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Abstract

Let k be a field of characteristic p > 0, let q be a power of p, and let u be
transcendental over k. We determine all polynomials f 2 kŒX� n kŒXp� of degree
q.q�1/=2 for which the Galois group of f .X/�u over k.u/ has a transitive normal
subgroup isomorphic to PSL2.q/, subject to a certain ramification hypothesis. As
a consequence, we describe all polynomials f 2 kŒX� such that deg.f / is not a
power of p and f is functionally indecomposable over k but f decomposes over
an extension of k. Moreover, except for one ramification configuration (which is
handled in a companion paper with Rosenberg), we describe all indecomposable
polynomials f 2 kŒX� such that deg.f / is not a power of p and f is exceptional, in
the sense thatX�Y is the only absolutely irreducible factor of f .X/�f .Y / which
lies in kŒX; Y �. It is known that, when k is finite, a polynomial f is exceptional if
and only if it induces a bijection on infinitely many finite extensions of k.

1. Introduction

Let C and D be smooth, projective, geometrically irreducible curves over
a field k of characteristic p � 0, and let f WC ! D be a separable morphism
over k of degree d > 1. Much information about the map f is encoded in its
monodromy groups, which are defined as follows. Let k.C/=k.D/ be the separa-
ble field extension corresponding to f , and let E denote its Galois closure. The
arithmetic monodromy group of f is the group A WD Gal.E=k.D//. Letting `
denote the algebraic closure of k in E, the geometric monodromy group of f is
G WD Gal.E=`.D//.

A fundamental problem is to determine the possibilities for the monodromy
groups and the ramification of such maps f , where D is fixed and C (and f ) varies.
Riemann solved this problem in case k D C, and moreover he determined how
many such maps f have a specified monodromy group and specified branch points
and inertia groups (although it remains unknown how to write down equations for
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these f ). Riemann’s result can be generalized to the case that k is any algebraically
closed field of characteristic zero; but the problem becomes much more difficult for
other fields k. In case k is an algebraically closed field of characteristic p > 0, the
best result to date was proved by Raynaud [35] and Harbater [25], and describes
the geometric monodromy groups of maps f whose branch points are contained
in a specified set. However, the problem of determining the possible inertia groups
(not to mention the higher ramification groups) is wide open.

In this paper we explicitly determine all maps f (in positive characteristic)
having certain monodromy groups, subject to a constraint on the ramification. The
specific situation we consider arises in questions about two special types of maps f .
In many applications, one is interested in maps f satisfying some additional hy-
potheses; in practice, one often finds that natural hypotheses on f imply severe
restrictions on the monodromy groups. Classifying the groups satisfying such
conditions often requires deep group theoretic results (by contrast, no difficult
group theory was involved in the proofs of Raynaud and Harbater). We need some
notation to describe our situation. The map f induces a transitive permutation
representation of A on a set � of size d . Let A1 be a point stabilizer in this
representation, and note that G is also transitive on �.

In this paper we study maps f having some of the following conditions; some
of these conditions are geometric and some arithmetic, and all of them have been
studied for over a century. In our list we include translations of the conditions into
properties of the monodromy groups.

(i) f is (arithmetically) indecomposable (i.e., f is not a nontrivial composition
of maps defined over k). This is equivalent to A1 being a maximal subgroup
of A.

(ii) f is geometrically indecomposable. This is equivalent to A1\G being max-
imal in G.

(iii) f is totally ramified at some point. This says an inertia group in the Galois
closure of f acts transitively on �.

(iv) C has genus g. This can be translated to a property of G and the higher
ramification groups, via the Riemann-Hurwitz formula and Hilbert’s different
formula.

(v) The fiber product f.c; d/2C�D Wf .c/Df .d/g has no geometric components
defined over k except the diagonal. This says that A and G have no common
orbits on ��� besides the diagonal.

In case (v) we say f is an exceptional map. These have been studied exten-
sively (starting with Dickson’s 1896 thesis [6], and subsequently by Schur, Carlitz,
Davenport, Lewis, Bombieri, Fried, Cohen, and others). They are particularly in-
teresting when k is finite. In this case, f is exceptional if and only if f is bijective
on k0-rational points for all extensions k0=k of degree relatively prime to some
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positive integer m (which can always be taken to be jA WGj). Indeed, as long as the
cardinality of k is sufficiently large compared to the degree of f and the genus of C,
exceptionality is equivalent to either injectivity or surjectivity of the map induced
by f on k-rational points. Moreover, for finite k, the composition of two maps
C!B and B!D is exceptional if and only if both maps are exceptional; thus,
it suffices to classify the exceptional maps that are arithmetically indecomposable.
For proofs of these results, see [23, p. 2] and [14, p. 185]. For partial analogues
over infinite fields, see [22], [27], [31].

We will be especially interested in the case that f is a polynomial; here C

has genus g D 0, and f is totally ramified over a rational point of D (namely, the
point at infinity).

In this paper (except for a few cases handled in [20], [19]), we classify the
polynomials f .X/ 2 kŒX� such that deg.f / is not a power of char.k/ and at least
one of the following holds (where q is a power of char.k/):

(1) f is arithmetically but not geometrically indecomposable;

(2) f is exceptional and arithmetically indecomposable; or

(3) A has a transitive normal subgroup isomorphic to PSL2.q/.

It was shown in [21] that there are significant restrictions on the monodromy
groups of an arithmetically indecomposable polynomial. In this paper we will
study the groups that can occur for polynomials f which satisfy either (1) or (2).
We will see that these usually give rise to condition (3). It would be of great value
to have a classification of all indecomposable f for which G is neither alternating
nor symmetric; from [21] we know that the situation in case (3) is one of the main
sources of such polynomials f . In characteristic 0, all such f are known [11],
[12], [33]; in that case there are no polynomials satisfying (1), and the polynomials
satisfying (2) have been classified [13].

We now consider (1) in more detail. The problem here is to find indecom-
posable polynomials over k which decompose over a bigger field. There are
many examples of such polynomials in the classical family of additive polynomialsP
˛iX

pi

; further examples occur in the related family of subadditive polynomials,
where we say S.X/ 2 kŒX� is subadditive if there are a positive integer m and an
additive polynomial L such that L.X/mD S.Xm/. Up to composition with linears,
these were the only examples known before 1993. Work of Guralnick and Saxl
[21], [22] showed that there are severe restrictions on the degree of any polynomial
satisfying (1). We extend and refine their result as follows, and in particular we
determine all such polynomials whose degree is not a power of the characteristic;
these include some variants of a degree-21 example found by Müller, as well as
new examples of degree 55.

THEOREM 1.1. Let k be a field of characteristic p. If f 2 kŒX� is indecom-
posable over k but decomposes over some extension of k, then one of the following
holds:
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(i) deg.f /D pe with e � 2;

(ii) deg.f /D 21 and p D 7;

(iii) deg.f /D 55 and p D 11.

For k of characteristic p 2 f7; 11g, there exist such f of degree not a power of
p if and only if k contains nonsquares; moreover, all such f are described in
Theorem 4.4.

We note that a new family of examples of degree pe was found recently by
Beals and Zieve [1], and we expect that these examples (and the additive and sub-
additive examples) will comprise all examples of degree pe.

Now consider (2). The classical examples of exceptional polynomials are
the additive and subadditive polynomials discussed above (which are exceptional
precisely when they have no nonzero root in k), the multiplicative polynomials Xd

(which are exceptional when k contains no d -th roots of unity besides 1), and the
Dickson polynomials Dd .X; ˛/. Here for ˛ 2 k the Dickson polynomial is defined
by the equationDd .Y C˛=Y; ˛/DY dC.˛=Y /d , and its exceptionality criteria are
similar to those of Dd .X; 0/DXd . All of these examples occurred in Dickson’s
1896 thesis [6], and no further examples were found for almost a century. In fact,
the theme of most work in the century following Dickson’s thesis was to show that
compositions of the known exceptional polynomials (including linear polynomials)
comprised all exceptional polynomials in some situations. Klyachko [26] proved
this for polynomials whose degree is either equal to or coprime to p. Cohen [4]
and Wan [41] proved the same result for degree 2p. The following result of Fried,
Guralnick and Saxl [14], [22] provides a vast generalization of these results:

THEOREM 1.2. Let k be a field of characteristic p, and let f 2 kŒX� be
indecomposable and exceptional of degree d > 1. Then the geometric monodromy
group G of f satisfies one of the following conditions:

(i) G is cyclic or dihedral of odd prime degree d ¤ p.

(ii) d D pe and G D Fep ÌG1, where Fep acts on itself by translations and G1 �
GL.Fep/.

(iii) p 2 f2; 3g and d Dpe.pe�1/=2 with e > 1 odd, and PSL2.pe/ is a transitive
normal subgroup of G.

In particular, the degree of an indecomposable exceptional polynomial is ei-
ther (i) a prime distinct from p, or (ii) a power of p, or (iii) pe.pe � 1/=2 with
e > 1 odd and p 2 f2; 3g. Any polynomial in (i) is (up to composition with linears)
a Dickson polynomial Dd .X; ˛/ with ˛ 2 k; see [34, Appendix] or [26]. Case (ii)
includes the additive polynomials (where G1 D 1) and the subadditive polynomials
(where G1 is cyclic). In joint work with Müller [17], [18], we have found families
of examples in which G1 is dihedral, and we suspect that no further examples exist
in case (ii). This is based on the following reasoning: let E denote the Galois
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closure of k.x/=k.f .x// (with x transcendental over k), and let F denote the
subfield of E fixed by Fep . We show in [18] that, in any further example of (ii), the
genus g of F would satisfy g > 1 (whereas all known examples have g D 0). But
then G1 is a group of automorphisms of F whose order is large compared to g,
and there are not many possibilities for such a field F [24]. We hope to complete
the analysis of case (ii) in a subsequent paper. The present paper addresses case
(iii), which does not include any classical examples.

Case (iii) was studied intensively in the two years following [14], resulting in
examples with k D Fp for each odd e > 1 and either p D 2 (Müller [32], Cohen-
Matthews [5]) or p D 3 (Lenstra-Zieve [28]). In the present paper we analyze this
case in detail: we identify all possibilities for the ramification in k.x/=k.f .x//,
and for all but one such possibility we determine all the corresponding exceptional
polynomials (cf. Theorems 4.2 and 4.3). This leads to new examples of indecom-
posable exceptional polynomials, which are twists of the examples found in [5],
[28], [32]. In a companion paper with Rosenberg [20], we complete the analysis
of case (iii) by analyzing the final ramification possibility (which yields a new
family of exceptional polynomials). A simplified version of Theorem 4.2 is as
follows (and the shape of Theorem 4.3 is similar):

THEOREM 1.3. Let k be a field of characteristic 3, and let q D 3e with e > 1
odd. The following are equivalent:

(i) there exists an indecomposable exceptional polynomial f 2 kŒX� of degree
q.q� 1/=2;

(ii) k\ Fq D F3 and k contains non-square elements.

Moreover, these polynomials f are precisely the following (up to composition on
both sides with linear polynomials in kŒX�):

X.X2n�˛/.qC1/=.4n/

 
.X2n�˛/.q�1/=2C˛.q�1/=2

X2n

!.qC1/=.2n/
;

where n divides .qC1/=4 and the image of ˛ 2 k� in the quotient group k�=.k�/2n

has even order.

For both of the above problems—finding all indecomposable polynomials
f .X/ 2 kŒX� of degree not a power of char.k/ which either decompose over a
larger field or are exceptional—we use a similar approach. Write xk for an alge-
braic closure of k, and let x and u be transcendental over k. Our general strategy
is to first translate the desired properties of the polynomial into properties of the
monodromy groups G DGal.f .X/�u; xk.u// and ADGal.f .X/�u; k.u//, then
find all group-theoretic configurations satisfying these properties, and finally, for
each group-theoretic possibility, find all corresponding polynomials. In our cases,
a translation to group theory was done in [14], and in that paper and [21], [22] a
restricted list of plausible pairs .G;A/ was given. However, these papers did not
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use the condition that k.x/=k.f .x// is an extension of fields of genus zero; via
the Riemann-Hurwitz genus formula and Hilbert’s different formula, this condition
leads to restrictions on the possible ramification in the extension. We apply this
to each of the pairs .G;A/ allowed for our problems by [22], producing a list of
all possibilities for the ramification. The next step is to determine the possibil-
ities for the Galois closure E of xk.x/=xk.f .x//; once this is done, we compute
the group Autxk.E/, find all of its subgroups which are isomorphic to G, and for
each such subgroup we compute the invariant subfield EG and then compute the
corresponding polynomials. This gives all polynomials over xk having the desired
group theoretic setup geometrically; the final step is to determine which of these
polynomials are defined over k and solve our original problems.

The hardest step in our work is the determination of E. The data we are
given for this is a group G of automorphisms of E, together with knowledge of
the ramification in E=EG (and the fact that EG has genus zero). In our case, it
turns out that E has the shape xk.v;w/, where vp

e

� v D wn and n is coprime
to p. So we must prove that this field is determined by its ramification over a
certain subextension; before stating the result, we give a simple lemma describing
the ramification in the relevant subextension.

LEMMA 1.4. Let k be a field containing Fq , let n > 1 be coprime to q, and let
r > 0. For any 
 2 k�, let v and w be transcendental over k such that vq � v D

wn; then the extension k.v;w/=k.wr/ is Galois if and only if r=gcd.n; r/ divides
q � 1 and k contains a primitive r-th root of unity. Moreover, for any such r , the
ramification is as follows (where E D k.v;w/ and t D wr ):

All ramification in E=k.t/ occurs over two places of k.t/:

the finite place 0, over which the ramification index is r ;

and the infinite place, which is totally ramified (index qr), and(�)

over which the sequence of ramification groups has the shape

I0 ‰ I1 D � � � D In ‰ InC1 D 1:

THEOREM 1.5. Let k be a perfect field containing Fpe , let t be transcendental
over k, and let n and r be positive integers such that k contains a primitive r-th
root of unity, p − n, and r=gcd.n; r/ divides pe � 1. If both (i) and (ii) below
are satisfied, then any Galois extension E=k.t/ having ramification as in (�) must
have the form E D k.v;w/ where vp

e

� v D 
wn and 
 2 k� and t D wr .

(i) n is the least nonnegative integer congruent modulo r to any number of the
form npi with i � 0.

(ii) Either k D Fpe or pe is the least power of p which is congruent to 1 modulo
r=gcd.n; r/.

Conversely, if either (i) or (ii) is not satisfied, then there exist Galois extensions
E=k.t/ having ramification as in (�) which do not have the above form.
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Condition (i) seems unexpected in this context. It is especially surprising that
this condition is true for n D .pe C 1/=4 and r D .pe � 1/=2 (assuming pe � 3
.mod 4/ and pe > 3); in this case the subgroup of .Z=rZ/� generated by p has
order e, but all e elements of the coset of n have least nonnegative residue lying in
the top half of the interval Œ0; r�.

In fact, we do rather more than classify the two special types of polynomials
described above. We determine all polynomials of a general class which contains
the polynomials of the two special types. In particular, we prove the following
result (see Theorem 4.1 for a refined version).

THEOREM 1.6. Let k be an algebraically closed field of characteristic p > 0,
let d D .q2 � q/=2 for some power q D pe, and let f .X/ 2 kŒX� n kŒXp� have
degree d . Then the following are equivalent:

(i) G WD Gal.f .X/� u; k.u// has a transitive normal subgroup isomorphic to
PSL2.q/, and the Galois closure of the extension k.x/=k.f .x// does not have
genus .q2� q/=2.

