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Abstract

We prove a conjecture of Rudnick and Sarnak on the mass equidistribution of
Hecke eigenforms. This builds upon independent work of the authors.

1. Introduction

A central problem in the area of quantum chaos is to understand the limit-
ing behavior of eigenfunctions. An important example which has attracted a lot
of attention is the case of Maass cusp forms of large Laplace eigenvalue for the
space X D SL2.Z/nH. Let � denote such a Maass form, let � denote its Laplace
eigenvalue, and let � be normalized so that

R
X j�.z/j

2 dx dy

y2 D 1. Zelditch [19] has

shown1 that as �!1, for a typical Maass form � the measure �� WD j�.z/j2
dx dy

y2

approaches the uniform distribution measure 3
�
dx dy

y2 . This statement is referred to
as “Quantum Ergodicity.” Rudnick and Sarnak [12] have conjectured that an even
stronger result holds. Namely, that as �!1, for every Maass form � the measure
�� approaches the uniform distribution measure. This conjecture is referred to as
“Quantum Unique Ergodicity.” Lindenstrauss [7] has made great progress towards
this conjecture, showing that, for Maass cusp forms that are eigenfunctions of the
Laplacian and all the Hecke operators,2 the only possible limiting measures are
of the form 3

�
c dx dy

y2 with 0 � c � 1. Recently the second author [16] showed
that c D 1, completing the proof of the QUE conjecture for Hecke-Maass forms
on SL2.Z/nH. For illuminating accounts on this conjecture we refer the reader to
[6], [7], [8], [9], [10], [12], [14], [13], [18].

The first author was supported by NSERC and the Fields Institute, Toronto. The second author is
partially supported by the National Science Foundation (DMS-0500711) and the American Institute
of Mathematics (AIM).

1We have given Zelditch’s result in the context of SL2.Z/nH. In fact he proves more, since he
considers equidistribution of the micro-local lift to SL2.Z/nSL2.R/. Lindenstrauss’s result stated
below also holds for this micro-local lift.

2The spectrum of the Laplacian is expected to be simple, so that any eigenfunction of the Lapla-
cian would automatically be an eigenfunction of all Hecke operators. This is far from being proved.
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Here we consider a holomorphic analog of the quantum unique ergodicity con-
jecture. This analog is very much in the spirit of the Rudnick-Sarnak conjectures,
and has been spelt out explicitly in [9], [14]. Let f be a holomorphic modular
cusp form of weight k (an even integer) for SL2.Z/. Associated to f we have the
measure

�f WD y
k
jf .z/j2

dx dy

y2
;

which is invariant under the action of SL2.Z/, and we suppose that f has been
normalized so that Z

X

ykjf .z/j2
dx dy

y2
D 1:

The space Sk.SL2.Z// of cusp forms of weight k for SL2.Z/ is a vector space
of dimension about k=12, and contains elements such as �.z/k=12 (if 12jk, and
where � is Ramanujan’s cusp form) for which the measure will not tend to uni-
form distribution. Therefore, one restricts attention to a particularly nice set of
cusp forms, namely those that are eigenfunctions of all the Hecke operators. The
Rudnick-Sarnak conjecture in this context states that as k!1, for every Hecke
eigencuspform f the measure �f tends to the uniform distribution measure. For
simplicity, we have restricted ourselves to the full modular group, but the conjecture
could be formulated just as well for holomorphic newforms of level N . Luo and
Sarnak [9] have shown that equidistribution holds for most Hecke eigenforms, and
Sarnak [14] has shown that it holds in the special case of dihedral forms. It does
not seem clear how to extend Lindenstrauss’s work to the holomorphic setting.3

In this paper we shall establish the Rudnick-Sarnak conjecture for holomor-
phic Hecke eigencuspforms. The proof combines two different approaches to the
mass equidistribution conjecture, developed independently by the authors [3], [17].
Either of these approaches is capable of showing that there are very few possible
exceptions to the conjecture, and under reasonable hypotheses either approach
would show that there are no exceptions. However, it seems difficult to show
unconditionally that there are no exceptions using just one of these approaches.
Fortunately, as we shall explain below, the two approaches are complementary,
and the few rare cases that are untreated by one method fall easily to the other
method. Both approaches use in an essential way that the Hecke eigenvalues of a
holomorphic eigencuspform satisfy the Ramanujan conjecture (Deligne’s theorem).
The Ramanujan conjecture remains open for Maass forms, and this is the (only)
barrier to using our methods in the nonholomorphic setting.4 At present, it is not
clear how to use our methods in the case of compact quotients.

