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1. Introduction

Let Nn.X/ denote the number of isomorphism classes of number fields of
degree n having absolute discriminant at most X . Then it is an old folk conjecture
that the limit

(1) cn D lim
X!1

Nn.X/

X

exists and is positive for n > 1. The conjecture is trivial for n� 2, while for nD 3
and nD 4 it is a theorem of Davenport and Heilbronn [14] and of the author [3],
respectively. In degrees n� 5, where number fields tend to be predominantly non-
solvable, the conjecture has not previously been known to be true for any value of n.

The primary purpose of this article is to prove the above conjecture for nD 5.
In particular, we are able to determine the constant c5 explicitly. More precisely,
we prove:

THEOREM 1. Let N .i/
5 .�; �/ denote the number of quintic fields K, up to iso-

morphism, having 5� 2i real embeddings and satisfying � < Disc.K/ < �. Then

.a/ lim
X!1

N
.0/
5 .0; X/

X
D

1

240

Y
p

.1Cp�2�p�4�p�5/I

.b/ lim
X!1

N
.1/
5 .�X; 0/

X
D

1

24

Y
p

.1Cp�2�p�4�p�5/I

.c/ lim
X!1

N
.2/
5 .0; X/

X
D

1

16

Y
p

.1Cp�2�p�4�p�5/:

The constants appearing in Theorem 1, and thus their sum

c5 D
13

120

Y
p

.1Cp�2�p�4�p�5/;

turn out to have very natural interpretations. Indeed, the constant c5 takes the form
of an Euler product, where the Euler factor at a place � “counts” the total number
of local étale quintic extensions of Q� , where each isomorphism class of local
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extension K� is counted with a certain natural weight to reflect the probability that
a quintic number field K has localization K˝Q� isomorphic to K� at �. More
precisely, let

(2) ˇ1 D
1

2

X
ŒK1WR�D5 étale

1

jAutR.K1/j
;

where the sum is over all isomorphism classes K1 of étale extensions of R of
degree 5. Since AutR.R5/D 120, AutR.R3˚C/D 12, and AutR.R˚C2/D 8, we
have ˇ1 D 1

240
C

1
24
C

1
16
D

13
120

. Similarly, for each prime p, let

(3) p̌ D
p� 1

p

X
ŒKpWQp�D5 étale

1

jAutQp
.Kp/j

�
1

Discp.Kp/
;

where the sum is over all isomorphism classes Kp of étale extensions of Qp of
degree 5, and Discp.Kp/ denotes the discriminant of Kp viewed as a power of p.
Then

(4) c5 D ˇ1 �
Y
p

p̌;

since we will show that

(5) p̌ D 1Cp
�2
�p�4�p�5:

Thus we obtain a natural interpretation of c5 as a product of counts of local field
extensions. For more details on the evaluation of local sums of the form (3), and
for global heuristics on the expected values of the asymptotic constants associated
to general degree n Sn-number fields, see [4].

We obtain several additional results as by-products. First, our methods enable
us to count analogously all orders in quintic fields:

THEOREM 2. Let M .i/
5 .�; �/ denote the number of isomorphism classes of or-

ders O in quintic fields having 5�2i real embeddings and satisfying � <Disc.O/<�.
Then there exists a positive constant ˛ such that

.a/ lim
X!1

M
.0/
5 .0; X/

X
D

˛

240
I

.b/ lim
X!1

M
.1/
5 .�X; 0/

X
D

˛

24
I

.c/ lim
X!1

M
.2/
5 .0; X/

X
D

˛

16
:

The constant ˛ in Theorem 2 has an analogous interpretation. Let p̨ denote
the analogue of the sum (3) for orders, i.e.,

(6) p̨ D
p�1

p

X
ŒRpWZp�D5

1

jAutZp
.Rp/j

�
1

Discp.Rp/
;

where the sum is over all isomorphism classes of Zp-algebras Rp of rank 5 over
Zp with nonzero discriminant. Then we will show that the constant ˛ appearing in
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Theorem 2 is given by

(7) ˛ D
Y
p

p̨;

thus expressing ˛ as a product of counts of local ring extensions. It is an interesting
combinatorial problem to evaluate p̨ explicitly in “closed form”, analogous to the
formula (5) that we obtain for p̌; see [6] for further discussion on the evaluation
of such sums.

Second, we note that the proof of Theorem 1 contains a determination of the
densities of the various splitting types of primes in S5-quintic fields. If K is an
S5-quintic field and K120 denotes the Galois closure of K, then the Artin symbol
.K120=p/ is defined as a conjugacy class in S5, its values being hei, h.12/i, h.123/i,
h.1234/i, h.12345/i, h.12/.34/i, or h.12/.345/i, where hxi denotes the conjugacy
class of x in S5. It follows from the Cebotarev density theorem that for fixed K and
varying p (unramified in K), the values hei, h.12/i, h.123/i, h.1234/i, h.12345/i,
h.12/.34/i, or h.12/.345/i occur with relative frequency 1 : 10 : 20 : 30 : 24 : 15 : 20
(i.e., proportional to the size of the respective conjugacy class). We prove the
following complement to Cebatorev density:

THEOREM 3. Let p be a fixed prime, and let K run through all S5-quintic
fields in which p does not ramify, the fields being ordered by the size of the dis-
criminants. Then the Artin symbol .K120=p/ takes the values hei, h.12/i, h.123/i,
h.1234/i, h.12345/i, h.12/.34/i, or h.12/.345/i with relative frequency 1W10W20W
30W24W15W20.

Actually, we do a little more: we determine for each prime p the density of
S5-quintic fields K in which p has the various possible ramification types. For
example, it follows from our methods that a proportion of precisely

.pC 1/.p2CpC 1/

p4Cp3C 2p2C 2pC 1

of S5-quintic fields are ramified at p.
Lastly, our proof of Theorem 1 implies that nearly all—i.e., a density of 100%

of—quintic fields have full Galois group S5. This is in stark contrast to the quar-
tic case [3, Th. 3], where we showed that only about 91% of quartic fields have
associated Galois group S4:

THEOREM 4. When ordered by absolute discriminant, a density of 100% of
quintic fields have associated Galois group S5.

In particular, it follows that 100% of quintic fields are nonsolvable.
Note that, rather than counting quintic fields and orders up to isomorphism, we

could instead count these objects within a fixed algebraic closure of Q. This would
simply multiply all constants appearing in Theorems 1 and 2 by five. Meanwhile,
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Theorems 3 and 4 of course remain true regardless of whether one counts quintic
extensions up to isomorphism or within an algebraic closure of Q.

The key ingredient that allows us to prove the above results for quintic (and
thus predominantly nonsolvable) fields is a parametrization of isomorphism classes
of quintic orders by means of four integral alternating bilinear forms in five vari-
ables, up to the action of GL4.Z/�SL5.Z/, which we established in [5]. The proofs
of Theorems 1–4 can then be reduced to counting appropriate integer points in
certain fundamental regions, as in [3]. However, the current case is consider-
ably more involved than the quartic case, since the relevant space is now 40-
dimensional rather than 12-dimensional! The primary difficulty lies in counting
points in the rather complicated cusps of these 40-dimensional fundamental regions
(see Lemmas 8–11).

The necessary point-counting is accomplished in Section 2, by carefully dis-
secting the “irreducible” portions of the fundamental regions into 152 pieces, and
then applying a new adaptation of the averaging methods of [3] to each piece
(see Lemma 11). The resulting counting theorem (see Theorem 6), in conjunction
with the results of [5], then yields the asymptotic density of discriminants of pairs
.R;R0/, where R is an order in a quintic field and R0 is a sextic resolvent ring
of R. Obtaining Theorems 1–4 from this general density result then requires a
sieve, which in turn uses certain counting results on resolvent rings and subrings
obtained in [5] and in the recent work of Brakenhoff [10], respectively. This sieve
is carried out in the final Section 3.

We note that the space of binary cubic forms that was used in the work of
Davenport-Heilbronn to count cubic fields, the space of pairs of ternary quadratic
forms that we used in [3] to count quartic fields, and the space of quadruples of
alternating 2-forms in five variables that we use in this article, are all examples
of what are known as prehomogeneous vector spaces. A prehomogeneous vector
space is a pair .G; V /, where G is a reductive group and V is a linear representation
of G such that GC has a Zariski open orbit on VC. The concept was introduced
by Sato in the 1960’s and a classification of all irreducible prehomogeneous vector
spaces was given in the work of Sato-Kimura [16], while Sato-Shintani [17] and
Shintani [18] developed a theory of zeta functions associated to these spaces.

The connection between prehomogeneous vector spaces and field extensions
was first studied systematically in the beautiful 1992 paper of Wright-Yukie [19].
In this work, Wright and Yukie determined the rational orbits and stabilizers in a
number of prehomogeneous vector spaces, and showed that these orbits correspond
to field extensions of degree 2, 3, 4, or 5. In their paper, they laid out a program
to determine the density of discriminants of number fields of degree up to five,
by considering adelic versions of Sato-Shintani’s zeta functions as developed by
Datskovsky and Wright [11] in their extensive work on cubic extensions.
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However, despite looking very promising, the program via adelic Shintani
zeta functions encountered some difficulties and has not succeeded to date be-
yond the cubic case. The primary difficulties have been: (a) establishing cancella-
tions among various divergent zeta integrals, in order to establish a “principal part
formula” for the associated adelic Shintani zeta function; and (b) “filtering” out the
correct count of extensions from the overcount of extensions that is inherent in the
definition of the zeta function. In the quartic case, difficulty (a) was overcome in
the impressive 1995 treatise of Yukie [20], while (b) remained an obstacle. In the
quintic case, both (a) and (b) have remained impediments to obtaining a correct
count of quintic field extensions by discriminant. (For more on the Shintani adelic
zeta function approach and these related difficulties, see [3, �1] and [20].)

In [3] and in the current article, we overcome the problems (a) and (b) above,
for quartic and quintic fields respectively, by introducing a different counting method
that relies more on geometry-of-numbers arguments. Thus, although our methods
are different, this article may be viewed as completing the program first laid out
by Wright and Yukie [19] to count field extensions in degrees up to 5 via the use
of appropriate prehomogeneous vector spaces.