(ii) There exist linear polynomials `1; `2 2 kŒX� such that the composition `1 ı
f ı `2 is one of the following polynomials or one of the exceptions in Table B
(which follows Theorem 4.1):

X.XmC 1/.qC1/=.2m/

 
.XmC 1/.q�1/=2� 1

Xm

!.qC1/=m
with q odd and m a divisor of .qC 1/=2; or

X�q
�e�1X
iD0

Xm2
i

�.qC1/=m
with q even and m a divisor of qC 1 with m¤ qC 1.

In these examples, G Š PSL2.q/ if m even, and G Š PGL2.q/ if m odd.

In the examples listed in (ii) (ignoring those in Table B), the cover f WP1!
P1 is only ramified over 1 and 0, and any inertia group at a point over 0 (in
the Galois closure cover) is cyclic of order .qC 1/=m. There is a point over1
(in the Galois closure cover) whose inertia group is the group of upper-triangular
matrices in G, and whose higher ramification groups (in the lower numbering)
satisfy I1 D I2 D � � � D In ¤ InC1 D 1, where n D m= gcd.m; 2/. The Galois
closure of k.x/=k.f .x// is k.v;w/ where vq � v D wn. We also prove some
results in case the Galois closure has genus .q2� q/=2; we complete the analysis
of this case in the papers [20], [19].

This paper is organized as follows. In the next section we determine all group
theoretic possibilities which could correspond to a polynomial as in the previous
theorem. In Section 3 we examine when the group theoretic data determines the
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Galois closure E, and in particular prove Theorem 1.5. In Section 4 we use knowl-
edge of E to classify polynomials satisfying the properties discussed above. For
convenience, we collect various elementary group theoretic facts in an appendix.

The second author thanks Hendrik Lenstra and Henning Stichtenoth for valu-
able conversations.

Notation. Throughout this paper, k is a field of characteristic p � 0, and xk is
an algebraic closure of k. Also qDpe and d D q.q�1/=2. The letters X and Y de-
note indeterminates, and (in situations where k is present) the letters t; u; v; w; x; z
denote elements of an extension of k which are transcendental over k.

2. Group theory

In this section we determine the possibilities for ramification in the extension
k.x/=k.f .x//, where f .X/ 2 kŒX� is a polynomial of degree q.q� 1/=2 whose
arithmetic monodromy group A has a transitive normal subgroup isomorphic to
PSL2.q/ (where q is a power of char.k/). We denote the Galois closure of the
extension xk.x/=xk.f .x// by E, and write gE for its genus. Then the geometric
monodromy group of f is G D Gal.E=xk.f .x///, and we let G1 D Gal.E=xk.x//
denote a one-point stabilizer of the permutation group G. Recall that, if G is either
PSL2.q/ or PGL2.q/, then a Borel subgroup of G is any subgroup conjugate to the
subgroup of upper-triangular matrices. We often use without comment the various
elementary group theoretic facts collected in the appendix.

THEOREM 2.1. Let k be a field of characteristic p > 0, and let f .X/ 2 kŒX�n
kŒXp� have degree d D q.q � 1/=2 where q D pe. If A has a transitive normal
subgroup L isomorphic to PSL2.q/, then all of the following hold unless q;G;G1
are listed in Table A:

(i) either G D PGL2.q/ or both G D PSL2.q/ and q � 3 .mod 4/;

(ii) G1\L is a dihedral group of order 2.qC1/=o, where oD gcd.2; q�1/; also
q � 4;

(iii) the inertia group of a place of E lying over the infinite place of xk.f .x// is
a Borel subgroup I of G; the higher ramification groups of this place satisfy
V WD I1 D I2 D � � � D In ‰ InC1 D 1.

(iv) E=xk.f .x// has at most two finite branch points (i.e., ramified finite places of
xk.f .x//); the possibilities are:
� One finite branch point with inertia group of order jG W L�.qC 1/=.on/,

where q < nC 1, nj..qC 1/= gcd.4; qC 1// and gE D .q� 1/.n� 1/=2.
� No finite branch points, where q � 0 .mod 4/ and nD qC 1 and gE D
.q2� q/=2.

� One finite branch point, with inertia group of order two and second ramifi-
cation group trivial, where q�0 .mod 4/ and nD1 and gE D .q2�q/=2.



POLYNOMIALS WITH PSL.2/ MONODROMY 1323

� Two finite branch points, both with inertia groups of order two, of which
precisely one is contained in L; here q � 1 .mod 2/ and nD 1, and also
G D PGL2.q/ and gE D .q2� q/=2.

q G G1

4 P�L2.q/ C5 ÌC4
11 PSL2.q/ A4
11 PGL2.q/ S4
23 PSL2.q/ S4
59 PSL2.q/ A5

Table A

In this paper we will determine all polynomials having either the first or
second ramification possibilities (as well as all polynomials corresponding to the
situations in Table A). We will determine the polynomials in the third and fourth
possibilities in the papers [20] and [19], respectively, and in the latter paper we
will also determine all polynomials of other degrees whose arithmetic monodromy
group has a transitive normal subgroup isomorphic to PSL2.q/. We will prove in
this paper that the fourth possibility does not yield any exceptional polynomials, or
any indecomposable polynomials that decompose over an extension field. However,
it turns out that the third possibility does yield exceptional polynomials. At the end
of this section we include a result giving more details about this possibility, which
we will need in [20].

The remainder of this section is devoted to the proof of Theorem 2.1. First,
since L� A� Sd , we must have jPSL2.q/j � jSd j, so q � 4. Next we show that
L�G. If L 6�G then (since GEA) the group L\G is a proper normal subgroup
of the simple group L, and hence is trivial. Since L and G normalize one another
and intersect trivially, they must commute. Recall that the centralizer in Sd of any
transitive subgroup has order at most d [9, Thm. 4.2A]. But we have shown that
the centralizer of G has order at least jLj> d , a contradiction. Thus L�G.

We now describe the group-theoretic constraints implied by the hypotheses
of Theorem 2.1. The transitive subgroup G � Sd satisfies PSL2.q/Š LEG, and
G1 is a point-stabilizer of G. We can identify the permutation representation of G
with the action of G on the set of left cosets of G1 in G. Thus, our hypothesis of
transitivity of L says that LG1 DG.

We use valuation theory to describe the further group-theoretic conditions.
We identify the places of xk.f .x// with xk [ f1g, and we say that an element of
xk[f1g is a branch point of f if the corresponding place is ramified in E=xk.f .x//.
For a place Q of xk.f .x//, let P be a place of E lying over Q, and denote the
ramification groups of P=Q by I0.Q/, I1.Q/; : : : . Different choices of P yield
conjugate ramification groups; this ambiguity is irrelevant in what follows. We use
the following standard properties of these groups:

� each Ii is normal in I0;
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� I1 is the (unique) Sylow p-subgroup of I0;

� I0=I1 is cyclic;

� Ii D 1 for all sufficiently large i .

These properties imply that I1 is the semidirect product of I0 by a cyclic group of
order jI0 W I1j. Moreover, since1 is totally ramified in xk.x/=xk.f .x//, we have
I0.1/G1 DG. We write I D I0.1/ and V D I1.1/.

By combining the Riemann-Hurwitz genus formula with Hilbert’s different
formula [36, Prop. IV.4], we can express the genus gE in terms of the ramification
groups:

2gE � 2D�2d C
X
Q

jG W I0.Q/j
X
i�0

.jIi .Q/j � 1/:

By combining this formula with the analogous one for the extension E=xk.x/, we
obtain a formula for the (non-Galois) extension xk.x/=xk.f .x//. We need some
notation to state this formula. For a subgroup H of G, let orb.H/ be the number
of orbits of H , and let orb0.H/ be the number of orbits with length coprime to p.
Define the index of Q to be

indQD
X
i�0

d � orb.Ii .Q//
jI0.Q/ W Ii .Q/j

:

Then our ‘Riemann-Hurwitz’ formula for xk.x/=xk.f .x// is

2d � 2D
X
Q

indQ:

We also use the inequality

indQ � d � orb0.I0.Q//;

which comes from the relation between the different exponent and ramification
index [36, Prop. III.13].

Our first lemma shows thatG is contained in the automorphism groupP�L2.q/
of L (see the appendix for information about this group); we simultaneously prove
that G1\L usually has the desired shape.

LEMMA 2.2. G is contained in P�L2.q/. Also, except for the final four cases
listed in Table A, the group L1 WDG1\L is dihedral of order 2.qC 1/=o.

Proof. As noted above, we have q� 4. Since jL WL1jD jG WG1jDd , the order
of L1 is 2.qC 1/=o. This numerical information severely limits the possibilities
for L1; from Dickson’s classification of subgroups of L (Theorem A.1), it follows
that L1 has the desired shape except possibly if L1 is one of the following groups:
A4 if q D 11; S4 if q D 23; A5 if q D 59. In any case, L1 D NL.L1/ (since
L is simple and L1 is maximal unless q D 4; 7; 9, or 11, and these special cases
are easily handled). Hence G1 DNG.L1/. Since CG.L/ is a normal subgroup of
G contained in G1, it must be trivial, so indeed G embeds in the automorphism
group P�L2.q/ of L. Finally, the three exceptional possibilities for L1 occur with
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q prime, so G is either L or PGL2.q/, and when L1 is S4 or A5 we cannot have
G D PGL2.q/ since there is no G1 �G with jG1 WL1j D 2. �

Henceforth assume q;G;G1 do not satisfy any of the final four possibilities
in Table A, and write L1 WDG1\L. Then Lemma A.5 says that our action of G
(on the set of left cosets of G1 in G) is uniquely determined (up to equivalence) by
G and q, and does not depend on the specific choice of G1.

LEMMA 2.3. I is a Borel subgroup of L or of PGL2.q/, unless q;G;G1 are
listed in Table A.

Proof. We first show that V is a Sylow p-subgroup of L if q > 4. If e � 2 then
P�L2.q/=L has order coprime to p, so V is contained in a Sylow p-subgroup of
L; but this Sylow subgroup has order q, which implies the claim since q j jV j. Now
assume e� 3 and q¤ 64. Then Zsigmondy’s theorem implies pe�1 has a primitive
prime divisor s. Here s is coprime to 2e, and hence to jP�L2.q/ WLj, so any � 2 I
of order s must lie in L. Now, � acts on V \L by conjugation, with the identity
element as a fixed point, and every other orbit having size s (since the centralizer
in L of an order-p element of L is a Sylow p-subgroup of L, and hence does not
contain �). Thus jV \Lj � 1 .mod s/; since also jV \Lj divides q, primitivity of
s implies that jV \Lj is either 1 or q. We cannot have jV \LjD 1, since in this case
V would embed in P�L2.q/=L, but the order eo of this group is not divisible by
qo=2. Hence V is a p-group containing a Sylow p-subgroup of L; after replacing
I by a suitable conjugate, we may assume that V \L consists of upper-triangular
matrices, and that V is generated by V \L and a group of field automorphisms.
The conjugated � still lies in I \L (since L is normal in P�L2.q/), and must
be upper-triangular (since it normalizes V \L), so it does not commute with any
nontrivial field automorphism (by primitivity). Thus, as above, jV j � 1 .mod s/,
so primitivity implies jV j is a power of q. But jP�L2.q/ WLj D eo is less than q, so
V is a Sylow p-subgroup of L. This conclusion is also true for q D 64, as can be
shown by a similar argument using an order-21 element of I (which must lie in L).

Now, for q > 4, we may conjugate to assume V consists of upper triangular
matrices. Then the normalizer N of V in P�L2.q/ is the semidirect product of
the group of all upper triangular matrices with the group of field automorphisms.
Consider an element � 2N whose image in P�L2.q/=PGL2.q/ has order r ; then
the order of � divides rp.q1=r �1/. Since I is generated by V and an element � of
order divisible by .q�1/=o, and I �N , for this � we have either r D 1 or qD 9. If
r D 1 then indeed I is a Borel subgroup of either L or PGL2.q/. If qD 9 and r > 1
then the above divisibility relations imply jI j D 36, so the conditions IG1DG and
jG WG1j D 36 imply I \G1D 1; but one can check that there are no such G and G1.

Finally, for qD 4, we have PGL2.q/ŠA5 and P�L2.q/Š S5, and one easily
checks that, if I is not a Borel subgroup of L, we must have G D P�L2.q/ and
I Š C6, with G1 being the normalizer in S5 of a dihedral group of order 10. �
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Henceforth we assume q;G;G1 are not among the triples listed in Table A.
An immediate consequence of this lemma is the structure of the higher ramification
groups over the infinite place, as described in (iii) of Theorem 2.1: recall that the
chain I � V � I2.1/� I3.1/� : : : is such that every Ii .1/ is normal in I , and
Ii .1/ D 1 for some i . In our case V.D I1.1// is a minimal normal subgroup
of I , so every nontrivial Ii .1/ equals V ; hence there is some n � 1 for which
V D I1.1/D I2.1/D � � � D In.1/ but InC1.1/D 1.

We complete the proof of Theorem 2.1 by analyzing the possibilities for the
various other chains of ramification groups in light of the Riemann-Hurwitz for-
mula. We do this in four cases.

2.1. The case q � 3 .mod 4/ and I � L. First we compute the number of
fixed points for various types of elements of P�L2.q/ in the action under consider-
ation. We will use these computations to determine the number and length of the
orbits of cyclic subgroups of P�L2.q/, which control the indices of finite branch
points for the extension xk.x/=xk.f .x//.

LEMMA 2.4. Let � 2 P�L2.q/ have order r > 1. For � 2L: if r D 2 then � has
.qC 3/=2 fixed points; if r divides p.q� 1/=2 then � has no fixed points; if r > 2
and r divides .qC 1/=2 then � has one fixed point. If � is a field automorphism
then it has .q20�q0/=2 fixed points, where q0D q1=r . An involution in PGL2.q/nL
has .q� 1/=2 fixed points.

Proof. Since all .q2� q/=2 involutions of L are conjugate, and the centralizer
in L of any such involution is dihedral of order qC 1, we can identify the action
of L on cosets of L1 with the conjugation action of L on the involutions of L.
Then the uniqueness of the action of G on cosets of G1 implies that this action is
equivalent to the conjugation action of G on the involutions of L, so we examine
the latter action. Thus, the number of fixed points of an element � 2G equals the
number of involutions of L which commute with �.

If � 2 L is an involution, then its centralizer in L is dihedral of order qC 1,
and so contains .qC 3/=2 involutions. Conversely, if the order of � 2 L does not
divide qC 1, then � cannot lie in the centralizer of any involution of L. If � 2 L
has order r > 2, where r divides .q C 1/=2, then the normalizer of h�i in L is
dihedral of order qC 1, so the centralizer of � in L contains a unique involution.
The centralizer in L of an involution of PGL2.q/ nL is dihedral of order q � 1,
and so contains .q � 1/=2 involutions. Finally, suppose � 2 P�L2.q/ is a field
automorphism of order r , and let q0 D q1=r ; then the centralizer of � in L is
PSL2.q0/, which contains .q20 � q0/=2 involutions. �

We compute ind1D .d � 1/Cn.q� 1/. For any Q 2 xk, if I0.Q/¤ 1 then
I0.Q/ contains an element � of prime order r ; by Lang’s theorem, this element is
either in PGL2.q/ or is conjugate to a field automorphism. If � is an involution
of L, then indQ � d � orb0.I0.Q// � d � orb0.h�i/ D .d � .q C 3/=2/=2. If
� 2 L is not an involution, then likewise indQ � d � .d=r/ if d j .q � 1/, and
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indQ � d � 1 � .d � 1/=r if r j .q C 1/, and indQ � d if r D p. If � is an
involution in PGL2.q/ nL then indQ � .d � .q� 1/=2/=2. Finally, if � is a field
automorphism then indQ� d � s� .d � s/=r , where sD .q20 �q0/=2 and qr0 D q;
moreover, if the field automorphism has order p then indQ � d � s. In any case,
we conclude that indQ � .d � .qC 3/=2/=2.

