gives rise to the restriction morphism r� W C

1.X �X/! C1.X/.
We define a nonnegative Hermitian formH� on C1.X�X/ byH�D .r�/�.PX /;
i.e., for any u 2 C1.X �X/,

H�.u/D PX .r�.u//D

Z
X

jr�.u/j
2d�X :

We say that H� is the diagonal form.
We now consider the spectral decomposition of the Hermitian for H� (for a

detailed discussion, see [BR04]). Using the spectral decomposition (3.1.1) PX DP
i Pi C

P
� P� we can write H�D

P
i H

aut
i C

P
� H

aut
� . We have seen before

that H aut
i D diH�i . Hence we have the following spectral identity (which is a

version of the Parseval identity)

H� D
X
i

diH�i C
X
�

H aut
� :

Here the summation on the right is over all irreducible unitary automorphic
representations appearing in the decomposition of L2.X/ (see (3.1.1)). The first
sum is over the class one automorphic representations (including the trivial one)
and the second sum is over the discrete series automorphic representations.

Remark 5.2. For most of the proof we will need just the inequality (the Bessel
inequality)

(5.2.1)
X
i

diH�i �H�:

In order to avoid computations with discrete series, we consider only vectors
w 2E which are �K-invariant under the natural diagonal action of �G �G �G
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on E. For such vectors, the inequality (5.2.1) becomes the equality

(5.2.2) H�.w/D
X
i

H aut
i .w/D

X
i

diH�i .w/:

Here the summation is over all automorphic representations of class one.
This follows from the simple fact that for a �K-invariant vector w 2E, the

restriction onto the diagonal �X of the automorphic realization �˝ N�.w/ is a K-
invariant function on X , and hence orthogonal to discrete series representations
appearing in L2.X/.

6. L4-norm of K-types

In this section we prove Theorem 2.6. We assume, for simplicity, that the
representation V is a representation of the principal series.

6.1. Complex conjugate representation. Our proof of Theorem 2.6 is spec-
tral, it is based on the basic spectral identity (2.3.1) applied to the case when the
representation V 0 coincides with the complex conjugate xV of the representation V .

We recall that for any complex vector space V we can define the complex
conjugate space xV . By definition, xV is the same real vector space as V , i.e., we
have a canonical bijection c W V ! xV , and the structure of the complex vector space
is given by �c.v/D c.x�v/, � 2 C. In particular, c is an antilinear bijection.

The complex conjugate representation .x�;G; xV / naturally corresponds to any
representation .�;G; V /; unitary structure on V defines a unitary structure on xV .

Let us note that for � 2 iR, the representation V� is canonically isomorphic
to the representation Vx� when we consider them as spaces of functions on R2 n 0

(see �3.1.3). The isomorphism is given by the complex conjugation c.v/D Nv.
An Hermitian form on a space V gives rise to the morphism V ! V C, where

V C WD .V �/ is the complex conjugate of the dual space.

6.2. Complex conjugate representation in automorphic picture. Suppose now
that we fixed an automorphic structure � W V ! C1.X/ on the representation V .
Then it defines the canonical automorphic structure N� W xV !C1.X/ on the complex
conjugate representation by the formula N�.c.v//D �.v/.

We will consider the representation EDV ˝ xV of the group G�G and denote
by �E DE! C1.X �X/ the corresponding automorphic structure on E (here
�E D �˝ N�). We have the following basic claim (compare with 2.7.1).

Claim 6.2. For any vector v 2 V consider the vector w D v ˝ Nv D v ˝

c.v/ 2 E and the corresponding function �E .w/ on X �X . Then the restriction
uD r�.�E .w// of this function to the diagonal �X is a nonnegative function on
X , and H�.w/D jjujj2L2.X/ D jj�.v/jj

4
L4.X/

.

This follows from the observation that u.x/D �.v/.x/ ��.v/.x/D j�.v/.x/j2.
�
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6.3. K-types. We assume that V D V� is a representation of the principal
series. All the necessary computations will be done in the circle model V� '
C1even.S

1/ (i.e., we realize a vector in V as a smooth function f of the angular
parameter t 2 R such that f .t C�/D f .t/). The invariant unitary Hermitian form
on V is given by jjf jj2 D 1

�

R �
0 jf .t/j

2dt .
Let en D exp.int/, where n 2 2Z, be an orthonormal basis of K-types in the

space V� (all weights are even since we work with the group G D PGL2.R/).
Consider the space xV� . We have a natural identification xV� ' V�� induced by

the realization of these spaces as spaces of functions on R2 n 0.
We denote by fe0n D e�ngn22Z the corresponding complex conjugate basis

for xV� ' V�� . Under the natural identification V�� ' C1even.S
1/, we have e0n D

exp.int/ as before.

6.4. Test vectors. In the Introduction (see formula (2.7.1)) we defined two
families of test vectors central for our proof of the subconvexity. We repeat this
construction.

For any n 2 2Z, n � 0, we consider two vectors in E D E� D V� ˝ V��
given by

wn D en˝ e
0
�n; and zwn D wnCwnC2:

We note that in the model V� ˝V�� ' C1even;even.S
1 �S1/ these vectors are

represented by the functions wn.x; y/D ein.x�y/ and

zwn.x; y/D .1C e
i2.x�y//ein.x�y/:

In Section 2.7.1 we have proven the basic geometric bound (2.7.2) for these
vectors

H�.wn/�H�. zwn/: .?/

6.5. Main Proposition. Our main claim is the following

PROPOSITION 6.5. There exists a positive constant D such that

H�. zwn/�D; .\/

for all n.

We prove this proposition in Section 7.2.

Remark 6.5. The bound (?) is of a geometric nature as it concerns the form
H� defined on the automorphic space X and appeals to the automorphic realization
of V in C1.X/. On the other hand, our proof of the bound .\/ is purely spectral,
despite its geometric appearance.

6.6. Proof of Theorem 2.6. Proposition 6.5 and the geometric bound H�.wn/
�H�. zwn/ (see (2.7.2)) imply the bound in Theorem 2.6 for L4-norm of K-types.
Namely, from Claim 6.2 we see that

jj�.en/jj
4
L4.X/

DH�.wn/�H�. zwn/�D;(6.6.1)

for some D independent of n. �



1698 JOSEPH BERNSTEIN and ANDRE REZNIKOV

Remark 6.6. The method presented in this paper allows one to give an ef-
fective estimate for the constant D in Theorem 2.6 (and in Proposition 6.5). It
depends on geometry of the Riemann surface Y D X=K and on the parameter �
of the representation V . Namely, the following bound

D � C �
vol.Y /

vol.Bi.Y //
� .1Cj� j/2

should hold for some absolute constant C > 0. Here Bi.Y / is a hyperbolic ball of
the radius equal to the injectivity radius i.Y / of Y .

