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Abstract

We eliminate the possibility of “escape of mass” for Hecke-Maass forms of
large eigenvalue for the modular group. Combined with the work of Lindenstrauss,
this establishes the Quantum Unique Ergodicity conjecture of Rudnick and Sarnak
for Hecke-Maass forms on the modular surface SL2.Z/nH.

1. Introduction

An interesting problem in number theory and quantum chaos is to understand
the distribution of Maass cusp forms of large Laplace eigenvalue for the modular
surface X D SL2.Z/nH. Let � denote a Maass form of eigenvalue �, normalized
so that its Petersson norm

R
X j�.z/j

2 dx dy

y2 equals 1. Zelditch [14] has shown that
as �!1, for a typical Maass form �, the associated probability measure �� WD
j�.z/j2 dx dy

y2 tends to the uniform distribution measure 3
�
dx dy

y2 . This result is
known as “Quantum Ergodicity.” The widely studied Quantum Unique Ergodicity
conjecture of Rudnick and Sarnak [10] asserts that as �!1, for every Maass
form � the measure �� approaches the uniform distribution measure. In studying
this conjecture, it is also natural to restrict to Maass forms that are eigenvalues
of all the Hecke operators; it is expected that the spectrum of the Laplacian on
X is simple so that this condition would automatically hold, but this is far from
being proved. Using methods from ergodic theory, Lindenstrauss [7] has made
great progress towards the QUE conjecture for such Hecke-Maass forms. Namely,
he has shown that the only possible weak-� limits of the measures �� are of the
form c 3

�
dx dy

y2 , where c is some constant in Œ0; 1�. In other words, Lindenstrauss
establishes QUE for X except for the possibility that for some infinite subsequence
of Hecke-Maass forms � some of the L2 mass of � could “escape” into the cusp
of X . In this paper we eliminate the possibility of escape of mass, and together
with Lindenstrauss’s work this completes the proof of QUE for X .

The results of Zelditch and Lindenstrauss are in fact stronger than we have
indicated above. Given a Maass form � on X , Zelditch defines the “micro-local”
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lift z� of � to Y D SL2.Z/nSL2.R/. This micro-local lift defines a measure on
SL2.Z/nSL2.R/ with two important properties: First, as the eigenvalue tends to
infinity, the projection of the measure from Y to the surface X approximates the
measure �� given above. Second, as the eigenvalue tends to infinity any weak-�
limit of these measures on Y is invariant under the geodesic flow on Y . Zelditch’s
result then asserts that for a full density subsequence of eigenfunctions, the asso-
ciated micro-local lifts get equidistributed on Y . Lindenstrauss’s result is that any
weak-� limit of the lifts arising from Hecke-Maass forms is a constant c (between
0 and 1) times the normalized volume measure on Y . We remark that the analog of
quantum unique ergodicity with Eisenstein series in place of cusp forms has been
treated by Luo and Sarnak [8] in the modular surface version, and by Jakobson
[5] for the corresponding micro-local lifts. For more complete accounts of the
quantum unique ergodicity problem the reader may consult [6], [9], [11], [13] and
references therein; a comprehensive introduction to the theory of Maass forms is
provided in [4].

THEOREM 1. Let � be a Hecke-Maass cusp form for the full modular group
SL2.Z/, normalized to have Petersson norm 1. Let z� denote the micro-local lift of
� to Y D SL2.Z/nSL2.R/, and let f�� denote the corresponding measure on Y . The
normalized volume measure on Y is the unique weak-� limit of the measures f�� .
In particular, for any compact subset C of a fundamental domain for SL2.Z/nH
we have, as �!1,Z

C

j�.xC iy/j2
dx dy

y2
D

Z
C

3

�

dx dy

y2
C o.1/:

Theorem 1 is a consequence of the following result which estimates how much
of the mass of � can be present high in the cusp.

PROPOSITION 2. Let � denote a Hecke-Maass cusp form for SL2.Z/ with
eigenvalue �, and normalized to have Petersson norm 1. For T � 1, we haveZ

jxj� 1
2

y�T

j�.xC iy/j2
dx dy

y2
�

log.eT /
p
T

:

We remark that by entirely different methods Holowinsky and Soundararajan
([2], [3], [12]) have settled the holomorphic analog of QUE forX ; it is not clear how
to adapt Lindenstrauss’s methods to that setting. Their methods have the advantage
of yielding explicit estimates for the rate of convergence to uniform distribution;
it is not clear how to obtain such a rate of convergence in Theorem 1. However
the works of Holowinsky and Soundararajan use in an essential way Deligne’s
bounds for the Hecke eigenvalues of holomorphic modular forms; the analog of
these bounds for Maass forms remains an important open problem.