If there are no finite branch points, then .d � 1/C n.q � 1/ D 2d � 2, so
q�1 j d �1 which is absurd; hence there is at least one finite branch point. If there
are at least two finite branch points, then

.d � 1/Cn.q� 1/C
X
Q

indQ � .d � 1/C .q� 1/C .d � .qC 3/=2/ > 2d � 2;

contrary to the Riemann-Hurwitz formula. Hence there is exactly one finite branch
point Q. Similarly, the Riemann-Hurwitz formula would be violated if I0.Q/
contained an element of order p; thus, p − jI0.Q/j.

Now we use another geometric fact—equivalently, we add another condition
to the list of group theoretic restrictions. Consider the field extension EL=EG : it
is unramified over the infinite place of EG (since L contains all conjugates of I ),
so it is ramified over at most the single place Q of EG , and the ramification over
that place is tame. Since any nontrivial tame extension of EG D xk.f .x// ramifies
over at least two places, we must have LDG.

Next we consider the extension E=EL1 , which is Galois with group dihedral
of order q C 1; here EL1 D xk.x/ has genus zero. This extension is unramified
over the infinite place of EL1 (since gcd.jL1j; jI j/D 1), so all ramification occurs
over places of xk.x/ lying over Q. Let H be the cyclic subgroup of L1 of order
.qC1/=2; then EH=EL1 has degree 2 and ramifies only over places of xk.x/ lying
over Q. But EH=EL1 is a nontrivial extension of xk.x/, so it is ramified, whence
the ramification index of Q (in E=EG) is even.

Once again considering the extension E=EG , we have shown that there is
exactly one finite branch point Q, which is tamely ramified of even index. In
particular, the inertia group I0.Q/ is cyclic of order 2s, where p − s. Since I0.Q/
� L, by Theorem A.1 we have s j .qC 1/=4. We see by Lemma 2.4 that I0.Q/
has .d � .q C 3/=2/=.2s/ orbits of length 2s; if s D 1 then the other points are
fixed, while if s > 1 then only one point is fixed and I0.Q/ has .q C 1/=.2s/
orbits of length s. In any case, indQ D d � 1� .q2 � 1/=.4s/. We observe that
2d � 2D .d � 1/Cn.q� 1/C indQ and so conclude that nD .qC 1/=.4s/.

Now we compute the genus of E, using the Riemann-Hurwitz formula for the
extension E=EG : namely, 2gE � 2 equals

�2jGjC jG W I j..jI j � 1/Cn.jV j � 1//CjG W I0.Q/j.2s� 1/

D�.q3� q/C .qC 1/
�
q2�q

2
� 1Cn.q� 1/

�
C
q3�q

4s
.2s� 1/I

simplifying, we find that gE D .n� 1/.q� 1/=2.
This concludes the proof of Theorem 2.1 in this case.
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2.2. The case q � 3 .mod 4/ and I 6� L. Here I is a Borel subgroup of
PGL2.q/, so G contains PGL2.q/. We compute ind1D d � 1C n.q � 1/=2 as
above, and each finite branch point Q satisfies indQ � .d � .qC 3/=2/=2; hence
there are at most two finite branch points.

If there are two finite branch points Q1 and Q2 then

d �1Cn.q�1/=2C
X
Q

indQ � d �1C .q�1/=2C .d � .qC3/=2/D 2d �3;

so we must have n D 1, and the indices indQ1 and indQ2 must be (in some
order) .d � .q C 3/=2/=2 and .d � .q � 1/=2/=2. The inequalities for indQ in
the previous subsection imply that I0.Q1/ and I0.Q2/ are 2-groups containing
no involutions outside PGL2.q/. Since these two inertia groups have order co-
prime to p, they are cyclic, so they must have order 2 (otherwise indQj would be
too large). Assuming without loss that indQ1 < indQ2, it follows that I0.Q1/
is generated by an involution in L and I0.Q2/ is generated by an involution in
PGL2.q/ n L. The subgroup of G generated by the conjugates of I0.Q1/ and
I0.Q2/ is PGL2.q/, so EPGL2.q/=EG is an unramified extension of xk.f .x//, and
thus is trivial: G D PGL2.q/. Now we compute the genus of E:

2gE � 2D�2.q
3
� q/C .qC 1/.q2� q� 1C q� 1/C .q3� q/;

so gE D .q2� q/=2.
Henceforth assume there is at most one finite branch point Q. The same

argument as in the previous subsection shows there must be at least one such Q,
and it must be tamely ramified. Consider the extension EPGL2.q/=EG . This ex-
tension is unramified over the infinite place of xk.f .x// (since PGL2.q/ contains
all conjugates of I ), so it can only be ramified over Q; hence it is a tamely ram-
ified extension of xk.f .x// which is ramified over less than two points, so it is
trivial: G D PGL2.q/. Thus EL=EG has degree 2, so it is a tame extension of
EG D xk.f .x//, whence it must be ramified over both infinity and Q; hence I0.Q/
is cyclic of order 2s and is not contained in L. It follows that 2s divides either
q � 1 or qC 1. In the former case, a Riemann-Hurwitz computation shows that
nD 1 and s D .q�1/=2, but then the genus of E would be �q which is absurd. In
the other case, we find that s must be even, nD .qC1/=.2s/, and the genus of E is
.q� 1/.n� 1/=2. This concludes the proof of Theorem 2.1 in case q � 3 (mod 4).

2.3. The case q � 1 (mod 4). First we show that BL1 ¤ L for every Borel
subgroup B of L; this implies B ¤ I , so I is a Borel subgroup of PGL2.q/. For,
if BL1 D L, then every Borel subgroup of L has the form B� with � 2 L1, so
B� \L1 D .B \L1/

� is trivial. But this is impossible, since any involution in L1
is contained in some Borel subgroup of L.

Thus, I is a Borel subgroup of PGL2.q/, so G � PGL2.q/. The remainder of
the proof in this case is similar to the proof in the previous subsection, so we only
give the fixed point computation.
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LEMMA 2.5. Let � 2 P�L2.q/ have order r . If � is a field automorphism then
� has no fixed points if r is even, and � has .q20 � q0/=2 fixed points if r is odd;
here q0 D q1=r . If � 2 PGL2.q/ and r > 2, then � has one fixed point if r j .qC 1/
and � has no fixed points if r j p.q � 1/. An involution in L has .q � 1/=2 fixed
points; an involution in PGL2.q/ nL has .qC 3/=2 fixed points.

The proof of this lemma is similar to the proof of Lemma 2.4, except that in
this case we identify the action of G on cosets of G1 with the conjugation action
of G on the involutions in PGL2.q/ nL.

2.4. The case p D 2. Here PGL2.q/ Š L, so we identify these groups. In
particular, I is a Borel subgroup of L. We begin with a fixed point calculation.

LEMMA 2.6. An involution of L has q=2 fixed points; an element of L of
order r > 1 has no fixed points if r j q� 1, and one fixed point if r j qC 1. A field
automorphism of order r has no fixed points if r D 2, and has .q20 � q0/=2 fixed
points if r is an odd prime; here q0 D q1=r .

Proof. Since there are .q2� q/=2 dihedral subgroups of L of order 2.qC 1/,
and they are all conjugate, the number of fixed points of an element � 2 L (acting
on cosets of L1 in L) equals the number of dihedral subgroups of L of order
2.qC 1/ which contain �. This number is certainly zero if the order r > 1 of �
does not divide 2.qC1/, which happens if r j q�1. Next, a dihedral group of order
2.qC 1/ normalizes each of its cyclic subgroups of order dividing qC 1; since the
normalizer in L of a nontrivial cyclic group of order dividing qC 1 is dihedral of
order 2.qC 1/, it follows that a nonidentity element of L of order dividing qC 1
has exactly one fixed point.

Next consider a field automorphism � of order 2. Let xG be the group generated
by L and � , so j xG WLj D 2. Suppose that � has a fixed point; then � lies in some
point-stabilizer xG1 � xG. Here xL1 WD xG1\L is dihedral of order 2.qC 1/, and xG1
is the normalizer of xL1 in xG. In particular, � normalizes the cyclic subgroup of xL1
of order qC1; let � be a generator of this subgroup. Let y�2GL2.q/ be a preimage
of � under the natural map GL2.q/! L. Then y� has distinct eigenvalues, and the
eigenvalues of � y���1 are the

p
q-th powers of the eigenvalues of y�, so � y���1 is

conjugate to y�
p
q . Thus, ����1 is conjugate to �

p
q in L. Since the normalizer

of h�i in L is xL1, the only powers of � which are conjugate (in L) to �
p
q are

�˙
p
q . It follows that ����1 is one of �˙

p
q . A Sylow 2-subgroup of xG1 which

contains � also contains an involution � 2 xL1, and so must be dihedral of order 4;
thus .��/2D 1. But, since ��� D��1, we have �D .��/2�.��/�2D�q D��1,
which is a contradiction, so in fact � has no fixed points.

For the remaining cases, we use the following elementary result about fixed
points in a permutation group. Let xG1 be a subgroup of the finite group xG, and
consider the natural action of xG on the set of cosets of xG1 in xG. For an element
� 2 xG, let �1; �2; : : : ; �s be representatives of the conjugacy classes of xG1 which
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are contained in the conjugacy class of � in xG. Then the number of fixed points of
� is

sX
iD1

jC xG.�/ WC xG1
.�i /j:

We first apply this in case � 2 L is an involution; let xG D L and let xG1 D
L1 be dihedral of order 2.q C 1/. Then the conjugacy class of � in L consists
of all involutions in L, and CL.�/ is a Sylow 2-subgroup of L; all involutions
in a dihedral group of order 2.qC 1/ are conjugate, and each generates its own
centralizer. By the above fixed point formula, � fixes q=2 cosets of L1 in L.

For the final case in the lemma, let � 2 P�L2.q/ be a field automorphism of
order r , and assume that r is an odd prime. Write q D qr0. Let xG be the group
generated by L and � , so j xG WLj D r . Let H be a cyclic subgroup of PSL2.q0/ of
order q0C1, and let xL1 (respectively, xG1) be the normalizer ofH inL (respectively,
xG). Then xL1 is dihedral of order 2.qC1/, so xG1 is generated by xL1 and � and has
order 2r.qC 1/. The centralizer of � in xG1 is generated by � and PSL2.q0/\ xG1;
since the latter group is dihedral of order 2.q0C 1/, the order of the centralizer
is 2r.q0 C 1/. The centralizer of � in xG is generated by � and PSL2.q0/, and
has order r.q30 � q0/. We will show that the conjugacy class of � in xG contains
a unique conjugacy class of xG1; by the fixed point formula, it follows that � has
.q20 � q0/=2 fixed points.

Since � normalizes L, any conjugate of � in xG has the form �� with � 2
L; conversely, by Lang’s theorem, if �� has order r (where � 2 L) then �� is
conjugate to � in xG. If r − qC 1 then � generates a Sylow subgroup of xG1, so
it is conjugate in xG1 to any element �� of order r with � 2 xL1. Henceforth
assume r j qC 1. Let xJ be a Sylow r-subgroup of xL1 containing � . Then J WD
xJ \L is a Sylow r-subgroup of xL1, so it is cyclic of order (say) rj ; let � be a
generator of J . Since � normalizes J , we have ����1 D � i where 1 � i < rj .
Then � i

r

D �r���r D � , so ir � 1 .mod rj /, whence i � 1 .mod rj�1/. Since
q C 1 D qr0 C 1 is divisible by r , also r j q0 C 1, and thus .q C 1/=.q0 C 1/ is
divisible by r but not by r2. Hence � does not centralize J , so i > 1. Next, we
compute .�a�/r D �a.1CiC���Ci

j�1/, so �a� has order r if and only if rj divides
a.1C i C � � � C ij�1/, i.e., if and only if rj�1 j a. Conversely, if rj�1 j a then
a � b.i � 1/ .mod rj /; since ��b��b D �b.i�1/� , it follows that J contains
a unique conjugacy class of subgroups of order r which are not contained in L.
Thus xG1 contains a unique conjugacy class of subgroups of order r which are not
contained in L, and the proof is complete. �

This computation implies that the index of any branch pointQ satisfies indQ>
2d=3�q=2. Since ind1D d �1Cn.q=2�1/� d �2Cq=2, it follows that there
is at most one finite branch point Q, and indQ � d � .q=2/.

Since G=L is cyclic, there is a unique group H between L and G such that
jH WLj is the highest power of 2 dividing jG WLj. Then EH=EG is unramified over
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infinity, so it is a tame extension of xk.f .x// having only one branch point, whence
it is trivial. Thus H DG, so if G ¤ L then jG WLj is a power of 2. Now assume
s WD jG WLj is a power of 2. Since G is generated by the inertia groups, which are
conjugates of I and I0.Q/, it follows that I0.Q/ maps onto G=L; let � 2 I0.Q/
map to a generator of G=L. Replacing � by an odd power of itself, we may assume
� has order a power of 2. Since indQ � d � .q=2/, � must have at least q=2 fixed
points; hence � cannot be conjugate to a field automorphism, so h�i intersects L
nontrivially. Since 4 − jL1j, a subgroup of L of order divisible by 4 has no fixed
points; thus 4 − jI0.Q/\Lj. Hence the Sylow 2-subgroup I1.Q/ of I0.Q/ has
order 2s, so it is generated by �. Since the involution in I1.Q/\L is centralized
by I0.Q/\L, the latter group has order a power of 2; hence I0.Q/D I1.Q/. By
Lemma 3.8, I1.Q/=I2.Q/ is elementary abelian. Since I1.Q/ is cyclic of order
2s, the order of I2.Q/ is either e or 2e, so jI2.Q/j > 1. Thus, for 0 � i � 2, the
group Ii .Q/ contains an involution of L, so orb.Ii .Q//� q2=4. But then we have
the contradiction

indQ �
2X
iD0

.d � orb.Ii .Q///=jI0.Q/ W I1.Q/j

� .d � q2=4/C .d � q2=4/C .d � q2=4/=2 > d � q=2:

Henceforth we assume G D L.
Suppose the ramification over Q is wild. If I0.Q/ has a subgroup of order

4 then every orbit of I0.Q/ has even length, so indQ � d is too large. Hence
the Sylow 2-subgroup I1.Q/ of I0.Q/ has order 2, so it is centralized by I0.Q/;
but the centralizer (in L) of an involution is the Sylow subgroup containing the
involution, so I0.Q/ has order 2. A Riemann-Hurwitz calculation yields I2.Q/D 1
and nD 1. In this case the genus of E is .q2� q/=2.

Now suppose the ramification over Q is tame. Then I0.Q/ is cyclic of order
s, where s divides either q�1 or qC1. If s > 1 and s j q�1 then indQD d �d=s,
which implies that n D 1 and s D q � 1; but then the genus of E would be �q,
which is absurd. Thus s j qC1, so indQDd�1�.d�1/=s, whence nD .qC1/=s.
Here the genus of E is .q� 1/.n� 1/=2. This completes the proof of Theorem 2.1.

2.5. Preliminary analysis in the case of two wildly ramified branch points.
We now prove the following result, which will be used in [20]:

LEMMA 2.7. Let k be a field of characteristic 2, and let q D 2e with e > 1.
Let f 2 kŒX� n kŒX2� have degree q.q � 1/=2, let E be the Galois closure of
k.x/=k.f .x//, and let ` be the algebraic closure of k in E. Suppose that

Gal.E=`.f .x///Š PGL2.q/

and k.x/=k.f .x// is wildly ramified over at least two places of k.f .x//. Then
E=`.f .x// has precisely two ramified places, both of degree one, and the cor-
responding inertia groups are (up to conjugacy) the order-2 group generated by
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1 1
0 1

�
and the group of upper-triangular matrices in PGL2.q/. Moreover, the

second ramification group over each ramified place is trivial. The degree Œ` W k�
divides e, and f is indecomposable. Here f is exceptional if and only if e is odd
and Œ` W k�D e. Finally, there is a curve C0 over k such that `:k.C0/Š` E.