Careful execution of ideas presented in [Rez08] should give a better bound
jj�.en/jj

4
L4
� AY �

�
1C 1Cj� j3=2

1Cj� jCjnj

�
, with a constant AY depending on Y only. In

particular, from this would follow that for jnj � j� j3=2, L4-norm of a K-type en 2
V� is uniformly bounded independently of � . For nD 0 (i.e., for the Maass form ��
on Y ), such a bound is consistent with the general PDE bound of C. Sogge [Sog88]
(i.e., jj�� jj4L4 � C

00j� j
1
2 ). One expects that the correct bound is jj�.en/jj4L4 �

.1C jnj C j� j/" for any " > 0. For a congruence subgroup � and Hecke-Maass
forms (i.e., nD 0), this is the result of P. Sarnak and T. Watson (unpublished). We
plan to discuss these issues elsewhere.

7. Proof of Proposition 6.5

7.1. Spectral lemma. Our proof is based on the following spectral bounds
(these are bounds (2.7.3) from the Introduction).

Recall that we set SD 2.j� jC j� 0j/C 1 (in fact in this section we can assume
that � 0 D�� ).

LEMMA 7.1. There exists a constant C such that for any n 2 2Z, the following
spectral bounds hold

.II1/ H�. zwn/� C � .1Cjnj/
�1j�j�1CC j�j�3 for all � satisfying S� j�j � 4jnj,

.II2/ H�. zwn/� C j�j
�3 for all � satisfying j�j � 4jnj.

The model Hermitian forms H� on E are defined explicitly for every � 2 iR
as in Section 8.1. The proof of the lemma amounts to a routine application of the
stationary phase method and the van der Corput lemma (see �9.3). In fact, the
restriction j�j � S is purely technical. One can obtain good bounds for the value
of H�. zwn/ for all �. We will not need this in what follows. The constant C in the
lemma above satisfies a bound C � C 0 �S for some absolute constant C 0.

7.2. Proof of Proposition 6.5. For any given n, the function �E . zwn/ is a
bounded smooth function on X �X and hence H�. zwn/ is well-defined. We have
to show that it is bounded by some constant D independent of n.

As could be seen from our construction in Section 6.4, vectors zwn are �K-
invariant. It follows from the discussion in Remark 5.2 that for such vectors, we
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have the following Parseval identity (5.2.2)

H�. zwn/D
X
i

H aut
i . zwn/D

X
i

diH�i . zwn/:

Here the sum is over the spherical spectrum I D f�0; �1; : : : g. Let k0 2 N be
such that 2k0 � S � 2k0C1. We decompose the spherical spectrum I as a union
of subsets Ik0 ; Ik0C1; : : : (dyadic intervals) according to the absolute value of j�j,
and estimate the contribution of each of these subsets.

Namely, we consider dyadic subsets Ik of the spectrum I defined by Ik0 D
f� 2 I j j�j< 2k0C1g and Ik D f� 2 I j j�j 2 Œ2k; 2kC1/g for k > k0.

Notice that all exceptional spectra that correspond to representations of the
complementary series and to the trivial representation is contained in the interval
Ik0 (we call it the low spectrum). All the other intervals contain only imaginary
values of � which correspond to representations of the principal series.

We have H�. zwn/D
P
k�k0

Hk , where Hk D
P
�i2Ik

diH�i . zwn/:

7.2.1. Estimate of Hk for k > k0. The idea of the proof is that on the interval
Ik the function H�. zwn/ is more or less constant, so we will not lose much when
we replace it by its maximal value.

According to the bound .II2/, Lemma 7.1, we see that for � 2 Ik we have a
bound H�. zwn/�Mk where Mk D C.n

�12�kC 2�3k/ for k satisfying 2k < 4n,
and Mk D C2

�3k for k satisfying 2k � 4n. Here C is a universal constant that
depends only on � .

According to the mean-value bound (1.3.3) we have
P
�i2Ik

di � A 22k .
Hence we arrive at the bound Hk � 2kAMk . This implies thatX

k>k0

Hk � AC

�X
k>0

2�kC
X
2k<4n

2kn�1
�
� AC.1C 8/:

7.2.2. Estimate of the low spectrum contribution Hk0 . We claim that the sum
Hk0 is bounded by some constant D0 which depends only on the geometry of the
space Y . In principle we could apply to this case the spectral argument similar to
the one described above. However this would lead to some unpleasant computa-
tions with the exceptional spectrum. For that reason we prefer to give the following
more geometric argument.

The vector zwn 2E is a �K-invariant vector. Hence the corresponding func-
tion bD �E . zwn/j�X D j�nj2Cj�nC2j2 is a K-invariant function and we can view
it as a function on Y . Moreover, we can compute its L1-norm on Y

jjbjjL1.Y / D

Z
Y

�
j�nj

2
Cj�nC2j

2
�
dv D 2:

Consider the subspace R D spanf��i j j�i j < 2
k0C1g � C1.Y /. This is a

finite-dimensional vector space consisting of smooth functions. Since the space R
is finite-dimensional we can bound the supremum norm on this space jj � jj1 by
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L2-norm, i.e., there exists a constant CR such that jjf jj1 � CRjjf jjL2.Y / for all
functions f 2R.

Claim. Hk0 � 4C
2
R.

Indeed, by definition Hk0 D jjajj
2
L2.Y /

, where the vector a 2R is the orthog-

onal projection aD prR.b/ of the vector b onto the subspace R � L2.Y /.
Thus we have

H 2
k0
D jha; aij2 D jhb; aij2 � jjbjj2

L1.Y /
� jjajj21 � 4C

2
R � jjajj

2
L2.Y /

D 4 C 2R �Hk0 :

This implies the claim and finishes the proof of the proposition. �

Remarks 7.2.2. 1. It is not difficult to bound the constant CR in the proof
above in terms of the geometry of the Riemann surface Y and the parameter S.
For example, suppose we found a number r < 1 that is smaller than the injectivity
radius of Y . Then one can show that C 2R � 100.S

2C.1=r/2/vol.Y /, where vol.Y /
is volume computed with respect to the standard hyperbolic metric.

2. The proof of Proposition 6.5 given above could be easily extended to the
case of a general finite co-volume lattice � �G. In fact, the only place where we
implicitly used compactness of X is in the proof of the mean-value bound (1.3.3)
which we quoted from [BR04]. However, in [BR99] we proved a similar bound
for a general finite co-volume lattice and cuspidal functions � and �0.

