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Conformal invariance in random cluster models.
I. Holmorphic fermions in the Ising model

By STANISLAV SMIRNOV

Abstract

We construct discrete holomorphic fermions in the random cluster Ising model
at criticality and show that they have conformally covariant scaling limits (as mesh
of the lattice tends to zero). In the sequels those observables are used to con-
struct conformally invariant scaling limits of interfaces and identify those with
Schramm’s SLE curves. Though the critical Ising model is often cited as a classical
example of conformal invariance, it seems that ours is the first paper where it is
actually established.

1. Introduction

It is widely believed that many planar lattice models of statistical physics at
the critical temperature are conformally invariant in the scaling limit. In particular,
the Ising model is often cited as a classical example of conformal invariance, which
is used in deriving many of its properties.

To the best of our knowledge no mathematical proof of this assertion has
ever been given. Moreover, most of the physics arguments concern rectangular
domains only (like a plane or a strip) and do not take boundary conditions into
account. Thus they give (often unrigorous) justification only of the Mobius invari-
ance of the scaling limit, arguably a much weaker property than the full conformal
invariance. Of course, success of conformal field theory methods in describing the
Ising model provides some evidence for the conformal invariance, but it does not
offer an explanation or a proof of the latter.

It seems that ours is the first paper, where actual conformal invariance of
some observables for the Ising model at criticality (in domains with appropriate
boundary conditions) is established. Our methods are different from those em-
ployed before, and allow us to obtain sharper versions of some of the known
results. Moreover, they can be used to construct conformally invariant observables
in domains with complicated boundary conditions and on Riemann surfaces. Ulti-
mately we will construct conformally invariant scaling limits of interfaces (random

1435



1436 STANISLAV SMIRNOV

cluster boundaries) and identify them with Schramm’s SLE curves and related loop
ensembles. These extensions will be discussed in the sequels [22], [11]. Though
one can argue whether the scaling limits of interfaces in the Ising model are of
physical relevance (in the random cluster representation they probably are), their
identification opens a possibility for computation of correlation functions and other
objects of interest in physics.

We consider the Fortuin-Kasteleyn random cluster representation of the Ising
model on the square lattice §Z2 at the critical temperature, eventually sending the
lattice mesh § to zero. This representation, briefly reviewed below, studies random
clusters, which are clusters of the critical percolation performed on the Ising spin
clusters at the critical temperature. The spin correlations can be easily related to
connectivity properties in the new model. Every configuration can be described
by a collection of interfaces (between random clusters and dual random clusters)
which are disjoint loops that fill all the edges of the medial lattice.

As a conformally invariant observable we construct a “discrete holomorphic
fermion”. In a simply connected domain €2 with two boundary points a and b we
introduce Dobrushin boundary conditions, which enforce the existence (besides
many loops) of an interface running from a to b; see Figure 1. We show that the
sum F'(z) of the probabilities of all the configurations such that this interface passes
through a point z, weighted in a Fermionic way (i.e., a passage in the same direction
but with a 27 twist has a relative weight —1, whereas a passage in the opposite
direction with a counterclockwise 7 twist has a relative weight —i; see Figure 3) is
a discrete holomorphic function of z, solving a discrete Riemann boundary value
problem. Then the discrete holomorphic fermion is given by F(z) Vdz. Moreover,
as the step of the lattice goes to zero, the function F(z), when appropriately nor-
malized, converges to a conformally covariant scaling limit, namely +/®’, where
® is the conformal map of €2 to a horizontal strip.

The approach is set up for a random cluster model with a general value of the
parameter g € [0, 4], and a parafermion observable of spin o = 1 — % arccos(,/q/2),
conjecturally converging to (®')¢ in the general case. The Ising case corresponds
to ¢ =2 and o0 = 1/2. For general values of g € [0, 4] the random cluster model
is similarly related to the g-state Potts model, and the corresponding spin takes
values in [0, 1].

Besides a priori estimates (which are well-known in the Ising case), we make
essential use of the Ising-specific properties in two places: to establish the discrete
holomorphicity of an observable, and to show that being a solution of the discrete
Riemann boundary value problem, it converges to its continuum counterpart. For
the latter we see possibilities for a proof in the general case, albeit more difficult. So
it seems that the main obstacle to proving conformal invariance of al/l random clus-
ter models lies in establishing discrete holomorphicity of the observable concerned.
For the Ising case this is done by proving discrete analogues of Cauchy-Riemann
relations, where partial results can be obtained for all values of g € [0, 4].
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The two sequels [22], [11] are concerned with the construction (on the basis
of one observable) of conformally invariant scaling limits of one interface and a
full collection of interfaces respectively. They are, more or less, applicable to all
random cluster models for which conclusions of this first part, in particular Theo-
rem 2.2, can be established. In the Ising case the law of one interface converges to
that of the Schramm-L6wner Evolution with k = 16/3.

These results were announced and the proofs were sketched in [21], where
one can find some of the ideas leading to our approach. Another notable case
when this approach (or rather a parallel one) works is the usual spin representation
of the Ising model at critical temperature, leading to a similar observable (related
to a conformal map to a halfplane), and to the Schramm-Lowner Evolution with
k = 3. The spin case is discussed in our joint work [4], [5] with Chelkak. While the
observable is different, exactly the same notion of discrete holomorphicity arises.

Similar observables were constructed before by Kenyon [12] and by the author
[20], [19]. The work of Kenyon concerned dimers on the square lattice (domino
tilings) and so, by the Temperley bijection, gave conformally invariant observables
for the Uniform Spanning Tree (corresponding to the random cluster model with
q = 0) and the Loop Erased Random Walk. Since SLE was not available at the
moment, the identification of interfaces had to wait till the work [14] of Lawler,
Schramm, and Werner. Nevertheless, Kenyon was able to rigorously determinate
several exponents and dimensions, and some of his results go beyond the reach of
SLE machinery. Kenyon’s considerations are close in spirit to ours, in fact, repeat-
ing his constructions for the representation of the square lattice Ising model as the
dimer model on the Fisher lattice, one is led to similar observables. Independently
we constructed [20], [19] conformally invariant observables for the critical site
percolation on the triangular lattice, which also bear some similarity to the ones
in the current paper. Unfortunately that proof is restricted to the triangular lattice,
so the question of conformal invariance remains open for the percolation on the
square lattice (which corresponds to the random cluster model with ¢ = 1).

In the current paper we work on the square lattice, where proofs are easier and
more transparent: discrete holomorphic functions enjoy many nice properties, and
the Ising model is much better understood. However, similar results are expected
on all reasonable planar graphs. Indeed, together with Chelkak, we were able to
generalize our theorems to a large class of the so-called rhombic lattices or isoradial
graphs; see [3], [4].

The paper is organized as follows. In Section 2 we state our theorem. We start
the proof by introducing a new notion of discrete holomorphicity in Section 3, and
then show that it is satisfied by an Ising model observable, which we construct in
Section 4. Finally in Section 5 we show that the discrete observable has a confor-
mally covariant scaling limit. In the proof we use an a priori estimate for the Ising
model, which follows from (a weak form) of known magnetization estimates, or
can alternatively be deduced from the discrete holomorphicity; this is discussed in
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Appendix A. Some of the more technical results about discrete harmonic functions
are reviewed in Appendix B.
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2. Statement of results

We work with the Fortuin-Kasteleyn random cluster model with a particular
emphasis on the critical Ising case, corresponding to parameter values ¢ = 2 and
p = ~/2/(¥2 + 1). For a general introduction to the Ising and random cluster
models consult the books [1], [7], [16].

The random cluster measure on a finite graph (a finite simply connected do-
main 2 on the square lattice in our case) is a probability measure on edge configu-
rations (when each edge is declared either open or closed), such that the probability
of a configuration is proportional to

# open edges (1 _ p)# closed edges  # clusters

p q )

where clusters are maximal subgraphs connected by open edges. The two parame-
ters are the edge-weight p € [0, 1] and the cluster-weight g € [0, 0o), with g € [0, 4]
being of interest to us. To an edge configuration on a planar graph naturally cor-
responds an edge configuration on its dual, such that for an edge and a dual edge
intersecting it exactly one of them is open. See Figure 1 for two dual configurations
on the square lattice with open edges pictured. It turns out that the probability of
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Figure 1. Loop representation of the random cluster Ising model.
Weight of the configuration is proportional to (ﬂ)# loops  with
q = 2. The sites of the original Ising lattice are colored in black,
while the sites of the dual lattice are colored in white. Loops sepa-
rate clusters from dual clusters, which are also pictured, the former
in bold. Under Dobrushin boundary conditions besides a number
of loops there is an interface running from a to b, which is drawn
in bold.

a dual configuration becomes proportional to

# dual open edges # dual closed edges # dual clusters
P« (I—px) g :

with the dual to p value px = p«(p) satisfying p«/(1 — px) = q(1 — p)/p. For
P = Psd ‘= /q/(/q + 1) the dual value coincides with the original one: one gets
Psd = (Psa )« and so the model is self-dual. For these and other properties of the
random cluster models consult Grimmett’s monograph [7]. It is conjectured that
the self-dual value of p is also the critical one, which was only proved for g = 1
(percolation), ¢ = 2 (Ising) and g > 25.72. We hope that the observable proposed
in this paper will eventually lead to the full proof, and together with Beffara and
Duminil-Copin we were already able to work out the g > 4 case; see [2].