Proof. The facts about ramification follow from Theorem 2.1, when one uses
the fact that PGL2.q/ contains a unique conjugacy class of involutions (Lemma
A.3). Write u WD f .x/, and let A WD Gal.E=k.u// and G WD Gal.E=`.u// and
G1 WD Gal.E=`.x//. Theorem 2.1 implies G1 is dihedral of order 2.qC 1/, so G1
is maximal in G. Pick � 2CA.G/. The subfield of E fixed by G:h�i is `�.u/. Since
Gal.`.x/=`�.x// Š Gal.`.u/=`�.u// Š Gal.`=`�/, it follows that Gal.E=`�.x//
contains an element �� with �2G. Since `.x/=`�.x/ is Galois, �� normalizesG1;
but since � commutes with G1, this means that � normalizes G1, whence � 2G1
(since G is simple and G1 is maximal in G). Hence Gal.E=`�.x// contains �, so
E� contains `�.x/. Since � commutes with G, the group h�i is a normal subgroup
of G:h�i, so E�=`�.u/ is Galois. But E is the splitting field of f .X/�u over `.u/,
so it is also the splitting field of f .X/� u over `�.u/, whence it is the minimal
Galois extension of `�.u/ which contains `�.x/. Thus E DE� , so � D 1.

We have shown that CA.G/ D 1, so the action of A on G by conjugation
is faithful, whence A ,! Aut.G/ Š P�L2.q/. In particular, Œ` W k� D jA WGj di-
vides jP�L2.q/ WPGL2.q/j D e. Next, f is indecomposable over `, since G1 is a
maximal subgroup of G. The existence of a curve C0 over k with `:k.C0/Š` E
follows from the fact that A is the semidirect product of G with a group H of field
automorphisms: for `H D k and jH j D jGal.`=k/j, so `:EH DE.

Finally, we address exceptionality. By [3, Lemma 6] (or [23, Lemma 4.3]),
f is exceptional if and only if every element of A which generates A=G has a
unique fixed point. By Theorem 2.1, G1 is dihedral of order 2.qC 1/; by Lemma
A.2, G1 is the normalizer of its unique subgroup of order 3, and G has a unique
conjugacy class of order-3 subgroups. Thus we can identify the set of cosets of
G1 in G with the set of order-3 subgroups of G, and the action of G on cosets
of G1 corresponds to its action by conjugation on these subgroups. Moreover, the
natural action of A on the order-3 subgroups of G induces the permutation action
of A under consideration.

Every coset in A=G has the form �G where � 2 P�L2.q/ is a field automor-
phism. If � has order e=e0, then the centralizer of � in G is PGL2.2e

0

/, which
contains 2e

0�1.2e
0

� 1/ subgroups of order 3. In particular, if e0 > 1 then � fixes
more than one order-3 subgroup; thus, if f is exceptional then A D P�L2.q/.
Moreover, Theorem 1.2 implies that e must be odd if f is exceptional.

Conversely, suppose AD P�L2.q/ and e is odd. To prove f is exceptional,
we must show that every element of A which generates A=G has precisely one
fixed point. By an easy counting argument [14, Lemma 13.1], it suffices to show
that there is a generating coset of A=G in which every element has at most one
fixed point. Pick an element � 2 A which induces the Frobenius automorphism
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on A=G Š Gal.Fq=F2/. Since A=G has odd order, �2 also generates A=G, and
moreover if �2 has at most one fixed point then so does �. By replacing � by �2

s

,
where s is sufficiently large and 2s � 1 .mod e/, we may assume that � has odd
order; thus, if � normalizes an order-3 subgroup then it centralizes the subgroup. By
Lang’s theorem on algebraic groups, there exists � 2 PGL2.xFq/ such that ����1

is the Frobenius automorphism � in P�L2.xFq/. Thus CG.�/ is isomorphic to a
subgroup of CPGL2.xFq/

.�/Š PGL2.2/, which contains a unique order-3 subgroup.
�

The following consequence of Lemma 2.7 describes the ramification in C!

C=B , where C D C0 �k ` and B is the group of upper-triangular matrices in L.
Here W D B \PGL2.2/ and T is the group of diagonal matrices in B .

COROLLARY 2.8. If C is a curve over ` for which `.C/DE, then the follow-
ing hold:

(i) B acts as a group of `-automorphisms on C;

(ii) the quotient curve C=B has genus zero;

(iii) the cover C! C=B has exactly three branch points;

(iv) the inertia groups over these branch points are B , T , and W (up to conju-
gacy); and

(v) all second ramification groups in the cover C! C=B are trivial.

Proof. We know that E=`.f .x// is Galois with group L, and is ramified
over precisely two places, both of which have degree one and have trivial second
ramification group, Moreover, the inertia groups are B and W . Thus there is an
action of L as a group of `-automorphisms of C for which the cover C! C=L has
this same ramification. By Riemann-Hurwitz, the genus of C is q.q� 1/=2. Since
the second ramification groups in C! C=L are trivial, it follows that the same is
true in C! C=B .

Let P1 and P2 be points of C whose inertia groups in C!C=L are B and W ,
and let Q1 and Q2 be the points of C=L lying under P1 and P2. Then each of
the qC 1 points of C lying over Q1 has inertia group conjugate to B . Since B is
self-normalizing in L, and the intersection of any two conjugates of B is cyclic of
order q � 1, it follows that the inertia group of P1 in C! C=B is B , while the
inertia groups of the other q points over Q1 are cyclic of order q�1. Since B has q
cyclic subgroups of order q� 1, and they are all conjugate in B , it follows that Q1
lies under two branch points of C! C=L, and the corresponding inertia groups
are B and T . Since all involutions in L are conjugate, and each has normalizer of
order q, each of the q2� 1 involutions in L occurs as the inertia group of precisely
q=2 points of C lying over Q2. Thus Q2 lies under q.q� 1/=2 points of C which
ramify in C! C=B , and all these points lie over the same point of C=B . Hence
C!C=B has precisely three branch points, with inertia groups B , T , and W ; now
Riemann-Hurwitz implies that C=B has genus zero, which completes the proof. �
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3. Characterizing certain field extensions by ramification

In this section we study the extensions E=k.z/ having certain ramification;
the specific choice of ramification configuration comes from our desired applica-
tion to the classification of degree q.q � 1/=2 polynomials having monodromy
group normalizing PSL2.q/. However, the results in this section are of interest for
their own sake, as they provide data for the general problem of determining the
ramification possibilities for covers of curves having specified monodromy group.
The goal of this section is to prove Theorem 1.5 of the introduction.

We begin with three easy facts about elementary abelian field extensions; a
convenient reference for these is [15]. The first result describes the shape of these
extension fields [15, Prop. 1.1].

LEMMA 3.1. Let E=F be an elementary abelian extension of degree pe,
where Fpe � F . Then there exist elements v 2 E and z 2 F such that E D F.v/
and the minimal polynomial of v over F is T p

e

�T � z.

The converse of this result also holds [15, Prop. 1.2].

LEMMA 3.2. Pick z 2 F , and suppose that Fpe � F and that the polynomial
T p

e

�T � z 2 F ŒT � is irreducible over F . For any root v of this polynomial, the
extension F.v/=F is elementary abelian of degree pe. The map � 7! �.v/� v is
an isomorphism between Gal.F.v/=F / and the additive group of Fpe . The inter-
mediate fields F �F0�F.v/ with ŒF0 WF �Dp are precisely the fields F0DF.v� /,
where for � 2 F�pe we put

v� WD .�v/
pe�1

C .�v/p
e�2

C � � �C .�v/pC .�v/:

The minimal polynomial for v� over F is T p �T � �z.

Note that the values v� are precisely the images of the various �v under the
polynomial T p

e�1

C� � �CT pCT , which is the trace map from Fpe to Fp . In order
to apply this result, we need to know when the polynomial T p

e

�T � z 2 F ŒT � is
irreducible; we now give criteria for this [15, Lemma 1.3].

LEMMA 3.3. Pick z 2 F , and suppose Fpe � F . The following conditions are
equivalent:

(a) T p
e

�T � z is irreducible over F .

(b) For all � 2 F�pe , the polynomial T p �T � �z is irreducible over F .

(c) For all � 2 F�pe , the polynomial T p �T � �z has no roots in F .

There are versions of these three lemmas in which the polynomial T p
e

�T is
replaced by any separable monic additive polynomial in F ŒT � of degree pe which
has all its roots in F (cf. e.g. [10]). However, the statements are simplest in the
case of T p

e

�T , so we restrict to this case in what follows.
Our next results concern the ramification in E=F .
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LEMMA 3.4. Suppose F D k.w/, where k is perfect (and w is transcendental
over k). Let E D F.v/, where the minimal polynomial for v over F is T p

e

�T � z

(with z 2 F ). If E=F is unramified over each finite place of F , then there is some
v0 2 E for which v0 � v 2 F and E D F.v0/, and where moreover the minimal
polynomial for v0 over F is T p

e

�T � z0 with z0 2 kŒw�.

Proof. For y 2 k.w/, we may replace v by vCy and z by zCyp
e

Cy without
affecting the hypotheses. Writing z D a=b with a; b 2 kŒw� coprime, we may thus
assume that y (and hence z) has been chosen to minimize deg.b/. We will show
that z 2 kŒw�.

We begin by showing that b is a pe-th power in kŒw�. For this, consider any
place Q of k.w/ which contains b (equivalently, any irreducible c 2 kŒw� which
divides b) and let P be a place of E lying over Q. Let � be the (additive) valuation
corresponding to P , normalized so that �.E/D Z. Since P is unramified over Q,
the value �.h/ (for any h 2 kŒw�) is just the multiplicity of c as a divisor of h. Thus

�.vp
e

� v/D �.z/D��.b/ < 0I

so �.v/ < 0, whence pe�.v/ D �.vp
e

� v/ D ��.b/. Since this holds for every
irreducible factor c of b, we conclude that b is indeed a pe-th power in kŒw�; say
b D b

pe

0 .
For any irreducible factor c 2 kŒw� of b, the residue field kŒw�=.c/ is a finite

extension of k, hence is perfect; thus, a is a pe-th power in this field. In other words,
there is some a0 2 kŒw� such that ap

e

0 � a is divisible by c. For Qv WD v � a0=b0,
we have

Qvp
e

� Qv D
a� a

pe

0 C a0b
pe�1
0

b
:

Since c divides both the numerator and denominator of the right-hand expression,
we can write Qvp

e

� Qv D Qa= Qb, where Qa; Qb 2 kŒw� and deg. Qb/ < deg.b/. But this
contradicts our hypothesis that deg.b/ is minimal. This implies that b has no irre-
ducible factors in kŒw�, so b 2 k�; thus z 2 kŒw�, as desired. �

This result shows that, in the case of interest to us, we may assume z 2 kŒw�.
Our next two results describe the ramification in extensions of this sort.

LEMMA 3.5. Suppose F D k.w/, where k is perfect. Let E D F.v/, where
the minimal polynomial of v over F is h.T / WD T p

e

� T � z (where z 2 kŒw�).
Then E=k.w/ is unramified over each finite place of k.w/. If k is algebraically
closed in E and Fpe � k, then E=k.w/ is totally ramified over the infinite place of
k.w/.

Proof. First consider a finite place of k.w/, and let S be the corresponding
valuation ring of k.w/; since h.T / 2 SŒT � and h0.T / D �1 2 S�, the place is
unramified in the extension E=k.w/. Now assume that k is algebraically closed
in E and Fpe � k. By Lemma 3.2, E=k.w/ is abelian, so each subgroup of
Gal.E=k.w// is normal. In particular, this applies to the inertia group I of a place
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P of E lying over the infinite place of k.w/, so I does not depend on the choice
of P . Thus the fixed field EI is an unramified Galois extension of k.w/ in which
k is algebraically closed, so it is a trivial extension; hence I D Gal.E=k.w//, so
the infinite place of k.w/ is totally ramified in E=k.w/. �

Now we examine more carefully the ramification over the infinite place, by
studying the higher ramification groups. In particular, we consider the case where
there is only one jump in the filtration of ramification groups over the infinite place
of k.w/; this is what occurs in the situation of greatest interest to us, namely when
z is a power of w.

PROPOSITION 3.6. Suppose F D k.w/, where k is perfect and k � Fpe . Let
E D F.v/, where the minimal polynomial of v over F is T p

e

� T � z (with z 2
kŒw�). Assume that no term of z has degree a positive multiple of pe, and that k is
algebraically closed in E. Let I0; I1; : : : be the ramification groups at a place of
E lying over the infinite place of k.w/. Then (a) and (b) below are equivalent, and
each implies (c):

(a) I0 D I1 D � � � D In but InC1 D 1.

(b) For every � 2 F�pe , the polynomial obtained from �z by replacing each term

˛wp
ij by ˛p

�i

wj (for integers i; j � 0 with j coprime to p) has degree n.

(c) n is the largest integer coprime to p which divides the degree of a nonconstant
term of z.

We may assume that no term of z has degree a positive multiple of pe: we
can replace v by Qv WD vC y, where y 2 kŒw� is chosen so that Qz WD zC yp

e

� y

has the desired property (such an element y exists because k is perfect), and then
F. Qv/D F.v/ and the minimal polynomial of Qv over F is T p

e

�T � Qz.

Proof. By the previous result and Lemma 3.2, I0DGal.E=F /Š Fpe . Lemma
3.2 describes the intermediate fields F � F0 �E for which ŒF0 WF �D p: they are
the fields F0 D F.v� / where, for � 2 F�pe , we put

v� WD .�v/
pe�1

C .�v/p
e�2

C � � �C .�v/pC .�v/:

The minimal polynomial for v� over F is T p �T � �z.
First we show the equivalence of (a) and (b). We begin by relating the groups

Ii to the corresponding groups for the extensions F.v� /=F , via [36, Prop. IV.3]
(note that in the statement of that result, eL=K should be replaced by eL=K0). The
stated result implies that (a) is equivalent to the following: for each �, the ramifica-
tion groups for F.v� /=F over the infinite place of F equal Gal.F.v� /=F / until the
.nC 1/-th group, which is trivial. Now we just need to compute the ramification
groups over infinity for the Artin-Schreier extensions F.v� /=F . We first normalize
v� by replacing it by Qv� WD v� Cy� , where y� 2 kŒw� is chosen so that no nonzero
monomial in Qvp

�
� Qv� D �zCy

p

�
�y� has degree a positive multiple of p; this is
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possible because k is perfect. Then F.v� /D F. Qv� / and the minimal polynomial
for Qv� over F is T p � T � Qz, where Qz is gotten from �z by replacing each term
˛wp

ij (where j is coprime to p) by the term ˛p
�i

wj . The computation of the
ramification in F. Qv� /=F is classical in this case, since Qn WD deg. Qz/ is coprime to p:
the first several ramification groups over infinity equal the full Galois group, until
the . QnC1/-th group which is trivial [39, Prop. III.7.8]. This proves the equivalence
of (a) and (b). Note that nD Qn is necessarily coprime to p.

