
ANNALS OF
MATHEMATICS

anmaah

SECOND SERIES, VOL. 172, NO. 2

September, 2010

Functional equations for zeta functions of
groups and rings

By Christopher Voll



Annals of Mathematics, 172 (2010), 1181–1218

Functional equations for zeta functions of
groups and rings

By CHRISTOPHER VOLL

Abstract

We introduce a new method to compute explicit formulae for various zeta func-
tions associated to groups and rings. The specific form of these formulae enables
us to deduce local functional equations. More precisely, we prove local functional
equations for the subring zeta functions associated to rings, the subgroup, conju-
gacy and representation zeta functions of finitely generated, torsion-free nilpotent
(or T-)groups, and the normal zeta functions of T-groups of class 2. We deduce our
theorems from a “blueprint result” on certain p-adic integrals which generalises
work of Denef and others on Igusa’s local zeta function. The Malcev correspon-
dence and a Kirillov-type theory developed by Howe are used to “linearise” the
problems of counting subgroups and representations in T-groups, respectively.

1. Introduction

Zeta functions of groups were introduced by Grunewald, Segal and Smith in
the 1980s as a tool to study the subgroup growth of finitely generated groups. In
[14] the zeta function of a finitely generated group G was defined as the Dirichlet
series

(1) �G.s/D
X
H�G

jG WH j�s;

where s is a complex variable and the sum ranges over the finite index subgroups
of G. Grunewald, Segal and Smith derived results on the zeta functions of finitely
generated, torsion-free nilpotent (or T-)groups G, and went on to consider variants
of (1). These include a T-group’s normal zeta function counting only normal
subgroups of finite index, and the conjugacy zeta function counting subgroups up
to conjugacy. They also developed an analogous theory for rings. (In the current
paper, by a ring we mean a finitely generated abelian group with a bi-additive
product.) The ideal zeta function of a ring, for instance, generalises the classical
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Dedekind zeta function of a number field. Much of the subsequent developments
in the theory of zeta functions of groups and rings are documented in the mono-
graph [25] and in the report [9].

Only comparatively recently, Hrushovski and Martin ([17]) started to investi-
gate representation zeta functions of T-groups, enumerating (twist-isoclasses of)
finite-dimensional complex representations.

All the zeta functions mentioned so far have the property that they satisfy
an Euler product decomposition into local factors, indexed by the primes. For
example, for a T-group G we have

�G.s/D
Y

p prime

�G;p.s/;

where �G;p.s/D
P
H�pG

jG WH j�s enumerates finite p-power index subgroups.
All these local zeta functions are known to be rational functions in the parame-
ter p�s with integer coefficients ([14], [17]). In many cases they exhibit a remark-
able symmetry: For instance, it had been observed (cf., e.g., [9]) that the local
factors of all zeta functions of T-groups G for which explicit formulae are known
satisfy a local functional equation of the form

(2) �G;p.s/jp!p�1 D .�1/
apb�cs�G;p.s/;

for almost all primes p and suitable integers a; b; c depending only on the Hirsch
length of G. Here p! p�1 denotes a formal inversion of the local parameter p,
which we shall now explain.

The prime example is the case of G D Zn. It is known from [14, Prop. 1.1]
that

�G.s/D

n�1Y
iD0

�.s� i/;

where �.s/D
Q
p prime

1
1�p�s

is the Riemann zeta function. The functional equation

n�1Y
iD0

1

1�p�.i�s/
D .�1/np.

n
2/�ns

n�1Y
iD0

1

1�pi�s

of the local factor at the prime p is easily seen to hold for all primes. Here, as well
as in all other cases in which explicit formulae are known to date, the local zeta
functions �G;p.s/ are in fact rational functions in p�s and p, and the left-hand side
of (2) denotes the rational function obtained by formally inverting both of these
two parameters. This “uniformity” in the prime p, however, is not typical: Results
of du Sautoy and Grunewald ([8]) show that the dependence of the local (normal)
zeta functions of T-groups on the primes will, in general, reflect the variation
of the number of Fp-points of certain algebraic varieties defined over Fp, which
may be far from polynomial in the prime p (see also [6] and [7]). In [32] we
produced examples of normal zeta functions of T-groups of nilpotency class 2 (or
T2-groups) which exhibit functional equations similar to (2) and which are not
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uniform. Indeed, the local factors of these zeta functions are rational functions in
p�s , whose coefficients involve the numbers bV .p/ of Fp-rational points of certain
smooth projective varieties V over Fp which are, in general, not polynomials in p.
By the Weil conjectures, these numbers may be expressed as alternating sums of
Frobenius eigenvalues. The operation p! p�1 is performed by inverting these
eigenvalues. In the special (“uniform”) case that the bV .p/ are in fact polynomials
in p, this specialises to an inversion of the prime p.

Only a single example of a representation zeta function of a T-group seems
to have appeared in print so far: In [17] Hrushovski and Martin derive a formula
for the representation zeta function of the discrete Heisenberg group in terms of
the Riemann zeta function and its inverse (cf. Example 1.2).

According to du Sautoy and Segal, to find an explanation for the phenomenon
of local functional equations for zeta functions of groups and rings is “one of the
most intriguing open problems in this area” ([11, p. 274]). In the current paper we
prove that local functional equations hold for (almost all factors of) the following
zeta functions:

(A) zeta functions of rings (and, as a corollary, of T-groups),

(B) conjugacy zeta functions of T-groups,

(C) normal zeta functions of T2-groups and

(D) representation zeta functions of T-groups.

By proving (A) and (C) we solve Problems 5.1 and 5.2 posed in [9]. In
its given generality, (C) is best possible: It is known that the normal zeta func-
tions of nilpotent groups of class 3 may or may not satisfy local functional equa-
tions (cf. [13]). To determine the exact scope of this intriguing symmetry for ideal
zeta functions of rings remains a challenging open problem.

We achieve our results by showing that all of the above-mentioned zeta func-
tions may be expressed in terms of certain p-adic integrals, generalising Igusa’s
local zeta function. Given a nonconstant polynomial f .y/ 2 ZŒy1; : : : ; ym�, its
associated Igusa local zeta function is the p-adic integralZ

Zmp

jf .y/jsjdyj;

where s is a complex variable, j j stands for the p-adic absolute value and jdyj
denotes the (additive) Haar measure on Zmp , the affine m-space over the p-adic
integers Zp . This p-adic integral is closely related to the Poincaré series counting
p-adic points on the hypersurface defined by f (cf. [4]). We prove functional
equations for these integrals by generalising results by Denef and others on Igusa’s
local zeta function.

The integrals considered in the present paper are quite different from the “cone
integrals” introduced by du Sautoy and Grunewald in [8] (see Section 1.2 for further
details).
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1.1. Detailed statement of results. Let L be a ring. Its (subring) zeta function
is defined to be the Dirichlet series

�L.s/D
X
H�L

jL WH j�s;

where the sum ranges over all subrings H of finite index in L, and s is a complex
variable. This zeta function decomposes naturally as an Euler product, indexed by
the primes:

�L.s/D
Y

p prime

�L;p.s/;

where �L;p.s/D �L˝Zp .s/. Grunewald, Segal and Smith proved in [14] that each
local factor is a rational function in p�s with integral coefficients. Our first main
theorem is

THEOREM A. Let L be a ring of torsion-free rank n. Then there are smooth
projective varieties Vt , t 2 f1; : : : ; mg, defined over Q, and rational functions
Wt .X; Y / 2Q.X; Y / such that for almost all primes p the following hold.

(a) Denoting by bt .p/ the number of Fp-rational points of Vt , the reduction
modp of Vt , we have

(3) �L;p.s/D

mX
tD1

bt .p/Wt .p; p
�s/:

(b) Setting bt .p�1/ WD p� dim.Vt /bt .p/ the following functional equation holds:

(4) �L;p.s/jp!p�1 D .�1/
np.

n
2/�ns�L;p.s/:

The novelty of this result is that it allows us to deduce the equations (4). In
[8], du Sautoy and Grunewald gave formulae akin to (3) for, inter alia, the local
factors of �L.s/. Their proof depends on a representation of local zeta functions
through certain p-adic integrals called “cone integrals” which in general will not
satisfy functional equations like (4). See [13, Ch. 4] for a discussion of functional
equations for cone integrals.

Given a ring L we cannot, in general, pin down the primes p which have to
be excluded in Theorem A. On the other hand, any prime p will be amongst the
primes for which Theorem A, applied to the ring pL, makes no assertion.

We also note that the definition in part (b) of Theorem A is consistent with
our explanation above of the operation p! p�1. Indeed, by the Weil conjectures,
the numbers bt .p/ may be expressed as alternating sums of Frobenius eigenvalues.
These complex numbers satisfy certain symmetries which are reflected by the func-
tional equations for the Weil zeta functions of the varieties Vt . Had the expressions
bt .p

�1/ been defined as the numbers obtained from inverting these eigenvalues,
the identities bt .p�1/D p� dim.Vt /bt .p/ would follow from these symmetries (see
the remarks preceding Theorem 2.3 for details).
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Example 1.1. Theorem A applies in particular to the zeta functions of “sim-
ple” Lie algebras over Z such as sl.d;Z/. The only such Lie algebra for which
a functional equation as in (4) had been previously established is L D sl.2;Z/

(cf. [12]1):

�L.s/D �.s/�.s� 1/�.2s� 1/�.2s� 2/.1C 3 � 2
1�2s
� 23�3s/

Y
p 6D2

.1�p1�3s/:

In fact, sl.2;Z/ seems to be the only nonsoluble Lie ring whose subring zeta
function has been computed explicitly. Note that the functional equation fails for
p D 2. A similar phenomenon may occur if one studies the zeta function of a
Zp-algebra: In [21] Klopsch computes the zeta function of a maximal Zp-order in
a central simple Qp-division algebra of index 2. The fact that this zeta function
does not satisfy a functional equation of the form (4) reflects the fact that it is not
the “generic” local factor of the zeta function of a ring.

Klopsch and the present author have unified and generalised the above exam-
ples. In [22] we gave a formula for the zeta function of an arbitrary 3-dimensional
Zp-Lie algebra, based on the proof of Theorem A.