We will work with the loop representation, which is perhaps the easiest to
visualize. The cluster configurations can be represented as (Hamiltonian) loop
configurations on the medial lattice (a square lattice §Z2, which has as vertices
the edge centers of the original lattice), with loops representing interfaces between
cluster and dual clusters; see Figure 1. It is well-known that for p = ps,4 the
probability of a configuration is proportional to (ﬂ)# IOOPS, with ¢ = 2 in the
Ising case.

We introduce Dobrushin boundary conditions: wired on the counterclockwise
arc ba (meaning that all edges along the arc are open) and dual-wired on the
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counterclockwise arc ab (meaning that all dual edges along the arc are open, or
equivalently all primal edges orthogonal to the arc are closed); see Figure 1. For
the loop representation this reduces to introducing two vertices with odd number
of edges: a “source” a and a “sink” b. Then besides a number of closed loop
interfaces there is a unique interface running from a to b, which separates the
cluster containing the arc ab from the dual cluster containing the arc ba. See
Figures 1 and 4 for typical configurations.

Note that Dobrushin boundary conditions are usually formulated for the spin
Ising model and amount to setting plus and minus spin boundary conditions on two
arcs correspondingly, thus creating an interface between two spin clusters. Since
we need an interface between two random clusters, we formulated similar condi-
tions in the random cluster setting. Our version of Dobrushin boundary conditions
is equivalent to setting plus boundary conditions on one arc and free on the other
in the spin setting.

Letting ¢ — 0+, one obtains the uniform spanning tree model in the limit.
With Dobrushin boundary conditions one can even set ¢ = 0: this prohibits loops,
so we consider configurations containing only an interface from a to b, which are
weighted uniformly since the number of open edges is always the same. Those
configurations are easily seen to be equivalent to spanning trees on the original
spin lattice, rooted on the arc ab.

We are mainly interested in the Ising case of g=2 and p= p,g = v2/(~/2+1).
Though it is known that this value of p is critical, we will not use it in the proof.
For other values of ¢ our proof works to large extent, also for the self-dual value
P = Psd» and in principle one can try to use this in establishing its criticality.

Define spin by

2
o :=1——arccos(\/q/2) ,
V4

and note that for the Ising case o = % Let F(z) be the probability that the interface
y passes through a point z taken with a complex weight:

F(iz) =FE (Xzey(w) -exp (—iocw(y,b — Z))) .

Here w denotes the winding or (the total turn) of y from b to z, measured in radians.
For the Ising case an additional 25 turn of the curve before reaching z changes the
weight by a factor of —1; see Figure 3. The formula above gives F at the edge
centers (of the medial lattice, where the loop representation is defined), and we
extend it to all of 2 in a standard piecewise constant way. Exact definition can be
found below.

In Section 3 we will define and study a notion of discrete holomorphicity, and
we will then show in Section 4 the following

PROPOSITION 2.1. For the Ising model in a given lattice domain the function
F(z) is discrete holomorphic and satisfies the discrete analogue of the Riemann
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Boundary Value Problem (with o = %)
(1) Im (F(z) tangent(z)?) = 0.

The continuum problem is solved by f = (®’)?, where ® is the conformal
map of 2 to a horizontal strip of width one, with a and b mapped to the ends.

After some technicalities, we show in Section 5 that F converges to its con-
tinuum counterpart:

THEOREM 2.2. Suppose that as the lattice mesh §; goes to zero, the discrete
domains 2 on the lattices §; 7? (with points a j and bj on the boundary) con-
verge to the domain Q2 (with points a and b on the boundary) in the Carathéodory
sense. Then as j — oo for the Ising model the corresponding functions F; =
F(z,Qj,a;,bj, SJZZ) converge uniformly away from the boundary:

@ 87 F; 3 f = ()7
where the spin is ¢ = 1/2 and the normalization is ¢ = 1//2.

Remark 2.3. Carathéodory convergence is defined as the convergence of the
normalized Riemann uniformization maps on compact subsets.

Namely we fix a point w € €2, and let ¢ (or ¢;) be conformal maps from the
unit disk D to © (or €2;) such that points 0, 1, { (or 0, 1, {;) are mapped to w, a, b
(or w,a;,b;) or corresponding prime ends. We say that 2; converges to 2 if ¢;
converges to ¢ inside D and ¢; tends to .

It is easy to see that the Hausdorff convergence of the boundaries implies the
Carathéodory convergence and that solution to the Riemann boundary value prob-
lem (1) for z inside €2, being defined in terms of the Riemann maps, is uniformly
continuous as a function of €2 in the topology of Carathéodory convergence.

Remark 2.4. The convergence (2) above holds on the boundary of 2 wherever
it is a horizontal or vertical segment. Since complex weight on the boundary is
independent of configuration, we conclude that for such z € 92

1
\/_8_ P(z € y) = const /'(z2) ,
J
from which one deduces that random cluster intersects the (smooth) boundary on a
set of dimension 1/2 and that, for the spin Ising model at criticality, magnetization
on the boundary is proportional to V8 (with a specific factor).

Remark 2.5. An observable with a conformally covariant scaling limit almost
immediately implies convergence of interfaces to Schramm’s SLE curves, in topol-
ogy of Lowner driving functions (see e.g., discussion in [21]). Using the results of
[10], we can upgrade this to a much stronger convergence of interfaces themselves,
which will be discussed in [22].

A variation of our proof seems to work for ¢ = 0 as well, and most of it
can be worked out for other values of ¢, though sometimes in a different way.
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Hopefully the missing part of the discrete holomorphicity statement will be worked
out someday.

CONIJECTURE 2.6. Proposition 2.1 (with an appropriate, possibly approxi-
mate, definition of discrete holomorphicity) and Theorem 2.2 hold for all values of
q €[0,4].

Remark 2.77. As discussed in Remark 4.6, the key Lemma 4.5 works for all
q € [0, 2] if one chooses the spin appropriately, 0 := 1 — % arccos ( Va/ 2). Unfor-
tunately, Lemma 4.1 is missing for ¢ # /2, thus we cannot conclude the discrete
holomorphicity. However the resulting parafermion is in agreement with SLE the-
ories, to which the FK models conjecturally correspond, as discussed in [21].

3. Discrete holomorphicity revisited

We will identify lines through the origin with unit vectors (complex numbers)
belonging to them. For a line £ or equivalently a vector € £ we denote by
Proj (F,{) = Proj (F,«) the orthogonal projection of a complex number F on
the line £. Note that for a unit vector o

(3) Proj (F,a) = aRe(@F) = (F+a*F)/2.

Consider the square lattice §Z2 (possibly rotated). By a lattice domain £ we mean
some collection of vertices joined by edges such that all vertices have even number
of edges. In our application we will also allow half-edges (usually two, their middle
ends will become the source a and the sink b).

By distance between two points (when speaking of moduli of continuity of
functions, etc.) inside 2 we will mean the distance in the inner Euclidean metric.

If for some vertex all four edges are present, we call it an interior vertex, while
vertices with two edges we call boundary vertices. If for a square all four vertices
are interior, we call it an interior square. To the lattice domain €2 we associate a
planar domain € which is the union of all interior squares. We will assume that
those domains are connected and simply connected.

Color the lattice squares in a chessboard fashion. We orient every edge e,
turning it into a unit vector (or a complex number) ¢ with the orientation chosen so
that the white square is on the left and the black one on the right. Then to the edge
e prescribe a line £(e) in the complex plane which passes through the origin and
the square root of the complex conjugate of the vector ¢, considered as a complex
number (note that the choice of the square root is not important).

Without loss of generality we can assume that the lattice edges are parallel to
the coordinate axis (otherwise all lines are rotated by a fixed angle). Then horizon-
tal edges correspond to the lines with argument (defined up to 7) 0 or /2 (in the
chessboard order), whereas vertical edges correspond to 7 /4 or 377/4, as shown in
Figure 2.
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A given vertex v has four neighboring edges. If we go around v counter-
clockwise, then the line corresponding to the neighbor with each step is rotated
counterclockwise by /4 (so the full turn corresponds to a rotation by 7, which
preserves the line but reverses directions).

Definition 3.1. We say that a function F defined on vertices is preholomor-
phic or discrete holomorphic in a domain €2 if for every edge e € 2 orthogonal
projections of the values of F at its endpoints on the line £(e) coincide. We will
denote this common projection by F(e).

Remark 3.2. In the complex plane holomorphic (i.e., having a complex de-
rivative) and analytic (i.e., admitting a power series expansion) functions are the
same, so the terms are often interchanged. Though the term discrete analytic is in
wide use, in discrete setting there are no power expansions, so it would be more
appropriate to speak of discrete holomorphic (or discrete regular) functions. We
prefer the term preholomorphic, which was common at one point, but seems to
have gone out of use.

Remark 3.3. The more commonly used discrete holomorphicity condition
asks for the discrete version of the Cauchy-Riemann equations

i F =i0o F

to be satisfied. Namely, for a lattice square with corner vertices NW, NE, SE,
and SW (starting from the upper left and going clockwise) one has

@) F(NW)—F(SE) = i (F(NE)—F(SW)) .

