Curves and symmetric spaces, II

By Shigeru Mukai

SECOND SERIES, VOL. 172, NO. 3
November, 2010

ANMAAH
Curves and symmetric spaces, II

By SHIGERU MUKAI

Abstract

Let $\text{Sym}_3 C \longrightarrow \mathbf{P}_*(k \oplus \text{Sym}_3 k \oplus \text{Sym}_3 k \oplus k) = \mathbf{P}^{13}$, $A \mapsto (1 : A : A' : \det A)$ be the Veronese embedding of the space of symmetric matrices of degree 3, where A' is the cofactor matrix of A. The closure $\text{SpG}(3, 6)$ of this image is a 6-dimensional homogeneous variety of the symplectic group $\text{Sp}(3)$. A canonical curve $C_{16} \subset \mathbf{P}^8$ of genus 9 over a perfect field k is isomorphic to a complete linear section of this projective variety $\text{SpG}(3, 6) \subset \mathbf{P}^{13}$ unless $C \otimes_k \bar{k}$, \bar{k} being the algebraic closure, is a covering of degree at most 5 of the projective line. We prove this by means of linear systems of higher rank.

Introduction

Let $\text{SpG}(n, 2n)$ be the symplectic Grassmannian, that is, the Grassmannian of Lagrangian subspaces of a $2n$-dimensional symplectic vector space, over a field k. In the case $n = 3$, $\text{SpG}(3, 6)$ is of dimension 6 and embedded into the projective space \mathbf{P}^{13} with homogeneous coordinate $(y : X : Y : x)$, where $x, y \in k$ are scalars and $X, Y \in \text{Sym}_3 k$ are symmetric matrices. Then $\text{SpG}(3, 6) \subset \mathbf{P}^{13}$ is the common zero locus of the following 21 (=6+6+9) quadratic equations

\begin{equation}
X' = yY, \quad Y' = xX \in \text{Sym}_3 k \quad \text{and} \quad XY = xyI_3 \in \text{Mat}_3 k,
\end{equation}

which will be derived in Section 2 after Proposition 2.3.

In our study of Fano 3-folds, we observed that this (symmetric) projective variety has a canonical curve section of genus 9, that is, a transversal intersection

$$[C \subset \mathbf{P}^8] = [\text{SpG}(3, 6) \subset \mathbf{P}^{13}] \cap H_1 \cap \cdots \cap H_5$$

is a curve of genus 9 embedded in \mathbf{P}^8 by the ratio of the differentials of the first kind. We showed that every general curve of genus 9 is obtained in this way when $k = \mathbb{C}$ ([10, Cor. 6.3]). The purpose of this article is to show the following refinement, which was partly announced in [11].

Supported in part by the JSPS Grant-in-Aid for Exploratory Research 12874002, 20654004 and for Scientific Research (S)19104001.
THEOREM A. Let C be a curve of genus 9 over an algebraically closed field k. Then C is isomorphic to a transversal linear section of the 6-dimensional symplectic Grassmannian $\text{SpG}(3, 6) \subset \mathbb{P}^{13}$ if and only if C is not pentagonal, i.e., C has no g_5^1.

By Bertini’s theorem we have

COROLLARY. If C satisfies the condition given in Theorem A and if k is of characteristic zero, then C is contained in a smooth $K3$ surface as an ample divisor.

This theorem, together with similar results [14] and [13] in genus 7 and 8, will be applied to our classification of Gorenstein-Fano 3-folds with only canonical singularities (cf. [15]). We prove the theorem using a certain simple vector bundle of rank 3. By its uniqueness (see below) and by a standard descent argument (§7), we have the following also:

THEOREM B. Let C be a curve of genus 9 defined over a perfect field k and assume that C has no g_5^1 over the algebraic closure \bar{k}. Then we have

1. C has an embedding into the 6-dimensional symplectic Grassmannian $\text{SpG}(3, 6) \subset \mathbb{P}^{13}$ over k whose image is a transversal intersection with a k-linear subspace $P \subset \mathbb{P}^{13}$ of dimension 8, and

2. such subspaces P cutting out C are unique up to the action of $\text{PGSp}(3)$. More precisely, for every isomorphism $g : C = \text{SpG}(3, 6) \cap P \to C' = \text{SpG}(3, 6) \cap P'$ there exists $\gamma \in \text{PGSp}(3, k)$ such that $\gamma(P) = P'$.

Here $\text{PGSp}(3)$ is the subgroup of $\text{PGL}(6)$ stabilizing the 1-dimensional space generated by a symplectic form. Let $G(8, \mathbb{P}^{13})$ be the Grassmannian of 8-dimensional linear subspaces P of \mathbb{P}^{13} and $G(8, \mathbb{P}^{13})^\circ$ the open subset consisting of P’s such that the intersection $P \cap \text{SpG}(3, 6)$ is transversal.

COROLLARY. The weighted cardinality, or mass, of the nonpentagonal curves C of genus 9 over the finite field \mathbb{F}_q is equal to $\frac{\#G(8, \mathbb{P}^{13})^\circ(\mathbb{F}_q)}{\#\text{PGSp}(3, \mathbb{F}_q)}$:

$$\sum_{\text{nonpentagonal}} \frac{1}{\#\text{Aut}_FC} = \frac{\#G(8, \mathbb{P}^{13})^\circ(\mathbb{F}_q)}{q^9(q^6-1)(q^4-1)(q^2-1)}.$$
on the choice of α and is characterized by the following property (Proposition 5.6):

\[
\begin{align*}
\text{(i)} & \quad \bigwedge^3 E \cong K_C, \\
\text{(ii)} & \quad h^0(E) = 6, \text{ and} \\
\text{(iii)} & \quad |E| \text{ is free and semi-irreducible.}
\end{align*}
\]

Such a bundle E gives rise to a morphism $\Phi_E : C \to G(H^0(E_{\text{max}}), 3)$ to the Grassmannian of 3-dimensional quotient spaces of $H^0(E_{\text{max}})$ ($\S 3$). The following is the essence of Theorems A and B:

Theorem C. Let C be a nonhyperelliptic curve of genus 9 over an algebraically closed field and assume that a rank 3 vector bundle $E = E_{\text{max}}$ on it satisfies the condition (0.2). Then the natural linear maps

\[
\lambda_2 : \bigwedge^2 H^0(E) \to H^0\left(\bigwedge^2 E\right) \quad \text{and} \quad \lambda_3 : \bigwedge^3 H^0(E) \to H^0\left(\bigwedge^3 E\right) \cong H^0(K_C)
\]

are surjective and $\text{Ker} \lambda_2$ is generated by a nondegenerate bivector σ. The image of Φ_E is contained in the symplectic Grassmannian $G(H^0(E), \sigma)$ (see $\S 2$) and the commutative diagram

\[
\begin{array}{ccc}
C & \to & G(H^0(E), \sigma) \\
\downarrow & & \downarrow \text{Plücker} \\
\mathbb{P}^8 & \to & \mathbb{P}^* \bigwedge^3 (H^0(E), \sigma) \\
\end{array}
\]

is cartesian, where λ_3 is the linear map

\[
\bigwedge^3 (H^0(E), \sigma) := \bigwedge^3 H^0(E)/(\sigma \wedge H^0(E)) \to H^0\left(\bigwedge^3 E\right) \cong H^0(K_C)
\]

induced by λ_3.

Notation and conventions. For a vector space V, the second exterior product $\bigwedge^2 V$ is the quotient of $V \otimes V$ by the subspace generated by $v \otimes v$, $v \in V$. Similarly $S^2 V$ is the quotient generated by $u \otimes v - v \otimes u$, $u, v \in V$. An element of $\bigwedge^2 V$ is called a bivector of V. We denote by $G(r, V)$ and $G(V, r)$ the Grassmannians of r-dimensional subspaces and quotient spaces of V, respectively. Two projective spaces $G(1, V)$ and $G(V, 1)$ associated to V are denoted by $\mathbb{P}_*(V)$ and $\mathbb{P}^*(V)$, respectively. \mathbb{P}_* is a covariant functor and \mathbb{P}^* is contravariant. For a vector space or vector bundle V, its dual is denoted by V^\vee. The tensor product symbol \otimes between a vector bundle and a line bundle is often omitted when there seems no fear of confusion.

All (algebraic) varieties are considered over a fixed base field k. A smooth complete geometrically irreducible curve is simply called a curve. By a g^r_d, we mean a line bundle L on a curve with $\deg L = d$ and $\dim H^0(L) \geq r + 1$. A saturation of a subsheaf $F \subset E$ is the largest subsheaf \tilde{F} between F and E such that \tilde{F}/F is torsion.
1. Preliminaries

We prove two lemmas on the number of global sections. Let \(\xi \) be a line bundle on a curve \(C \) and \(\eta \) the Serre adjoint \(K_C \xi^{-1} \). We denote the evaluation homomorphism \(H^0(\eta) \otimes \mathcal{O}_C \to \eta \) by \(\text{ev}_\eta \) and the dual of its kernel by \(Q_\eta \). We have an exact sequence

\[
0 \to Q_\eta^\vee \to H^0(\eta) \otimes \mathcal{O}_C \to \eta.
\]

Its dual

\[
0 \to \eta^{-1} \to H^0(\eta)^\vee \otimes \mathcal{O}_C \to Q_\eta \to 0
\]

is also exact if \(\eta \) is free. The rank of \(Q_\eta \) is equal to \(\dim |\eta| = r - 1 \), where we put \(r = h^0(\eta) \). The following is a variant of the so-called base point free pencil trick.

