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Abstract

The u-invariant of a field is the maximum dimension of ansiotropic quadratic
forms over the field. It is an open question whether the u-invariant of function fields
of p-aidc curves is 8. In this paper, we answer this question in the affirmative for
function fields of nondyadic p-adic curves.

Introduction

It is an open question ([Lam05, Q. 6.7, Chap XIII]) whether every quadratic
form in at least nine variables over the function fields of p-adic curves has a non-
trivial zero. Equivalently, one may ask whether the u-invariant of such a field is 8.
The u-invariant of a field F is defined as the maximal dimension of anisotropic
quadratic forms over F . In this paper we answer this question in the affirmative if
the p-adic field is nondyadic.

In [PS98, 4.5], we showed that every quadratic form in eleven variables over
the function field of a p-adic curve, p ¤ 2, has a nontrivial zero. The main ingredi-
ents in the proof were the following: Let K be the function field of a p-adic curve
X and p ¤ 2.

(1) (Saltman [Sal97, 3.4]). Every element in the Galois cohomology group
H 2.K;Z=2Z/

is a sum of at most two symbols.

(2) (Kato [Kat86, 5.2]). The unramified cohomology group H 3
nr.K=X;Z=2Z.2//

is zero for a regular projective model X of K.

If K is as above, we proved ([PS98, 3.9]) that every element in H 3.K;Z=2Z/
is a symbol of the form .f / �.g/ �.h/ for some f; g; h2K� and f may be chosen to
be a value of a given binary form ha; bi overK. If, further, given �D .f /�.g/�.h/2
H 3.K;Z=2Z/ and a ternary form hc; d; ei, one can choose g0; h0 2K� such that
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�D .f / �.g0/ �.h0/ with g0 a value of hc; d; ei, then, one is led to the conclusion that
u.K/D 8 (cf. Proposition 4.3). We in fact prove that such a choice of g0; h0 2K�

is possible by proving the following local global principle:
Let k be a p-adic field and K D k.X/ the function field of a curve X over k.

For any discrete valuation v of K, let Kv denote the completion of K at v. Let l
be a prime not equal to p. Assume that k contains a primitive l th root of unity.

THEOREM. Let k, K and l be as above. Let � 2 H 3.K;�˝2
l
/ and ˛ 2

H 2.K;�l/. Suppose that ˛ corresponds to a degree l central division algebra
over K. If � D ˛[ .hv/ for some hv 2K�v , for all discrete valuations v of K, then
there exists h 2K� such that � D ˛[ .h/. In fact, one can restrict the hypothesis
to discrete valuations of K centered on codimension-1 points of a regular model X,
projective over the ring of integers Ok of k.

A key ingredient toward the proof of the theorem is a recent result of Saltman
[Sal07] where the ramification pattern of prime degree central simple algebras over
function fields of p-adic curves is completely described.

We thank J.-L. Colliot-Thélène for helpful discussions during the preparation
of this paper and for his critical comments on the text.

1. Some preliminaries

In this section we recall a few basic facts from the algebraic theory of quadratic
forms and Galois cohomology. We refer the reader to [CT95] and [Sch85].

Let F be a field and l a prime not equal to the characteristic of F . Let �l be
the group of l th roots of unity. For i � 1, let �˝i

l
be the Galois module given by

the tensor product of i copies of �l . For n� 0, let Hn.F; �˝i
l
/ be the nth Galois

cohomology group with coefficients in �˝i
l

.

We have the Kummer isomorphism F �=F �
l

' H 1.F; �l/. For a 2 F �,
its class in H 1.F; �l/ is denoted by .a/. If a1; : : : ; an 2 F �, the cup prod-
uct .a1/ � � � .an/ 2 Hn.F; �˝n

l
/ is called a symbol. We have an isomorphism

H 2.F; �l/ with the l-torsion subgroup lBr.F / of the Brauer group of F . We
define the index of an element ˛ 2H 2.F; �l/ to be the index of the corresponding
central simple algebra in lBr.F /.

Suppose F contains all the l th roots of unity. We fix a generator � for the cyclic
group �l and identify the Galois modules �˝i

l
with Z=lZ. This leads to an identi-

fication of Hn.F; �˝m
l
/ with Hn.F;Z=lZ/. The element in Hn.F;Z=lZ/ corre-

sponding to the symbol .a1/ � � � .an/ 2Hn.F; �˝n
l
/ through this identification is

again denoted by .a1/ � � � .an/. In particular, for a; b 2F �, .a/�.b/2H 2.K;Z=lZ/
represents the cyclic algebra .a; b/ defined by the relations xl D a, yl D b and
xy D �yx.

Let v be a discrete valuation of F . The residue field of v is denoted by �.v/.
Suppose char.�.v//¤ l . Then there is a residue homomorphism

@vWH
n.F; �˝m

l
/!Hn�1.�.v/; �

˝.m�1/

l
/:
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Let ˛ 2Hn.F; �˝m
l
/. We say that ˛ is unramified at v if @v.˛/D 0; otherwise it is

said to be ramified at v. If F is complete with respect to v, then we denote the kernel
of @v by Hn

nr.F; �
˝m
l
/. Suppose ˛ is unramified at v. Let � 2K� be a parameter

at v and � D ˛ [ .�/ 2 HnC1.F; �
˝.mC1/

l
/. Let x̨ D @v.�/ 2 Hn.�.v/; �˝m

l
/.

The element x̨ is independent of the choice of the parameter � and is called the
specialization of ˛ at v. We say that ˛ specializes to x̨ at v. The following result
is well known.