We now describe in more detail the methods of this paper, and give a com-
parison with previous methods. At least initially, our approach to counting quintic
extensions using the prehomogeneous vector space C4 ˝^2C5 is quite similar
in spirit to Davenport-Heilbronn’s original method in the cubic case [14] and its
refinements developed in the quartic case [3]. Namely, we begin by giving an alge-
braic interpretation of the integer orbits on the associated prehomogeneous vector
space which, in the quintic case, are the orbits of the group GZDGL4.Z/�SL5.Z/
on the 40-dimensional lattice VZ D Z4˝^2Z5. As we showed in [5], these integer
orbits have an extremely rich algebraic interpretation and structure (see Theorem 5
for a precise statement), enabling us to consider not only quintic fields, but also
more refined data such as all orders in quintic fields, the local behaviors of these
orders, and their sextic resolvent rings. This interpretation of the integer orbits then
allows us to reduce our problem of counting orders and fields to that of enumerating
appropriate lattice points in a fundamental domain for the action of the discrete
group GZ on the real vector space VR D VZ˝R.

Just as in [14] and [3], the main difficulty in counting lattice points in such
a fundamental region is that this region is not compact, but instead has cusps (or
“tentacles”) going off to infinity. To make matters even more interesting, unlike
the case of binary cubic forms in Davenport-Heilbronn’s work—where there is
one relatively simple cusp defined by small degree inequalities in four variables—
in the case of quadruples of quinary alternating 2-forms, the cusps are numerous
in number and are defined by polynomial inequalities of extremely high degree in
40 variables! These difficulties are further exacerbated by the fact that—contrary
to the cubic case—in the quartic and quintic cases the number of nondegenerate
lattice points in the cuspidal regions is of strictly greater order than the number
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of points in the noncuspidal part (“main body”) of the corresponding fundamental
domains. The latter issue is indeed what lies behind the problems (a) and (b) above
in the adelic zeta function method.

Following our work in the quartic case [3], we overcome these problems that
arise from the cuspidal regions by counting lattice points not in a single funda-
mental domain, but over a continuous, compact set of fundamental domains. This
allows one to “thicken” the cusps, thereby gaining a good deal of control on the
integer points in these cuspidal regions. A basic version of this “averaging” method
was introduced and used in [3] in the quartic case to handle points in these cusps,
and thus enumerate quartic extensions by discriminant (see [3, �1] for more details).
However, since the number, complexity and dimensions of the cuspidal regions are
so much greater in the quintic case than in the quartic case, a number of new ideas
and modifications are needed to successfully carry out the same averaging method
in the quintic case.

The primary technical contribution of this article is the introduction of a
method that allows one to systematically and canonically dissect the cuspidal re-
gions into certain “nice” subregions on which a slightly refined averaging technique
(see ��2.1–2.2) can then be applied in a uniform manner. Using this method, we di-
vide the fundamental region into 159 pieces. The first piece is the main body of the
region, where we show using geometry-of-numbers arguments that the number of
lattice points in the region is essentially its volume. For each of the remaining 158
cuspidal pieces, we show, by a uniform argument, that either the number of lattice
points in that region is negligible (see Table 1, Lemma 11), or that the lattice points
in that cuspidal piece are all reducible, i.e., they correspond to quintic rings that
are not integral domains (see Lemma 10). An asymptotic formula for the number
of irreducible integer points in the entire fundamental domain is then attained. The
interesting interaction between the algebraic properties of the lattice points (via
the correspondence in [5]) and their geometric locations within the fundamental
domain is therefore what allows us to overcome the problems (a) and (b) arising in
the adelic Shintani zeta function method. As explained earlier, a sieving method
can then be used to prove Theorems 1–4.

Our counting method in this article is quite robust and systematic, and should
be applicable in many other situations. First, it can be used to reprove the density
of discriminants of cubic and quartic fields, with much stronger error terms than
have previously been known (in fact, in the cubic case it can be used, in conjunction
with a sieve, to obtain an exact second order term; see [9]). Second, the method
can be suitably adapted to count cubic, quartic, and quintic field extensions of any
base number field (see [8]). Third, the method can be used on prehomogeneous
vector spaces having infinite stabilizer groups, which would also have a number
of interesting applications (see, e.g., [7]). Finally, we expect that the methods
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should also be adaptable to representations of algebraic groups that are not neces-
sarily prehomogeneous. We hope that these directions will be pursued further in
future work.

2. On the class numbers of quadruples of 5� 5 skew-symmetric matrices

Let V D VR denote the space of quadruples of 5� 5 skew-symmetric matri-
ces over the real numbers. We write an element of VR as an ordered quadruple
.A;B; C;D/, where the 5� 5 matrices A, B , C , D have entries aij , bij , cij , dij
respectively. Such a quadruple .A;B; C;D/ is said to be integral if all entries of
the matrices A, B , C , D are integral.

The group GZ D GL4.Z/� SL5.Z/ acts naturally on the space VR. Namely,
an element g4 2 GL4.Z/ acts by changing the basis of the Z-module of matrices
spanned by A;B;C;D; in terms of matrix multiplication, we have .A B C D/t 7!
g4 .A B C D/

t . Similarly, an element g5 2 SL5.Z/ changes the basis of the five-
dimensional space on which the skew-symmetric forms A;B;C;D take values, i.e.,
g5 � .A;B; C;D/D .g5Ag

t
5; g5Bg

t
5; g5Cg

t
5; g5Dg

t
5/. It is clear that the actions of

g4 and g5 commute, and that this action of GZ preserves the lattice VZ consisting
of the integral elements of VR.

The action of GZ on VR (or VZ) has a unique polynomial invariant, which we
call the discriminant. It is a degree 40 polynomial in 40 variables, and is much too
large to write down. An easy method to compute it for any given element in V was
described in [5].

The integer orbits of GZ on VZ have an important arithmetic significance. Re-
call that a quintic ring is any ring with unit that is isomorphic to Z5 as a Z-module;
for example, an order in a quintic number field is a quintic ring. In [5] we showed
how quintic rings may be parametrized in terms of the GZ-orbits on VZ:

THEOREM 5. There is a canonical bijection between the set ofGZ-equivalence
classes of elements .A;B; C;D/ 2 VZ, and the set of isomorphism classes of pairs
.R;R0/, where R is a quintic ring and R0 is a sextic resolvent ring of R. Under
this bijection, we have Disc.A;B; C;D/D Disc.R/D 1

16
�Disc.R0/1=3.

A sextic resolvent ring of a quintic ring R is a sextic ring R0 equipped with a
certain resolvent mapping R!^2R0 whose precise definition will not be needed
here (see [5] for details). In view of Theorem 5, we wish to try to understand the
number of GZ-orbits on VZ having absolute discriminant at most X , as X !1.
The number of integral orbits on VZ having a fixed discriminant � is called a “class
number”, and we wish to understand the behavior of this class number on average.

From the point of view of Theorem 5, we would like to restrict the elements of
VZ under consideration to those that are “irreducible” in an appropriate sense. More
precisely, we call an element .A;B; C;D/ 2 VZ irreducible if, in the corresponding
pair of rings .R;R0/ in Theorem 5, the ring R is an integral domain. The quotient
field of R is thus a quintic field in that case. We say that .A;B; C;D/ is reducible
otherwise.
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One may also describe reducibility and irreducibility in more geometric terms.
If .A;B; C;D/2VZ, then one may consider the 4�4 sub-PfaffiansQ1.t1; t2; t3; t4/;
: : : ;Q5.t1; t2; t3; t4/ of the single 5 � 5 skew-symmetric matrix t1A C t2B C
t3C C t4D whose entries are linear forms in t1; t2; t3; t4. In other words, Qi D
Qi .w; x; y; z/ is defined as a canonical squareroot of the determinant of the 4� 4
matrix obtained from t1AC t2BC t3C C t4D by removing its i th row and column.
Thus these 4�4 Pfaffians Q1; : : : ;Q5 are quaternary quadratic forms and so define
five quadrics in P3. If the element .A;B; C;D/ 2 VZ has nonzero discriminant,
then it is known that these five quadrics intersect in exactly five points in P3

(counting multiplicities); see e.g., [19], [5]. We refer to these five points as the
zeroes of .A;B; C;D/ in P3. In [5] we showed that if .A;B; C;D/ corresponds
to .R;R0/, where R is isomorphic to an order in a quintic field K, then there
exists a zero of .A;B; C;D/ in P3 whose field of definition is K. (The other
zeroes of .A;B; C;D/ 2 VZ are thus defined over the conjugates of K.) Therefore,
geometrically, we may say that .A;B; C;D/ is irreducible if and only if it possesses
a zero in P3 having field of definition K, where K is a quintic field extension of Q.
On the other hand, .A;B; C;D/ is reducible if and only if .A;B; C;D/ possesses
a zero in P3 defined over a number field of degree smaller than five.

The main result of this section is the following theorem:

THEOREM 6. Let N.V .i/Z IX/ denote the number of GZ-equivalence classes
of irreducible elements .A;B; C;D/ 2 VZ having 5 � 2i real zeroes in P3 and
satisfying jDisc.A;B; C;D/j<X . Then

.a/ lim
X!1

N.V
.0/

Z IX/

X
D
�.2/2�.3/2�.4/2�.5/

240
I

.b/ lim
X!1

N.V
.1/

Z IX/

X
D
�.2/2�.3/2�.4/2�.5/

24
I

.c/ lim
X!1

N.V
.2/

Z IX/

X
D
�.2/2�.3/2�.4/2�.5/

16
:

Theorem 6 is proved in several steps. In Section 2.1, we outline the necessary
reduction theory needed to establish some particularly useful fundamental domains
for the action of GZ on VR. In Sections 2.2 and 2.3, we describe a refinement of
the “averaging” method from [3] that allows us to efficiently count integer points
in various components of these fundamental domains in terms of their volumes. In
Sections 2.4 and 2.5, we investigate the distribution of reducible and irreducible
integral points within these fundamental domains. The volumes of the resulting
“irreducible” components of these fundamental domains are then computed in Sec-
tion 2.6, proving Theorem 6. A version of Theorem 6 for elements in VZ satisfying
any specified set of congruence conditions is then obtained in Section 2.7.