Lemma 1.1. For a vector bundle \(E \) of rank \(r \) on \(C \),

\[
\dim \text{Hom}(E, \xi) + \dim \text{Hom}(Q_\eta, E) \geq r(h^0(E) - \deg \eta) - \chi(E).
\]

Proof. Take the global section of the exact sequence (1.1) tensored with \(E \).

Then we have

\[
\dim \text{Hom}(Q_\eta, E) + h^0(E\eta) \geq rh^0(E).
\]

By the Riemann-Roch theorem and Serre duality,

\[
h^0(E\eta) - h^0(E^\vee \xi) = \chi(E\eta) = \chi(E) + r \deg \eta.
\]

Our assertion follows immediately from these.

If \(E \) is of canonical determinant, i.e., \(\bigwedge E \simeq K_C \), then

\[
\dim \text{Hom}(E, \xi) + \dim \text{Hom}(Q_\eta, E) \geq r(h^0(E) - r - s) - 2\rho + 2,
\]

since \(\chi(E) = (r-2)(1-g) \), where \(s = h^0(\xi) = h^1(\eta) \) and \(\rho \) is the Brill-Noether number of \(\eta \), or equivalently, of \(\xi \).

The number of global sections behaves specially if a vector bundle has a nondegenerate quadratic form with values in \(K_C \). The following is one of such phenomena clarified in Mumford [16].

Proposition 1.2. Let \(E \) and \(F \) be rank two vector bundles on a curve \(C \) such that \((\det E) \otimes (\det F) \simeq K_C \). Then \(h^0(E \otimes F) \) is congruent to \(\deg E \mod 2 \).

Proof. Choose a line subbundle and express \(F \) as an extension

\[
0 \to L \to F \to M \to 0
\]

of line bundles. The alternating bihomomorphism \(E \times E \to \det E, (s,t) \mapsto s \wedge t \), induces a bilinear map

\[
\varphi : H^0(E \otimes M) \times H^1(E \otimes L) \to H^0((\det E) \otimes (\det F)) = H^0(K_C) \simeq k,
\]

which is nondegenerate by Serre duality. Let \(e \in H^1(M^{-1} \otimes L) \) be the extension class of (1.4) and \(\delta : H^0(E \otimes M) \to H^1(E \otimes L) \) be the coboundary map coming
from $E \otimes (1.4)$. Then $\varphi(s, \delta(s)) = s \cup (s \cup e) = (s \wedge s) \cup e = 0$ for $s \in H^0(E \otimes M)$. Therefore, the linear map δ is alternating with respect to the Serre pairing φ. Hence $h^0(E \otimes F)$ is congruent to

$$h^0(E \otimes L) + h^0(E \otimes M) = h^0(E \otimes L) + h^1(E \otimes L)$$

modulo 2. Since $h^0(E \otimes L) - h^1(E \otimes L)$ is congruent to $\deg(E \otimes L)$, we have our assertion.

\[\square\]

2. Symplectic Grassmannian

Let A be a k-vector space. For a subspace $B \subset A$ the linear map $\wedge^2 B \to \wedge^2 A$ is injective.

Definition 2.1. A bivector $\sigma \in \wedge^2 A$ is degenerate if σ is contained in $\wedge^2 B$ for a proper subspace $B \subset A$.

A bivector σ is always degenerate if $\dim A$ is odd. In the case $\dim A$ is even, σ is degenerate if and only if the value of the Pfaffian is zero. There exists a minimal subspace $B \subset A$ such that $\sigma \in \wedge^2 B$. This subspace B is called the co-radical of σ.

Definition 2.2. A symplectic vector space is a pair (V, σ) of a vector space V and a nondegenerate bivector $\sigma \in \wedge^2 V^\vee$ of the dual vector space.

Note that $\wedge^2 V^\vee$ is the quotient of $V^\vee \otimes V^\vee$ by the subspace $SB(V)$ of symmetric bilinear forms on V. When the characteristic of k is not 2, the equivalence class $\sigma + SB(V)$ has the unique anti-symmetric representative, say σ^{AS}, in $V^\vee \otimes V^\vee$. A subspace $U \subset V$ is Lagrangian if $2 \dim U = \dim V$ and the restriction $\sigma|_U : U \times U \to k$ of σ to U is symmetric. If $\text{char}(k) \neq 2$, then the second condition is equivalent to the usual one; that is, $\sigma^{AS}|_U = 0$. We denote the set of Lagrangian subspaces of (V, σ) by $G(\sigma, V)$.

Two vectors u and $v \in V$ are perpendicular with respect to σ if the restriction of σ to the subspace spanned by u and v is symmetric. For a nonzero vector $v \in V$, the set of vectors $u \in V$ perpendicular to v is a subspace of codimension one. We denote this subspace by v^\perp. σ induces a bilinear form $\bar{\sigma}$ on the quotient space $\bar{V} := v^\perp/kv$ and $(\bar{V}, \bar{\sigma})$ becomes a symplectic vector space of dimension two less. If a Lagrangian subspace U of (V, σ) contains v, then the quotient U/kv is a Lagrangian of $(\bar{V}, \bar{\sigma})$. Conversely, if \bar{U} is a Lagrangian of $(\bar{V}, \bar{\sigma})$, then its inverse image by $v^\perp \to \bar{V}$ is a Lagrangian of (V, σ) which contains v. By this correspondence we identify $G(\bar{\sigma}, \bar{V})$ with the subset of $G(\sigma, V)$ consisting of $[U]$ with $v \in U$.

For our purpose, the Grassmannian of quotient spaces is more convenient than that of subspaces. A quotient space $A \xrightarrow{f} Q$ of A is Lagrangian with respect to a nondegenerate bivector σ if $2 \dim W = \dim A$ and if $(\wedge^2 f)(\sigma) = 0$. We denote the set of Lagrangian quotient spaces of the pair (A, σ) by $G(A, \sigma)$, which coincides
with $G(\sigma, A^\vee)$. Let \mathcal{U} be the universal quotient bundle on $G(A, n)$, $\dim A = 2n$. Then $\sigma \in \bigwedge^2 A$ determines a global section of $\bigwedge^2 \mathcal{U}$, which we denote by s. Then $G(A, \sigma)$ coincides with the zero set of $s \in H^0(G(A, n), \bigwedge^2 \mathcal{U})$. We endow $G(A, \sigma)$ with a scheme structure by considering it as the zero locus of s. An element of this isomorphism class is denoted by $\text{SpG}(n, 2n)$.

Proposition 2.3. The symplectic Grassmannian $G(A, \sigma)$ is a smooth variety of dimension $n(n + 1)/2$ and the anti-canonical class is $n + 1$ times the hyperplane section H of the Plücker embedding.

Proof. Since $\bigwedge^2 A$ generates $\bigwedge^2 \mathcal{U}$, $G(A, \tilde{\sigma})$ is locally a smooth complete intersection for general $\tilde{\sigma}$ by the Bertini theorem for vector bundles ([12, Th. 1.10]). Since the $GL(2n)$-orbit of nondegenerate bivectors is dense in $\bigwedge^2 A$, $G(A, \sigma)$ is isomorphic to $G(A, \tilde{\sigma})$. It is of dimension $n^2 - \text{rank} \bigwedge^2 \mathcal{U} = n(n + 1)/2$. It is irreducible since the symplectic group $\text{Sp}(n)$ acts transitively. The conormal bundle $\mathcal{J}/\mathcal{J}^2$ of $G(A, \sigma)$ is the restriction of $(\bigwedge^2 \mathcal{U})^\vee$, where \mathcal{J} is the ideal sheaf. (\mathcal{J} is the image of $(\bigwedge^2 \mathcal{U})^\vee \to \mathcal{O}_{G(A, n)}$ and $[(\bigwedge^2 \mathcal{U})^\vee / \mathcal{J}] \otimes \mathcal{O}_{G(A, \sigma)}$ is an isomorphism.) Since $c_1(G(A, n)) = 2nH$ and $c_1(\bigwedge^2 \mathcal{U}) = (n - 1)H$, the anti-canonical class of $G(A, \sigma)$ is equal to the restriction of $c_1(G(A, n)) - c_1(\bigwedge^2 \mathcal{U}) = (n + 1)H$. \hfill \square

Choose a pair of Lagrangian subspaces U_0 and U_∞ of a symplectic vector space (V, σ) with $U_0 \cap U_\infty = 0$. For a linear map $f : U_0 \to U_\infty$ the graph $\Gamma_f \subset U_0 \times U_\infty = V$ is Lagrangian if and only if $f \in \text{Hom}(U_0, U_\infty) \simeq U_\infty \otimes U_\infty$ is a symmetric tensor. The Plücker coordinate of Γ_f is equal to

$$1 + f + (f \wedge f) + (f \wedge f \wedge f) + \cdots$$

(cf. [14, §1]). Hence, for example, the 9-dimensional Grassmannian $G(3, 6)$ is the closure of the *Veronese embedding* of the space of square matrices of degree 3,

$$\text{Mat}_3 \mathbb{C} \longrightarrow \mathbb{P}_*(k \oplus \text{Mat}_3 k \oplus \text{Mat}_3 k \oplus k), \quad A \mapsto (1 : A : A' : \det A),$$

where A' is the cofactor matrix of A. It is the common zero locus of the Plücker equations

$$X' = yY, \quad Y' = xX \in \text{Mat}_3 k \quad \text{and} \quad XY = YX = xyI_3 \in \text{Mat}_3 k,$$

in the projective space \mathbb{P}^{19} with homogeneous coordinate $(y : X : Y : x)$, where $x, y \in k$ are scalars and $X, Y \in \text{Mat}_3 k$ are square matrices. Restricting ourselves to symmetric matrices, we have the equations (0.1) of $\text{SpG}(3, 6) \subset \mathbb{P}^{13}$.