We now show that (b) implies (c). So, assume (b); then z has a term of degree
npr , and we have seen that n is coprime to p. We just need to show that z has
no term of degree spj with s > n and s coprime to p. For any such s, write
z D

P
˛iw

i with ˛i 2 k, and let Oz D ˛sws C ˛spwsp C ˛sp2wsp
2

C : : : be the
sum of the terms of z having degree spj . Then (b) implies that, for every � 2 F�pe ,

we have �˛sC .�˛sp/1=pC .�˛sp2/1=p
2

C � � � D 0. From our assumption that no
term of z has degree a positive multiple of pe, we see that deg. Oz/� spe�1. Thus,
when we raise the previous equation to the power pe�1, we get h.�/D 0, where
h.T / WD ˛

pe�1

s T p
e�1

C ˛
pe�2

sp T p
e�2

C : : : is a polynomial in kŒT �. Since h.T /
vanishes on Fpe , but deg.h/� pe�1, it follows that hD 0, so each ˛spj D 0. This
concludes the proof. �

We now show when certain data determines the field k.v;w/, where vp
e

�vD

wn. The data come from the extension k.v;w/=k.wr/ for some r ; we are given
the ramification groups over infinity for this extension, and also we are given that
k.v;w/=k.w/ is unramified over finite places. We will see that this data uniquely
determines k.v;w/ if and only if p; n; r satisfy a certain arithmetic condition.

PROPOSITION 3.7. Let E � k. zw/� F satisfy ŒE W k. zw/�D pe and Œk. zw/ WF �
D r , where k is a perfect field containing Fpe and zw is transcendental over k.
Assume that E=F is Galois and is totally ramified over some degree-one place
of F , and that the sequence of ramification groups over this place has jumps only
after the 0-th and n-th groups (where p − n). Also assume that E=k. zw/ is ramified
over only one place, and that r=gcd.n; r/ divides pe � 1. Finally, assume that
either k D Fpe or pe is the least power of p congruent to 1 modulo r=gcd.n; r/.
Then E D k.v;w/ where

(a) k.w/D k. zw/ and F D k.wr/;

(b) z WD vp
e

� v lies in kŒw� and has no nonconstant terms of degree divisible
by pe;

(c) n is the largest integer coprime to p which divides the degree of a nonconstant
term of z;

(d) E=k.w/ is Galois, and the map � 7! �.v/ � v induces an isomorphism
Gal.E=k.w//! Fpe ; for ˛ 2 Fpe , let �˛ be the corresponding element of
Gal.E=k.w//;
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(e) for � 2 Gal.E=F /, put � WD �.v/=v; then � 2 F�pe and ��˛��1 D �˛��n ;

(f) every term of z has degree congruent to n mod r .

The proof relies on various results about ramification groups. The standard
reference for these is [36, Ch. IV]; we recall the facts we will need. Given a
Dedekind domain S with field of fractions F , let R be its integral closure in a
finite Galois extension E of F , with Galois group G. Let P be a prime ideal of
R, and put Q D P \S . The decomposition group D of P is the subgroup of G
consisting of elements � 2G with �.P /DP . When the extension of residue fields
.R=P /=.S=Q/ is separable, the i -th ramification group Ii of G relative to P (for
i � 0) is defined to be the set of � 2 G which act trivially on R=P iC1. The Ii
form a decreasing sequence of normal subgroups of D, and Ii D 1 for i sufficiently
large. Here I0 is the inertia group of P . By a ‘jump’ in the sequence of ramification
groups, we mean an integer i � 0 for which Ii ¤ IiC1. Especially important for
our purposes are results of [36, IV.2], which we now state (our statements differ
slightly from those of [36]). We denote the residue field R=P by `.

LEMMA 3.8. The map �0W I0=I1! Aut`.P=P 2/ given by �0.�/W� 7! �.�/

is an injective homomorphism. For i � 1, the map �i .�/W� 7! �.�/�� induces an
injective homomorphism �i W Ii=IiC1 ! Hom`.P=P 2; P iC1=P iC2/. For � 2 I0
and � 2 Ii=IiC1, we have �i .����1/D �0.�/i�i .�/.

Here P=P 2 is a one-dimensional `-vector space, so Aut`.P=P 2/Š `�. Like-
wise P iC1=P iC2 is a one-dimensional `-vector space, so P i=P iC1 is isomorphic
to Hom`.P=P 2; P iC1=P iC2/ via the map taking  to � 7!  � . Thus the right
side of the final equation in the lemma makes sense, since it is just the action of
`� on the `-vector space P i=P iC1. Finally, note that the final equation simply
amounts to the natural action of P=P 2 on its i -th tensor power, which explains the
i -th power in that equation.

Proof of Proposition 3.7. Let Q be the degree-one place of F over which
E=F is totally ramified, and let P be the place of E lying over Q. Since P=Q
is totally ramified, the inertia group I0 equals G WD Gal.E=F /. Since in addition
Q has degree one, the constant fields of F , k. zw/, and E must all be the same, so
they are all k. By replacing zw by 1=. zw � ˛/ if necessary (with ˛ 2 k), we may
assume that P lies over the infinite place of k. zw/. Next, I1 is the unique Sylow
p-subgroup of I0, so the fixed field EI1 must equal k. zw/ (since ŒE W k. zw/�D pe).
Hence Gal.k. zw/=F / Š I0=I1 is cyclic of order r ; here h�i WD Gal.k. zw/=F / �
Autk.k. zw//, and the latter group is isomorphic to PGL2.k/ where

� ˛ ˇ

 ı

�
corre-

sponds to the k-automorphism of k. zw/ sending zw 7! .˛ zwC 
/=.ˇ zwC ı/. Since
k. zw/=F is totally ramified under the infinite place, � generates the decomposition
group under this place, so �. zw/D ˛ zwC 
 ; but � has order r which is coprime to
p, so either � is the identity (and we put w D zw) or ˛ ¤ 1, in which case we put
w D zwC 
=.˛ � 1/. In any case, there exists w 2 kŒ zw� such that k.w/ D k. zw/
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and �.w/D ˛w with ˛ 2 k a primitive r-th root of unity, so F D k.w/� D k.wr/.
This proves (a); note that E=k.w/ is totally ramified over infinity.

Let � 2Gal.E=F /map to a generator of Gal.k.w/=F /; then �.w/D �w where
� is a primitive r-th root of unity. Since P is totally ramified over the infinite place
of k.w/, and 1=w is a uniformizer for the latter place, we have 1=w 2P p

e

nP p
eC1.

If A denotes the valuation ring of E corresponding to P , and � is any uniformizer
of P , then 1=w D y�p

e

for some y 2 A�; since �.y/�y 2 P ,

�.1=w/D �.y/�.�/p
e

� y�.�/p
e

.mod P p
eC1/:

But �.1=w/D 1=.�w/D ��1y�p
e

, so �.�/p
e

� ��1�p
e

.mod P p
eC1/, whence

�0.�/D�
�1=pe

2k�. Next, �n induces an injective homomorphism I1!P n=P nC1,
and �n.����1/ D ��n�n.�/ for � 2 I1. By iterating, we obtain �n.� i���i / D
��in�n.�/, so the image of �n contains all sums of elements ��in�n.�/; in other
words, the image of �n contains Fp.�

�n/�n.�/, which equals Fpe�n.�/ by hy-
pothesis. Choose � to be any nonidentity element of I1; then the image of �n is
precisely Fpe�n.�/, and we have an isomorphism from Fpe to the image of �n via
˛ 7! ˛�n.�/ (unlike our previous isomorphisms, this one is not canonical).

Now we use basic Galois cohomology to pick the element v. A reference is
[36, Chs. VII and X]. We have a homomorphism �W I1! Fpe �E, which is a 1-co-
cycle for the I1-module E. Since H 1.I1; E/D 0, the cocycle � is a coboundary, so
there exists Qv 2E such that, for each � 2 I1, we have �.�/D �. Qv/� Qv. It follows
that the map � 7! �. Qv/� Qv is an isomorphism I1 ! Fpe ; we denote by �˛ the
preimage of ˛ 2 Fpe under this map. In particular, Qv has pe conjugates under I1,
so indeed E D k. Qv;w/. Also we now know the shape of the minimal polynomial
for Qv over k.w/: it is

Q
˛2Fpe

.T � . QvC˛//D .T � Qv/p
e

� .T � Qv/D T p
e

�T � Qz,

where Qz WD Qvp
e

� Qv lies in k.w/.
By Lemma 3.4 and the remark following Proposition 3.6, there exists v0 2E

such that v0 � Qv 2 k.w/ and z0 WD v0p
e

� v0 lies in kŒw� but z0 has no terms of
degree a positive multiple of pe . Note that v0 is only determined up to addition by
an element of k; eventually we will specify the choice of this element to determine
v. Regardless of the choice, we have k.v0; w/D k. Qv;w/ and �˛.v0/� v0 D ˛; (b)
and (d) follow at once, and (c) then follows from Proposition 3.6.

Let � 2 Gal.E=F / map w 7! �w, where � has order r . Since �n.� i�˛��i /D
��in�n.�˛/, injectivity of �n yields � i�˛��i D �˛��in ; since every element of
Gal.E=F / has the form � i� Q̨ , this proves (e).

Finally, we consider (f), and specify the choice of v 2 v0C k. For � as in the
previous paragraph, we have

˛��n D �˛��n.v0/� v0 D ��˛�
�1.v0/� v0 D �.�˛�

�1.v0/� ��1.v0//I

since � fixes ˛��n, it follows that ˛��n D �˛��1.v0/� ��1.v0/. But also ˛��n D
�˛.�

�nv0/� ��nv0; so, subtracting, we see that y WD ��1.v0/� ��nv0 is fixed by
each �˛; hence y 2 k.w/. Since yp

e

� y D ��1.z0/� ��nz0 lies in kŒw� and has
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no term of degree a positive multiple of pe , in fact y must lie in k. For ˇ 2 k, we
have

��1.v0Cˇ/D ��n.v0Cˇ/Cˇ.1� ��n/CyI

if �n¤1, there is a unique choice of ˇ for which v WDv0Cˇ satisfies ��1.v/D ��nv.
If �n D 1, then by replacing � by its p-th power (and choosing v0 D v) we may
assume that ��1.v/D v. At last, for z WD vp

e

� v 2 kŒw�, we have

z��1.z/D ��1.vp
e

� v/D ��n.vp
e

� v/D ��nz;

so all terms of z have degree congruent to n mod r . This completes the proof. �

COROLLARY 3.9. Under the hypotheses of Proposition 3.7, suppose the inte-
gers p; n; r satisfy

.�/ if n0; i � 0 and n0 � pin .mod r/; then n0 � n:

Then conclusions (a)–(f ) of Proposition 3.7 hold if we require in addition that
z D 
wn with 
 2 k�.

Proof. Let v;w; z be as in the conclusion of the proposition, so z 2 kŒw�.
Then the degree of any nonconstant term of z is congruent to n mod r (by (f))
and has the shape n0pj with 0 � n0 � n (by (c)) and 0 � j < e (by (b)), so (�)
implies n0 D n. If pe is the least power of p congruent to 1 modulo r= gcd.n; r/,
then (�) implies j D 0 and we are done. If this condition does not hold then, by
the hypothesis of the proposition, k D Fpe . In this case, write z D

Pe�1
jD0 j̨w

npj

,
where each j̨ 2 Fpe and some j̨ ¤ 0 (by (c)). Let Ov be an element of an extension
of E satisfying Ovp

e

� Ov D wn; then Qy WD
Pe�1
jD0 j̨ Ov

pj

satisfies Qyp
e

� Qy D z, so
Qy �y 2 Fpe . Since Œk. Ov;w/ W k.w/�D pe (by Lemma 3.3) and k. Ov;w/� k.v;w/,
we have k.v;w/D k.yv;w/, and the result follows. �

We now present values of the parameters for which (�) is satisfied.

LEMMA 3.10. The criterion (�) is satisfied if pe � 4 and either of the follow-
ing hold:

(i) pe � 3 .mod 4/, n j ..peC 1/=4/, r D .pe � 1/=2.

(ii) pe 6� 3 .mod 4/, n j peC 1, n < peC 1, r D pe � 1.

Proof. It suffices to prove (i) in case nD .peC 1/=4, since we can reduce the
general case to this one by multiplying (�) by .peC 1/=.4n/. Now,

n �p D nC
peC 1

2
�
p� 1

2
� nC

p� 1

2
.mod r/;

so

n �pi � nC
p� 1

2
� .1CpC � � �Cpi�1/D nC

pi � 1

2
.mod r/:
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For 0� i < e we have

peC 1

4
C
pi � 1

2
�
peC 1

4
C
pe=3� 1

2
D
5pe � 3

12
< r;

so n C .pi � 1/=2 is the least nonnegative residue of npi modulo r . In particular,
the least such number is n; since pe � 1 .mod r/, this proves (i).

Now consider (ii). We assume n > 1, since the result is clear for n D 1.
Assume 0� i < e. Multiplying (�) by .peC 1/=n gives

peC 1

n
�n0 � pi .peC 1/ .mod r/:

The right side is congruent to piC1, and it follows that its least nonnegative reside
modulo r is itself (unless p D 2 and i D e� 1 in which case it is 1); but if n0 < n
then the left side is already reduced modulo r , so the only possibility is p odd,
.peC 1/=nD 2, and n0 D pi . In that case n� 1 .mod r/, contradiction. �

The specific values in this lemma are the ones we will use elsewhere in this
paper. For completeness, we now present necessary and sufficient conditions for
the fields k.v;w/ (with vq � v D 
wn) to be determined by their ramification over
k.wr/. We first prove Lemma 1.4, which describes this ramification; this lemma
has been known for many years.

Proof of Lemma 1.4. By Lemma 3.3, T q �T �
wn is irreducible in xk.w/ŒT �,
so Œk.v; w/ W k.w/�D q and xk.w/\k.v;w/D k.w/. It follows that k.v;w/=k.wr/
has degree qr ; suppose this extension is Galois with group G. Since it is separable,
r is coprime to q. Since it is normal, there must be elements of G which map w to
any of its conjugates over k.wr/; in particular, there exists � 2G with �.w/D �w,
where � is a primitive r-th root of unity (and � 2 xk\ k.v;w/D k). Write �.v/DPq�1
iD0 yiv

i with yi 2 k.w/; then


�nvn D �.v/q � �.v/D

q�1X
iD0

.y
q
i .vC 
w

n/i �yiv
i /:

By considering the terms of degree i in v, for i D q� 1; q� 2; : : : ; 0 successively,
we find that yi D 0 for i > 1, and also y0 2 Fq and �nDy1 2 Fq . This last statement
may be restated as: r= gcd.n; r/ divides q� 1.

Conversely, assume that k contains a primitive r-th root of unity and r=gcd.n;r/
divides q � 1. Let � be an r-th root of unity and let ˛ 2 Fq; then �n 2 Fq . There
is a k-automorphism of k.v;w/ mapping w 7! �w and v 7! �nvC˛ (since these
equations define an automorphism of k.w/ŒX�, and they preserve the ideal gener-
ated by Xq �X �
wn, so they define an automorphism of the quotient ring which
is k.v;w/). These automorphisms form a group of order qr , and they all fix wr

(where Œk.v; w/ W k.wr/�D qr); so k.v;w/=k.wr/ is Galois. The ramification in
this extension is as in (�), by Lemma 3.5 and Proposition 3.6. �

We conclude this section by proving Theorem 1.5.
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Proof of Theorem 1.5. The first part of the theorem follows from Corollary
3.9 once we observe that the subfield EI1 has the form k. zw/; for this, note that
EI1=k.t/ is cyclic of degree r with only two branch points (0 and infinity), both
of which have degree one and are totally (and tamely) ramified, so EI1 is a genus
zero function field over k having a degree one place, whence it indeed has the form
k. zw/.