In Section 3, we will show how these counting methods—together with a
sieving argument—can be used to prove Theorems 1–4.
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2.1. Reduction theory. The action of GR D GL4.R/ � SL5.R/ on VR has
three nondegenerate orbits V .0/R ; V

.1/
R ; V

.2/
R , where V .i/R consists of those elements

.A;B; C;D/ in VR having nonzero discriminant and 5� 2i real zeroes in P3. We
wish to understand the number of irreducible GZ-orbits on V .i/Z D V

.i/
R \VZ having

absolute discriminant at most X (i D 0; 1; 2). We accomplish this by counting the
number of integer points of absolute discriminant at most X in suitable fundamental
domains for the action of GZ on VR.

These fundamental regions are constructed as follows. First, let F denote a
fundamental domain in GR for GZnGR. We may assume that F is contained in a
standard Siegel set, i.e., we may assume F is of the form

FD fnak� W n 2N 0.a/; a 2 A0; k 2K;� 2ƒg;

where

K D fspecial orthogonal transformations in GRgI

A0 D fa.s1; s2; : : : ; s7/ W s1; s2; : : : ; s7 � cg; where

a.s/D

0BBBB@
0BB@
s�31 s�12 s�13

s1s
�1
2 s�13

s1s2s
�1
3

s1s2s
3
3

1CCA ;
0BBBB@
s�44 s�35 s�26 s�17

s4s
�3
5 s�26 s�17

s4s
2
5s
�2
6 s�17

s4s
2
5s
3
6s
�1
7

s4s
2
5s
3
6s
4
7

1CCCCA
1CCCCAI

xN 0 D fn.u1; u2; : : : ; u16/ W uD .u1; u2; : : : ; u16/ 2 �.a/g; where

n.u/D

0BB@
0B@ 1

u1 1

u2 u3 1

u4 u5 u6 1

1CA ;
0BB@

1

u7 1

u8 u9 1

u10 u11 u12 1

u13 u14 u15 u16 1

1CCA
1CCAI

ƒ D ff� W � > 0g; where

� acts by

0BB@
0B@ �

�

�

�

1CA ;
0BB@
1

1

1

1

1

1CCA
1CCAI

here c > 0 is an absolute constant and �.a/ is an absolutely bounded measurable
subset of R16 dependent only on the value of a 2 A0.

For i D 0; 1; 2, let ni denote the cardinality of the stabilizer in GR of any
element v 2 V .i/R (it follows from Proposition 15 below that n1 D 120, n2 D 12,
and n3 D 8). Then for any v 2 V .i/R , Fv will be the union of ni fundamental
domains for the action of GZ on V .i/R . Since this union is not necessarily disjoint,
Fv is best viewed as a multiset, where the multiplicity of a point x in Fv is given
by the cardinality of the set fg 2 F j gv D xg. Evidently, this multiplicity is a
number between 1 and ni .
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Even though the multiset Fv is the union of ni fundamental domains for
the action of GZ on V .i/R , not all elements in GZnVZ will be represented in Fv

exactly ni times. In general, the number of times the GZ-equivalence class of
an element x 2 VZ will occur in Fv is given by ni=m.x/, where m.x/ denotes
the size of the stabilizer of x in GZ. We define N.V .i/Z IX/ to be the (weighted)
number of irreducible GZ-orbits on V .i/Z having absolute discriminant at most X ,
where each orbit is counted by a weight of 1=m.x/ for any point x in that orbit.
Thus ni �N.V

.i/
Z IX/ is the (weighted) number of points in Fv having absolute

discriminant at most X , where each point x in the multiset Fv is counted with a
weight of 1=m.x/.

We note that the GZ-orbits in VZ corresponding to orders in non-Galois quintic
fields will then each be counted simply with a weight of 1, since such orders can
have no automorphisms. We will show (see Lemma 14) that irreducible orbits
having weight < 1 are negligible in number in comparison to those having weight
1, and so points of weight < 1 will not be important as they will not affect the main
term of the asymptotics of N.V .i/Z IX/ as X !1.

Now the number of integer points can be difficult to count in a single funda-
mental region Fv. The main technical obstacle is that the fundamental region Fv

is not compact, but rather has a system of cusps going off to infinity which in fact
contains infinitely many points, including many irreducible points. We simplify
the counting of such points by “thickening” the cusp; more precisely, we compute
the number of points in the fundamental region Fv by averaging over lots of such
fundamental domains, i.e., by averaging over a continuous range of points v lying
in a certain special compact subset H of V .

2.2. Averaging over fundamental domains. LetHDH.J /Dfw 2V W kwk�J ,
jDisc.w/j � 1g, where kwk denotes a Euclidean norm on V fixed under the action
of K, and J is sufficiently large so that H is nonempty and of nonzero volume.
We write V .i/ WD V .i/R . Then we have

(8) N.V
.i/

Z IX/D

R
v2H\V .i/ #fx 2 Fv\V irr

Z W jDisc.x/j<Xg jDisc.v/j�1dv
ni �

R
v2H\V .i/ jDisc.v/j�1dv

;

where V irr
Z � VZ denotes the subset of irreducible points in VZ. The denominator

of the latter expression is, by construction, a finite absolute constant Mi DMi .J /

greater than zero. We have chosen the measure jDisc.v/j�1 dv because it is a
GR-invariant measure.

More generally, for any GZ-invariant subset S � V .i/Z , let N.S IX/ denote
the number of irreducible GZ-orbits on S having discriminant less than X . Then
N.S IX/ can be expressed as

(9) N.S IX/D

R
v2H\V .i/ #fx 2 Fv\S irr W jDisc.x/j<Xg jDisc.v/j�1dv

ni �
R
v2H\V .i/ jDisc.v/j�1dv

;
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where S irr � S denotes the subset of irreducible points in S . We shall use this
definition of N.S IX/ for any S � VZ, even if S is not GZ-invariant. Note that for
disjoint S1; S2 � VZ, we have N.S1[S2/DN.S1/CN.S2/.

Now since jDisc.v/j�1 dv is aGR-invariant measure, we have for any function
f 2 C0.V

.i//, and any v; x 2 V .i/R and g 2GR satisfying v D gx, that

f .v/jDisc.v/j�1dv D ri f .gx/ dg

for some constant ri dependent only on whether i D 0, 1 or 2; here dg denotes
a left-invariant Haar measure on GR. We may thus express the above formula for
N.S IX/ as an integral over F�GR:

N.S IX/D
ri

Mi

Z
g2F

#fx 2 S irr
\gH W jDisc.x/j<Xg dg

(10)

D
ri

Mi

Z
g2N 0.a/A0ƒK

#fx 2 S \ Nn.u/a.s/�kH W jDisc.x/j<Xg dg :

Let us write H.u; s; �;X/ D Nn.u/a.s/�H \ fv 2 V .i/ W jDisc.v/j < Xg. Noting
that KH DH ,

R
K dk D 1 (by convention), and

dg D s�121 s�82 s�123 s�204 s�305 s�306 s�207 dud�s d��dk

(up to scaling), we have

(11) N.S IX/D
ri

Mi

Z
g2N 0.a/A0ƒ

#fx 2 S irr
\H.u; s; �;X/g

� s�121 s�82 s�123 s�204 s�305 s�306 s�207 dud�s d�� :

We note that the same counting method may be used even if we are interested
in counting both reducible and irreducible orbits in VZ. For any set S � V .i/Z , let
N �.S IX/ be defined by (9), but where the superscript “irr” is removed. Thus for
a GZ-invariant set S � V .i/Z , ni �N �.S IX/ counts the total (weighted) number of
GZ-orbits in S having absolute discriminant nonzero and less than X (not just the
irreducible ones). By the same reasoning, we have

(12) N �.S IX/D
ri

Mi

Z
g2N 0.a/A0ƒ

#fx 2 S \H.u; s; �;X/g

� s�121 s�82 s�123 s�204 s�305 s�306 s�207 dud�s d�� :

The expression (11) for N.S IX/, and its analogue (12) for N �.S;X/, will be
useful in the sections that follow.

2.3. A lemma from geometry of numbers. To estimate the number of lattice
points in H.u; s; �;X/, we have the following elementary proposition from the
geometry-of-numbers, which is essentially due to Davenport [12]. To state the
proposition, we require the following simple definitions. A multiset R � Rn is
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said to be measurable if Rk is measurable for all k, where Rk denotes the set
of those points in R having a fixed multiplicity k. Given a measurable multiset
R�Rn, we define its volume in the natural way, that is, Vol.R/D

P
k k �Vol.Rk/,

where Vol.Rk/ denotes the usual Euclidean volume of Rk .

LEMMA 7. Let R be a bounded, semi-algebraic multiset in Rn having maxi-
mum multiplicity m, where R is defined by at most k polynomial inequalities each
having degree at most `. Let R0 denote the image of R under any .upper or lower/
triangular, unipotent transformation of Rn. Then the number of integer lattice
points .counted with multiplicity/ contained in the region R0 is

Vol.R/CO.maxfVol.xR/; 1g/;

where Vol.xR/ denotes the greatest d -dimensional volume of any projection of R

onto a coordinate subspace obtained by equating n� d coordinates to zero, where
d takes all values from 1 to n� 1. The implied constant in the second summand
depends only on n, m, k, and `.

Although Davenport states the above lemma only for compact semi-algebraic
sets R� Rn, his proof adapts without essential change to the more general case of
a bounded semi-algebraic multiset R� Rn, with the same estimate applying also
to any image R0 of R under a unipotent triangular transformation.

2.4. Estimates on reducible quadruples .A;B; C;D/. In this subsection we
describe the relative frequencies with which reducible and irreducible elements sit
inside various parts of the fundamental domain Fv, as v varies over the compact
region H .

We begin by describing some sufficient conditions that guarantee that a point
in VZ is reducible.

LEMMA 8. Let .A;B; C;D/ 2 VZ be an element such that some non-trivial
Q-linear combination of A;B;C;D has rank � 2. Then .A;B; C;D/ is reducible.