3The difficulty from the ergodic point of view concerns the invariance under the geodesic flow of
the quantum limits of the micro-local lifts associated to holomorphic forms.

4Assuming the Ramanujan conjecture for Maass forms, our methods would obtain the stronger
micro-local version of QUE. Moreover, our methods would then be able to quantify the rate at which
equi-distribution is attained.
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Recall that for two smooth bounded functions g1 and g2 on X we may define
the Petersson inner product

hg1; g2i D

Z
X

g1.z/g2.z/
dx dy

y2
:

In this definition we could allow for one of the g1 or g2 to be unbounded, so long
as the other function decays appropriately for the integral to converge. If f is
a modular form of weight k, below we shall let Fk.z/ denote yk=2f .z/ where
z D xC iy. Let h denote a smooth bounded function on X . Considering h as fixed,
and letting k!1, the Rudnick-Sarnak conjecture asserts that for every Hecke
eigencuspform f of weight k we have5

(1.1) hhFk; Fki !
3

�
hh; 1i;

with the rate of convergence above depending on the function h.
To attack the conjecture (1.1), it is convenient to decompose the function h in

terms of a basis of smooth functions on X . There are two natural ways of doing
this. First we could use the spectral decomposition of a smooth function on X in
terms of eigenfunctions of the Laplacian. The spectral expansion will involve (i)
the constant function

p
3=� ; (ii) Maass cusp forms � that are also eigenfunctions

of all the Hecke operators; and (iii) Eisenstein series on the 1
2

line. Recall that the
Eisenstein series is defined for Re.s/ > 1 by

E.z; s/D
X

2�1n�

Im.z/s;

where � D SL2.Z/ and �1 denotes the stabilizer group of the cusp at infinity
(namely the set of all translations by integers). The Eisenstein series E.z; s/ admits
a meromorphic continuation, with a simple pole at sD 1, and is analytic for s on the
line Re.s/D 1

2
. For more on the spectral expansion; see Iwaniec [4]. Note that (1.1)

is trivial when h is the constant eigenfunction. To establish (1.1) using the spectral
decomposition, we would need to show that for a fixed Maass eigencuspform �,
and for a fixed real number t that

h�Fk; Fki; and hE.�; 1
2
C i t/Fk; Fki ! 0;

as k!1. The inner products above may be related to values of L-functions. In
the case of Eisenstein series, this is the classical work of Rankin and Selberg. In
the more difficult Maass form case, this relation (to a triple product L-function) is
given by a beautiful formula of Watson [18]. The connection to L-functions, and
estimating such values, forms the basis for Soundararajan’s approach to (1.1).

5We are slightly abusing notation here, because Fk is not SL2.Z/-invariant. However jFk.z/j2 is
SL2.Z/-invariant, and so the inner product in (1.1) does not depend on a choice of the fundamental
domain.
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Alternatively, one could expand the function h in terms of incomplete Poincaré
and Eisenstein series. Let  denote a smooth function, compactly supported in
.0;1/. For an integer m the incomplete Poincaré series is defined by

Pm.z j  /D
X

2�1n�

e.mz/ .Im.z//:

In the special case m D 0 we obtain incomplete Eisenstein series E.z j  / D
P0.z j  /. For an account on approximating a smooth function h using incomplete
Poincaré series see [8]. Luo and Sarnak [9] noted that in this approach to (1.1) one
faces the problem of estimating the shifted convolution sums (for m fixed, and as
k!1) X

n�k

�f .n/�f .nCm/;

where the sum is over n of size k, and �f .n/ denotes the Hecke eigenvalue of
f normalized so that Deligne’s bound reads j�f .n/j � d.n/. The study of these
shifted sums using sieve methods forms the basis for Holowinsky’s approach to
(1.1).

We are now in a position to state our main result, after which we will describe
the main theorems of Holowinsky and Soundararajan, and how those combine.

THEOREM 1. Let f be a Hecke eigencuspform of weight k for SL2.Z/, and
write Fk.z/D yk=2f .z/.

