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Abstract

A classification of upper semicontinuous and SL.n/ invariant valuations on the
space of n-dimensional convex bodies is established. As a consequence, complete
characterizations of centro-affine and Lp affine surface areas are obtained. The
proofs make use of a new SL.n/ shaping process for convex bodies.

In his 1900 ICM Address, David Hilbert asked in his Third Problem whether
an elementary definition for volume of polytopes is possible. Max Dehn’s solution
in 1901 makes critical use of the notion of valuations, that is, of functionsˆ WS!R

that satisfy the inclusion-exclusion relation

ˆ.K/Cˆ.L/Dˆ.K [L/Cˆ.K \L/;

whenever K;L;K [L;K \L 2 S, where S is a collection of sets. Dehn solved
Hilbert’s Third Problem by constructing a rigid motion invariant valuation which
vanishes on lower dimensional sets and is not equal to volume (under any normal-
ization). Since then investigations of valuations have been an active and prominent
part of mathematics (see [1]–[8], [16], [19], [20], [24], [25], [31]–[34], and [53]
for some of the more recent results).

Dehn’s work has been strengthened considerably by Sydler and Hadwiger. A
systematic study of valuations was initiated by Hadwiger, who was in particular
interested in classifying valuations on the set, Kn, of convex bodies (compact con-
vex sets) in Rn. Probably the most famous result on valuations is the Hadwiger
characterization theorem.

THEOREM 1 ([21]). A functionalˆ WKn!R is a continuous and rigid motion
invariant valuation if and only if there are constants c0, c1; : : : ; cn 2 R such that

ˆ.K/D c0 V0.K/C � � �C cn Vn.K/

for every K 2 Kn.

Here V0.K/; : : : ; Vn.K/ are the intrinsic volumes of K 2 Kn. In particular,
V0.K/ is the Euler characteristic (that is, V0.K/D 1 for K ¤∅ and V0.∅/D 0),
2 Vn�1.K/ is the surface area and Vn.K/ the volume of K. This result was the
starting point for many investigations dealing with characterizations and precise
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descriptions of classes of valuations having interesting invariance properties (see
[21], [26], [47], and [48] for more information).

Prior to Hadwiger, Blaschke proved that every continuous, translation and
SL.n/ invariant valuation on K3 is a linear combination of volume and the Euler
characteristic. This also follows immediately from Hadwiger’s characterization
theorem. However, if continuity is weakened to upper semicontinuity, there are
more examples and the authors obtained the following result.

THEOREM 2 ([29], [35]). A functional ˆ W Kn! R is an upper semicontin-
uous, translation and SL.n/ invariant valuation if and only if there are constants
c0; c1 2 R and c2 � 0 such that

ˆ.K/D c0 V0.K/C c1 Vn.K/C c2�.K/

for every K 2 Kn.

The “new” valuation �.K/ in this characterization theorem is the affine sur-
face area of a convex body K in Rn. It is defined by

�.K/D

Z
@K

�.K; x/
1
nC1 dx;

where �.K; x/ is the generalized Gaussian curvature of @K at x. For smooth convex
surfaces, this definition is classical. It is also classical that � is equi-affine invariant
for smooth surfaces, that is, � is both translation invariant and SL.n/ invariant.
The extension of the definition of affine surface area to general convex bodies was
obtained much more recently in a series of papers [27], [37], and [54] (see also
[28]). There it is also proved that � is equi-affine invariant on Kn. The long
conjectured upper semicontinuity of affine surface area (for smooth surfaces as
well as for general convex surfaces) was proved by Lutwak [37] in 1991 and was
important in the solution of the affine Plateau problem by Trudinger and Wang [61]
in 2005.

The notion of affine surface area is fundamental in affine differential geometry
and important results on affine surface area were obtained in recent years (see, for
example, [9], [10], and [56]–[62]). In addition, since many basic problems in
discrete and stochastic geometry are equi-affine invariant, affine surface area has
found numerous applications in these fields (see, e.g., [11], [12], [18], and [50]).

Theorem 2 shows that within the theory of valuations, � is the natural notion
of surface area for the equi-affine group. This raises the question to obtain the natu-
ral notion of surface area for affine groups without assuming translation invariance.
In view of Theorem 2, the question therefore is:

Is it possible to classify all SL.n/ or GL.n/ invariant valuations
on Kn0?

Here Kn0 denotes the space of convex bodies that contain the origin in their interiors.
A complete answer for the centro-affine group GL.n/ is contained in the fol-

lowing theorem.
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THEOREM 3. A functionalˆ WKn0!R is an upper semicontinuous and GL.n/
invariant valuation if and only if there are constants c0 2 R and c1 � 0 such that

ˆ.K/D c0 V0.K/C c1�c.K/

for every K 2 Kn0 .

This theorem establishes a characterization of the centro-affine surface area
�c.K/. For a convex body K 2 Kn0 , the centro-affine surface area is defined by

�c.K/D

Z
@K

�0.K; x/
1
2 d�K.x/:

Here d�K.x/Dx �u.K; x/ dx is the cone measure on @K, x �u denotes the standard
inner product of x; u2Rn, u.K; x/ is the exterior normal unit vector toK at x 2@K,
and

�0.K; x/D
�.K; x/

.x �u.K; x//nC1
:

For smooth surfaces, centro-affine surface area is classical and Titeica showed in
1908 the SL.n/ invariance of �0. For general convex bodies, Lutwak [39] proved
that �c is well defined, GL.n/ invariant, and upper semicontinuous. A simple
consequence of Theorem 3 is the classical result that polar convex bodies have the
same centro-affine surface area (see �6).

The classification of SL.n/ invariant valuations leads to a much richer class
of valuations. First we state the following complete classification of homogeneous
and SL.n/ invariant valuations. Here a functional ˆ is called homogeneous of
degree q with q 2 R, if ˆ.t K/ D tq ˆ.K/ for every t > 0 and K 2 Kn0 . Let
K� D fx 2 Rn W x �y � 1 for y 2Kg denote the polar body of K 2 Kn0 .

THEOREM 4. A functional ˆ WKn0!R is an upper semicontinuous and SL.n/
invariant valuation that is homogeneous of degree q if and only if there are con-
stants c0 2 R and c1 � 0 such that

ˆ.K/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

c0 V0.K/C c1�n.K/ for q D 0

c1�p.K/ for �n < q < n and q ¤ 0

c0 Vn.K/ for q D n

c0 Vn.K
�/ for q D�n

0 for q < �n or q > n

for every K 2 Kn0 where p D n.n� q/=.nC q/.

The “new” valuation �p.K/ in this characterization theorem is the Lp affine
surface area of a convex body K 2 Kn0 . For p > 1, Lp affine surface area was
defined by Lutwak [39] as the notion corresponding to affine surface area in the
Lp Brunn Minkowski theory (see [13], [14], [38]–[46], [57], and [58] for contribu-
tions to the Lp Brunn Minkowski theory). Lutwak [39] proved that �p is SL.n/
invariant, homogeneous of degree qDn .n�p/=.nCp/, and upper semicontinuous
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on Kn0 . Hug [22] defined Lp affine surface areas for every p > 0 and obtained the
following representation for K 2 Kn0:

�p.K/D

Z
@K

�0.K; x/
p
nCp d�K.x/:

Note that �D�1 and �c D�n, that is, affine and centro-affine surface areas are
just special Lp affine surface areas. Geometric interpretations of Lp affine surface
areas are obtained in [17], [49], [55], and [63], and an application of Lp affine
surface areas to partial differential equations is given in [40]. A simple consequence
of Theorem 4 is Hug’s result [23] that �p.K�/ D �n2=p.K/ for every K 2 Kn0 ,
p > 0 (see �6).

In the background of these results is a rather general theorem. We give a com-
plete classification of SL.n/ invariant valuations on Kn0 which vanish on polytopes.
Combined with [32], where a classification of all Borel measurable, homogeneous
and SL.n/ invariant valuations on polytopes is obtained, this result implies Theo-
rems 3 and 4. Let Pn0 denote the set of convex polytopes that contain the origin in
their interiors.

THEOREM 5. A functional ˆ WKn0!R is an upper semicontinuous and SL.n/
invariant valuation that vanishes on Pn0 if and only if there is a concave function
� W Œ0;1/! Œ0;1/ with limt!0 �.t/D limt!1 �.t/=t D 0 such that

(1) ˆ.K/D

Z
@K

�.�0.K; x// d�K.x/

for every K 2 Kn0 .

This theorem shows that each of these ‘L� affine surface areas’ is a natural
choice for an SL.n/ invariant surface area on Kn0 .

Since in this characterization theorem no translation invariance is assumed
and since on the space Kn0 it is not possible to use many of the standard techniques
involving dissections, the proof of Theorem 5 is based on several new constructions.
In particular, to allow certain dissections we extend ˆ to a valuation on a larger
class of sets (see Propositions 10 and 14). Critical in the proof of Theorem 5 is
also a new SL.n/ shaping process for convex bodies (see �2). In certain respects,
this SL.n/ shaping process behaves similarly to the Minkowski addition of a line
segment,K 7!KCI (which is critical in results for translation invariant valuations).
The SL.n/ shaping process is used in two important steps of the proof. First in
Proposition 14 to extend valuations defined on Kn0 . In the second application in
Proposition 24, the SL.n/ shaping process is used repeatedly in a precisely defined
way to obtain in the limit a process that behaves similarly to the Minkowski addition
of a small ball. This allows us to generalize the classification result first obtained
for "-smooth convex bodies (that is, convex bodies that are Minkowski sums of
suitable convex bodies and balls of radius ">0) to convex bodies without additional
smoothness assumptions.
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In the next section, some preliminaries are given. In Section 2, the new SL.n/
shaping process is described in detail. In Section 3, we derive the extension result
mentioned above. The proof of Theorem 5 is given in Section 4. In Section 5,
we derive Theorems 3 and 4 from Theorem 5. In Section 6, two corollaries of
Theorems 3 and 4 are derived. In the last section, we show that Theorem 2 can
easily be obtained from Theorem 5.

1. Notation and preliminaries

A general reference on the geometry of convex bodies is the book by Schnei-
der [52]. We work in n-dimensional Euclidean space, Rn, and for vectors x 2 Rn,
we write x D .x1; x2; : : : ; xn/. The standard basis in Rn will be denoted by
e1; e2; : : : ; en. Let x �y denote the usual scalar product x1y1Cx2y2C� � �Cxnyn
of two vectors x; y 2 Rn, and define the norm jxj D

p
x � x. The unit sphere

fx 2 Rn W jxj D 1g is denoted by Sn�1 and the unit ball fx 2 Rn W jxj � 1g by
Bn. For the n-dimensional volume of Bn, we write vn. For a ball with center
a 2 Rn and radius r > 0, we write Bn.a; r/. We call any dilated and rotated copy
of f.x1; : : : ; xn/ 2 Rn W .x1; : : : ; xn�1/ 2 B

n�1g an unbounded circular cylinder.
Given A � Rn, let cone.A/ denote the smallest closed convex cone with apex at
the origin containing A. Given A1; A2; : : : ; Ak � Rn, we write ŒA1; A2; : : : ; Ak�
for their convex hull. For a hyperplane H containing the origin, we denote by HC

and H� the complementary closed halfspaces bounded by H .
Let Qn be the set of convex polyhedral cones with apex at the origin, and

let Qnj , where j D 1; : : : ; n, be the set of cones Q 2 Qn bounded by at most j
hyperplanes containing the origin with linearly independent normal vectors, that
is, Q DHC1 \ � � � \H

C
i with i � j . Let Knj , j D 1; : : : ; n, be the set of convex

bodies K such that either K 2 Kn0 or there exist K0 2 Kn0 and a cone Q 2 Qnj such
that and

(2) K DK0\QDK0\H
C
1 \ � � � \H

C
i ; i � j:

Let xKn0 be the set of convex bodies K such that either K is in Kn0 or there exist a
convex body K0 2Kn0 and a polyhedral cone Q 2 Qn such that K DK0\Q. Note
that Qn1 � � � � � Qnn � Qn and Kn0 � Kn1 � � � � � Knn � xK

n
0 .

Let Dnj , where j D 0; : : : ; n� 1, be the set of n-dimensional convex bodies
D D ŒK \ H;u; v� where K 2 Knj is defined by (2), H is a hyperplane with
K \HC; K \H� 2 KnjC1, and where u; v 2 K \H1 \ � � � \Hi , u 2 HCnH ,
v 2H�nH . Note that Dnj � Knj .

For a hyperplane H containing the origin, we denote by Kn�10 .H/ the set
of convex bodies in H that contain the origin in their interiors relative to H and
by Pn�1.H/ the set of convex polytopes in H . On Kn as well as on these sub-
spaces we always use the topology induced by the Hausdorff distance and denote
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by ı.K;L/ the Hausdorff distance of K;L 2 Kn. For K 2 Kn, we denote its
dimension by dimK.

For v 2Rn, v¤ 0, let v? be the hyperplane containing the origin with normal
vector v. For v 2 Rn, v ¤ 0, and K 2 xKn0 , we denote the supporting halfspace that
contains K and has outer normal vector v by HC.K; v/ and the corresponding
supporting hyperplane by H.K; v/. For K 2 xKn0 , let N.K; x/ be the normal cone
of K at x 2 @K, that is, the set of all outer normal vectors v such that x 2H.K; v/.
For K 2 xKn0 and A�Rn, we set N.K;A/D

S
x2@K\AN.K; x/ and we define the

tangential continuation of K with respect to A by

HC.K;A/D
\

u2N.K;A/

HC.K; u/:

For Kj ; K 2 xKn0 and D a convex cone, we write Kj \D
t
!K \D as j !1

if the convergence of Kj \D ! K \D is such that HC.Kj ;D/ converges to
HC.K;D/ in every large ball.

We require the following result which can be proved as the corresponding
statement, Theorem 1, in [30].

PROPOSITION 6. Suppose that the function � W Œ0;1/! Œ0;1/ is concave,
lim
t!0

�.t/D lim
t!1

�.t/=t D 0, and define the functional ˆ for K 2 Kn0 by

ˆ.K/D

Z
@K

�.�0.K; x// d�K.x/:

Then ˆ W Kn0! Œ0;1/ is an upper semicontinuous valuation on Kn0 that vanishes
on Pn0 .