Proof. Suppose E D rAC sB C tC C uD, where r; s; t; u 2 Q are not all
zero. Let Q1; : : : ;Q5 denote the five 4� 4 sub-Pfaffians of .A;B; C;D/. Then
we have proven in [5] that if .A;B; C;D/ 2 VZ is irreducible, then the quadrics
Q1 D 0; : : : ;Q5 D 0 intersect in five points in P3.xQ/, and moreover, these five
points are defined over conjugate quintic extensions of Q. However, if rank.E/� 2,
then Œr; s; t; u� 2 P3.Q/ is a common zero of Q1; : : : ;Q5 and it is defined over Q,
contradicting the irreducibility of .A;B; C;D/. �

LEMMA 9. Let .A;B; C;D/ 2 VZ be an element such that some non-trivial
Q-linear combination of Q1; : : : ;Q5 factors over Q into two linear factors, where
Q1; : : : ;Q5 denote the five 4� 4 sub-Pfaffians of .A;B; C;D/. Then .A;B; C;D/
is reducible.
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Proof. As noted in the proof of Lemma 8, the five associated quadratic forms
Q1; : : : ;Q5 of an irreducible element .A;B; C;D/ 2 VZ possess five common
zeroes that are defined over conjugate quintic fields, and these zeroes are conju-
gate to each other over Q. It follows that each of the

�
5
3

�
D 10 planes, going

through subsets of three of those five points, cannot be defined over Q, as these
planes will each be part of a Gal.xQ=Q/-orbit of size at least 5. However, if some
rational quaternary quadratic form Q factors over Q into linear factors, then (by
the pigeonhole principle) at least one of these two rational factors must vanish at
three of the five common points of intersection, a contradiction. �

LEMMA 10. Let .A;B; C;D/ 2 VZ be an element such that all the variables
in at least one of the following sets vanish:

(i) fa12; a13; a14; a15; a23; a24; a25g

(ii) fa12; a13; a14; a23; a24; a34g

(iii) fa12; a13; a14; a15g[ fb12; b13; b14; b15g

(iv) fa12; a13; a14; a23; a24g[ fb12; b13; b14; b23; b24g

(v) fa12; a13; a14g[ fb12; b13; b14g[ fc12; c13; c14g

(vi) fa12; a13; a23g[ fb12; b13; b23g[ fc12; c13; c23g

(vii) fa12; a13g[ fb12; b13g[ fc12; c13g[ fd12; d13g

Then .A;B; C;D/ is reducible.

Proof. In cases (i)–(ii) (resp. (iv)), one sees that A (resp. a rational linear
combination of A and B) has rank � 2, and thus .A;B; C;D/ is reducible by
Lemma 8. In cases (v)–(vii) (resp. (iii)), one finds that Q5 (resp. a rational linear
combination of Q2; : : : ;Q5) factors into rational linear factors, and so the result
in these cases follows from Lemma 9. �

We are now ready to give an estimate on the number of irreducible elements
in Fv, on average, satisfying a12 D 0:

LEMMA 11. Let v take a random value in H uniformly with respect to the
measure jDisc.v/j�1 dv. Then the expected number of irreducible elements

.A;B; C;D/ 2 Fv

such that jDisc.A;B; C;D/j<X and a12 D 0 is O.X39=40/.

Proof. As in [3], we divide the set of all .A;B; C;D/ 2 VZ into a number
of cases depending on which initial coordinates are zero and which are nonzero.
These cases are described in the second column of Table 1. The vanishing condi-
tions in the various subcases of Case nC1 are obtained by setting equal to 0—one at
a time—each variable that was assumed to be nonzero in Case n. If such a resulting
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subcase satisfies the reducibility conditions of Lemma 10, it is not listed. In this
way, it becomes clear that any irreducible element in VZ must satisfy precisely one
of the conditions enumerated in the second column of Table 1. In particular, there
is no Case 14, because the assumption that any nonzero variable in Case 13 is zero
immediately results in reducibility by Lemma 10.

Let T denote the set of all forty variables aij ; bij ; cij ; dij . For a subcase C of
Table 1, we use T0 D T0.C/ to denote the set of variables in T assumed to be 0 in
Subcase C, and T1 to denote the set of variables in T assumed to be nonzero.

Each variable t 2 T has a weight, which is defined as follows. The action of
a.s1; s2; : : : ; s7/ � � on .A;B; C;D/ 2 V causes each variable t to multiply by a
certain weight which we denote by w.t/. These weights w.t/ are evidently rational
functions in �; s1; : : : ; s7.

Let V.C/ denote the set of .A;B; C;D/ 2 VR such that .A;B; C;D/ satisfies
the vanishing and nonvanishing conditions of Subcase C. For example, in Sub-
case 2a we have T0.2a/D fa12; a13g and T1.2a/D fa14; a23; b12g; thus V.2a/ de-
notes the set of all .A;B; C;D/2VZ such that a12D a13D 0 but a14; a23; b12¤ 0.

For each subcase C of Case n (n > 0), we wish to show that N.V.C/IX/, as
defined by (9), is O.X39=40/. Since N 0.a/ is absolutely bounded, the equality (12)
implies that

(13) N �.V .C/IX/

�

Z X1=40

�Dc0

Z 1
s1;s2;:::;s7Dc

�.V .C// s�121 s�82 s�123 s�204 s�305 s�306 s�207 d�s d��;

where �.V .C// denotes the number of integer points in the region H.u; s; �;X/
that also satisfy the conditions

(14) t D 0 for t 2 T0 and jt j � 1 for t 2 T1:

Now for an element .A;B; C;D/ 2H.u; s; �;X/, we evidently have

(15) jt j � Jw.t/

and therefore the number of integer points in H.u; s; �;X/ satisfying (14) will be
nonzero only if

(16) Jw.t/� 1

for all weights w.t/ such that t 2 T1. Now the sets T1 in each subcase of Table 1
have been chosen to be precisely the set of variables having the minimal weights
w.t/ among the variables t 2 T nT0 (by “minimal weight” in T nT0, we mean there
is no other variable t 2 T nT0 with weight having equal or smaller exponents for
all parameters �; s1; s2; : : : ; s7). Thus if the condition (16) holds for all weights
w.t/ corresponding to t 2 T1, then—by the very choice of T1—we will also have
Jw.t/� 1 for all weights w.t/ such that t 2 T nT0.
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Therefore, if the region

HD f.A;B; C;D/ 2H.u; s; �;X/ W t D 0 8t 2 T0I jt j � 1 8t 2 T1g

contains an integer point, then (16) and Lemma 7 together imply that the number
of integer points in H is O.Vol.H//, since the volumes of all the projections of
u�1H will in that case also be O.Vol.H//. Now clearly

Vol.H/DO
�
J 40�jT0j

Y
t2T nT0

w.t/
�
;

and so we obtain

(17) N.V.C/IX/

�

Z X1=40

�Dc0

Z 1
s1;s2;:::;s7Dc

Y
t2T nT0

w.t/ s�121 s�82 s�123 s�204 s�305 s�306 s�207 d�s d��:

The latter integral can be explicitly carried out for each of the subcases in
Table 1. It will suffice, however, to have a simple estimate of the form O.Xr/,
with r < 1, for the integral corresponding to each subcase. For example, if the
total exponent of si in (17) is negative for all i in f1; : : : ; 7g, then it is clear that
the resulting integral will be at most O.X .40�jT0j/=40/ in value. This condition
holds for many of the subcases in Table 1 (indicated in the fourth column by “-”),
immediately yielding the estimates given in the third column.

For cases where this negative exponent condition does not hold, the estimate
given in the third column can be obtained as follows. The factor � given in the
fourth column is a product of variables in T1, and so it is at least one in absolute
value. The integrand in (17) may thus be multiplied by � without harm, and the
estimate (17) will remain true; we may then apply the inequalities (15) to each of
the variables in � , yielding

(18) N.V.C/IX/

�

Z X1=40

�Dc0

Z 1
s1;s2;:::;s7Dc

Y
t2T nT0

w.t/ w.�/ s�121 s�82 s�123 s�204 s�305 s�306 s�207 d�s d��;

where we extend the notation w multiplicatively, i.e., w.ab/D w.a/w.b/. In each
subcase of Table 1, we have chosen the factor � so that the total exponent of each
si in (18) is negative. Thus we obtain from (18) that

N.V.C/IX/DO
�
X .40�#T0.C/C#�/=40�;

where #� denotes the total number of variables of T appearing in � (counted with
multiplicity), and this is precisely the estimate given in the third column of Table 1.
In every subcase, aside from Case 0, we see that 40�#T0C#� < 40, as desired. �

Therefore, for the purposes of proving Theorem 6, we may assume that a12 ¤ 0.
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Case The set S � VZ defined by N.S IX/� Use factor

0. a12 ¤ 0 X40=40 -
1. a12 D 0 I X39=40 -

a13; b12 ¤ 0

2a. a12; a13 D 0 I X38=40 -
a14; a23; b12 ¤ 0

2b. a12; b12 D 0 I X38=40 -
a13; c12 ¤ 0

3a. a12; a13; a14 D 0 I X37=40 -
a15; a23; b12 ¤ 0

3b. a12; a13; a23 D 0 I X37=40 -
a14; b12 ¤ 0

3c. a12; a13; b12 D 0 I X37=40 -
a14; a23; b13; c12 ¤ 0

3d. a12; b12; c12 D 0 I X37=40 -
a13; d12 ¤ 0

4a. a12; a13; a14; a15 D 0 I X37=40 a23
a23; b12 ¤ 0

4b. a12; a13; a14; a23 D 0 I X37=40 a24
a15; a24; b12 ¤ 0

4c. a12; a13; a14; b12 D 0 I X36=40 -
a15; a23; b13; c12 ¤ 0

4d. a12; a13; a23; b12 D 0 I X36=40 -
a14; b13; c12 ¤ 0

4e. a12; a13; b12; b13 D 0 I X36=40 -
a14; a23; c12 ¤ 0

4f. a12; a13; b12; c12 D 0 I X36=40 -
a14; a23; b13; d12 ¤ 0

4g. a12; b12; c12; d12 D 0 I X36=40 -
a13 ¤ 0

5a. a12; a13; a14; a15; a23 D 0 I X37=40 a224
a24; b12 ¤ 0

5b. a12; a13; a14; a15; b12 D 0 I X35=40 -
a23; b13; c12 ¤ 0

5c. a12; a13; a14; a23; a24 D 0 I X37=40 a234
a15; a34; b12 ¤ 0

5d. a12; a13; a14; a23; b12 D 0 I X35=40 -
a15; a24; b13; c12 ¤ 0

Table 1. Subcases 0–5d.
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Case The set S � VZ defined by N.S IX/� Use factor