Assume that (i) is violated, and let 0 � n0 < n satisfy npi � n0 .mod r/
for some i � 0; since npe � n .mod r/, we may assume 0 � i < e. Let v and
w be transcendentals over k satisfying vp

e

� v D wnp
i

Cwn
0

. By Lemma 3.3,
Œxk.v;w/ W xk.w/� D pe. For any r-th root of unity � and any ˛ 2 Fpe , there is a
k-automorphism of k.v;w/ mapping w 7! �w and v 7! �n

0

vC˛. These automor-
phisms form a group of order per , and their fixed field is k.wr/, so k.v;w/=k.wr/
is Galois. The ramification in this extension is as in (�), by Lemma 3.5 and
Proposition 3.6. Now suppose that k.v;w/D k.yv; yw/ where k.wr/D k. ywr/ and
yvp

e

� yv D 
 ywn for some 
 2 k�. Then we would have w D ˇ yw with ˇ 2 k� and
v D

Ppe�1
iD0 yi yv

i with yi 2 k. yw/, so

.ˇ yw/np
i

C .ˇ yw/n
0

D vp
e

� v D

pe�1X
iD0

�
y
pe

i .yvC 
 ywn/i �yi yv
i
�
;

and we get a contradiction by considering successively the terms of degree i in yv
for i D pe � 1; pe � 2; : : : ; 0.

Now assume (ii) is violated. Pick an integer 1 � i < e such that pi � 1

.mod r= gcd.n; r//, and let v;w be transcendentals over k satisfying vp
e

� v D

wnCˇwnp
i

, where ˇ 2 k nFq . The above argument shows that k.v;w/=k.wr/ is
Galois with ramification as in (�), and that this extension cannot be written in the
form k.yv; yw/=k. ywr/ for any yv; yw 2 k.v;w/ with yvp

e

� yv D 
 ywn and 
 2 k�. �

4. Producing polynomials

In this section we use the results from the previous two sections to prove
refined versions of the results stated in the introduction. We first describe the
polynomials f .X/ of degree pe.pe � 1/=2 (over a field k of characteristic p > 0)
whose arithmetic monodromy group has a transitive normal subgroup isomorphic
to PSL2.pe/, assuming that either the Galois closure of the extension k.x/=k.f .x//
does not have genus pe.pe � 1/=2, or this extension has no finite branch points.
We then apply this result to produce all indecomposable polynomials f (over any
field k) such that deg.f / is not a power of char k and either f is exceptional over k
or f decomposes over an extension of k. We begin with the following refinement
of Theorem 1.6:

THEOREM 4.1. Let k be a field of characteristic p > 0, let d D .q2 � q/=2
for some power q D pe, and let f .X/ 2 kŒX� n kŒXp� have degree d . Then the
following are equivalent:
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(1) Gal.f .X/�u; k.u// has a transitive normal subgroup isomorphic to PSL2.q/,
and the extension k.x/=k.f .x// either has no finite branch points, or has
Galois closure of genus¤ .q2� q/=2.

(2) There exist linear polynomials `1; `2 2 xkŒX� such that the composition `1 ı
f ı `2 is one of the following polynomials or one of the exceptions in Table B
below:

X.XmC 1/.qC1/=.2m/

 
.XmC 1/.q�1/=2� 1

Xm

!.qC1/=m
with q odd and m a divisor of .qC 1/=2; or

X�q
�e�1X
iD0

Xm2
i

�.qC1/=m
with q even and m a divisor of qC 1.

In these cases, Gal.f .X/� u; xk.u// is either PSL2.q/ (if m is even) or PGL2.q/
(if m is odd). Moreover, the Galois closure of xk.x/=xk.f .x// is xk.v;w/ where
vq � v D wm=gcd.m;2/.

The first four polynomials in Table B correspond to q D 11, the next three
correspond to q D 23, and the final four correspond to q D 59. The geometric
monodromy group G of each polynomial in Table B is PSL2.q/, except for f3 and
f4 where G Š PGL2.q/. The point-stabilizer G1 of G is A4 for the first two poly-
nomials, S4 for the next five polynomials, and A5 for the final four polynomials.
The Galois closure of xk.x/=xk.fi .x// has the form xk.v;w/ with vq � v D wm and
mD 1 (for i D 1; 3; 5; 8) or mD 2 (for i D 2; 6; 9) or mD 3 (for i D 4; 7; 10) or
mD 5 (for i D 11).

We postpone the proof of Theorem 4.1 until Section 4.2. Here is an outline
of the strategy. Let f .X/ 2 kŒX� satisfy the hypotheses of the theorem, and as-
sume that (1) holds; then Theorem 2.1 lists the possibilities for the ramification
in E=xk.f .x//, where E denotes the Galois closure of xk.x/=xk.f .x//. For each
ramification possibility, let G and G1 be the corresponding possibilities for the
geometric monodromy group and a one-point stabilizer. Let I be the inertia group
of a place of E lying over the infinite place of xk.f .x//. First we show that EI has
genus zero, and that the ramification in E=EI is described by (�) (cf. Lemma 1.4).
Then Theorem 1.5 and Lemma 3.10 imply that E D xk.v;w/ where vp

e

� v D wn.
The automorphism group Autxk.E/ was determined by Stichtenoth [38]; in our
cases, it has a unique conjugacy class of subgroups isomorphic to G. We compute
the subfield xk.yu/ of E invariant under one such subgroup, and also the subfield
xk.yx/ invariant under the one-point stabilizer G1. Finally, we compute the rational
function yf for which yuD yf .yx/; for suitably chosen yu and yx, the rational function yf
will in fact be a polynomial f satisfying (1). Moreover, this construction produces
all polynomials satisfying (1).
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f1 D X
3.X2C3/2.X8�X6C2X4�X2�3/6

f2 D X
3.X4C3/.X16�X12C2X8�X4�3/3

f3 D X
3.XC3/4.X4�X3C2X2�X �3/12

f4 D .X
3�3/X4.5C6X3�X6�2X9CX12/4

f5 D .X �11/
3.X �10/4.XC3/6.X20�5X19�10X18C7X17CX16C5X15�9X14�10X13�8X12

C11X11C8X9C10X8CX7�6X6�8X5C6X4C12X3C6X2�X �7/12

f6 D X
3.X2C1/2.X2�9/3.�3�8X2�8X4C11X6C10X8�10X12�2X14C7X16�6X18C5X20

�4X24C8X26C2X28C2X30C6X32C11X34�7X36C8X38CX40/6

f7 D .X
3�1/X4.X3�10/2.�2�X3C11X6�X9CX12�9X15�5X18CX24C2X27�6X30C2X33

�6X36�3X39C6X42C9X45C4X48�3X51C8X54C11X57CX60/4

f8 D .X �41/
6.X �6/10.X �9/15.19XC46X2C21X3C2X4C2X5C16X6C53X7C8X8C42X9

C22X10C14X11CX12C4X13C12X14C33X15C41X16C50X17C27X18C37X19C42X20

C8X21C16X22C53X23C28X24C9X25C56X26C39X27C42X28C13X29

C14X30C28X31C25X32C26X33C43X34C34X35C10X36C17X37C58X38C25X39

C48X40C14X41C15X42C53X43C39X44C58X45C48X46C5X47C8X48C9X49C9X50

C9X51C27X52C4X53C13X54C56X55CX56/30

f9 D .X
2�32/3X15.X2C3/5.43C13X2C15X4C2X6C57X8C57X10C15X12C43X14C35X16

C53X18C35X20C37X22C51X24C5X26C44X28C6X30C3X32C28X34C44X36C26X38

C57X40C40X42C41X44C11X46C28X48C57X50C3X52C56X54C6X56C30X58C16X60

C26X62C15X64C36X66C19X68CX70C7X72C53X74CX76CX78C34X80C32X82

C16X84C28X86C12X88C15X90C53X92C20X94C8X96C8X98C14X100C53X102

C54X104C24X106C17X108C29X110CX112/15

f10 D .X
3�35/2X10.X3�3/5.27C45X3C30X6C26X9C41X12C24X15C16X18C43X21C7X24

C39X27C24X33CX36C32X39C47X42C37X45C38X48C18X51C16X54C7X60C24X63

C48X66C8X69C54X72C56X75C36X78CX81C33X84C35X87C31X90C34X93C19X96

C17X99C29X102C25X105C16X108C17X111C2X114C8X117C46X120C53X123C54X126

C15X129C24X132C2X135C49X138C22X141C36X144C36X147C51X150C15X153C9X156

C32X159C6X162C38X165CX168/10

f11 D X
6.X5C35/2.X5C32/3.54C12X5C49X10C33X15C13X20C31X25C13X30C32X35C6X40

C10X45C43X50C11X60C54X65C40X70C49X75CX80C13X85C37X90C49X95C40X100

C10X105C43X110C2X120C24X125C54X130C46X135C8X140C33X145C35X150C23X155

C2X160C57X165C15X170C30X180C32X185C39X190C50X195C50X200C36X205C55X210

C15X215C30X220C35X225C3X230C53X235C37X240C52X245C31X250C6X255C35X260

C37X265C30X270C51X275CX280/6

Table B

4.1. Consequences of Theorem 4.1. We now use Theorem 4.1 to deduce the
remaining results mentioned in the introduction. First consider Theorem 1.2. Our
next results classify the examples in case (iii) of Theorem 1.2, when we assume
in addition that item (1) of Theorem 4.1 holds. (We will remove this assumption
in [20], which leads to a new family of examples in characteristic 2.) We classify
these polynomials up to equivalence, where we say that b; c 2 kŒX� are equivalent if
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bD `1 ıc ı`2 for some linear polynomials `1; `2 2 kŒX�; trivially, this equivalence
relation preserves indecomposability, exceptionality, and both the arithmetic and
geometric monodromy groups.

THEOREM 4.2. Let k be a field of characteristic 3, and let q D 3e with e > 1
odd. The following are equivalent:

(i) There exists an indecomposable exceptional polynomial f 2 kŒX� of degree
q.q�1/=2 for which PSL2.q/ is a transitive normal subgroup of Gal.f .X/�u,
k.u//;

(ii) k\ Fq D F3 and k contains non-square elements.
Moreover, for any f as in (i), the Galois closure of xk.x/=xk.f .x// is xk.v;w/ where
vq � v D wn and n divides .qC 1/=4; here n is uniquely determined by f , and we
associate f with n. Conversely, suppose (ii) holds, and fix a divisor n of .qC 1/=4.
Then there is a bijection between
� the set of equivalence classes of polynomials f which satisfy (i) and are asso-

ciated with n; and
� the set of even-order elements in k�=.k�/2n.

One such bijection is defined as follows: for ˛ 2 k�, if the coset ˛.k�/2n 2
k�=.k�/2n has even order, then this coset corresponds to the equivalence class
of the polynomial

X.X2n�˛/.qC1/=.4n/

 
.X2n�˛/.q�1/=2C˛.q�1/=2

X2n

!.qC1/=.2n/
:

In particular, suppose that k is finite and k\ Fq D F3. Then, for each divisor
n of .qC 1/=4, there is a unique equivalence class of polynomials f which satisfy
(i) and which are associated with n. For k D F3, or more generally if k « F9, the
examples that arise are precisely the polynomials described in [28]. If k � F9 then
the polynomials in the theorem are new examples of indecomposable exceptional
polynomials. Finally, let r be the largest power of 2 dividing Œk W F3�; then, for any
fixed divisor n of .qC 1/=4, the equivalence class of polynomials associated with
n and satisfying (i) contains a polynomial defined over F3r but does not contain
any polynomials defined over proper subfields of F3r .

There exist infinite fields k (for instance, k D F3.y/ with y transcendental)
for which there are infinitely many equivalence classes of polynomials over k sat-
isfying (i). It is interesting to note, however, that for any k (finite or infinite), any
polynomial over k which satisfies (i) is equivalent over xk to one of the polyno-
mials over F3 exhibited in [28], even though the latter polynomial might not be
exceptional over k. We will see below that a similar remark applies in the case of
characteristic 2.

We now prove Theorem 4.2. We first show that exceptionality cannot hold if
G WD Gal.f .X/� u; xk.u// Š PGL2.q/: assume the opposite. Arguing as in the
proof of Lemma 2.2, we can identify A WD Gal.f .X/�u; k.u// with a subgroup
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of P�L2.q/, so A=G is cyclic. Exceptionality of f implies: for any � 2 A, if
�G generates A=G then � has exactly one fixed point (cf. [3, Lemma 6] or [23,
Lemma 4.3]). Since q� 3 .mod 4/, we can view the permutation actions of G and
A as actions on the involutions in L WD PSL2.q/ (as in the proof of Lemma 2.4).
For any � 2 A such that �G generates A=G, note that �G D �G for some field
automorphism � , and � centralizes PSL2.3/ and so fixes at least three involutions
of L, contradicting exceptionality.

In light of Theorem 2.1 it follows that any indecomposable exceptional poly-
nomial as in Theorem 4.2 must be equivalent over xk to one of the polynomials
in Theorem 4.1 with m even. There are several ways to proceed; the quickest,
given what has already been done, is to compute the fields of definition for the
irreducible factors of f .X/ � f .Y / in xkŒX; Y �, for each polynomial f over xk
which is equivalent to one of the polynomials in Theorem 4.1 with mD 2n. This
bivariate factorization was derived in [42]. This gives the statement of Theorem 4.2.
The result (and its proof) for characteristic two is similar.

THEOREM 4.3. Let k be a field of characteristic 2, and let q D 2e with e > 1
odd. The following are equivalent:

(i) There exists an indecomposable exceptional polynomial f 2 kŒX� of degree
q.q � 1/=2 such that Gal.f .X/�u; k.u// has a transitive normal subgroup
isomorphic to PGL2.q/, and the extension k.x/=k.f .x// either has no finite
branch points or has Galois closure of genus¤ .q2� q/=2;

(ii) k\ Fq D F2.

Moreover, for any f as in (i), the Galois closure of xk.x/=xk.f .x// is xk.v;w/ where
vq � v D wn and n divides q C 1; here n is uniquely determined by f , and we
associate f with n. Conversely, suppose (ii) holds, and fix a divisor n of qC 1.
Then there is a bijection between1

� the set of equivalence classes of polynomials f which satisfy (i) and are asso-
ciated with n; and

� k�=.k�/n.
One such bijection is defined as follows: for ˛ 2 k�, the coset ˛.k�/n 2 k�=.k�/n

corresponds to the equivalence class of the polynomial

X

�e�1X
iD0

.˛Xn/2
i�1

�.qC1/=n
:

1This statement must be modified in case n D qC 1 and k is not perfect. In this case, we will
define a bijection between the set of k-equivalence classes of polynomials f as in (i) which are
associated with qC 1, and the set of equivalence classes of pairs .˛; ˇ/ 2 k� � k modulo the relation:
.˛; ˇ/� .˛0; ˇ0/ if there exists 
 2 k such that 
qC1 D ˛0=˛ and

p
ˇC 


p
ˇ0 2 k. Specifically, we

let the class of .˛; ˇ/ correspond to the k-equivalence class of the polynomial

ˇC

e�1X
iD0

˛2
i�1.X Cˇ/q.2

i�1/C2i

:
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Consider the case of finite k, and assume k\Fq D F2. Then each divisor n of
qC 1 corresponds to a unique k-equivalence class of polynomials as in (i), except
when k � F4 and 3 j n, in which case there are three classes. For k D F2, or more
generally if either k « F4 or 3 − n, this implies that the only polynomials satisfying
(i) are the ones described in [5], [32]. However, if k � F4 and 3 j n then we get
new examples of indecomposable exceptional polynomials.