While we have restricted ourselves to the full modular group, our argument
would apply also to all congruence subgroups. Thus QUE for Maass forms, and
its holomorphic analog, are now known for noncompact arithmetic quotients of H.
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In the case of compact arithmetic quotients, Lindenstrauss’s work establishes QUE
for Maass forms; the analog for holomorphic forms remains open.

Our proofs of Theorem 1 and Proposition 2 exploit the particular multiplica-
tive structure of the Hecke-operators. We say that a function f is Hecke-multi-
plicative if it satisfies the Hecke relation

f .m/f .n/D
X

d j.m;n/

f .mn=d2/;

and f .1/ D 1. The key to establishing Proposition 2 is the following result on
Hecke-multiplicative functions.

THEOREM 3. Let f be a Hecke-multiplicative function. Then for all 1�y�x,X
n�x=y

jf .n/j2 � 108
�1C logy
p
y

�X
n�x

jf .n/j2:

It is noteworthy that Theorem 3 makes no assumptions on the size of the
function f . Hecke-multiplicative functions satisfy f .p2/D f .p/2� 1, so that at
least one of jf .p/j or jf .p2/j must be bounded away from zero; this observation
plays a crucial role in our proof. We also remark that apart from the logy factor,
Theorem 3 is best possible: Consider the Hecke-multiplicative function f defined
by f .p/D 0 for all primes p. The Hecke relation then mandates that f .p2kC1/D 0
and f .p2k/ D .�1/k . Therefore, in this example,

P
n�x jf .n/j

2 D
p
xCO.1/

and
P
n�x=y jf .n/j

2 D
p
x=yCO.1/.

The argument of Theorem 3 can be generalized in several ways. For example,
one could obtain an analogous result with jf .n/j in place of jf .n/j2. Moreover,
one could consider multiplicative functions f arising from Euler products of de-
gree d . By this we mean that for each prime p there exist complex numbers j̨

(j D 1; : : : ; d ) with j˛1 � � �˛d j D 1 and
P1
kD0 f .p

k/xk D
Qd
jD1.1� j̨x/

�1; the
case d D 2 corresponds to our Hecke-multiplicative functions above. For these
functions, one of jf .p/j, : : :, jf .pd /j must be bounded away from zero, and it
may be of interest to exploit this and establish an analog of Theorem 3.

2. Deducing Theorem 1 and Proposition 2 from Theorem 3

Proof of Proposition 2. Let � be a Maass form of eigenvalue 1
4
C r2 for the

full modular group, normalized to have Petersson norm 1. We suppose that � is
an eigenfunction of all the Hecke operators, and let �.n/ denote the n-th Hecke
eigenvalue. Recall that � has a Fourier expansion of the form

�.z/D C
p
y

1X
nD1

�.n/Kir.2�ny/ cos.2�nx/;

or

�.z/D C
p
y

1X
nD1

�.n/Kir.2�ny/ sin.2�nx/;
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where C is a constant (normalizing the L2-norm), K denotes the usual K-Bessel
function, and we have cos or sin depending on whether the form is even or odd.

Using Parseval we find thatZ
jxj� 1

2

y�T

j�.xC iy/j2
dx dy

y2
D
C 2

2

Z 1
T

1X
nD1

j�.n/j2jKir.2�ny/j
2dy

y
:

By a change of variables we may write this as

C 2

2

1X
nD1

j�.n/j2
Z 1
nT

jKir.2�t/j
2dt

t
D
C 2

2

Z 1
1

jKir.2�t/j
2
X
n�t=T

j�.n/j2
dt

t
:

Appealing to Theorem 3 this is

�
log eT
p
T

C 2

2

Z 1
1

jKir.2�t/j
2
X
n�t

j�.n/j2
dt

t

D
log eT
p
T

Z
jxj� 1

2
y�1

j�.xC iy/j2
dx dy

y2
�

log eT
p
T
;

since the region jxj � 1
2

, y � 1 is contained inside a fundamental domain for
SL2.Z/nH. This proves Proposition 2. �

Proof of Theorem 1. As remarked in the introduction, Lindenstrauss has
shown that any weak-� limit of the micro-local lifts of Hecke-Maass forms is a
constant c (in Œ0; 1�) times the normalized volume measure on Y . Projecting these
measures down to the modular surface, we see that any weak-� limit of the mea-
sures �� associated to Hecke-Maass forms is of the shape c 3

�
dx dy

y2 . Theorem 1
claims that in fact c D 1, and there is no escape of mass. If on the contrary c < 1
for some weak-� limit, then we have a sequence of Hecke-Maass forms �j with
eigenvalues �j tending to infinity such that for any fixed T � 1 and as j !1Z

z2F
y�T

j�j .z/j
2dx dy

y2
D .cC o.1//

3

�

Z
z2F
y�T

dx dy

y2
D .cC o.1//

�
1�

3

�T

�
I

here F D fz D x C iy W jzj � 1; �1=2 � x � 1=2; y > 0g denotes the usual
fundamental domain for SL2.Z/nH. It follows that as j !1Z

jxj� 1
2

y�T

j�j .z/j
2dx dy

y2
D 1� cC

3

�T
cC o.1/:

But if c < 1 this contradicts Proposition 2 for suitably large T , proving Theorem 1.
�



QUANTUM UNIQUE ERGODICITY FOR SL2.Z/nH 1533

3. Preliminaries for the proof of Theorem 3

Throughout the proof of Theorem 3 we shall work with a single value of x.
Accordingly, we define for 1� y � x

F.y/D F.yI x/D

P
n�x=y jf .n/j

2P
n�x jf .n/j

2
;

and our goal is to show that F.y/� 108 log.ey/=
p
y. Note that F.y/� 1 for all

y � 1, and that F is a decreasing function of y. Thus in proving Theorem 3 we
may assume that y � 1016. We adopt throughout the convention that f .t/ D 0
when t is not a natural number, and that F.y/D 0 if y > x.

LEMMA 3.1. For any integer m� x we have

jf .m/j �
�.m/

F.m/
1
2

;

where �.m/ denotes the number of divisors of m. Consequently, for any p �
p
x

we have

jf .p/j �
2

F.p2/
1
4

:

Proof. We start with the relation

(3.1) jf .m/j2
X

n�x=m

jf .n/j2 D jf .m/j2F.m/
X
n�x

jf .n/j2:

The Hecke relation gives

jf .m/f .n/j D
ˇ̌̌ X
d j.m;n/

f .mn=d2/
ˇ̌̌
�

X
d jm

jf .mn=d2/j;

so that by Cauchy-Schwarz

jf .m/f .n/j2 � �.m/
X
d jm

jf .mn=d2/j2:

Hence the left-hand side of (3.1) is

� �.m/
X
d jm

X
n�x=m

jf .mn=d2/j2 � �.m/2
X
n�x

jf .n/j2:

Our bound on jf .m/j follows. To obtain the bound for jf .p/j we take m D p2

getting jf .p2/j � 3=F.p2/
1
2 . Since jf .p/j2 � jf .p2/j C 1 the claimed estimate

for jf .p/j follows. �

PROPOSITION 3.2. Let d be a square-free number. ThenX
n�x=y
d jn

jf .n/j2 � �.d/
Y
pjd

.1Cjf .p/j2/F.yd/
X
n�x

jf .n/j2:
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Moreover, X
n�x=y

d2jn

jf .n/j2 � �3.d/
Y
pjd

.2Cjf .p2/j2/F.yd2/
X
n�x

jf .n/j2;

where �3 denotes the 3-divisor function (being the number of ways of writing d as
abc).

Proof. The Hecke relations give that f .p/f .m/D f .pm/Cf .m=p/, and so
jf .pm/j � jf .p/f .m/jC jf .m=p/j. By induction we find that

jf .md/j �
X
abDd

jf .a/jjf .m=b/j;

so that
jf .md/j2 � �.d/

X
abDd

jf .a/j2jf .m=b/j2:

Summing over all m� x=.yd/ we obtain thatX
n�x=y
d jn

jf .n/j2 � �.d/
X
abDd

jf .a/j2
X

m�x=.yd/

jf .m=b/j2

� �.d/
X
abDd

jf .a/j2F.yd/
X
n�x

jf .n/j2:

The first statement follows.
To prove the second assertion, note the fact that the Hecke relations give that

f .m/f .p2/ equals f .mp2/ if p − m, f .mp2/C f .m/ if pkm, and f .mp2/C
f .m/C f .m=p2/ if p2jm. In all cases we find that jf .mp2/j � jf .p2/f .m/j C
jf .m/jC jf .m=p2/j. By induction we may see that

jf .md2/j �
X
abcDd

jf .a2/jjf .m=c2/j:

Therefore,
jf .md2/j2 � �3.d/

X
abcDd

jf .a2/j2jf .m=c2/j2:

Summing over all m� x=.yd2/ we obtain thatX
nDmd2�x=y

jf .n/j2 � �3.d/
X
abcDd

jf .a2/j2
X

m�x=.yd2/

jf .m=c2/j2

� �3.d/F.yd
2/
�X
n�x

jf .n/j2
�X
ajd

jf .a2/j2�.d=a/;

and the second statement follows. �

Let P D P.y/ denote the set of primes in Œ
p
y=2;

p
y�. The prime number

theorem gives for large y that jP.y/j �
p
y=logy. In fact, using only a classical

result of Chebyshev we find that for y � 1016 we have jP.y/j �
p
y=.2 logy/ (see,
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for example, Dusart’s thesis [1] which gives more precise estimates). Lemma 3.1
gives that jf .p/j � 2=F.y/

1
4 for p 2 P. Therefore, we select

J D
h 1

4 log 2
log.1=F.y//

i
C 3;

and partition P into sets P0, : : :, PJ where P0 contains those primes in P with
jf .p/j � 1=2, and for 1 � j � J the set Pj contains those primes in P with
2j�2 < jf .p/j � 2j�1.

Let k � 1 be a natural number. Define N0.k/ to be the set of integers divisible
by at most k distinct squares of primes in P0. For 1� j � J we define Nj .k/ to
be the set of integers divisible by at most k distinct primes in Pj .

PROPOSITION 3.3. Keep the notation above. For 2� k � jP0j=4 we haveX
n�x=y
n2N0.k/

jf .n/j2 �
4k

jP0j

X
n�x

jf .n/j2:

Further, if 1� j � J and 1� k � jPj j=4� 1 we haveX
n�x=y
n2Nj .k/

jf .n/j2 �
212k2

24j jPj j2

X
n�x

jf .n/j2:

Proof. Note that if p 2P0, then jf .p/j � 1=2, and so jf .p2/jD jf .p/2�1j �
3=4. Therefore,X

n�x=y
n2N0.k/

jf .n/j2
� X
p2P0

p2−n

jf .p2/j2
�
�
9

16
.jP0j � k/

X
n�x=y
n2N0.k/

jf .n/j2(3.2)

�
27

64
jP0j

X
n�x=y
n2N0.k/

jf .n/j2:

If p 2 P0 and p2 − n, then we claim that jf .n/f .p2/j � jf .p2n/j. If p − n,
then equality holds in this claim. If p exactly divides n then the claim amounts
to jf .p3/j � jf .p/f .p2/j, and to see this note that f .p3/ D f .p/.f .p/2 � 2/
and f .p2/D f .p/2 � 1, and the estimate jf .p/2 � 2j � jf .p/2 � 1j holds since
jf .p/j � 1=2. Therefore the left-hand side of (3.2) is

�

X
m�x

jf .m/j2
� X

mDnp2

n�x=y;n2N0.k/

p2P0;p
2−n

1
�
� .kC 1/

X
m�x

jf .m/j2;

since the sum over n and p above is zero unless m is divisible by at most kC 1
squares of primes in P0 and in this case the number of choices for p in that sum
is at most kC 1. Since k � 2 the stated bound follows.
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The second assertion is similar. If p 2 Pj , then jf .p/j � 2j�2. Therefore,

X
n�x=y
n2Nj .k/

jf .n/j2
� X
p1;p22Pj
p1<p2

pi −n

jf .p1p2/j
2
�
� 24.j�2/

 
jPj j � k

2

! X
n�x=y
n2Nj .k/

jf .n/j2

� 24j�8
9jPj j

2

32

X
n�x=y
n2Nj .k/

jf .n/j2:

But the left-hand side sums terms of the form jf .m/j2 where mD np1p2 � x and
m is divisible by at most kC 2 distinct primes in Pj ; moreover each such term
appears at most

�
kC2
2

�
times on the left-hand side. Therefore the left-hand side

above is

�

 
kC 2

2

!X
n�x

jf .n/j2 � 3k2
X
n�x

jf .n/j2;

and the proposition follows in this case. �

4. Proof of Theorem 3

Consider the set of values y with F.y/� 108 log.ey/=
p
y. Pick a “maximal”

element from this set; precisely, a value y belonging to the exceptional set, but such
that no value larger than yC 1 is in this set. We shall use the work in Section 3
with this maximal value of y in mind, and employ the notation introduced there.
The argument splits into two cases: since jPj �

p
y=.2 logy/ we must have either

jP0j �
p
y=.4 logy/, or that jPj j �

p
y=.4J logy/ for some 1� j � J . In either

case we shall derive a contradiction, proving Theorem 3.