5e. a12; a13; a14; b12; b13 D 0 I X35=40 -
a15; a23; b14; c12 ¤ 0

5f. a12; a13; a14; b12; c12 D 0 I X35=40 -
a15; a23; b13; d12 ¤ 0

5g. a12; a13; a23; b12; b13 D 0 I X35=40 -
a14; b23; c12 ¤ 0

5h. a12; a13; a23; b12; c12 D 0 I X35=40 -
a14; b13; d12 ¤ 0

5i. a12; a13; b12; b13; c12 D 0 I X35=40 -
a14; a23; c13; d12 ¤ 0

5j. a12; a13; b12; c12; d12 D 0 I X35=40 -
a14; a23; b13 ¤ 0

6a. a12; a13; a14; a15; a23; a24 D 0 I X37=40 a334
a25; a34; b12 ¤ 0

6b. a12; a13; a14; a15; a23; b12 D 0 I X35=40 a24
a24; b13; c12 ¤ 0

6c. a12; a13; a14; a15; b12; b13 D 0 I X34=40 -
a23; b14; c12 ¤ 0

6d. a12; a13; a14; a15; b12; c12 D 0 I X34=40 -
a23; b13; d12 ¤ 0

6e. a12; a13; a14; a23; a24; b12 D 0 I X35=40 a34
a15; a34; b13; c12 ¤ 0

6f. a12; a13; a14; a23; b12; b13 D 0 I X34=40 -
a15; a24; b14; b23; c12 ¤ 0

6g. a12; a13; a14; a23; b12; c12 D 0 I X34=40 -
a15; a24; b13; d12 ¤ 0

6h. a12; a13; a14; b12; b13; b14 D 0 I X34=40 -
a15; a23; c12 ¤ 0

6i. a12; a13; a14; b12; b13; c12 D 0 I X34=40 -
a15; a23; b14; c13; d12 ¤ 0

6j. a12; a13; a14; b12; c12; d12 D 0 I X34=40 -
a15; a23; b13 ¤ 0

6k. a12; a13; a23; b12; b13; b23 D 0 I X34=40 -
a14; c12 ¤ 0

6l. a12; a13; a23; b12; b13; c12 D 0 I X34=40 -
a14; b23; c13; d12 ¤ 0

6m. a12; a13; a23; b12; c12; d12 D 0 I X34=40 -
a14; b13 ¤ 0

Table 1. Subcases 5e–6m.
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Case The set S � VZ defined by N.S IX/� Use factor

6n. a12; a13; b12; b13; c12; c13 D 0 I X34=40 -
a14; a23; d12 ¤ 0

6o. a12; a13; b12; b13; c12; d12 D 0 I X34=40 -
a14; a23; c13 ¤ 0

7a. a12; a13; a14; a15; a23; a24; b12 D 0 I X35=40 a234
a25; a34; b13; c12 ¤ 0

7b. a12; a13; a14; a15; a23; b12; b13 D 0 I X34=40 a24
a24; b14; b23; c12 ¤ 0

7c. a12; a13; a14; a15; a23; b12; c12 D 0 I X34=40 a24
a24; b13; d12 ¤ 0

7d. a12; a13; a14; a15; b12; b13; b14 D 0 I X34=40 b15
a23; b15; c12 ¤ 0

7e. a12; a13; a14; a15; b12; b13; c12 D 0 I X34=40 d12
a23; b14; c13; d12 ¤ 0

7f. a12; a13; a14; a15; b12; c12; d12 D 0 I X34=40 b13
a23; b13 ¤ 0

7g. a12; a13; a14; a23; a24; b12; b13 D 0 I X34=40 a34
a15; a34; b14; b23; c12 ¤ 0

7h. a12; a13; a14; a23; a24; b12; c12 D 0 I X34=40 a34
a15; a34; b13; d12 ¤ 0

7i. a12; a13; a14; a23; b12; b13; b14 D 0 I X33=40 -
a15; a24; b23; c12 ¤ 0

7j. a12; a13; a14; a23; b12; b13; b23 D 0 I X33=40 -
a15; a24; b14; c12 ¤ 0

7k. a12; a13; a14; a23; b12; b13; c12 D 0 I X33=40 -
a15; a24; b14; b23; c13; d12 ¤ 0

7l. a12; a13; a14; a23; b12; c12; d12 D 0 I X33=40 -
a15; a24; b13 ¤ 0

7m. a12; a13; a14; b12; b13; b14; c12 D 0 I X34=40 d12
a15; a23; c13; d12 ¤ 0

7n. a12; a13; a14; b12; b13; c12; c13 D 0 I X34=40 d12
a15; a23; b14; d12 ¤ 0

7o. a12; a13; a14; b12; b13; c12; d12 D 0 I X34=40 c13
a15; a23; b14; c13 ¤ 0

7p. a12; a13; a23; b12; b13; b23; c12 D 0 I X33=40 -
a14; c13; d12 ¤ 0

7q. a12; a13; a23; b12; b13; c12; c13 D 0 I X33=40 -
a14; b23; d12 ¤ 0

Table 1. Subcases 6n–7q.
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Case The set S�VZ defined by N.S IX/� Use factor

7r. a12; a13; a23; b12; b13; c12; d12 D 0 I X33=40 -
a14; b23; c13 ¤ 0

7s. a12; a13; b12; b13; c12; c13; d12 D 0 I X34=40 d13
a14; a23; d13 ¤ 0

8a. a12; a13; a14; a15; a23; a24; b12; b13 D 0 I X34=40 a234
a25; a34; b14; b23; c12 ¤ 0

8b. a12; a13; a14; a15; a23; a24; b12; c12 D 0 I X34=40 a25a34
a25; a34; b13; d12 ¤ 0

8c. a12; a13; a14; a15; a23; b12; b13; b14 D 0 I X34=40 a24b15
a24; b15; b23; c12 ¤ 0

8d. a12; a13; a14; a15; a23; b12; b13; b23 D 0 I X33=40 a24
a24; b14; c12 ¤ 0

8e. a12; a13; a14; a15; a23; b12; b13; c12 D 0 I X34=40 a24d12
a24; b14; b23; c13; d12 ¤ 0

8f. a12; a13; a14; a15; a23; b12; c12; d12 D 0 I X34=40 a24b13
a24; b13 ¤ 0

8g. a12; a13; a14; a15; b12; b13; b14; c12 D 0 I X34=40 b15d12
a23; b15; c13; d12 ¤ 0

8h. a12; a13; a14; a15; b12; b13; c12; c13 D 0 I X34=40 b14d12
a23; b14; d12 ¤ 0

8i. a12; a13; a14; a15; b12; b13; c12; d12 D 0 I X34=40 c213
a23; b14; c13 ¤ 0

8j. a12; a13; a14; a23; a24; b12; b13; b14 D 0 I X33=40 a34
a15; a34; b23; c12 ¤ 0

8k. a12; a13; a14; a23; a24; b12; b13; b23 D 0 I X33=40 a34
a15; a34; b14; c12 ¤ 0

8l. a12; a13; a14; a23; a24; b12; b13; c12 D 0 I X33=40 a34
a15; a34; b14; b23; c13; d12 ¤ 0

8m. a12; a13; a14; a23; a24; b12; c12; d12 D 0 I X33=40 a15
a15; a34; b13 ¤ 0

8n. a12; a13; a14; a23; b12; b13; b14; b23 D 0 I X33=40 a24
a15; a24; c12 ¤ 0

8o. a12; a13; a14; a23; b12; b13; b14; c12 D 0 I X32=40 -
a15; a24; b23; c13; d12 ¤ 0

8p. a12; a13; a14; a23; b12; b13; b23; c12 D 0 I X32=40 -
a15; a24; b14; c13; d12 ¤ 0

8q. a12; a13; a14; a23; b12; b13; c12; c13 D 0 I X32=40 -
a15; a24; b14; b23; d12 ¤ 0

Table 1. Subcases 7r–8q.
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Case The set S�VZ defined by N.S IX/� Use factor

8r. a12; a13; a14; a23; b12; b13; c12; d12 D 0 I X32=40 -
a15; a24; b14; b23; c13 ¤ 0

8s. a12; a13; a14; b12; b13; b14; c12; c13 D 0 I X34=40 c14d12
a15; a23; c14; d12 ¤ 0

8t. a12; a13; a14; b12; b13; b14; c12; d12 D 0 I X34=40 c213
a15; a23; c13 ¤ 0

8u. a12; a13; a14; b12; b13; c12; c13; d12 D 0 I X34=40 d213
a15; a23; b14; d13 ¤ 0

8v. a12; a13; a23; b12; b13; b23; c12; c13 D 0 I X33=40 d12
a14; c23; d12 ¤ 0

8w. a12; a13; a23; b12; b13; b23; c12; d12 D 0 I X33=40 c13
a14; c13 ¤ 0

8x. a12; a13; a23; b12; b13; c12; c13; d12 D 0 I X33=40 d13
a14; b23; d13 ¤ 0

9a. a12; a13; a14; a15; a23; a24; b12; b13; b14 D 0 I X34=40 a234b15
a25; a34; b15; b23; c12 ¤ 0

9b. a12; a13; a14; a15; a23; a24; b12; b13; b23 D 0 I X33=40 a234
a25; a34; b14; c12 ¤ 0

9c. a12; a13; a14; a15; a23; a24; b12; b13; c12 D 0 I X34=40 a234d12
a25; a34; b14; b23; c13; d12 ¤ 0

9d. a12; a13; a14; a15; a23; a24; b12; c12; d12 D 0 I X34=40 a225b13
a25; a34; b13 ¤ 0

9e. a12; a13; a14; a15; a23; b12; b13; b14; b23 D 0 I X33=40 a24b15
a24; b15; c12 ¤ 0

9f. a12; a13; a14; a15; a23; b12; b13; b14; c12 D 0 I X34=40 a24b15d12
a24; b15; b23; c13; d12 ¤ 0

9g. a12; a13; a14; a15; a23; b12; b13; b23; c12 D 0 I X31=40 -
a24; b14; c13; d12 ¤ 0

9h. a12; a13; a14; a15; a23; b12; b13; c12; c13 D 0 I X34=40 a24b14d12
a24; b14; b23; d12 ¤ 0

9i. a12; a13; a14; a15; a23; b12; b13; c12; d12 D 0 I X34=40 a24c
2
13

a24; b14; b23; c13 ¤ 0

9j. a12; a13; a14; a15; b12; b13; b14; c12; c13 D 0 I X34=40 b15c14d12
a23; b15; c14; d12 ¤ 0