The divisor class group of the Grassmannian $G(n, 2n)$ is generated by the hyperplane section class H. Its Chow group of codimension 2 cycles is generated by two Schubert subvarieties:

$$Y = \{[U] \mid U \cap W \neq 0\} \quad \text{and} \quad Y' = \{[U] \mid U + W' \neq V\}$$

for a subspace W of dimension $n - 1$ and W' of codimension $n - 1$. It is well known that the self intersection $H \cdot H$ is (rationally) equivalent to their sum. On
the symplectic Grassmannian, obviously Y and Y' are equivalent and hence we have

$$H \cdot H \sim Y + Y' \sim 2Y.$$

Let a be a nonzero vector of A. The image $\overset{\circ}{\sigma}$ of σ in $\wedge^2(A/ka)$ is degenerate since $\dim(A/ka)$ is odd. In fact, the co-radical A of $\overset{\circ}{\sigma}$ is of codimension one. Similar to the inclusion $G(\overset{\circ}{\sigma}, V) \hookrightarrow G(\sigma, V)$, we have a natural inclusion $G(\overset{\circ}{A}, \overset{\circ}{\sigma}) \hookrightarrow G(A, \sigma)$. Moreover, $G(\overset{\circ}{A}, \overset{\circ}{\sigma})$ is the scheme of zeros of the global section of $\mathscr{E} = \mathcal{U}|_{G(A, \sigma)}$ corresponding to $a \in A$.

Let $G(A, n) \subset \mathbf{P}^* (\wedge^n A)$ be the Plücker embedding of the Grassmannian $G(A, n)$. The tautological line bundle $\mathcal{O}_G(1)$ is isomorphic to $\wedge^n \mathcal{U}$. Since σ vanishes on $G(A, \sigma)$, so do all the linear forms $\sigma \wedge (\wedge^{n-2} A) \subset \wedge^n A$. Let $\wedge^n (A, \sigma)$ be the quotient space of $\wedge^n A$ by the subspace $\sigma \wedge (\wedge^{n-2} A)$. Then $G(A, \sigma)$ is contained in the subspace $\mathbf{P}^* (\wedge^n (A, \sigma))$ and we have a commutative diagram

$$\begin{align*}
G(A, \sigma) & \longrightarrow \mathbf{P}^* (\wedge^n (A, \sigma)) \\
G(A, n) & \longrightarrow \mathbf{P}^* (\wedge^n A).
\end{align*}$$

Plücker

$G(A, \sigma)$ coincides with $G(A, 1) = \mathbf{P}^1$ for $n = 1$ and is a smooth hyperplane section of the smooth 4-dimensional quadric $G(A, 2) \subset \mathbf{P}^5$ for $n = 2$.

Now we set $n = 3$ and investigate the conormal space of $G(A, \sigma) \subset \mathbf{P}^3 (\wedge^3 A, \sigma)$ and an important cubic cone in it. Let $A \rightarrow Q$ be a 3-dimensional quotient space and put $W = \text{Ker } [A \rightarrow Q]$. Then we have a filtration of subspaces

$$F_0 = \wedge^3 W \subset F_1 = \left(\wedge^2 W \right) \wedge A \subset F_2 = W \wedge \wedge^2 A \subset F_3 = \wedge^3 A.$$

Then $\wedge^3 A \rightarrow F_3 / F_2 \simeq \wedge^3 Q$ is the Plücker coordinate of Q. F_2 / F_1 is isomorphic to $W \otimes (\wedge^2 Q)$. $F_2 = F_1 \otimes \det Q^{-1} \simeq \text{Hom } (Q, W)$ is canonically isomorphic to the cotangent space of $G(A, 3)$ at $[Q]$. $F_1 \otimes \det Q^{-1}$ is canonically isomorphic to the conormal space of $G(A, 3) \subset \mathbf{P}^* (\wedge^3 A)$. Hence we have an exact sequence

$$0 \longrightarrow k \longrightarrow F_1 \otimes \det W^{-1} \longrightarrow \text{Hom } (W, Q) \longrightarrow 0.$$

$$\downarrow$$

$$N^\vee_{G(A,3)/\mathbf{P}} \otimes \det \mathcal{Q} \otimes \det W^{-1}$$

Assume that $[A \rightarrow Q] \in G(A, \sigma)$ is Lagrangian. Then σ belongs to $W \wedge A \subset \wedge^2 A$. Let

$$\overline{F}_0 \subset \overline{F}_1 \subset \overline{F}_2 \subset \overline{F}_3,$$

$$\overline{F}_i = F_i / (F_i \cap \sigma \wedge A),$$

be the quotient filtration of (2.4) by $\sigma \wedge A \subset F_2$. Then $\overline{F}_3 / \overline{F}_2 \simeq \wedge^3 Q$ is the Plücker coordinate of Q. The cotangent space of $G(3, \sigma)$ at $[Q]$ is $\overline{F}_2 / \overline{F}_1 \otimes \det Q^{-1} \simeq S^2 W$. The conormal space is isomorphic to $\overline{F}_1 \otimes \det Q$ and we have an exact
More precisely, we put \(a \) for \(U \) be a basis of \(\text{Ker} \) is a basis of \(\text{Ker} \). By the exact sequence (2.5),

\[
\begin{array}{c}
0 \to k \to \bar{F}_1 \otimes \det Q \to S^2 Q \to 0.
\end{array}
\]

(2.5)

Let

\[
\alpha : P_*\left(3 \bigwedge A \right) \cdots \to P_*\left(3 \bigwedge (A, \sigma) \right)
\]

be the projection with center \(P_*(\sigma \wedge A) \). Since \(\sigma \) is nondegenerate, \(G(3, A) \) is disjoint from the center. We consider the image of the Schubert subvariety \(S_Q = \{ [U] \mid \rk [U \to A \to Q] \leq 1 \} \subset G(3, A) \) by \(\alpha \) for a Lagrangian quotient space \(A \to Q \) (cf. (3.3) and (4.1)). \(S_Q \) is a 5-dimensional subvariety of

\[
P_*\left(\left(2 \bigwedge W \right) \wedge A \right) = P_*\left(N_{G(A, 3)}/P, Q \right)
\]

and \(\alpha(S_Q) \) is a subvariety of

\[
P_*\left(\bar{F}_1 \right) = P_*\left(N_{G(A, \sigma)}/P, Q \right) = P^6.
\]

By the exact sequence (2.5), \(P^*(N_{G(A, \sigma)}/P, Q) \) has the distinguished point corresponding to \(\text{Ker} \{ A \to Q \} \), which we denote by \(\kappa_Q \), and the special projection onto \(P^*(S^2 Q) \). \(\alpha(S_Q) \) contains the point \(\kappa_Q \).

Proposition 2.4. The image \(\alpha(S_Q) \) is a cubic hypersurface of

\[
P^*(N_{G(A, \sigma)}/P, Q).
\]

More precisely, it is the cone over the discriminant hypersurface of \(P^*(S^2 Q) \) with vertex \(\kappa_Q \).