(i) Let � be a Maass cusp form which is also an eigenfunction of all Hecke oper-
ators. Then

jh�Fk; Fkij ��;" .log k/�
1

30
C":

(ii) Let  be a fixed smooth function compactly supported in .0;1/. Thenˇ̌̌
hE.� j  /Fk; Fki �

3

�
hE.� j  /; 1i

ˇ̌̌
� ;" .log k/�

2
15
C":

Remark 1. We have made no attempt to optimize the rate of decay given
above. Our methods would not appear to lead to any decay better than .log k/�1.
The generalized Riemann hypothesis is known to imply a rate of decay k�

1
2
C"

which would be optimal; see [6], [10].

Remark 2. A striking consequence of Theorem 1 is that the zeros of the mod-
ular form f lying in X (there are about k=12 such zeros) become equidistributed
with respect to the measure 3

�
dx dy

y2 . This follows from the work of Rudnick [11],
who derived this consequence from the mass equidistribution conjecture.

Remark 3. With more effort, we could keep track of the dependence on � and
 in Theorem 1. This would require some careful book-keeping in the works [3]
and [17]. Keeping track of these dependencies would allow one to give a rate of
decay for the discrepancy (for example, the spherical cap discrepancy defined in
[8]) between the measure �f and the uniform distribution measure.
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We now describe the results of Holowinsky and Soundararajan, and how they
pertain to Theorem 1. In [3] Holowinsky attacks the inner products in Theorem 1
by an unfolding method, which leads him to the estimation of shifted convolution
sums of the Hecke eigenvalues. He then develops a sieve method to estimate these
shifted convolution sums, obtaining the following result.

THEOREM 2 (Holowinsky). Keep the notations of Theorem 1. Let �f .n/ de-
note the Hecke eigenvalue of f for the n-th Hecke operator normalized so that
j�f .n/j � d.n/. Let L.s; sym2f / denote the symmetric square L-function attached
to f , and define

Mk.f / WD
1

.log k/2L.1; sym2f /

Y
p�k

�
1C

2j�f .p/j

p

�
:

(i) For a Maass cusp form � we have

jh�Fk; Fkij ��;" .log k/"Mk.f /
1
2 :

(ii) For an incomplete Eisenstein series E.z j  / we haveˇ̌̌
hE.� j  /Fk; Fki �

3

�
hE.� j  /; 1i

ˇ̌̌
� ;" .log k/"Mk.f /

1
2 .1CRk.f //;

where

Rk.f /D
1

k
1
2L.1; sym2f /

Z C1
�1

jL.1
2
C i t; sym2f /j
.1Cjt j/10

dt:

Although this is not immediately apparent, the quantity Mk.f / appearing
above is expected to be small in size. One can show that there are at most K"

eigenforms f with weight below K for which Mk.f /� .log k/�ı for some fixed
ı > 0. A weak form of the generalized Riemann hypothesis could be used to show
that Mk.f /� .log k/�ı for some ı > 0. Moreover, one can show that

(1.2) Mk.f /� .log k/" exp
�
�

X
p�k

.j�f .p/j � 1/
2

p

�
;

so that one would expect Mk.f / to be small unless j�f .p/j � 1 for most p � k.
This last possibility is not expected to hold,6 and can be shown to be rare,7 but is
difficult to rule out completely. In the Eisenstein series case ((ii) above), one also
needs to bound Rk.f /; again this can be shown to be small in all but very rare
cases.

As mentioned earlier, if we approach (1.1) through the spectral expansion
of h we are led to estimating central values of L-functions. Here it turns out
that an easy convexity bound for L-values barely fails to be of use, and improved
subconvexity estimates (saving a power of the analytic conductor) would solve

6Since we would expect �f .p/ to be distributed in Œ�2; 2� according to the Sato-Tate measure.
7By bounding the quantity in (1.2) in terms of L.1; sym2f / and L.1; sym4f /; see [3] for details.



1522 ROMAN HOLOWINSKY and KANNAN SOUNDARARAJAN

the problem completely (see, for example, [6]). In [17] Soundararajan developed
a general method which gives weak subconvexity bounds for central values of
L-functions. Instead of obtaining a power saving of the analytic conductor, one
obtains a saving of powers of the logarithm of the analytic conductor.

THEOREM 3 (Soundararajan). Keep the notations of Theorems 1 and 2.