9k. a12; a13; a14; a15; b12; b13; b14; c12; d12 D 0 I X34=40 b15c
2
13

a23; b15; c13 ¤ 0

9l. a12; a13; a14; a15; b12; b13; c12; c13; d12 D 0 I X34=40 b14d
2
13

a23; b14; d13 ¤ 0

Table 1. Subcases 8r–9l.
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Case The set S � VZ defined by N.S IX/� Use factor

9m. a12; a13; a14; a23; a24; b12; b13; b14; b23 D 0 I X33=40 a34b24
a15; a34; b24; c12 ¤ 0

9n. a12; a13; a14; a23; a24; b12; b13; b14; c12 D 0 I X31=40 -
a15; a34; b23; c13; d12 ¤ 0

9o. a12; a13; a14; a23; a24; b12; b13; b23; c12 D 0 I X31=40 -
a15; a34; b14; c13; d12 ¤ 0

9p. a12; a13; a14; a23; a24; b12; b13; c12; c13 D 0 I X31=40 -
a15; a34; b14; b23; d12 ¤ 0

9q. a12; a13; a14; a23; a24; b12; b13; c12; d12 D 0 I X31=40 -
a15; a34; b14; b23; c13 ¤ 0

9r. a12; a13; a14; a23; b12; b13; b14; b23; c12 D 0 I X31=40 -
a15; a24; c13; d12 ¤ 0

9s. a12; a13; a14; a23; b12; b13; b14; c12; c13 D 0 I X32=40 c14
a15; a24; b23; c14; d12 ¤ 0

9t. a12; a13; a14; a23; b12; b13; b14; c12; d12 D 0 I X32=40 c13
a15; a24; b23; c13 ¤ 0

9u. a12; a13; a14; a23; b12; b13; b23; c12; c13 D 0 I X32=40 c23
a15; a24; b14; c23; d12 ¤ 0

9v. a12; a13; a14; a23; b12; b13; b23; c12; d12 D 0 I X32=40 c13
a15; a24; b14; c13 ¤ 0

9w. a12; a13; a14; a23; b12; b13; c12; c13; d12 D 0 I X32=40 d13
a15; a24; b14; b23; d13 ¤ 0

9x. a12; a13; a14; b12; b13; b14; c12; c13; d12 D 0 I X34=40 c14d
2
13

a15; a23; c14; d13 ¤ 0

9y. a12; a13; a23; b12; b13; b23; c12; c13; d12 D 0 I X33=40 d213
a14; c23; d13 ¤ 0

10a. a12; a13; a14; a15; a23; a24; b12; b13; b14; b23 D 0 I X33=40 a234b15
a25; a34; b15; b24; c12 ¤ 0

10b. a12; a13; a14; a15; a23; a24; b12; b13; b14; c12 D 0 I X34=40 a234b15d12
a25; a34; b15; b23; c13; d12 ¤ 0

10c. a12; a13; a14; a15; a23; a24; b12; b13; b23; c12 D 0 I X31=40 a34
a25; a34; b14; c13; d12 ¤ 0

10d. a12; a13; a14; a15; a23; a24; b12; b13; c12; c13 D 0 I X34=40 a234b14d12
a25; a34; b14; b23; d12 ¤ 0

10e. a12; a13; a14; a15; a23; a24; b12; b13; c12; d12 D 0 I X34=40 a225c
2
13

a25; a34; b14; b23; c13 ¤ 0

10f. a12; a13; a14; a15; a23; b12; b13; b14; b23; c12 D 0 I X31=40 b15
a24; b15; c13; d12 ¤ 0

Table 1. Subcases 9m–10f.



1580 MANJUL BHARGAVA

Case The set S � VZ defined by N.S IX/� Use factor

10g. a12; a13; a14; a15; a23; b12; b13; b14; c12; c13 D 0 I X34=40 a24b15c14d12
a24; b15; b23; c14; d12 ¤ 0

10h. a12; a13; a14; a15; a23; b12; b13; b14; c12; d12 D 0 I X34=40 a24b15c
2
13

a24; b15; b23; c13 ¤ 0

10i. a12; a13; a14; a15; a23; b12; b13; b23; c12; c13 D 0 I X33=40 a24b14d12
a24; b14; c23; d12 ¤ 0

10j. a12; a13; a14; a15; a23; b12; b13; b23; c12; d12 D 0 I X31=40 c13
a24; b14; c13 ¤ 0

10k. a12; a13; a14; a15; a23; b12; b13; c12; c13; d12 D 0 I X34=40 a24b14d
2
13

a24; b14; b23; d13 ¤ 0

10l. a12; a13; a14; a15; b12; b13; b14; c12; c13; d12 D 0 I X34=40 b15c14d
2
13

a23; b15; c14; d13 ¤ 0

10m. a12; a13; a14; a23; a24; b12; b13; b14; b23; c12 D 0 I X31=40 b24
a15; a34; b24; c13; d12 ¤ 0

10n. a12; a13; a14; a23; a24; b12; b13; b14; c12; c13 D 0 I X31=40 c14
a15; a34; b23; c14; d12 ¤ 0

10o. a12; a13; a14; a23; a24; b12; b13; b14; c12; d12 D 0 I X31=40 c13
a15; a34; b23; c13 ¤ 0

10p. a12; a13; a14; a23; a24; b12; b13; b23; c12; c13 D 0 I X31=40 c23
a15; a34; b14; c23; d12 ¤ 0

10q. a12; a13; a14; a23; a24; b12; b13; b23; c12; d12 D 0 I X31=40 c13
a15; a34; b14; c13 ¤ 0

10r. a12; a13; a14; a23; a24; b12; b13; c12; c13; d12 D 0 I X31=40 d13
a15; a34; b14; b23; d13 ¤ 0

10s. a12; a13; a14; a23; b12; b13; b14; b23; c12; c13 D 0 I X33=40 a24c14d12
a15; a24; c14; c23; d12 ¤ 0

10t. a12; a13; a14; a23; b12; b13; b14; b23; c12; d12 D 0 I X31=40 c13
a15; a24; c13 ¤ 0

10u. a12; a13; a14; a23; b12; b13; b14; c12; c13; d12 D 0 I X32=40 c14d13
a15; a24; b23; c14; d13 ¤ 0

10v. a12; a13; a14; a23; b12; b13; b23; c12; c13; d12 D 0 I X32=40 c23d13
a15; a24; b14; c23; d13 ¤ 0

11a. a12; a13; a14; a15; a23; a24; b12; b13; b14; b23; X31=40 a34b15
c12 D 0I a25; a34; b15; b24; c13; d12 ¤ 0

11b. a12; a13; a14; a15; a23; a24; b12; b13; b14; c12; X34=40 a234b15c14d12
c13 D 0I a25; a34; b15; b23; c14; d12 ¤ 0

11c. a12; a13; a14; a15; a23; a24; b12; b13; b14; c12; X36=40 a225a34b15c
3
13

d12 D 0I a25; a34; b15; b23; c13 ¤ 0

Table 1. Subcases 10g–11c.
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Case The set S � VZ defined by N.S IX/� Use factor

11d. a12; a13; a14; a15; a23; a24; b12; b13; b23; c12; X33=40 a234b14d12
c13 D 0I a25; a34; b14; c23; d12 ¤ 0

11e. a12; a13; a14; a15; a23; a24; b12; b13; b23; c12; X31=40 a25c13
d12 D 0I a25; a34; b14; c13 ¤ 0

11f. a12; a13; a14; a15; a23; a24; b12; b13; c12; c13; X34=40 a225b14d
2
13

d12 D 0I a25; a34; b14; b23; d13 ¤ 0

11g. a12; a13; a14; a15; a23; b12; b13; b14; b23; c12; X33=40 a24b15c14d12
c13 D 0I a24; b15; c14; c23; d12 ¤ 0

11h. a12; a13; a14; a15; a23; b12; b13; b14; b23; c12; X31=40 b15c13
d12 D 0I a24; b15; c13 ¤ 0

11i. a12; a13; a14; a15; a23; b12; b13; b14; c12; c13; X34=40 a24b15c14d
2
13

d12 D 0I a24; b15; b23; c14; d13 ¤ 0

11j. a12; a13; a14; a15; a23; b12; b13; b23; c12; c13; X33=40 a24b14d
2
13

d12 D 0I a24; b14; c23; d13 ¤ 0

11k. a12; a13; a14; a23; a24; b12; b13; b14; b23; c12; X33=40 a34b24c14d12
c13 D 0I a15; a34; b24; c14; c23; d12 ¤ 0

11l. a12; a13; a14; a23; a24; b12; b13; b14; b23; c12; X31=40 b24c13
d12 D 0I a15; a34; b24; c13 ¤ 0

11m. a12; a13; a14; a23; a24; b12; b13; b14; c12; c13; X31=40 c14d13
d12 D 0I a15; a34; b23; c14; d13 ¤ 0

11n. a12; a13; a14; a23; a24; b12; b13; b23; c12; c13; X31=40 c23d13
d12 D 0I a15; a34; b14; c23; d13 ¤ 0

11o. a12; a13; a14; a23; b12; b13; b14; b23; c12; c13; X33=40 a24c14d
2
13

d12 D 0I a15; a24; c14; c23; d13 ¤ 0

12a. a12; a13; a14; a15; a23; a24; b12; b13; b14; b23; c12; X33=40 a234b15c14d12
c13 D 0I a25; a34; b15; b24; c14; c23; d12 ¤ 0

12b. a12; a13; a14; a15; a23; a24; b12; b13; b14; b23; c12; X36=40 a225a34b15b24c
3
13

d12 D 0I a25; a34; b15; b24; c13 ¤ 0

12c. a12; a13; a14; a15; a23; a24; b12; b13; b14; c12; c13; X36=40 a225a34b15c
2
14d

2
13

d12 D 0I a25; a34; b15; b23; c14; d13 ¤ 0

12d. a12; a13; a14; a15; a23; a24; b12; b13; b23; c12; c13; X33=40 a225b14d
2
13

d12 D 0I a25; a34; b14; c23; d13 ¤ 0

12e. a12; a13; a14; a15; a23; b12; b13; b14; b23; c12; c13; X33=40 a24b15c14d
2
13

d12 D 0I a24; b15; c14; c23; d13 ¤ 0

12f. a12; a13; a14; a23; a24; b12; b13; b14; b23; c12; c13; X33=40 a15b24c23d
2
13

d12 D 0I a15; a34; b24; c14; c23; d13 ¤ 0

13. a12; a13; a14; a15; a23; a24; b12; b13; b14; b23; X37=40 a225a34b
2
24c

2
14d

3
13

c12; c13; d12 D 0I a25; a34; b15; b24; c14; c23;

d13 ¤ 0

Table 1. Subcases 11d–13.
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2.5. The main term. Let RX .v/ denote the multiset fx 2Fv W jDisc.x/j<Xg.
Then we have the following result counting the number of integral points in RX .v/,
on average, satisfying a12 ¤ 0:

PROPOSITION 12. Let v take a random value in H \ V .i/ uniformly with
respect to the measure jDisc.v/j�1 dv. Then the expected number of integral
elements .A;B; C;D/ 2 Fv such that jDisc.A;B; C;D/j < X and a12 ¤ 0 is
Vol.RX .vi //CO.X39=40/, where vi is any vector in V .i/.