An important corollary of Theorem A is to the theory of zeta functions of
finitely generated, torsion-free nilpotent (or T-) groups. In [14, Th. 4.1] it was
shown that, given a T-group G of Hirsch length n, there is a Lie ring LD L.G/,
lying as a full Z-lattice in an n-dimensional Lie algebra L.G/ over Q such that for
almost all primes p

(5) �G;p.s/D �L;p.s/:

Thus we obtain

COROLLARY 1.1. Let G be a T-group of Hirsch length n. For all but finitely
many primes p

�G;p.s/jp!p�1 D .�1/
np.

n
2/�ns�G;p.s/:

Theorem A is itself an instance of an application of a “reciprocity” result
(Corollary 2.3 to Theorem 2.3) establishing certain functional equations for a fam-
ily of p-adic integrals. Theorem 2.3 may be viewed as a generalisation of Stan-
ley’s “reciprocity theorem for linear homogeneous diophantine equations” ([29,
Th. 4.6.14]), which we now briefly explain. Given a set of simultaneous linear
homogeneous diophantine equations in n indeterminates, say, one may encode their
nonnegative (positive) solutions in a rational generating function E.x/ (E.x/, re-
spectively), where xD .x1; : : : ; xn/ is a vector of formal variables. More precisely,
one defines

E.x/ WD
X

˛2Nn0\C

x˛ and E.x/ WD
X

˛2Nn\C

x˛;

1The denominator of P.2�s/ in [9, Eq. (7)] should read 1� 21�3s .
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where ˛D .˛1; : : : ; ˛n/, x˛ D x˛11 � � � x
˛n
n and C is the cone of all nonnegative real

solutions to the given set of equations. Stanley’s reciprocity theorem states that, if
E.x/ 6D 0, then

E.1=x/D .�1/dim CE.x/:

Our generalisation is obtained using (a variant of) Stanley’s result and an
explicit formula of the form (3) for the integrals in question (Corollary 2.1 of
Theorem 2.2). This formula in turn is inspired by and generalises work of Denef
([3]), Denef and Meuser ([5]) and Veys and Zúñiga-Galindo ([30]) on Igusa’s local
zeta function. While Igusa’s local zeta functions associated to homogeneous poly-
nomial mappings may be expressed as integrals over projective space, the p-adic
integrals considered in the current paper reduce to integrals over the complete flag
variety GLn=B , where B is a Borel subgroup. In a sense this explains the factor
p.

n
2/ in (4).

A variant of the problem of counting subgroups consists in counting subgroups
only up to conjugacy. Let G be a T-group. The conjugacy zeta function of a
T-group G is defined as

�cc
G .s/D

X
H�G

jG WH j�sjCG.H/j
�1

where jCG.H/j is the size of the conjugacy class of H . It is known ([14, remark
on p. 189]) that �cc

G .s/ also has an Euler product decomposition into local factors
�cc
G;p.s/ which are all rational in p�s . By applying the results of Section 2 we shall

prove

THEOREM B. Let G be a T-group of Hirsch length n. For all but finitely
many primes p

�cc
G;p.s/jp!p�1 D .�1/

np.
n
2/�ns�cc

G;p.s/:

As a third application of our rather technical “blueprint result” Theorem 2.2
and its applications, we deduce functional equations for normal zeta functions of
T2-groups. The normal zeta function of a T-group G is defined as

�GG.s/D
X
HGG

jG WH j�s

where the sum ranges over the normal subgroups H of finite index in G. It also
satisfies an Euler product decomposition. We prove

THEOREM C. Let G be a T2-group of Hirsch length n with centre Z.G/ such
that G=Z.G/ has torsion-free rank d . For all but finitely many primes p

�GG;p.s/jp!p�1 D .�1/
np.

n
2/�.dCn/s�GG;p.s/:

As mentioned above, a functional equation may or may not hold for normal
zeta functions of class greater than three. See [13, Ch. 2] for examples and [13,
Th. 4.44] for a conjectural form in case it does hold.
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The fourth and last application in this paper of Theorem 2.2 and its conse-
quences is concerned with representation zeta functions of T-groups, which we
shall now explain. Given a T-group G, we denote by Rn.G/ the set of n-dimen-
sional irreducible (complex) characters of G. Given �1; �2 2Rn.G/, we say that
�1 and �2 are twist–equivalent if there exists a linear character � 2 R1.G/ such
that �1 D ��2. The classes of this equivalence relation are called twist-isoclasses.
We say that a character � of a representation � of G factors through a finite quotient
of G if � factors through it. The set Rn.G/ has the structure of a quasi-affine
complex algebraic variety whose geometry was analysed by Lubotzky and Magid
in [24]. They proved

THEOREM ([24, Th. 6.6]). Let G be a T-group. For every n 2 N there is a
finite quotient G.n/ of G such that every n-dimensional irreducible character of G
is twist-equivalent to one that factors through G.n/. In particular, the number of
twist-isoclasses of irreducible n-dimensional characters is finite.

Let us call this number an. The representation zeta function of G is defined
(cf. [17]) by

�irr
G .s/ WD

1X
nD1

ann
�s:

It follows from the above theorem and [2, (10.33)] that the function n 7! an is
multiplicative and thus

�irr
G .s/D

Y
p prime

�irr
G;p.s/;

where

�irr
G;p.s/ WD

1X
nD0

apnp
�sn:

Example 1.2 ([17, Ex. 8.12], [26, Th. 5]). Let

H D hx1; x2; yjŒx1; x2�D y; all other Œ ; � triviali

be the discrete Heisenberg group. Then

�irr
H .s/D

1X
nD1

�.n/n�s D
�.s� 1/

�.s/
D

Y
p prime

1�p�s

1�p1�s
;

where � denotes the Euler totient function.

By a model-theoretic result of Hrushovski and Martin [17, Th. 8.4], the local
representation zeta functions of a T-group are known to be rational functions in
p�s with integer coefficients. By expressing �irr

G;p.s/ in terms of p-adic integrals
to which Theorem 2.2 is applicable we shall prove

THEOREM D. Let G be a T-group with derived group G0 D ŒG;G� of Hirsch
length n. Then for almost all primes p

�irr
G;p.s/jp!p�1 D p

n�irr
G;p.s/:
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1.2. Outline of methodology and related work. We briefly describe how we
relate the problems solved in Theorems A, B, C and D to problems about p-adic
integrals.

To count the subrings of p-power index in a ring L of rank n, we observe that
it is enough to keep track of the index of the largest Zp-subalgebra of L˝Zp in
each given homothety class of lattices in the p-adic vector space Qn

p. Using the
action of the group � WD GLn.Zp/ on the set of homothety classes, we show that
the latter problem reduces to counting polynomial congruences in finite quotients
of � . This counting problem translates into the problem of computing a p-adic
integral in very much the same fashion as the problem of counting polynomial
congruences in affine space translates to the problem of computing Igusa’s local
zeta function (cf. [4, �1.2]). It proved helpful to think of homothety classes of
lattices as the vertices of the Bruhat-Tits building of SLn.Qp/, and to partition the
vertex set into finitely many parts according to their position relative to the “root
class” ŒL˝Zp�. As we remarked above, this approach differs decisively from the
“cone integrals” introduced by du Sautoy and Grunewald in [8]. Their analysis
rests on a basis-dependent parametrisation of p-power index subrings of a given
ring in terms of upper-triangular matrices over the p-adic integers satisfying certain
divisibility conditions (“cone conditions”).

To count subgroups up to conjugacy in a T-group G we use the fact that, for
almost all primes p,

�cc
G;p.s/D �

cc
L;p.s/;

where LDL.G/ is the Lie ring associated to G (cf. the remark preceding Corollary
1.1), and

�cc
L;p.s/D

X
H�L˝Zp

jL˝Zp WH j
�s
jL˝Zp W NL˝Zp .H/j

�1;

where H ranges over the subalgebras of L˝Zp of finite index and NL˝Zp .H/

is the normaliser of H in L˝Zp. We thus have to keep track both of the largest
subring of L˝ Zp in each given homothety class and of the class’ normaliser.
The index of the latter is given by the index of a system of linear congruences.
Enumerating these indices, in turn, may be achieved by counting the elementary
divisors of matrices of linear forms, encoding the group’s commutator structure.
In Proposition 2.2 we show that, slightly more generally, the generating functions
enumerating elementary divisors of matrices of polynomial forms of the same de-
gree may be expressed in terms of p-adic integrals associated to degeneracy loci
of these matrices, to which Corollary 2.4 is applicable.

In order to count normal subgroups in class-2-nilpotent groups we develop an
idea first introduced in [31]. There it was shown that it suffices to evaluate a weight
function on the set of homothety classes of lattices in the centre Z.L˝Zp/ of the
Zp-Lie algebra L˝Zp , where L is the associated Lie ring. The weight associated
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to a vertex in the appropriate affine Bruhat-Tits building corresponding to a given
class is again given by the index of a system of linear congruences.

As mentioned above, the validity of our main Theorems A and C had been
known in many special cases. We refer the reader to the numerous examples col-
lected in [13]. In this research monograph du Sautoy and Woodward also present a
conjecture on functional equations for cone integrals that would explain functional
equations for normal zeta functions of nilpotent of class greater than 2.

The key to Theorem D is to use “Kirillov-theory” developed by Howe [16] to
translate the problem of counting irreducible representations of G to the problem
of counting co-adjoint orbits in the dual of the Lie algebra associated to G by the
Malcev correspondence. We use the fact – also established by Howe – that the
sizes of co-adjoint orbits may be expressed in terms of the indices of the radicals
of certain anti-symmetric forms on the Lie algebra. These may also be described in
terms of elementary divisors of matrices encoding the structure of the Lie algebra.

Representation zeta functions of nilpotent groups have not been studied until
fairly recently, and [17] seems to be the only reference so far on this topic. The idea
of using Kirillov-theory to study representation zeta functions of groups, however,
has been successfully employed before. Jaikin-Zapirain proved in [19] the ratio-
nality of representation zeta functions for certain compact p-adic analytic groups
using a Kirillov-type correspondence developed by Howe ([15]) for these groups.
In [17] Hrushovski and Martin suggest that Jaikin-Zapirain’s work may be adapted
to prove rationality of local representation zeta functions for T-groups, too.

Among the variants of the zeta function (1) of a T-group G considered in [14]
is also the zeta function �^G.s/, enumerating subgroups of finite index whose profi-
nite completion is isomorphic to the profinite completion of G. In [10] du Sautoy
and Lubotzky proved a functional equations for the local factors of �^G.s/ for a class
of T-groups. Their work is based on a reduction of the problem of computing these
zeta functions to the problem of computing certain p-adic integrals over the group’s
algebraic automorphism group, generalising work of Igusa ([18]). The functional
equation for the local factors of these zeta functions arises from a symmetry in the
root systems of the associated Weyl groups. An argument of this kind (albeit only
for the Weyl groups of type A) is also used in the present paper to deduce Corollary
2.3. We do not know whether the zeta functions �^G.s/ (for reasonably large classes
of T-groups) may be described by the p-adic integrals studied in the current paper.
In [1] Berman extends the approach taken in [10], proving uniformity and local
functional equations for these zeta functions for a wider class of nilpotent groups
than previously considered.

The fact that we have to disregard finitely many primes in most of our results
has two reasons: Firstly, our Theorems 2.1 and 2.2 upon which Theorem 2.3 and its
corollaries are based are valid only for primes for which a certain principalisation of
ideals has good reduction. Secondly, we are forced to ignore finitely many primes
in order to transfer between the T-group G and its associated Lie algebra.
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1.3. Layout of the paper and notation. In Section 2 we first develop, in Theo-
rems 2.1 and 2.2, explicit formulae for certain families of p-adic integrals general-
ising Igusa’s local zeta function. These two results – which may be understood as
close analogues of Theorems 2 and 3 in [5] – form the technical core of the paper.
We use them to establish, in Theorem 2.3, an “inversion property” enjoyed by the
p-adic integrals considered. In Corollaries 2.3 and 2.4 we exploit this property to
deduce functional equations for certain linear combinations of the p-adic integrals
in question. The remainder of the paper is dedicated to showing how Theorem
2.2 may be used as a template to describe various kinds of zeta functions. In the
second part of Section 2 we give a first application of this idea to the problem of
counting elementary divisors of matrices of forms (Proposition 2.2). In the four
subsections of Section 3 we prove Theorems A, B, C and D, respectively.

We use the following notation.