We also require the following result on packings on Sn�1, which follows im-
mediately from the corresponding Euclidean result. We say that the balls Bn.x1; r/;
: : : ; Bn.xk; r/ define a packing in Sn�1, if xi 2 Sn�1 for i D 1; : : : ; k, and if the
sets Sn�1\Bn.xi ; r/ have pairwise disjoint relative interiors in Sn�1. IfmSn�1.r/
is the maximum number of balls of radius r that define a packing in Sn�1, then

(3) vn�1mSn�1.r/ r
n�1
! ın�1 n vn

as r! 0, where ın�1 > 0 is the packing density of balls in Rn�1.

2. The SL.n/ shaping process

For u 2 Sn�1 and v 2 u?, let T D T .u; v/ be the linear transformation
which maps each point x to x C .x � u/v and thus leaves u? unchanged. Such
a transformation is called a transvection. Note that T �1.u; v/ D T .u;�v/ and
T .u; v/ 2 SL.n/. For T D T .u; v/ and x 2 Rn, we have

(4) jT x� xj � jvj jxj
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and

(5) jT xj � .1Cjvj/jxj:

For a convex body K, we define

KT.u;v/ D
[

s2Œ0;1�

T .u; sv/K:

We call K 7! KT.u;v/ the SL.n/ shaping process. Note that KT D KT.u;v/ is
compact but not necessarily convex. In particular, KT is not convex if u? intersects
K in a smooth part of @K.

In two cases, which are of special interest in the following, it turns out that KT
is in fact convex. First, letK 2Dn0 be such thatKD ŒL;�t en; t en�, L2Kn�10 .e?n /,
t > 0. Observe that KT is convex for T D T .en; l v/ if l � 0 is small, for example,
if KT � LC t Œ�en; en�. Hence there is some constant l0 depending on L, t , and
v such that KT is convex for 0 � l � l0. Second, let K D L\Q 2 xKn0 where
L 2 Kn0 and Q is a polyhedral cone. Observe that KT.u;lv/ is convex for all l 2 R

if u?\K is the origin.
Let ˆ be an SL.n/ invariant valuation on Dn0 , resp. xKn0 . In the following

we are interested in the behavior of ˆ.KT.u;v// as a function of v. Without loss
of generality set u D en, then fix v 2 e?n and K 2 Dn0 or K 2 xKn0 . Given two
transvections T D T .en; lv/ and T 0 D T 0.en; l 0v/, l; l 0 � 0, we have

T 0KT D
[

s2Œl 0;lCl 0�

T .en; sv/K

and
KT;T 0 D .KT /T 0 DKT.en;.lCl 0/v/:

Thus for l; l 0 � 0,

(6) KT 0 \T
0KT D T

0K; KT 0 [T
0KT DKT;T 0 :

Since ˆ is an SL.n/ invariant valuation, we obtain

ˆ
�
KT;T 0

�
Dˆ.KT /Cˆ.KT 0/�ˆ.K/

as long as l and l 0 are chosen such that the occurring sets are convex. Setting
f .l/Dˆ.KT.en;lv//, we obtain

(7) f .l C l 0/D f .l/Cf .l 0/�f .0/:

Hence f .l/�f .0/ is a solution of Cauchy’s functional equation.
For the two special cases, we obtain the following results.

LEMMA 7. Let K D L\Q 2 xKn0 with L 2 Kn0 , Q 2 Qn, and let ˆ W xKn0 !
Œ0;1/ be an SL.n/ invariant valuation. If T D T .u; v/ is a transvection and
u?\K D f0g, then

ˆ.KT /�ˆ.K/
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t T �en t TCent en

�t TCen �tT �en

�� en

�� e1

� T �en

L

Figure 1. Definition of M1 ( ) and M2 ( )

for every v 2 u?.

Proof. Since ˆ and therefore f are nonnegative, the solution of (7) is f .l/D
c l Cˆ.K/ with a suitable constant c. Since f � 0 and l can be arbitrarily large,
this implies c � 0. �

LEMMA 8. Let K D ŒL;�t en; t en� 2 Dn0 with L 2 Kn�10 .e?n /, t > 0, and
let ˆ W Kn0 ! R be an upper semicontinuous and SL.n/ invariant valuation that
vanishes on Pn0 . If T D T .en; l e1/ is a transvection and L\ e?1 is a polytope,
then there is a constant c0 2 R depending only on L such that

ˆ.KT /D c0 l Cˆ.K/

for every l � 0 such that KT is convex.

Proof. Since ˆ is upper semicontinuous, also f is upper semicontinuous. The
convexity of the sets occurring in (6) is ensured if l C l 0 � l0. Hence for given L,
the solution to (7) is given by f .l/D c.t/ lCˆ.K/ for l � l0 where c W .0;1/!R.
We prove that c.t/ is independent of t , that is, c.t/D c0.

First, we calculate f .2l/Dˆ.KT.en;2le1//. Let TC D T .en; le1/ and T � D
T .en;�le1/. Note that

KTC;T� D T .en;�le1/KT.en;2le1/ D ŒL;˙t T
Cen;˙t T

�en�:
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For � > 0, we define (see Figure 1)

M1 D
�
LC; t en; t T

Cen;�� e1;�� en
�
;

M2 D
�
LC;�t en;�t T

�en;�� e1; � T
�en

�
;

M3 D
�
L�;�t en;�t T

Cen; � e1; � en
�
;

M4 D ŒL
�; t en; t T

�en; � e1;�� T
�en� ;

where LCDL\fx W x �e1� 0g and L�DL\fx W x �e1� 0g. Let �> 0 be so small
that KTC;T� DM1[M2[M3[M4 and let l > 0 be so small that � T �en 2M1.

Since ˆ is an SL.n/ invariant valuation vanishing on polytopes and since

.M1[M2/\ .M3[M4/D ŒL\ e
?
1 ;˙�e1;˙ten�

is a polytope, we have

f .2 l/Dˆ.KTC;T�/Dˆ.M1[M2/Cˆ.M3[M4/

D

4X
iD1

ˆ.Mi /�ˆ.M1\M2/�ˆ.M3\M4/

D

4X
iD1

ˆ.Mi /�ˆ.ŒL
C;�� e1; � T

�en;�� en�/

�ˆ.ŒL�; � e1; � en;�� T
�en�/:

Next, we calculate f .l/Dˆ.KTC/. Note that .M1[T
CM4/\ .M3[T

CM2/D

ŒL;˙� en�. Since ˆ is an SL.n/ invariant valuation vanishing on polytopes and
since M1 \ T

CM4 D ŒL \ e?1 ; t T
Cen;˙� e1; t en;�� en� and M3 \ T

CM2 D

ŒL\ e?1 ;�t T
Cen;˙� e1; � en;�t en� are polytopes, we have

f .l/ D ˆ.KTC/Dˆ.M1[T
CM4[M3[T

CM2/

Dˆ.M1[T
CM4/Cˆ.M3[T

CM2/�ˆ.ŒL;˙�en�/

D

4X
iD1

ˆ.Mi /�ˆ.ŒL;˙� en�/:

Calculating f .2 l/�f .l/, we obtain

c.t/ l Dˆ.ŒL;˙� en�/

�ˆ.ŒLC;�� e1; � T
�en;�� en�/�ˆ.ŒL

�; � e1; � en;�� T
�en�/:

The right-hand side does not depend on t . Therefore c.t/D c0 is a constant. �

In a certain sense, the SL.n/ shaping process K 7!KT.u;v/ behaves similarly
to the Minkowski addition of a line segment, K 7!KC I : At each boundary point,
the set KT.u;v/ is touched from within by an interval parallel to v. In analogy to the
fact that Minkowski sums of suitable intervals approximate ellipsoids, we prove in
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the following that the SL.n/ shaping process with suitable defined transvections
can be used to approximate ellipsoids. Let E� be the ellipsoid of revolution with
semi-major axis of length � in direction en and semi-minor axes of length ��1 in
directions e1; : : : ; en�1. Let 
 > 0.

LEMMA 9. Suppose C is a convex cone such that en � u � 
 for any point
u 2 C \ Sn�1. Then there are constants ˛.C /, ˇ.C /, and �.C / such that for
�� �.C / > 1 and k sufficiently large there are transvections

Tk1 D T .uk1; vk1/; : : : ; Tkmk D T .ukmk ; vkmk /

such that the following holds: mk�k ˇ.C /=�2, en �ukj � 8
9

 , jvkj j�˛.C /=.k �2/,

and Œ0; en�Tk1;:::;Tkj � B
n for j D 1; : : : ; mk , and

Œ0; � en�Tk1;:::;Tkmk
\D�

t
!E�\D� as k!1;

where the convex cone D� is chosen such that N.E�;D�/D C .

Proof. We use induction on the dimension and prove the slightly stronger
statement that in addition Œ0; � en�Tk1;:::;Tkmk is the convex hull of the origin and
finitely many points on @E�. We start with the case nD 2, where given a vector
v, the transvection T .u; v/ is uniquely determined by v, if we choose uD u.v/ as
the unit vector in the orthogonal complement of v that has a smaller angle with e2.

We introduce the following parametrization: the ellipse E� W�2x21C�
�2x22D 1

is parametrized by .x1; x2/D .���1 sin �; � cos �/, � 2 .��; ��. For kD 1; 2; : : :
and i 2 f�k C 1; : : : ; kg, set pi D .���1 sin.�i=k/; � cos.�i=k//. Given the
convex cone C , let D� be such that N.E�;D�/ D C and let yk be the smallest
positive integer such that

D� � cone.Œ0; p
�yk
; : : : ; pyk�/

(see Figure 2). The tangent line to E� at a point .x1; x2/ has normal vector
.�2x1; �

�2x2/D .�� sin �; ��1 cos �/. Since e2 �u�
 for any point u2C\Sn�1,
we have �

�2 sin2 � C��2 cos2 �
�� 1

2 ��1 cos � � 
; i.e., tan2 � �
1� 
2

�4
2

for all .x1; x2/ 2D�\E�. This shows that there is a constant ˛1.C / such that

(8)
yk

k
�
˛1.C /

�2
:

By definition, as k!1,

(9) Œ0; p
�yk
; : : : ; pyk�\D�

t
!E�\D�:
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E�

D�

C

p0

p
�yk

nE
�yk

pyk

Figure 2. The convexity of (10)

Now there are vectors ni ; wi , iD�ykC1; : : : ; yk, such that the transvection T .ni ; wi /
maps pi�1 to pi . The vector ni is the unit normal vector to pi �pi�1, and

wi D
pi �pi�1

pi�1 �ni
D
pi �pi�1

di
;

where di > 0 is the distance of the line containing pi�1; pi to the origin. We get
(10)
Œ0; � e2�T.n1;w1/;:::;T .nyk ;wyk/;T .n0;�w0/;:::;T .n�.yk�1/;�w�ykC1/

D Œ0; p
�yk
; : : : ; pyk�

if the left-hand side is a convex set. The convexity is guaranteed if the distance of
Œp0; : : : ; pyk� to the lines containing the origin and parallel to pi �pi�1 is positive

for i D 0; : : : ;�bkC 1. This is the case if the outer unit normal vector nE
�yk

of E�
at p
�yk

satisfies nE
�yk
�pyk > 0. By

(11) nE
�yk
D

�
�2 sin2 �

yk
k
C��2 cos2 �

yk
k

�� 1
2

 
� sin �

yk
k

��1 cos �
yk
k

!

and by (8) we obtain that nE
�yk
� pyk > 0 for � � �.C / if �.C / is chosen suitably

large.
Using (11) and (8), we obtain for �bkC 1� i �bk,

di � n
E

�yk
�p
�yk
D

�
�2 sin2 �

yk
k
C��2 cos2 �

yk
k

�� 1
2

� �˛2.C /
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with a suitable constant ˛2.C /, and

jpi �pi�1j D 2 sin
�

2k

ˇ̌̌̌�
��1 cos

�.2i � 1/

2k
;�� sin

�.2i � 1/

2k

�ˇ̌̌̌
�
˛3.C /

k �

for k sufficiently large with a suitable constant ˛3.C /. Hence there is a constant
˛4.C / such that

jwi j �
˛4.C /

k�2

for k sufficiently large. We setmkD2yk and define Tk1DT .uk1; vk1/DT .n1; w1/;
: : : ; Tkmk D T .ukmk ; vkmk / D T .n

�ykC1
;�w

�ykC1
/ according to (10). Since

limk!1 pyk 2D�, for k sufficiently large en �ukj � 8
9

 . This completes the proof

of the lemma in the case nD 2.
Assume that the lemma has been proved in dimension .n � 1/. Given the

convex cone C , there are hyperplanes H1 and H2 supporting C and containing the
basis vectors e2; : : : ; en�1 such that C �HC1 \H

�
2 . Denote by U' the rotation

about the axis H1\H2 with angle ', and set

zC D
[

'2Œ��=2;�=2�

U'C \ e
?
1

which is the ‘spherical projection’ of C to e?1 .
Since for any point u 2 zC \ Sn�1 we have en � u � 
 , by induction the

following holds for � and k sufficiently large: there are points pk0; : : : ; pk zmk
and transvections Tk1 D T .uk1; vk1/; : : : ; Tk zmk D T .uk zmk ; vk zmk / with jvkj j �
z̨1.C /=.k �

2/, zmk � k z̨4.C /=�2, and en �ukj � 8
9

 such that

(12) Œ0; � en�Tk1;:::;Tk zmk
D Œ0; pk0; : : : ; pk zmk �

and as k!1

(13) Œ0; � en�Tk1;:::;Tk zmk
\ zD�

t
!E�\ zD�;

where N.E�; zD�/D zC .
We use the parametrization .x1; xn/D .���1 sin �; � cos �/, � 2 .��; �� now

in the linear hull of e1; en. As in the case nD 2, for � sufficiently large there are
points pi and vectors ni ; wi , i D �ykC 1; : : : ; yk, in the linear hull of e1; en such
that the transvection T .ni ; wi / maps pi�1 to pi and leaves the hyperplane spanned
by wi ; e2; : : : ; en�1 invariant. Note that as in the planar case there are constants
˛1.C / and ˛4.C / such that

yk

k
�
˛1.C /

�2
and jwi j �

˛4.C /

k�2
;

and that en �ni � 8
9

 for k sufficiently large. Define the hyperplane H� as the linear

hull of e2; : : : ; en�1 and .���1 sin �; 0; : : : ; 0; � cos �/. Observe that T .ni ; wi /
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maps H�.i�1/=k \E� onto H�i=k \E� and thus the points pk0; : : : ; pk zmk suc-
cessively to points on H�i=k \E�, i D�yk; : : : ; yk. (This is easy to see if E� is a
ball, applying an affinity shows this for arbitrary �.) Thus it follows from (9), (10),
(12), and (13) that

(14) Œ0; � en�Tk1;:::;Tk zmk ;T .n1;w1/;:::;T .nyk ;wyk/;T .n0;�w0/;:::;T .n�ykC1;�w�ykC1/

\D�
t
!E�\D�

as k !1. We set mk D zmk C 2yk and define T zmkC1 D T .u1; w1/, . . . , Tmk D
T .n
�ykC1

;�w
�ykC1

/ according to (14). This completes the proof of the lemma. �

3. An extension result

We say that a functional ˆ W Kn0! Œ0;1/ is absolutely continuous on some
subset Ln � Kn0 if there exists a constant c such that

ˆ.L/� c V .L/ for every L 2 Ln:

A valuation ˆ is called simple if ˆ.K/ D 0 for every K of dimension less than
n. We say that Q1; : : : ;Qk 2 Qn dissect Q 2 Qn if Q D Q1 [ � � � [Qk and
the cones Q1; : : : ;Qk have pairwise disjoint interiors. We call a simple valuation
ˆ W xKn0! Œ0;1/ finitely additive if for every K 2 xKn0 we have

ˆ.K \Q/Dˆ.K \Q1/C � � �Cˆ.K \Qk/

when Q 2 Qn is dissected into Q1; : : : ;Qk 2 Qn.
The main result of this section is the following proposition.