Proof. Following the proof of Lemma 11, let V .i/.0/ denote the subset of VR

such that a12 ¤ 0. We wish to show that

(19) N �.V .i/.0/IX/D
1

ni
�Vol.RX .vi //CO.X39=40/:

Now

(20) N �.V .i/.0/IX/

D
ri

Mi

Z X1=40

�Dc0

Z 1
s1;s2;:::;s7Dc

Z
u2N 0.a.s//

�.V .0// s�121 s�82 s�123 s�204 s�305 s�306 s�207 dud�s d��;

where �.V .0// denotes the number of integer points in the region H.u; s; �;X/
satisfying ja12j � 1. Evidently, the number of integer points in H.u; s; �;X/ with
ja12j � 1 can be nonzero only if we have

(21) Jw.a12/D J �
�

s31s2s3s
3
4s
6
5s
4
6s
2
7

� 1:

Therefore, if the region HD f.A;B; C;D/ 2H.u; s; �;X/ W ja12j � 1g contains
an integer point, then (21) and Lemma 7 imply that the number of integer points in
H is Vol.H/CO.J�1Vol.H/=w.a12//, since all smaller-dimensional projections
of u�1H are clearly bounded by a constant times the projection of H onto the
hyperplane a12 D 0 (since a12 has minimal weight).

Therefore, since HDH.u; s; �;X/�
�
H.u; s; �;X/�H

�
, we may write

(22) N �.V .i/.0/IX/

D
ri

Mi

Z X1=40

�Dc0

Z 1
s1;:::;s7Dc

Z
u2N 0.a.s//

�
Vol
�
H.u; s; �;X/

�
�Vol

�
H.u; s; �;X/�H

�
CO.maxfJ 39�39s31s2s3s

3
4s
6
5s
4
6s
2
7 ; 1g/

�
� s�121 s�82 s�123 s�204 s�305 s�306 s�207 dud�s d��:

The integral of the first term in (22) is .1=ri /�
R
v2H\V .i/ Vol.RX .v//jDisc.v/j�1dv.

Since Vol.RX .v// does not depend on the choice of v 2 V .i/ (see �2.6), the latter
integral is simply ŒMi=.ni ri /� �Vol.RX .v//.

To estimate the integral of the second term in (22), let H0DH.u; s; t; X/�H,
and for each ja12j � 1, let H0.a12/ be the subset of all elements .A;B; C;D/ 2H0
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with the given value of a12. Then the 39-dimensional volume of H0.a12/ is at most
O
�
J 39

Q
t2T nfa12g

w.t/
�

, and so we have the estimate

Vol.H0/�
Z 1

�1

J 39
Y

t2T nfa12g

w.t/ da12 DO
�
J 39

Y
t2T nfa12g

w.t/
�
:

The second term of the integrand in (22) can thus be absorbed into the third term. Fi-
nally, one easily computes the integral of the third term in (22) to beO.J 39X39=40/.
We thus obtain, for any v 2 V .i/, that

(23) N �.V .i/IX/D
1

ni
�Vol.RX .v//CO.J 39X39=40=Mi .J //: �

Note that the above proposition counts all integer points in RX .v/ satisfying
a12¤ 0, not just the irreducible ones. However, in this regard we have the following
lemma:

LEMMA 13. Let v 2H \V .i/. Then the number of .A;B; C;D/ 2 Fv such
that a12 ¤ 0, jDisc.A;B; C;D/j<X , and .A;B; C;D/ is not irreducible is o.X/.

Lemma 13 will in fact follow from a stronger lemma. We say that an element
.A;B; C;D/ 2 VZ is absolutely irreducible if it is irreducible and the fraction field
of its associated quintic ring is an S5-quintic field (equivalently, if the fields of
definition of its common zeroes in P3 are S5-quintic fields). Then we have the
following lemma, whose proof is postponed to Section 3:

LEMMA 14. Let v 2H \V .i/. Then the number of .A;B; C;D/ 2 Fv such
that a12 ¤ 0, jDisc.A;B; C;D/j < X , and .A;B; C;D/ is not absolutely irre-
ducible is o.X/.

Therefore, to prove Theorem 6, it remains only to compute the fundamental
volume Vol.RX .v// for v 2 V .i/. This is handled in the next subsection.

2.6. Computation of the fundamental volume. In this subsection, we compute
Vol.RX .v//, where RX .v/ is defined as in Section 2.5. We will see that this volume
depends only on whether v lies in V .0/, V .1/, or V .2/; here V .i/ again denotes the
GR-orbit in VR consisting of those elements .A;B; C;D/ having nonzero discrim-
inant and possessing 5� 2i real zeros in P3.

Before performing this computation, we first state two propositions regarding
the group G D GL4 �SL5 and its 40-dimensional representation V .

PROPOSITION 15. The group GR acts transitively on V .i/, and the isotropy
groups for v 2 V .i/ are given as follows:

.i/ S5, if v 2 V .0/;

.ii/ S3 �C2, if v 2 V .1/; and

.iii/ D4, if v 2 V .2/.
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In view of Proposition 15, it will be convenient to use the notation ni to denote
the order of the stabilizer of any vector v 2 V .i/. Proposition 15 implies that we
have n0 D 120, n1 D 12, and n2 D 8.

Now define the usual subgroups N , xN , A, and ƒ of GR as follows:

N D fn.x1; x2; : : : ; x16/ W xi 2 Rg; where

n.x/D

0BB@
0B@ 1 x1 x2 x3

1 x4 x5
1 x6

1

1CA ;
0BB@
1 x7 x8 x9 x10
1 x11 x12 x13

1 x14 x15
1 x16

1

1CCA
1CCAI

xN D fNn.u1; u2; : : : ; u16/ W ui 2 Rg; where

Nn.u/D

0BB@
0B@ 1

u1 1

u2 u3 1

u4 u5 u6 1

1CA ;
0BB@

1

u7 1

u8 u9 1

u10 u11 u12 1

u13 u14 u15 u16 1

1CCA
1CCAI

AD fa.t1; t2; : : : ; t7/ W t1; t2; : : : ; t7 2 RCg; where

a.�; t/D

0BBBB@
0BB@
t1

t2=t1

t3=t2

1=t3

1CCA ;
0BBBB@
t4

t5=t4

t6=t5

t7=t6

1=t7

1CCCCA
1CCCCAI

ƒ D ff� W � > 0g; where

� acts by

0BB@
0B@ �

�

�

�

1CA ;
0BB@
1

1

1

1

1

1CCA
1CCA:

We define an invariant measure dg on GR by

(24)
Z
G

f .g/dg D

Z
R�
C

Z
R�7
C

Z
R4

Z
R4

f .n.x/ Nn.u/a.t/�/ dx du d�t d��:

With this choice of Haar measure on GR, it is known thatZ
GZnG

˙1
R

dg D Œ�.2/�.3/�.4/� � Œ�.2/�.3/�.4/�.5/�;

where G˙1R �GR denotes the subgroup f.g4; g5/ 2GR W det.g4/D˙1g (see, e.g.,
[15]).

Now let dy D dy1 dy2 � � � dy40 be the standard Euclidean measure on VR.
Then we have:
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PROPOSITION 16. For i D 0, 1, or 2, let f 2 C0.V .i//, and let y denote any
element of V .i/. Then

(25)
Z
g2GR

f .g �y/dg D
ni

20
�

Z
v2V .i/

jDisc.v/j�1f .v/ dv:

Proof. Put

.z1; : : : ; z40/D n.x/ Nn.u/a.t/ �y:

Then the form Disc.z/�1dz1 ^ � � � ^ dz12 is a GR-invariant measure, and so we
must have

Disc.z/�1dz1 ^ � � � ^ dz40 D c dx ^ du^ d�t ^ d��

for some constant factor c. An explicit Jacobian calculation shows that c D�20.
(To make the calculation easier, we note that it suffices to check this on any fixed
representative y in V .0/, V .1/, or V .2/.) By Proposition 15, the group GR is an
ni -fold covering of V .i/ via the map g! g �y. HenceZ

GR

f .g �y/dg D
ni

20
�

Z
V .i/

jDisc.v/j�1f .v/dv:

as desired. �

Finally, for any vector y 2 V .i/ of absolute discriminant 1, we obtain using
Proposition 16 that

1

ni
�Vol.RX .y//D

20

ni

Z X1=40

1

�40d��

Z
GZnG

˙1
R

dg D
�.2/2�.3/2�.4/2�.5/

2ni
X;

proving Theorem 6.

2.7. Congruence conditions. We may prove a version of Theorem 6 for a set
in V .i/ defined by a finite number of congruence conditions:

THEOREM 17. Suppose S is a subset of V .i/Z defined by finitely many congru-
ence conditions. Then

(26) lim
X!1

N.S \V .i/IX/

X
D
�.2/2�.3/2�.4/2�.5/

2ni

Y
p

�p.S/;

where �p.S/ denotes the p-adic density of S in VZ, and ni D 120, 12, or 8 for
i D 0, 1, or 2 respectively.

To prove Theorem 17, suppose S is defined by congruence conditions mod-
ulo some integer m. Then S may be viewed as the union of (say) k translates
L1; : : : ; Lk of the lattice m � VZ. For each such lattice translate Lj , we may use
formula (11) and the discussion following that formula to compute N.S IX/, but
where each d -dimensional volume is scaled by a factor of 1=md to reflect the fact
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that our new lattice has been scaled by a factor of m. For a fixed value of m, we
thus obtain

(27) N.Lj IX/Dm
�40 Vol.RX .v//CO.m�39J 39X39=40=Mi .J //

for v 2 V .i/, where the implied constant is also independent of m provided mD
O.X1=40/. Summing (27) over j , and noting that km�40D

Q
p �p.S/, yields (26).