N the set f1; 2; : : : g of natural numbers
I D fi1; : : : ; ilg< the set I of natural numbers i1 < � � �< il
I0 the set I [f0g for I � N

Œk� the set f1; : : : ; kg, k 2 N

Œl; k� the set fl; : : : ; kg, k; l 2 N�
a
b

�
the binomial coefficient for a; b 2 N0�

a
b

�
X

the polynomial
Qb�1
iD0.1�X

a�i /=.1�Xb�i /,
where a; b 2 N0 with a � b

Note: The q-binomial coefficient or Gaussian
polynomial

�
a
b

�
q

gives the number of
subspaces of dimension b in Faq .�

n
I

�
X

the polynomial
�
n
il

�
X

�
il
il�1

�
X
: : :
�
i2
i1

�
X

,
for n 2 N, I D fi1; : : : ; ilg< � Œn� 1�

Note:
�
n
I

�
q

gives the number of flags of type I in Fnq .
Sn the symmetric group on n letters
M t the transpose of a matrix M
Zp the ring of p-adic integers (p a prime)
Qp the field of p-adic numbers
Œƒ� the homothety class Q�pƒ of a (full) lattice ƒ in Qn

p

K a finite extension of the field Qp

R the valuation ring of K
P the maximal ideal of R
xK the residue field R=P , of cardinality q
F a number field
ıP the “Kronecker delta” which is equal to 1 if

the property P holds and equal to 0 otherwise.

Given a set f of polynomials and a polynomial g, we write gf for fgf jf 2 fg, and
.f/ for the polynomial ideal generated by f.
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2. Functional equations for some p-adic integrals

2.1. A blueprint result. In this section we study a family of p-adic integrals
generalising Igusa’s local zeta functions. We first introduce more notation. Let p
be a prime and K be a finite extension of the field Qp of p-adic numbers. Let
RDRK denote the valuation ring of K, P D PK the maximal ideal of R, and xK
the residue field R=P . The cardinality of xK will be denoted by q.

For x 2K, let v.x/D vP .x/2Z[f1g denote the P -adic valuation of x, and
jxj WD q�v.x/. For a finite set S of elements of K, we set kSk WDmaxfjsj j s 2 Sg.
Fix k;m; n 2 N. For each � 2 Œk�, let .f��/�2I� be a finite family of finite sets
of polynomials in KŒy1; : : : ; ym�, and let x1; : : : ; xn�1 be independent variables.
Also, for i 2 Œn�1� we fix nonnegative integers ei ��. For a set I D fi1; : : : ; ilg< �
Œn� 1�, � 2 Œk�, we set

g�;I .x; y/D
[
�2I�

�Y
i2I

x
ei ��
i

�
f��.y/:

Let W �Rm be a subset which is a union of cosets modPm and sD .s1; : : : ; sk/
be independent complex variables. We then define

(6) ZW;K;I .s/ WD
Z
P l�W

Y
�2Œk�

kg�;I .x; y/ks� jdxI jjdyj

where jdxI j D jdxi1 ^ � � � ^ dxil j is the Haar measure on Kl normalised so that Rl

has measure 1 (and thus P l has measure q�l ), and jdyj D jdy1 ^ � � � ^ dymj is the
(normalised) Haar measure on Km. It is well-known that ZW;K;I .s/ is a rational
function in q�s� , � 2 Œk�, with integral coefficients.

We now assume that the polynomials constituting the sets f�� are in fact de-
fined over a number field F . We may consider the local zeta functions ZW;K;I .s/
for all non-archimedean completions K of F . In the remainder of this section
we shall derive formulae for ZW;K;I .s/, valid for almost all completions K of F
under this and further assumptions. They are essentially based on the formulae
Denef gave for Igusa’s local zeta function

Z.s/D

Z
Rm
jf .y/jsjdyj

in [3, Th. 3.1], using the concept of resolution of singularities for the hypersurface
defined by f . In the case where the single polynomial f is replaced by a finite
set of polynomials f, Veys and Zúñiga-Galindo ([30, Th. 2.10]) gave an analogous
formula, using instead the concept of principalisation of ideals, which we briefly
recall.

THEOREM ([34, Th. 1.0.1]). Let I be a sheaf of ideals on a smooth algebraic
variety X . There exists a principalisation .Y; h/ of I, that is, a sequence

X DX0
h1
 �X1 � � � �

h�
 �X� � � � �

hr
 �Xr D Y
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of blow-ups h� WX�!X��1 of smooth centres C��1 �X��1 such that

a) The exceptional divisor E� of the induced morphism h�D h� ı � � �ıh1 WX�!X

has only simple normal crossings and C� has simple normal crossings with E�.

b) Setting hD hr ı � � � ıh1, the total transform h�.I/ is the ideal of a simple nor-
mal crossing divisor zE. If the subscheme determined by I has no components
of codimension one, then zE is an N-linear combination of the irreducible
components of the divisor Er .

Also recall the definition [3, Def. 2.2 (mutatis mutandis)] of a principalisation
.Y; h/ with good reduction modP if I and .Y; h/ are defined over a p-adic field K.
Note that, given a principalisation .Y; h/ for I defined over a number field F , .Y; h/
will have good reduction modPK (where PK is the maximal ideal in the ring of
integers of the completion of F at P ) for almost all maximal ideals P of the ring
of integers of F (this is essentially [3, Th. 2.4]).

Specifically, let .Y; h/, h W Y ! Am, be a principalisation of the ideal

ID
Y

�2Œk�; �2I�

.f��/

where .f/ denotes the ideal generated by the finite set f of polynomials. We set
V WD Spec.F Œy�=I/ and V�� WD Spec.F Œy�=.f��//. Then, denoting by Et , t 2 T ,
the irreducible components of .h�1.V//red, we have

h�1.V/D
X
t2T

NtEt ;(7)

h�1.V��/D
X
t2T

Nt ��Et ;(8)

say, for suitable nonnegative integers Nt ; Nt ��. Note that, for every t 2 T ,

Nt D
X

�2Œk�; �2I�

Nt ��:

In a similar manner, we denote by �t � 1 the multiplicity of Et in the divisor of
h�.dy1 ^ � � � ^ dym/. The numbers .Nt ��; �t /t2T; �2Œk�; �2I� will be called the
numerical data of the principalisation .Y; h/.

THEOREM 2.1. Suppose that all the sets f�� are integral (i.e., contained in
RŒy�) and do not define the zero ideal modPK , and that .Y; h/ has good reduction
modPK . Then

ZW;K;I .s/D
.1� q�1/jI j

qm

X
U�T

cU;W .q/.q� 1/
jU j„U;I .q; s/;

where

cU;W .q/D jfa 2 xY . xK/j a 2Eu. xK/, u 2 U and h.a/ 2 SW gj
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(where denotes reduction mod P and SW D f.y1; : : : ; ym/j .y1; : : : ; ym/ 2W g)
and
(9)
„U;I .q; s/D

X
.mu/u2U2NjU j

.ni /i2I2Nl

q�
P
i ni�

P
u �umu�

P
� s� min�2I� f

P
i ei ��niC

P
uNu��mug:

Example 2.1. If lD 0 and, for each � 2 Œk�, jI� jD 1, Theorem 2.1 reduces to (a
multivariable version of) Veys’ and Zúñiga-Galindo’s generalisation [30, Th. 2.10]
to polynomial mappings of Denef’s explicit formula [3, Th. 3.1] for Igusa’s local
zeta function associated to a single polynomial. Notice in particular that in this
case

„U;¿.q; s/D
X

.mu/u2U2NjU j

q
P
umu.��u�

P
� Nu�s�/ D

Y
u2U

Xu

1�Xu

for Xu WD q��u�
P
� Nu�s� , where we write Nu� for Nu��. Also compare Example

2.2 for the other “extremal case” „¿;I .q; s/.

Proof. The proof is analogous to the one of [3, Th. 3.1] (=[5, Th. 2]), with the
concept of resolution of singularities replaced by the concept of principalisation
of ideals. We adopt – mutatis mutandis – Denef’s notation and just explain how
the proof differs from his. Let a be a closed point of xY , and thus also of zY . Let
TaDft 2T j a2EtgD ft1; : : : ; trg<, say. DefineH Dfb 2Y.K/jh.b/2Rmg and
recall the definition of the “reduction modP ”-map � WH ! xY . xK/. In the regular
local ring O zY ;a, there exist irreducible elements 1; : : : ; m such that, on ��1.a/,
for all � 2 Œk�, � 2 I� ,

kf�� ı hk Dj1jNt1 �� : : : jr jNtr �� and

jh�.dy1 ^ � � � ^ dym/j Dj1j�t1�1 : : : jr j�tr�1jd1 ^ � � � ^ dmj:

Setting d WD d1 ^ � � � ^ dm we define

Za;I .s/

WD

Z
P l���1.a/

Y
�2Œk�

max
�2I�

8<:Y
i2I

jxi j
ei ��

Y
�2Œr�

j�j
Nt� ��

9=;
s� Y
�2Œr�

j�j
�t��1jdxI jjdj

D

Z
P lCm

Y
�2Œk�

max
�2I�

8<:Y
i2I

jxi j
ei ��

Y
�2Œr�

jy�j
Nt� ��

9=;
s� Y
�2Œr�

jy�j
�t��1jdxI jjdyj

D
.q� 1/rCl

qmCl

X
.mt /t2Ta2Nr

.ni /i2I2Nl

q�
P
i ni�

P
t �tmt�

P
� s� min�2I� f

P
i ei ��niC

P
t Nt ��mt g:

This suffices as ZW;K;I .s/D
P
a2xY . xK/

h.a/2 SW

Za;I .s/. �
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We now make the further assumption that m D n2. We identify Kn
2

with
Matn.K/ and assume that the ideals .f��/, � 2 Œk�, �2 I� , are B.F /-invariant, where
B.F / is the group of F -rational points of the Borel subgroup of upper-triangular
matrices in G D GLn, acting on KŒy11; y12; : : : ; ynn� by matrix-multiplication
from the right. Let .Y; h/, h W Y ! G=B be a principalisation of the ideal I DQ
�;�.f��/. Denoting, as above, by V the subvariety of G=B.K/ defined by I and by

V�� the subvariety defined by .f��/ yields numerical data .Nt ��; �t /t2T; �2Œk�; �2I�
defined by formulae analogous to (7) and (8) above. We study the integral

ZI .s/ WDZW;K;I .s/

for W D � D GLn.R/ for almost all completions K of F . Note that the Haar
measure �0 on the compact topological group � coincides with the additive Haar
measure � induced from Rn

2

(and normalised such that �.Rn
2

/ D 1), as �0 D
j det j�n�D �. This will be important in later applications as it implies, for exam-
ple, that all the cosets of a finite index subgroup � 0�� have measure �.�/=j� W� 0j,
with �.�/D .1� q�1/ � � � .1� q�n/.

THEOREM 2.2. Suppose that, in addition to the above assumptions, none of
the ideals .f��/ is equal to the zero ideal modPK , and that .Y; h/ has good reduc-
tion modPK . Then

ZI .s/D
.1� q�1/jI jCn

q.
n
2/

X
U�T

cU .q/.q� 1/
jU j„U;I .q; s/;

where each cU .q/ is the number of xK-rational points of EU n[V©UEV (EU WD
\u2UEu) and „U;I .q; s/ is defined as in (9) above.