PROPOSITION 10. Every valuation ˆ WKn0! Œ0;1/ that is absolutely contin-
uous on Dn0 can be extended to a simple, finitely additive valuationˆ W xKn0! Œ0;1/.

The proof is contained in the following two lemmas. Recall that Qnj is the
set of cones Q 2 Qn bounded by at most j hyperplanes containing the origin with
linearly independent normal vectors, and that Knj is the set of convex bodies K
such that either K 2 Kn0 or there exist K0 2 Kn0 and a cone Q 2 Qnj such that
K DK0\Q.

The following lemma is a refinement of results in [32] and [34].

LEMMA 11. Every valuation ˆ W Kn0! Œ0;1/ that is absolutely continuous
on Dn0 can be extended to a simple valuation ˆ W Knn! Œ0;1/.

Proof. Since ˆ is absolutely continuous on Dn0 , there is a constant c such that

(15) ˆ.D/� c V .D/ for every D 2 Dn0:

Recall that Dnj is the set of n-dimensional convex bodies D D ŒK \H;u; v� where
K 2 Knj , where H is a hyperplane with K \HC; K \H� 2 KnjC1, and where
u; v 2K \H1\ � � � \Hi , u 2HCnH , and v 2H�nH ; see (2).
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On Knj , j D 1; : : : ; n, we define ˆ inductively, starting with j D 1, in the
following way. The functional ˆ is already defined for K 2 Knj�1. Set

(16) ˆ.K/D 0 for K 2 Knj with dimK < n:

For K 2 Knj nK
n
j�1 (defined by (2) with i D j ) with dimK D n, set

(17) ˆ.K/D lim
u!0

ˆ.ŒK; u�/;

where u 2 H�j nHj , u 2 H1 \ � � � \Hj�1 (and note that ŒK; u� 2 Knj�1). This
implies that ˆ is nonnegative. We show that ˆ is well defined (that is, the limit in
(17) exists and does not depend on the choice of Hj ), that for j D 1; : : : ; n� 1,

(18) ˆ.D/� c V .D/ for every D 2 Dnj ;

and that ˆ has the following additivity properties for j D 1; : : : ; n. If K 2 Knj�1
and H is a hyperplane such that K \HC; K \H� 2 Knj nK

n
j�1, then

(19) ˆ.K/Dˆ.K \HC/Cˆ.K \H�/;

and if K;M;K\M;K[M 2Knj nK
n
j�1 are defined by (2) with the same cone Q,

then

(20) ˆ.K/Cˆ.M/Dˆ.K [M/Cˆ.K \M/:

The functional ˆ is well defined and a valuation on Kn0 and (15) holds. Sup-
pose that ˆ is well defined by (17) on Kn

k�1
and that for j D k� 1 (18), (19) (if

k > 1), and (20) hold.
First, we show that the limit in (17) exists for j D k. Let K 2 Kn

k
nKn

k�1
,

K DK0\H
C
1 \ � � �\H

C

k
, K0 2Kn0 , and let u0 2H1\ � � �\Hk�1, u0 2H�

k
nHk

be chosen such that ŒK; u�� ŒK; u0� and �u0 2K. Applying (20) with j D k� 1
gives

ˆ.ŒK; u�/Cˆ.ŒK \Hk; u
0;�u0�/Dˆ.ŒK; u0�/Cˆ.ŒK \Hk; u;�u

0�/:

Since ŒK\Hk; u0;�u0�; ŒK\Hk; u;�u0�2Dn
k�1

and since (18) holds for j Dk�1,
this implies that

jˆ.ŒK; u�/�ˆ.ŒK; u0�/j � c .V .ŒK \Hk; u
0;�u0�/CV.ŒK \Hk; u;�u

0�//:

Consequently, the limit in (17) exists. If k D 1, this shows that ˆ is well defined
on Kn

k
. For k > 1 we show that ˆ.K/ as defined by (17) does not depend on the

choice of the hyperplane Hk . Let K 2 Kn
k
nKn

k�1
, K D K0 \HC1 \ � � � \H

C

k
,

K0 2Kn0 , and let u 2H1\ � � �\Hk�1, u 2H�
k
nHk . Choose u0 in H2\ � � �\Hk ,

u0 2H�1 nH1. Applying (19) for j D k� 1 gives

ˆ.ŒK; u; u0�/Dˆ.ŒK; u; u0�\HC
k
/Cˆ.ŒK; u; u0�\H�k /:

We have ŒK; u; u0�\H�
k
D ŒK \Hk; u; u

0� and u0 2Hk . Since ŒK \Hk; u; u0� 2
Dk�10 , (18) implies that limu;u0!0ˆ.ŒK \Hk; u; u0�/D 0. We combine this with
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ŒK; u; u0�\HC
k
D ŒK; u0� and get limu;u0!0ˆ.ŒK; u; u0�/D limu0!0ˆ.ŒK; u0�/:

Similarly, we get limu;u0!0ˆ.ŒK; u; u0�/ D limu!0ˆ.ŒK; u�/: Thus ˆ is well
defined on Kn

k
.

Note that since ˆ.D/ � c V .D/ for D 2 Dn
k�1

, definition (17) implies that
for k < n

(21) ˆ.D/� c V .D/ for every D 2 Dnk :

Next, we show that (19) holds for j D k � n. By the induction hypothesis,
(19) holds for K 2 Kn

k�2
. Let K 2 Kn

k�1
n Kn

k�2
, that is, there exist K0 2 Kn0

and hyperplanes H1; : : : ;Hk�1 such that K D K0 \H
C
1 \ � � � \H

C

k�1
. If we

choose u 2H1\ � � � \Hk�1 such that u 2K \HCnH and �u 2K \H�, then
K, ŒK \H;u;�u�, ŒK \HC;�u�, and ŒK \H�; u� are in Kn

k�1
and have the

hyperplanes H1; : : : ;Hk�1 in common. Applying (20) for j D k� 1 gives

ˆ.K/Cˆ.ŒK \H;u;�u�/Dˆ.ŒK \HC;�u�/Cˆ.ŒK \H�; u�/:

By (21) and definition (17), this implies that (19) holds for j D k.
Finally, we show that (20) holds for j D k. Choose u 2 H1 \ � � � \Hk�1,

u 62Hk such that �u 2K \M . Applying (20) for j D k� 1 shows that

ˆ.ŒK; u�/Cˆ.ŒM; u�/Dˆ.ŒK [M;u�/Cˆ.ŒK \M;u�/:

Because of definition (17) this implies that (20) holds for j D k. The induction is
now completed and ˆ is defined on Knn.

As the last step of the proof, we show that ˆ is a simple valuation on Knn. The
fact that ˆ is simple follows from (16). To show that ˆ is a valuation, first note
that for Q 2 Qnn fixed, ˆ. � \Q/ is a valuation on Kn0 by (20). Next, we show that
for K0 2 Kn0 fixed, ˆ.K0\ � / is a valuation on Qnn, that is,

(22) ˆ.K0\Q/Cˆ.K0\Q
0/Dˆ.K0\ .Q[Q

0//Cˆ.K0\ .Q\Q
0//

for Q;Q0;Q[Q0 2 Qnn.
If one of the cones Q;Q0 is contained in the other, then (22) clearly holds. So

suppose thatQ 6�Q0 andQ0 6�Q. SinceQ[Q0 is convex and the polyhedral cones
are bounded by at most n hyperplanes containing the origin, there is a hyperplane
H such that Q0 �H� and QnQ0 �HC. Hence Q\Q0DQ\H� and QnQ0D
Q\HC, and (22) will follow from

ˆ.K0\Q/Dˆ.K0\ .Q\H
C//Cˆ.K0\ .Q\H

�//

and
ˆ.K0\ .Q[Q

0//Dˆ.K0\Q
0/Cˆ.K0\ .Q\H

C//:

Thus the following additivity property is sufficient to prove (22). If a cone Q 2 Qnn
is dissected by a hyperplane H into two cones Q\HC;Q\H� 2 Qnn, and thus
the convex set K DK0\Q 2 Knn is dissected into K \HC; K \H� 2 Knn, then

(23) ˆ.K/Dˆ.K \HC/Cˆ.K \H�/:
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Since the case K 2 Knj�1 and K \HC; K \H� 2 Knj nK
n
j�1 is already proved by

(19), it remains to prove (23) for K;K \HC; K \H� 2 Knj nK
n
j�1, j � n. This

can be seen in the following way.
Let K D K0 \Q D K0 \HC1 \ � � � \H

C
j . Since Q\HC;Q\H� 2 Qnj ,

the hyperplane H contains the intersection of two boundary hyperplanes of Q,
that is, without loss of generality H1 \H2 � H . So K \HC and K \H� are
bounded by H1;H;H3; : : : ;Hj and H;H2;H3; : : : ;Hj , respectively. Let u 2
H \H3\ � � � \Hj , u 2H�1 \H

�
2 . By (19), we have

ˆ.ŒK; u�/Dˆ.ŒK \HC; u�/Cˆ.ŒK \H�; u�/

and because of (17)

ˆ.K \HC/D lim
u!0

ˆ.ŒK \HC; u�/; ˆ.K \H�/D lim
u!0

ˆ.ŒK \H�; u�/:

Further, by (19),

ˆ.ŒK; u�/Dˆ.ŒK; u�\HC1 /Cˆ.ŒK; u�\H
�
1 /

Dˆ.K/Cˆ.ŒK; u�\HC1 \H
�
2 /Cˆ.ŒK; u�\H

�
1 /:

Note that (18) and (19) imply thatˆ.ŒL\H;u�/� c V .ŒL\H;u�/ for each pyramid
ŒL\H;u�, L 2 Knn. In particular, we have

lim
u!0

ˆ.ŒK; u�\H�1 /D lim
u!0

ˆ.ŒK; u�\H�2 /D 0

and by (19),

0� lim
u!0

ˆ.ŒK; u�\HC1 \H
�
2 /� lim

u!0
ˆ.ŒK; u�\H�2 /D 0:

Combined these equations imply (23).
Next, we derive the following auxiliary result, where we write QL D cone.L/

for L 2 Knn. If L;L0 2 Knn differ only within a cone Q 2 Qnn and Q �QL DQL0 ,
then

(24) ˆ.L/�ˆ.L0/Dˆ.L\Q/�ˆ.L0\Q/:

To prove this, note that there are hyperplanes such that

QL DH
C
1 \ � � � \H

C
i \ � � � \H

C
j ; QDH

C
1 \ � � � \H

C
i \

zHCiC1\ � � � \
zHC
k
:

This implies that there are Li ; L0i 2 Kni which are bounded by H1; : : : ;Hi and
differ only within Q such that

LD Li \H
C
iC1\ � � � \H

C
j ; L

0
D L0i \H

C
iC1\ � � � \H

C
j :

It follows from (19) that

ˆ.Li /�ˆ.L
0
i /Dˆ.Li \H

C
iC1/�ˆ.L

0
i \H

C
iC1/D � � � Dˆ.L/�ˆ.L

0/
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and

ˆ.Li /�ˆ.L
0
i /Dˆ.Li\

zHCiC1/�ˆ.L
0
i\
zHCiC1/D � � � Dˆ.L\Q/�ˆ.L

0
\Q/:

Combined these equations prove (24).
Finally, let M;K;M [K 2 Knn, and set QM D cone.M/, QK D cone.K/,

and QDQM \QK . By (24) (with LDM , L0 D .M [K/\QM ) and by (20),
we have

ˆ.M/�ˆ..K [M/\QM /Dˆ.M \Q/�ˆ..K [M/\Q/

D�ˆ.K \Q/Cˆ.K \M/;

and the same holds if the roles of M and K are interchanged. Combining this with
(20) and (22) we obtain

ˆ.M/Cˆ.K/�ˆ.K \M/Dˆ..K [M/\QM /Cˆ..K [M/\QK/

�ˆ.K \Q/�ˆ.M \Q/Cˆ.K \M/

Dˆ..K [M/\QM /Cˆ..K [M/\QK/

�ˆ..K [M/\Q/

Dˆ.K [M/;

which shows that ˆ is a valuation on Knn. This completes the proof of the lemma.
�

LEMMA 12. Every simple valuation ˆ W Knn! Œ0;1/ can be extended to a
simple and finitely additive valuation ˆ W xKn0! Œ0;1/.