LEMMA 1.1. Let k be a field and l a prime not equal to the characteristic of k.
Let K be a complete discrete valuated field with residue field k. If H 3.k; �˝3

l
/D 0,

then H 3
nr.K;�

˝3
l
/ D 0. Suppose further that every element in H 2.k; �˝2

l
/ is a

symbol. Then every element in H 3.K;�˝3
l
/ is a symbol.

Proof. Let R be the ring of integers in K. The Gysin exact sequence in étale
cohomology yields an exact sequence (cf. [C, p. 21, �3.3])

H 3
Ket.R; �

˝3
l
/!H 3.K;�˝3

l
/
@
!H 2.k; �˝2

l
/!H 4

Ket.R; �
˝3
l
/:

Since R is complete, H 3
Ket.R; �

˝3
l
/ ' H 3.k; �˝3

l
/ ([Mil80, p. 224, Cor. 2.7]).

Hence H 3
Ket.R; �

˝3
l
/ D 0 by the hypothesis. In particular, @WH 3.K;�˝3

l
/ !

H 2.k; �˝2
l
/ is injective and H 3

nr.K;�
˝3
l
/D 0. Let u; v 2 R be units and � 2 R

a parameter. Then we have @..u/ � .v/ � .�// D .xu/ � .xv/. Let � 2 H 3.K;�˝3
l
/.

Since every element in H 2.k; �˝2
l
/ is a symbol, we have @.�/D .xu/ � .xv/ for some

units u; v 2R. Since @ is an isomorphism, we have � D .u/ � .v/ � .�/. Thus every
element in H 3.K;�˝3

l
/ is a symbol. �

COROLLARY 1.2. Let k be a p-adic field and K the function field of an in-
tegral curve over k. Let l be a prime not equal to p. Let Kv be the completion
of K at a discrete valuation of K. Then H 3

nr.Kv; �
˝3
l
/D 0. Suppose further that

K contains a primitive l th root of unity. Then every element in H 3.Kv; �
˝3
l
/ is a

symbol.

Proof. Let v be a discrete valuation of K and Kv the completion of K at v.
The residue field �.v/ at v is either a p-adic field or a function field of a curve over a
finite field of characteristic p. In either case, the cohomological dimension of �.v/
is 2 and hence Hn.�.v/; �˝3

l
/D 0 for n� 3. By Lemma 1.1, H 3

nr.Kv; �
˝3
l
/D 0.

If �.v/ is a local field, by local class field theory, every finite-dimensional
central division algebra over �.v/ is split by an unramified (cyclic) extension. If
�.v/ is a function field of a curve over a finite field, then by a classical theorem
of Hasse-Brauer-Noether-Albert, every finite-dimensional central division algebra
over �.v/ is split by a cyclic extension. Since �.v/ contains a primitive l th root
of unity, every element in H 2.�.v/;Z=lZ/ is a symbol. By Lemma 1.1, every
element in H 3.Kv;Z=lZ/ is a symbol. �

Let X be a regular integral scheme of dimension d , with field of fractions F .
Let X1 be the set of points of X of codimension-1. A point x 2 X1 gives rise
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to a discrete valuation vx on F . The residue field of this discrete valuation ring
is denoted by �.x/ or �.vx/. The corresponding residue homomorphism is de-
noted by @x . We say that an element � 2 Hn.F; �˝m

l
/ is unramified at x if

@x.�/ D 0; otherwise it is said to be ramified at x. We define the ramification
divisor ramX.�/ D

P
x as x runs over X1 where � is ramified. The unramified

cohomology on X, denoted by Hn
nr.F=X; �˝m

l
/, is defined as the intersection of

kernels of the residue homomorphisms

@x WH
n.F; �˝m

l
/!Hn�1.�.x/; �

˝.m�1/

l
/;

with x running over X1. We say that � 2 Hn.F; �˝m
l
/ is unramified on X if

� 2 Hn
nr.F=X; �˝m

l
/. If X D Spec.R/, then we also say that � is unramified

on R if it is unramified on X. Suppose C is an irreducible subscheme of X of
codimension-1. Then the generic point x of C belongs to X1 and we set @x = @C .
If ˛ 2Hn.F; �˝m

l
/ is unramified at x, then we say that ˛ is unramified at C .

Let k be a p-adic field and K the function field of a smooth, projective, geo-
metrically integral curve X over k. By the resolution of singularities for surfaces
(cf. [Lip75] and [Lip78]), there exists a regular, projective model X of X over the
ring of integers Ok of k. We call such an X a regular projective model of K. Since
the generic fibre X of X is geometrically integral, it follows that the special fibre
xX is connected. Further if D is a divisor on X, there exists a proper birational
morphism X0! X such that the total transform of D on X0 is a divisor with nor-
mal crossings (cf. [Sha66, Thm., p. 38 and Rem. 2, p. 43]). We use this result
throughout this paper without further reference.

Let k be a p-adic field and K the function field of a smooth, projective, geo-
metrically integral curve over k. Let l be a prime not equal to p. Assume that k con-
tains a primitive l th root of unity. Let ˛ 2H 2.K;�l/. Let X be a regular projective
model of K such that the ramification locus ramX.˛/ is a union of regular curves
with normal crossings. Let P be a closed point in the intersection of two regular
curves C and E in ramX.˛/. Suppose that @C .˛/2H 1.�.C /;Z=lZ/ and @E .˛/2
H 1.�.E/;Z=lZ/ are unramified at P . Let u.P /; v.P / 2H 1.�.P /;Z=lZ/ be the
specializations at P of @C .˛/ and @E .˛/ respectively. Following Saltman ([Sal07,
�2]), we say that P is a cool point if u.P / and v.P / are trivial, a chilli point
if u.P / and v.P / both are nontrivial, and a hot point if one of them is trivial
and the other one nontrivial. Note that if u.P / is nontrivial, then u.P / gener-
ates H 1.�.P /;Z=lZ/. Let OX;P be the regular local ring at P and � , ı prime
elements in OX;P which define C and E respectively at P . The condition that
@C .˛/ 2H