It is easy to check that our property implies the more common one on vertices, but
does not follow from it. Moreover, our property is equivalent to the more common
property for the function restricted to horizontal edges.

Definition 3.4. We will say that a preholomorphic function F solves the Rie-
mann Boundary Value Problem (1) in the domain €2, if for every boundary vertex
v with two edges, projections of F(v) on the lines corresponding to these edges
have the same modulus.

Remark 3.5. Indeed, since projections of F'(v) on lines corresponding to two
edges coincide, F(v) belongs to the bisector of those lines. Equivalently the value
of F at every boundary vertex v is parallel to the reciprocal of the square root of the
tangent vector 7(v) (or rather a discrete approximation — the vector orthogonal to
the bisector of the angle between two edges from v). This is a discrete analogue of
the Riemann Boundary Value Problem (1) and our main goal will be to show that
solutions to the discrete problem in the limit solve the continuum one.

We will solve the problem (1) by “integrating” the square of F', which is not
so easy since F2 is no longer preholomorphic.
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LEMMA 3.6. Let F be preholomorphic in a domain 2. Then up to a constant
there is a unique function H = HF defined on the lattice squares in 2 or adja-
cent to 2 and such that for any two adjacent squares, say black B and white W,
separated by the edge e, one has

(5) H(B)—H(W) = |F(e)*.

In applications we will choose the constant so that H is zero on a square
immediately below b. Note that H is defined on the dual lattice to §Z2, which is
the usual case for discrete derivatives or primitives.

Remark 3.7. Values of the argument of F on edges are such that the function
28H is a discrete analogue of the indefinite integral Im [ F 2dz, which we will
establish in Appendix C, equation (33): if ¥ and v are centers of two squares with
a common corner z, then

28 (H(v)— H(u)) =Im (F(2)* (v —u)).

Proof. 1t is sufficient to check that when one goes around an interior vertex,
increments of A add up to zero. Suppose that the edge neighbors of the vertex v
are £, S, W, and N in clockwise order starting from the right. Then the sum of
increments when we go around v is

(6) £|F(E)* F|F(N)?£|F(W)|> F|F(S)*,

with signs depending on the choice of chessboard coloring. By construction £(E) L
L(W) and £(N) L £(S). Since F(E), F(W), F(N), and F(S) are orthogonal
projections of F(z) on the corresponding lines, by Pythagoras theorem

|F)> = |F(E)]> + [F(W)|> = [F(N)|* + | F(S)[* .
Thus the sum of the increments is equal to
L(|F(E)?+ |[FOV)P = [F(N)]? = |F($)?) = £(|F@)* = [F)[*) =0
and indeed vanishes. O

Denote H restricted to black squares by H b We define the discrete Laplacian

by
AH?(B):=) (H(B))—H(B)) .
J

where the sum is taken over four black squares B; — neighbors of the black
square B, touching it at vertices. Similarly we define the Laplacian for the restric-
tion HY to white squares. We say that a function is discrete (sub/super) harmonic
if its Laplacian vanishes (is nonnegative/nonpositive).

LEMMA 3.8. If F is preholomorphic, then for an interior white square W
with corner vertices NW, NE, SE, and SW (starting from the upper left and
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Figure 2. An example of a lattice domain €2 with boundary condi-
tions creating an interface from a to b, which is drawn in bold. The
lattice squares are colored in the chessboard fashion, with black
corresponding to the sites of the original Ising lattice and white to
the sites of its dual. Near the edges we write the arguments of the
corresponding lines. Note that running from a to b the interface
always follows the arrows and has black squares on the left.

going clockwise) we have

(1) AHY(W) = —|F(NE)—F(SW)|*> =—|F(NW)—F(SE)|> <0,
so HY is superharmonic. Similarly, for an interior black square B

®)  AH’(B) = |F(NE)—~F(SW)|> =|F(NW)~F(SE)]> 0.

so HY is subharmonic.

Remark 3.9. It is clear that subharmonicity on black squares is equivalent to
superharmonicity on white ones. Indeed, the definition of H is such that it is always
increased when we pass from white squares to black. If we reverse the colors, we
will arrive at the function —H and subharmonicity will become superharmonicity.
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Proof. A computation leading to equations (7) and (8) is possible, since incre-
ment of H across some vertex, say N W, can be written in terms of the projections
of F(N W) on various lines, and so ultimately in terms of F(N W). So we can
express the Laplacian A H(B) in terms of the values of F at four neighboring
vertices. But projections of F (/N W) on two lines corresponding to upper and left
edges of the square coincide with those of F(NE) and F (S W) correspondingly.
So we can express F(N W) and similarly F(SE) in terms of F(NE) and F(SW).
The resulting formula for the Laplacian is quite simple.

The computation is rather lengthy, so we present it in the Appendix C. How-
ever there are several arguments why we should arrive at a simple result, sufficient
for our purposes. Since we deal with squares of absolute values of projections,
we arrive at some real quadratic form in F(NE), F(NE), F(SW), and F(SW).
Symmetries of our setup imply that this form is invariant under the rotation by
7 which yields the exchange F(N W) <> —F(SE), and under change of F by
an additive constant (this follows e.g., from equations (29)—(30)). Such a form is
necessarily given by const-|F(NE) — F(SW)|?. In fact, the lengthy computation
can be replaced by this argument, since any sign and value of the constant would
suffice: if it is negative, we should just exchange subharmonic and superharmonic
functions in the proofs below.

An alternative proof can also be found in [4]. O

By boundary arcs we mean parts of 92 which are not separated by “distin-
guished” points (i.e., the ends of half-edges). In our usual setup there are two
boundary arcs, ab and ba (with points given counterclockwise). By values of Hr
on the boundary we mean its values on the outside squares adjacent to €2.

LEMMA 3.10. If a preholomorphic function F solves the problem (1), then
HF is constant on the boundary arcs.

Proof. Go along a boundary arc over the squares adjacent to the domain. Let
B and B’ be the centers of two consecutive ones (say of black color), they touch
at a vertex v, and are separated from 2 by the edges e and ¢’ emanating from v.
Then
H(B)—H(B')=|F(e)]*—|F(¢)]* =0,

so H is indeed constant along the arc. O

4. Discrete holomorphic spin structure

We consider the loop representation of the random cluster Ising model at
critical temperature. The discrete domain © on the lattice §Z2 is as discussed
above, with a “source” a and a “sink” b. Thus for every configuration @ besides
loops there is a curve y = y(w) joining a and b, which we will call the interface;
see Figure 1. Rotate the lattice in such a way so that an only edge incoming into b
from €2 points to the right.
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winding O b4 2
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Figure 3. Values of the complex weight W (y, z) for different pas-
sages of the interface y through z.

We round the corners of the loops so that there are no sharp turns; see Figure 2.
The loops can be connected at a vertex in two different ways, like near the vertex
v in Figure 5. Note that the interface can pass through a vertex twice, utilizing
two rounded corners; see the left part of Figure 5. Color the lattice squares in a
chessboard way, so that standing at b and facing the domain €2, we have a black
square on the right and a white one on the left. The black squares correspond to the
sites of the original Ising lattice, while the white squares correspond to the sites of
the dual one. An interface going from a to b always has black squares on the left
and white on the right, so it can arrive to a point z only from one direction (and
not from the opposite one). Thus we can prescribe to every point a vector which is
tangent to all interfaces passing through it from a to b. Since it has black square on
the right, for points on the edge e it coincides with the vector ¢ discussed above.

Recall that to every point z (centers of edges and rounded corners are impor-
tant) we prescribe a line £(z) in the complex plane which passes through the origin
and the square root of the corresponding vector (the choice of the square root is
irrelevant). For edges this agrees with the scheme discussed above; see Figure 2.

A given vertex v has eight neighboring corner or edge centers. If we go
around v counterclockwise, the line corresponding to the neighbor with each step
is rotated clockwise by /8 (so the full turn corresponds to a rotation by 7, which
preserves the line but reverses directions).

For two points z and z’ on an interface y we will denote by w(z — z’) =
w(y, z — z’) the winding (i.e., the total turn) of the curve y as it goes from z to z’,
measured in radians.

For an interface y we define the complex weight W at point z € y by

W(y,z) := exp (—% (w(y,a—>z)+w(y,b—>z)—w(y,a—>b))) .
Note that w(y,a — z) —w(y,b — z) = w(y,a — b) and so

) W(y,z) = exp(—iocw(y,b —z)) , foro = % .

The values of the complex weight are illustrated in Figure 3.
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LEMMA 4.1. For a point z and any realization of the interface y the complex
weight W(y, z) belongs to the line £(z).