Proof. Let K D K0 \ Q 2 xK
n
0 with K0 2 Kn0 and Q 2 Qn. Let Q be

full dimensional and let Q be dissected into full dimensional simplicial cones
Q1; : : : ;Qk 2 Qn and set Ki DK \Qi 2 Knn. If K 62 Knn, we define

(25) ˆ.K/Dˆ.K1/C � � �Cˆ.Kk/

and show that this definition does not depend on the particular dissection of Q. If
K 2 Knn, then both sides of (25) are defined and we show that (25) holds.

First, suppose that Q does not contain any linear subspace. Then there exists
a suitable affine hyperplane H not containing the origin such that RDK \H D
Q\H is an .n� 1/-dimensional polytope and each Si DQi \H , i D 1; : : : ; k,
is an .n� 1/-dimensional simplex. We need the following notions (see [36]). A
finite set of .n�1/-dimensional simplices ˛R is called a triangulation of an .n�1/-
dimensional polytope R if the simplices have pairwise disjoint interiors (relative to
H) and their union equals R. An elementary move applied to ˛R is one of the two
following operations: a simplex S 2 ˛R is dissected into two .n� 1/-dimensional
simplices S1; S2 by an .n�2/-dimensional plane containing an .n�3/-dimensional
face of S ; or the reverse, that is, two simplices S1; S2 2 ˛R are replaced by S D
S1[S2 if S is again a simplex. It is shown in [36] that for every two triangulations
˛R and ˛0R, there are finitely many elementary moves that transform ˛R into ˛0R.
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Let fQ1; : : : ;Qkg and fQ01; : : : ;Q
0
k0
g be two dissections of Q into simplicial

cones and let ˛R and ˛0R be the corresponding triangulations. Hence ˛R D
fS1; : : : ; Skg, where for the .n � 1/-dimensional simplices Si 2 ˛R, we have
Si D Ki \H . If Si is dissected by an .n � 2/-dimensional plane E � H cor-
responding to an elementary move into S1i ; S

2
i , then Ki is dissected by the cone

generated by E into K1i ; K
2
i 2Knn. Since ˆ is a simple valuation on Knn, we obtain

ˆ.Ki /Dˆ.K
1
i /Cˆ.K

2
i /. The same argument applies for the reverse move. Since

the triangulation ˛0R can be transformed into the triangulation ˛R by finitely many
elementary moves, using this argument repeatedly shows that (25) does not depend
on the choice of the dissection of Q for K 62 Knn and that (25) holds for K 2 Knn.

Second, suppose that Q contains a linear subspace and let K 2 Knn. If the
subspace is one-dimensional, we choose a suitable hyperplane H containing the
origin such that Q \HC and Q \H� do not contain any linear subspace and
K\HC; K\H� 2Knn. Since ˆ is a valuation on Knn and (25) holds for K\HC

and K \H�, we obtain

ˆ.K/Dˆ.K \HC/Cˆ.K \H�/

D

kX
iD1

.ˆ.Ki \H
C/Cˆ.Ki \H

�//D

kX
iD1

ˆ.Ki /:

Using this argument repeatedly proves that (25) holds for all K 2 Knn.
Third, suppose that Q contains a linear subspace and let K … Knn. Given two

dissections of Q into simplicial cones, there is always a common refinement of
these two dissections. We have already shown that (25) holds in each simplicial
cone. Thus, once again the right-hand side of (25) does not depend on the particular
dissection of Q, and can be taken as a definition of ˆ for K … Knn.

Finally, using a standard dissection argument (as in [36]) it is easy to see that
ˆ is a finitely additive valuation on xKn0 . �

For the extension of ˆ that was constructed in the previous proposition, the
following two remarks hold true. If ˆ is SL.n/ invariant on Kn0 , then the extended
valuation is SL.n/ invariant on xKn0 . If ˆ is upper semicontinuous on Kn0 and
Kj !K as j !1 for K;Kj 2 Kn0 , then

(26) ˆ.K \Q/� lim sup
j!1

ˆ.Kj \Q/

for every Q 2 Qn.

4. Proof of Theorem 5

Let ˆ W Kn0! R be an upper semicontinuous and SL.n/ invariant valuation
that vanishes on Pn0 . Since every K 2 Kn0 can be approximated by polytopes we
have

ˆ.K/� 0
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for all K 2 Kn0 . We define the function � W Œ0;1/! Œ0;1/ by

(27) �.t/D
1

n vn
ˆ.t�

1
2n Bn/ t

1
2 ;

that is, � is determined by the functional ˆ in such a way that (1) holds for centered
balls. The main part of the proof consists of showing that given any function
� W Œ0;1/! Œ0;1/, there is at most one upper semicontinuous and SL.n/ invariant
valuation ˆ W Kn0! Œ0;1/ that vanishes on Pn0 such that (27) holds.

The proof is by induction in the dimension n. The case nD 1 is trivial since
K10 D P10. So, let n� 2 and assume that Theorem 5 holds in dimension .n� 1/:

ASSUMPTION. If ‰ WKn�10 !Œ0;1/ is an upper semicontinuous and SL.n�1/
invariant valuation that vanishes on Pn�10 , then there exists a concave function
 W Œ0;1/! Œ0;1/ with limt!0  .t/D limt!1  .t/=t D 0 such that

(28) ‰.K/D

Z
@K

 .�0.K; x// d�K.x/

for every K 2 Kn�10 .

We proceed as follows. Let ˆ WKn0! Œ0;1/ be an upper semicontinuous and
SL.n/ invariant valuation that vanishes on Pn0 . In Section 4.1, we show that ˆ is
absolute continuous on Dn0 . Thus Proposition 10 implies that ˆ can be extended
to xKn0 . So, let ˆ W xKn0! Œ0;1/ be the extended valuation.

Let En0 � Kn0 be the family of convex bodies E which can be represented as

E DE1[ � � � [Em;

where the Ei ’s have pairwise disjoint interiors and every Ei is the intersection
of a convex polyhedral cone with either a polytope P 2 Pn0 or a linear image of
centered ball or a linear image of an unbounded circular cylinder. In Section 4.2,
we show that if � is given, then ˆ is uniquely determined on En0 . Since ˆ is upper
semicontinuous on Kn0 , it follows that for every K 2 Kn0 ,

ˆ.K/� supflim sup
j!1

ˆ.Ej / WEj 2 En0; Ej !Kg:

In Section 4.3, we show that for every K 2 Kn0 that is "-smooth, " > 0,

(29) ˆ.K/D supflim sup
j!1

ˆ.Ej / WEj 2 En0; Ej !Kg:

Thus, given �,ˆ is uniquely determined for "-smooth convex bodies. In Section 4.4,
we use this result to prove that (29) holds for every K 2 Kn0 . Thus, given �, ˆ is
uniquely determined on Kn0 .

Finally, we show in Section 4.5 that if ˆ W Kn0 ! Œ0;1/ is an upper semi-
continuous and SL.n/ invariant valuation that vanishes on Pn0 , then the function �
defined in (27) is concave and limt!0 �.t/D limt!1 �.t/=t D 0. This completes
the proof of the theorem.
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4.1. Absolute continuity on Dn0 . We identify the hyperplane spanned by the
vectors e1; : : : ; en�1 with Rn�1 and set I D Œ�en; en�. Note that for K 2 Kn�10 ,
ŒK; I � 2 Dn0 . Define ‰ W Kn�10 ! Œ0;1/ by ‰.K/Dˆ.ŒK; I �/. Observe that ‰ is
an upper semicontinuous and SL.n� 1/ invariant valuation on Kn�10 that vanishes
on Pn�10 . Thus by the induction assumption, (28), there is a concave function
 W Œ0;1/! Œ0;1/ with limt!0  .t/D limt!1  .t/=t D 0 such that

(30) ‰.K/D

Z
@K

 .�0.K; x// d�K.x/

for every K 2Kn�10 . Since ˆ is SL.n/ invariant, ˆ.ŒK; t I �/Dˆ.Œt
1
n�1K; I �/ and

it follows from (30) that

(31) ˆ.ŒK; t I �/D‰.t
1
n�1K/D t

Z
@K

 
�
t�2�0.K; x/

�
d�K.x/:

The main result of this section is the absolute continuity of ˆ on Dn0 stated in
Proposition 14, which requires the following lemma.

LEMMA 13. Suppose that ˆ W Kn0! Œ0;1/ is an upper semicontinuous and
SL.n/ invariant valuation that vanishes on Pn0 , and define  W Œ0;1/! Œ0;1/ by
(30). Then there exist convex bodies Lr 2 Kn0 and constants r0; c0 > 0 such that

(32) .1� r2/ Bn � Lr � B
n

and

(33) ˆ.Lr/� c0  
�
1

r2

�
for every r 2 .0; r0/.

Proof. For P 2Pn�10 , setKDP\Bn�1. Further assume thatK\e?1 is a poly-
tope and ˙e1 2K. Recall from Section 2, that for transvections TC D T .en; le1/
and T �DT .en;�le1/, the set ŒK; t I �TC;T� is convex if it is contained inKC t I ,
which is the case for 0 � l � 1

t
. Since TCŒK; t I �TC;T� D ŒK; t I �T.en;2le1/ and

K \ e?1 is a polytope, Lemma 8 shows that

(34) ˆ.ŒK; t I �TC;T�/D 2c0l Cˆ.ŒK; t I �/

with c0 depending only on K. We set l D 1
t
, use that ˆ is nonnegative, and obtain

by (31) that

2c0 � �t ˆ.ŒK; t I �/D�t
2 .t�2/ �K.fx 2 @K W �0.K; x/D 1g/

for all t > 0. Since lims!1  .s/=s D 0, this implies that c0 � 0. Combined with
(34) this proves that

(35) ˆ.ŒK; t I �TC;T�/�ˆ.ŒK; t I �/:

To construct Lr , we choose Kr D P \Bn�1 with P 2 Pn�10 and �e1 2Kr
in the following way: the boundary of Kr contains the cap Sn�2\Bn�1.e1; r=2/
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and coincides with the boundary of P outside the cap Sn�2\Bn�1.e1; r/

@Kr \B
n�1

�
e1;

r

2

�
D Sn�2\Bn�1

�
e1;

r

2

�
;

(36)

@KrnB
n�1.e1; r/D @Kr \

n
x W x1 � 1�

r2

2

o
D @P \

n
x W x1 � 1�

r2

2

o
:

Applying the shaping process to ŒKr ; t I � gives a set ŒKr ; t I �TC;T� which is con-
vex for 0� l � 1

t
. We choose t and l such that the point t TCenD t T .en; le1/ enD

t enCt l e1 lies on Sn�1\@Bn.e1; r/. This is obtained by setting t2D r2.1�r2=4/
and l D .1� r2=2/=t . By (31) and (36), we have

ˆ.ŒKr ; t I �/� t  .t
�2/ �Kr .P \S

n�2/� 2�nC2vn�2 r
n�2t  .t�2/:

Since  is monotone increasing and r=2� t � r , combined with (35) this implies

(37) ˆ.ŒKr ; t I �TC;T�/� 2
�nC1vn�2 r

n�1 .r�2/

for all Kr for which (36) holds.
To specify the polytope P , in addition to (36) we require that all supporting

hyperplanes of the set ŒKr ;˙t .en C l e1/;˙t .en � l e1/� at boundary points x
with x1 > 1 � r2=2 have distance at least .1 � r2/ from the origin. That this
is possible can be seen from the following elementary calculations: if x is on
Sn�2\ @Bn.e1; r/, then the hyperplane H supporting Sn�2 at x and containing
the point t .enC l e1/ is given by the equation .xC t en/ �y D 1; y 2 Rn, and thus
has distance .1Cr2�r4=4/�1=2 >1�r2=2 from the origin. Hence we can choose
a polytope P with P \Bn.e1; r/ sufficiently close to Sn�2\Bn.e1; r/ with the
proposed property. For abbreviation, set

Mr D ŒKr ; t I �TC;T� \
n
x W x1 � �

1

2

o
:

Observe that ˆ.Mr/Dˆ.ŒKr ; t I �TC;T�/.
Let Qr denote the .n� 1/-dimensional polytope that is the intersection of

ŒKr ; t I �Œ�l;l� and the hyperplane x1 D 1� r2. By construction,

ŒMr ; .1� r
2/ Bn�DMr [ ŒQr ; .1� r

2/ Bn�:

Further it is easy to see that

ŒQr ; .1� r
2/ Bn�n.1� r2/ Bn � Bn..1� r2/e1; 3r/:

In the last step, we take a dense packing of balls of radius 3r on .1� r2/Sn�1.
Denote by xi , i D 1; : : : ; mr , the midpoints of the balls of this packing and by Ui
the rotations such that Ui .1� r2/e1 D xi , i D 1; : : : ; mr . Here

mr DmSn�1.3r=.1� r
2//
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and by (3), there is a constant c2 > 0 such that

(38) mr � c2 r
�.n�1/:

Let

Lr D

� mr[
iD1

UiMr

�
:

Note that the construction implies that (32) holds. That also (33) holds can be seen
in the following way. For i D 1; : : : ; mr � 1,

UiMr \

� mr[
jDiC1

UjMr

�
2 Pn0:

Since ˆ is a valuation that vanishes on Pn0 , this implies that

ˆ.Lr/Dˆ.U1Mr/Cˆ

� mr[
iD2

UiMr

�
D � � � D

mrX
iD1

ˆ.UiMr/:

Since ˆ is rotation invariant, we obtain ˆ.Lr/Dmr ˆ.Mr/. Combined with (37)
and (38), this proves (33). �

PROPOSITION 14. Suppose that ˆ WKn0! Œ0;1/ is an upper semicontinuous
and SL.n/ invariant valuation that vanishes on Pn0 . Then there exists a constant
c D c.ˆ/ such that ˆ.D/� c Vn.D/ for every D 2 Dn0 .