Proof. Choose a basis \(\{ v_1, v_2, v_3, v_{-1}, v_{-2}, v_{-3} \} \) of \(A \) such that \(\{ v_1, v_2, v_3 \} \) is a basis of \(\text{Ker} \{ A \to Q \} \) and \(\sigma = v_1 \wedge v_{-1} + v_2 \wedge v_{-2} + v_3 \wedge v_{-3} \). Let \(\{ u_1, u_2, u_3 \} \) be a basis of \(U \in S_Q \) such that \(u_1, u_2 \in \text{Ker} \{ U \to Q \} \). The exterior product \(u_1 \wedge u_2 \) is equal to

\[
a_1 v_2 \wedge v_3 + a_2 v_3 \wedge v_1 + a_3 v_1 \wedge v_2 \in \bigwedge^2 \text{Ker} \{ A \to Q \}
\]

for \(a_1, a_2 \) and \(a_3 \in k \). Put \(u_3 = a_4 v_1 + a_5 v_2 + a_6 v_3 + b_1 v_{-1} + b_2 v_{-2} + b_3 v_{-3} \). Then the Plücker coordinate \(u_1 \wedge u_2 \wedge u_3 \) of \(U \) is

\[
a_0 v_1 \wedge v_2 \wedge v_3 + (a_1 v_2 \wedge v_3 + a_2 v_3 \wedge v_1 + a_3 v_1 \wedge v_2) \wedge (b_1 v_{-1} + b_2 v_{-2} + b_3 v_{-3})
\]

\[
= a_0 v_1 \wedge v_2 \wedge v_3 + (a_2 b_1 v_{12} - a_1 b_2 v_{21}) + (a_1 b_3 v_{31} - a_3 b_1 v_{13})
\]

\[
+ (a_3 b_2 v_{23} - a_2 b_3 v_{32}) + \sum_{i=1}^{3} a_i b_i v_{ii},
\]

where we put \(a_0 = a_1 a_4 + a_2 a_5 + a_3 a_6 \).

\[
v_{11} = v_{-1} \wedge v_2 \wedge v_3, \quad v_{22} = v_1 \wedge v_{-2} \wedge v_3, \quad v_{33} = v_1 \wedge v_2 \wedge v_{-3}
\]
and $v_{jk} = v_i \wedge v_j \wedge v_{-j}$ for every $\{i, j, k\} = \{1, 2, 3\}$. Since $v_{jk} + v_{kj} \in A \wedge \sigma$ for every $j \neq k$, $u_1 \wedge u_2 \wedge u_3$ is congruent to

$$a_0 v_1 \wedge v_2 \wedge v_3 - (a_1 b_2 + a_2 b_1) v_{12} - (a_1 b_3 + a_3 b_1) v_{13} + (a_2 b_3 + a_3 b_2) v_{23} + \sum_{i=1}^{3} a_i b_i v_{ii}$$

modulo $A \wedge \sigma$. Hence $\omega(S_Q)$ consists of those $\gamma_0 v_1 \wedge v_2 \wedge v_3 + \sum_{1 \leq i \leq j \leq 3} \gamma_{ij} v_{ij}$ such that the quadratic form $\sum_{1 \leq i \leq j \leq 3} \gamma_{ij} X_i X_j$ is of rank ≤ 2 (or equivalently, $4\gamma_{11}\gamma_{22}\gamma_{33} - \gamma_{11}\gamma_{23}^2 - \gamma_{22}\gamma_{13}^2 - \gamma_{33}\gamma_{12}^2 + \gamma_{12}\gamma_{13}\gamma_{23} = 0$).

\section{Linear systems of higher rank}

A linear system of rank r is a pair (E, A) of a vector bundle E of rank r and a space of global sections $A \subset H^0(E)$. The special one with $A = H^0(E)$ is called a complete linear system and denoted by $|E|$. A linear system (E, A) on an algebraic variety C is free if the evaluation homomorphism $ev_{E,A} : A \otimes k(C) \to E$ is surjective. If this holds, we obtain a morphism $\Phi_{E,A}$ of C to the Grassmannian $G(A, r)$ of r-dimensional quotient spaces. It is characterized by the property that $\Phi_{E,A}^*(\mathcal{U}, A) = (E, A)$, where \mathcal{U} is the universal quotient bundle on $G(A, r)$ and $\Phi_{|E|}$ is abbreviated to Φ_E.

Let

$$\bigwedge^m ev_{E,A} : \bigwedge^m A \otimes k(C) \to \bigwedge^m E$$

be the exterior product of the evaluation homomorphism $ev_{E,A}$. It induces the linear map

$$\bigwedge^m A \to H^0\left(\bigwedge^m E\right),$$

which we denote by λ_m. The image $\lambda_m(s_1 \wedge \cdots \wedge s_m)$ of a simple m-vector $s_1 \wedge \cdots \wedge s_m$ is zero if and only if m global sections $s_1, \ldots, s_m \in A \subset H^0(E)$ are linearly dependent at the generic point of C, that is, they generate a subsheaf of rank less than m. This linear map is most important when $m = r$. Assume that $\lambda_r : \bigwedge^r A \to H^0(\det E)$ is surjective. Then the map

$$\Psi : \mathbb{P}^*(H^0(\det E)) \to \mathbb{P}^*\left(\bigwedge^r A\right)$$

induced by λ_r is a linear embedding and the following diagram is commutative:

$$\begin{array}{ccc}
C & \xrightarrow{\Phi_E} & G(A, r) \\
\cap & \xrightarrow{} & \cap \\
\bigwedge^r A & \xrightarrow{\Psi} & \mathbb{P}^*\left(\bigwedge^r A\right).
\end{array}$$

Even when λ_r is not surjective, the above is still commutative though $\Psi = \mathbb{P}^*\lambda_r$ is only a rational map. The linear map λ_r is important in analyzing E itself also.
Now we assume that the base field k is algebraically closed (until the end of §6). The dual Grassmannian $G(r, A) \subset \mathbb{P}_*(\wedge^r A)$ is also important for understanding (E, A).

Definition 3.1. A linear system (E, A) of rank r is **irreducible** if it satisfies the following equivalent conditions:

i) For every r-dimensional linear subspace U of A the image of $U \otimes_k \mathbb{C} \rightarrow E$ is of rank r, and

ii) The kernel of the natural linear map $\lambda_r : \wedge^r A \rightarrow H^0(C, \det E)$ contains no nonzero simple r-vectors; that is, $G(r, A) \cap \mathbb{P}_*(\Ker \lambda_r) = \emptyset$.

The following is known as Castelnuovo’s trick (cf. [2, Chap. 10]):

Proposition 3.2. If $r (\dim A - r) \geq h^0(\det E)$, then (E, A) is reducible.

Proof. The left-hand side of the inequality is the dimension of $G(r, A)$. The codimension of $\mathbb{P}_*(\Ker \lambda_r) \subset \mathbb{P}_*(\wedge^r H^0(E))$ is at most $h^0(\det E)$. Hence, if the inequality holds, then the intersection $G(r, A) \cap \mathbb{P}_*(\Ker \lambda_r)$ is not empty. \hfill \square

A line bundle is irreducible. But irreducibility seems a strong condition in general. Irreducible bundles of rank ≥ 2 will not appear in the sequel. Instead the following concept plays a crucial role in our proof.

Definition 3.3. A linear system (E, A) of rank r on a (smooth complete) curve C is **semi-irreducible** if the evaluation homomorphism $\text{ev}_U : U \otimes_k \mathbb{C} \rightarrow E$ is either injective or everywhere of rank $r - 1$ for every r-dimensional subspace U of A.

For an r-dimensional quotient space $A \rightarrow Q$, we denote by S_Q the Schubert subvariety

$$[[U] | \ \rk [U \rightarrow A \rightarrow Q] \leq r - 2] \subset G(r, A)$$

associated to Q. Also, S_Q is contained in the projective space $\mathbb{P}_*((\wedge^2 W) \wedge (\wedge^{r-2} A))$, which is the projectivisation $\mathbb{P}_*(N^\vee_{G(A, r)/\mathbb{P}_*[Q]})$ of the conormal space of $G(A, r) \subset \mathbb{P}_*(\wedge^r A)$ at $[Q]$. The following is obvious:

Lemma 3.4. (E, A) is semi-irreducible if and only if $S_{E_p} \cap \mathbb{P}_*(\Ker \lambda_r) = \emptyset$ for every fiber E_p of E, $p \in C$.

Now we restrict ourselves to complete linear systems for simplicity.

Proposition 3.5. Assume that a complete linear system $|E|$ of rank r is free and semi-irreducible.

1. If F is a proper nonzero subbundle, then $h^0(F) \leq r(F) + 1$, where $r(F)$ is the rank of F.

2. If $h^0(E) \geq r + 2$ and if F is a subbundle of rank $\leq r - 2$, then $h^0(F) \leq r(F)$.

3. If $h^0(E) \geq r + 3$, then E is simple, i.e., $\text{End } E = k$.
Proof. (1) Assume that \(F \) is of rank \(r - 1 \) and \(h^0(F) \geq r \). Then the evaluation homomorphism \(B \otimes_k \mathcal{O}_C \to F \) is surjective for every \(r \)-dimensional subspace \(B \subset H^0(F) \) by semi-irreducibility. Hence we have \(h^0(F) \leq r \). The general case follows from this since, for every proper subbundle \(F \), there exists a subsheaf \(F' \subset E \) of rank \(r - 1 \) which contains \(F \) and \(h^0(F') \geq h^0(F) + r(F') - r(F) \).