Proof. When the interface is traced starting from b the property is easily
checked by induction. At the center of the first edge the complex weight is equal
to 1, and so belongs to the line through 1. When the interface turns by +6, the
winding w(y, b — z) is increased by £6. So the complex weight changes by a
factor of exp (—io (+6)) = exp (Fif/2). On the other hand, the line £(e) is also
rotated by F6/2 since it passes through the complex conjugate of the square root
of the corresponding tangent vector which is rotated by +6. Here we use that the
interface when traced from b always has black squares on the right and so goes in
the opposite direction to the tangent vector. O

We will work with points z which are either “centers of corner turns” (near
every vertex there are four such points; see Figure 5) or centers of edges. For
corner and edge points we can write

(10) W()/, z7) = An(y,a—)z)—}-n(y,b—)z)—n(y,a—)b) — AZn(y,b—)z) ]

Here n(z — z’) = n(y, z — z’) is the number of &7 turns with sign that the curve
y makes going from z to z’, and A = exp(—in/8) is the weight per - clockwise
turn of y, b — z. Note that for corner points w(a — z) differs from n(a — z)-7/2
by £ /4 (the last half-turn before reaching z) but the difference enters w(a — z)

and w(b — z) with opposite signs and so cancels out.

Remark 4.2. As was mentioned before, the choice of weight is such that a
relative weight of the interface with an additional 27 twist around z is —1. Indeed,
such a twist forces each of the two halves ¢ — z and b — z to make four 7 /2-turns,
so the weight for one 77/2-turn is A = exp(—i/8), which satisfies A3 = —1.

Remark 4.3. Taking A = exp(i/8) instead, one arrives at discrete anti-holo-
morphic functions.

Define a function F at all “centers of corner turns” (near every vertex there
are four such points; see Figure 5) by

b4
F(c) := E(Xcepw) Wy (w),c))-2cos 3
Similarly define F for all centers of edges by
F(e) .= E (Xeey(w) : W()/(a)),e)) .

Different normalization arises because there are more corners than edges per vertex.

Remark 4.4. The given definition of F for edge centers works well only for
the square lattice at criticality (which is perhaps the most interesting case). As an
alternative, one can start with our definition for corner centers, and use equation
(13) to define F for edge centers. This approach gives the same function in our
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setting, but also generalizes to noncritical values of p and to other lattices. Though
we only use the function for edge centers in the current paper, we still prove Lemma
4.5 in a more general setting for possible future use.

With corners rounded, the interface can go through a vertex v in four different
ways, passing through one of the four neighboring corners ¢;. For an interior vertex
v we define F as

F(v) == Y F(cj)/2.
J

One can rephrase this as saying that

(11) F) = E (Yvey@) - W (@).v)) -cos%

where all passages of the interface through v (there might be up to two) are counted
separately.

LEMMA 4.5 (North by Northwest). For an interior vertex v the values of F
at its eight neighbors are orthogonal projections of F(v) on eight corresponding
lines.

Remark 4.6. The main identity (12) works for other values of ¢ € [0, 2] when-
ever the spin is chosen so that A2 + A2 = J/q- Unfortunately, Lemma 4.1 is
missing for ¢ # /2, thus discrete holomorphicity does not directly follow. Roughly
speaking, the observable satisfies “half of the Cauchy-Riemann equations,” being
divergence-free, but not curl-free. However, we are sure that it is holomorphic in
the scaling limit.

Remark 4.7. A boundary vertex v has only two neighboring edges, say e and
e’. We define F(v) as a unique complex number which has orthogonal projections
F(e) and F(e’) on the corresponding lines £(e) and £(e’). It follows that F is
preholomorphic in 2.

Remark 4.8. The proof uses the square lattice structure at v, but the only
global information needed is that the graph is planar. So if we define F' on some
planar graph which has square lattice pieces, it will be preholomorphic there. In
a sequel we will discuss generalizations of preholomorphic functions to general
planar graphs.

Proof. When going around v clockwise the line is rotated by 7 /8 with each
step, thus lines corresponding to antipodal neighbors are at angle of 477/8 = /2,
and so are orthogonal. Hence the values of F' at two antipodes are orthogonal, and
are orthogonal projections of their sum on the corresponding lines. So we will be
proving in fact a stronger property, namely that

(12) F(nw)+ F(se)=F(ne)+ F(sw)=F(w)+ F(e)=Fn)+ F(s) = F(v),
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Figure 4. Rearrangement at a vertex v: we only change connec-
tions inside a small circle marking v. Either interface does not
pass through v in both configurations, or it passes in ways similar
to the pictured above. On the left the interface (in bold) passes
through v twice, on the right (after the rearrangement) it passes
once, but a new loop through v appears. The loops not passing
through v remain the same, so the weights of configurations differ
by a factor of /g = /2 because of the additional loop on the right.
To get some linear relation on values of F, it is enough to check
that any pair of such configurations makes equal contributions to
two sides of the relation.

where in each of the pairs two terms are orthogonal. Here starting from the right
and going clockwise we denote eight neighbors of v by e, se, s, sw, w, nw, n,
and ne.

Recall that by definition

F(v) = (F(ne)+ F(nw) + F(sw) + F(se)) /2,

so to establish the identity (12) and the lemma it is sufficient to show that the sum of
values of F' at two antipodal neighbors is the same for four such pairs of antipodes.

Define an involution w + @’ on loop configurations, which results from the
rearrangement of connections at the point v. For the random cluster formulation
it corresponds to opening/closing the edge going through v. To prove the linear
identity it is sufficient to show that each pair @, @’ of configurations makes identical
contributions to all four “antipodal” sums.

Consider some pair of configurations, say w and «’. If the curve y(w) does
not pass through v, neither does y(w’), and all contributions are zeroes.

Otherwise both curves pass through v. Trace either of the curves from a until
it first arrives to the neighborhood of v. Since it has black squares on the left, it
can arrive from two possible directions; similarly, when traced from b, it can arrive
from two other directions.

There are four possible topological pictures for the arrivals, but they are all
analogous, so we will work out one of them. Assume that the half starting from a
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configuration o’ configuration w

n
toa w "MW\ ¢
sw e
s
tob to b

Figure 5. Schematic drawing, representing the change in the in-
terface after the rearrangement at a vertex v. Going from a and b
to v the interface might make some number of turns, which will
not influence our reasoning, since it changes the weight of both
configurations by the same factor. Note that since a and b are on
the boundary, for topological reasons the interface can go from »
to e only on one side of v.

arrives from the west, while the half starting from b arrives from the south (such
picture is possible for a half of the vertices v, for others the curve traced from a
would arrive from a vertical direction). In one of the curves, say y(w), the two
traced halves are immediately joined (and there is also a cycle passing near v),
whereas in the other, y(w’), this cycle is included into the curve; see Figures 4
and 5. Then out of the corner points y(w) contributes only to F(sw), say a term X
(weight of all cycles times the complex weight). On the other hand the curve y(w’)
out of the corner points contributes to F(nw) and F(se) only. The contributions
differ from X by a factor of 1/+/2, since the number of cycles decreased by one.
Moreover, the phase changes, since compared to y(w) reaching sw the curve y(w’)
winds by additional +7/2 when reaching nw (coming from the half originating
in b) and by additional —z/2 when reaching se (coming from the half originating
in a). Correspondingly the complex weights change by factors of A% and A2; see
equation (10). So y(w’) contributes to F(nw) + F(se) a term

X-02432)/v2 = X-(e—i%2+ei%2)/ﬁ - X-ZCos(%)/«/E — X,

So y(w) contributes X to the second sum in (12), while not contributing to the first,
whereas y(w’) contributes X to the first sum in (12), while not contributing to the
second. We conclude that the first two sums coincide:

F(nw)+ F(se) = F(ne)+ F(sw) .
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The same (but messier) reasoning shows that the two remaining sums share
the same value, which we denote by F(v). Perhaps this is best summarized by the
following table which shows contributions of two configurations to the values of

F at various neighbors of v:

nw se || ne | sw
1) 0 0 0| X
XAz | x22 olo
a) — —
V2 | V2
n S w e
0 XA XA 0
2 cos(m/8) 2 cos(m/8)
X3 XA X2 X3
2cos(/8)v/2 | 2cos(/8)~/2 || 2cos(r/8)v/2 | 2cos(r/8)v/2

Using that A = exp (—in/8), after an exercise in trigonometry one checks that
numbers in 2 x 2 squares bordered by double lines always sum up to X. Thus
taken together w and @’ make identical contributions to all four antipodal sums
in (12).

Alternatively we can finish the proof by deducing that values of F' on the
neighboring edges are also projections of F(v). To that effect we write the value
of F at the northern edge in terms of the northwest and northeast corners. Consider
some edge e emanating from v with the corresponding line £(e) passing through a
vector . Let ¢ and ¢’ be the two adjacent corner points. The corresponding lines
are rotations of £(e) by £/8, passing through vectors A and Ao correspondingly.

Note that the interface passes through e if and only if it passes through exactly
one of the points ¢ and ¢’. Taking into account the difference in complex weight
and normalization, and using the formula (3) for projections, we write

(13) F(e) = (AF(c) +AF(c")) / (2cos(r/8))
= (AProj (F(v), Aa) + AProj (F (v), 2a)) / (2 cos(rr/8))
= (A (F) + A)*F(v)) + A (F(v) + Aa)>F(v))) / (4 cos(r/8))
= (AF(v) + Aa?F (v) + AF (v) + 22 F (v)) / (4 cos(7/8))
= (F(v) +a*F(v)) (A +1) / 2(A + 1)) = Proj (F(v), @) ,

thus finishing the proof. O
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Now that F is preholomorphic, we can apply the results of Section 3 and
define the function H. In order to pass to the scaling limit, we need to control its
modulus of continuity.