1.�.C /;Z=lZ/ and @E .˛/ 2H 1.�.E/;Z=lZ/ are unramified at P is
equivalent to the condition ˛D ˛0C .u; �/C .v; ı/ for some units u; v 2 OX;P and
˛0 unramified on OX;P ([Sal98, �2]). The specializations of @C .˛/ and @E .˛/ in
H 1.�.P /;Z=lZ/' �.P /�=�.P /�l

are given by the images of u and v in �.P /.
Let P be a closed point of a regular curve C in ramX.˛/ which is not on any

other regular curve in ramX.˛/. We have ˛ D ˛0C .u; �/, where ˛0 is unramified
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on OX;P , u 2 OX;P is a unit and � 2 OX;P is a prime defining the curve C at P ;
see [Sal97, 1.2]. Therefore @C .˛/D .xu/ 2H 1.�.C /;Z=lZ/ is unramified at P .

PROPOSITION 1.3 ([Sal07, 2.5]). If the index of ˛ is l , then there are no hot
points for ˛.

Suppose P is a chilli point. Then v.P /D u.P /s for some s with 1� s � l�1
and s is called the coefficient of P ([Sal97, p. 830]) with respect to � . To get some
compatibility for these coefficients, Saltman associates to ˛ and X the following
graph: The set of vertices is the set of irreducible curves in ramX.˛/ and there is
an edge between two vertices if there is a chilli point in the intersection of the two
irreducible curves corresponding to the vertices. A loop in this graph is called a
chilli loop.

PROPOSITION 1.4 ([Sal07, 2.6, 2.9]). There exists a projective model X of K
such that there are no chilli loops and no cool points on X for ˛.

Let F be a field of characteristic not equal to 2. The u-invariant of F , denoted
by u.F /, is defined as follows:

u.F /D supfrk.q/ j q an anisotropic quadratic form over F g:

For a1; : : : ; an 2 F �, we denote the diagonal quadratic form a1X
2
1 C � � �C anX

2
n

by ha1; : : : ; ani. Let W.F / be the Witt ring of quadratic forms over F and I.F /
be the ideal of W.F / consisting of even dimension forms. Let In.F / be the nth

power of the ideal I.F /. For a1; : : : ; an 2 F �, let hha1; : : : ; anii denote the n-fold
Pfister form h1; a1i˝� � �˝h1; ani. The abelian group In.F / is generated by n-fold
Pfister forms. The dimension modulo 2 gives an isomorphism e0WW.F /=I.F /!

H 0.F;Z=2Z/. The discriminant gives an isomorphism

e1W I.F /=I
2.F /!H 1.F;Z=2Z/:

The classical result of Merkurjev [Mer81], asserts that the Clifford invariant gives
an isomorphism e2W I

2.F /=I 3.F /!H 2.F;Z=2Z/.
Let Pn.F / be the set of isometry classes of n-fold Pfister forms over F . There

is a well-defined map ([Ara75])

enWPn.F /!Hn.F;Z=2Z/

given by en.h1; a1i˝ � � �˝ h1; ani/D .�a1/ � � � .�an/ 2Hn.F;Z=2Z/.
A quadratic form version of the Milnor conjecture asserts that en induces a

surjective homomorphism In.F /! Hn.F;Z=2Z/ with kernel InC1.F /. This
conjecture was proved by Voevodsky, Orlov and Vishik. In this paper we are inter-
ested in fields of 2-cohomological dimension at most 3. For such fields, Milnor’s
conjecture above has already been proved by Arason, Elman and Jacob [AEJ86,
Cor. 4 and Th. 2], using the theorem of Merkurjev [Mer81].

Let q1 and q2 be two quadratic forms over F . We write q1 D q2 if they
represent the same class in the Witt group W.F /. We write q1 ' q2, if q1 and
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q2 are isometric quadratic forms. We note that if the dimensions of q1 and q2 are
equal and q1 D q2, then q1 ' q2.

2. Divisors on arithmetic surfaces

In this section we recall a few results from a paper of Saltman [Sal07] on
divisors on arithmetic surfaces.

Let Z be a connected, reduced scheme of finite type over a Noetherian ring.
Let O�Z be the sheaf of units in the structure sheaf OZ. Let P be a finite set of
closed points of Z. For each P 2 P, let �.P / be the residue field at P and
�P WSpec.�.P //! Z be the natural morphism. Consider the sheaf

P� D˚P2P�
�
P �.P /

�;

where �.P /� denotes the group of units in �.P /. Then there is a surjective mor-
phism of sheaves O�Z! P� given by the evaluation at each P 2 P. Let O

�.1/
Z;P be

its kernel. When there is no ambiguity we denote O
�.1/
Z;P by O

�.1/
P . Let K be the

sheaf of total quotient rings on Z and K� be the sheaf of groups given by units
in K. Every element  2H 0.Z;K�=O�/ can be represented by a family fUi ; fig,
where Ui are open sets in Z, fi 2 K�.Ui / and fif �1j 2 O�.Ui \Uj /. We say that
an element  D fUi ; fig of H 0.Z;K�=O�/ avoids P if each fi is a unit at P for
all P 2 Ui \P. Let H 0

P.Z;K
�=O�/ be the subgroup of H 0.Z;K�=O�/ consisting

of those  which avoid P. Let K� DH 0.Z;K�/ and K�P be the subgroup of K�

consisting of those functions which are units at all P 2 P. We have a natural
inclusion K�P!H 0