Finally, consider Theorem 1.1. The proofs in [21], [22] show that, in cases
(ii) and (iii), the arithmetic monodromy group A WD Gal.f .X/�u; k.u// is either
PSL2.p/ or PGL2.p/, with p 2 f7; 11g. Indecomposability of f implies that A is
a primitive permutation group of degree .p2 � p/=2. Since f decomposes over
some extension of k, it decomposes over xk, so the geometric monodromy group
G WD Gal.f .X/�u; xk.u// is a normal imprimitive subgroup of A. Thus we must
have A D PGL2.p/ and G D PSL2.p/. Now Theorems 2.1 and 4.1 determine
f up to equivalence over xk, and a straightforward computation with coefficients
determines which members of these equivalence classes are indecomposable over k.
The result is as follows:

THEOREM 4.4. Let k be a field of characteristic p � 0. The following are
equivalent:

(i) There exists an indecomposable polynomial f 2 kŒX� such that f decomposes
over some extension of k and deg.f / is not a power of p;

(ii) k contains nonsquares and p 2 f7; 11g.
Moreover, for any f as in (i), the Galois closure of xk.x/=xk.f .x// is xk.v;w/ where
vp � v D wn and n j 2; here n is uniquely determined by f , and we associate f
with n. Conversely, suppose (ii) holds, and fix a divisor n of 2. Then there is a
bijection between
� the set of equivalence classes of polynomials f which satisfy (i) and are asso-

ciated with n; and
� the set of nonsquares in k�=.k�/2n.

One such bijection is defined as follows: for any nonsquare ˛ 2 k�, the coset
˛.k�/2n 2 k�=.k�/2n corresponds to the k-equivalence class of8<:X.X2n�˛/2=n

�
.X2n�˛/3C˛3

X2n

�4=n
if p D 7

X3.X2nC 3˛/2=nh.X2n/6=n if p D 11;

where h.X/DX4�˛X3C 2˛2X2�˛3X � 3˛4.

4.2. Proof of Theorem 4.1. Let f .X/ 2 kŒX� satisfy the hypotheses of Theo-
rem 4.1, let q D pe , and assume that item (1) of the theorem holds. Then Theorem
2.1 applies. Since the conclusion of Theorem 2.1 is unchanged when we replace k
by xk, and likewise this replacement does not affect (2) of Theorem 4.1, we assume
henceforth that

k is algebraically closed:
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Let E denote the Galois closure of k.x/=k.f .x//, let G D Gal.E=k.f .x//,
and let G1DGal.E=k.x//. Let I be the inertia group of a place P of E lying over
the infinite place of k.f .x//, and let V be the Sylow p-subgroup of I . Assume that
the triple q;G;G1 is not listed in Table A (we will return to the cases in Table A at
the end of the proof). Then f satisfies (i)-(iv) of Theorem 2.1. In particular, G is
either PGL2.q/ or L, and I is a Borel subgroup of G, and the higher ramification
groups for P satisfy V D I1 D � � � D In ‰GnC1 D 1. Also, q > 3. We first show
that E D k.v;w/ where vq � v D wn.

LEMMA 4.5. There exists t 2E such that EI D k.t/ and the ramification in
E=EI is as in (�) of Lemma 1.4, with r D q�1 if G D PGL2.q/ and r D .q�1/=2
otherwise.

Proof. First we show that I has trivial intersection with the inertia group J of
any place of E lying over a finite place of k.f .x//. By (iv) of Theorem 2.1, any
such J is cyclic of order dividing qC 1; since gcd.qC 1; jI j/ � 2, if J \ I ¤ 1
then J \ I has order 2. If q � 3 .mod 4/ then 2 j jI j implies that G D PGL2.q/,
and all involutions in I lie in G nL; but the order of J is divisible by 4, so its
involution lies in L, whence J \ I D 1. If q � 1 .mod 4/, then the involution of J
lies in G nL but the involutions of I lie in L. If q � 0 .mod 2/, then J contains
no involution. Thus, in all cases J \ I D 1, so E=EI is unramified over places of
EI lying over finite places of k.f .x//.

Next we consider the inertia groups of places of E lying over the infinite place
of k.f .x//; these are precisely the conjugates of I in G (i.e. the Borel subgroups
of G), and, since I is self-normalizing in G, no two of these places have the
same inertia group. The intersection of any two distinct Borel subgroups of G has
order r (by Lemma A.4), so each of the q places of E which differ from P and
lie over the infinite place of k.f .x// have ramification index r in E=EI . Hence
all ramification in E=EI occurs over two places of EI , one of which is totally
ramified and the other of which has ramification index r . We now compute the
genus of EI :

.q� 1/.n� 1/� 2D 2gE � 2D .2gEI � 2/qr C .qr � 1/Cn.q� 1/C q.r � 1/;

so gEI D 0. Since k is algebraically closed, it follows that EI D k.t/ for some t .
Finally, we can replace t by some .˛t Cˇ/=.
 t C ı/ (with ˛; ˇ; 
; ı 2 k) to make
the infinite place of k.t/ be totally ramified in E, and to make 0 be the only finite
place of k.t/ which ramifies in E=k.t/. �

For n¤ qC 1, we will apply Theorem 1.5 to the extension E=EI ; first we
must verify (i) and (ii) of that result. Condition (ii) is trivial, since r= gcd.n; r/�
.q�1/=2>

p
q�1. For the specific values of n and r under consideration, condition

(i) is proved in Lemma 3.10. Hence Theorem 1.5 applies to the extension E=EI ,
so E D k.v;w/ where vq � v D wn.
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Now assume nD qC1, so pD 2 and gE D .q2�q/=2. The previous lemma
shows that E=EV is only ramified over one place, where it is totally ramified with
the only jump in the ramification occurring after the n-th ramification group; this
implies that EV has genus zero, so EV D k. zw/. Then Proposition 3.7 applies to
the tower E � k. zw/�EV , so we conclude that E D k.v;w/ where vq�v 2 kŒw�;
the degree n0 of any term of vq � v (as a polynomial in w) satisfies n0 � q C 1
.mod q� 1/ and q − n0. Moreover, qC 1 is the largest integer coprime to p which
divides some such n0. We can write n0 D r2i where r is odd, 1 � r � qC 1, and
0� i < e. Then we have r � 2eC1�i .mod 2e � 1/, and the only possibilities are
r D 2e C 1 (and i D 0) or r D 1 (and i D 1). Thus, vq � v D ˛w2 C ˇwqC1,
where ˛ 2 k and ˇ 2 k� (and, by replacing w by ˇ1=.qC1/w, we may assume
ˇ D 1). If ˛ ¤ 0 then, by [38, Satz 7], every k-automorphism of E preserves
the place P ; hence Autk.E/ is the decomposition group of P in the extension
E=EAutk.E/, so in particular it is solvable, and thus has no subgroup isomorphic
to L, a contradiction. Thus E D k.v;w/ where vq � v D wqC1.

Our next task is to determine all subgroups of G WD Autk.E/ isomorphic
to G. Recall that n divides q C 1. We exhibit three subgroups of G. There is
an elementary abelian subgroup U of order q, whose elements fix w and map
v 7! vC ˛ with ˛ 2 Fq . There is a cyclic subgroup H of order n.q � 1/, whose
elements map v 7! �nv and w 7! �w where �n.q�1/ D 1. And there is a cyclic
subgroup J of order 2 or 4, generated by the automorphism sending v 7! 1=v and
w 7! .�1/1=nw=v.qC1/=n, for any choice of n-th root of �1; this group has order 2
precisely when .�1/1=n D�1. One can verify that these maps are automorphisms
by observing that they are bijections of k.v/ŒX� which induce bijections on the
ideal generated by vq � v�Xn, so they are bijective on the quotient E.

Let G0 be the group generated by U , H , and J . Note that each element of
U [H [ J induces an automorphism of k.v/; the induced automorphisms are
v 7! vC˛ (for ˛ 2 Fq), v 7! y�v (for y� 2 F�q), and v 7! 1=v. These automorphisms
generate the group PGL2.q/. Hence, restriction to k.v/ induces a homomorphism
�WG0!Autk.k.v//whose image is PGL2.q/; the kernel of � is the cyclic subgroup
Z of H of order n (since Z D Gal.E=k.v//), so jG0j D n.q3 � q/. Also, Z
commutes with all elements of U , H , and J , so Z lies in the center of G0.

Now we compute the subfield EG0 ; this field equals k.v/PGL2.q/. The latter
field was computed by Dickson [8, p. 4]: it is k..vq

2

� v/qC1=.vq � v/q
2C1/ (to

verify this, note that this rational function is fixed by each element of PGL2.q/,
and its degree is q3 � q D jPGL2.q/j). Since vq � v D wn, we can rewrite
this generator in terms of w: EG0 D k.wn.q�q

2/.wn.q�1/ C 1/qC1/. Put yu WD
wq�q

2

.wn.q�1/C 1/.qC1/=n; then we have EG0 D k.yun/, so yG WD Gal.E=k.yu//
is a subgroup of G0 of order q3� q.

Suppose p is odd. Put Qu WD w.q�q
2/=2.xn.q�1/ C 1/.qC1/=.2n/, so yL WD

Gal.E=k. Qu// is a subgroup of yG of index two. Then Qu is not fixed by any nontrivial
element of Z, so � induces an isomorphism between yL and the unique subgroup
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of PGL2.q/ of index two (namely PSL2.q/). Moreover, yL is a normal subgroup
of G0 with cyclic quotient of order 2n.

Now suppose n is odd (but we no longer restrict p). Then yu is not fixed by
any nontrivial element of Z, so � induces an isomorphism yG Š PGL2.q/; thus
G0D yG�ZŠ PGL2.q/�Cn. Note that all elements of yG�Z of order p are in yG;
thus, any subgroup of G0 isomorphic to PSL2.q/ contains all such elements, and
so must be the unique subgroup of yG isomorphic to PSL2.q/ (since this subgroup
is generated by the elements of order p). If pD 2 then this subgroup is yG. If p > 2
then this subgroup is yL. Moreover, if 1 < n< qC1 and p > 2, then G0=yL is cyclic
of order 2n, so yG is the only subgroup of G0 isomorphic to PGL2.q/.

Next assume that n is even. Then n divides .qC 1/= gcd.4; qC 1/, so q � 7
.mod 8/. In particular, q is odd, so 1<n<qC1. From above we know that G0 has
a unique subgroup isomorphic to PSL2.q/. We now show that G0 has no subgroup
isomorphic to PGL2.q/. We know that G0 has a normal subgroup yL with cyclic
quotient of order 2n. If G0 has a subgroup QG isomorphic to PGL2.q/, then (since
PGL2.q/ has trivial center) we would have G0D QG�Z, so G0=yLŠC2�Cm 6ŠC2m,
a contradiction.

If 1 < n < q C 1, then, as Stichtenoth proved, jGj D n.q3 � q/ [38], so
GDG0; hence G has a unique subgroup isomorphic to PSL2.q/, and has a subgroup
isomorphic to PGL2.q/ if and only if n is odd, in which case it has a unique such
subgroup. If n D 1 then E D k.v/, so G D PGL2.k/; this group has a unique
conjugacy class of subgroups isomorphic to PSL2.q/, and a unique conjugacy class
of subgroups isomorphic to PGL2.q/. Finally, if nD qC1 (so pD 2) then Leopoldt
showed that GD PGU3.q2/ [29], and this group has a unique conjugacy class of
subgroups isomorphic to PGL2.q/. Since conjugate groups will lead to the same
polynomials, we may assume in every case that

EG is either k.yu/ or k. Qu/:

We now compute the subfield of E invariant under the one-point stabilizer G1
of G. Since G has a unique conjugacy class of subgroups isomorphic to G1, and
conjugate groups G1 will lead to the same polynomials, it suffices to do this for a
single point-stabilizer G1.

To complete the proof, we must compute the polynomials f in each of three
cases: q is odd and G D yG Š PGL2.q/; q � 3 .mod 4/ and G D yL Š PSL2.q/;
q is even and G D yG Š PGL2.q/. The computations in each case are similar, so
we only give the details for the first case. Thus, for the remainder of the proof we
assume that

q is odd and G D yG Š PGL2.q/,

so also
n is odd and G1 is dihedral of order 2.qC 1/.

To exhibit such a group G1, view GL2.q/ as the invertible Fq-linear maps on a
two-dimensional Fq-vector space, and choose this vector space to be Fq2 . Then
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the multiplication maps by the various elements of F�
q2 form a cyclic subgroup of

GL2.q/; the group generated by this cyclic group and the q-th power map has order
2.q2� 1/, and its image in PGL2.q/ is dihedral of order 2.qC 1/. We make this
explicit by choosing a nonsquare 
0 2 F�q and letting ı 2 F�

q2 be a square root of 
0.
Choose the basis f1; ıg for Fq2=Fq; with respect to this basis, the matrix for the
multiplication map by ˛Cˇı (where ˛; ˇ 2 Fq are not both zero) is

� ˛ ˇ
0

ˇ ˛

�
, and

the matrix for the q-th power map is
�
1 0
0 �1

�
. These matrices generate a dihedral

subgroup of PGL2.q/ of order 2.qC 1/; let G1 be the intersection of yG with the
preimage under � of this dihedral group.

Our next task is to compute the subfield of k.v/ fixed by G1; this will coincide
with EG1�Z . Let 
 D 1=
0. Certainly G1 fixes the sum of the images of v2 under
G1, namely,

2yx WD
1

q� 1

X
˛;ˇ2Fq

.˛;ˇ/¤.0;0/

 �
˛vCˇ

ˇ
0vC˛

�2
C

�
˛v�ˇ

ˇ
0v�˛

�2!
:

Here the factor 1=.q�1/ comes from the fact that the pairs .˛; ˇ/ and .˛�; ˇ�/ (with
� 2 F�q) correspond to the same element of G1. Thus each term of G1 corresponds
to a unique pair .˛; ˇ/ 2 F2q with either ˇ D 
 or both ˇ D 0 and ˛ D 1, so

(1) yx D v2C
X
˛2Fq

�
˛vC 


vC˛

�2
I

note that yxD b.v/=.vq�v/2 for some monic b.X/2 FqŒX� of degree 2qC2. Here
b.X/ has no term of degree 2qC 1. For any ˛ 2 Fq , multiply (1) by .vC˛/2 and
then substitute v D�˛ to find .�˛2C 
/2 D b.�˛/; hence b.X/D .X2� 
/2C
.Xq �X/c.X/ where c.X/ 2 FqŒX� is a monic polynomial of degree qC2 having
no term of degree qC1. We compute the derivative: b0.X/D 4X.X2�
/�c.X/C
.Xq �X/c0.X/. For any ˛ 2 Fq , multiply (1) by .vC˛/2, take the derivative of
both sides, and then substitute v D �˛; this gives 2˛.�˛2 C 
/ D b0.�˛/, so
c.v/D 2v.v2�
/C.vq�v/a.v/ where a.X/DX2C� and � 2 Fq . The choice of
� is irrelevant, since changing � amounts to adding a constant to yx; but regardless,
it is easy to show that � D 0 (e.g. by computing appropriate terms of .vq � v/2yx).
Hence

b.v/D
�
.v2� 
/C v.vq � v/

�2
D
�
vqC1� 


�2
;

so yx D .vqC1� 
/2=.vq � v/2. Since Œk.v/ W k.yx/� D deg.yx/ D 2.q C 1/ equals
jG1j and G1 fixes yx, it follows that EG1�Z D k.v/G1 D k.yx/.