Proof. First, we show that it suffices to prove that there is a constant c D c.ˆ/
such that

(39) ˆ.ŒK; u;�u�/� c Vn.ŒK; u;�u�/

for every K 2 Kn�10 and every u 2 RnnRn�1. This can be seen in the following
way. Let D D ŒK; u; v�, K 2 Kn�10 . For 0 < s; t < 1 sufficiently small, we have
�t u 2 ŒK; v� and �s v 2 ŒK; u�. Since ˆ is a nonnegative valuation, it follows that

ˆ.ŒK; u; v�/Dˆ.ŒK; u;�t u�/Cˆ.ŒK;�s v; v�/�ˆ.ŒK;�s v;�t u�/(40)

�ˆ.ŒK; u;�t u�/Cˆ.ŒK;�s v; v�/:

For given t and u, the functional K 7!ˆ.ŒK; u;�t u�/ is an upper semicontinuous
and SL.n� 1/ invariant valuation on Kn�10 that vanishes on Pn�10 . Thus by the
induction assumption, (28), there is a concave function  u;t W Œ0;1/! Œ0;1/ such
that

ˆ.ŒK; u;�t u�/D

Z
@K

 u;t .�0.K; x// d�K.x/

for every K 2 Kn�10 . The right-hand side does not change when K is replaced by
�K. Therefore ˆ.ŒK; u;�t u�/ D ˆ.Œ�K;u;�t u�/. Since ˆ is SL.n/ invariant,
this implies that ˆ.ŒK; u;�t u�/Dˆ.ŒK; t u;�u�/. From this and (39), it follows
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that

ˆ.ŒK; u;�t u�/D
1

2
.ˆ.ŒK; u;�t u�/Cˆ.ŒK; t u;�u�//

D
1

2
.ˆ.ŒK; u;�u�/Cˆ.ŒK; t u;�t u�//

�
c

2
.Vn.ŒK; u;�u�/CVn.ŒK; t u;�t u�//D c Vn.ŒK; u;�t u�/:

Thus (39) and (40) imply that

(41) ˆ.ŒK; u; v�/� c.Vn.ŒK; u;�t u�/CVn.ŒK;�s v; v�//:

Since t; s > 0 can be chosen arbitrarily small, it follows that

ˆ.ŒK; u; v�/� c Vn.ŒK; u; v�/:

Next, we prove (39). Since ˆ is SL.n/ invariant, it suffices to show that there
is a constant c D c.ˆ/ such that

ˆ.ŒK;�t en; t en�/� c Vn.ŒK;�t en; t en�/

for every K 2 Kn�10 and t > 0.
We use the family Lr , r > 0, of convex bodies constructed in Lemma 13. Note

that by (32), Lr ! Bn as r ! 0. Since ˆ is upper semicontinuous, this implies
that lim supr!0ˆ.Lr/�ˆ.B

n/. Thus it follows from (33) and the concavity of
 that there is a constant c1 such that  .t/� c1 for all t > 0. Combined with (31)
this implies that

ˆ.ŒK;�t en; t en�/� t

Z
@K

c1 d�K.x/D .n� 1/ c1 t Vn�1.K/:

This concludes the proof of the proposition. �

By Propositions 10 and 14, ˆ can be extended to xKn0 . We also denote the
extended valuation by ˆ. The following lemma is used in Section 4.4.

LEMMA 15. Let ˆ W Kn0 ! Œ0;1/ be an upper semicontinuous and SL.n/
invariant valuation that vanishes on Pn0 , and which is extended to xKn0 . For �> 0, let
K�; K 2Kn0 ,Q�;Q2Qn, andQ�Q�. IfK�!K 2Kn0 andQ�\Bn!Q\Bn

as �!1, then given � > 0 there exists a constant �0 such that

ˆ.K�\Q�/�ˆ.K�\Q/C �

for every �� �0.

Proof. Let QD
Tk
jD1H

C
j . Set C�;j DK�\Q�\H�j . Since ˆ is nonnega-

tive it suffices to prove that ˆ.C�;j /� 1
k
� for � sufficiently large and j D 1; : : : ; k.

Let Cj D lim�!1 C�;j DK \Q\Hj . We choose u 2Hj and v 62Hj such that
ŒCj ; u;�v; v� 2 Kn0 . Proposition 14 implies that there is a constant c such that for
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all j D 1; : : : ; k

ˆ.ŒCj ; u;�v; v�/� c Vn.ŒCj ; u;�v; v�/�
�

2k

for u 2H and v 62H suitably small. Since ˆ is a nonnegative simple valuation
and Q� are polyhedral cones, we have

ˆ.C�;j /�ˆ.ŒC�;j ; u;�v; v�/:

Since ˆ is upper semicontinuous on Kn0 , for � > 0 there is a �0 > 0 such that

ˆ.ŒC�;j ; u;�v; v�/�ˆ.ŒCj ; u;�v; v�/C
�

2k

for all j D 1; : : : ; k and for �� �0. This completes the proof of the lemma. �

4.2. Uniqueness on En0 . We show that given �, ˆ is uniquely determined on
En0 . We need the following result on valuations on the class P.Sn�1/ of spherical
polytopes. Here a set P � Sn�1 is called a spherical polytope, if there is a poly-
hedral cone Q 2 Qn such that P D Sn�1 \Q. Let � be the .n� 1/-dimensional
Hausdorff measure. Schneider [51] proved that if � W P.Sn�1/! R is a rotation
invariant, nonnegative, and simple valuation, then there is a constant c � 0 such
that �.P /D c �.P / for every P 2P.Sn�1/. A simple consequence of Schneider’s
characterization theorem is the following result, which shows that given �, ˆ is
determined on intersections of centered balls with convex polyhedral cones.

LEMMA 16. For t > 0,

ˆ.t Bn\Q/D
ˆ.t Bn/

Vn.t Bn/
Vn.t B

n
\Q/

for every Q 2 Qn.

Next, we consider intersections of right circular cylinders with convex poly-
hedral cones.

LEMMA 17. If Z is an unbounded cylinder, then ˆ.Z \Q/ D 0 for every
Q 2 Qn such that Z \Q 2 xKn0 .

Proof. Define ˆ� W Kn0! R by

(42) ˆ�.K/Dˆ.K�/:

Note that

.K [L/� DK�\L� and .K \L/� DK�[L�

for K;L 2 Kn0 having convex union and that .AK/� D A�tK� holds for every
K 2 Kn0 and every A 2 SL.n/, where A�t is the transpose of the inverse of A.
Thus ˆ� is an upper semicontinuous and SL.n/ invariant valuation on Kn0 that
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vanishes on Pn0 . Applying Proposition 14 for ˆ� shows that there is a constant c�

such that for t > 0,

(43) ˆ.Bn�1C t Œ�en; en�/� c
� 1

t
:

Since ˆ is finitely additive and nonnegative and since Z\Q�Bn�1C t Œ�en; en�
for every t sufficiently large, the statement is an immediate consequence of (43).

�

4.3. Uniqueness for "-smooth convex bodies. We prove the following result.
Let " > 0.

PROPOSITION 18. For every "-smooth K 2 Kn0 ,

ˆ.K/D sup
n

lim sup
j!1

ˆ.Ej / WEj 2 En0; Ej !K
o
:

Without further mention, in this section we assume that K is "-smooth for
some " > 0. In the next three sections, we derive lemmas that are used in the proof
of Proposition 18. First, we consider boundary points of K where the generalized
Gaussian curvature exists. Here we distinguish between points with positive cur-
vature and points with vanishing curvature. Then we derive a result for general
boundary points. The proof of Proposition 18 is contained in Section 4.3.4.

4.3.1. Boundary points with positive curvature. We call a family of convex
polyhedral cones Qt , t > 0, a Vitali covering for x 2 @K if x 2 intQt for t > 0,
if Qt 0 �Qt for 0 < t 0 < t , if diam.@K \Qt /! 0 as t ! 0 and if there exists a
constant q D q.x/ > 0 such that

�.@K \Qt /

diam.@K \Qt /n�1
� q

for every t > 0. Here diam stands for diameter and int for interior.

LEMMA 19. Let � > 0 be given. For every x 2 @K with �.K; x/ > 0, there
exist a centered ellipsoid E DE.x/, a constant t .x/ > 0, and a Vitali covering of
convex polyhedral cones Qt for x such that

x 2E \ intQt 0 �K \ intQt 0 ;(44)

@Qt \K �H
C.E;Qt 0/;(45)

and

(46) ˆ.K \Qt /�ˆ.E \Qt 0/C � Vn.K \Qt /

for every t , 0 < t < t.x/, where t 0 is chosen suitably in .t=3; t/.

Proof. Since �.K; x/ > 0, there is a centered ellipsoid E0.x/ which osculates
K at x. For given s > 0, we choose a centered ellipsoid Eis.x/ that touches K at
x from within in the following way. Let As 2 SL.n/ be the map which transforms
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Eis.x/ into the ball rsBn and maps x to rse1. Let Fs be the centered ellipsoid with
semi-axes rs; .1C s/ rs; : : : ; .1C s/ rs . Note that rsBn touches As K at rse1 from
within. Now choose Eis.x/ sufficiently close to E0.x/ such that AsK touches the
ellipsoid Fs at rse1 from within.

We now choose 0 < s < 1=4 so small that

(47) 2..1C 4
p
s/2n� 1/� �:

For this fixed s, we set AD As and r D rs .
Let R be an .n� 1/-dimensional polytope chosen such that

(48) R � Bn�1 � .1C
p
s/R:

Let Rt be the cone with base t R in the support hyperplane to r Bn at r e1.
We need the following simple estimate.

CLAIM 19.1. For t > 0 sufficiently small, ŒFs\Rt ; r Bn�nr Bn �R.1C4ps/ t .

Proof of Claim 19.1. Let Ct be the cone with base t Bn�1 in the support
hyperplane to r Bn at r e1. By (48), we have

(49) Rt � Ct �R.1C
p
s/t :

Next, we show that

(50) ŒFs \Ct ; r B
n�nr Bn � C.1C2

p
s/t :

Because of the rotational symmetry, we only have to consider the two-dimensional
case. We choose the parametrizations x.˛/D .r cos˛; r sin˛/ for the circle and
xs.˛/D .r cos˛; r.1C s/ sin˛/ for the ellipse. For t D r tan˛, let Ot D r tan y̨ be
the smallest number such that

ŒFs \Ct ; r B
n�nr Bn � COt :

The points 0, x.y̨/ and xs.˛/ are the vertices of a triangle with a right angle and
tan.y̨ � ˛/ D

p
s
p
2C s sin˛. Using an addition theorem for the tangent, we

obtain
Ot D r tan.˛C .y̨ �˛//� .1C 2

p
s/ t

for t > 0 and thus ˛ > 0 sufficiently small. This proves (50). The statement of the
claim now follows from (49) and 0 < s � 1=4. �

Define Mt 2Kn0 in the following way. Let mt be the maximum number such
that there are rotations Ui , i D 1; : : : ; mt , and the sets

Ui .r B
n
\R.1C4

p
s/t /

are pairwise disjoint for i D 1; : : : ; mt . Since mt �mSn�1.3t=r/, we obtain that
by (3), there is a constant c (depending on r) such that

(51) mt Vn.r B
n
\R.1C4

p
s/t /�

1

c
> 0:
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We define

Mt D Œr B
n; U1.AK \Rt /; : : : ; Umt .AK \Rt /�:

This construction implies that

(52) Mt ! r Bn as t ! 0:

Claim 19.1 implies that

Ui .@.AK/\Rt /� @Mt

holds for i D 1; : : : ; mt . We dissect

Mtn

mt[
iD1

Ui .AK \R.1C4
p
s/t /

using convex polyhedral cones P1; : : : ; Pkt whose interiors are disjoint from the
sets Ui .AK \R.1C4ps/t / for i D 1; : : : ; mt . Since ˆ is finitely additive, simple,
and nonnegative, we obtain

ˆ.Mt /D

mtX
iD1

ˆ.Ui .AK \R.1C4
p
s/t //C

ktX
jD1

ˆ.Mt \Pj /(53)

�mt ˆ.AK \Rt /C

ktX
jD1

ˆ.r Bn\Pj /:

On the other hand,

ˆ.r Bn/D

mtX
iD1

ˆ.Ui .r B
n
\R.1C4

p
s/t //C

ktX
jD1

ˆ.r Bn\Pj /(54)

Dmt ˆ.r B
n
\R.1C4

p
s/t /C

ktX
jD1

ˆ.r Bn\Pj /:

Let �1 > 0 be given. Since ˆ is upper semicontinuous and by (52), there is a
constant t1 > 0 such that

ˆ.Mt /�ˆ.r B
n/C �1

for 0 < t < t1. Combined with (53), (54), and (51), this implies that

ˆ.AK \Rt /�ˆ.r B
n
\R.1C4

p
s/t /C

�1

mt
(55)

�ˆ.r Bn\R.1C4
p
s/t /C c �1 Vn.r B

n
\R.1C4

p
s/t /:

We need the following simple estimates.