P.Z;K
�=O�/˚ .˚P2P�.P /

�/.
Now, we have
PROPOSITION 2.1 ([Sal07, 1.6]). Let Z be a connected, reduced scheme of

finite type over a Noetherian ring. Then

H 1.Z;O
�.1/
P /'

H 0
P.Z;K

�=O�/˚ .˚P2P�.P /
�/

K�P
:

Let k be a p-adic field and Ok the ring of integers of k. Let X be a connected
regular surface with a projective morphism �WX! Spec.Ok/. Let xX be the reduced
special fibre of �. Assume that xX is connected. Note that xX is connected if the
generic fibre is geometrically integral. Let P be a finite set of closed points in X.
Since every closed point of X is in xX, P is also a subset of closed points of xX. Let
m be an integer coprime with p.

PROPOSITION 2.2 ([Sal07, 1.7]). The canonical map

H 1.X;O
�.1/
X;P /!H 1.xX;O

�.1/
xX;P

/

induces an isomorphism

H 1.X;O
�.1/
X;P /

mH 1.X;O
�.1/
X;P /

'

H 1.xX;O
�.1/
xX;P

/

mH 1.xX;O
�.1/
xX;P

/
:
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Let X be as above. Suppose that xX is a union of regular curves F1; : : : ; Fm on
X with only normal crossings. Let P be a finite set of closed points of X including
all the points of Fi \Fj , i ¤ j and at least one point from each Fi . Let E be a
divisor on X whose support does not pass through any point of P. In particular,
no Fi is in the support of E. Hence there are only finitely many closed points
Q1; : : : ;Qn on the support of E. For each closed point Qi on the support of E,
let Di be a regular curve on X not contained in the special fiber of X such that Qi
is the multiplicity one intersection of Di and xX. Such a curve exists by ([Sal07,
1.1]). We note that any closed point on X is a point of codimension-2 and there is
a unique closed point on any geometric curve on X (cf. �1).

The following is extracted from [Sal07, �5].

PROPOSITION 2.3. Let X;P; E;Qi ;Di be as above. For each closed point
Qi , let mi be the intersection multiplicity of the support of E and the special fibre
xX at Qi . Let l be a prime not equal to p. Then there exist � 2K� and a divisor E 0

on X such that

.�/D�EC

nX
iD1

miDi C lE
0

and �.P / 2 �.P /�
l

for each P 2 P.

Proof. Let F be the divisor on X given by
P
Fi . Let  2Pic.X/ be the line bun-

dle equivalent to the class of the divisor �E and x 2Pic.xX/ its image. Since the sup-
port of E does not pass through the points of P and P contains all the points of in-
tersection of distinct Fi , E and F intersect only at smooth points of xX. In particular,
x D�

P
miQi . Let  0 2H 1.X;O�P/ be the element which, under the isomorphism

of Proposition 2.1, corresponds to the class of the element .�EC
P
miDi ; 1/ in

H 0
P.X;K

�=O�/˚ .˚P2P�.P /
�/. Since the mi ’s are intersection multiplicities

of E and xX at Qi and the image of
P
miDi in H 0

P.
xX;K�=O�/ is

P
miQi , the

image  0 of  0 in H 1.xX;O�P/ is zero. By Proposition 2.2, we have  0 2 lH 1.X;O�P/.
Using Proposition 2.1, there exists .E 0; .�P // 2H 0

P.Z;K
�=O�/˚ .˚P2P�.P /

�/

such that .�E C
P
miDi ; 1/ D l.E 0; .�P // D .lE 0; .�lP // modulo K�P. Thus

there exists � 2K�P �K
� such that .�/D .�EC

P
miDi ; 1/� .lE

0; .�lP //.That
is, .�/D�EC

P
miDi � lE

0 and �.P /D �lP for each P 2 P. �

3. A local-global principle

Let k be a p-adic field, Ok be its ring of integers and K the function field of a
smooth, projective, geometrically integral curve over k. Let l be a prime not equal
to p. Throughout this section, except in Remark 3.6, we assume that k contains a
primitive l th root of unity. We fix a generator � for �l and identify �l with Z=lZ.

LEMMA 3.1. Let ˛ 2H 2.K;�l/. Let X be a regular projective model of K.
Assume that the ramification locus ramX.˛/ is a union of regular curves fC1; : : : ; Crg
with only normal crossings. Let T be a finite set of closed points of X including the
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points of Ci \Cj , for all i ¤ j . Let D be an irreducible curve on X which is not
in the ramification locus of ˛ and does not pass through any point in T . Then D
intersects Ci at points P where @Ci

.˛/ is unramified. Suppose further that at such
points P , @Ci

.˛/ specializes to 0 in H 1.�.P /;Z=lZ/. Then ˛, which is unramified
at D, specializes to 0 in H 2.�.D/; �l/.

Proof. Since k contains a primitive l th root of unity, we fix a generator � for
�l and identify the Galois modules �˝j

l
with Z=lZ.

Let P be a point in the intersection of D and the support of ramX.˛/. Since D
does not pass through the points of T and T contains all the points of intersection
of distinct Cj , the point P belongs to a unique curve Ci in the support of ramX.˛/.
Thus @Ci

.˛/D .xu/ 2H 1.�.Ci /;Z=lZ/ is unramified at P (cf. �1).
Suppose that @Ci

.˛/ specializes to zero in H 1.�.P /;Z=lZ/. Since D is not
in the ramification locus of ˛, ˛ is unramified at D. Let x̨ be the specialization of
˛ in H 2.�.D/;Z=lZ/. Since �.D/ is either a p-adic field or a function field of a
curve over a finite field, to show that x̨ is zero, by class field theory it is enough to
show that x̨ is unramified at every discrete valuation of �.D/.