Proof. The proof follows closely the spirit of the proof of [5, Th. 3]. In fact,
our function ZI .s/ is a close analogue of the function bZK.s/, defined in [5, p.
1140]. We write � as a disjoint union of sets

�� D fx 2 �j x 2 B.Fq/�B.Fq/g;

� 2 Sn, where GLn.Fq/D
S
�2Sn

B.Fq/�B.Fq/ is the Bruhat decomposition (here
� 2 Sn is identified with the respective permutation matrix in GLn.Fq/). Thus

ZI .s/D
X
�2Sn

Z�� ;K;I .s/:

There is an obvious map  W �!G=B.K/, and, by our invariance assumption on
the ideals .f��/, the value of the integrand of ZI .s/ at a point .x; y/ 2 P l �� only
depends on x and .y/. By taking the measure ! on G=B.K/ which induces the
Haar measure on the unit ball R.

n
2/ of each affine chart satisfying !.aCP .

n
2//D

q�.
n
2/ and noting that �.B/D .1� q�1/n, we obtain

Z�� ;K;I .s/D .1� q
�1/n

Z
P l�V�

Y
�2Œk�

kg�;I .x; y/ks� jdxI jd!;
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where V� D .�� /. The projective variety G=B may be covered by varieties U� ,
isomorphic to affine

�
n
2

�
-space, indexed by the elements of the symmetric group Sn,

such that each V� is contained in U� and is a union of cosets modP .
n
2/. Theorem

2.1 may thus be applied to the restriction .Y � ; h� / of .Y; h/, a principalisation of
the ideal defining the restriction of V to U� (Y � D h�1.U � /, h� D hjY � ), with
good reduction modP . We obtainZ

P l�V�

Y
�2Œk�

kg�;I .x; y/ks� jdxI jd!

D
.1� q�1/l

q.
n
2/

X
U�T

cU;� .q/.q� 1/
jU j„U;I .q; s/;

where

cU;� .q/D jfa 2 xY
� . xK/j a 2Eu. xK/, u 2 U and h.a/ 2 V�gj:

The result follows since, if a 2 xY . xK/, then h.a/ is in exactly one V� . ThusP
�2Sn

cU;� .q/D jfa 2 xY . xK/j a 2Eu. xK/, u 2 U gj D cU .q/. �

We now consider the normalised integrals

(10) fZI .s/ WD ZI .s/
.1� q�1/jI j�.�/

:

COROLLARY 2.1. For U � T , let bU .q/ denote the number of xK-rational
points of EU . Then

(11) fZI .s/D jG=B.Fq/j�1 X
U�T

bU .q/
X
V�U

.�1/jUnV j.q� 1/jV j„V;I .q; s/:

Proof. This follows immediately from the formula given for ZI .s/ in Theorem
2.2, Definition (10), the fact that jG=B.Fq/j D

�
n

Œn�1�

�
q

and from the identity

cV .q/D
X

V�U�T

.�1/jUnV jbU .q/: �

Before we proceed we consider a very special case.

Example 2.2. Assume that, for all � 2 Œk�, jI� j D 1 and that all f�� D f1g. We
write ei� for ei ��. Now,

„¿;I .q; s/D
X

.ni /i2I2Nl

q
P
i ni .�1�

P
� ei�s�/ D

Y
i2I

Xi

1�Xi
;

with Xi D q�1�
P
� ei�s� . Also note that b¿.q/D jG=B.Fq/j and that bU .q/D 0 if

U 6D¿. Thus fZI .s/DQi2I
Xi
1�Xi

. It is trivial to verify the “inversion property”

(12) fZI .s/jq!q�1 D .�1/jI jX
J�I

fZJ .s/;
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as Y
i2I

X�1i

1�X�1i
D .�1/jI j

X
J�I

Y
j2J

Xj

1�Xj
:

In the remainder of the current section we shall show that equation (12) holds
under the premises of Theorem 2.2. To give meaning to the left-most term in (12)
in general, we have to explain what we mean by bU .q�1/ (the other constituents
of the expression (11) for fZI .s/ being rational functions in q and q�s1 ; : : : ; q�sk ).
Recall that by properties of the Weil zeta functions associated to the

��
n
2

�
� jU j

�
-

dimensional smooth projective varieties EU it is known that

bU .q/D

2..n2/�jU j/X
rD0

.�1/r
tU;rX
jD1

˛U;r;j

for suitable nonnegative integers tU;r and nonzero complex numbers ˛U;r;j , with
the property that, for each U , r , the multisetsn

˛U;2..n2/�jU j/�r;j

ˇ̌̌
j 2 ŒtU;2..n2/�jU j/�r

�
o

and

(
q.
n
2/�jU j

˛U;r;j

ˇ̌̌̌
ˇ j 2 ŒtU;r �

)
coincide (cf., e.g., [5, Proof of Th. 4]). This motivates the definition

(13) bU .q
�1/ WD q�..

n
2/�jU j/bU .q/D

2..n2/�jU j/X
rD0

.�1/r
tU;rX
jD1

˛�1U;r;j :

We shall prove

THEOREM 2.3. Under the assumptions of Theorem 2.2, the following “inversion
properties” hold:

(IP) 8I � Œn� 1� W fZI .s/jq!q�1 D .�1/jI jX
J�I

fZJ .s/:
Proof. To see what happens to the (rational) functions „V;I .q; s/ in expres-

sion (11) if we formally invert the prime power q, we employ a result of Stanley:

PROPOSITION 2.1. Let L�� .n/, � 2 Œs�, � 2 Œt �, be Z-linear forms in the
variables n1; : : : ; nr and X1; : : : ; Xr ; Y1; : : : ; Ys independent variables, and set

Zı.X;Y/ WD
X

n2Nr

Y
�2Œr�

X
n�
�

Y
�2Œs�

Y
min�2Œt�fL�� .n/g
� ;

Z.X;Y/ WD
X

n2Nr0

Y
�2Œr�

X
n�
�

Y
�2Œs�

Y
min�2Œt�fL�� .n/g
� :

Then
Zı.X�1;Y�1/D .�1/rZ.X;Y/:
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Proof. The proof of [29, Th. 4.6.14] carries through to this slightly more
general situation, provided one chooses a triangulation of Nr that refines a subdivi-
sion into rational polyhedral cones eliminating the “min”-terms in the sum defining
Z.X;Y/. �

COROLLARY 2.2. For all I � Œn� 1�, V � T ,

(14) „V;I .q; s/jq!q�1 D .�1/
jV jCjI j

X
W�V;J�I

„W;J .q; s/:

We record the following simple fact:

LEMMA 2.1. For all U � T; J � Œn� 1�,

(15)
X
V�U

.�1/jUnV j.1� q�1/jV j
X
W�V

„W;J .q; s/

D q�jU j
X
V�U

.�1/jUnV j.q� 1/jV j„V;J .q; s/:

The proof is a simple computation. We can now deduce

fZI .s/jq!q�1 D.�1/jI jq.n2/
jG=B.Fq/j

X
U�T

bU .q
�1/

X
V�U

.�1/jUnV j.1� q�1/jV j�

X
W�V;J�I

„W;J .q; s/ .11/; .14/

D.�1/jI j
X
J�I

jG=B.Fq/j
�1

X
U�T

qjU jbU .q/�X
V�U

.�1/jUnV j.1� q�1/jV j
X
W�V

„W;J .q; s/ .13/

D.�1/jI j
X
J�I

jG=B.Fq/j
�1

X
U�T

bU .q/�X
V�U

.�1/jUnV j.q� 1/jV j„V;J .q; s/ .15/

D.�1/jI j
X
J�I

fZJ .s/: .11/

This completes the proof of Theorem 2.3. �

Recall that the polynomials
�
n
I

�
X

were introduced at the end of the introduc-
tion. We define

(16) zZ.s/D
X

I�Œn�1�

 
n

I

!
q�1

fZI .s/:
To prove Theorems A, B and C we shall need



1198 CHRISTOPHER VOLL

COROLLARY 2.3. Under the assumptions of Theorem 2.2, the following func-
tional equation holds:

(17) zZ.s/jq!q�1 D .�1/
n�1q.

n
2/ zZ.s/:

Proof. This follows from the proof of [33, Cor. 2]. Note that Theorem 2.2
provides the required analogue of [33, Lemma 6]. �

Theorem D will follow from Proposition 2.2 of the next section which is in
turn a special case of the following straightforward corollary.

COROLLARY 2.4. Under the assumptions of Theorem 2.2, for any i 2 Œn� 1�,

(18)
�
eZ¿.s/C .1� q�n/eZfig.s/

�
jq!q�1 D q

n
�
eZ¿.s/C .1� q�n/eZfig.s/

�
:

2.2. A first application: Counting elementary divisors. We show how the
problem of counting elementary divisors of matrices of forms may be reduced to the
problem of computing p-adic integrals of the form studied in the previous section,
associated to the polynomials describing the degeneracy loci of these matrices.
The main result of this subsection — Proposition 2.2 — will be needed to prove
Theorem D in Section 3.4.

Again, let K be a p-adic field with valuation ring R, whose maximal ideal is
denoted by P generated by a uniformizer � say. Let R be an e� f -matrix (with
e � f , say) of polynomials Rij .Y/ 2RŒY1; : : : ; Yn�. We make the assumption on
R that, whenever yD .y1; : : : ; yn/ 2Rn is a vector with y 6D 0, at least one entry
of R.y/ is nonzero. For a nonnegative integer N and a vector yPN 2 .R=PN /n

we say that R.yPN / has elementary divisor type m (written �.R.yPN // D m)
if m D .m1; : : : ; mf /, mi 2 Œ0; N �, m1 � � � � � mf , and there are matrices ˇ 2
GLe.R=PN /,  2 GLf .R=PN / such that

ˇR.yPN / �

0B@ �
m1

: : :

�mf

1CAmodPN :

For m 2 N
f
0 we set

NN;R;m WD
ˇ̌̌n

yPN 2 .R=PN /nj yPN 6D 0; �.R.yPN //Dm
oˇ̌̌
:

Note that NN;R;mD0 unless 0Dm1� � � ��mf �N (the necessity ofm1D0 being
a consequence of our assumption on R). Given, in addition, a g� h-submatrix S

of R (WLOG g � h) defined by choosing g rows and h columns of R, and an
h-tuple n we define

NN;R;S;m;n WD

ˇ̌̌̌�
yPN 2 .R=PN /nj y 6D 0; �.R.yP

N //Dm;
�.S.yPN //D n

�ˇ̌̌̌
:

Again, NN;R;S;m;n D 0 unless 0 D m1 � � � � � mf � N and n1 � � � � � nh. We
suppress the subscripts R and S if they are clear from the context.
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Given complex variables r1; : : : ; rf , s1; : : : ; sh, we define the generating func-
tion

P.r; s/D PR;S;K.r; s/D
X
N2N0

m2N
f
0 ;n2Nh0

NN;m;nq
�
P
i2Œf �.N�mi /ri�

P
j2Œh�.N�nj /sj :

We now assume that the matrix R is in fact defined over a number field F , that
its entries are all homogeneous of the same degree and that the above assumption
on R is satisfied for almost all completions K of F for which all Rij .Y/ 2RK ŒY�.
We consider such a “good” completion K and drop the subscript K. For i 2 Œf �0,
let �i denote the set of i -minors of R. The polynomials �i define the .rk� i � 1/-
locus (or i-th degeneracy locus) of R.Y/. Similarly, let �j , j 2 Œh�0, denote the
set of j -minors of S. Let

k WDmaxfi 2 Œf �0j .�i / 6D .0/g and l WDmaxfj 2 Œh�0j .�j / 6D .0/g:

Note firstly that �0 D � 0 D f1g, secondly that, by our assumption on R, k � 1,
thirdly that 0� l � k and fourthly that P.r; s/ is really a function in the variables
r1; : : : ; rk; s1; : : : ; sl :

(19) P.r; s/D
X
N2N0

m2Nk0 ;n2Nl0

NN;m;nq
�
P
�2Œk�.N�m�/r��

P
�2Œl�.N�n�/s�

where we set, given mD .m1; : : : ; mk/ and nD .n1; : : : ; nl/,

NN;m;n WD NN;.m1;:::;mk ;N;:::;N/;.n1;:::;nl ;N;:::;N/:

For I � f1g and W D � D GLn.R/ as above, consider the p-adic integral

(20) ZI .r;er; s;zs; t /
WD

Z
P jI j��

jxjI jjt
Y
�2Œk�

k��.y
1/[ xjI j���1.y

1/kr�k���1.y
1/ker�

�

Y
�2Œl�

k��.y1/[ xjI j���1.y1/ks�k���1.y1/kes� jdxI jjdyj;

where y1 denotes the first column of the matrix y 2 � .