LEMMA 4.9. For every positive r there is a function 8, (x) : Ry — R4 such
that limy .o 8, (x) = 0 and if two neighboring squares B and W are r-away from
at least one of the boundary arcs ab or ba, then

|[H(B)—H(W)| < 6r(5) .

Remark 4.10. Here § is the lattice step. Note that the only way the shape of Q2
enters into the estimate is via r. The lemma essentially means that the restrictions
of the function H to black and white squares are uniformly close to each other
whenever we are away from a and b.

Remark 4.11. The lemma is derived from the fact that ' — 0 away from «
and b as § — 0. Since preholomorphic F is uniquely determined by its bound-
ary conditions, there should be an “Ising-independent” proof, using only discrete
holomorphicity and boundary conditions, and we present one in [4].

Proof. If an edge e separates the squares B and W, by definition
(14) |H(B)~HW)|=|F(e)? <P (e y),

so we can take as our function § the square of the similar function in Lemma A.1.
d

LEMMA 4.12. The function F satisfies the Riemann Boundary Value Prob-
lem (1). Moreover H = 0 on the (counterclockwise) boundary arc ab and H =1
on the (counterclockwise) boundary arc ba.

Proof. Let v be a boundary vertex with incoming edges e and ¢’. Then all
possible interfaces y arrive at e from a (or from ) with the same winding, so
W(y(w), e) is independent of w. Therefore

|F(e)| = ‘[E (Xeey(w) : W(V(a))’e))‘ = |W(V(a))’e) E (Xeey(w))| =Peecy(w)) .

Similarly |F(e’)| = P (¢’ € y(w)). But since there are only two edges out of v, an
interface passes through e if and only if it passes through ¢’, so

|Fle)| =P(ecy(@) =P( ey(@) = |F()|

and F satisfies the Riemann Boundary Value Problem (1), proving the first state-
ment of the lemma.

By Lemma 3.10 it follows that the function H is constant on the boundary
arcs. Let u and v be the centers of squares immediately below and above b. Recall
that we chose H (which is determined up to an additive constant) so that H(u) = 0.
Thus H = 0 on the (counterclockwise) boundary arc ab. Every interface passes
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through b, and furthermore has the same complex weight at ». So
2
H(v) = H() +[FO)]” = 0+ [E(xpey - W(r.b))|
2
=[W@.D) E(tpey)| =P ey@)’=1.

Therefore H = 1 on the (counterclockwise) boundary arc ba. O

5. Passing to a limit

In this section we prove Theorem 2.2. To derive convergence we will use
only discrete holomorphicity and boundary values of F, and use the definition of
F via the Ising model only in quoting Lemma 4.9. As discussed in Remark 4.11,
the latter can be derived from the discrete holomorphicity alone. So essentially
Theorem 2.2 can be restated as a theorem about preholomorphic functions solving
the Riemann boundary value problem (1), as is done in our subsequent work [4].

We work with a sequence of lattice domains, which approximate a given do-
main 2. Consider a sequence of lattice domains §2; with distinguished points a;
and b; and with lattice steps §;. Let F; = F(z,2j,a;,b;,8;Z?) be the expectation
as defined above, and denote H; := H Fj-

~ C
Assume that §; — 0 and Q;,a;,b; % Q.a.b as J — oo. We use the

Carathéodory convergence of domains, which is the convergence of normalized
Riemann uniformization maps on compact subsets.

Recall that ® is a mapping of Q2 to a horizontal strip R x [0, 1], such that
a and b are mapped to Foo. Note that since ® is uniquely defined up to a real
additive constant, its derivative, and hence the right-hand side in (2), are uniquely
determined (the branch of the square root is chosen to agree with F'). Also by
Remark 2.3 the function +/®’ is Carathéodory-stable.

We start by establishing convergence of H'’s:

LEMMA 5.1. Away from a and b there is a uniform convergence:
(15) Hp, = h:=Im® .

Proof. Remove the union V' of some neighborhoods of a and b, then there is
a positive r such that remaining parts of the boundary arcs ab and ba are at least
4r-apart. Then all points in Q \ V are at least 2r away from at least one of the
arcs ab and ba. We conclude that because of the Carathéodory convergence, for
sufficiently large j all points in ©2; \ V' are at least r away from at least one of the
(discrete) arcs ab and ba.

Hence by Lemma 4.9 we have uniform convergence

(16) sup |H(B;)— H(W))| =: B i

for neighboring squares B;, W; € Q; \ V.
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Considering H; restricted to black and white squares we obtain functions
H }’ and H ]?”, subharmonic and superharmonic correspondingly by Lemma 3.8.

If we extend H f’ from black (H ;U from white) lattice vertices to whole of 2 in
any reasonable way (e.g., making constant on lattice squares), then (16) can be
rewritten as convergence in the uniform norm on Q \ V:

(17) H HY — HY

=: ;i ——0.
J HQ\V,OO IB]

Let H Jb be a discrete harmonic function on black squares with boundary values

given by £, define H j?” similarly. Then
(18) HP —2B; <HP —B; <HY +B; < HP +28;

on the boundary, and hence inside domain €2, since the four functions involved are
subharmonic, harmonic, harmonic and superharmonic correspondingly. Together
with (17) this means that

Hb ﬁb”
H J I IQ\V,00

< 5B,

and since H i’s converge to h by Lemma B.3, so do H;’s, proving the lemma.
Note that we only used that one of the functions H b , HY is subharmonic,

while the other is superharmonic, but we do not care which one is which, and thus

can use the weaker version of the Lemma 3.8. In reality a faster proof is possible,

since by our construction H b_pgw> 0, and since the difference is subharmonic,

its maximum is attained on the boundary. O

If H;’s are harmonic, the theorem immediately follows. Indeed, derivatives of
Hj admit an integral representation (in terms of H; itself), so uniform convergence
of H; implies uniform convergence inside 2 of VH; and hence its square root,
i.e., F;j. For a general approximately harmonic H; this does not work, but in our
case we can use that an appropriate restriction of H; is subharmonic and that F;
is exactly preholomorphic.

First we will need the following compactness estimate:

LEMMA 5.2. Let U be a subdomain compactly contained in 2, and denote
by U; its discretizations with mesh §;. Then

8 Y |FiI*
Uj
is uniformly bounded.

Remark 5.3. The expression above is essentially the L2 norm of F i/ \/E .

Proof. Note that when we jump diagonally over a vertex z, the function H;
changes by Re F jz or ImF ].2 depending on the direction. It follows that it is enough



1456 STANISLAV SMIRNOV

to prove uniform boundedness of
8 Y |VH,|.
U;

where V denotes the discrete difference gradient of H; restricted to black or white
vertices.

From now on, we will work with H; on the “black” sublattice, having centers
of black squares as vertices. In particular, A will denote the corresponding Lapla-
cian. Recall that restriction of H; to this lattice is subharmonic; i.e., AH; > 0.

Fix a square Q of side length / such that a nine times bigger square 90
is contained in 2. We will denote by the same letter the lattice approximation
Q = Q; of O, whose side will have L = L; :=1/§; edges. It is enough to find
for every such Q a uniform in j bound on

(19) 8 > |VHj|.
9,

Recall that on 9Q one has uniform convergence H; =h. Denote by H ;‘ the
discrete harmonic function on 9Q; having the same boundary values as H; on
09Q;. Then H;‘:;h on 09Q, and by Lemma B.1, %VH;‘:;Vh on Q. Summing
over Q we infer that

5 Y| vH;
9

converges to the area integral of |V H |, and in particular is bounded. Thus to bound
(19) it is enough to bound

53 ‘v (H,- —Hf)
1]

Since H; and H Jf" have the same limit, their difference converges uniformly
to zero:

(20) sg‘H]*—Hj‘:ojeo when j — oo.
9

Denote by G;(x,y) = Gog ; (x, y) the discrete Green’s function for the square
9Q;, with AxG(x,y) = A,G(x,y) = §x—y and vanishing on the boundary of
90 x 90Q. Note that it is negative inside 9Q.

Using discrete analogue of the Riesz representation formula we can write a
subharmonic function H; — H j* as a convolution of its Laplacian (which coincides
with that of H;) with the Green’s function:

@1) Hj(x)—Hf(x)= Y AH;(y)G(x,y).
y€90
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Taking the difference gradient, we arrive at

22) V(H )= H (0) = Y AH;()VxG(x. ).
y€90

Using Lemma B.4 we write:

3 |v (Hj (x)— H} (x))‘
xeQ

=21 X AH (VG )| < D AH () Y IVaG(x, )]

x€Q |yesQ y€90 ey
const const
=— > AH;(») Y IG(x.y)| = - Y Y AH ()G y)
ye9Q x€Q 120 ye90
const const/ o;
=7 Z )Hj(x)—H/?"(x)‘ <constLo; = 8—/ ,
xeQ J
proving the lemma. -

Lemma 5.2 implies (by Theorem V.12.a in [15] applied to the primitives of
F;’s) that the sequence {F; / \/E } is precompact in the uniform topology on any
compact subset of 2. To show its convergence to f it is sufficient to establish
convergence to f of a uniformly converging (say to g) subsequence. Discrete
contour integrals of Fj/,/28; vanish, but because of the uniform convergence they
converge to the contour integrals of g, so by Morera’s theorem g is holomorphic.
Uniform convergence also implies convergence of the (discrete) integral of F' ].2 /28
to that of g2. By Remark 3.7, the imaginary part of the former is given by H; +
const, which also converges to Im®, so we conclude that the two limits are equal:

Im® = lim H; = Im | g*+ const.
J
Since the functions ® and g2 are holomorphic, equality of imaginary parts implies
that they are equal up to a constant. Differentiating and taking the square root, we
conclude that g = +/ @/, thus proving Theorem 2.2.