CLAIM 19.2. For t > 0 sufficiently small, @Rt \Fs �HC.r Bn; R t

1C4
p
s

/:
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Proof of Claim 19.2. As before, let Ct be the cone with base t Bn�1 in the
support hyperplane to r Bn. We show that

(56) HC.r Bn; C t

1C2
p
s

/\ @Ct \Fs D∅:

Because of the rotational symmetry, we only have to consider the two-dimensional
case. We choose the parametrizations x.˛/D .r cos˛; r sin˛/ for the circle and
xs.˛/D .r cos˛; r.1C s/ sin˛/ for the ellipse. For t D r tan˛, let t 0 D r tan˛0 be
the biggest number such that

HC.r Bn; Ct 0/\ @Ct \Fs D∅:

The points 0, x.˛0/ and xs.˛/ are the vertices of a triangle with a right angle, and
r tan.˛�˛0/D

p
s
p
2C s sin˛. Therefore the estimate

t D r tan.˛C .˛�˛0//� .1C 2
p
s/ t 0

holds for t > 0 sufficiently small. This proves (56). Because of (48) we have

R t

1C4
p
s

�R t

.1C2
p
s/.1C

p
s/

� C t

.1C2
p
s/.1C

p
s/

:

Hence (56) implies the statement of the claim. �

CLAIM 19.3. For t > 0 sufficiently small and a > 1,

Vn.r B
n
\Ra t /� a

nVn.r B
n
\Rt /� a

2nVn.r B
n
\R t

a
/:

Proof of Claim 19.3. Let Vn�1.R/ denote the .n� 1/-dimensional volume
of R. We have

Vn.r B
n\Rt /

tn�1
!
r

n
Vn�1.R/

as t ! 0. Therefore
1

a

r

n
Vn�1.R/ t

n�1
� Vn.r B

n
\Rt /� a

r

n
Vn�1.R/ t

n�1

for t > 0 sufficiently small. This implies the statement of the claim. �

By Lemma 16 and Claim 19.3, we obtain from (55) and (47) with a suitable
�1 that for t > 0 sufficiently small

ˆ.AK \Rt /� .1C 4
p
s/2nˆ.rBn\R t

1C4
p
s

/

C .1C 4
p
s/2nc �1 Vn.rB

n
\R t

1C4
p
s

/

�ˆ.rBn\Rt 0/C ..1C 4
p
s/2n� 1

C .1C 4
p
s/2nc �1/Vn.rB

n
\Rt 0/

�ˆ.rBn\Rt 0/C � Vn.AK \Rt /;

where t 0 D t=.1C 4
p
s/. Transforming back shows that (46) holds true for Qt D

A�1.Rt /. Claim 19.2 implies that (45) holds. The family Qt is a Vitali covering,
since A only depends on x. This completes the proof of the lemma. �



A CLASSIFICATION OF SL.n/ INVARIANT VALUATIONS 1247

4.3.2. Boundary points with curvature zero. First, we prove the following
lemma.

LEMMA 20.

lim
t!1

ˆ.t Bn/

Vn.t Bn/
D 0:

Proof. Let In be the cube with vertices at .˙1; : : : ;˙1/. Since In is a poly-
tope, ˆ.In/D 0. We construct Lt in the following way. LetQ be a polyhedral cone
with apex at the origin generated by one of the facets F of In. Let Et be ellipsoids
of volume Vn.t Bn/ such that the vertices of F lie on Et and Et \Q! In\Q as
t !1. Let Lt be obtained by taking 2 n suitably rotated copies of Et \Q such
that Lt ! In as t !1. We have

ˆ.Lt /D 2 nˆ.Et \Q/

and by Lemma 16

ˆ.Et \Q/D
Vn.Et \Q/

Vn.Et /
ˆ.Et /D Vn.Et \Q/

ˆ.t Bn/

Vn.t Bn/
:

Since ˆ is upper semicontinuous and since Lt ! In as t !1,

0Dˆ.In/� lim sup
t!1

ˆ.Lt /:

Combined with Vn.Et \Q/! Vn.In\Q/D 2
n�1=n as t !1, this completes

the proof of the lemma. �

LEMMA 21. Let � > 0 be given. For every x 2 @K with �.K; x/ D 0, there
exist a t .x/ > 0 and a Vitali covering of convex polyhedral cones Qt for x such
that

(57) ˆ.K \Qt /� � Vn.K \Qt /

for every t , 0 < t < t.x/.

Proof. Let �1 > 0 be given. By Lemma 20, it is possible to choose r > 0 so
large that

(58) ˆ.r Bn/� �1Vn.r B
n/:

Since �.K; x/D 0, there is a centered ellipsoid E which touches K from within at
x such that Vn.E/D Vn.rBn/. Let A 2 SL.n/ map this ellipsoid to r Bn and the
point x to e1.

Let R be an .n� 1/-dimensional polytope chosen such that

(59) R � Bn�1 � 2R;

and let Rt be the cone with base t R in the support hyperplane to r Bn at r e1. By
Hr we denote the support hyperplane to r Bn at r e1.

We need the following simple estimate.
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CLAIM 21.1. For t > 0 sufficiently small, ŒHr \Rt ; r Bn�nr Bn �R6t .

Proof of Claim 21.1. Let Ct be the cone with base t Bn�1 in the support
hyperplane to r Bn at r e1. By (59), we have

(60) Rt � Ct �R2t :

It is easy to see that

ŒHr \Ct ; r B
n�nr Bn � C3t :

The statement of the claim now follows from (60). �

Define Mt 2Kn0 in the following way. Let mt be the maximum number such
that there are rotations Ui , i D 1; : : : ; mt , and the sets

Ui .r B
n
\R6t /

are pairwise disjoint for i D 1; : : : ; mt . By (3), there is a constant c such that

(61) mt Vn.r B
n
\R6t /�

1

c
> 0:

We define

Mt D Œr B
n; U1.AK \Rt /; : : : ; Umt .AK \Rt /�:

This construction implies that

(62) Mt ! r Bn as t ! 0:

Claim 21.1 implies that

Ui .@.AK/\Rt /� @Mt

holds for i D 1; : : : ; mt . We dissect

Mtn

mt[
iD1

Ui .AK \R6t /

using convex polyhedral cones P1; : : : ; Pkt whose interiors are disjoint from the
sets Ui .AK \R6t / for i D 1; : : : ; mt . Since ˆ is finitely additive, simple, and
nonnegative, we obtain

ˆ.Mt /D

mtX
iD1

ˆ.Ui .AK \R6t //C

ktX
jD1

ˆ.Mt \Pj /(63)

�mt ˆ.AK \Rt /C

ktX
jD1

ˆ.r Bn\Pj /:
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On the other hand,

ˆ.r Bn/D

mtX
iD1

ˆ.Ui .r B
n
\R6t //C

ktX
jD1

ˆ.r Bn\Pj /(64)

Dmt ˆ.r B
n
\R6t /C

ktX
jD1

ˆ.r Bn\Pj /:

Let �2 > 0 be given. Since ˆ is upper semicontinuous and by (62), there is a
constant t .x/ > 0 such that

ˆ.Mt /�ˆ.r B
n/C �2

for 0 < t < t.x/. Combined with (63), (64), (61), (58), Lemma 16, and Claim 19.3
this implies that

ˆ.AK \Rt /�ˆ.r B
n
\R6t /C

�2

mt

�ˆ.r Bn\R6t /C c �2 Vn.r B
n
\R6t /

� .�1C c �2/Vn.r B
n
\R6t /

� 62n.�1C c �2/Vn.r B
n
\Rt=6/

� � Vn.AK \Rt /:

Transforming back shows that (57) holds for Qt D A
�1.Rt /. The family Qt is

a Vitali covering, since A only depends on x. This completes the proof of the
lemma. �

4.3.3. An absolute continuity property. The main result of this section is Propo-
sition 23, which requires the following lemma.

LEMMA 22. For every "-smooth convex body K 2 Kn0 , there are constants c0K ,
dK , and rK > 0 such that for 0 < r < rK

(65) ˆ.K \ cone.I.x; r///� c0K r
n�1

and

(66) rn�1 � dK Vn.K \ cone.I.x; r///

for every x 2 @K and every .n� 1/-dimensional closed cube I.x; r/ of side-length
2r centered at x lying in the support hyperplane to K at x.

Proof. Observe that there are positive numbers ˛ D ˛.K/ and ˇ D ˇ.K/� "
with the following properties. First, each boundary point x of K is touched from
within by a centered ellipsoid Ex of volume Vn.ˇBn/. Second, each linear map
which maps the ellipsoid Ex to ˇBn, maps each .n� 1/-dimensional cube I of
sidelength 2 and centered at x lying in the support hyperplane to K at x into a cube
which is of sidelength at most ˛. Third, ˇBn �K. These properties follow from
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the facts that K is "-smooth and that there are two real positive numbers bounding
the distance between the origin and all points on @K from below and above.

For y 2 ˇSn�1, let Ay 2 SL.n/ be such a linear map which maps the ellipsoid
of volume Vn.ˇBn/ to ˇ Bn and which maps x to y. We show that the convex hull
of Ay.K \ cone.I.x; r/// and ˇ Bn differs only in a small neighborhood around
y from ˇ Bn:

(67) Œˇ Bn; Ay.K \ cone.I.x; r///�nˇ Bn � Bn.y; 2 ˛
p
n r/

for r > 0 sufficiently small. Let z 2 Ay.@K \ cone.I.x; r///. Let Nz 2 ˇ Sn�1 be
a point such that the line through z and Nz is tangent to ˇ Bn. Since z 62 ˇ Bn, we
have jz� Nzj2 � 4.jzj �ˇ/ˇ for r > 0 sufficiently small. Thus

Œˇ Bn; z�nˇ Bn � Bn.z; 2
p
jzj �ˇ

p
ˇ/:

Since z lies between the tangent hyperplane to ˇ Bn at y and ˇ Bn, we have
jzj � ˇ � 1

ˇ
jz � yj2. Combined with Ay.I.x; r// � Bn.y; ˛

p
n r/, this implies

that (67) holds.
Define Mr 2 Kn0 in the following way. Let mr be the maximum number of

points y1; : : : ; ymr 2 ˇ S
n�1 such that the sets

ˇ Sn�1\Bn.yi ; 2˛
p
n r/

are pairwise disjoint for i D 1; : : : ; mr . Since mr DmSn�1.2 ˛
p
n r=ˇ/, it follows

from (3) that there is an r0.ˇ/ > 0 and a constant c such that

(68) mr
�˛ r
ˇ

�n�1
�
1

c
> 0

for r � r0. We define

Mr D Œˇ B
n; Ay1.K \ cone.I.x; r///; : : : ; Aymr .K \ cone.I.x; r///�

and obtain Mr!ˇ B
n as r!0. Since ˆ is upper semicontinuous, this implies that

(69) ˆ.ˇ Bn/�
1

2
ˆ.Mr/

for 0 < r � r1 with a suitable r1 > 0.
By (67) and our construction of Mr , the sets Ayi .K \ cone.I.x; r/// are

contained in the boundary of Mr and are pairwise disjoint for i D 1; : : : ; mr . Since
ˆ is nonnegative and SL.n/ invariant, this and the definition of Mr imply that

ˆ.Mr/�

mrX
iD1

ˆ.Ayi .K \ cone.I.x; r////Dmr ˆ.K \ cone.I.x; r///:

From this combined with (69) and (68) it follows that

ˆ.K \ cone.I.x; r///� 2ˆ.ˇ Bn/m�1r � 2 c ˆ.ˇ B
n/
�
˛ r

ˇ

�n�1
for 0 < r � rK Dminfr0; r1g. This proves (65).
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The inequality (66) follows because K is "-smooth with "� ˇ and hence

Vn.K \ cone.I.x; r///� Vn.ˇBn\ cone.I.x; r///� �.ˇ/rn�1

for r � r2.ˇ/ with some �.ˇ/ > 0. �

In the proof of the following result, we use a well-known argument from
Vitali’s lemma.

PROPOSITION 23. For every "-smooth convex body K, there is a constant cK
such that

ˆ.K \Q/� cK Vn.K \Q/

for every Q 2 Qn.

Proof. We need the following estimates. Since K 2 Kn0 is fixed and every
cube I.x; r/ is contained in a support hyperplane of K at x, there are constants
�c > �i such that for every x 2 @K and r > 0,

cone
�
B
�
x

jxj
; �i r

��
� cone.I.x; r//� cone

�
B
� x
jxj
; �c r

��
:

Let cone.I.x; r// intersect cone.I.y; s// and let s � r . Then B. y
jyj
; �c s/ intersects

B. x
jxj
; �c r/ and consequently

B
�
x

jxj
; �c r

�
� B

�
y

jyj
; 3 �c s

�
:

Thus

(70) cone.I.x; r//� cone
�
I
�
y; 3

�c

�i
s
��

whenever cone.I.x; r//\ cone.I.y; s//¤∅ and s � r .
Now, let Q 2 Qn. We choose an open set U such that

(71) Q � U and Vn.U /� 2 V.K \Q/:

Let J be the family of all closed .n�1/-dimensional cubes I D I.x; r/ contained in
the support hyperplane toK at x with center x 2@K\Q, side-length 2r , 0<r � rK ,
and @K\cone.I /� @K\U . The relative interiors of @K\cone.I / for I 2J form
an open covering of @K \Q. Since @K \Q is compact, we can choose a finite
subcovering and denote by I � J the set of closed cubes corresponding to this
subcovering. We choose a suitable subset of I in the following way. Let I1 be the
cube with largest sidelength in I. In the j th step, we choose the cube with largest
sidelength in InfI1; : : : ; Ij�1g that is disjoint from

Sj�1
iD1 cone.Ii /. Let I1; : : : ; Ik

be the cubes obtained in this way. The corresponding cones are pairwise disjoint
and by (71), we obtain that

(72)
kX
iD1

Vn.K \ cone.Ii //� Vn.U /� 2 Vn.K \Q/:
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By (70),

@K \Q �

k[
iD1

cone
�
I
�
xi ; 3

�c

�i
ri

��
:

Since ˆ is nonnegative, this implies that

ˆ.K \Q/�

kX
iD1

ˆ

�
K \ cone

�
I
�
xi ; 3

�c

�i
ri

���
;

and applying (65) and (66) now shows that

ˆ.K \Q/� c0K

�
3
�c

�i

�n�1 kX
iD1

rn�1i

� c0K dK

�
3
�c

�i

�n�1 kX
iD1

Vn.K \ cone.I.xi ; ri //:

Combined with (72), this completes the proof of the proposition. �

4.3.4. Proof of Proposition 18. Let P i, P c2Pn0 be such that P i� intK�P c.
For every choice of such P i and P c and every ˛ > 0, we construct a convex body
E 2 En0 such that P i �E � P c and such that

(73) ˆ.K/�ˆ.E/C˛ Vn.K/

holds. This shows that there is always a convex body E 2 En0 arbitrarily close to
K such that ˆ.E/ is almost as large as ˆ.K/. Since ˆ is upper semicontinuous,
this proves Proposition 18.