Remark 2.1. Whilst artificial, the formulation ofZI as an integral over P jI j��
rather than over P jI j �Rn nP n serves to make it fit the “blueprint” Theorem 2.2
provided in the previous section.

We now set, for mD .m1; : : : ; mk/ 2Nk0 , nD .n1; : : : ; nl/ 2Nl0 and N 2N,

�N;m;n D �
n
.x; y/ 2 P ��j v.x/DN; �.R.y1PN //Dm; �.S.y1PN //D n

o
and ZI .r; s; t / WDZI .r;�r; s;�s; t /. Note that, by definition, �N;m;n D 0 unless
0�m1 � � � � �mk �N and n1 � � � � � nl �N . By definition of the polynomials
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�� , ��, we have

Z¿.r; s; t /D �.�/ .and thus, by (10), eZ¿.r; s; t /D 1/;(21)

Zf1g.r; s; t /D
X
N2N

m2Nk0 ;n2Nl0

�N;m;nq
�tN�

P
� r�m��

P
� s�n� :(22)

Theorem 2.2 is applicable to ZI , I � f1g, together with a principalisation
.Y; h/, h W Y ! G=B , of the ideal I D

Q
�2Œk�.��/

Q
�2Œl�.��/. Indeed, B.F /-

invariance is a consequence of the fact that the entries of R were all assumed to be
homogeneous of the same degree.

The following crucial lemma relates the numbers �N;m;n with the data NN;m;n
we would like to capture:

LEMMA 2.2. For N 2 N,

(23) NN;m;n D

�
n
1

�
q�1

�.�/
�N;m;nq

N.nC1/:

Recall that
�
n
1

�
q�1
D .1� q�n/=.1� q�1/.

Proof. Let �f1g;N denote the group��
1 �

PN� n�1

��
where i stands for a matrix in �i DGLi .R/, � for an arbitrary matrix with entries
in R, and PN� for a matrix of the appropriate size with entries in PN , respectively.
Then the setn

.x; y/ 2 P ��j v.x/DN; �.R.y1PN //Dm; �.S.y1PN //D n
o

may be written as a disjoint union of the j� W �f1g;N j setsn
.x; y/ 2 P � �f1g;N j v.x/DN; �.R.y1PN //Dm; �.S.y1PN //D n

o
where  runs through a complete set of coset representatives of �=�f1g;N . The
measure of each of these sets is either zero or equals .1 � q�1/q�N�.�f1g;N /.
The latter happens N0N;m;n times, where

N0N;m;n D
ˇ̌̌n

y1 2 Pn�1.R=PN /j y1 6D 0; �.R.y1//Dm; �.S.y1//D n
oˇ̌̌
:

Clearly NN;m;n D .1� q
�1/qNN0N;m;n. Using the identity

�.�/=�.�f1g;N /D

 
n

1

!
q�1

qN.n�1/
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we obtain

�N;m;n D N0N;m;n.1� q
�1/q�N�.�f1g;N /D NN;m;n

�.�/�
n
1

�
q�1

qN.nC1/

as claimed. �

Lemma 2.2 yields

P.r; s/� 1D P.r; s/�eZ¿.�r;�s;
X
�

r� C
X
�

s��n� 1/ .21/

D

X
N2N

m2Nk0 ;n2Nl0

NN;m;nq
�
P
�2Œk�.N�m�/r��

P
�2Œl�.N�n�/s� .19/

D

�
n
1

�
q�1

�.�/
�X

N2N

m2N
f
0 ;n2Nh0

�N;m;nq
N.nC1�

P
� r��

P
� s�/C

P
� m�r�C

P
� n�s� .23/

D

�
n
1

�
q�1

�.�/
Zf1g.�r;�s;

X
�

r� C
X
�

s��n� 1/ .22/

D .1� q�n/eZf1g.�r;�s;
X
�

r� C
X
�

s��n� 1/: .10/

From Corollary 2.4 we deduce

PROPOSITION 2.2. For all but finitely many completions K of F , the follow-
ing functional equation holds:

PR;S;K.r; s/jq!q�1 D q
nPR;S;K.r; s/:

3. Applications to zeta functions of groups and rings

3.1. Zeta functions of rings. In this section we prove Theorem A. Let L be
a ring of torsion-free rank n. In fact, without loss of generality we may assume
that L is additively isomorphic to Zn. Let p be a prime. Multiplication in L is
a bi-additive mapping ˇ W Zn �Zn! Zn, which extends to p̌ W Z

n
p �Znp ! Znp,

inducing a Zp-algebra structure on Lp WD L˝Zp . We shall give a formula for the
local zeta functions

�L;p.s/D
X
H�Lp

jLp WH j
�s;

where H runs over the subalgebras of finite index in Lp, valid for almost all
primes p, in terms of the p-adic integrals studied in Section 2. More precisely,
we shall show that �L;p.s/ is expressible in terms of functions zZ.s/, defined as
in (16), to which Corollary 2.3 is applicable.
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Write LD Zl1˚ � � �˚Zln. We consider the n�n-matrix of Z-linear forms

R.y/D .Lij .y// 2Matn.ZŒy�/;

where Lij .y/ WD
P
k2Œn� �

k
ijyk , encoding the structure constants �kij of L with

respect to the chosen basis; that is, li lj D
P
k2Œn� �

k
ij lk . Let Ci denote the matrix

of the linear map given by right-multiplication with the generator li .
A full sublattice ƒ in .Lp;C/ corresponds to a coset �M , where � D �n D

GLn.Zp/ and the rows of the matrix M D .mij / 2 GLn.Qp/ \Matn.Zp/, the
set of integral n�n-matrices with nonzero determinant, encode the coordinates of
generators for ƒ with respect to the chosen basis. Denote by Mi the i -th row of M .
It is not hard to check (cf. the proof of [8, Th. 5.5]) that ƒ is a Zp-subalgebra of
Lp if and only if

(24) 8i; j 2 Œn� W Mi

X
r2Œn�

Crmjr 2 hMkj k 2 Œn�iZp :

Rather than trying to analyse the restrictions condition (24) imposes on the entries
of suitable upper-triangular representatives of the coset �M as in [8], we base our
analysis on the following two basic observations.

The first point is that every homothety class of lattices ƒ in .Lp;C/ contains
a largest subalgebra ƒ0, and the subalgebras in this class are exactly the multiples
pmƒ0, m 2 N0. We thus have

(25) �L;p.s/D .1�p
�ns/�1

X
Œƒ�

jLp Wƒ0j
�s;

where ƒ0 denotes the largest subalgebra in the homothety class Œƒ�D Œƒ0�.
The second observation is that it is easy to check condition (24) if M happens

to be a diagonal matrix. With respect to the given basis, �M may not admit a diag-
onal representative. By the elementary divisor theorem, however, it does contain a
representative of the form M DD˛�1, where ˛ 2 � ,

D DD.I; r0/D pr0 diag.p
P
�2I r� ; : : : ; p

P
�2I r�„ ƒ‚ …

i1

; : : : ; pril ; : : : ; pril

„ ƒ‚ …
il

; 1; : : : ; 1/

for a set I D fi1; : : : ; ilg< � Œn� 1� and a vector .r0; ri1 ; : : : ; ril /DW r0 2N0�Nl

(both depending only on �M ). We say that ƒ has type .I; r0/ and call ƒ maximal
(in its homothety class) if r0 D 0. We say that the homothety class Œƒ� has type
.I; r/, rD .ri1 ; : : : ; ril /2Nl , – written �.Œƒ�/D .I; r/ – if its maximal element has
type .I; .0; ri1 ; : : : ; ril //. By slight abuse of notation we may also say that a lattice
ƒ has type I if �.Œƒ�/D .I; r/ for some integral vector r, and that a homothety
class Œƒ� has type I if any of its elements does. In this case we write �.Œƒ�/D I .
We shall denote by ˛j the j -th column of the matrix ˛ and byDi i the i -th diagonal
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entry of D. Note that ˛ is only unique up to right-multiplication by an element of

�I;r WD Stab�.�D/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

0BBBBBBB@

i1 � : : : � �

pri1� i2�i1
: : :

:::

pri1Cri2� pri2�
: : : �

:::
:::

::: il�il�1 �

pri1C���Cril � pri2C���Cril � : : : pril � n�il

1CCCCCCCA

9>>>>>>>=>>>>>>>;
where � stands for a matrix in ��, � for an arbitrary matrix with entries in Zp , and
pr� for a matrix with entries in prZp of the appropriate sizes, respectively. Thus
there is a 1�1-correspondence between lattice classes Œƒ� of type .I; .ri1 ; : : : ; ril //
and cosets ˛�I;r. Furthermore
(26)

jfŒƒ�j �.Œƒ�/D .I; r/gj D j� W �I;rj D �.�/=�.�I;r/D

 
n

I

!
p�1

p
P
�2I r��.n��/;

where, as usual, � denotes the Haar measure on � normalised so that �.�/ D
.1� p�1/ : : : .1� p�n/. As we have noted above it coincides with the additive
Haar measure on Matn.Zp/Š Zn

2

p , normalised so that �.Matn.Zp//D 1.
It is now straightforward to check that (24) is equivalent to

(27) 8i 2 Œn� W DR<
.i/.˛/D � 0modDi i ;

where R<
.i/
.˛/ WD ˛�1R.˛i /.˛�1/t : It is easy to verify that condition (27) is equiv-

alent to

8i; r; s 2 Œn� W .R<
.i/.˛//rs p

r0C
P
s��2I r�C

P
r��2I r�C

P
i>�2I r� � 0modp

P
�2I r�

which may in turn be reformulated as
(28)

r0�
X
�2I

r��min

8<:X
�2I

r�;
X
s��2I

r�C
X
r��2I

r�C
X
i>�2I

r�C virs.˛/j .i; r; s/ 2 Œn�
3

9=;„ ƒ‚ …
DWm.Œƒ�/

;

where virs.˛/ WDmin
n
vp

�
.R<
.�/
.˛//��

�
j�� i; � � r; � � s

o
.