For a general finite co-volume lattice, the spectral decomposition of the Laplace-
Beltrami operator on Y D�nH is given by a collection of eigenfunctions �z , where
the parameter z runs through some setZ with the Plancherel measure d�. The spec-
tral set Z has discrete points which correspond to eigenfunctions (Maass forms)
�z 2 L

2.Y /, and the continuous part which corresponds to eigenfunctions coming
from the unitary Eisenstein series. The collection f�zgz2Z defines a transform
Ou.z/ D< u; �z > for every u 2 C1c .Y /. The main property of this transform is
the Plancherel formula jjujj2

L2.Y /
D
R
Z j Ou.z/j

2d�:

Let us fix two Maass cusp forms � and �0 on Y . For every z 2Z, we define
the parameter �z 2 C and the coefficient dz in the same way as before. In [KS04]
the following mean-value bound was obtained (improving on our result in [BR99])Z

T�j�z j�2T

dz d�� A .ln.T //
3
2 �T 2:

The proof given in present paper, together with the above mean-value bound,
gives the following bound for L4-norm of K-types in a class one fixed cuspidal
representation � W V ! C1.X/

jj�.en/jjL4.X/ �D .ln.2Cjnj//
3
2 for all n:

This is our analog of Theorem 2.6 for nonuniform lattices. In particular we do not
know wether L4-norm of K-types are uniformly bounded for a nonuniform lattice.
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The bound on L4-norm of K-types implies as before that the following sub-
convexity bound holds for a general finite co-volume latticeZ

ZT

dz d�� B .ln.T //
3
2 �T 5=3; where ZT D fz 2Z j j�zj 2 IT g;

for some constant B > 0.

The rest of the paper is devoted to the proof of spectral bounds .II1;2/ from
Lemma 7.1 and the lower bound (2.6.3). This will be done using computations in
the explicit model of irreducible representations. As a preparation we start with an
explicit construction of model Hermitian forms H�.

8. Model trilinear functionals

8.1. Model trilinear functionals. In this section we briefly recall our construc-
tion from [BR04] of model trilinear invariant functionals.

For every � 2 C, we denote by .��; V�/ the smooth class one representation
of the generalized principle series of the group G D PGL2.R/ described in Section
3.1.3. As a vector space V� is isomorphic to the space of smooth even functions
C1even.S

1/ on S1.
We describe the model invariant trilinear functional using this geometric model.

Namely, for three given complex numbers �; � 0; �, we explicitly construct a non-
trivial trilinear functional lmod W V� ˝ V� 0 ˝ V� ! C by means of its kernel. In
the circle model, the trilinear functional on the triple V� ; V� 0 ; V� is given by the
following integral:

lmod
�;� 0;��

.f1˝f2˝f3/D .2�/
�3

Z
.S1/3

f1.x/f2.y/f3.z/K�;� 0;�.x; y; z/dxdydz;

with the kernel

(8.1.1) K�;� 0;�.x; y; z/

D j sin.x�y/j
����0C��1

2 j sin.x� z/j
��C�0���1

2 j sin.y � z/j
���0���1

2 :

Here x; y; z are the standard angular parameters on the circle S1. As we
verified in [BR04] this defines a nonzero G-invariant functional.

Remarks 8.1. 1. In general the integral defining the trilinear functional is
often divergent and the functional should be defined using regularization of this
integral. There are standard procedures how to make such a regularization (see
[GS64]). Fortunately, in the case of class one unitary representations, all integrals
converge absolutely, so we will not discuss the regularization procedure.

2. We do not have a similar simple formula for the trilinear invariant func-
tional when at least one representation is a representation of discrete series. This is
because we do not know a simple “geometric” model for representations of discrete
series. As a result it is more cumbersome to carry out explicit computations in that
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case. Another problem we have to face is that the results of [BR04] have not been
extended yet to cover the discrete series.

Nevertheless, we expect our methods to carry out for discrete series as well
and to produce corresponding subconvexity bounds, and bound for L4-norms of
K-types.

8.2. Reduction for �K-invariant vectors. In what follows, we only need to
deal with �K-invariant vectors in E ' V� ˝ V� 0 . For such vectors, we can re-
duce the integral (8.1.1) representing the model invariant functional, and hence the
Hermitian form H� to the integral in one variable.

Namely, let lmod
�
W E˝V�! C be the model trilinear functional introduced

in Section 8.1, T� D T mod
�
W E ! V�� be the corresponding map, and H� the

model Hermitian form on E obtained from the composition of T� with the invariant
unitary form on V��. We assume that V� is a representation of the principal series
since we are only interested in the case when j�j �S. In this case, the unitary form
on V� ' C1even.S

1/ is the standard normalized unitary form on L2.S1/.
Let w 2 E ' C1even;even.S

1 �S1/ be a �K-invariant vector. Since it is �K-
invariant it can be represented by a function of one variable c D x�y: w.x; y/D
u.c/, where u 2 C1even.S

1/. We claim that the estimate of H�.w/ could be reduced
to an estimate of an integral in one variable. Namely, on the space of �K-invariant
vectors in E the form H� has rank 1, i.e., it is equal to the absolute value squared
of some functional b� on C1.S1/. More precisely, we have the following

LEMMA 8.2. Fix �; � 0 2 iR as before and assume that � 2 iR. There exists
an L1 function l� on S1 such that for any function u 2 C1even.S

1/ and for the
corresponding vector w.x; y/D u.x�y/ 2E, we have H�.w/D jb�.u/j2 where
b�.u/D

R
l�.c/u.c/dc.

Proof. Since the vector w is �K-invariant its image T�.w/ 2 V� is propor-
tional to the standard unit K-invariant vector e�. The proportionality coefficient
b�.u/ equals

T�.w/.0/D .1=2�/
2

Z
K�;� 0;�.x; y; 0/w.x; y/dxdy D 1=2�

Z
S1
l�.c/u.c/dc;

where

l�.c/D
1

2�

Z
S1
K�.yC c; y; 0/dy(8.2.1)

and K�.x; y; z/ is the kernel of the model trilinear functional defined in (8.1.1).
Thus we see that H�.w/D jjT�.w/jj2 D jb�.u/j2. �

Remark. Uniqueness of trilinear functionals implies that b�� D a.�/ � b� for
some scalar a.�/ 2 C�. It is also easy to see that ja.�/j D 1.
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9. Proof of spectral bounds

9.0.1. A convention. In what follows we will study asymptotic behavior for
various oscillating integrals. We will consider expansions consisting of a main term
and a remainder. We will bound corresponding remainders in terms of CN -norms.

We will use the following notation. We consider functionals on C1.R/ of the
form Iƒ.�/D

R
R
kƒ.x/�.x/dx where � 2C1.R/ (usually with compact support).

Here kƒ.x/ 2L1.R/ is a kernel function depending on a set of parameters ƒ 2Rn.
We consider approximations of such functionals of the form Iƒ.�/ D I

0
ƒ.�/C

RIƒ.�/ where we call I 0ƒ.�/ the main term and RIƒ.�/ the remainder. Usually,
the main term will be given by the stationary phase method (i.e., it will be given
by a functional which is a weighted sum of ı-functions at points corresponding to
critical points of the phase of kƒ). We will consider bounds for RIƒ.�/ in terms of
CN -norms of function �. For � 2 C1.a; b/ and an integer N � 0, we will denote
by jj�jjCN the CN -norm of � defined by jj�jjCN D sup

0�m�N; x2.a;b/

j�.m/.x/j.

9.1. Estimate of the functional b�. In Section 8.2 we have reduced estimates
of the form H� to the estimates of the functional b�. We will be interested in the
case when the function u from Lemma 8.2 has a form u.c/D �.c/einc , where � is
a fixed smooth function and n 2 2Z is a parameter. We can consider the expression
b�.u/ as a functional F�;n on the space C1.S1/ which depends on two parameters
� and n. This functional is given by

F�;n.�/ WD

Z
S1
l�.c/e

inc�.c/dc:(9.1.1)

The main technical difficulty in evaluating this functional is that we have to
give estimates for the values of this functional that are uniform in two parameters
� and n.