We use Alexandrov’s theorem (see, for example, [52]). Suppose N � @K
is the set of normal points of @K, that is, the set of points where the generalized
Gaussian curvature exists. Then

(74) �.N /D �.@K/:

We also use the following result from measure theory (see, for example, [15]). Let
N �Rn be a set of finite .n�1/-dimensional Hausdorff measure �.N / and denote
the diameter of a set V by diamV . We call a collection V of sets a Vitali class
for N , if for every x 2 N and every ı > 0, there is a V 2 V such that x 2 V ,
0 < diamV � ı, and

�.V /

.diamV /n�1
� q.x/ > 0;

where q.x/ depends only on x. A version of Vitali’s covering theorem (cf. [15])
states the following: If V is a Vitali class of closed sets for N , then, for every �> 0,
there are pairwise disjoint V1; : : : ; Vk 2 V such that �.N /�

Pk
iD1 �.Vi /C �:

Let N � @K be the set of normal points of @K, and let V be the collection of
sets

Vt .x/D @K \Qt .x/
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for x 2 N and 0 < t � t .x/, where Qt D Qt .x/ are the polyhedral cones from
Lemma 19 and Lemma 21. If �.K; x/ > 0, let

Et .x/DH
C.E.x/;Qt 0.x//;

where E.x/ and t 0 are chosen as in Lemma 19. If �.K; x/D 0, setQt 0.x/DQt .x/

and let Et .x/ be the support halfspace of K at x. For a given point x 2N , choose
t1.x/� t .x/ so small that

(75) P i �Et .x/

for 0 < t < t1.x/. For �.K; x/D 0, it is trivial that this is possible; for �.K; x/ > 0,
this is possible since the ellipsoid E.x/ touches K at x from within.

Let cK be the constant from Proposition 23 and set

(76) �D
˛ Vn.K/

4 cK
:

Let V be the collection of sets

Vt .x/D @K \Qt .x/

for x 2N and 0 < t � t1.x/. Since for x 2N the sets Qt .x/ are Vitali coverings
for x, V is a Vitali class for N . For �1 > 0, Vitali’s covering theorem shows
that there are pairwise disjoint sets Vt1.x1/,. . . , Vtm.xm/ 2 V such that �.N / �Pm
iD1 �.Vti .xi //C �1: Since we can choose �1 > 0 suitably, this shows that

(77) Vn.K/�

mX
iD1

Vn.Qti .xi //� �:

By (45) we have that for i ¤ j , @Eti .xi / does not intersect @Etj .xj / within K.
Without loss of generality, let P c 2 Pn0 be so close to K that for every i; j , i ¤ j ,
@Eti .xi / does not intersect @Etj .xj / within P c . Define

(78) E D

m\
iD1

Eti .xi /\P
c :

Our construction implies that E 2 En0 .
Next, dissect P cn

Sm
iD1Qti .xi / with polyhedral cones Q1; : : : ;Qk . We

have

(79) ˆ.K/D

mX
iD1

ˆ.K \Qti .xi //C

kX
jD1

ˆ.K \Qj /:

Our definition of Eti .xi / implies that for a normal point xi with vanishing curva-
ture, Eti .xi / is a polytope. For a normal point xi with positive curvature, Eti .xi /
consists of a piece of an ellipsoid, which lies inK\Qti .xi /, and pieces of cylinders



1254 MONIKA LUDWIG and MATTHIAS REITZNER

and polytopes. Since ˆ vanishes on cylinders and polytopes, we have

ˆ.E \Qti .xi //Dˆ.Eti .xi /\Qti .xi //:

Combined with the fact that E \Qj does not meet any cone Qti .xi / and thus is
a polytope or a piece of a cylinder for j D 1; : : : ; k, we therefore have

ˆ.E/D

mX
iD1

ˆ.Eti .xi /\Qti .xi //:

Using this and (46) we obtain
(80)

mX
iD1

ˆ.K \Qti .xi // �

mX
iD1

�
ˆ
�
Eti .xi /\Qti .xi /

�
C
˛

2
Vn.K \Qti .xi //

�
� ˆ.E/C

˛

2
Vn.K/:

Proposition 23 shows that

kX
jD1

ˆ.K \Qj /� cK

kX
jD1

Vn.K \Qj /:

By (74), our choice of the Qj ’s and (77) imply that

kX
jD1

Vn.K \Qj /� �:

Consequently, by our definition of � in (76), we see that

(81)
kX

jD1

ˆ.K \Qj /�
˛

2
Vn.K/:

By (79), (80), and (81) we now obtain

ˆ.K/�ˆ.E/C˛ Vn.K/:

Since (75) and (78) imply that P i �E � P c , we see that (73) holds. Thus Propo-
sition 18 is proved.

4.4. Uniqueness for general convex bodies. The main result of this section is
that for every K 2 Kn0 ,

(82) ˆ.K/D supflim sup
j!1

ˆ.Ej / WEj 2 En0; Ej !Kg:

For K 2 Kn0 , let r.K/ D maxfr > 0 W r Bn � Kg be the inradius of K and let
Q.K/ be the set of polyhedral cones Q such that there is a point x 2 @K with
Q � cone.B.x; 1

5
r.K///. By (26), Proposition 18 immediately implies (82) if

for all cones Q 2 Q.K/ there exist "-smooth convex bodies K", " > 0, such that
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lim"!0K" DK and

ˆ.K \Q/� lim sup
"!0

ˆ.K"\Q/:

Hence (82) is a consequence of the following proposition.

PROPOSITION 24. If K 2 Kn0 and Q 2 Q.K/, then given �; �0 > 0 there is an
"-smooth K" 2 Kn0 , " > 0, such that

ˆ.K \Q/�ˆ.K"\Q/C �

and ı.K;K"/ < �0.

Proof. For the construction of K", we use the SL.n/ shaping process intro-
duced in Section 2. Let xQ 2 @K be a point such that Q � cone.B.xQ; 15r.K///
and assume without loss of generality that en D xQ=jxQj. Let � 2 Œ0; 1

2
/. Define

C� D
˚
u 2 Sn�1 W xQ �u� .1� �/r.K/

	
:

Let L be a convex body such that L � r.K/Bn and let x 2 @L\B.xQ; � r.K//.
(In the following, L is close to K and hence this intersection is not empty.) The
support hyperplane of L at x does not intersect r.K/Bn. Since

C� D fu 2 S
n�1
W HC.B.xQ; � r.K//; u/� r.K/B

n
g;

this implies

(83) N.L;B.xQ; � r.K///� C� :

Note that for 0 < � < 1
2

it follows from the definition of the sets C� that for all
x 2 B.xQ; � r.K// and u 2 C� \Sn�1

(84) x �u� .1� 2�/ r.K/:

We apply Lemma 9 with C D C 1
4

, that is, 
 D 3
4
r.K/
jxQj

. Let � � �.C / be so
large that

(85)
�
e
˛.C/ˇ.C/

�4 � 1
�

max
x2K\Q

jxj �min
˚
1
2
�0; 1

20
r.K/

	
;

where ˛.�/, ˇ.�/, and �.�/ are the constants from Lemma 9. Let Tki D T .uki ; vki /
be the transvections from Lemma 9. This lemma implies that en �uki � 8

9
3
4
r.K/
jxQj

and thus uki 2 C 1
3

. It follows from (4), (5), and Lemma 9 that for x 2 K \Q,
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k D 1; : : : ; and l D 1; : : : ; mk ,

jTkl � � �Tk1x� xj �

lX
iD1

jTki � � �Tk1x�Tk;i�1 � � �Tk1xj(86)

�
˛.C /

k �2

mkX
iD1

jTk;i�1 � � �Tk1xj

�
˛.C /

k �2

mkX
iD1

�
1C

˛.C /

k �2

�i�1
jxj

�

��
1C

˛.C /

k �2

�kˇ.C/
�2

� 1

�
jxj

�

�
e
˛.C/ˇ.C/

�4 � 1
�
jxj:

By (85), we obtain that for x 2 @K \Q, k D 1; : : : ; and l D 1; : : : ; mk

jTkl � � �Tk1x� xQj �
1

20
r.K/C

1

5
r.K/�

1

4
r.K/:

Hence we have

(87) .@K \Q/Tk1;:::;Tkl � B
�
xQ;

1

4
r.K/

�
:

Since uki 2 C 1
3

for i D 1; : : : ; mk , we obtain from (84) that

Tkl � � �Tk1x �uk;lC1 �
1

3
r.K/ for all x 2 @K \Q, l D 0; : : : ; mk � 1;

i.e., the distance of u?
k;lC1

to .@K \Q/Tk1;:::;Tkl is positive. Thus (as explained
in �2)

M�;k DMTk1;:::;Tkmk

is convex, where we set M DK \Q. A point x is called an upper boundary point
of M�;k if x 2 @KTk1;:::;Tkmk\ intQTk1;:::;Tkmk .

The following property turns out to be important. For Q 2 Qn, L� Rn and
Z 2 xKn0 , we say that a translated copy of Z touches x 2 @L\Q from within if
there is a vector z such that x 2 zCZ � L. Let T D Tk;lC1.

CLAIM 24.1. If Z � 1
3
r.K/Bn and each x 2 @KTk1;:::;Tkl \QTk1;:::;Tkl is

touched by a translated copy of Z from within, then each

y 2 .@KTk1;:::;Tkl \QTk1;:::;Tkl /T

is touched by a translated copy of ZT from within.

Proof of Claim 24.1. Each x is mapped by T to xC .x � u/v. Hence, since
u 2 C 1

3
, (84) and (87) imply that the distance of T x and x is at least 1

3
r.K/ jvj.

For z 2 Z, the distance of z to T z D z C .z � u/v is at most 1
3
r.K/ jvj, since

Z � 1
3
r.K/Bn. This implies the statement of the claim. �
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Note that a translated copy of Œ0; 1
3
r.K/en� touches every x 2 @K \Q from

within. Let
Z�;k D Œ0; � en�Tk1;:::;Tkmk

:

By Lemma 9, Œ0; en�Tk1;:::;Tkl � B
n for l D 1; : : : ; mk . Therefore Claim 24.1

implies that each upper boundary point of M�;k is touched by a translated copy of
the polytope .r.K/=.3�//Z�;k from within. Let k!1. Since by (85) and (86)
the sets M�;k are contained in M C 1

2
�0Bn, there is a convergent subsequence,

also denoted by M�;k , such that M�;k !M�. Note that Lemma 9 implies that

Z�;k \D�
t
! E� \D� as k ! 1, where N.E�;D�/ D C 1

4
. Hence at each

upper boundary point x of M� a translated copy of .r.K/=.3�//E�\D� touches
M� from within. To prove the smoothness of M� we show that such x is always
touched by points of the ellipsoid .r.K/=.3�//E� contained in the interior of D�.

We denote by N.M�;k/ D N.KTk1;:::;Tkmk
;QTk1;:::;Tkmk

/ the set of outer
normal vectors to M�;k , and define the normal cone N.M�/ in the same way. Note
that r.KT /� r.K/ for all transvections T . From (83) and (87) it follows that the
normal cones N.M�;k/ and N.M�/ are contained in C 1

4
. Since N.E�;D�/D C 1

4
,

we obtain that all points on the upper boundary of M� are touched by a translated
copy of .r.K/=.3�//E� from within and thus are "-smooth with "D r.K/=.3�4/.

Because of (86) it is possible to choose polyhedral cones Q� with the property
that M�;k �Q� and Q�\Bn!Q\Bn as �!1. We define

xM�;k D

\
u2N.M�;k/

HC.M�;k; u/;

that is, xM�;k is the tangential continuation of M�;k . Note that xM�;k \Q� !
xM�\Q� as k!1, where xM� is the tangential continuation of M�.

Since xM� is "-smooth, we can choose an "-smooth K" 2Kn0 with the property
that K" \Q� D xM� \Q�. By (85) and (86) we see that ı.M;M�;k/ <

1
2
�0 for

all k. Thus K" can be chosen such that ı.K;K"/ < �0. Since ˆ is nonnegative, by
Lemma 7 we obtain that

(88) ˆ.M/�ˆ.M�;k/�ˆ. xM�;k \Q�/:

Since ˆ is upper semicontinuous, (26) and (88) imply that

(89) ˆ.M/� lim
k!1

ˆ. xM�;k \Q�/�ˆ. xM�\Q�/:

We apply Lemma 15 and see that for � sufficiently large

ˆ. xM�\Q�/�ˆ.K"\Q/C �:

Combined with (89), this completes the proof of the proposition. �

4.5. Properties of �. As last step in the proof of Theorem 5, we need the
following result.



1258 MONIKA LUDWIG and MATTHIAS REITZNER

PROPOSITION 25. Let ˆ W Kn0 ! R be an upper semicontinuous and SL.n/
invariant valuation that vanishes on Pn0 , and define � W Œ0;1/! Œ0;1/ by

�.t/D
1

n vn
ˆ.t�

1
2n Bn/ t

1
2 :

Then � W Œ0;1/! Œ0;1/ is concave and limt!0 �.t/D limt!1 �.t/=t D 0.

Proof. First, note that Lemma 20 implies

lim
t!0

�.t/D lim
t!0

ˆ.t�
1
2nBn/ t

1
2

n vn
D
1

n
lim
s!1

ˆ.s Bn/

Vn.s Bn/
D 0:

Note that Lemma 20 also holds for ˆ�, where as in (42) ˆ�.K/Dˆ.K�/. This
implies that

lim
t!1

�.t/

t
D lim
t!1

ˆ.t�
1
2nBn/

n vn t
1
2

D
1

n
lim
s!1

ˆ�.s Bn/

Vn.s Bn/
D 0:

It remains to show that � is concave. Note that by Lemma 16 and (27), for a
centered ball B and Q 2 Qn,

ˆ.B \Q/D nVn.B \Q/�.v
2
nVn.B/

�2/:

Thus if LD
S
Lj 2 En0 , where Lj D Ej \Qj , Qj 2 Qn, have pairwise disjoint

interiors, and Ej are ellipsoids, then

(90) ˆ.L/D
X

ˆ.Lj /D
X

nVn.Lj / �.v
2
nVn.Ej /

�2/:

We start by proving the case nD 2. Let s > 0 and let Lj be a sector of the
circle s B2. By (90), we have

(91) ˆ.Lj /D 2V2.Lj /�.�
2V2.s B

2/�2/D 2V2.Lj /�.s
�4/:

We approximate s B2 by pieces of suitable ellipses in the following way. At
the points

�
s cos..2k C 1/�=.2m//; s sin..2k C 1/�=.2m//

�
, k D 0; : : : ; m � 1,

on the boundary of s B2 rotated copies Et
k

, k D 0; : : : ; m� 1, of a centered el-
lipse of area � t2 > � s2 which contains s B2 touch the boundary of s B2 from
the exterior. Thus the angle between the semi-minor axis of this ellipse and the
x1-axis is .2kC 1/�=.2m/. The intersection

T
kD0;:::;m�1E

t
k

contains s B2 and
the boundary of this intersection is smooth except for 2m points, where the ellipse
@Et

k
intersects the next rotated copy @Et

kC1
. Then we choose rotated copies Er

k

of a centered ellipse of area � r2 < � s2 which are contained in
T
kD0;:::;m�1E

t
k

and which touch the intersection Et
k�1
\Et

k
from the interior close to the two

points @Et
k�1
\@Et

k
. The angle between the semi-major axis of this ellipse and the

x1-axis is k�=m. The smaller ellipse Er
k

touches the ellipse Et
k�1

in two points
denoted by ˙pk;k�1 and the ellipse Et

k
in ˙pk;k .