Let v be a discrete valuation of �.D/ and R the corresponding discrete valu-
ation ring. Then there exists a closed point P of D such that R is a localization of
the integral closure of the one-dimensional local ring OD;P of P on D. The local
ring OD;P is a quotient of the local ring OX;P .

Suppose P is not on the ramification locus of ˛. Then ˛ is unramified on
OX;P and hence x̨ on OD;P . In particular, x̨ is unramified at R.

Suppose P is on the ramification locus of ˛. As before, we have ˛ D ˛0C
.u; �/, where ˛0 is unramified on OX;P , u 2 OX;P is a unit and � 2 OX;P is a prime
defining the curve Ci at P . Therefore @Ci

.˛/ D xu in �.Ci /�=�.Ci /�
l

. Since,
by the assumption, @Ci

.˛/ specializes to 0 at P , u.P / 2 �.P /�
l

. We have x̨ D
˛0C .xu; x�/ 2H 2.�.D/;Z=lZ/. Since ˛0 is unramified at P , the residue of x̨ at R
is .u.P //�.x�/. Since �.P / is contained in the residue field of the discrete valuation
ring R and u.P / is an l th power in �.P /, it follows that x̨ is unramified at R. �

PROPOSITION 3.2. Let K and l be as above. Let ˛ 2H 2.K;�l/ with index l .
Let X be a regular projective model of K such that the ramification locus ramX.˛/

and the special fibre of X are a union of regular curves with only normal crossings
and ˛ has no cool points and no chilli loops on X (cf. Proposition 1.4). Let si be the
corresponding coefficients (cf. §1). Let F1; : : : ; Fr be irreducible regular curves on
X which are not in ramX.˛/D fC1; : : : ; Cng and such that fF1; : : : ; Frg[ ramX.˛/

have only normal crossings. Let m1; : : : ; mr be integers. Then there exists f 2K�

such that

divX.f /D
X

siCi C
X

msFsC
X

njDj C lE
0;

where D1; : : : ;Dt are irreducible curves which are not equal to Ci and Fs for all
i and s and ˛ specializes to zero at Dj for all j and .nj ; l/D 1.



THE u-INVARIANT OF THE FUNCTION FIELDS OF p-ADIC CURVES 1399

Proof. Let T be a finite set of closed points of X containing all the points of
intersection of distinct Ci and Fs , and at least one point from each Ci and Fs . By a
semilocal argument, we choose g 2K� such that divX.g/D

P
siCiC

P
msFsCG

where G is a divisor on X whose support does not contain any of Ci or Fs and does
not intersect T .

Since ˛ has no cool points and no chilli loops on X, by [Sal07, Prop. 4.6],
there exists u 2 K� such that divX.ug/D

P
siCi C

P
msFs CE, where E is a

divisor of X whose support does not contain any Ci or Fs , does not pass through
the points in T and either E intersects Ci at a point P where the specialization of
@Ci

.˛/ is 0 or the intersection multiplicity .E �Ci /P is a multiple of l .
Suppose Ci for some i is a geometric curve on X. Then the closed point

of Ci is in T . Since the support of E avoids all the points in T , the support of
E does not intersect Ci . Thus the support of E intersects only those Ci which
are in the special fibre xX. Let Q1; : : : ;Qt be the points of intersection of the
support of the divisor E and the special fibre with intersection multiplicity nj
at Qj coprime with l . For each Qj , let Dj be a regular geometric curve on X

such that Qj is the multiplicity one intersection of Dj and xX (cf. paragraph after
Proposition 2.2). Then by Proposition 2.3 there exists � 2K� such that divX.�/D

�EC
P
njDj C lE

0 and �.P /2 �.P /�
l

for all P 2 T . Let f D ug� 2K�. Then

divX.f /D
X

siCi C
X

msFsC
X

njDj C lE
0:

Since each Qj is the only closed point on Dj and @Ci
.˛/ specializes to zero

at Qj , by Lemma 3.1, the ˛ specializes to 0 at Dj . Thus f has all the required
properties. �

LEMMA 3.3. Let ˛ 2H 2.K;�l/ and let v be a discrete valuation of K. Let
u 2 K� be a unit at v such that xu 2 �.v/� n �.v/�

l

. Suppose further that if ˛ is
ramified at v, @v.˛/D ŒL� 2H 1.�.v/;Z=lZ/, where LD K.u

1
l /. Then, for any

g 2 L�, the image of ˛[ .NL=K.g// 2H 3.Kv; �
˝2
l
/ is zero.

Proof. We identify the Galois modules �˝j
l

with Z=lZ as before. Since u is

a unit at v and xu 62 �.v/�
l

, there is a unique discrete valuation Qv of L extending
the valuation v of K, which is unramified with residual degree l . In particular,
v.NL=K.g// is a multiple of l . Thus if ˛0 2 H 2.Kv;Z=lZ/ is unramified at v,
then ˛0 [ .NL=K.g// 2H 3.Kv;Z=lZ/ is unramified. Since H 3

nr.Kv;Z=lZ/D 0
(cf. Corollary 1.2), we have ˛0[.NL=K.g//D 0 for any ˛0 2H 2.Kv;Z=lZ/ which
is unramified at v. In particular, if ˛ is unramified at v, then ˛[ .NL=K.g//D 0.