Recall that we set S D 2.j� j C j� 0j/C 1 and assume that j�j � S. Using
the symmetry of functional F�;n, we will show that it is enough to consider the
case when n 2 2ZC and � D i t; t � S. It turns out that under these conditions
the functional F�;n is almost proportional to an elementary functional � 7! �.c0/

where c0 D �=2.
We have the following

PROPOSITION 9.1. Consider the functional F�;n when n 2 2ZC and � D
i t; t � S. We have the following estimates of the values of this functional in terms
of CN -norms on C1.S1/. There exists C > 0 such that:

(1) If t � 4n then jF�;n.�/j � C jj�jjC3 � t
� 3
2 .

(2) If t < 4n we have an approximation F�;n.�/D F 0�;n.�/CRF�;n.�/; where
the main term is given by F 0

�;n
.�/DA.�; n/�.c0/, and the error term satisfies
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the bound

jRF�;n.�/j � C jj�jjC2 � t
� 1
2 .1Cn/�

1
2 CC jj�jjC3 � t

� 3
2 :

The coefficient A.�; n/ is given by A.it; n/D t�
5
6A.t�

1
3 .2n� t //, where A is the

classical Airy function (see [Mag66], [Hör03, §7.6]).

We will prove this proposition in Section 10 by carefully estimating the oscil-
lating integral defining the functional F�;n.�/. For the constant C above we can
obtain a bound of the form C � C 0S for some absolute constant C 0.

9.2. Proof of the spectral bound (2.6.3). We repeat the construction of the
test vector wT in (2.6.2). We assume that V D V� , V 0 D V� 0 for some �; � 0 2 iR.
We choose an orthonormal basis fengn22Z in V consisting of K-types and similarly
an orthonormal basis fe0ng in V 0.

For a given T � S, we choose even n � 0 such that jT � 2nj � 10, and set
wT WD en˝ e

0
�n.

Using the reduction from Section 8.2, we see that the vector w D wT corre-
sponds to a function u.c/ D einc . Hence we have H�.w/ D jF�;n.�/j2, where
� � 1.

From (2) in Proposition 9.1 we see that F�;n.�/DA.�; n/�.c0/CRF�;n.�/.
In this case we have jRF�;n.�/j � C.1C jnj/�1, �.c0/ D 1. The Airy function
A is a smooth nonvanishing at 0 function ([Mag66], [Hör03, �7.6]). Hence there
are constants b; c > 0 such that jA.x/j � c for all jxj � b. This implies that
jA.it; n/j � ct�5=6 for j2n� t j � bt�

1
3 . Hence in the approximation of F�;n.�/

stated in Proposition 9.1 (2), the main term A.it; n/�.c0/ dominates the remainder
RF�;n.�/. The lower bound (2.6.3) follows. �

9.3. Proof of Lemma 7.1, (II1;2). We assume that V 0 ' V , i.e., � D�� 0. Let
n 2 2Z and � 2 iR, j�j � S, and zw D zwn as in Section 6.4. As in Section 9.2, we
have H�. zw/D jF�;n.z�/j2, where z�.c/D 1C e2ic . This time we are looking for
a uniform in n upper bound valid for all j�j � S.

We need to bound the integral F�;n.z�/. From the form of integral (9.1.1) it
follows that it is enough to consider the case n� 0 and Im.�/� 0. Indeed, using
the change of variables c 7! �c in integral (9.1.1), we can assume that n � 0.
Considering the complex conjugate to l�, we can assume that Im.�/ � 0. Hence
we can apply Proposition 9.1. We have z�.c0/D 0, and hence F�;n.z�/DRF�;n.z�/.
Thus estimates in Lemma 7.1 (II1;2), directly follow from Proposition 9.1. �

10. Proof of Proposition 9.1

10.1. Proof of Proposition 9.1. We consider the oscillating integral F�;n.�/DR
l�.c/e

inc�.c/dc . One of the difficulties in evaluating this functional is that its
kernel function l� is not an elementary function.
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However, since the function l� itself is defined by an oscillating integral, we
can approximate it by an elementary function k� which is the sum of main term
contributions from critical points of this oscillating integral.

10.1.1. Approximation of the kernel l�. We have the following

LEMMA 10.1.1. Fix �; � 0 2 iR and S as before and assume that � 2 iR,
j�j � S. There exists a constant C > 0 depending on � and � 0, such that we have
the following approximation

l�.c/D a� � j�j
� 1
2k�.c/C r�.c/;(10.1.1)

where a� D ei
�
4 21C

�
2 and the kernel k�.c/ is given by an explicit formula k�.c/D

A.c/m�.c/ with

A.c/D j sin.c/j
����0�1

2 ; m�.c/D j sin.c=2/j�
�
2 j cos.c=2/j

�
2 ;(10.1.2)

and the error term r�.u/ satisfies the bound

jr�.c/j � C j�j
� 3
2 j sin.c/j�

1
2 j ln.j sin.c=2/ cos.c=2/j/j:(10.1.3)

We will prove this lemma in Section 10.2. For the constant C above we can
obtain a bound of the form C � C 0S for some absolute constant C 0.

Using this approximation we can approximate the functional F�;n by a simpler
functional defined for n 2 2Z and � 2 C1even.S

1/, by

G�;n.�/ WD

Z
S1
k�.c/e

inc�.c/dc D 2

Z �

0

k�.c/e
inc�.c/dc:(10.1.4)

The lemma above implies

COROLLARY 10.1.1. There exists a constant C 0 D C 0.�; � 0/ > 0 such that

jF�;n.�/� a�j�j
� 1
2 �G�;n.�/j � C

0
jj�jjL1.S1/ � j�j

�3=2;(10.1.5)

for all j�j � S.

Hence Proposition 9.1 follows from an appropriate estimate for the functional
G�;n.�/.

10.1.2. Estimate for G�;n.�/. We have the following estimate for the func-
tional G�;n defined in (10.1.4).

PROPOSITION 10.1.2. Consider the functional G�;n when n 2 2ZC and �D
i t; t � S. There exists a constant C > 0 depending on � and � 0, such that we have
the following estimates

(1) If t � 4n then jG�;n.�/j � C jj�jjC3 � t
�3,

(2) If t < 4n then we have an approximation G�;n.�/D G0�;n.�/CRG�;n.�/;
where the main term is given by G0

�;n
.�/D A.�; n/�.c0/, and the error term
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RG�;n.�/ satisfies the bound

jRG�;n.�/j � C jj�jjC2 � .1Cn/
�1=2
CC jj�jjC3 � t

� 3
2 :

The coefficient A.�; n/ is given by A.it; n/D t�
1
3A.t�

1
3 .2n� t //.