Appendix A. A priori estimates

We use an estimate on the modulus of continuity of our function F, which
essentially states that the interface cannot be space-filling. We reduce it to rather
weak (compared to what is known) magnetization estimates, which ultimately can
be retrieved from the (old) literature. Since this paper was first circulated, modern
proofs also became available; see e.g., [8] by Grimmett and Janson. Alternatively,
it is possible to build everything on the basis of discrete holomorphicity, without
appealing to properties of the Ising model, but the resulting proof is more involved;
see [4].



1458 STANISLAV SMIRNOV

For simplicity we present a sketch of the proof using classical results and
assuming, unlike in the rest of the paper, the knowledge of the basic properties and
techniques of the Ising model.

LEMMA A.1. For every positive r there is a function §;(x) : Ry — R4 such
that limy ¢ 8, (x) = 0, and if an edge e is r away from at least one of the boundary
arcs ab or ba, then

Pleey) < §:0).

Proof. Denote by B and W the centers of two neighboring squares (black and
white), separated by an edge e. If an edge e belongs to the interface, then B is
connected by a cluster to the arc ba and W — by a dual cluster to the arc ab (since
the interface separates the two). Assume that the edge e is at least r away from
the boundary arcs ba. The case when it is away from ab is treated similarly with
clusters replaced by dual clusters (which leads to the same result since the model
is self-dual). Denote by Q the square with side length r/2 centered around e. By
our assumption it does not intersect the boundary arc ba. Then by monotonicity
we can write

Peey)
= (B connected by a cluster to the arc ha
and W connected by a dual cluster to the arc ab)
< P (B connected by a cluster to the arc ba with ba wired and ab dual-wired)
< (B connected by a cluster to dQ inside 2
with dQ2 \ Q wired and 92 N Q dual-wired)
< (B connected by a cluster to dQ inside 2
with Q N 9dQ wired and 02 N Q dual-wired)
< [P (B connected by a cluster to dQ inside Q with dQ wired)
= magnetization at B in the Ising spin model in Q
with + ” boundary conditions on 9Q.
The right-hand side, the magnetization at criticality, was computed by Kaufman-
Onsager and Yang [9], [24], and for a fixed r it tends to zero with the mesh §
tending to zero, proving the lemma.
Note that magnetization was computed to tend to zero like § 1/8 but we do not

need this stronger statement. On the other hand, after convergence of interfaces is
established, one can deduce it using the standard SLE techniques. O

Appendix B. Estimates of discrete harmonic functions

In this section we collect the needed facts about discrete harmonic functions.
Let §;72 be a sequence of lattices with mesh §; tending to zero. For a domain
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we denote by €2 the corresponding lattice domain in §; 7?. As usual, functions on
a lattice domain are thought of as defined in the whole domain, say by piecewise
constant or linear continuation.

A classical fact says that the solution of the discrete Dirichlet problem con-
verges uniformly away from the boundary to the solution of the continuum one.
The following lemma can be found in the seminal paper [6] by Courant, Friedrichs,
and Lewy. It can also be deduced from the random walk interpretation of harmonic
functions (which is also discussed in [6]).

LEMMA B.1. Let Q; be a sequence of lattice approximations to a smooth
domain Q with the mesh §; tending to zero. Let {h j} be a sequence of discrete
harmonic functions on lattice domains Q2 and h be a harmonic function on Q
with continuous boundary values. If h; converge uniformly to h on 02, then inside
Q away from the boundary h; and its partial discrete derivatives (i.e., normalized
differences) are equicontinuous and converge uniformly to their continuum coun-
terparts, i.e., h and its partial derivatives.

In our case the lattice domains approximate €2 in the Carathéodory (rather
than in the Hausdorff) sense. Furthermore, the boundary values are discontinuous.
We will deduce a suitable result using the following well-known estimate:

LEMMA B.2. There exists an increasing positive function € on Ry with

li =0,
(L, o)

such that the following holds. Let H be a nonnegative bounded discrete harmonic
Jfunction in a simply-connected domain 2 with boundary values equal to zero on
02 N B(z,r) and at most one elsewhere. If dist (z,0RQ) < 8, then H(z) < (/).

This is a weaker version of the discrete Beurling’s estimate £(8/r) = const\/8/_r .
It can be reformulated in terms of the hitting probabilities for the simple random
walk and is found in Kesten’s [13].

Now we can prove the needed version of the convergence lemma:

LEMMA B.3. Suppose that as the lattice mesh §; goes to zero, the discrete
domains 2 (with points a; and b; on the boundary) converge to the domain
(with points a and b on the boundary) in the Carathéodory sense. Let h; be a
discrete harmonic function on Q; with boundary values zero on the arc a;b; and
one on the arc bja;. Then inside Q discrete functions h; converge uniformly to
their continuum counterpart h, which is harmonic in 2 with boundary values zero
on the arc ab and one on the arc ba.

Proof. Being harmonic with bounded boundary values functions /4; for large
J are equicontinuous inside €2 by [6] or [23]; see inequality (23) below. Thus it is
enough to show that any subsequential limit, say 4’, coincides with /.

Fix small R > 0 such that two balls B(a, R) and B(b, R) are disjoint, and
denote their union by W. Let r < 2R be the distance between the arcs ab \ W
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and ba \ W. Take § < r/2 and let % be a subdomain of Q with smooth boundary
which is §/2-close to the boundary of 2. Let @ and b% be two points on Q% which
are 6/2 close to a and b correspondingly. Carathéodory convergence implies that
for large enough j subdomain % is contained in € ; and its boundary Q% is
contained in the §-neighborhood of the boundary of ;. (The opposite inclusion
might fail if €2; contains long fjords of fixed diameter, which, however, disappear
in the Carathéodory limit if their width tends to zero.)

Denote by a®h? and b%a® the counterclockwise boundary arcs of Q2. By
Lemma B.2, for sufficiently large ;j the function /; is at most &(§/7) on albi\w;
on the other hand having nonnegative boundary values it is nonnegative there:

0<h;j<e@/r) on a’bd\w,
and similarly
1—e(/r)<h; <1 on Ba®\W.
Being a subsequential limit, /4’ also satisfies these inequalities. Sending § to zero,
we deduce that 2’ has boundary values zero on ab \ W and one on ba \ W.

When R goes to zero, so does r < 2R, and we see that 4’ has boundary values

zero on ab and one on ba, and being bounded coincides with /. O

Let Q be a square with side §L on the lattice §Z2, and denote by 90 a
nine times bigger square. We will need the following continuity estimate from
Verblunsky’s [23]: If a function / is discrete harmonic in the square 2Q, then on
the square Q,

const

(23) sup |Vh| < sup |h|.
0 990
Let G(x,y) = Gog(x, y) denote the discrete Green’s function for the square
90, with AxG(x,y) = AyG(x,y) = x—y and vanishing on the boundary of
90 x 90Q. By G¢ we denote the discrete Green’s function in the whole plane,
normalized so that G¢(y, y) = 0. By equation (9.6) in the paper [17] of McCrea
and Whipple, it satisfies

— 00,

1 _ 5 _
1) Geey) = t10g "= Lo 1o Y
T 8 |x — ] 8

for a specific constant C (which can be written in terms of the Euler constant).
We will need the following integral estimate of the gradient of G in terms of
G itself:

LEMMA B.4. There is a constant const independent of L such that for every
y € 90 one has
const
(25) D VG <= Y16yl
x€Q xe€Q

Proof. By adjusting the constant we can assume that L is large enough. Sup-
pose first that y € 2Q. Denote by G{ (-, y) the discrete harmonic function on 9Q
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having the same boundary values as G¢(-, y). We note that
G(" J’) = GC('»Y) _GE(’ y)
By (24) on 090 we have
1 9-2 1
GE(y) = Ge( —1 —L C -,
c(-y)=Gel.y) > — Og( 5 )+ +0(L)

and so by the maximum principle the same estimate holds for G(-, y) inside 9Q.
On the other hand, (24) implies that for x € Q,

1 )
Ge(x,y) < —log (2\/§L> +C —I—O( )
s [x =yl

Combining those inequalities we infer that for x € Q0

1 1 1 )
G(x,y) < —log (ZﬁL) ——log|3<zL)+o
b4 b4 2 |x — y|

11 3 L ( ) )
= ——10 0] ,
P W AT

and summing over Q (recall that G is negative) we arrive at
(26) Z |G(x, y)| > const L2.
xeQ
It follows from (24) that G{(-, y) is equal on d9Q to a constant function

% log L 4+ C up to an error term of % log (5%\/5) +o0 (%) Therefore by (23) one
has

11 1
(27) EWG%{(%)’” EZZZIOg (55\/5)+0(L)=constL.