(i) For a Maass eigencuspform � we have

jh�Fk; Fkij ��;"
.log k/�

1
2
C"

L.1; sym2f /
:

(ii) For the Eisenstein series E.z; 1
2
C i t/ we have

jhE.�; 1
2
C i t/Fk; Fkij �" .1Cjt j/

2 .log k/�1C"

L.1; sym2f /
:

If L.1; sym2f / � .log k/�
1
2
Cı for some ı > 0 then Theorem 3 would es-

tablish the Rudnick-Sarnak conjecture. This bound on L.1; sym2f / is certainly
expected to hold; for example it follows from a weak form of the generalized
Riemann hypothesis. Moreover, one can show that this bound fails to hold for at
most K" eigencuspforms f with weight below K. However, we know only that
L.1; sym2f / � .log k/�1 (see �2 below), and it seems difficult to rule out the
possibility of small values of L.1; sym2f / completely.

We have seen how either of the approaches in Theorems 2 and 3 should work
always, and that both fail in rare circumstances which are difficult to rule out. Now
we shall see that in the rare circumstances that one of these results fails, the other
result succeeds. To gain an intuitive understanding of this phenomenon, note that
Theorem 3 fails only when L.1; sym2f /� .log k/�

1
2
Cı is small. But this L-value

is small only if for most primes p � k we have �f .p2/��1 (a Siegel zero type
phenomenon). But this means �f .p/2�1��1 so that �f .p/� 0. Recall now that
the quantity Mk.f / appearing in Holowinsky’s work is small unless j�f .p/j � 1
for most p � k. Evidently, both situations cannot happen simultaneously.

More precisely, in Lemma 3 below we shall show that

Mk.f /� .log k/
1
6 .log log k/

9
2L.1; sym2f /

1
2 :

Therefore, if L.1; sym2f / < .log k/�
1
3
�ı for some small ı > 0 it follows from

Theorem 2(i) that h�Fk; Fki is small. However, if L.1; sym2f / > .log k/�
1
3
�ı >

.log k/�
1
2
Cı then as noted above Theorem 3(i) shows that h�Fk; Fki is small. This

shows how Theorems 2 and 3 complement each other in the cusp form case. In the
case of Eisenstein series, we first show how the weak subconvexity results in [17]
lead to a satisfactory bound for the term Rk.f / appearing in Theorem 2(ii) (see
Lemma 1 below). Then the argument follows as in case (i).
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2. Preliminaries on the symmetric square L-function

We collect together here some properties of L.s; sym2f / that we shall need for
the proof of Theorem 1. We shall require several important results on L.s; sym2f /
that are known thanks to the works of Shimura [15], Gelbart and Jacquet [1], Hoff-
stein and Lockhart [2], and Goldfeld, Hoffstein and Lieman [2]. If we write

L.s; f /D

1X
nD1

�f .n/

ns
D

Y
p

�
1�

p̨

ps

��1�
1�

p̌

ps

��1
;

where p̨ and p̌ D p̨ are complex numbers of magnitude 1, then the symmetric
square L-function is

L.s; sym2f /D
1X
nD1

�
.2/

f
.n/

ns
D

Y
p

�
1�

˛2p

ps

��1�
1�

1

ps

��1�
1�

ˇ2p

ps

��1
:

The series and product above converge absolutely in Re.s/ > 1, and by the work of
Shimura [15], we know that L.s; sym2f / extends analytically to the entire complex
plane, and satisfies the functional equation
(2.1)
ƒ.s; sym2f /D�R.sC1/�R.sCk�1/�R.sCk/L.s; sym2f /Dƒ.1�s; sym2f /;

where �R.s/D �
�s=2�.s=2/.

Gelbart and Jacquet [1] have shown that L.s; sym2f / arises as the L-function
of a cuspidal automorphic representation of GL.3/. Therefore, invoking the Rankin-
Selberg convolution for sym2f , one can establish a classical zero-free region for
L.s; sym2f /. For example, from Theorem 5.42 (or Theorem 5.44) of Iwaniec and
Kowalski [5] one obtains that for some constant c > 0 the region

RD
n
s D � C i t W � � 1�

c

log k.1Cjt j/

o
does not contain any zeros of L.s; sym2f / except possibly for a simple real zero.
The work of Hoffstein and Lockhart (see the appendix by Goldfeld, Hoffstein and
Lieman [2]) shows that c > 0 may be chosen so that there is no real zero in our
region R. Thus L.s; sym2f / has no zeros in R. Moreover, the work of Goldfeld,
Hoffstein, and Lieman [2] shows that

(2.2) L.1; sym2f /�
1

log k
:

To be precise, the work of Goldfeld, Hoffstein, and Lieman considers symmetric
square L-functions of Maass forms in the eigenvalue aspect, but our case is entirely
analogous, and follows upon making minor modifications to their argument.