Remark 3.1. Whilst it might seem more natural to replace the inequalities in
this definition of virs.˛/ by equalities, the present formulation is preferable as it al-
lows us to translate the counting problem into the language developed in Section 2.

Note that the right-hand side of (28) depends only on the homothety class of
ƒ and is neatly separated in terms that depend on the type .I; r/ of Œƒ� and terms
that depend solely on ˛. The subalgebra ƒ0 is characterised by equality in (28). As
we shall see, this formulation of the “subalgebra condition” (24) therefore enables
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us to express the p-th local zeta function of L in terms of p-adic integrals on
.pZp/

jI j �� , I � Œn� 1�.
By (25) it suffices to compute

(29) A<.s/ WD
X
Œƒ�

jLp Wƒ0j
�s
D

X
I�Œn�1�

X
�.Œƒ�/DI

jLp Wƒ0j
�s

„ ƒ‚ …
DWA<I .s/

:

For a fixed I D fi1; : : : ; ilg< � Œn� 1�, we set

N<I;r;m WD jfŒƒ�j �.Œƒ�/D .I; r/;m.Œƒ�/Dmgj

with m.Œƒ�/ defined as in (28). Thus

A<I .s/D
X

rD.ri1 ;:::;ril /2Nl

p�s
P
�2I �r�

X
m2N0

N<I;r;mp
�sn.

P
�2I r��m/(30)

D

X
r2Nl

p�s
P
�2I r�.�Cn/

X
m2N0

N<I;r;mp
snm:

As in the proof of Proposition 2.2 we shall design a p-adic integral to de-
scribe the generating functions A<I .s/. Consider the p-adic integral ZI .s/ D
ZW;Qp;I .s1; : : : ; sn/ defined as in Section 2 with k D n, m D n2, W D � and
set

firs.y/Df.R<
.�/.y//�� j �� i; � � r; � � sg; .i; r; s/ 2 Œn�

3;(31)

gn;I .x; y/D

(Y
�2I

x�

)
[

[
.i;r;s/2Œn�3

 Y
�2I

x
ı��rCı��sCı�<i
�

!
firs.y/;

g�;I .x; y/D

(Y
�2I

xı���

)
; � 2 Œn� 1�:

The ideals .firs.y// can easily be seen to be B.Qp/-invariant. Without loss of
generality we may assume that none of them equals the zero ideal (otherwise we
just omit the respective ideal), and, by omitting at most finitely many primes, we
may assume that this also holds modp. (Note that we may well have to omit
all the .firs.y//. This happens when the ring structure is trivial.) Thus The-
orems 2.2 and 2.3 and their corollaries apply to a principalisation for the ideal
ID

Q
irs.firs.y// with good reduction modp. Note that

(32) Z<I .s/ WDZI .s/DZI ..s�/�2I ; sn/D
X
r2Nl

p�
P
�2I s�r�

X
m2N0

�<I;r;mp
�snm;

where

�<I;r;m D �
n
.x; y/ 2 .pZp/

l
��j vp.x�/D r�; m.x; y/Dm

o
;
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with

m.x; y/ WD

min
�X
�2I

r�;
X
s��2I

vp.x�/C
X
r��2I

vp.x�/C
X
i>�2I

vp.x�/C virs.y/j .i; r; s/ 2 Œn�3
�
:

Again, a lemma is needed to relate the numbers �<I;r;m to the data N<I;r;m we are
trying to understand.

LEMMA 3.1.

N<I;r;m D
�<I;r;m

.1�p�1/lp�
P
�2I r��.�I;r/

(33)

D

�
n
I

�
p�1

.1�p�1/l�.�/
�<I;r;m p

P
�2I r�.�.n��/C1/:

Proof. The setn
.x; y/ 2 .pZp/

l
��j vp.x�/D r�; m.x; y/Dm

o
may be written as a disjoint union of the j� W �I;rj setsn

.x; y/ 2 .pZp/
l
� �I;rj vp.x�/D r�; m.x; y/Dm

o
where  runs through a complete set of coset representatives for �=�I;r. The mea-
sure of each of these sets is either zero or equal to .1�p�1/lp�

P
�2I r��.�I;r/. The

latter happens if and only if �I;r corresponds to a lattice of type .I; r/ such that
m.Œƒ�/Dm. This proves the first equality. The second equality is an immediate
consequence of (26). �

Lemma 3.1 allows us to express the generating functions (30) in terms of the
p-adic integrals (32). Indeed,

A<I .s/D
X
r2Nl

p�s
P
�2I r�.�Cn/

X
m2N0

N<I;r;mp
snm .30/

D

�
n
I

�
p�1

.1�p�1/l�.�/

X
r
p�

P
�2I r�.s.�Cn/��.n��/�1/

X
m

�<I;r;mp
snm .33/

D

�
n
I

�
p�1

.1�p�1/l�.�/
Z<I ..s.�Cn/� �.n� �/� 1/�2I ;�sn/ .32/

D

 
n

I

!
p�1

eZ<I ..s.�Cn/� �.n� �/� 1/�2I ;�sn/: .10/

Theorem A follows now from equations (25) and (29), and Corollary 2.3.
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3.2. Conjugacy zeta functions of nilpotent groups. In this section we prove
Theorem B. As mentioned in the introduction, it suffices to compute

(34) �cc
L;p.s/D

X
H�Lp

jLp WH j
�s
jLp W NLp .H/j

�1

for almost all primes p, where LD L.G/, Lp D L˝Zp and

NLp .H/D fl 2 Lpj ŒH; l��H g

is the normaliser of H in Lp.

Remark 3.2. It was pointed out, e.g. in [35, �3.8], that, whilst (34) might be
used to define local “conjugacy” zeta functions for arbitrary rings, they might not
encode the solutions to any actual counting problem unless Lp D L˝ Zp for a
nilpotent Lie ring L. It is for this reason that we formulate Theorem B in terms of
T-groups G, bearing in mind that its proof is immediately reduced to a computation
in the Lie ring L.G/ that draws upon neither the nilpotency nor the Lie property
of L.G/.

Along the lines of the “first observation” in the proof of Theorem A we use
the fact that, for a subring H of Lp , the normaliser NLp .H/ is an invariant of the
homothety class ŒH � of H . We may thus write NLp .ŒH�/ for NLp .H/. Resuming
the notation of the proof of Theorem A we have

(35) Lp � NLp .ŒH�/�ƒ0 � pƒ0 � p
2ƒ0 � � � �

(H 2 fpmƒ0j m 2 N0g). In addition to recording the index jLp W ƒ0j as we run
over homothety classes Œƒ� of lattices in Qn

p, we now have to control the index
jLp W NLp .Œƒ�/j. We shall see that this index, too, might be expressed in terms
of congruences involving the type .I; r/ and coset ˛�I;r determining Œƒ�D Œƒ0�,
similar to the congruences (27). To compute their index requires us to control
the elementary divisors of certain matrices. A similar problem was considered in
Section 2.2; the problem we will have to solve in Section 3.3 is also of this kind
(though slightly simpler). We resume the notation from Section 3.1. From (35) we
deduce

�cc
L;p.s/D .1�p

�ns/�1
X
Œƒ�

jLp Wƒ0j
�s
jLp W NLp .Œƒ�/j

�1:

Using a fixed basis to identify Lp with Znp we may express the condition x 2
NLp .ŒH�/ in a similar fashion to (24). If M is any matrix whose rows Mk encode
the coordinates of generators for any element of Œƒ�, a vector xD .x1; : : : ; xn/2Znp
is in NLp .Œƒ�/ if and only if

(36) 8i 2 Œn� W x
X
r2Œn�

Crmir 2 hMkj k 2 Œn�iZp :

Using the correspondence between lattice classes and pairs ..I; r/; ˛�I;r/, condi-
tion (36) may be reformulated as

(37) 8i 2 Œn� W xRcc
.i/.˛/D � 0modDi i ;



FUNCTIONAL EQUATIONS FOR ZETA FUNCTIONS OF GROUPS AND RINGS 1207

where Rcc
.i/
.˛/ WDR.˛i /.˛�1/t and DDD.I; r/. We note that the scalar pr0 in D

cancels in (37); we may thus assume r0 D 0. Condition (37) is then equivalent to

(38) 8i 2 Œn� W xRcc
.i/.˛/Dp

P
�<i r� � 0modp

P
�2I r� :

Setting

Rcc.˛/D .Rcc
.1/.˛/j : : : jR

cc
.n/.˛//;

Dcc.I; r/D diag.D; : : : ;D„ ƒ‚ …
i1

; pri1D; : : : ; pri1D„ ƒ‚ …
i2�i1

; : : : ; p
P
�2I r�D; : : : ; p

P
�2I r�D„ ƒ‚ …

n�il

/;

(where “diag” refers to the diagonal n2 �n2-matrix built from n scalar multiples
of the diagonal n�n-matrix D), (38) may in turn be reformulated as

(39) xRcc.˛/Dcc.I; r/� 0modp
P
�2I r� :

To keep track of the index of NLp .Œƒ�/, the full sublattice of Lp Š Znp of solutions
to (39), we introduce an invariant �cc.Œƒ�/2Nn0 as follows. We say that �cc.Œƒ�/D

mD .m1; : : : ; mn/ 2 Nn0 if

� the matrix Rcc.˛/Dcc.I; r/ has elementary divisor type zm D . zm1; : : : ; zmn/
(i.e., there are matrices ˇ 2 �n,  2 �n2 such that ˇRcc.˛/Dcc.I; r/ D�
diag.p zm1 ; : : : ; p zmn/j0

�
and zmi 2 N0[f1g, zm1 � � � � � zmn) and

� mD .m1; : : : ; mn/ is defined by mi Dmin
˚P

�2I r�; zmi
	

for each i 2 Œn�.

The index jLp W NLp .Œƒ�/j equals p
P
i2Œn�.

P
�2I r��mi/. As in Section 3.1 it is

helpful to write

Acc.s/ WD
X
Œƒ�

jLp Wƒ0j
�s
jLp W NLp .Œƒ�/j

�1

D

X
I�Œn�1�

X
�.Œƒ�/DI

jLp Wƒ0j
�s
jLp W NLp .Œƒ�/j

�1

„ ƒ‚ …
DWAcc

I .s/

:

For a fixed I D fi1; : : : ; ilg< � Œn� 1�, we set

Ncc
I;r;m;m WD jfŒƒ�j �.Œƒ�/D .I; r/;m.Œƒ�/Dm; �

cc.Œƒ�/Dmgj

with m.Œƒ�/ defined as in (28). We thus have

Acc
I .s/D

X
r2Nl

p�s
P
�2I �r�

X
m2N0
m2Nn0

Ncc
I;r;m;mp

�sn.
P
�2I r��m/�

P
i2Œn�.

P
�2I r��mi /

(40)

D

X
r2Nl

p
P
�2I r�.�s.�Cn/�n/

X
m2N0
m2Nn0

Ncc
I;r;m;mp

snmC
P
i2Œn�mi :



1208 CHRISTOPHER VOLL

As in Section 3.1 we shall show that the generating functions Acc
I .s/ may be ex-

pressed in terms of the p-adic integrals to which the results of Section 2 may be
applied. In order to control the invariant �cc.Œƒ�/ we need to parametrise the minors
of the matrix Rcc.y/ in a suitable way. This motivates the following combinatorial
definitions.