(2) By the same reason as above, we may assume that \(F \) is of rank \(r + 1 \). We prove \(h^0(F) \leq r + 1 \) by contradiction. Assume that \(h^0(F) > r + 1 \) and put \(G = E/F \). We regard the quotient space \(H^0(E)/H^0(F) \) as a subspace of \(H^0(G) \). Since \(\dim H^0(E)/H^0(F) = h^0(F) - (r - 1) \geq 3 \) and since \(G \) is of rank 2, there exists a global section \(s \in H^0(E) \setminus H^0(F) \) such that \(\tilde{s} \in H^0(G) \) vanishes at a point on \(C \). Then \(H^0(F) \) and \(s \) do not generate a subsheaf of rank \(r \) or a subbundle of rank \(r - 1 \), which contradicts the semi-irreducibility of \(|E| \). Therefore, we have \(h^0(F) \leq r + 1 \) by (1).

(3) It suffices to show that every endomorphism \(\phi : E \to E \) is either zero or an isomorphism. Assume that \(\phi \) is neither. Then both the kernel and the image are proper subsheaves and we have

\[
h^0(E) \leq h^0(\ker \phi) + h^0(\text{im} \phi) \leq r(\ker \phi) + 1 + r(\text{im} \phi) + 1 = r + 2
\]

by (1), which is a contradiction. \(\square \)

The following is proved similarly.

Lemma 3.6. Assume that two complete linear systems \(|E|\) and \(|E'|\) are free, semi-irreducible and of the same rank \(r \) and assume further that \(h^0(E) \geq r + 3 \). Then every nonzero homomorphism \(E \to E' \) is injective.

4. Linear sections of the symplectic Grassmannian

Throughout this section \(C \subset \mathbb{P}^8 \) is a transversal linear section \(\text{SpG}(3, 6) \cap H_1 \cap \cdots \cap H_5 \) of the 6-dimensional symplectic Grassmannian.

Lemma 4.1. \(C \) is of genus 9 and the restriction of tautological line bundle \(\mathcal{O}(1) \) is isomorphic to the canonical bundle \(K_C \) of \(C \).

Proof. By Proposition 2.3 and by adjunction, we have \(K_C \simeq \mathcal{O}_C(K_{\text{SpG}} + H_1 + \cdots + H_5) \simeq \mathcal{O}_C(1) \). The Chern class of the universal quotient bundle \(\mathcal{U} \) on \(G(3, 6) \) is the sum \(1 + \sigma_1 + \sigma_2 + \sigma_3 \) of the special Schubert cycles ([8, Chap. 1]). By Pieri’s formula, we have

\[
2g(C) - 2 = \deg[\text{SpG}(3, 6) \subset \mathbb{P}^{13}] = \left(c_3 \left(\bigwedge^2 \mathcal{U} \right) . c_1(\mathcal{U})^6 \right) = (\sigma_1 \sigma_2 - \sigma_3 . \sigma_1^6) = 21 - 5 = 16,
\]

since \(\text{SpG}(3, 6) \) is the zero locus of a global section of \(\bigwedge^2 \mathcal{U} \). Hence \(C \) is of genus 9. \(\square \)

Let \(G(A, \sigma) \), \(\dim A = 6 \), be a representative of \(\text{SpG}(3, 6) \).
LEMMA 4.2. The linear map \(\bigwedge^3(A, \sigma) \rightarrow H^0(K_C) \) is surjective and its kernel is generated by the linear forms \(f_1, \ldots, f_5 \in \bigwedge^3(A, \sigma) \) defining the five hyperplanes \(H_1, \ldots, H_5 \).

Proof. Let \(X_i \) be the common zero locus of the first \(i \) linear forms \(f_1, \ldots, f_i \) for \(1 \leq i \leq 5 \). Then we obtain a ladder
\[
C = X_5 \subset X_4 \subset X_3 \subset X_2 \subset X_1 \subset X_0 := G(A, \sigma).
\]
Since \(C \) is irreducible, so is each \(X_i \). Hence the kernel of the restriction map \(H^0(X_i, \mathcal{O}_X(1)) \rightarrow H^0(X_{i+1}, \mathcal{O}_X(1)) \) is generated by \(f_{i+1} \), for every \(1 \leq i \leq 4 \). Hence \(\bigwedge^3(A, \sigma)/(f_1, \ldots, f_5) \rightarrow H^0(K_C) \) is injective. This map is also surjective because the source and the target have the same dimension. \(\Box \)

Let \(\mathfrak{C} \) be the restriction of \(\mathfrak{U} \) to \(G(A, \sigma) \) and \(E \) the restriction to \(C \).

LEMMA 4.3. The restriction map \(A \rightarrow H^0(E) \) is injective.

Proof. Assume the contrary. Then for each of the Lagrangian quotient spaces \(A \rightarrow Q \) parametrized by \(C \), \(\text{Ker}[A \rightarrow Q] \) contains a nonzero common vector \(a \). Hence \(C \) is contained in the symplectic Grassmannian \(G(\widetilde{A}, \widetilde{\sigma}) \), where \(\widetilde{A} \) is the co-radical of \(A/ka \). This contradicts the preceding lemma since \(G(\widetilde{A}, \widetilde{\sigma}) \) lies in a 4-dimensional linear subspace.

By this lemma we identify \(A \) with its image in \(H^0(E) \).

LEMMA 4.4. (1) A nonzero global section \(s \in A \) of \(E \) has at most two zeros (counted with multiplicity); that is, \(A \cap H^0(E(\widetilde{-D})) = 0 \) for every effective divisor \(D \) of degree 3 on \(C \).

(2) If \(A' \subset A \) is a subspace of codimension one, then the cokernel of the evaluation homomorphism \(A' \otimes_k \mathcal{O}_C \rightarrow E \) is of length \(\leq 2 \).

Proof. Assume that \(s \) has at least three zeros. Then we have an exact sequence \(E^\vee \rightarrow \mathcal{O}_C \rightarrow \mathcal{O}_D \rightarrow 0 \) for an effective divisor \(D \) of degree \(\geq 3 \). Let \(G(\widetilde{A}, \widetilde{\sigma}) \subset G(A, \sigma) \) be the 3-dimensional symplectic Grassmannian determined by \(s \in A \). Then the intersection \(G(\widetilde{A}, \widetilde{\sigma}) \cap C \) contains \(D \). Since \(G(\widetilde{A}, \widetilde{\sigma}) \) is a quadric, its intersection with the linear span \(\langle D \rangle \) is of positive dimension, which is a contradiction. This shows (1). The proof of (2) is similar. \(\Box \)

Let \(U \subset A \) be a 3-dimensional subspace and \(H_U \subset \mathbb{P}^* \bigwedge^3 A \) the hyperplane corresponding to it. Then the intersection \(H_U \cap G(A, r) \) consists of the \(r \)-dimensional quotient spaces \(A \rightarrow Q \) such that the composite \(U \leftarrow A \rightarrow Q \) is not an isomorphism. It is singular along the Schubert subvariety
\[
\{[A \rightarrow Q] \mid \text{rank} [U \leftarrow A \rightarrow Q] \leq 1\}.
\]

If \(H_U \not\supset C \), then the evaluation homomorphism \(\text{ev}_U : U \otimes \mathcal{O}_C \rightarrow E \) is of rank 3 at the generic point. Hence it is injective. If \(H_U \supset C \), then \(H_U \) belongs to \(\langle [H_1], \ldots, [H_3] \rangle \). Since the intersection \(C = H_1 \cap \cdots \cap H_5 \cap G(A, \sigma) \) is transversal, \(H_U \cap G(A, \sigma) \) must be smooth along \(C \). Hence \(\text{ev}_U \) is of rank 2 everywhere. So
we have proved the following, which indicates that the semi-irreducibility is a key concept for canonical curves of genus 9.

Proposition 4.5. The induced rank three linear system \((A, E)\) on \(C = G(A, \sigma) \cap H_1 \cap \cdots \cap H_5\) is semi-irreducible.

By Proposition 3.2, there exists a 3-dimensional subspace \(U\) of \(A\) such that \(H_U \supset C\). Let \(F\) and \(\alpha\) be the image and the cokernel of \(ev_U\). Then \(\alpha\) is a line bundle, \(\det F\) is isomorphic to \(\mathcal{O}_C^3\) and we have exact sequences

\[
0 \to \beta^{-1} \to \mathcal{O}_C^{\oplus 3} \to F \to 0 \quad \text{and} \quad 0 \to F \to E \to \alpha \to 0.
\]

By (2.2), the line bundles \(\alpha\) and \(\beta\) are both of degree 8.

Proposition 4.6. \(C\) is nonpentagonal.