LEMMA 1. For any t 2 R we have

jL.1
2
C i t; sym2f /j �

k
1
2 .1Cjt j/

3
4

.log k/1�"
:
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Therefore the quantity Rk.f / appearing in Theorem 2(ii) satisfies

Rk.f /�
.log k/"

.log k/L.1; sym2f /
� .log k/":

Proof. The bound on L.1
2
C i t; sym2f / follows from the results of [17] on

weak subconvexity; see Example 1 there. Using this bound in the definition of
Rk.f / immediately gives the stated estimate. �

LEMMA 2. We have

L.1; sym2f /� .log log k/�3 exp
�X
p�k

�f .p
2/

p

�
:

Proof. Let 1� � � 5
4

, and consider for some c > 1, and x � 1

(2.3)
1

2�i

Z cCi1

c�i1

�
L0

L
.sC �; sym2f /

2xs

s.sC 2/
ds:

We write

�
L0

L
.s; sym2f /D

1X
nD1

ƒsym2f .n/

ns

say whereƒsym2f .n/D 0 unless nDpk is a prime power, in which caseƒsym2f .p/

D �f .p
2/ logp and for k � 2, jƒsym2f .p

k/j � 3 logp. Using this in (2.3) and
integrating term by term, we see that

1

2�i

Z cCi1

c�i1

�
L0

L
.sC �; sym2f /

2xs

s.sC 2/
ds(2.4)

D

X
p�x

�f .p
2/ logp
p�

�
1�

�p
x

�2�
CO.1/

D

X
p�x

�f .p
2/ logp
p�

CO.1/:

We next evaluate the left-hand side of (2.4) by shifting the line of integration
to the line Re.s/D �3

2
. We encounter poles at s D 0, and when s D �� � for a

nontrivial zero �D ˇC i of L.s; sym2f /. Computing these residues, we obtain
that the quantity in (2.4) equals

�
L0

L
.�; sym2f /CO

�X
�

xˇ��

j�� � jj�� � C 2j

�

C
1

2�i

Z � 3
2
Ci1

� 3
2
�i1

�
L0

L
.sC �; sym2f /

2xsds

s.sC 2/
:



MASS EQUIDISTRIBUTION FOR HECKE EIGENFORMS 1525

To estimate the integral above, we differentiate the functional equation (2.1) loga-
rithmically, and use Stirling’s formula. Thus if s D�3

2
C i t we obtain that

�
L0

L
.sC�; sym2f /� log.k.1Cjt j//C

ˇ̌̌L0
L
.1�s��; sym2f /

ˇ̌̌
� log.k.1Cjt j//:

Thus we deduce that

(2.5)
X
p�x

�f .p
2/ logp
p�

D�
L0

L
.�; sym2f /CO

�X
�

xˇ��

j�� � jj�� � C 2j

�
CO.x�

3
2 log k/:

To bound the sum over zeros above, we split the sum into intervals where
n�j j<nC1 for nD0, 1; : : : . Each such interval contains at most� log.k.1Cn//
zeros, and moreover they all lie outside the zero-free region R. Therefore the sum
over zeros in (2.5) is

� x�c= logk.log k/2C
1X
nD1

x�c= log.k.1Cn// log.k.1Cn//
n2

� x�c=.2 logk/.log k/2C 1:

Choose x D k4.log logk/=c so that the above becomes� 1. Combining this estimate
with (2.5) we conclude that for this choice of x,

�
L0

L
.�; sym2f /D

X
p�x

�f .p
2/ logp
p�

CO.1/;

and integrating both sides from � D 1 to 5
4

that

logL.1; sym2f /D
X
p�x

�f .p
2/

p
CO.1/:

Since
P
k<p�x �f .p

2/=p �
P
k<p�x 3=p D 3 log log log xCO.1/, our lemma

follows. �

Remark. The factor .log log k/�3 above is extraneous. With more effort one
should be able to show that L.1; sym2f /� exp.