Suppose that ˛ is ramified at v. Then by the choice of u, we have ˛ D
˛0C .u/ � .�v/, where �v is a parameter at v and ˛0 2H 2.Kv;Z=lZ/ is unramified
at v. Thus we have

˛[ .NL=K.g//D ˛
0
[ .NL=K.g//C .NL=K.g// � .u/ � .�v/

D .NL=K.g// � .u/ � .�v/ 2H
3.Kv;Z=lZ/:
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Since Lv D Kv.u
1
l /, we have ..NL=K.g// � .u/ D 0 2 H 2.Kv;Z=lZ/ and ˛ [

.NL=K.g//D 0 in H 3.Kv;Z=lZ/. �

THEOREM 3.4. Let K and l be as above. Let ˛ 2 H 2.K;�l/ and � 2
H 3.K;�˝2

l
/. Assume that the index of ˛ is l . Let X be a regular projective

model of K. Suppose that for each x 2 X1, there exists fx 2 K�x such that
� D ˛[ .fx/ 2H

3.Kx; �
˝2
l
/, where Kx is the completion of K at the discrete val-

uation given by x. Then there exists f 2K� such that � D ˛[ .f / 2H 3.K;�˝2
l
/.

Proof. We identify the Galois modules �˝j
l

with Z=lZ as before. By weak
approximation, we may find f 2K� such that .f /D .fv/ 2H 1.Kv;Z=lZ/ for
all the discrete valuations corresponding to the irreducible curves in ramX.˛/[

ramX.�/. Let
divX.f /D C

0
C

X
miFi C lE;

where C 0 is a divisor with support contained in ramX.˛/[ramX.�/, Fi ’s are distinct
irreducible curves which are not in ramX.˛/[ ramX.�/, mi is coprime with l and
E is some divisor on X.

For any Cj 2 ramX.�/ n ramX.˛/, let �j 2 �.Cj /� n �.Cj /�
l

. By weak ap-
proximation, we choose u 2 K� with xu D @Ci

.˛/ 2 H 1.�.Ci /;Z=lZ/ for all
Ci 2 ramX.˛/, �Fi

.u/Dmi , where �Fi
is the discrete valuation at Fi and xuD �j

for any Cj 2 ramX.�/ n ramX.˛/. In particular, u is a unit at the generic point of
Cj and xu 62 �.Cj /�

l

for any Cj 2 ramX.�/ n ramX.˛/.
Let LDK.u

1
l /. Let �WY!X be the normalization of X in L. Since �Fi

.u/D

mi and mi is coprime with l , �WY! X ramified at Fi . In particular, there is a
unique irreducible curve eFi in Y such that �.eFi /D Fi and �.Fi /D �.eFi /.

Let � W zY!Y be a proper birational morphism such that the ramification locus
ramzY.˛L/ of ˛L on zY and the strict transform of the curves eFi on zY is a union
of regular curves with only normal crossings and there are no cool points and no
chilli loops for ˛L on zY (cf. Proposition 1.4). We denote the strict transforms ofeFi by eFi again. By Proposition 3.2, there exists g 2 L� such that

divzY.g/D C C
X
�mi eFi CXnjDj C lD;

where the support of C is contained in ram QY.˛L/ and Dj ’s are irreducible curves
which are not in ramzY.˛L/ and ˛L specializes to zero at all Dj ’s.

We now claim that �D˛[.fNL=K.g//. Since the groupH 3
nr.K=X;Z=lZ/D0

([K, 5.2]), it is enough to show that � �˛[ .fNL=K.g// is unramified on X. Let
S be an irreducible curve on X. Since the residue map @S factors through the
completion KS , it suffices to show that � �˛[ .fNL=K.g//D 0 over KS .

Suppose S is not in ramX.˛/[ ramX.�/[Supp.fNL=K.g//. Then each of �
and ˛[ .fNL=K.g// is unramified at S .

Suppose that S is in ramX.˛/[ ramX.�/. Then by the choice of f we have
.f / D .fv/ 2 H

1.Kv;Z=lZ/ where v is the discrete valuation associated to S .
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Hence � D ˛[ .f / over the completion KS of K at the discrete valuation given
by S . It follows from Lemma 3.3 that .NL=K.g// [ ˛ D 0 over KS and � D
˛[ .fNL=K.g// over KS .

Suppose that S is in the support of divX.fNL=K.g// and not in ramX.˛/[

ramX.�/. Then ˛ and � are unramified at S . We show that in this case ˛ [
.fNL=K.g//D � D 0 over KS . Now,

divX.fNL=K.g//D divX.f /C divX.NL=K.g//

D C 0C
X

miFi C lEC ����

�
C C

X
�mi eFi CXnjDj C lD

�
D C 0C ����.C /C

X
nj����.Dj /C lE

0

for some E 0. We note that if Dj maps to a point, then ����.Dj /D 0. Since the
support of C is contained in ramzY.˛L/, the support of ����.C / is contained in
ramX.˛/. Thus S is in the support of ����.Dj / for some j or S is in the support
of l����.E/. In the later case, clearly ˛ [ .fNL=K.g// is unramified at S and
hence ˛[ .fNL=K.g//D 0 over KS . Suppose S is in the support of ����.Dj / for
some j . In this case, if Dj lies over an inert curve, then ����.Dj / is a multiple of
l and we are done. Suppose that Dj lies over a split curve. Since ˛L specializes to
zero at Dj , it follows that ˛ specializes to zero at ����.Dj / and we are done. �

THEOREM 3.5. Let k be a p-adic field and K a function field of a curve
over k. Let l be a prime not equal to p. Suppose that all the l th roots of unity are
in K. Then every element in H 3.K;�˝3

l
/ is a symbol.