Proof. It is obvious that \(C\) is nonhyperelliptic. Since \(\SpG(3, 6) \subset \mathbb{P}^{13}\) is an intersection of quadrics (see (0.1)), so is \(C \subset \mathbb{P}^8\). In particular, \(C \subset \mathbb{P}^8\) has no tri-secant lines. By the geometric version of the Riemann-Roch theorem ([1, Chap I, §2]), \(C\) has no \(g_1^1\). Also \(C\) has no \(g_2^2\) either, since the (geometric) genus of a plane quintic is at most 6. Let \(\xi\) be a \(g_3^3\) on \(C\). Then we have \(h^0(\xi) = 2\). Let \(U\) and \(F\) be as above. Taking the global section of the exact sequence

\[
0 \to F^\vee \to \mathcal{O}_C^{\oplus 3} \to \beta \to 0 \otimes \xi,
\]

we have

\[
6 \leq 3h^0(\xi) \leq \dim \text{Hom} (F, \xi) + h^0(\xi\beta) = \dim \text{Hom} (F, \xi) + 5 + h^1(\xi\beta).
\]

Hence we have

\[
(4.3) \quad \dim \text{Hom} (F, \xi) + \dim \text{Hom} (\xi, \alpha) \geq 1.
\]

Assume that there exists a nonzero homomorphism \(F \to \xi\) and let \(s\) be a nonzero global section in the kernel of \(U \to H^0(F) \to H^0(\xi)\). Then \(s\) has at least three zeros since \(\deg F - \deg \xi = 3\). If \(\text{Hom}(F, \xi)\) is zero, then \(\text{Hom}(\xi, \alpha)\) is not by (4.3). Hence \(\alpha\) contains a subsheaf isomorphic to \(\xi\). Let \(A'\) be the inverse image of \(H^0(\xi)\) by \(A \to H^0(\alpha)\). Then the cokernel of the evaluation homomorphism \(A' \otimes_k \mathcal{O}_C \to E\) is of length 3. Both contradict Lemma 4.4.

Remark 4.7. (1) For a curve of genus 9, the nonexistence of \(g_3^3\) is equivalent to its Clifford index which equals 4 (Martens [9, Beispiel 9]).

(2) Green’s property \((\mathcal{N}_p)\) ([6]) gives another proof of the proposition: First a general curve of genus 9 satisfies \((\mathcal{N}_3)\) by Ein [3]. Hence \(\SpG(3, 6) \subset \mathbb{P}^{13}\) and its complete linear section do so. By the converse of Green’s conjecture (Green-Lazarsfeld [7]), \(C\) is nonpentagonal.

By the proposition and (1) of the remark, \(C\) has no \(g_3^3\). Hence we have \(h^0(\alpha) = h^0(\beta) = 3\). By Lemma 5.1 below, we have \(h^0(E) \leq h^0(\alpha) + H^0(\mathcal{Q}_\beta) \leq 6\). Combining this with Lemma 4.3, we have
PROPOSITION 4.8. The restriction map $A \rightarrow H^0(E)$ is an isomorphism.

In the following sections we aim at a kind of converse of Proposition 4.5.

5. Rank 3 linear systems on a nonpentagonal curve

Throughout this section we assume that C is a nonpentagonal curve of genus 9. In particular, C has no g_7^2. Let α be a g_8^5, β its Serre adjoint and Q_β the cokernel of ev_β as in the introduction and in (1.1). The image of $\Phi_\beta : C \rightarrow \mathbb{P}^2$ is a singular plane curve of degree 8. Hence there exists a pair (p, q) of points (not necessarily distinct) such that $h^0(\beta(-p - q)) = 2$. By assumption $\xi := \beta(-p - q)$ is a free g_6. Hence we have a commutative diagram

$$0 \rightarrow \beta^{-1} \rightarrow \mathcal{O}_C^\oplus 3 \rightarrow Q_\beta \rightarrow 0$$

(5.1)

and an exact sequence

$$0 \rightarrow \mathcal{O}_C(p + q) \rightarrow Q_\beta \rightarrow \xi \rightarrow 0.$$

(5.2)

Lemma 5.1. (1) $h^0(Q_\beta) = 3$;

(2) $H^0(\alpha^{-1} Q_\beta) = 0$.

Proof. (1) $h^0(Q_\beta) = 3$ is obvious from the defining exact sequence of Q_β. The opposite inequality $h^0(Q_\beta) \leq 3$ follows from (5.2).

(2) Q_β is isomorphic to $\beta Q_\beta'$ since it is of rank 2. Hence Q_β is a subbundle of $\beta^\oplus 3$. If $\alpha \not\sim \beta$, then $H^0(\alpha^{-1} \beta) = 0$ and hence $H^0(\alpha^{-1} Q_\beta) = 0$. If $\alpha \sim \beta$, then $H^0(\alpha^{-1} Q_\beta) \simeq H^0(Q_\beta') = 0$ by the exact sequence (1.1). \square

We consider extensions

$$0 \rightarrow Q_\beta \rightarrow E \rightarrow \alpha \rightarrow 0$$

(5.3)

which are Γ-split; that is, $H^0(E) \rightarrow H^0(\alpha)$ is surjective.

Lemma 5.2. There exists a nontrivial extension E of α by Q_β with $h^0(E) = 6$.

Proof. The extensions with $h^0(E) = 6$ are parametrized by the kernel of the natural linear map $\varphi : \text{Ext}^1(\alpha, Q_\beta) \rightarrow H^0(\alpha)^\vee \otimes H^1(Q_\beta)$, which is equal to the first cohomology H^1 of the homomorphism

$$[\alpha^{-1} \rightarrow H^0(\alpha)^\vee \otimes \mathcal{O}_C] \otimes Q_\beta.$$

Since its cokernel is $Q_\alpha \otimes Q_\beta$, we have an exact sequence

$$H^0(\alpha)^\vee \otimes H^0(Q_\beta) \xrightarrow{\psi} H^0(Q_\alpha \otimes Q_\beta) \rightarrow H^1(\alpha^{-1} Q_\beta) \xrightarrow{\varphi} H^0(\alpha)^\vee \otimes H^1(Q_\beta).$$

(5.4)

The first map ψ is injective by (2) of Lemma 5.1 and $h^0(Q_\alpha \otimes Q_\beta)$ is even by Proposition 1.2. Since $h^0(\alpha) h^0(Q_\beta) = 9$, φ is not injective. \square
PROPOSITION 5.3. Let E be as in the preceding lemma. Then the complete linear system $|E|$ is free and semi-irreducible.

Proof. $|E|$ is free since both $|Q_\beta|$ and $|\alpha|$ are. Let $U \subset H^0(E)$ be a 3-dimensional subspace and $F \subset E$ the saturation of the subsheaf F' generated by U. Obviously $h^0(F) \geq 3$. If F is of rank one, then deg $F \geq 8$ by our assumption. Since $F \not\subset Q_\beta$, the extension (5.3) splits, which is a contradiction. Hence F is of rank two. Let ξ be the quotient line bundle E/F. Since $|E|$ is free, so is ξ. Since $\text{Hom}(E, \mathcal{O}_C) = 0$, we have $h^0(\xi) \geq 2$. By duality and (1) of Remark 4.7, $h^0(\text{det } F) = h^1(\xi) \leq g + 1 - 4 - h^0(\xi) \leq 4$. Assume that $h^0(F) \geq 4$. Then F contains a line subbundle ξ with $h^0(\xi) \geq 2$ by Proposition 3.2. Since $\xi \not\subset Q_\beta$, ξ is isomorphic to a proper subsheaf of α. Hence we have $h^0(\xi) = 2$. Let η be the quotient line bundle F/ξ. Then we have $h^0(\eta) \geq h^0(F) - h^0(\xi) = 2$. Since $\text{deg } \xi + \text{deg } \eta + \text{deg } \xi = 16$, one of the three line bundles is of degree ≤ 5, which is a contradiction. Hence we have $h^0(F) = 3$ and $h^0(\xi) \geq h^0(E) - h^0(F) = 3$. Since $h^1(\xi) = h^0(\text{det } F) \geq 3$, ξ is a g^2_5 and F' is isomorphic to Q_ξ. In particular, $F' = F$ and F' is a subbundle. \square

Now conversely we study a uniqueness.

LEMMA 5.4. Nontrivial extensions E of α by Q_β with $h^0(E) = 6$ are unique.

Proof. The assertion is equivalent to $h^0(Q_\alpha \otimes Q_\beta) \leq 10$ by the exact sequence (5.4). Take the global section of the exact sequence

\[(5.2) \otimes Q_\alpha : 0 \longrightarrow Q_\alpha (p + q) \longrightarrow Q_\alpha \otimes Q_\beta \longrightarrow Q_\alpha \xi \longrightarrow 0.\]

Now

\[h^0(Q_\alpha \otimes Q_\beta) \leq h^0(Q_\alpha (p + q)) + h^0(Q_\alpha \xi)\]

\[= h^0(Q_\alpha (p + q)) + h^1(Q_\alpha (p + q))\]

\[= 2h^0(Q_\alpha (p + q)) - \chi(Q_\alpha (p + q)).\]

Since $\chi(Q_\alpha (p + q)) = -4$, it suffices to show $h^0(Q_\alpha (p + q)) \leq 3$. Assume the contrary:

The case where $h^0(Q_\alpha (p + q)) = 4$. Let $\{s_1, s_2, s_3, s_4\}$ be a basis of the vector space $H^0(Q_\alpha (p + q))$ such that $s_1, s_2, s_3 \in H^0(Q_\alpha)$ and F is the image of the evaluation homomorphism $H^0(Q_\alpha (p + q)) \otimes_k \mathcal{O}_C \longrightarrow Q_\alpha (p + q)$. Then the quotient F/Q_α is generated by the image of s_4. Hence, deg $F \leq \deg Q_\alpha + 2 = 10$. We have $h^0(\text{det } F) \leq 4$ by the nonexistence of g^2_6. Since $h^0(F) \geq 4$, there exists a 2-dimensional subspace of $H^0(F)$ which generates a rank one subsheaf by Proposition 3.2. This contradicts the nonexistence of g^1_5.