P
p�k �f .p

2/=p/.

From Lemma 2 we shall obtain an estimate for the quantity Mk.f / appearing
in Theorem 2.

LEMMA 3. We have

Mk.f /� .log k/
1
6 .log log k/

9
2L.1; sym2f /

1
2 :
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Proof. From the inequality 2jxj � 2
3
C
3
2
x2, and the Hecke relations, we obtain

that

2
X
p�k

j�f .p/j

p
�
2

3

X
p�k

1

p
C
3

2

X
p�k

�f .p/
2

p
D
13

6

X
p�k

1

p
C
3

2

X
p�k

�f .p
2/

p
:

Using Lemma 2, and that
P
p�k 1=p D log log kCO.1/, the lemma follows. �

Remark. The ad hoc inequality 2jxj � 2
3
C
3
2
x2 used above was chosen for

the simplicity of the statement in Lemma 3. If we write L.1; sym2f /D .log k/�

(so that � ��1Co.1/ by (2.2)), then a more complicated, but more precise, bound
is

Mk.f /� .log k/�2��C2
p
1C�C":

This follows upon using 2jxj �
p
1C � C "C x2=

p
1C � C " in the argument

above.

3. Proof of Theorem 1

Case (i): The inner product with Maass cusp forms. Suppose thatL.1; sym2f /
� .log k/�

7
15 . Then Theorem 3(i) gives that jh�Fk; Fkij �� .log k/�

1
30
C".

Now suppose that L.1; sym2f / < .log k/�
7

15 . Then Lemma 3 gives that
Mk.f / � .log k/�

1
15
C", and using this in Theorem 2(i), we obtain again that

jh�Fk; Fkij �� .log k/�
1

30
C".

In either case, the bound stated in Theorem 1(i) holds.

Case (ii): The inner product with incomplete Eisenstein series. We begin by
showing how Theorem 3(ii) applies to incomplete Eisenstein series. By Mellin
inversion we may write

(3.1) E.z j  /D
1

2�i

Z �Ci1

��i1

y .�s/E.z; s/ds;

where � > 1 so that we are in the range of absolute convergence of the Eisenstein
series E.z; s/, and y denotes the Mellin transform

y .s/D

Z 1
0

 .y/ys
dy

y
:

Since  is smooth and compactly supported inside .0;1/, we have that y 
is an analytic function, and repeated integration by parts shows that j y .s/j �A; 
.1Cjsj/�A for any positive integer A. We now move the line of integration in (3.1)
to the line Re.s/D 1

2
. The pole of E.z; s/ at s D 1 leaves a residue 3

�
and so

(3.2) E.z j  /D
3

�
y .�1/C

1

2�i

Z 1
2
Ci1

1
2
�i1

y .�s/E.z; s/ds:
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From (3.2) it follows that

(3.3) hE.� j  /Fk; Fki D
3

�
y .�1/C

1

2�i

Z 1
2
Ci1

1
2
�i1

y .�s/hE.�; s/Fk; Fki ds:

By unfolding we see that

hE.�;  /; 1i D

Z 1
0

Z 1
2

� 1
2

 .y/
dx dy

y2
D y .�1/;

and by Theorem 3(ii) it follows that

1

2�i

Z 1
2
Ci1

1
2
�i1

y .�s/hE.�; s/Fk; Fki ds

�

Z 1
�1

j y .�1
2
� i t/j

.1Cjt j/2

.log k/1�"L.1; sym2f /
dt �

.log k/�1C"

L.1; sym2f /
:

Using these in (3.3) we conclude thatˇ̌̌
hE.� j  /Fk; Fki �

3

�
hE.� j  /; 1i

ˇ̌̌
�

.log k/�1C"

L.1; sym2f /
:

Thus if L.1; sym2f /� .log k/�
13
15 , we obtain the bound stated in Theorem 1(ii).

Suppose now that L.1; sym2f / � .log k/�
13
15 . Then by Lemma 3 we have

Mk.f /� .log k/�
4

15
C", and by Theorem 2(ii) (using Lemma 1 to estimate Rk.f /

there) we obtainˇ̌̌
hE.� j  /Fk; Fki �

3

�
hE.� j  /; 1i

ˇ̌̌
� .log k/"Mk.f /

1
2 � .log k/�

2
15
C";

so that the bound stated in Theorem 1(ii) follows in this case also.
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