Let Matn.f0; 1g/ denote the set of n� n-matrices with entries in f0; 1g, and
Scc
j;n D fS 2Matn.f0; 1g/j

P
r;s Srs D j g. We introduce a partial order on Scc

j;n by
saying that, given S; T 2 Scc

j;n, T � S if,

for all r 2 Œn�:
P
��r

P
�2Œn� T�� �

P
��r

P
�2Œn� S�� and,

for all s 2 Œn�:
P
�>s

P
�2Œn� T�� �

P
�>s

P
�2Œn� S�� .

Pictorially speaking, this amounts to saying that the matrix T may be obtained
from the matrix S by moving some of the nonzero entries towards “north-east”.
Given a matrix S 2Scc

j;n and a n�n2-matrix M D .M1j : : : jMn/, Mi 2Matn.Zp/,
a j � j -submatrix of M of column-type S is a submatrix obtained by choosing j
rows of M and the s-th column of Mr if and only if Srs D 1. For S 2Scc

j;n, we set

(41) fcc
j;S .y/D fdet.N /jN a j � j -submatrix of Rcc.y/ of column-type T � Sg

and define the monomial

M cc
S;I .x/D

Y
�2I

x

P
�>�

Pn
�D1 S��C

P
���

Pn
�D1 S��

� :

We set
fcc
j;I .x; y/D

[
S2Scc

j;n

M cc
S;I .x/f

cc
j;S .y/:

Now we define, using the sets of polynomials g�;I .x; y/ introduced in (31),

(42) Zcc
I .s;zs;�zs/D Z

.pZp/l�W

Y
�2Œn�

kg�;I .x; y/ks� �

Y
j2Œn�

�
kfcc
j;I .x; y/[

�Y
�2I

x�

�
fcc
j�1;I .x; y/k

esj kfcc
j�1;I .x; y/k

eesj�jdxI jjdyj:

Remark 3.3. Note that M cc
T;I .x/jM

cc
S;I .x/ if T � S . We therefore could have

kept definition (41) simpler by replacing “T � S” by “S”, without changing the
integral Zcc

I . The extra complication ensures that the results from Section 2 are
applicable.

We leave it to the reader to verify that, for each j 2 Œn� and S 2 Scc
j;n,

the ideal .fcc
j;S .y// is B.Qp/-invariant. Therefore the Theorems 2.2 and 2.3 and

their corollaries are applicable to the integral Zcc
I .s;zs;�zs/. Note that Zcc

I .s;zs;�zs/D
Zcc
I ..s�/�2I ; sn;zs;�zs/. We set

�cc
I;r;m;m D �f.x; y/ 2 .pZp/

l
�W j�p.x�/D r�; m.x; y/Dm; �cc.x; y/Dmg:
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Here �cc.x; y/DmD .m1; : : : ; mn/ if, for each i 2 Œn�,

mi Dmin
�X
�2I

vp.x�/; zmi

�
;

where zmD . zm1; : : : ; zmn/ is the elementary divisor type of the matrix

Rcc.y/Dcc.I; .vp.x�//�2I /:

Then
Zcc
I ..s�/�2I ; sn;zs/ WDZ

cc
I ..s�/�2I ; sn;zs;�zs/

D

X
r2Nl

p�
P
�2I s�r�

X
m2N0
m2Nn

�cc
I;r;m;mp

�snm�
P
i2Œn�esimi :

As in (33) we want to relate the numbers �cc
I;r;m;m with the integers Ncc

I;r;m;m.

LEMMA 3.2.

(43) Ncc
I;r;m;m D

�
n
I

�
p�1

.1�p�1/l�.�/
�cc
I;r;m;mp

P
�2I r�.�.n��/C1/:

Proof. Analogous to the proof of Lemma 3.1. �

Thus

Acc
I .s/

D

X
r2Nl

p
P
�2I r�.�s.�Cn/�n/

X
m2N0;
m2Nn0

Ncc
I;r;m;mp

snmC
P
i2Œn�mi .40/

D

�
n
I

�
p�1

.1�p�1/l�.�/

�

X
r2Nl

p
P
� r�.�s.�Cn/C�.n��/C1�n/

X
m;m

�cc
I;r;m;mp

snmC
P
i2Œn�mi .43/

D

�
n
I

�
p�1

.1�p�1/l�.�/
�

Zcc
I ..s.�Cn/� �.n� �/� 1Cn/�2I ;�sn;�1; : : : ;�1/ .42/

D

 
n

I

!
p�1

eZcc
I ..s.�Cn/� �.n� �/� 1Cn/�2I ;�sn;�1; : : : ;�1/: .10/

Theorem B now follows from Corollary 2.3.

3.3. Normal zeta functions of class-2-nilpotent groups. In this section we
prove Theorem C. Let G be a T2-group as in the statement of the theorem. With-
out loss of generality we may assume that G=Z.G/ and Z.G/ are torsion-free
abelian groups of rank d and d 0, respectively (so nD d C d 0), and that G admits
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a presentation

GDhg1; : : : ; gd ; h1; : : : ; hd 0 j Œgi ; gj �D
X
k2Œd�

�kijhk; �
k
ij 2Z; all other Œ ; � triviali:

(Note that we used additive notation for expressions in the abelian group G0.) Thus
we obtain a matrix

M.y/ WD
�
Lij .y/

�
2Matd .ZŒy�/

of linear forms Lij .y/ WD
P
k2Œd� �

k
ijyk , encoding the commutator structure of G.

By disregarding at most finitely many further primes we may also assume that p
does not divide M.˛/ whenever ˛ 2 Zd

0

p npZd
0

p .
We begin our argument as in [32, �3], albeit with slightly different notation.

Note, however, that we do not require the assumption that Z.G/ D G0. By [32,
Lemma 1] and its corollary, it suffices to compute a functional equation for the
generating function

AG.s/D
X

I�Œd 0�1�

AGI .s/;

where
AGI .s/D

X
�.Œƒ�/DI

jZ.Lp/ Wƒj
d�s
jLp WX.ƒ/j

�s:

Here the sum ranges over homothety classes of maximal lattices ƒ of type2 I in
the centre Z.Lp/ of the Zp-algebra

Lp WD .G=Z.G/˚Z.G//˝Zp;

andX.ƒ/=ƒDZ.Lp=ƒ/. We identifyZ.Lp/with Zd
0

p using the basis .h1; : : : ; hd 0/.
The index jLp W X.ƒ/j is the index in Lp=Z.Lp/ Š Zdp of a system of linear
congruences which we now describe (cf. [31, �2.2]). Let Œƒ� be of type .I; r/,
I D fi1; : : : ; ilg< � Œd

0 � 1�, r D .ri1 ; : : : ; ril / 2 Nl , corresponding to the coset
˛�I;r 2 �d 0=�I;r as in the proof of Theorem A. We set

MG.˛/D
�

M.˛1/j : : : jM.˛d
0

/
�
;(44)

DG.I; r/D diag.1; : : : ; 1„ ƒ‚ …
di1

; pri1 ; : : : ; pri1„ ƒ‚ …
d.i2�i1/

; : : : ; p
P
�2I r� ; : : : ; p

P
�2I r�„ ƒ‚ …

d.d 0�il /

/:

The system of linear congruences under consideration is

(45) xMG.˛/DG.I; r/� 0modp
P
�2I r� :

The solutions to this system form a full lattice in Lp=Z.Lp/. To keep track of its
index we define the invariant �0.Œƒ�/ 2 Nd0 as follows. We say that �0.Œƒ�/DmD
.m1; : : : ; md / if

2Note that the definition of a lattice’s type given in [32] differs from the one in the current paper
insofar as I is replaced by d 0 � I D fd 0 � i j i 2 I g.
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� the matrix MG.˛/DG.I; r/ has elementary divisor type

zmD . zm1; : : : ; zmd /

and

� mD .m1; : : : ; mn/ is defined by mi Dminf
P
�2I r�; zmig for each i 2 Œn�.

The index of the system (45) equals

p
P
j2Œd�.

P
�2I r��mj /:

By defining
NGI;r;m WD jfŒƒ�j �.Œƒ�/D .I; r/; �

0.Œƒ�/Dmgj

(note that NGI;r;m 6D 0 implies m1D 0, as p 6 jMG.˛/), we obtain a formula for AGI .s/
that is analogous to (30):

AGI .s/D
X
r2Nl

p.d�s/
P
�2I r��

X
m2Nd0

NGI;r;mp
�s

P
j2Œd�.

P
�2I r��mj /(46)

D

X
r
p
P
�2I r�.�s.dC�/C�d/

X
m

NGI;r;mp
s
P
j2Œd�mj :

As in Section 3.1 we shall show that the generating function AGI .s/ may be ex-
pressed in terms of a p-adic integral to which the results of Section 2 can be applied.
We shall need more notation.

Given the d � dd 0-matrix M D .M1j : : : jMd 0/, Mi 2 Matd .Zp/, a j � j -
submatrix of M of column-type S D .�1; : : : ; �d 0/ 2 Nd

0

0 ,
P
i2Œd 0� �i D j , is a

submatrix obtained by choosing j rows of M and �i columns in the “block” Mi

for each i 2 Œd 0�. We denote by SG
j;d 0
D f.�1; : : : ; �d 0/j

P
i2Œd 0� �i D j g the set of

possible such column-types. Given S D .�i /, T D .�i / 2 SG
j;d 0

, we write T � S if,
for all i 2 Œd 0�,

P
��i �� �

P
��i ��. For S 2 SG

j;d 0
, we set

(47) fGj;S .y/Dfdet.N /jN is a j � j -submatrix of M.y/ of column-type T �Sg:

We define the monomial MGS;I .x/D
Q
�2I x

P
�<�2Œd 0� ��

� and set

fGj;I .x; y/D
[

S2SG
j;d 0

MGS;I .x/f
G
j;S .y/:

We are now ready to define

ZGI .t; s;zs/DZ
G
I ..t�/�2I ; s2; : : : ; sd ;es2; : : : ;esd /D Z

.pZp/l�W

Y
�2I

jx�j
t� �

Y
j2Œ2;d�

 
kfGj;I .x; y/[

 Y
�2I

x�

!
fGj�1;I .x; y/k

sj kfGj�1;I .x; y/k
esj! jdxI jjdyj:
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Remark 3.4. Note that MGT;I .x/jM
G
S;I .x/ if T � S . We could have kept defi-

nition (47) simpler by replacing “T � S” by “S”. The extra complication ensures
that the results from Section 2 are applicable. Note also that we are not losing
anything by omitting the factor for j D 1, as kfG0;I .x; y/k D kf

G
1;I .x; y/k D 1 for

all x 2 .pZp/
l , y 2W .

We leave it to the reader to verify that, for each j 2 Œd � and S 2SG
j;d 0

, the ideal
.fGj;S .y// is B.Qp/-invariant. Therefore Theorems 2.2, 2.3 and their corollaries are
applicable. We set

�GI;r;m D �f.x; y/ 2 .pZp/
l
�W j vp.x�/D r�; �

0.x; y/Dmg;

where �0.x; y/ D m D .m1; : : : ; md / 2 Nd0 if m D minf
P
�2I r�; zmg where zm

is the elementary divisor type of the matrix MG.y/DG.I; .vp.x�//�2I /. Note that
�GI;r;m 6D 0 implies m1 D 0. Then
(48)
ZGI ..t�/�2I ; s/ WDZ

G
I ..t�/�2I ; s;�s/D

X
r2Nl

p�
P
�2I t�r�

X
m2Nd0

�GI;r;mp
�
P
j2Œ2;d� sjmj:

LEMMA 3.3.