The case where $h^0(Q_\alpha (p + q)) \geq 5$. Since $\deg Q_\alpha (p + q) = 12$ and since C has no g^1_4, we have $h^0(\text{det}(Q_\alpha (p + q))) \leq 5$. By Proposition 3.2, there exists an
exact sequence
\[0 \longrightarrow \xi \longrightarrow Q_\alpha (p + q) \longrightarrow \eta \longrightarrow 0 \]
such that \(h^0(\xi) \geq 2 \). Since \(\eta(-p - q) \) is a quotient of \(Q_\alpha \), we have \(h^0(\eta(-p - q)) \geq 2 \) and \(\deg \eta(-p - q) \geq 6 \), which implies \(\deg \xi \leq 4 \). This is a contradiction. \(\square \)

We strengthen this lemma.

Lemma 5.5. A rank 3 vector bundle \(E \) on \(C \) which satisfies

i) \(\bigwedge^3 E \cong K_C \),

ii) \(h^0(E) \geq 6 \), and

iii) \(|E| \) is semi-irreducible

is an extension of \(\alpha \) by \(Q_\beta \).

Proof. By Lemma 1.1, or by (1.3), we have

\[\dim \text{Hom}(Q_\beta, E) + \dim \text{Hom}(E, \alpha) \geq 2. \]

(\(h^0(E) = r + s \) and the Brill-Noether number \(\rho \) is equal to 0.) Hence there exists a nonzero homomorphism either \(f : Q_\beta \rightarrow E \) or \(g : E \rightarrow \alpha \).

If the image of \(f \) is a line bundle \(L \), then \(h^0(L) \geq 2 \) since \(\text{Hom}(Q_\beta, \mathcal{O}_C) = 0 \). This contradicts (1) of Proposition 3.5. Hence \(f \) is injective. By semi-irreducibility, the cokernel is a line bundle and is isomorphic to \(\alpha \).

If \(g : E \rightarrow \alpha \) is not surjective, then the kernel of \(H^0(E) \rightarrow H^0(\alpha) \) is of dimension \(\geq 4 \), which contradicts semi-irreducibility. Hence \(g \) is surjective and its kernel is isomorphic to \(Q_\beta \).

By the two lemmas above, we have the following:

Proposition 5.6. Vector bundles \(E \) on \(C \) which satisfy the condition of the lemma are unique up to isomorphism.

This vector bundle is denoted by \(E_{\text{max}} \).

Corollary. If \(E \) is a rank 3 vector bundle of canonical determinant on \(C \) and if \(|E| \) is semi-irreducible, then \(h^0(E) \leq 6 \).

Remark 5.7. (1) By the proposition and its proof, we obtain an explicit bijection between two sets: \(W^2_8(C) \), the set of \(g^2_8 \)'s of \(C \), and the intersection

\[G(3, H^0(E_{\text{max}})) \cap \mathbb{P}^{10}. \]

It is known that the cardinality of \(W^r_d^{-1}(C) \) of a general curve \(C \) of genus \(g \) is equal to the degree of a \(g \)-dimensional Grassmannian when the Brill-Noether number \(\rho \) is zero (cf. [1, Chap. VII, Th. (4.4)] and [4, Ex. 14.4.5]).

(2) By (1) of Proposition 3.5, it is easy to show that \(E_{\text{max}} \) is stable. It is also easy to show a converse: if \(E \) is stable, \(\bigwedge^3 E \cong K_C \) and \(h^0(E) \geq 6 \), then \(|E| \) is semi-irreducible.
6. Linear section theorems

We prove Theorem C in several steps. Assume that $E = E_{\text{max}}$ satisfies the condition (0.2). Since E is a rank 3 vector bundle of canonical determinant, $K_C E^\vee$ is isomorphic to $\bigwedge^2 E$. Hence, by the Riemann-Roch theorem, we have

$$h^0(E) - h^0\left(\bigwedge^2 E\right) = \deg E + 3(1 - 9) = -8.$$

and $h^0(\bigwedge^2 E) = 14$. Since $\dim \bigwedge^2 H^0(E) = 15$, the linear map

$$\lambda_2 : \bigwedge^2 H^0(E) \longrightarrow H^0\left(\bigwedge^2 E\right)$$

is not injective.

Step 1. Every nonzero bivector σ in $\text{Ker} \lambda_2$ is nondegenerate.

Proof. The rank of σ is either 2, 4 or 6. If σ is of rank 2, then σ is equal to $s_1 \wedge s_2$ for a pair of global sections s_1 and s_2 which are linearly independent in $H^0(E)$ and generate a rank-one subsheaf in E. This contradicts (2) of Proposition 3.5. Assume that σ is of rank 4. Then σ is equal to $s_1 \wedge s_2 - s_3 \wedge s_4$ for s_1, s_2, s_3 and $s_4 \in H^0(E)$. By semi-irreducibility, s_1 and s_2 generate a rank two subsheaf in E. Let F be its saturation. Since $\lambda_2(s_1 \wedge s_2) = \lambda_2(s_3 \wedge s_4)$, we have $\lambda_3(s_1 \wedge s_2 \wedge s_i) = \lambda_3(s_3 \wedge s_4 \wedge s_i) = 0$ for $i = 3, 4$. Hence s_3 and s_4 are contained in $H^0(F)$ and we have $h^0(F) \geq 4$. This contradicts the semi-irreducibility of $|E|$ by Proposition 3.5. \hfill \Box

The nondegeneracy of σ is equivalent to the nonvanishing of the Pfaffian. Hence $\text{Ker} \lambda_2$ is of dimension one and λ_2 is surjective. Since $|E|$ is free, we obtain a morphism $\Phi_E : C \longrightarrow G(A, 3)$ to the Grassmannian of 3-dimensional quotient spaces of $A := H^0(E)$. Its image is contained in the symplectic Grassmannian $G(A, \sigma)$ and we obtain the commutative diagram (0.3), where σ is a generator of $\text{Ker} \lambda_2$. Since $\bigwedge^3 (A, \sigma)$ is of dimension 14, the kernel of $\lambda_3 : \bigwedge^3 (A, \sigma) \longrightarrow H^0(K_C)$ is of dimension $\geq 14 - 9 = 5$. Let f_1, \ldots, f_k, $k \geq 5$, be its basis and H_1, \ldots, H_k the hyperplanes corresponding to them. Since $|E|$ is semi-irreducible, the intersection $S_{E_p} \cap P_3 \text{Ker} \lambda_3$ is empty for every $p \in C$ by Lemma 3.4. Hence so is $\alpha(S_{E_p}) \cap P_3 \text{Ker} \lambda_3$ for the projection α in (2.6).

Step 2. There exists a point $p \in C$ such that the intersection $G(A, \sigma) \cap H_1 \cap \cdots \cap H_k$ is transversal at $\Phi_E(p)$.

Proof. Assume the contrary. Then, for every $p \in C$, there exists a member H_p of $\left(\{H_1\}, \ldots, \{H_k\}\right) = P_3 \text{Ker} \lambda_3$ such that the intersection $G(A, \sigma) \cap H_p$ is singular at $\Phi_E(p)$. The intersection $P_3(N_{G(A, \sigma)/P_3(E_p)}) \cap P_3 \text{Ker} \lambda_3$ is a point for every p by Proposition 2.4. Therefore, we obtain a section of the P^6-bundle $P^*(\Phi_E^* N_{G(A, \sigma)/P_3})$ over C which is disjoint from $\bigsqcup_{p \in C} \alpha(S_{E_p})$. By projecting from $\bigsqcup_{p \in C} k_p$, we obtain a section of $P_3(S^2 E)$ over which the discriminant form
\[\delta \in H^0(S^3(S^2E)^Y \otimes (\det E)^{\otimes 2})\] has no zeros. Let \(\xi \subset S^2E\) be the line subbundle corresponding to the section. Then \(\delta\) induces a nowhere-vanishing global section of \(\xi^{-3} \otimes (\det E)^{\otimes 2}\). This implies \(3 \deg \xi = 2 \deg E = 32\), which is absurd. \(\square\)

In particular, we have \(k = 5\) and hence the linear map \(\overline{\lambda}_3\) is surjective. Therefore, \(P^*\overline{\lambda}_3\) is a linear embedding. Since the canonical morphism \(\Phi_K\) is an embedding, so is \(\Phi_E\) by the commutative diagram (0.3). We identify \(\mathcal{C}\) with its image \(\Phi_E(\mathcal{C})\).