4.1. Case 1: jP0j �
p
y=.4 logy/. Take K D ŒjP0jF.y/=8�, so that 104 �

K � jP0j=4. Proposition 3.3 gives thatX
n�x=y
n2N0.K/

jf .n/j2 �
1

2
F.y/

X
n�x

jf .n/j2;

so that

(4.1)
X
n�x=y
n 62N0.K/

jf .n/j2 �
1

2
F.y/

X
n�x

jf .n/j2:

If n 62 N0.K/ then n must be divisible by at least K C 1 squares of primes
in P0. There are

�
jP0j

KC1

�
integers that are products of exactly KC 1 primes from

P0. Each of these integers exceeds .
p
y=2/KC1, and a number n 62 N0.K/ must

be divisible by the square of one of these integers. Thus, using the second bound
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in Proposition 3.2 we find that the left-hand side of (4.1) is

(4.2) �

 
jP0j

KC 1

!
3KC1 � 3KC1F.y.y=4/KC1/

X
n�x

jf .n/j2:

Since  
jP0j

KC 1

!
�
jP0j

KC1

.KC 1/Š
<
� ejP0j
KC 1

�KC1
<
� 24

F.y/

�KC1
;

and, by the maximality of y,

F.y.y=4/KC1/� 108 � 2KC1
1C .KC 2/ logy

y.KC2/=2
< 108 � 2KC1 � .10�8F.y//KC2;

we deduce that the quantity in (4.2) is

�

�432
108

�KC1
F.y/

X
n�x

jf .n/j2 <
1

2
F.y/

X
n�x

jf .n/j2;

which contradicts (4.1). This completes our argument for the first case.

4.2. Case 2: jPj j �
p
y=.4J logy/ for some 1� j � J . Here we take K D

Œ22j�9jPj jF.y/
1
2 �. Using that J � 3C .log.1=F.y///=.4 log 2/� .logy/=4, and

y � 1016 we may check that K � 10. Moreover, for any prime p in Pj we have
22j�4 � jf .p/j2 � 4=F.y/

1
2 by the second part of Lemma 3.1, and so K � jPj j=8.

Thus the second part of Proposition 3.3 applies, and it shows thatX
n�x=y
n2Nj .K/

jf .n/j2 �
1

2
F.y/

X
n�x

jf .n/j2:

Therefore,

(4.3)
X
n�x=y
n62Nj .K/

jf .n/j2 �
1

2
F.y/

X
n�x

jf .n/j2:

If n 62Nj .K/, then n must be divisible by one of the
�
jPj j

KC1

�
integers composed

of exactly KC 1 primes in P. Each of those numbers exceeds .
p
y=2/KC1. Ap-

pealing to the first part of Proposition 3.2 we find that the left-hand side of (4.3) is

(4.4) �

 
jPj j

KC 1

!
22j.KC1/F.y.

p
y=2/KC1/

X
n�x

jf .n/j2:

Since  
jPj j

KC 1

!
�
jPj j

KC1

.KC 1/Š
�

� ejPj j
KC 1

�KC1
<
� 211

22jF.y/
1
2

�KC1
;

and, by the maximality of y,

F.y.
p
y=2/KC1/� 108 � 2

KC1
2
1C KC3

2
logy

y
KC3

4

< 108 � 2
KC1

2 .10�8F.y//
KC3

2 ;
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we deduce that the quantity in (4.4) is

�

�223
108

�KC1
2

F.y/
X
n�x

jf .n/j2 <
1

2
F.y/

X
n�x

jf .n/j2;

which contradicts (4.3). This completes our argument in the second case, and hence
also the proof of Theorem 3.

Acknowledgments. I am grateful to Peter Sarnak for encouragement and some
helpful suggestions, and to Roman Holowinsky for a careful reading.
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