(49) NGI;r;m D

�
d 0

I

�
p�1

.1�p�1/l�.�/
�GI;r;m p

P
�2I r�.�.d

0��/C1/:

Proof. Analogous to the proof of Lemma 3.1. �

Thus, AGI .s/

D

X
r
p
P
�2I r�.�s.dC�/C�d/

X
m

NGI;r;mp
s
P
j2Œd�mj .46/

D

�
d 0

I

�
p�1

.1�p�1/l�.�/
�X

r
p
P
�2I r�.�s.dC�/C�.d

0Cd��/C1/
X

m
�GI;r;m.p

�s/�
P
j2Œd�mj .49/

D

�
d 0

I

�
p�1

.1�p�1/l�.�/
ZI ..s.d C �/� �.d C d

0
� �/� 1/�2I ;�s; : : : ;�s/ .48/

D

 
d 0

I

!
p�1

fZI ..s.d C �/� �.d C d 0� �/� 1/�2I ;�s; : : : ;�s/: .10/

Theorem C now follows from Corollary 2.3.

3.4. Representation zeta functions of T-groups. In this section we recall some
of Howe’s work [16] on irreducible representations of T-groups and co-adjoint
orbits and prove Theorem D.
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If G is a group and H �G is a subgroup we say that H is saturated if gn 2H
implies g 2H for all g 2G. Denote by Hs the smallest saturated subgroup of G
containing H (this is called the isolator of H in [27, Ch. 8, �A]). Clearly, if H GG,
H DHs if and only if G=H is torsion-free.

Now let G be a T-group. Recall (cf., for example, [27, Ch. 6]) that, by the
Malcev correspondence, there is a Lie algebra LG.Q/ over Q, of dimension equal
to h.G/, the Hirsch length of G, and an injective mapping log WG!LG.Q/, such
that spanQ.log.G//DLG.Q/. In general L WD log.G/ will fail to be a Lie subring
(or even just a lattice). However, by replacing G by a subgroup of finite index, if
necessary, we may assume it is a Lie subring ([14, �4]) and even that ŒL;L�� cŠL,
where c is the nilpotency class of L (or G), i.e., that L (and G) are elementarily
exponentiable (e.e.) in Howe’s nomenclature. As we are looking to study �irr

G;p.s/

for all but finitely many primes, there is no harm in descending to a subgroup H
of finite index in G. Indeed, for all p and all n, there is a 1� 1 – correspondence
between twist isoclasses of irreducible characters of degree pn and p-admissible
twist isoclasses of degree pn of bGp , the pro-p-completion of G ([17, Lemma 8.5]).
However, bGp Š bHp if p 6 j jG WH j.

For a T-group G, denote by .G.i// the group’s lower central series, defined
by G.1/ D G, G.iC1/ D ŒG.i/; G�, i � 2. We say that G 6D f1g has nilpotency
class c (or is step-c-nilpotent) if G.c/ 6D f1g but G.cC1/ D f1g. Similarly, we
denote by .L.i// the lower central series of the Lie algebra L, defined by L.1/DL,
L.iC1/ D ŒL.i/; L�, i � 2, and we hope that there will be no confusion between
group commutators and Lie brackets. It is well-known that log induces a bijection
between L.i/ and G.i/, i 2 Œc�. We write G0 for G.2/, and L0 for L.2/. By Z.L/
we denote the centre of L.

For a sublattice M � L D log.G/, denote its dual Hom.M;C�/ by �M and
by rM W �L! �M; 7!  jM the restriction to M . We say that  2 �L is rational
on M if rM . / is a torsion element. Clearly  is rational on M if and only if  
is rational on Ms if and only if  .nM/D 1 for some n 2 N.

Recall that the adjoint action Ad of G on L is given by

(50) l 7! l C Œlog ; l�C .higher terms/;

where we omitted Lie terms of degree � 3. These may be computed in terms
of the Baker-Campbell-Hausdorff-formula. This element F.X; Y / 2 bLfX;Y g, the
completion of the free Lie algebra on the symbols X and Y , provides the solution to

exp.F.x; y//D exp.x/ exp.y/:

The Baker-Campbell-Hausdorff-formula allows us therefore to recover the group
structure on the Lie algebra (cf. [20, Ch. 9] and [28, V.3.4 and IV.7]). By (50), the
co-adjoint action Ad� of G on �L is thus given by

Ad�. /.l/D  .l/ .Œlog ; l�/ .higher terms/:

Given  2 �L we define a bi-additive, anti-symmetric form B W L�L! C� by
setting B ..l1; l2//D  .Œl1; l2�/. We say that a subalgebra P � L polarises B 
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if B jP�P D 1 and it is a maximal additive subgroup with respect to this prop-
erty. Note that any such additive subgroup contains the radical Rad D fl 2 Lj
 .Œl; L�/D 1g of B .

LEMMA ([16, Lemmata 1–4]). Given  2 �L, the isotropy subgroup G of  
under Ad�G is an e.e. subgroup of G and logG D Rad . If  2 �L is Ad�G-
invariant, then  2 defines a one-dimensional character on G. The orbit of  2 �L
under the co-adjoint action Ad� of G is finite if and only if  is rational on logG0s .
If  2 �L is rational on logG0s then there are e.e. polarising subalgebras P for B .
They have finite index in L satisfying jL W P j D jP W Rad j.

THEOREM ([16, Th. 1(a)]). LetG be an e.e. T-group and set LD logG, L0sD
logG0s . Let � be a finite Ad�G-orbit in �L, and  2�. Let N be the period of  
and assume N to be odd. A finite-dimensional irreducible representation U� may
be associated to � in the following manner: Let P be an e.e. polarising subalgebra
for B , set … D expP and Q WD  j…, a linear character on …. Put U� WD
IndG… Q . Then the dimension of U� is j�j1=2, and the character of U� is �� D
1

j�j1=2

P
�2� �. All representations of the form � ˝ V , � 2 1G=G0s , V defined

modulo NG WD exp.N �L/, N odd, are realised in this manner.

COROLLARY 3.1. For almost all primes p,

(51) �irr
G;p.s/D

X
 2bL0s

 rational of
p-power period

jL W Rad j�s=2jL W L ;2j�1;

where L ;2 D fl 2 Lj .Œl; L0s�/D 1g.

Proof. For primes p not dividing 2jG0s WG
0j, Howe’s theorem yields that we

count every p-power degree twist-isoclass at least once when we sum jG WG j�s=2

over the rational characters  of L0s of p-power period. By further excluding
finitely many primes, we may assume that jG WG j D jL W Rad j (cf. [14, Lemma
4.8], in which it is established that log induces an index-preserving correspondence
between p-power index subgroups of G and p-power index subalgebras of L away
from a finite number of primes). Hereby we overcount every orbit by exactly the
index jG WG ;2j, where G ;2 D f 2Gj .Œlog ;L0s�/D 1g is the stabiliser of  
under the coadjoint action of G on the restriction of characters to L0s . (Note that
this index is always equal to 1 if G is class-2-nilpotent.) Again at the cost of at
most finitely many primes we may assume jG WG ;2j D jL W L ;2j. �

Howe’s parametrisation of irreducible representations allows us to prove

PROPOSITION 3.1. Let G be a T-group. Then there are matrices S � R of
homogeneous Q-linear forms such that, for almost all primes p,

�irr
G;p.s/D PR;S;Qp .s=2; : : : ; s=2I 1; : : : ; 1/;
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where PR;S;Qp is the generating function defined in Section 2.2. Proposition 2.2 is
applicable for nD h.G0/.

Theorem D clearly follows from this.

Proof. We aim to express both factors in the summands of (51) in terms
of elementary divisors of matrices of linear forms. Recall that L is additively
isomorphic to Zh, where h is the Hirsch length of G. Without loss of generality
we may assume that L0 is saturated in L, and that L0\Z.L/ is saturated in Z.L/
(otherwise we disregard finitely many primes). We fix a Z-basis

fx1; : : : ; xd ; xdC1; : : : ; xdCm; xdCmC1; : : : ; xdCn„ ƒ‚ …
L0\Z.L/„ ƒ‚ …

L0

g

of L such that

fxdC1; : : : ; xdCng is a Z-basis for L0;

fxdCmC1; : : : ; xdCng is a Z-basis for L0\Z.L/:

The Lie bracket induces an anti-symmetric, bi-additive mapping

ˇ W L=.L0\Z.L//�L=.L0\Z.L//! L0;�
l1.L

0
\Z.L//; l2.L

0
\Z.L//

�
7! Œl1; l2�:

We may express this map in terms of our chosen basis as follows. For 1� i; j �
d Cm, let

Œxi ; xj �D
X
k2Œn�

�ijkxdCk; �ijk 2 Z:

Let RD .Rij / denote the .d Cm/� .d Cm/-matrix of linear forms

Rij .Y/D
X
k2Œn�

�ijkYk 2QŒY1; : : : ; Yn�:

By S we denote the submatrix of R consisting of the last m columns of R. By
further disregarding finitely many primes if necessary we may assume that, given
y 2 Znp, R.y/ is not zero unless y D 0 2 Fnp. We denote by Ci , i 2 Œd Cm�, the
matrices of the additive maps L=.L0\Z.L//! L0; x.L0\Z.L// 7! Œx; xi � with
respect to these bases. For a given nonnegative integer N 2 N0 we identify the set

‰pN WD
n
 2 bL0j the period of  equals pN

o
with �

Zn=pNZn
��
WD .Z=pN /n n .pZ=pN /n
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by sending `D .l1; : : : ; ln/ 2
�
Zn=pNZn

��
to

 .b1; : : : ; bn/D exp

 
2�i

P
i2Œn� libi

pN

!
; bD .b1; : : : ; bn/ 2 bL0:

With these identifications we obtain

kD .k1; : : : ; kdCm/ 2 Rad =Z.L/,8 2G W  
�hX

kixi ; log 
i�
D 1

(52)

,8j 2 Œd Cm� W k Cj `t � 0modpN

,k R.`/� 0modpN

and

(53) kD .k1; : : : ; kdCm/2L ;2=Z.L/,8 2G0 W  
�hX

kixi ; log 
i�
D 1

,8j 2 Œd C 1; d Cm� W k Cj `t � 0modpN

, k S.`/� 0modpN :

In order to use the congruence conditions (52) and (53) for an effective computation
of �irr

G;p.s/, we need to enumerate the (p-parts of) the elementary divisors of the
matrices R.`/ and S.`/ as ` runs through the sets ‰pN , N 2N. By Corollary 3.1
we may write

�irr
G;p.s/D

X
N2N0
 2‰

pN

jL W Rad j�s=2jL W L ;2j�1

D

X
N2N0

m2N
dCm
0 ; n2Nm0

NN;m;nq
�
P
i2ŒdCm�.N�mi /s=2�

P
j2Œm�.N�nj /

DPR;S;Qp .s=2; : : : ; s=2I 1; : : : ; 1/: �
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Note added in proof. Theorem A also confirms, for almost all primes, the
conjecture in [23, �7] regarding functional equations for local zeta functions enu-
merating subrings in Zn.
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