This proposition and bound (10.1.5) imply Proposition 9.1. This finishes the
proof of Proposition 9.1. �

10.2. Proof of Lemma 10.1.1. We prove the claims in the lemma by essen-
tially straightforward application of the stationary phase method in the form ex-
plained in Appendix A. In order to estimate the error of this approximation we use
the standard integration by parts argument.

To compute the approximation k� of l�, we consider for fixed �; � 0 2 iR and
for j�j � S, � 2 iR, the integral (8.2.1):

l�.c/D .2�/
� 1
2

Z
S1

K�;� 0;�.yC c; y; 0/dy

D .2�/�
1
2 j sin.c/j

����0C��1
2

Z
S1

j sin.yC c/j
��C�0���1

2 j sin.y/j
���0���1

2 dy

D j sin.c/j
����0C��1

2 l 0�.c/;

where the kernel K�;� 0;� is as in (8.1.1), and we denote by l 0
�

(suppressing the
dependence on �; � 0) the function
(10.2.1)

l 0�.c/D .2=�/
1
2

Z
t2R=�Z

j sin.t C c=2/j
��C�0���1

2 j sin.t � c=2/j
���0���1

2 dt:

To find the asymptotic of the integrals of the type of l 0
�
.c/ is a problem in classical

analysis. We view the integral (10.2.1) as a one-dimensional integral (in t) with
parameters � and c. We treat such integrals in Appendix A where we show that the
main term (i.e., the term M�.c/ below) in the asymptotic of such integrals is given
by the stationary phase method with respect to the parameter �!1 while the pa-
rameter c is fixed (c 6D 0; �). In our case, by a straightforward calculation, we find
out that there are two nondegenerate critical points of the phase at t D 0 and t D�=2.
Hence the main term is a sum of two terms (see equation (10.2.3)). We estimate
the remainder uniformly in c for c 6D 0; � . This is done by reducing the problem
to the standard Beta type integrals. We explain this reduction in Section A.1.

Proposition A.1 implies that the integral (10.2.1) has the following uniform
asymptotic expansion in � 2 iR, j�j � S and c (c 6D 0; �) for fixed �; � 0,

(10.2.2) l 0�.c/D e
i �
4 j�j�

1
2 �M�.c/C r

0
�.c/;
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where the main termM�.c/ comes from stationary points of the phase at t D 0; �=2
and is given by

(10.2.3) M�.c/D
ˇ̌̌
sin
�c
2

�ˇ̌̌��
C

ˇ̌̌
cos

�c
2

�ˇ̌̌��
I

and for c 6D 0; � , the remainder r 0
�
.c/ satisfies the bound

(10.2.4) jr 0�.c/j � C j�j
�3=2
j ln.j sin.c=2/ cos.c=2/j/j

with a constant C > 0 depending on �; � 0, but not on c and �.
Let m�.c/D j sin.c=2/j�

�
2 j cos.c=2/j

�
2 . After elementary manipulations with

(10.2.3), we arrive at

l�.c/D j sin.c/j
����0C��1

2 l 0�.c/

D ei
�
4 2

�
2 j�j�

1
2 j sin.c/j

����0�1
2 Œm�.c/Cm��.c/�Cj sin.c/j

����0�1
2 r 0�.c/:

The function l� has the period equal to � . We note that m�.cC�/Dm��.c/.
In (8.2.1) we integrate l�.c/ against a function u with a period equal to � .

Hence we obtain the asymptotic formula (10.1.1). �

10.3. Proof of Proposition 10.1.2. The functionalG�;n was defined in (10.1.4)
through the kernel k� as in (10.1.1)
(10.3.1)

G�;n.�/D

Z
R=�Z

�.c/j sin.c/j
����0�1

2 j sin.c=2/j�
�
2 j cos.c=2/j

�
2 einc dc

for � 2 C1even.S
1/, �D i t 2 iR, t � S, and all n 2 2ZC. We consider this integral

as a functional on the space of functions � 2 C1.S1/. This functional depends
on “large” parameters � and n, and on axillary parameters � and � 0. Our goal is to
find a good approximation for values of this functional and give an estimate of the
error term.

Let us denote by S�;n.c/D �
2
.� ln.j sin.c=2//j C ln.j cos.c=2/j//C inc the

phase of the oscillating integral (10.3.1) and by a.c/D j sin.c/j
����0�1

2 its ampli-
tude. Then the functional (10.3.1) takes the form

G�;n.�/D

Z
R=�Z

�.c/a.c/eS�;n.c/dc:(10.3.2)

A direct computation shows that the critical points of the phase function S�;n
are solutions of the equation sin.c/ D ı, where ı D 2in=� D 2n=t . This shows
that the functional (10.3.1) has different asymptotic behavior for different values
of parameter ı. Let us list what we can expect; note that we consider only the case
ı � 0 (i.e., that n� 0 and t � S).

(1) For ı < 1 the phase function S�;n has two critical points of Morse type; in
this case we can estimate the integral using the stationary phase method.
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(2) When ı approaches 1 these critical points collide at the point c0 D �=2. In
order to get uniform bounds in this region we use properties of the Airy func-
tion.

(3) When ı > 1 the critical points disappear. In this case we will show that the
integral (10.3.1) is rapidly decaying.

Our goal is to show that the functional G�;n.�/ can be approximated by a
functional proportional to the delta function at c0 (i.e., by A.�; n/�.c0/). We
will also give explicit uniform bounds for the error term RG�;n.�/DG�;n.�/�

A.�; n/�.c0/.
We rewrite the phase function S�;n in the form S�;n.c/ D

�
2
Sı.c/, where

ı D 2in=�. We will think about integrals G�;n.�/ as a oscillatory integrals with
“large” parameter � and additional parameter ı.

Using the partition of unity we see that to prove the proposition it is enough
to consider separately two cases:

(1) The function � is supported in a small neighborhood of the point c0 D �=2.

(2) The function � vanishes in a neighborhood of the point c0 D �=2.

Case 1. Let � be supported in a small enough neighborhood of the point
c0 D �=2. We claim that for such �, the following bound holds

jGit;n.�/�A.it; ı/�.c0/j � C jj�jjC2 � t
� 2
3 :(10.3.3)

Here A.it; ı/D t�
1
3A.t

2
3 .ı�1//D t�

1
3A.t�

1
3 .2n� t //, and A is the classical Airy

function.
The condition 1C "� ı � 1� " implies that n� j�j. Hence the above bound

implies that Proposition 10.1.2 holds for such �.
We now specify the size of the support of � and prove bound (10.3.3). For

any 0:01 > " > 0, there exists a neighborhood U" � Œc0�0:1; c0C0:1� of the point
c0 which does not contain critical points of Sı for ı 62 Œ1� "; 1C "�. We assume
that � is supported in this neighborhood for " to be specified latter. Integration
by part implies then that for ı 62 Œ1 � "; 1C "�, the bound jG�;n.�/j � j�j�N

holds for any N > 0. Hence we only need to consider the case 1C "� ı � 1� ".
We claim that in this case there exists a change of variables which transforms the
integral G�;n.�/ to the Airy type integral. Namely, a direct computation shows
that @

@c
Sı jc0 D

@2

@c2
Sı jc0 D 0 and @3

@c3
Sı jc0 6D 0. (In fact, it is easy to see that the

dependence of Sı on ı is nondegenerate. Namely, the family of functions fSıg
is a versal deformation of the function .c � c0/3 in the sense of [AGZV85].) We
now can quote a classical result on oscillating integrals of the Airy type. Namely,
[Hör03, Th. 7.7.18] evidently implies the following claim

Claim. Let f 2 C1.R2/ be a real valued smooth compactly supported func-
tion such that @f

@x
D

@2f

@x2
D 0 and @3f

@x3
6D 0 at the point .x; y/D .0; 0/. Then there
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exist " > 0 and smooth real valued functions a.y/, b.y/ defined on the interval
.�"; "/, such that a.0/D 0; b.0/D f .0/ andˇ̌̌̌Z

u.x/ei!f .x;y/dx� ei!b.y/ �A
�
a.y/!