3. Quadruples of 5� 5 skew-symmetric matrices and Theorems 1–4

Theorems 5 and 6 of the previous section now immediately imply the follow-
ing.

THEOREM 18. Let M �.i/5 .�; �/ denote the number of isomorphism classes
of pairs .R;R0/ such that R is an order in an S5-quintic field with 5 � 2i real
embeddings, R0 is a sextic resolvent ring of R, and � < Disc.R/ < �. Then

.a/ lim
X!1

M
�.0/
5 .0; X/

X
D
�.2/2�.3/2�.4/2�.5/

240
I

.b/ lim
X!1

M
�.1/
5 .�X; 0/

X
D
�.2/2�.3/2�.4/2�.5/

24
I

.c/ lim
X!1

M
�.2/
5 .0; X/

X
D
�.2/2�.3/2�.4/2�.5/

16
:

To obtain finer asymptotic information on the distribution of quintic rings (in
particular, without the weighting by the number of sextic resolvents), we need to
be able to count irreducible equivalence classes in VZ lying in certain subsets S �
VZ. If S is defined, say, by finitely many congruence conditions, then Theorem 17
applies in that case.

However, the set S of elements .A;B; C;D/ 2 VZ corresponding to maximal
quintic orders is defined by infinitely many congruence conditions (see [5, �12]).
To prove that (26) still holds for such a set, we require a uniform estimate on the
error term when only finitely many factors are taken in (26). This estimate is pro-
vided in Section 3.1. In Section 3.2, we prove Lemma 14. Finally, in Section 3.3,
we complete the proofs of Theorems 1–4.

3.1. A uniformity estimate. As in [5], for a prime number p we denote by Up
the set of all .A;B; C;D/ 2 VZ corresponding to quintic orders R that are maximal
at p. Let Wp D VZ �Up. In order to apply a sieve to obtain Theorems 1–4, we
require the following proposition, analogous to Proposition 1 in [14] and Proposi-
tion 23 in [3].

PROPOSITION 19. N.WpIX/ D O.X=p2/, where the implied constant is
independent of p.

Proof. We begin with the following lemma.
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LEMMA 20. The number of maximal orders in quintic fields, up to isomor-
phism, having absolute discriminant less than X is O.X/.

Lemma 20 follows immediately from Theorem 18, since we have shown that
every quintic ring has a sextic resolvent ring ([5, Cor. 4]).

To estimate N.WpIX/ using Lemma 20, we only need to know that (a) the
number of subrings of index pk (k � 1) in a maximal quintic ring R does not grow
too rapidly with k; and (b) the number of sextic resolvents that such a subring
possesses is also not too large relative to pk . For (a), an even stronger result than
we need here has recently been proven in the Ph.D. thesis [10] of Jos Brakenhoff,
who shows that the number of orders having index pk in a maximal quintic ring R
is at most O.pminf2k�2; 20

11
kg/ for k � 1, where the implied constant is independent

of p, k, and R. Any such order will of course have discriminant p2kDisc.R/. As
for (b), it follows from [5, Proof of Cor. 4] that the number of sextic resolvents of a
quintic ring having content n is O.n6/; moreover, the number of sextic resolvents
of a maximal quintic ring is 1. (Recall that the content of a quintic ring R is the
largest integer n such that RD ZCnR0 for some quintic ring R0.)

Since every content n quintic ring R arises as ZCnR0 for a unique content 1
quintic ring R0, and Disc.R/D n8Disc.R0/, we have

N.WpIX/D

1X
nD1

O.n6/

n8

1X
kD1

O.pminf2k�2; 20
11
kg/

p2k
O.X/DO.X=p2/;

as desired. �

3.2. Proof of Lemma 14. We say a quintic ring is an S5-quintic ring if it
is an order in an S5-quintic field. To prove Lemma 14, we wish to show that the
expected number of integral elements .A;B; C;D/2Fv (v 2V .i/) that correspond
to quintic rings that are not S5-quintic rings, and such that jDisc.A;B; C;D/j<X
and a12 ¤ 0, is o.X/.

Now if a quintic ring RD R.A;B;C;D/ is not an S5-quintic ring, then we
claim that either the splitting type .1112/ or .5/ does not occur in R. Indeed, if both
of these splitting types occur in R, then R is clearly a domain (since R=pRŠ Fp5

for some prime p) and the Galois group associated with the quotient field of R
then must contain a 5-cycle and a transposition, implying that the Galois group is
in fact S5.

Therefore, to obtain an upper bound on the expected number of integral el-
ements .A;B; C;D/ 2 Fv such that R.A;B;C;D/ is not an S5-quintic ring,
jDisc.A;B; C;D/j<X , and a12 ¤ 0, we may simply count those quintic rings in
which p does not split as .1112/ in R for any prime p < N and those quintic
rings for which p does not have splitting type .5/ for any prime p < N (for
some sufficiently large N ). Now the p-adic density �p.Tp.1112// in VZ of the
set of those .A;B; C;D/ 2 Tp.1112/ approaches 1=12 as p!1 while the p-adic
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density �p.Tp.5// of those .A;B; C;D/2 Tp.5/ approaches 1=5 as p!1 (by [5,
Lemma 20]). We conclude from (26) that the total number of such .A;B; C;D/ 2
Fv that do not lie in Tp.1112/ for any p <N or do not lie in Tp.5/ for any p <N ,
and satisfy jDisc.A;B; C;D/j<X for sufficiently large X DX.N/, is at most

�.2/2�.3/2�.4/2�.5/

2ni

�Y
p<N

�
1��p.Tp.1112//

�
C

Y
p<N

�
1��p.Tp.5//

��
XCo.X/:

Letting N !1, we see that asymptotically the above count of .A;B; C;D/ is
less than cX for any fixed positive constant c, and this completes the proof.

3.3. Proofs of Theorems 1–4.

Proof of Theorem 1. Again, let Up denote the set of all .A;B; C;D/ 2 VZ that
correspond to pairs .R;R0/ where R is maximal at p, and let UD \pUp. Then
U is the set of .A;B; C;D/ 2 VZ corresponding to maximal quintic rings R. In [5,
Th. 21], we determined the p-adic density �.Up/ of Up:
(28)
�.Up/D

.p�1/8p12.pC1/4.p2C1/2.p2CpC1/2.p4Cp3Cp2CpC1/.p4Cp3C2p2C2pC1/

p40 :

Suppose Y is any positive integer. It follows from (26) and (28) that

lim
X!1

N.\p<YUp \V
.i/IX/

X
D
�.2/2�.3/2�.4/2�.5/

2ni

�

Y
p<Y

Œp�28 .p2� 1/2.p3� 1/2.p4� 1/2.p5� 1/.p5Cp3�p� 1/�:

Letting Y tend to1, we obtain immediately that

lim sup
X!1

N.U\V .i/IX/

X
�
�.2/2�.3/2�.4/2�.5/

2ni

�

Y
p

Œp�28.p2� 1/2.p3� 1/2.p4� 1/2.p5� 1/.p5Cp3�p� 1/�

D
�.2/2�.3/2�.4/2�.5/

2ni

�

Y
p

Œ.1�p�2/2.1�p�3/2.1�p�4/2.1�p�5/.1Cp�2�p�4�p�5/�

D
1

2ni

Y
p

.1Cp�2�p�4�p�5/:

To obtain a lower bound for N.U\V .i/IX/, we note that\
p<Y

Up �
�

U[
[
p�Y

Wp

�
:
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Hence by Proposition 19,

lim
X!1

N.U\V .i/IX/

X
�
�.2/2�.3/2�.4/2�.5/

2ni

�

Y
p<Y

Œp�28.p2� 1/2.p3� 1/2.p4� 1/2.p5� 1/.p5Cp3�p� 1/�

�O
�X
p�Y

p�2
�
:

Letting Y tend to infinity completes the proof of Theorem 1. �

Proof of Theorem 2. For each (isomorphism class of) quintic ring R, we make
a choice of sextic resolvent ring R0, and let S � VZ denote the set of all elements
in VZ that yield the pair .R;R0/ (under the bijection of Theorem 5) for some R.
Then we wish to determine N.S \V .i/IX/ for i D 0; 1; 2; by equation (26), this
amounts to determining the p-adic density �p.S/ of S for each prime p for our
choice of S . In this regard we have the following formula, which follows easily
from the arguments in [5, Proof of Lemma 20]:

(29) �p.S/ D
jG.Fp/j

Discp.R/ � jAutZp
.R/j

:

Combining (26) and (29) together with the fact that

jG.Fp/j D .p�1/
8 p16 .pC1/4 .p2C1/2 .p2CpC1/2 .p4Cp3Cp2CpC1/;

and proceeding as in Theorem 1, now yields Theorem 2. �

Proof of Theorem 3. LetK5 be an S5-quintic field, andK120 its Galois closure.
It is known that the Artin symbol .K120=p/ equals hei, h.12/i, h.123/i, h.1234/i,
h.12345/i, h.12/.34/i, or h.12/.345/i precisely when the splitting type of p in R is
.11111/, .1112/, .113/, .14/, .5/, .122/, or .23/ respectively, where R denotes the
ring of integers in K5. As in [5], let Up.�/ denote the set of all .A;B; C;D/ 2 VZ

that correspond to maximal quintic rings R having a specified splitting type � at p.
Then by the same argument as in the proof of Theorem 1, we have

lim
X!1

N.Up.�/\V
.i/IX/

X
D
�.2/2�.3/2�.4/2�.5/

2ni
�p.Up.�//

Y
q¤p

�q.Uq/:

On the other hand, Lemma 20 of [5] gives the p-adic densities of Up.�/ for all
splitting and ramification types � ; in particular, the values of �p.Up.�// for � D
.11111/, .1112/, .113/, .14/, .5/, .122/, or .23/ are seen to occur in the ratio
1W10W20W30W24W15W20 for any value of p; this is the desired result. �

Proof of Theorem 4. This follows immediately from Theorem 1, Lemma 11,
and Lemma 14. �
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Jens Marklof and Andreas Strömbergsson. The distribution of free

path lengths in the periodic Lorentz gas and related lattice point
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1949–2033

Étienne Fouvry and Jürgen Klüners. On the negative Pell
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