Let £ be a lattice line through y and £’ be an orthogonal line intersecting £ at
x and dQ at x” and x”. By symmetry the whole plane Green’s function G¢(:, y)
is monotone on the intervals [x’, x] and [x, x”]. So using (24) we estimate the sum
of absolute values of differences of G along this line by

|x — ¥

Ge(x', y) +Ge(x”, y) —2Ge(x,y) <2log L —2log + const.

Summing this up for all lattice lines £’ in both directions, we arrive at

L
(28) Z IVGe(x, y)| <8 Z (log L —log j + const) < const L.
xeQ j=1

Combining (26), (27) and (28) we prove the lemma in the case y € 2Q:
" const
D IVGI =) VG + D D IVGe| <const L < 7 >16].
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Q
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b
=
=

Iz

o R R

Figure 6. Vertices and edges around a square. Lines correspond-
ing to the edges pass through the written vectors.

It remains to deal with the case y € 90 \ 20Q. In this case G(-, y) is discrete
harmonic and negative in 2Q, so its values on Q are comparable by Harnack’s
principle to its value at the center, say A. Using (23) again, we write

A
SINGIsY S <+ Y6l

thus proving the lemma. O

Appendix C. Unpleasant computations for Lemma 3.8

There are several ways to prove equations (7) and (8) and we present not the
shortest calculation, but perhaps the most straight forward one.

We will prove (7). The proof of (8) is similar. Let u be the center of some
white square. Denote by NW, NE, SE, and SW its corner vertices, starting from
the upper left and going clockwise. Recall that by Remark 3.3

F(NW)—F(SE) =i (F(NE)—F(SW)) ,
so to prove (8) it is sufficient to show that
AH(W) = —|F(NE)— F(SW)|? .

To simplify calculations denote A := exp(—ix/8). Denote by N, E, S, and W
the centers of bordering edges, starting from the top and going clockwise. Assume
that the line £(N) passes through a unit vector o. With the chosen orientation
o = 1, but we will leave ¢ a variable to be able to compare results for different
vertices. Then the lines £(W), £(S), and £(E) pass through the vectors aA?, aA*,
and aA® correspondingly. See Figure 6.

First evaluate increment 0w H of H across the vertex N W. Denote by A
the center of the edge going left from the vertex N W. Recalling (3), by definition
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of H we write
onwH =|F(W)|> = |F(A)?
— |Proj (F(NW), aA?)|” = [Proj (F(N W), aA%)[*
_ % |[F(NW) + a2 F(NW)[* - % |[F(NW) + A3 F(NW)[?
= i (F(NW) +a?A*F(NW)) (F(NW) +&*A*F(NW))

(F(NW)+a*ABF(NW)) (F(NW) +&*AB F(NW))

Bl

2F(NW)F(NW)+a*A*FA(NW) + @* A4 FA(NW))

FNY
—_

QF(NW)F(NW) +o?ABF2(NW) +&*AB FA(NW))

—_ B

(A2 =A%) ?A2F2(NW) + (A = 16) @®A* FA(NW))

Bl —

=%

(PA2F2(NW) +a?2 2 FA(NW)).

Writing similarly increments across SW, SE, NE (with a substituted by aA?,
aA?, aA® correspondingly), we arrive at the following four equations:

(29) InwH = ? (PA2F2(NW) +a?2 2 FA(NW)),
(30) dswH = ‘/TE (PASF2(SW) +a?A F2(SW)),

31) dspH = ? (221 F*(SE) + a*A'° F2(SE)) .
(32) INgH = ? (*AYMF2(NE) + @*A" F2(NE)).

Let us remark that from these equations it becomes clear that H is an appropriate
discrete version of the primitive Im [ F 2dz. Indeed, if z is one of the corners and
v is the center of the square across that corner, denoting 7 := (v —u)/ |v —u| and
recalling that |[v —u| = v/8 we see that

(H(v)—H(u)) = \/TE (inF?(z)—inF?(2))
V2

== Im (UFZ(Z))

_ 1 2
—2—81m(F (z) (v—u)),
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and therefore we obtain Remark 3.7:
(33) 28 (H(v)— Hw)) =Im (F(z)* (v —u)).

Summing equations (29)—(32), we can write the Laplacian A H (1) in terms
of the values of F' at four neighboring vertices. But we want to reduce this further
to the values of F at two vertices. Such reduction is possible, since by discrete
holomorphicity projections of F(N W) on lines £(N) and £(W) coincide with
those of F(NE) and F(SW) correspondingly. Using (3) we can write that as

F(NW)+4a?>F(NW) = F(NE) + «*>F(NE) ,
FI(NW)+a?A*F(NW) = F(SW) +a?A*F(SW) .
Subtracting the equations multiplied by A2 and A2 correspondingly we arrive at
(A2 =A2)F(NW) = A2F(NE) 4+ a?A2F(NE)—A2F(SW) —a?)2F(SW) ,
where A2 — A2 simplifies to —i /2:
(34 _
FINW) = % (A2F(NE) + o2A2F(NE) — X2 F(SW) — «2A2F (SW)) .

Writing similarly for F(SE) (with @A substituted for @ and NE and SW inter-
changed) we conclude that
(35) ,
F(SE) = % (A2F(SW) +a?A° F(SW)—A*F(NE) —a?A'° F(NE)) ,
Now we can sum equations (29), (31), (30), (32), substituting (34), (35) for
values of F(NW) and F(SE):

AH(w)=0ywH +dswH +0sgH +onyg H

J 2
= \/Ti(oﬂ)@(% (AZF(NE) +01212F(NE)—12F(SW)—a2A217(SW)))

. 2
+ a?A? (% (A2F(NE) + &*A>F(NE) = A*F(SW) —a?A2F (S W)))

: 2
- oﬂx“’( % (A2F(SW) +a2A10F (SW) — A2F(NE) —aZAIOF(NE)))

. 2
+ @210 (% (A2F(SW)+a*AF(SW)—A*F(NE) —aZAIOF(NE)))

+ a?ASF2(SW) + @A F2(SW) + o«2AY F2(NE) + aZI“FZ(NE)) .
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When we plug in @ = 1 and recall that A = exp(—in/8), in particular A8 = —1,
there are many cancellations in the right-hand side, which eventually simplifies:

V2 2 ! 25 2 25 2 2
=T(A (—T(A F(NE)+ A F(NE)—A2F(SW)—A F(SW)))

2
472 (l— (A2F(NE) + 22F(NE)— R2F(SW) - 22F (SW)))

S

2
(—’— (R2F(SW)—X2F(SW)—A*F(NE) + A2F(NE)) )

S

2
_a2 (E (A2F(SW)—A*F(SW)—2*F(NE) + Azf(NE)))

+ACF2(SW) + A°F2(SW)—A°F?%(NE) —X6F2(NE))

I
=&
/N

|
| =
R

>|

F(NE)+ AF(NE)—\3F(SW)—LF(S W))2

()LF(NE) +AF(NE)—X3F(SW) — AF(SW))Z
(
+5(

+ASF2(SW)+A°F2(SW)—A°F%(NE) —X6F2(NE))

AF(SW)—XF(SW)—A3F(NE) + ZF(NE))2

+
w|~w|~l\>l~

AF(SW) —AF(SW)—3F(NE) + AF(NE))

[
=S

(Fz(NE) (22 =A%+ 2% +1°-22°)
+ FA(NE) (=A% =A% + 25 + 22 - 22°)
+ F2(SW) (=A% =2° + 2% + 2% +225)
+ F2(SW) (A =A% + 2% + 2% +225)
+2F(NE)F(SW) (A* + 12 =22 =2?)
+2F(NE)F(SW) (A> +2%—1%—21?)
+2F(NE)F(NE) (2> =A% =A% -2?)
+2F(SW)F(SW) (=22 =A% =22 - 1?)
+2F(NE)F(SW) (A* + A2 + 1% +2?)

+2F(SW)F(NE) (A% + A% + A% +1?) )

_ _%54\6 (F(NE)— F(SW)) (F(NE) — F(SW))

—|F(NE)— F(SW)?

This finishes the proof of Lemma 3.8.



1466 STANISLAV SMIRNOV

References

[1] R.J. BAXTER, Exactly Solved Models in Statistical Mechanics, Academic Press [Harcourt
Brace Jovanovich Publishers], London, 1989, reprint of the 1982 original. MR 90b:82001
7Zbl 0723.60120

[2] V. BEFFARA, H. DUMINIL-COPIN, and S. SMIRNOV, The self-dual point of the 2D random-
cluster model is critical above g = 4, preprint, 2009.

[3] D. CHELKAK and S. SMIRNOV, Discrete complex analysis on isoradial graphs, 2008, Adv.
Math., to appear. arXiv 0810.2188

, Universality in the 2D Ising model and conformal invariance of fermionic observables,
2009, Inv. Math., to appear. arXiv 0910.2045

, Conformal invariance of the 2D Ising model at criticality, preprint, 2010.