Proof. We again identify the Galois modules �˝j
l

with Z=lZ.
Let v be a discrete valuation of K and Kv the completion of K at v. By

Corollary 1.2, every element in H 3.Kv;Z=lZ/ is a symbol.
Let � 2H 3.K;Z=lZ/ and X be a regular projective model of K. Let v be a

discrete valuation of K corresponding to an irreducible curve in ramX.�/. Then we
have � D .fv/ � .gv/ � .hv/ for some fv; gv; hv 2K�v . By weak approximation, we
can find f; g 2K� such that .f /D .fv/ and .g/D .gv/ in H 1.Kv;Z=lZ/ for all
discrete valuations v corresponding to the irreducible curves in ramX.�/. Let v be
a discrete valuation of K corresponding to an irreducible curve C in X. If C is in
ramX.�/, then by the choice of f and g we have �D .f /�.g/�.hv/2H 3.Kv;Z=lZ/.
If C is not in ramX.�/, then � 2 H 3

nr.Kv;Z=lZ/ ' H 3.�.v/;Z=lZ/ D 0. In
particular, we have � D .f / � .g/ � .1/ 2 H 3.Kv;Z=lZ/. Let ˛ D .f / � .g/ 2

H 2.K;Z=lZ/. Then we have � D ˛ [ .h0v/ 2H
3.Kv;Z=lZ/ for some h0v 2K

�
v

for each discrete valuation v of K associated to any point of X1. By Theorem 3.4,
there exists h 2K� such that � D ˛[ .h/D .f / � .g/ � .h/ 2H 3.K;Z=lZ/: �

Remark 3.6. We note that all the results of this section can be extended to the
situation where k does not necessarily contain a primitive l th root of unity. This
can be achieved by going to the extension k0 of k obtained by adjoining a primitive



1402 RAMAN PARIMALA and V. SURESH

l th root of unity to k and noting that the extension k0=k is unramified of degree
l � 1. We do not use this remark in the sequel.

4. The u-invariant

In Proposition 4.1 and Proposition 4.2 below, we give some necessary con-
ditions for a field k to have the u-invariant less than or equal to 8. If K is the
function field of a curve over a p-adic field and Kv is the completion of K at a
discrete valuation v of K, then the residue field �.v/ of Kv , which is either a global
field of positive characteristic or a p-adic field, has u-invariant 4. By a theorem of
Springer, u.Kv/D 8 and we use Propositions 4.1 and 4.2 for Kv.

PROPOSITION 4.1. Let K be a field of characteristic not equal to 2. Suppose
that u.K/� 8. Then I 4.K/D 0 and every element in I 3.K/ is a 3-fold Pfister form.
Further, if � is a 3-fold Pfister form and q2 a rank 2 quadratic form over K, then
there exists f; g; h 2K� such that f is a value of q2 and � D h1; f ih1; gih1; hi.

Proof. Suppose that u.K/ D 8. Then every 4-fold Pfister form is isotropic
and hence hyperbolic; in particular, I 4.K/D 0. Let � be an anisotropic quadratic
form representing an element in I 3.K/. Since u.K/ � 8, the rank of � is 8 (cf.
[Sch85, p. 156, Th. 5.6]). Then � is a scalar multiple of a 3-fold Pfister form (cf.
[Lam05, Ch. X, Th. 5.6]). Since I 4.K/D 0, � is a 3-fold Pfister form.

Let � D h1; aih1; bih1; ci be a 3-fold Pfister form and �0 be its pure subform.
Let q2 be a quadratic form overK of dimension 2. Since dim.�0/D 7 and u.K/� 8,
the quadratic form �0 � q2 is isotropic. Therefore there exists f 2 K� which is
a value of q2 and �0 ' hf iC �00 for some quadratic form �00 over K. Hence by
[Sch85, p. 143], � D h1; f ih1; b0ih1; c0i for some b0; c0 2K�. �

PROPOSITION 4.2. Let K be a field of characteristic not equal to 2. Suppose
that u.K/ � 8. Let � D h1; f ih1; aih1; bi be a 3-fold Pfister form over K and q3
a quadratic form over K of dimension 3. Then there exist g; h 2K� such that g is
a value of q3 and � D h1; f ih1; gih1; hi.

Proof. Let  Dh1; f iha; b; abi. Since u.K/� 8, the quadratic form  �q3 is
isotropic. Hence there exists g 2K� which is a common value of q3 and  . Thus,
 ' hgi C 1 for some quadratic form  1 over K. Since  is hyperbolic over
K.
p
�f /,  1 ' h1; f iha1; b1iC hg1i for some a1; b1; g1 2 K�. By comparing

the determinants, we get g1 D gf modulo squares. Hence  D h1; f ihg; a1; b1i
and � D h1; f i C  D h1; f ih1; g; a1; b1i. The form � is isotropic and hence
hyperbolic over the function field of the conic given by hf; g; fgi. Hence, as in
Proposition 4.1, � D �h1; f ih1; gih1; hi for some �; h 2 K�. Since I 4.K/ D 0,
� D h1; f ih1; gih1; hi with g a value of q3. �

PROPOSITION 4.3. Let K be a field of characteristic not equal to 2. Assume
the following:

(1) Every element in H 2.K;Z=2Z/ is a sum of at most two symbols.
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(2) Every element in I 3.K/ is equal to a 3-fold Pfister form.

(3) If � is a 3-fold Pfister form and q2 is a quadratic form over K of dimension 2,
then � D h1; f ih1; gih1; hi for some f; g; h 2K� with f a value of q2.

(4) If � D h1; f ih1; aih1; bi is a 3-fold Pfister form and q3 a quadratic form over
K of dimension 3, then � D h1; f ih1; gih1; hi for some g; h 2 K� with g a
value of q3.