2
3

�
!�

1
3 �u.0/

ˇ̌̌̌
� C jjujjC2 �!

� 2
3 ;

for all real ! � 1. Here A is the classical Airy function.

The above claim implies bound (10.3.3) for G�;n.�/. Namely, fix " > 0 such
that the above claim is applicable to f .x; y/D SyC1.x/ for y 2 Œ�"; "� (i.e., for
ı 2 Œ1�"; 1C"�). Let U" be a neighborhood of the point c0 which does not contain
critical points of Sı for ı 62 Œ1� "; 1C "�. We assume that supp.�/� U". Applying
the above claim for ı 2 Œ1� "; 1C "�, we obtain the bound (10.3.3).

Case 2. Let � be a function vanishing in a neighborhood of the point c0D�=2.
In this case we have upper bounds

jG�;n.�/j �

(
C 0jj�jjC2 � j�j

� 1
2 ; for ı > 0:9;

C 0N jj�jjCN � j�j
�N ; for 0 < ı � 0:9;

(10.3.4)

for any N > 0 and some constants C 0; C 0N , which could be explicitly bounded
in terms of � and � 0. These bounds immediately follow from the van der Corput
lemma and integration by parts as explained in Section B.3. �

Appendix A. Beta integrals

In this appendix we explain how to prove asymptotic expansion for certain
oscillating integrals which we call Beta integrals. We use these asymptotic in the
proof of Lemma 10.1.1.

A.1. Beta integrals. Fix a function h 2 C1.R/ such h.0/D 0, h0 > 0. Fix
�; � 0 2C such that Re.�/; Re.� 0/ >�1 and Re.�/CRe.� 0/D�1. (In fact, in this
paper we will need only the case Re.�/D Re.� 0/D�1

2
.) We consider following

integrals

H�;c.�/D
Z

R

jh.t � c/j�C�jh.t C c/j�
0C��.t/dt;(A.1.1)

where � 2 C1.R/, and � 2 iR. We are interested in the uniform asymptotic of
such integrals in c, c 6D 0, and for j�j sufficiently large. Moreover, we will assume
that both supp.�/ (containing 0) and values of c are sufficiently small, depending
on the function h.

We write the integral H�;c.�/D
R

R
�.t/a�;� 0.cI t /e

�S.cIt/dt in the standard
form customary in the stationary phase method. Here �.t/a�;� 0.cI t / is the am-
plitude and S.cI t / is the phase in this oscillating integral, both depending on the
parameter c and some auxiliary parameters �; � 0 which we consider fixed. For any
fixed c 6D 0 and smooth � of compact support, one can obtain the asymptotic in
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j�j !1 for H�;c.�/ from the stationary phase method (see [Hör03, Th. 7.7.6]).
We choose the range of the parameter c and the support of � small enough so that
for all c 6D 0, the following conditions are satisfied. There exists the unique critical
point tc (in variable t ) of the phase S.cI t /, this critical point is nondegenerate, and
it is disjoint from singularities of the amplitude a�;� 0 at points t D˙c (in fact if h
is odd, as in our case, then tc D 0 for all c 6D 0). We denote by H0

�;c
.�/ the main

term of the contribution from the critical point tc to the asymptotic of H�;c.�/
given by the stationary phase method. (In particular, we will show that for large
j�j and fixed c, jH0

�;c
.�/j D Aj�j�

1
2 and jH�;c.�/�H0

�;c
.�/j � Bj�j�3=2.)

Our aim is to obtain a meaningful bound for the remainder

RH�;c.�/D H�;c.�/�H0�;c.�/;

which is uniform in � and c. Recall that we set SD 2.j� j C j� 0j/C 1. We claim
the following bound:

PROPOSITION A.1. Fix h2C1.R/ as before. There are constants C1, C2>0,
and intervals .��; �/ and Œ�d; d � depending on the function h, such that the
remainder satisfies the bound

jRH�;c.�/j � C1jj�jjC1 � j�j
� 3
2 CC2jj�jjC2 � j ln jcjj � j�j

�2(A.1.2)

for any j�j � S, c 2 .��; �/; c 6D 0, and for any smooth function � such that
supp.�/� Œ�d; d �.

In fact the method we present allows one to give the asymptotic expansion to
any order with the explicit bound on the remainder.

A.2. Proof of Proposition A.1. We show that it is enough to consider the
special case of h.t/D t . Namely, we claim there exists a smooth change of variables
.t; c/ to the new set of variables .x; a/, where c depends on a only, such that it
transforms the kernel function jh.t � c/j�C�jh.t C c/j�

0C� to the homogenous
kernel jx� aj�C�jxC aj�

0C� times some smooth function mildly depending on a.
Let g 2C1c .R/ be a function such that h.t/D tg.t/ and g.0/ > 0. We denote

by f .t; c/D h.t � c/h.t C c/. The necessary change of variables is given by the
following lemma.

LEMMA A.2. There exists a change of variables .x; a/D .x.t; c/; a.t; c// in
a neighborhood of the point .0; 0/ such that

(1) The variable a is a function of c only,

(2) f .t; c/D .xC a/.x� a/ in new coordinates, and

(3) h.t � c/D .x�a/g1.x; a/ and h.t C c/D .xCa/g2.x; a/, where g1 and g2
are smooth functions not vanishing near the point .0; 0/.
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Using this lemma, we can rewrite the integral

H�;c.�/D
Z

R

jh.t � c/j�C�jh.t C c/j�
0C��.t/dt(A.2.1)

D

Z
R

jx� aj�C�jxC aj�
0C� .x/dx;

where  is a smooth function such that  .0/ D �.0/ and C n-norms of  are
bounded by those of �. Explicitly  .x/D �.t.x; a//jg1.x; a/j� jg2.x; a/j�

0
ˇ̌̌
@x
@t

ˇ̌̌
.

We introduce integrals

H�;a. /D

Z
R

jx� aj�C�jxC aj�
0C� .x/dx:(A.2.2)

Lemma A.2 implies that H�;c.�/DH�;a. / for an appropriate function  
(see (A.2.1)). Here parameters c and a are related via the change of variables in
Lemma A.2.