Define Lm to be the convex hull of the boundary of Et
k

between the points
pk;k; pkC1;k and between �pk;k;�pkC1;k and the boundary of Er

k
between the
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0

p0;0

p1;0

p1;1

�
2m

Er0

Er1

Et0

Et1

Etm�1

sB2

.s cos �
2m
; s sin �

2m
/

x1

Figure 3. Ltm, Lrm

points pk;k�1; pk;k and between �pk;k�1;�pk;k for k D 0; : : : ; m� 1. Clearly
as m!1 the convex sets Lm converge to s B2. Denote by Lrm the convex hull
of the origin and the sector of @Er0 between the x1-axis and the point p0;0, and by
Ltm the convex hull of the origin and the sector of @Et0 between the point p0;0 and
the point .s cos.�=.2m//; s sin.�=.2m///, the endpoint of the semi-minor axis of
Et0 (see Figure 3).

Since ˆ is a simple valuation, we obtain

(92) ˆ.Lm/D 4m .ˆ.L
r
m/Cˆ.L

t
m//:

Thus to compute ˆ.Lm/ it suffices by (91) to compute V2.Ltm/ and V2.Lrm/. First
we compute the coordinates of the point p0;0 D .p1; p2/, where the ellipse

Er0 W
x21
r2l2

C
l2x22
r2
D 1
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with a suitable parameter l touches the ellipse

Et0 W
1

s2

�
x1 cos

�

2m
C x2 sin

�

2m

�2
C
s2

t4

�
� x1 sin

�

2m
C x2 cos

�

2m

�2
D 1:

It is easy to see that s=r < l < s=.r cos.�=.2m/// since the semi-major axis
of Er0 is larger than s and smaller than the intersection of Et0 with the x1-axis.
Thus l D s=r CO.m�2/ as m!1. Further p1 is between s cos.�=.2m// and
s= cos.�=.2m// which shows that p1 D sCO.m�2/ as m!1.

The value for p2 is computed using that the normal vector

nr D 2

�
�
1

s
CO

�
1

m2

�
; p2

s2

r4
CO

�
1

m2

��
to E0r at p0;0 must coincide with the normal vector

nr D 2

�
�
1

s
CO

�
1

m2

�
; s3

�
1

s4
�
1

t4

�
�

2m
Cp2

s2

t4
CO

�
1

m2

��
to E0t at p0;0. This implies

p0;0 D .p1; p2/D

�
sCO

�
1

m2

�
; s

r4

s4
t4� s4

t4� r4
�

2m
CO

�
1

m2

��
as m!1.

Hence

(93) V2.L
r
m/D

1

2
p1p2CO

�
1

m2

�
D
1

2

r4.t4� s4/

s2.t4� r4/

�

2m
CO

�
1

m2

�
and

(94) V2.Ltm/D
1

2
s2

�

2m
�V2.L

r
m/CO

�
1

m2

�
D
1

2

t4.s4� r4/

s2.t4� r4/

�

2m
CO

�
1

m2

�
:

By (91) and (92) we thus obtain

ˆ.Lm/D 4m

�
r2.t4� s4/

s2.t4� r4/

�

2m
r2�.r�4/C

t2.s4� r4/

s2.t4� r4/

�

2m
t2�.t�4/

�
CO

�
1

m

�
as m!1. The upper semicontinuity implies that ˆ.s B2/ � limm!1ˆ.Lm/
and hence

2�s2�.s�4/� 2�
r4.t4� s4/

s2.t4� r4/
�.r�4/C 2�

t4.s4� r4/

s2.t4� r4/
�.t�4/:

Put r 0 D r�4; s0 D s�4, and t 0 D t�4. We obtain for t 0 < s0 < r 0

�.s0/�
s0� t 0

r 0� t 0
�.r 0/C

�
1�

s0� t 0

r 0� t 0

�
�.t 0/

which shows that � is a concave function.
To prove that � is concave for n� 3, we supplement the circle s B2 and the

planar ellipses Er
k

and Et
k

in such a way that we obtain an n-dimensional ball and
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n-dimensional ellipsoids: the planar figures are left unchanged and in directions of
the xi -axes, i D 3; : : : ; n, we add semi-axes of length s. Thus the ellipsoid Et

k
is

a rotated copy of the ellipsoid

(95)
x21
s2
C
s2x22
t4
C
x23
s2
C � � �C

x2n
s2
D 1;

where we rotate this ellipsoid in the x1-x2-plane by an angle .2k C 1/ �=.2m/.
Analogously the ellipsoid Er

k
is a rotated copy of the ellipsoid

(96)
x21
r2l2

C
l2x22
r2
C
x23
s2
C � � �C

x2n
s2
D 1;

where l was computed above and we rotate this ellipsoid in the x1-x2-plane by an
angle k�=m.

The ellipsoids Et
k

contain the ball s Bn and touch it from the exterior along the
intersection of the ball with the hyperplanes x2D 0 rotated in the x1-x2-plane by an
angle .2kC1/�=.2m/. The ellipsoids Er

k
are contained in Et

k�1
\Et

k
. They touch

Et
k�1

from the interior along the intersection of Er
k

with the hyperplanes containing
the origin, ˙pk;k�1, and the xi -axes, i D 3; : : : ; n. Analogously they touch Et

k

from the interior along the intersection of Er
k

with the hyperplanes containing the
origin, ˙pk;k , and the xi -axes, i D 3; : : : ; n.

As before we define Lm to be the convex hull of the boundary of Et
k

between
the hyperplanes containing the points ˙pk;k;˙pkC1;k and the boundary of Er

k

between the hyperplanes containing the points ˙pk;k�1;˙pk;k . As m!1, Lm
converge to s Bn. Define Lrm and Ltm in the same way as before. Since ˆ is a
simple valuation we obtain

ˆ.Lm/D 4m .ˆ.L
r
m/Cˆ.L

t
m//:

Since the ratio Vn.Lrm/ W Vn.E
r/ coincides with the ratio V2.Lrm/ W V2.E

r/ in the
planar case, (93) implies

ˆ.Lrm/D nvn
r2.t4� s4/

s2.t4� r4/

1

4m
sn�2r2�.s�2.n�2/r�4/CO

�
1

m2

�
and analogously by (94)

ˆ.Ltm/D nvn
t2.s4� r4/

s2.t4� r4/

1

4m
sn�2t2�.s�2.n�2/r�4/CO

�
1

m2

�
:

This implies for m!1

sn�.s�2n/�
r4.t4� s4/

s4.t4� r4/
sn�.s�2.n�2/r�4/C

t4.s4� r4/

s4.t4� r4/
sn�.s�2.n�2/t�4/:

Put r 0D s�2.n�2/r�4; s0D s�2n, and t 0D s�2.n�2/t�4. We obtain for t 0< s0< r 0

�.s0/�
s0� t 0

r 0� t 0
�.r 0/C

�
1�

s0� t 0

r 0� t 0

�
�.t 0/

which shows that � is a concave function for all n� 2. �
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5. Proof of Theorems 3 and 4

Theorem 3 is a special case of Theorem 4. To prove Theorem 4, we use the
following result.

THEOREM 26 ([32]). A functional ‰ W Pn0! R is a Borel measurable, SL.n/
invariant valuation that is homogeneous of degree q if and only if there is a constant
c0 2 R such that

‰.P /D

8̂̂̂̂
<̂
ˆ̂̂:
c0 V0.P / for q D 0

c0 Vn.P / for q D n

c0 Vn.P
�/ for q D�n

0 else

for every P 2 Pn0 .

Suppose ‰ W Kn0! R is an upper semicontinuous, SL.n/ invariant valuation
that is homogeneous of degree q. Then ‰ restricted to Pn0 is Borel measurable
and we apply Theorem 26. If q D 0;�n; n, we set ˆ.K/D‰.K/� c0, ˆ.K/D
‰.K/� c0 Vn.K

�/, and ˆ.K/D‰.K/� c0 Vn.K/, respectively, and in all other
cases, we set ˆ D ‰. Hence ˆ W Kn0 ! R is an upper semicontinuous, SL.n/
invariant valuation that vanishes on Pn0 and it is homogeneous of degree q. We
apply Theorem 5 and obtain that there is a concave function � W Œ0;1/! Œ0;1/

with limt!0 �.t/D limt!1 �.t/=t D 0 such that

(97) ˆ.K/D

Z
@K

�.�0.K; x// d�K.x/

for every K 2 Kn0 . Since ˆ is homogeneous of degree q, (27) implies that

(98) �.t/D
ˆ.Bn/

n vn
t
�qCn
2n :

If q � �n or q � n, limt!0 �.t/ D limt!1 �.t/=t D 0 and (98) imply that
ˆ.Bn/D 0. Thus, in both cases, we obtain from (97) and (98) that ˆ.K/D 0 for
everyK 2Kn0 . For �n<q <n, we obtain from (97) and (98) that there is a constant
c1� 0 such that ˆ.K/D c1�p.K/ for everyK 2Kn0 , where pD n.n�q/=.nCq/.
This concludes the proof of Theorem 4.

6. Corollaries

Theorem 3 allows to obtain a simple proof of the following classical result.

COROLLARY 27. For K 2 Kn0 , �c.K�/D�c.K/.

Proof. Set ‰.K/D�c.K�/. As explained in the proof of Lemma 17, ‰ is an
upper semicontinuous and GL.n/ invariant valuation that vanishes on polytopes.
Therefore by Theorem 3, there is a constant c � 0 such that ‰.K/ D c �c.K/.
Since for the unit ball Bn D .Bn/�, c D 1. �
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Theorem 4 allows to obtain a simple proof of the following result of Hug [23].

COROLLARY 28. For K 2 Kn0 and p > 0, �p.K�/D�n2=p.K/.

Proof. Set ‰.K/D�p.K�/. As explained in the proof of Lemma 17, ‰ is an
upper semicontinuous and SL.n/ invariant valuation that is homogeneous of degree
�n .n�p/=.nCp/ and vanishes on polytopes. Therefore by Theorem 4, there is
a constant c � 0 such that ‰.K/D c �r.K/, where r D n2=p. Since for the unit
ball, Bn, all Lp-affine surface areas coincide, we have �p.Bn/D�p..Bn/�/D
c �r.B

n/D c �p.B
n/. Thus c D 1. �

7. A new proof of Theorem 2

Since ˆ is translation invariant, there is a constant c0 such that ˆ.K/D c0
for every singleton K D fxg. Then ˆ0 D ˆ� c0 V0 is an upper semicontinuous
and equi-affine invariant valuation and it vanishes on singletons.

Sinceˆ0 is equi-affine invariant, for every i -dimensional simplex S of i -dimen-
sional volume x, ˆ0.S/ depends only on i and x, that is, ˆ0.S/ D fi .x/. For
i � n�1, two simplices of the same dimension are always (in Rn) affine images of
each other and thus fi .x/D ai with some constant ai , i D 1; : : : ; n�1. Dissecting
S into simplices S1 and S2 gives

ˆ0.S/Cˆ0.S1\S2/Dˆ0.S1/Cˆ0.S2/:

If S is one-dimensional, then f1.x1C x2/D f1.x1/Cf1.x2/. Thus f1 D a1 D 0.
By induction on the dimension of S , we obtain that ai D 0 for i � n� 1. Thus ˆ
vanishes on simplices of dimension less than n. For i D n, we have fn.x1Cx2/D
fn.x1/C fn.x2/. Thus fn is a solution of Cauchy’s functional equation and there
is a constant c1 such that ˆ0.S/D c1 Vn.S/ for all simplices S .

Set ‰ Dˆ0� c1 Vn. Then ‰ is an upper semicontinuous and SL.n/ invariant
valuation on Kn that vanishes on simplices. Since each polytope can be dissected
into simplices, ‰ vanishes on Pn and is nonnegative on Kn. For every hyperplane
H through the origin, ‰ is GL.n� 1/ invariant on Kn�1.H/. Thus

0�‰.K/D lim
s!0

‰.sK/�‰.0/D 0

for K 2 Kn�1.H/. Since ‰ is translation invariant, this implies that ‰ is simple
on Kn.

Theorem 5 implies that there is a concave function  W Œ0;1/! Œ0;1/ with
limt!0  .t/D limt!1  .t/=t D 0 such that

‰.K/D

Z
@K

 .�0.K; x// d�K.x/

for every K 2 Kn0 .
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Let H�r D fx 2 Rn W x � e1 � rg for 0 < r < 1. Let K D ŒBn\H�r ;�s e1� for
s > 0. We have ‰.K/D  .1/ �.Bn\H�r /. For t 2 .�r; s/, KC t e1 2 Kn0 , and

‰.KC t e1/D

Z
Sn�1\H�r

 
�

1

.1Ct e1 �v/nC1

�
.1C t e1 � v/ dv:

Since ˆ is translation invariant, as r! 1 we obtain that

 
�

1

.1Ct /nC1

�
.1C t /D  .1/:

Since s >0 is arbitrary, this implies that .t/D .1/ t
1
nC1 for t �0. This completes

the proof of the theorem.
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