By Step 2, the intersection \(G(A, \sigma) \cap H_1 \cap \cdots \cap H_5\) is complete on a nonempty open subset \(C_0\) of \(C\). Hence the twisted normal bundle \(N_{C/G(A, \sigma)}(-1)\) is generated by the five global sections induced from \(f_1, \ldots, f_5\) over \(C_0\). It is generated over \(C\), since \(N_{C/G(A, \sigma)}(-1)\) is of trivial determinant. Therefore, the intersection is complete along \(C\) and contains it as a connected component. By the connectedness of linear sections (Fulton-Lazarsfeld [5, Th. 2.1]), the intersection coincides with \(C\), which completes the proof of Theorem C. (If we use the refined Bézout theorem (Fulton[4, Th. 12.3]), the proof finishes at the last paragraph.)

Theorem A is an immediate consequence of Theorem C, Proposition 5.3 and Proposition 4.6.

7. **Proof of Theorem B**

We do not assume that \(k\) is algebraically closed anymore. Let \(C \simeq G(A, \sigma') \cap P'\) be another expression of \(C = G(A, \sigma) \cap P\) as a complete linear section of a 6-dimensional symplectic Grassmannian and \(\mathcal{E}'|_C\) the restriction of the universal quotient bundle. Both \(|\mathcal{E}|_C\) and \(|\mathcal{E}'|_C\) are semi-irreducible (over \(\bar{k}\)) by Proposition 4.5. Hence they are isomorphic to each other over \(\bar{k}\) by Proposition 5.6 and there exists a nonzero homomorphism \(f : \mathcal{E}|_C \longrightarrow \mathcal{E}'|_C\) over \(k\). This is an isomorphism by Lemma 3.6. Since the diagram

\[
\begin{array}{ccc}
\bigwedge^2 A & \xrightarrow{\bigwedge^2 H^0(f)} & \bigwedge^2 H^0(\mathcal{E}|_C) \\
H^0(\bigwedge^2 \mathcal{E}|_C) & \xrightarrow{\bigwedge^2 H^0(\mathcal{E}'|_C)} & H^0(\bigwedge^2 \mathcal{E}'|_C) \\
H^0(f) & \xrightarrow{\bigwedge^2 f} & H^0(\bigwedge^2 f)
\end{array}
\]

is commutative, the isomorphism \(H^0(f)\) maps \(k\sigma\) onto \(k\sigma'\). Thus we have proved (2) of Theorem B.

Assume that \(k\) is perfect and let \(\overline{E}\) be a vector bundle on \(\overline{C} = C \otimes_k \bar{k}\). We consider a descent problem of \(\overline{E}\) under the following condition:

\((*)\) \(\overline{E}\) is simple and \(\sigma^* \overline{E} \simeq \overline{E}\) for every element \(\sigma\) of the Galois group \(\text{Gal} k\) of \(\bar{k}/k\).

As is well known, the obstruction \(\text{ob}(\overline{E})\) for \(\overline{E}\) to descend to \(C\) is an element of the second Galois cohomology group \(H^2(\text{Gal} k, \text{Aut} \overline{E})\). Choose an isomorphism
For each \(\sigma \in \text{Gal} \bar{k} \). Then \(\text{ob}(\bar{E}) \) is the cohomology class of the cocycle \(\{ c_{\sigma, \tau} \}_{\sigma, \tau \in \text{Gal} \bar{k}} \) defined by \(c_{\sigma, \tau} = f_{\sigma, \tau}^{-1} \circ \tau^* \circ f_\sigma \circ \text{Aut}_k \bar{E} \). In other words, \(\text{ob}(\bar{E}) \) is the factor set of the extension

\[
1 \longrightarrow \text{Aut}_k \bar{E} \longrightarrow \text{Aut}_k \bar{E} \longrightarrow \text{Gal} k \longrightarrow 1.
\]

Lemma 7.1. If \(\dim H^i(\bar{C}, \bar{E}) = n > 0 \), then the obstruction \(\text{ob}(\bar{E}) \) is \(n \)-torsion.

Proof. Let \(\{ s_1, \ldots, s_n \} \) be a basis of \(H^1(\bar{C}, \bar{E}) \) and \(A_{\sigma} \in M_n(\bar{k}) \) the matrix representing

\[
H^1(f_{\sigma}) : H^1(\bar{C}, \bar{E}) \longrightarrow H^1(\bar{C}, \sigma^* \bar{E})
\]

with respect to the bases \(\{ s_1, \ldots, s_n \} \) and \(\{ \sigma^* s_1, \ldots, \sigma^* s_n \} \). Then

\[
\det H^1(c_{\sigma, \tau}) = (\det A_{\sigma \tau})^{-1} \tau(\det A_\sigma) \det A_\tau
\]

in \(\bar{k}^\times \). Therefore, \(\{ \det H^1(c_{\sigma, \tau}) \}_{\sigma, \tau \in \text{Gal} \bar{k}} \) is cohomologous to zero. Since \(c_{\sigma, \tau} \) are all constant multiplications, \(\det H^1(c_{\sigma, \tau}) \) are equal to \(c^n_{\sigma, \tau} \). Hence \(\text{ob}(\bar{E}) \) is \(n \)-torsion. \(\square \)

Now we prove (1) of Theorem B. Let \(C \) be a nonpentagonal curve of genus 9 defined over \(k \). It suffices to show the following:

Proposition 7.2. Assume that \(C \) has no \(g_5 \) over \(\bar{k} \). Then there exists a vector bundle \(E \) on \(C \) such that \(E \otimes_k \bar{k} \) is isomorphic to the vector bundle \(E_{\text{max}} \) on \(C \otimes_k \bar{k} \).

Proof. By (3) of Proposition 3.5 and Proposition 5.6, \(E_{\text{max}} \) satisfies \((*) \). Hence the obstruction \(\text{ob}(E_{\text{max}}) \) belongs to \(H^2(\text{Gal} k, \text{Aut} \bar{k} E_{\text{max}}) = H^2(\text{Gal} k, \bar{k}^\times) \). Let

\[
\text{Det} : H^2(\text{Gal} k, \text{Aut} \bar{k} E_{\text{max}}) \longrightarrow H^2(\text{Gal} k, \text{Aut} \bar{k} \det E_{\text{max}})
\]

be the determinant homomorphism. Since \(\det E_{\text{max}} \) is the canonical bundle, it descends to \(C \). Hence \(\text{ob}(E_{\text{max}}) \) belongs to the kernel and is 3-torsion. On the other hand, \(\text{ob}(E_{\text{max}}) \) is 14-torsion by the preceding lemma since \(\dim H^1(E_{\text{max}}) = 14 \). Therefore, \(\text{ob}(E_{\text{max}}) \) vanishes and \(E_{\text{max}} \) descends to \(C \). (This is a Galois group variant of an argument of Mumford-Newstead [17].) \(\square \)

Acknowledgments. The author stayed at the Japan-U.S. Mathematics Institute (JAMI) at the Johns Hopkins University in the spring of 1991 and 1996 during the preparation of this article. He gave series lectures on this topic at Kyushu University in June of 1996. He is very grateful to these institutions for their hospitality. The stay in 1996 at JAMI was supported by the Japan Society for the Promotion of Science. This article is a refined version of an unpublished preprint written at Nagoya University in the autumn of 1996.
References

(Received February 24, 2003)
(Revised January 15, 2010)

E-mail address: mukai@kurims.kyoto-u.ac.jp

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY,
KITASHIRAKAWA OIWAKE-CHÔ, SAKYO-KU, KYOTO 606-8502, JAPAN
TABLE OF CONTENTS

Shigeru Mukai. Curves and symmetric spaces, II. 1539–1558

Manjul Bhargava. The density of discriminants of quintic rings and fields .. 1559–1591

Shuji Saito and Kanetomo Sato. A finiteness theorem for zero-cycles over p-adic fields .. 1593–1639

Sylvain Crovisier. Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems 1641–1677

Joseph Bernstein and Andre Reznikov. Subconvexity bounds for triple L-functions and representation theory 1679–1718

Sándor J Kovács and Max Lieblich. Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich’s conjecture ... 1719–1748

Andrei Teleman. Instantons and curves on class VII surfaces 1749–1804

Danijela Damjanović and Anatole Katok. Local rigidity of partially hyperbolic actions I. KAM method and \mathbb{Z}^k actions on the torus 1805–1858

Jörg Lauret. Einstein solvmanifolds are standard 1859–1877

Pascal Collin and Harold Rosenberg. Construction of harmonic diffeomorphisms and minimal graphs 1879–1906

John Lewis and Kaj Nyström. Boundary behavior and the Martin boundary problem for p harmonic functions in Lipschitz domains 1907–1948

Jens Marklof and Andreas Strömbergsson. The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems .. 1949–2033

Étienne Fouvry and Jürgen Klünners. On the negative Pell equation .. 2035–2104

Lex G. Oversteegen and Edward D. Tymchatyn. Extending isotopies of planar continua 2105–2133

Jan Bruinier and Ken Ono. Heegner divisors, L-functions and harmonic weak Maass forms 2135–2181

Florian Pop. Henselian implies large ... 2183–2195

Mikhail Belolipetsky, Tsachik Gelander, Alexander Lubotzky and Aner Shalev. Counting arithmetic lattices and surfaces 2197–2221

Sasha Sodin. The spectral edge of some random band matrices 2223–2251