The integralH�;a. / also has an asymptotic expansion (in � for every fixed a)
with the main term H 0

�;a
. / given by the stationary phase method at x D 0, and a

remainder RH�;a. /. We want to compare asymptotic expansions of H�;c.�/ and
of H�;a. /. Our considerations are based on the well-known invariancy of terms
obtained by the stationary phase method (see [AGZV85], [Ste93]). Namely, we
have H 0

�;a
. /D H0

�;c
.�/. Since integrals themselves are also equal we have the

equality of remainders RH�;a. /DRH�;c.�/. Hence, we can use the estimate for
the remainder for the integral H�;a which we obtained in (A.3.4), Corollary A.3.

Parameters a and c belong to a bounded set. Hence CN -norms of  could be
bounded independently of a in terms of jj�jjCN and of jjhjjCN . This implies that
the constant in the bound (A.1.2) for the remainder RH�;a. / could be chosen
independently of c. Hence we reduced the proof of bound (A.1.2) for general
function h to the special case h.t/D t . This special case is dealt with in the next
section (see Corollary A.3). This finishes the proof of Proposition A.1. �

A.3. Standard Beta integrals. Consider following standard Beta integrals

H�;�;� 0.�/D

Z
R

jy � 1j�C�jyC 1j�
0C��.y/dy;(A.3.1)

where � 2 C1.R/, � 2 iR, and �; � 0 are as before. We apply the stationary phase
method and the elementary method of integration by parts as described in Section
B.1 in order to obtain the following bound.

Let RD R n Œ�0:5; 0:5� and � D y @
@y

. The phase function in integral (A.3.1)
has the unique stationary point at y D 0 which is nondegenerate. Let H 0

�;�;� 0
.�/

be the main term in the asymptotic of H�;�;� 0.�/ as j�j !1 (i.e., H 0
�;�;� 0

.�/D

˛�.0/ � j�j�
1
2 with ˛ D

�
�
i

� 1
2 given by the stationary phase method).
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LEMMA. There are constants C1; C2 > 0 such that the boundˇ̌̌
H�;�;� 0.�/�H

0
�;�;� 0.�/

ˇ̌̌
� C1jj�jjC1.Œ�0:9;0:9�/ � j�j

� 3
2 CC2RH.�/ � j�j

�2

holds for any j�j � S, and for any smooth compactly supported function �. Here

the reminder is given by RH.�/D
R
R

2P
iD0

j� i .�/jdy
jyj

.

Proof. It is enough to treat separately the case of � supported near zero (e.g.,
in the interval Œ�0:9; 0:9�) and that of � vanishing near zero (e.g., vanishing on
Œ�0:5; 0:5�).

Case 1. Function � supported near zero. The stationary phase method (see
[Hör03, Th. 7.7.6]) implies that

jH�;�;� 0.�/�H
0
�;�;� 0.�/j � C1jj�jjC1 � j�j

� 3
2 ;(A.3.2)

with an explicit constant C1. Such a bound is enough for our purposes.

Case 2. Function � vanishes near zero. We rewrite the integral H�;�;� 0.�/ in
the form IF from (B.1.1), Appendix B, with

F.yI�; �; � 0/D yjy � 1j� jyC 1j�
0

jy � 1j�jyC 1j�;(A.3.3)

and the form ! D dy=y.
Consider the vector field � D y @

@y
. A straightforward computation shows that

G WD �.F /=F D �. y
yC1
C

y
y�1

/Cg�;� 0.y/, where the function g�;� 0 is bounded
on the set R D R n Œ�0:5; 0:5�. Hence, for j�j � S, the function H D G�1 is
uniformly bounded in � and y 2 R n Œ�0:5; 0:5�. Moreover, if we make a change
of variable z D y�1, then the function H and the vector field � are smooth on the
interval J D Œ�1; 1� (including at zero, after extending H and � by continuity).
Via compactness, this implies that all functions � i .H/ are uniformly bounded (in
the coordinate z) on J , and hence are bounded on R n Œ�0:5; 0:5� (in the original
coordinate y). This allows us to estimate the integral IF .�/ and finishes the proof
of the lemma. �

We will use the bound described in the lemma in order to estimate the integral
H�;a as defined in (A.2.2). Clearly we can reduce the integral H�;a to the standard
Beta integral H�;�;� 0 . Namely,

H�;a. /D

Z
R

jx� aj�C�jxC aj�
0C� .x/dx

D jaj�C�
0�1C2�

Z
R

jy � 1j�C�jyC 1j�
0C� .ay/dy:

Let H 0
�;a
. / be the main term in the asymptotic of H�;a. / which is given

by the stationary phase method for a 6D 0 fixed. Applying the above lemma to the
last integral we obtain the following bound.
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COROLLARY A.3. Let  be a compactly supported smooth function. There
are constants C3; C4 > 0, depending on  such that the boundˇ̌̌

H�;a. /�H
0
�;a. /

ˇ̌̌
� C3jj jjC1.Œ�0:9;0:9�/ � j�j

� 3
2 CC4j ln.a/j � j�j�2(A.3.4)

holds for all j�j � S and a 2 .0; 0:1�.

We have H 0
�;a
. /D jaj�C�

0�1C2�˛j�j�
1
2 .0/. Note that we assumed that

Re.� C � 0� 1C 2�/D 0 and hence jH 0
�;a
. /j D j˛ .0/j � j�j�

1
2 .

Proof. Let supp. /� Œ�A; A� and denote by  a.y/D  .ay/. We note that
sup j� i . a/j � sup j� i . /j for any a 2 .0; 0:1�. Hence we have

jRH. a/j � C1j�j
�n
X
i

Z
jF j� i . .ay/u.y//jj!j

� C2j�j
�n
X
i

Z a�1A

1
2

jF jj!j � C3j�j
�n
j ln.a/j;

for any n and for some explicit constants C1;2;3 depending on derivatives of  .
Here we use the fact that jF j is bounded as y!˙1 and that ! D dy=y. �

A.3.1. Proof of Lemma A.2. The proof is based on the theory of normal forms
of differentiable functions and on Hadamard’s lemma (see [AGZV85], [Mal67]).

Consider a smooth family of functions

f .t; c/D h.t � c/h.t C c/D .t2� c2/g.t � c/g.t C c/;

where we view t as a variable and c as a parameter. For c D 0 the function f .t; 0/
is equivalent (under a smooth change of variable t) to the function t2. The theory
of versal deformations then implies that there is a change of variable x D x.t; c/
(x.0; 0/ D 0) such that f .x; c/ D u.c/C x2 for some smooth function u (see
[AGZV85]). On the other hand, the value and the differential of f .t; c/ vanishes
at the point .0; 0/, and f .0; c/ < 0 for small c. This implies that we can write
u.c/ D �c2 Qu2.c/ with Qu.c/ > 0. Hence there exists a new parameter a D a.c/
such that f .x; a/D x2� a2 D .x� a/.xC a/.