(4]

[5]
[6] R.COURANT, K. FRIEDRICHS, and H. LEwY, Uber die partiellen Differenzengleichungen der
mathematischen Physik, Math. Ann. 100 (1928), 32-74. MR 1512478 JFM 54.0486.01

[71 G. GRIMMETT, The Random-Cluster Model, Grundl. Math. Wissen. 333, Springer-Verlag, New
York, 2006. MR 2007m:60295 Zbl 1122.60087

[8] G. GRIMMETT and S. JANSON, Random even graphs, Electron. J. Combin. 16 (2009), Re-
search Paper, 46, 19. MR 2491648 Zbl pre05576427

[9] B. KAUFMAN and L. ONSAGER, Crystal statistics. IV. Long-range order in a binary crystal,
1950, unpublished typescript.

[10] A. KEMPPAINEN and S. SMIRNOV, Random curves, scaling limits and Loewner evolutions,
preprint, 2009.

(11]

, Conformal invariance in random cluster models. III. Full scaling limit, 2010, in prepa-

ration.

[12] R. KENYON, Conformal invariance of domino tiling, Ann. Probab. 28 (2000), 759-795. MR
2002e:52022 Zbl 1043.52014

[13] H. KESTEN, Hitting probabilities of random walks on Zd, Stochastic Process. Appl. 25 (1987),
165-184. MR 89a:60163 Zbl 0626.60067

[14] G. F. LAWLER, O. SCHRAMM, and W. WERNER, Conformal invariance of planar loop-erased
random walks and uniform spanning trees, Ann. Probab. 32 (2004), 939-995. MR 2005f:82043
7Zbl 1126.82011

[15] J. LELONG-FERRAND, Représentation Conforme et Transformations a Intégrale de Dirichlet
Bornée, Gauthier-Villars, Paris, 1955. MR 16,1096b Zbl 0064.32204

[16] B. M. McCoy and T. T. WU, The Two-Dimensional Ising Model, Harvard Univ. Press, Cam-
bridge, MA, 1973. Zbl 1094.82500

[17] W. H. MCCREA and F. J. W. WHIPPLE, Random paths in two and three dimensions, Proc.
Roy. Soc. Edinburgh 60 (1940), 281-298. MR 2,107f Zbl 0027.33903

[18] V. RIVA and J. CARDY, Holomorphic parafermions in the Potts model and stochastic Loewner
evolution, J. Stat. Mech. Theory Exp. 12 (2001), 19pp, electonic. MR 2280251

[19] S. SMIRNOV, Critical percolation in the plane, preprint, 2001. arXiv 0909.4499
[20]

, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits,
C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 239-244. MR 2002£:60193 Zbl 0985.60090

, Towards conformal invariance of 2D lattice models, in International Congress of
Mathematicians. Vol. 11, Eur. Math. Soc., Ziirich, 2006, pp. 1421-1451. MR 2008g:82026
Zbl 1112.82014

, Conformal invariance in random cluster models. II. Scaling limit of the interface,
preprint, 2009.

(21]

(22]




CONFORMAL INVARIANCE IN RANDOM CLUSTER MODELS. I 1467

[23] S. VERBLUNSKY, Sur les fonctions préharmoniques, Bull. Sci. Math. 73 (1949), 148-152.
MR 11,357b Zbl 0034.36303

[24] C. N. YANG, The spontaneous magnetization of a two-dimensional Ising model, Physical Rev.
85 (1952), 808-816. MR 14,522e Zbl 0046.45304

(Received December 21, 2007)

E-mail address: stanislav.smirnov@unige.ch
SECTION DE MATHEMATIQUES, UNIVERSITE DE GENEVE, 2-4, RUE DU LIEVRE, C.P. 64,
CH-1211 GENEVE 4, SWITZERLAND

http://www.unige.ch/~smirnov/



ISSN 0003-486X
ANNALS OF MATHEMATICS

This periodical is published bimonthly by the Department of Mathematics at Princeton University
with the cooperation of the Institute for Advanced Study. Annals is typeset in TgX by Sarah R.
Warren and produced by Mathematical Sciences Publishers. The six numbers each year are divided
into two volumes of three numbers each.

Editorial correspondence

Papers submitted for publication and editorial correspondence should be addressed to Maureen
Schupsky, Annals of Mathematics, Fine Hall-Washington Road, Princeton University, Princeton, NJ,
08544-1000 U.S.A. The e-mail address is annals @math.princeton.edu.

Preparing and submitting papers

The Annals requests that all papers include an abstract of about 150 words which explains to the
nonspecialist mathematician what the paper is about. It should not make any reference to the
bibliography. Authors are encouraged to initially submit their papers electronically and in PDF
format. Please send the file to: annals@math.princeton.edu or to the Mathematics e-print arXiv:
front.math.ucdavis.edu/submissions. If a paper is submitted through the arXiv, then please e-mail us
with the arXiv number of the paper.

Proofs

A PDF file of the galley proof will be sent to the corresponding author for correction. If requested, a
paper copy will also be sent to the author.

Offprints

Authors of single-authored papers will receive 30 oftprints. (Authors of papers with one co-author
will receive 15 offprints, and authors of papers with two or more co-authors will receive 10 offprints.)
Extra offprints may be purchased through the editorial office.

Subscriptions

The price for a print and online subscription, or an online-only subscription, is $390 per year for
institutions. In addition, there is a postage surcharge of $40 for print subscriptions that are mailed to
countries outside of the United States. Individuals interested in subscriptions for their own personal
use should contact the publisher at the address below. Subscriptions and changes of address should
be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California,
Berkeley, CA 94720-3840 (e-mail: contact@mathscipub.org; phone: 1-510-643-8638; fax: 1-510-
295-2608). (Checks should be made payable to “Mathematical Sciences Publishers”.)

Back issues and reprints

Orders for missing issues and back issues should be sent to Mathematical Sciences Publishers at
the above address. Claims for missing issues must be made within 12 months of the publication
date. Online versions of papers published five or more years ago are available through JSTOR
(WWw.jstor.org).

Microfilm

Beginning with Volume 1, microfilm may be purchased from NA Publishing, Inc., 4750 Venture
Drive, Suite 400, PO Box 998, Ann Arbor, MI 48106-0998; phone: 1-800-420-6272 or 734-302-
6500; email: info@napubco.com, website: www.napubco.com/contact.html.

ALL RIGHTS RESERVED UNDER THE BERNE CONVENTION AND
THE UNIVERSAL COPYRIGHT CONVENTION

Copyright © 2010 by Princeton University (Mathematics Department)
Printed in U.S.A. by Sheridan Printing Company, Inc., Alpha, NJ



TABLE OF CONTENTS

GONZALO CONTRERAS. Geodesic flows with positive topological entropy,

twistimapsiand. hyperb ol reitys = e e i e e o e g e 761-808
EckART VIEHWEG. Compactifications of smooth families and of moduli

spaces ofspolarized mamnifolds .. o sm 2% 55wy Ca St s T S s 809-910
CHANG-SHOU LIN and CHIN-LUNG WANG. Elliptic functions, Green

functions and the mean field equations on tori........................... 911-954
Y1CcHAO TIAN. Canonical subgroups of Barsotti-Tate groups................ 955-988
AKSHAY VENKATESH. Sparse equidistribution problems, period bounds

andisubcenvexityzALrwte o g, it 1 ST St T e stoan i e 8wl 989-1094
THOMAS GEISSER. Duality via cycle complexes .......................... 1095-1126
VIKTOR L. GINZBURG. The Conley conjecture.............c.covuvvue.... 1127-1180
CHRISTOPHER VOLL. Functional equations for zeta functions of groups

AR R ESHEe S S e e e oI O A e AT R 11811218
MonNIKA LubpwiG and MATTHIAS REITZNER. A classification of SL(n)

INVARIAN VAl ATION SEE -t e e SRR PEIE e - RIS i N R e 1219-1267
IsaAac GOLDBRING. Hilbert’s fifth problem for local groups............... 1269-1314
ROBERT M. GURALNICK and MICHAEL E. ZIEVE. Polynomials with

PSE (29 monodrommy=ss« =8 e dely. T ot L ks BT ISS aa T S s 1315-1359
ROBERT M. GURALNICK, JOEL ROSENBERG and MICHAEL E. ZIEVE. A

new family of exceptional polynomials in characteristic two............ 1361-1390
RAMAN PARIMALA and V. SURESH. The u-invariant of the function fields

Ofgpradicieniyesiy T ARTSREGE: VY A e e e e S AT 1391-1405
AVRAHAM AIZENBUD, DMITRY GOUREVITCH, STEPHEN RALLIS and

GERARD SCHIFFMANN. Multiplicity one theorems .................... 1407-1434
STANISLAV SMIRNOV. Conformal invariance in random cluster models.

I. Holmorphic fermions in the Ising model .................. .. ... .... 1435-1467
KANNAN SOUNDARARAJAN. Weak subconvexity for central values of

L N GHONSE o R e o iy Ty T e i e B e e RN 1469-1498
RoMAN HOLOWINSKY. Sieving for mass equidistribution................. 1499-1516

RoMAN HOLOWINSKY and KANNAN SOUNDARARAJAN. Mass
equidistribution for Hecke eigenforms............. ... ... ... 1517-1528

KANNAN SOUNDARARAJAN. Quantum unique ergodicity for
SYER (172 5 A S el a8 TR S O it S e BRI 1529-1538



	
	
	