(5) I 4.K/D 0:

Then u.K/� 8.

Proof. Let q be a quadratic form over K of dimension 9. Since every element
in H 2.K;Z=2Z/ is a sum of at most two symbols, as in [PS98, proof of 4.5], we
find a quadratic form q5 D �h1; a1; a2; a3; a4i over K such that � D q C q5 2

I 3.K/. By assumptions (2), (3) and (4), there exist f; g; h 2 K� such that � D
h1; f ih1; gih1; hi and f is a value of ha1; a2i and g is a value of hfa1a2; a3; a4i.
We have ha1; a2i'hf; fa1a2i and hfa1a2; a2; a3i'hg; g1; g2i for some g1; g22
K�. Since I 4.K/D 0, we have �� D � and

�q D �qC�q5��q5
D �� ��q5
D � ��q5
D h1; f ih1; gih1; hi � h1; a1; a2; a3; a4i

D h1; f ih1; gih1; hi � h1; f; g; g1; g2i

D hgf iC h1; f ihh; ghi � hg1; g2i:

The above equalities are in the Witt group of K. Since the dimension of �q is 9
and the dimension of hgf i ? h1; f ihh; ghi � hg1; g2i is 7, it follows that �q, and
hence q, is isotropic over K. �

PROPOSITION 4.4. Let k be a p-adic field, p ¤ 2 and K a function field of a
curve over k. Let � be a 3-fold Pfister form over K and q2 a quadratic form over
K of dimension 2. Then there exist f; a; b 2K� such that f is a value of q2 and
� D h1; f ih1; aih1; bi.

Proof. Let � D e3.�/ 2H 3.K;Z=2Z/. Let X be a projective regular model
of K. Let C be an irreducible curve on X and v be the discrete valuation given
by C . Let Kv be the completion of K at v. Since the residue field �.v/D �.C / is
either a p-adic field or a function field of a curve over a finite field, u.�.v//D 4
and u.Kv/D 8 ([Sch85, p. 209]). By Proposition 4.1, there exist fv; av; bv 2K�v
such that fv is a value of q2 over Kv and � D h1; fvih1; avih1; bvi over Kv. By
weak approximation, we can find f; a 2K� such that f is a value of q2 over K
and f D fv; aD av modulo K�

2

v for all discrete valuations v corresponding to the
irreducible curves C in the support of ramX.�/. Let C be any irreducible curve
on X and v be the discrete valuation of K given by C . If C is in the support of
ramX.�/, then by the choice of f and a, we have � D e3.�/D .�f / � .�a/ � .�bv/
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over Kv. If C is not in the support of ramX.�/, then � 2 H 3
nr.Kv;Z=2Z/ '

H 3.�.v/;Z=2Z/ D 0. In particular, we have � D .�f / � .�a/ � .1/ over Kv. Let
˛ D .�f / � .�a/ 2 H 2.K;Z=2Z/. By Theorem 3.4, there exists b 2 K� such
that � D ˛ [ .�b/ 2 H 3.K;Z=2Z/. Since e3W I 3.K/ ! H 3.K;Z=2Z/ is an
isomorphism, we have � D h1; f ih1; aih1; bi as required. �

There is a different proof of Proposition 4.4 in [PS98, 4.4]!

PROPOSITION 4.5. Let k be a p-adic field, p ¤ 2 and K be a function field
of a curve over k. Let � D h1; f ih1; aih1; bi be a 3-fold Pfister form over K and
q3 a quadratic form over K of dimension 3. Then there exist g; h 2K� such that
g is a value of q3 and � D h1; f ih1; gih1; hi.

Proof. Let � D e3.�/ D .�f / � .�a/ � .�b/ 2 H 3.K;Z=2Z/. Let X be a
projective regular model of K. Let C be an irreducible curve on X and v be the
discrete valuation of K given by C . Let Kv be the completion of K at v. Then as
in the proof of Proposition 4.4, we have u.Kv/ D 8. Thus by Proposition 4.2,
there exist gv; hv 2 K�v such that gv is a value of the quadratic form q3 and
� D h1; f ih1; gvih1; hvi over Kv. By weak approximation, we can find g 2 K�

such that g is a value of q3 over K and g D gv modulo K�
2

v for all discrete
valuations v of K given by the irreducible curves C in ramX.�/. Let C be an
irreducible curve on X and v be the discrete valuation of K given by C . By the
choice of g it is clear that � D e3.�/ D .�f / � .�g/ � .�hv/ for all the discrete
valuations v of K given by the irreducible curves C in the support of ramX.�/. If
C is not in the support of ramX.�/, then as in the proof of Proposition 4.4, we
have � D .�f / � .�g/ � .1/ over Kv. Let ˛ D .�f / � .�g/ 2 H 2.K;Z=2Z/. By
Theorem 3.4, there exists h 2 K� such that � D ˛ [ .�h/ D .�f / � .�g/ � .�h/.
Since e3W I 3.K/!H 3.K;Z=2Z/ is an isomorphism, � D h1; f ih1; gih1; hi. �

THEOREM 4.6. Let K be a function field of a curve over a p-adic field k. If
p ¤ 2, then u.K/D 8.

Proof. Let K be a function field of a curve over a p-adic field k. Assume
that p ¤ 2. By a theorem of Saltman ([Sal97, 3.4]; cf. [Sal98]), every element in
H 2.K;Z=2Z/ is a sum of at most two symbols. Since the cohomological dimen-
sion of K is 3, we also have I 4.K/ ' H 4.K;Z=2Z/ D 0 ([AEJ86]). Now the
theorem follows from Propositions 4.3, 4.4 and 4.5. �
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