By Hadamard’s lemma (see [Mal67]) h.t�c/ is divisible by .x�a/ since these
functions have the same zeroes (one of the branches of zero set for the function
f .x; a/ D x2 � a2). Hence we can write h.t � c/ D .x � a/g1.x; a/. It is clear
that g1 is invertible near 0. Similarly for the function h.t C c/. �

Appendix B. Integration by parts and van der Corput lemma

B.1. Integration by parts. We want to study integrals of the form

IF .�/D

Z
R

F.yI�; r/�.y/!;(B.1.1)

where ! is a one-form in y, F is a certain kernel depending on a large parameter
� 2 C and on some additional (multi)parameter r 2 Rm, and � is of compact
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support. We would like to obtain estimates of IF for j�j!1. We are interested in
uniform in r estimates given in terms of C k-norms of the function � (i.e., we want
to estimate a C k-norm of the functional IF ). We have the following elementary
method based on the integration by parts.

First we note that there is a trivial estimate for integral (B.1.1) by the absolute
value: jIF .�/j � RF .�/, where RF .�/ D

R
R
jF.yI�; r/�.y/jj!j. We use the

integration by parts to bootstrap this estimate.
Suppose we are given a smooth vector field � on R and a function H D

H.y; �; r/ such that:

(i) H � �.F /D � �F ,

(ii) H is a smooth in all variables, and for some n > 0, absolute values of func-
tions H; �H; : : : ; �nH are bounded by a constant C > 0, uniformly in all
parameters,

(iii) �! D 0.

PROPOSITION. For � and H as above, we have the following bound

jIF .�/j � j�j
�n
�C n

nX
iD0

RF .�
i�/:(B.1.2)

Proof. We have the following functional equation

IF .�/D��
�1
� IF .�.H�//:(B.1.3)

Indeed, we have

IF .�.H�//D

Z
F � �.H�/! D�

Z
�.F /H� ! D��

Z
F�! D��IF .�/:

Iterating this we obtain IF .�/ D .�1/nj�jnIF .Dn.�//, where D.�/ D �.H�/.
Clearly we have

Dn.�/D
X

0�i0;:::;inC1�n

h
H i0 � .�.H//i1 � .�2.H//i2 : : : .�n.H//in

i
� inC1.�/;

where the summation is over an appropriate set of indexes. Hence we arrive at the
desired bound

(B.1.4) jIF .�/j � j�j
�n
�C n

nX
iD0

Z
jF jj� i .�/jj!j: �

B.2. van der Corput lemma. Let f be a real valued smooth function on the
interval Œa; b�, and F.x/D eif .x/. Consider the following integral

(B.2.1) I.f; �/ WD IF .�/D

Z b

a

eif .x/�.x/dx:

The bound (B.1.2) implies the following
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COROLLARY. Let f D t˛, where t > 1 is a real parameter and ˛ is a smooth
function such that ˛0 has no zeroes on the support supp.�/b .a; b/ of �. Then the
following bound holds

(B.2.2) jI.t˛; �/j � CN t
�N

for any N > 0, and a constant CN depending on ˛ and �.

Let I.f; �/ be as in (B.2.1). Consider the case when f 0 has zeroes. For
an integer k � 1 denote by mk.f / D min

x2Œa;b�
jf .k/.x/j and let M.�/ D j�.b/j CR b

a j�
0.x/jdx be the variance of �. We have the following general estimate essen-

tially due to van der Corput (see [Ste93, p. 332]).

LEMMA. Let k � 1 be such that mk.f / > 0. There exists a constant ck such
that the following bound holds

jI.f; �/j � ck �mk.f /
� 1
k �M.�/

provided
(1) k � 2, or
(2) k D 1 and f 0 is monotone on Œa; b�.

The constant ck depends only on k and is independent of �, f and of the interval
Œa; b�.

We use this lemma with k D 1 or 2, so we can assume that ck is a universal
constant.

B.3. Throughout the paper we consider integrals of the formZ
u.x/jxj�iteis�g.x/dx:

In this section we explain how to obtain meaningful upper bounds for these inte-
grals. We claim that the necessary type of bounds follow directly from the integra-
tion by parts and from the van der Corput lemma.

Let

(B.3.1) I.s; t/D

Z 1

�1

u.x/jxj�
1
2
�iteis�g.x/dx;

where we assume that 1� t � s, g is smooth and monotonic, 0:99 < g0.x/ < 1:01
(i.e., bounded away from 0 and1), jg

00

.x/j � 1
2

for all x (this insures that there
is no degenerate critical points of the phase), and u is smooth of compact support
in .�1; 1/.

There is a simple bound if the phase has no critical points. Let us denote by b
the ratio bD s=t . Integration by parts shows that if the phase function bg.x/�ln jxj
in the integral (B.3.1) has no critical points (e.g., jt j � jsj) then the bound (B.2.2)
reads as

(B.3.2) jI.s; t/j � CN jt j
�N

for any N > 0 and some constant CN depending on N; u and g.
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In the complementary situation we have

LEMMA. Under the above assumptions on g, the following uniform bound
holds

jI.s; t/j � Bs�
1
2 ;

where the constant B is independent of s and of t .

Proof. We denote by a the ratio a D t=s and consider the integral over the
interval .0; 1/ (and the similar integral over .�1; 0/)Z 1

0

u.x/jxj�
1
2 eis.g.x/�a ln jxj/dx:

We are interested in the uniform (in s) bound for this integral for the values of the
parameter a satisfying the bound s�1 � a � 1.

In order to apply the van der Corput lemma, we break the interval .0; 1/ into
4 intervals J1 D .2a; 1/, J2 D .12a; 2a/, J3 D .

1
2
s�1; 1

2
a/ and J4 D .0; 12s

�1/ (for
a � 1

2
the first interval is missing). Denote by fa.x/ D g.x/� a ln jxj, �.x/ D

u.x/jxj�
1
2 and consider the corresponding integrals

Ij .s; a/D

Z
Jj

u.x/jxj�
1
2 eisfa.x/dx:

On the interval J1 we have jsf 0a.x/j � s. Hence from the van der Corput
lemma (with k D 1) we have jI1.s; a/j � B1s�1.

On the interval J2 the phase fa has zero of the first derivative, but satisfies
the bound jsf

00

a .x/j>
1
2
a�1s and M.�/� 10jaj�

1
2 . Hence on the interval J2 the

van der Corput lemma with k D 2 implies jI2.s; a/j � B2s�
1
2 .

To bound the integral I3.s; a/, we note that jsf 0a.x/j�
1
2
s and that the variation

of the amplitude satisfies M.�/ � j1
2
aj�

1
2 C

R 1
2
a

1
2
s�1
jxj�3=2dx � cs

1
2 on J3. The

van der Corput lemma with k D 1 implies that jI3.s; a/j � B3s�
1
2 .

Bounding the integral over J4 by the integral of the absolute value, we see
that trivially jI4.s; a/j � B4s�

1
2 . �
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Étienne Fouvry and Jürgen Klüners. On the negative Pell
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