We have shown that k.v/G D k.yun/ and k.v/G1 D k.yx/, where yu satisfies
yunD .vq

2

�v/qC1=.vq�v/q
2C1; hence yunDh.yx/ for some h.X/2k.X/which we

now determine. Write h.X/D �
Q
i .X �˛i /

ri , where the ˛i are distinct elements
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of k, the ri are nonnegative integers, and � 2 k�. Then we have

(2)

�
vq2
�v

vq�v

�qC1
.vq � v/q

2�q
D
�
Q
i

�
.vqC1� 
/2�˛i .v

q � v/2
�ri

.vq � v/2
P

i ri
:

Let hi .X/D .XqC1 � 
/2 � ˛i .Xq �X/2; since 
 is a nonsquare in F�q , no two
hi have a common root, and also no hi has a root in Fq . Since the poles of the left
side of (2) are precisely the elements of Fq , we conclude that each ri is positive (so
h is a polynomial) and

P
ri D .q

2� q/=2. Equating the leading coefficients of the
two sides of (2) gives � D 1. The roots y D ! of the left side of (2) are precisely
the values ! 2 Fq2 n Fq , and each has multiplicity qC 1; any such ! is a root of
hi .X/ where

˛i D
.!qC1� 
/2

.!q �!/2
;

so ˛.qC1/=2i D�˛i . Since 2hi .X/C .Xq �X/2h0i .X/D 2.X
qC1� 
/.X2� 
/q ,

any multiple root � of hi must satisfy either �qC1 D 
 or �2 D 
 ; in the former
case, ˛i D 0 and hi D .XqC1� 
/2, so � is a root of multiplicity two; in the latter
case, ˛i D 
 and hi D .X2 � 
/qC1, so � is a root of multiplicity qC 1. Hence
h.X/ 2 kŒX� divides

X .qC1/=2.X � 
/

 
X .q�1/=2C 1

X � 


!qC1
I

since both these polynomials are monic of degree .q2 � q/=2, they must be the
same.

We now determine all possibilities for the original polynomial f . We have
shown that h.yx/D yun, where EG1�Z D k.yx/ and EG D k.yu/; we will modify this
polynomial identity to express yu as a polynomial in some yx with EG1 D k.yx/. We
know that yx will be the n-th root of some generator of k.yx/; from above,

yx� 
 D
.v2� 
/qC1

.vq � v/2
D
.v2� 
/qC1

x2n
;

so we choose yxD .v2�
/.qC1/=n=w2. Then yh.X/ WD h.XC
/ satisfies yh.yxn/D
yun; taking n-th roots gives

�yuD .yxnC 
/.qC1/=.2n/yx

 
.yxnC 
/.q�1/=2C 1

yxn

!.qC1/=n
for some n-th root of unity �. We may assume � D 1 (by replacing yu by �yu). Thus
yuD yf .yx/ where yf .X/ 2 kŒX� is defined by

yf .X/ WDX.XnC 
/.qC1/=2n

 
.XnC 
/.q�1/=2C 1

Xn

!.qC1/=n
:
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Hence Gal.E=k.yx// is an index-n subgroup of G1�Z which is also a subgroup of
G, so it is G1. Since G1 contains no nontrivial normal subgroups of G, the Galois
closure of k.yx/=k.yu/ is E, so the monodromy group of yf is G.

The only choices we made which restricted the possibilities for the original
polynomial f were the choices of generators yx and yu for the fields EG1 and EG ;
hence, the polynomials f in this case are precisely the polynomials `1 ı yf ı `2,
where `1 and `2 are linear polynomials in kŒX�. This completes the proof of the
theorem in case q is odd and G Š PGL2.q/. As noted above, the completion of the
proof in the other two cases is similar. In the statement of the result there is only a
single family of polynomials covering both cases with q odd; this occurs because,
when q is odd and G Š PSL2.q/, the resulting polynomials can be obtained by
substituting 2n for n in the above expression for yf .

Finally, we consider the group-theoretic possibilities in Table A, which lead to
the polynomials in Table B. The cases with q odd can be treated in a similar manner
to what we have done above; in particular, in each case a fixed point computation
similar to that of Lemma 2.4 can be used to determine a short list of possibilities for
the ramification (as in the proof of Theorem 2.1), after which Theorem 1.5 implies
that the Galois closure of k.x/=k.f .x// is k.v;w/ where vq � v D wn, and we
conclude the proof precisely as above. Table A also includes the possibility that
qD 4, in which case G D P�L2.q/Š S5. A Riemann-Hurwitz computation shows
that I must be cyclic of order 6, and that the Galois closure E of k.x/=k.f .x//
has genus one. However, the automorphism groups of function fields of genus one
are known: in our case, Autk.E/ is the semidirect product H ÌJ , where H is the
(abelian) group of translations by points on the elliptic curve corresponding to E,
and J has order either 2 or 24. If Autk.E/ has a subgroupG isomorphic to S5, then
G\H is a normal subgroup ofG of index less than 24, soG\H �A5; in particular,
H contains a Sylow 2-subgroup of A5, namely a Klein 4-group, contradicting
standard results about the structure of the group of points on an elliptic curve [37,
Cor. 6.4]. Thus there are no polynomials corresponding to the case qD 4 in Table A.
This concludes the proof of Theorem 4.1.

Appendix. Group theoretic preliminaries

In this appendix we summarize the basic group theoretic facts used in this
paper. Let Fq be a field of order q and characteristic p. As usual, GL2.q/ denotes
the group of invertible two-by-two matrices over Fq , and SL2.q/ is its subgroup
of determinant-one matrices. The centers of these groups are the scalar matrices,
which in the case of GL2.q/ are just F�q and in the case of SL2.q/ are f˙1g;
the quotients of GL2.q/ and SL2.q/ by their centers are denoted PGL2.q/ and
PSL2.q/, respectively. We often write L for PSL2.q/. The orders of these groups
are as follows: jGL2.q/j D .q2�1/.q2�q/, jPGL2.q/j D jSL2.q/j D q3�q, and
jPSL2.q/j D .q3� q/=o, where oD gcd.2; q� 1/.



1354 ROBERT M. GURALNICK and MICHAEL E. ZIEVE

We now discuss the structure of LD PSL2.q/. The most important property
of L is that, for q � 4, it is a simple group [40, �1.9]. For small q, we have
the isomorphisms PSL2.2/Š S3, PSL2.3/Š A4, and PSL2.4/Š PSL2.5/Š A5.
For general q, the subgroups of PSL2.q/ were determined by Dickson in 1901 [7,
�260]; a treatment in modern language is [40, �3.6]. We state the result for the
reader’s convenience. As above, oD gcd.2; q� 1/.

THEOREM A.1 (Dickson, 1901). The subgroups of PSL2.q/ are precisely the
following groups.

(i) The dihedral groups of order 2.q˙ 1/=o and their subgroups.

(ii) The group B of upper triangular matrices in PSL2.q/, and subgroups of B
(here, the order of B is q.q�1/=o, the Sylow p-subgroup U of B is elementary
abelian and normal in B , and the quotient group B=U is cyclic).

(iii) A4, except if q D 2e with e odd.

(iv) S4, if q �˙1 .mod 8/.

(v) A5, except if q �˙2 .mod 5/.

(vi) PSL2.r/, where r is a power of p such that rm D q.

(vii) PGL2.r/, where r is a power of p such that r2m D q.

This result describes the isomorphism classes of subgroups of LD PSL2.q/;
we are also interested in conjugacy classes of subgroups. We only need this in
certain cases.

LEMMA A.2. For q > 3, there are .q2 � q/=2 subgroups of L which are
dihedral of order 2.q C 1/=o, and any two of these are conjugate. Let J be a
nontrivial cyclic subgroup of L whose order divides .qC 1/=o; then the normalizer
of J in L is dihedral of order 2.qC 1/=o.

Proof. By Theorem A.1, L has a dihedral subgroup H of order 2.qC 1/=o,
and this subgroup is maximal unless q D 7 (when S4 is a possible overgroup) or
q D 9 (when A5 is a possible overgroup). Since L is simple, it follows that H is
the normalizer (in L) of any of its cyclic subgroups of order more than two, and
also that H is self-normalizing in L. Let H 0 be another dihedral subgroup of L of
order 2.qC1/=o, and suppose jJ j>2. Let s be an odd prime divisor of qC1 if any
such exists, and otherwise put sD 2; then Sylow s-subgroups of H and H 0 are also
Sylow subgroups of L, and so are conjugate, whence their normalizers H and H 0

are conjugate as well. Likewise, a Sylow s-subgroup of J is conjugate to a cyclic
subgroup of H , so its normalizer is conjugate to H ; since J is contained in the
normalizer, J is conjugate to a subgroup of H , so its normalizer is conjugate to H .
We have shown that there is a unique conjugacy class of dihedral subgroups of L
of order 2.qC1/=o, so the size of this class is jL WNL.H/j D jL WH j D .q2�q/=2.
This concludes the proof in case jJ j> 2; the case jJ j D 2 is included in the next
lemma. �
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By an involution of a group, we mean an element of order two.

LEMMA A.3. L contains a unique conjugacy class of involutions. For q odd,
PGL2.q/ contains two conjugacy classes of involutions. The number of involutions
in PGL2.q/ is either q2 (if q odd) or q2� 1 (if q even). For q odd, the number of
involutions in L is either .q2 � q/=2 (if q � 3 .mod 4/) or .q2C q/=2 (if q � 1
.mod 4/). For q even, the centralizer of an involution of PGL2.q/ is a Sylow 2-
subgroup. For q odd, the centralizer in PGL2.q/ of an involution of PGL2.q/
is dihedral of order either 2.q C 1/ or 2.q � 1/, and the centralizer in L of this
involution is dihedral of half the size; order 2.qC 1/ occurs when q � 3 .mod 4/
and the involution is in L, and also when q � 1 .mod 4/ and the involution is not
in L, and order 2.q� 1/ occurs otherwise.

Proof. One immediately verifies that a nonidentity element
� ˛ ˇ

 ı

�
of PGL2.q/

is an involution if and only if ı D�˛; it is then a triviality to count the involutions
in either PGL2.q/ or L. For q even, let U be the group of matrices

�
1 �
0 1

�
, which

is a Sylow 2-subgroup of L; then U is elementary abelian and is the centralizer
(in PGL2.q/) of any nontrivial � 2 U . Since any involution in L is conjugate to
an involution in U , the centralizer of an involution is a Sylow 2-subgroup. But
the number of involutions of L which are conjugate to a fixed involution � 2 U
is jL WNL.h�i/j D jL WU j D q2 � 1, so L contains a unique conjugacy class of
involutions. Henceforth assume q odd. First consider the involution

�
�1 0
0 1

�
, which

lies in L if and only if q � 1 .mod 4/: its centralizer in PGL2.q/ (respectively, L)
consists of all the diagonal and antidiagonal elements, and so is dihedral of order
2.q� 1/ (respectively, q� 1). Hence the number of conjugates of this involution
by either L or PGL2.q/ is jLj=.q� 1/D .q2C q/=2. We will show that PGL2.q/
contains a dihedral subgroup H of order 2.qC1/; we now show how the remainder
of the lemma follows from this statement. Since L has no cyclic subgroup of order
qC1, the intersectionH\L is dihedral of order qC1. The center ofH is generated
by an involution �, and � lies in L if and only if 4 j .qC 1/. The centralizer of � in
L contains H \L; this centralizer is a proper subgroup of L (since no nonidentity
element of PGL2.q/ centralizes L), so it must be H \L (since H \L is maximal
unless q D 7 or 9, and in those cases we note that S4 and A5 have trivial center).
Then the centralizer of � in PGL2.q/ must be H (since it contains H and has
H \L as a subgroup of index at most two). Finally, the number of conjugates of
� by either L or PGL2.q/ is jL WH \Lj D jPGL2.q/ WH j D .q2 � q/=2, which
completes the proof.

Now we must show that PGL2.q/ contains a dihedral subgroup of order
2.q C 1/. For this, we view GL2.q/ as the invertible Fq-linear maps on a two-
dimensional Fq-vector space, and we choose this vector space to be Fq2 . Then
the multiplication maps by the various elements of F�

q2 form a cyclic subgroup of
GL2.q/; the group generated by this cyclic group and the q-th power map has order
2.q2� 1/, and its image in PGL2.q/ is dihedral of order 2.qC 1/. �
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Let G denote either PGL2.q/ or PSL2.q/; then a Borel subgroup of G is any
subgroup conjugate to the group of upper-triangular matrices in G.

LEMMA A.4. Let G be either PGL2.q/ or PSL2.q/. A Borel subgroup of G
is self-normalizing. The intersection of any two distinct Borel subgroups of G is
cyclic of order either q� 1 (if G D PGL2.q/) or .q� 1/=2 (if G ¤ PGL2.q/).

Proof. One easily verifies that the upper-triangular matrices B are self-nor-
malizing, so the same is true of any Borel subgroup of G. Hence there are jG WBj D
qC 1 Borel subgroups of G. One of these is the lower-triangular matrices, which
intersects B in the diagonal. The number of conjugates of the lower-triangular ma-
trices under B is then the index of the diagonal in B , namely q, so the conjugation
action of G on its Borel subgroups is doubly transitive, and thus the intersection
of any two distinct Borel subgroups is a conjugate of the diagonal. �

Next we consider the automorphisms of PSL2.q/. Since PSL2.q/ is a normal
subgroup of PGL2.q/, these include conjugation by any element of PGL2.q/; since
no nonidentity element of PGL2.q/ centralizes PSL2.q/, this gives an embedding
of PGL2.q/ into the automorphism group Aut.PSL2.q//. Any � 2 Gal.Fq=Fp/

induces an automorphism of PSL2.q/ by acting on the matrix entries; these au-
tomorphisms are called field automorphisms. The group Gal.Fq=Fp/ normalizes
PGL2.q/; let P�L2.q/ denote the semidirect product of PGL2.q/ by Gal.Fq=Fp/.
Then P�L2.q/D Aut.PSL2.q// [2, Thm. 12.5.1].

We need one result about subgroups of P�L2.q/.

LEMMA A.5. Let G be a subgroup of P�L2.q/ containing L, where q > 3.
There are precisely .q2� q/=2 subgroups G1 of G such that jG WG1j D .q2� q/=2
and G1 \ L is dihedral of order 2.q C 1/=o; any two such subgroups G1 are
conjugate.

Proof. Let ƒ denote the set of dihedral subgroups of L of order 2.qC 1/=o.
By Lemma A.2, we have jƒj D q.q� 1/=2, and moreover G acts transitively on ƒ
by conjugation. Thus, for any H 2ƒ, we have .q2� q/=2D jƒj D jG WNG.H/j.
Since any two groups in ƒ are conjugate, also their normalizers in G are conjugate.
Conversely, if the subgroupG1 ofG satisfies jG WG1jD .q2�q/=2 andG1\L2ƒ,
then G1 normalizes H WD G1 \L, so we must have G1 D NG.H/. The result
follows. �

The main result on conjugacy classes of P�L2.q/ is the following conse-
quence of Lang’s theorem on algebraic groups [16, 2.7-2]. Let � 2 P�L2.q/
be a field automorphism and � 2 PGL2.q/; if �� and � have the same order,
then �� D ����1 for some � 2 PGL2.q/. We refer to this result as Lang’s
theorem. In the proof of Lemma 2.7, we need the following more general con-
sequence of Lang’s theorem: if � is a field automorphism in P�L2.xk/, then for
every � 2 PGL2.xk/ there exists � 2 PGL2.xk/ such that �.��/��1 D � .
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We also use Zsigmondy’s theorem on primitive prime divisors. For a prime p
and positive integer e, we say that a prime s is a primitive prime divisor of pe � 1
if e is the least positive integer i for which s divides pi � 1. Zsigmondy’s theorem
says that, for fixed p and e, there exists a primitive prime divisor of pe � 1 unless
either e D 2 (and pC 1 is a power of 2) or p D 2 (and e D 6). For a proof, see [30,
Thm. 6.2] or the original [43]. Note that a primitive prime divisor of pe � 1 is
coprime to e.
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