
ANNALS OF
MATHEMATICS

anmaah

SECOND SERIES, VOL. 172, NO. 2

September, 2010

The Conley conjecture
By Viktor L. Ginzburg



Annals of Mathematics, 172 (2010), 1127–1180

The Conley conjecture
By VIKTOR L. GINZBURG

Abstract

We prove the Conley conjecture for a closed symplectically aspherical sym-
plectic manifold: a Hamiltonian diffeomorphism of such a manifold has infinitely
many periodic points. More precisely, we show that a Hamiltonian diffeomorphism
with finitely many fixed points has simple periodic points of arbitrarily large period.
This theorem generalizes, for instance, a recent result of Hingston establishing the
Conley conjecture for tori.
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1. Introduction

We show that a Hamiltonian diffeomorphism of a closed symplectically as-
pherical manifold has infinitely many periodic points. More precisely, we prove
that such a diffeomorphism with finitely many fixed points has simple periodic
points of arbitrarily large period. For tori, this fact, recently established by Hingston,
[Hin09], was conjectured by Conley, [Con84], [SZ92] and is frequently referred to
as the Conley conjecture. (See also [FH03], [LC06] and references therein for sim-
ilar results for Hamiltonian diffeomorphisms and homeomorphisms of surfaces.)
The proof given here uses some crucial ideas from [Hin09], but is completely self-
contained.

1.1. Principal results. The main result of the paper is

THEOREM 1.1. Let 'WW !W be a Hamiltonian diffeomorphism of a closed
symplectically aspherical manifold W . Assume that the fixed points of ' are iso-
lated. Then ' has simple periodic points of arbitrarily large period.

We refer the reader to Section 2.1.1 for the definitions. Here we only point
out that a Hamiltonian diffeomorphism is the time-one map of a time-dependent
Hamiltonian flow and that the manifolds W with �2.W /D 0 (e.g., tori and surfaces
of genus greater than zero) are among symplectically aspherical manifolds. Thus,
Theorem 1.1 implies in particular the Conley conjecture for tori, [Hin09], and the
results of [FH03] on Hamiltonian diffeomorphisms of such surfaces.

COROLLARY 1.2. A Hamiltonian diffeomorphism ' of a closed symplecti-
cally aspherical manifold has infinitely many simple periodic points.

Remark 1.3. The example of an irrational rotation of S2 shows that in general
the requirement that W is symplectically aspherical cannot be completely elimi-
nated; see, however, [FH03]. Let H be a periodic in time Hamiltonian giving rise
to '. Since periodic points of ' are in one-to-one correspondence with periodic
orbits of the time-dependent Hamiltonian flow 'tH , Theorem 1.1 and Corollary 1.2
can be viewed as results about periodic orbits of H . Then, in both of the statements,
the periodic orbits can be assumed to be contractible. (It is not hard to see that
contractibility is a property of a fixed point rather than of an orbit, independent of
the choice of H .) Finally note that, as simple examples show, the assumption of
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Theorem 1.1 that the fixed points of ' are isolated cannot be dropped as long as
the periodic orbits are required to be contractible.

There are numerous parallels between the Hamiltonian Conley conjecture con-
sidered here and its Lagrangian counterpart; see, e.g., [Lon00], [Lu09], [Maz08]
and references therein. The similarity between the two problems goes beyond
the obvious analogy of the statements and can also easily be seen on the level of
the proofs, although the methods utilized in [Lon00], [Lu09], [Maz08] are quite
different from the Floer homological techniques used in the present paper. Thus,
for instance, our Proposition 4.7 plays the same role as Bangert’s homological
vanishing method originating from [Ban80], [BK83] in, e.g., [Lon00], [Maz08].

1.2. Methods. In the framework of symplectic topology, there are two essen-
tially different approaches to proving results along the lines of the Conley conjec-
ture. The first approach, due to Conley and Salamon and Zehnder, [CZ84], [SZ92],
is based on an iteration formula for the Conley-Zehnder index, asserting that the in-
dex of an isolated weakly nondegenerate orbit either grows linearly under iterations
or its absolute value does not exceed n� 1, where 2nD dimW . This, in particular,
implies that the local Floer homology of such an orbit eventually becomes zero in
degree n as the order of iteration grows, provided that the orbit remains isolated.
(We refer the reader to Sections 2 and 3 for the definitions. The argument of Sala-
mon and Zehnder, [SZ92], does not rely on the notion of local Floer homology,
but this notion becomes indispensable in the proof of Theorem 1.1.) Since the
Floer homology of W in degree n is nonzero, it follows that when all one-periodic
orbits are weakly nondegenerate, new simple orbits must be created by large prime
iterations to generate the Floer homology in degree n; see [SZ92] for details.

The second approach comprises a broad class of methods and is based on the
idea that a Hamiltonian H with sufficiently large variation must have one-periodic
orbits with nonvanishing action. Since iterating a Hamiltonian diffeomorphism '

has the same effect as, roughly speaking, increasing the variation of H , one can
expect ' to have infinitely many periodic points. When a sufficiently accurate
upper or lower bound on the action is available, the orbits can be shown to be
simple. The results obtained along these lines are numerous and use a variety of
symplectic topological techniques and assumptions on W and H .

For instance, if the support of H is displaceable and the variation of H is
greater than the displacement energy e of the support, one-periodic orbits with
action in the range .0; e� have been shown to exist for many classes of symplec-
tic manifolds and Hamiltonians; see, e.g., [CGK04], [FH94], [FHW94], [FS07],
[Gür08], [HZ94], [Sch00], [Vit92]. Then, the a priori bound on action implies the
existence of simple periodic orbits with nonzero action and arbitrarily large period.
These methods do not rely on particular requirements on the fixed points of ', but
the assumption that the support is displaceable appears at this moment to be crucial.
Within this broad class is also a group of methods applicable to Hamiltonians H
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with sufficiently degenerate large or “flat” maximum and detecting orbits with ac-
tion slightly greater than the maximum of H ; see, e.g., [Gin07], [GG04], [Hin09],
[HZ90], [HZ94], [Ker05], [KL03], [LM95], [MS01], [Oh02]. Iterating ' can be
viewed as stretching H near its maximum, and thus increasing its variation. Hence,
methods from this group can also be used in some instances to prove the existence
of simple periodic orbits of large period. Here the condition that the maximum is in
a certain sense flat is crucial, but the assumption that the support of the Hamiltonian
is displaceable is less important and, in some cases, not required at all. In fact, what
appears to matter is that the set where the maximum is attained is relatively small
(e.g., symplectic as in [GG04] or displaceable as in [LM95] or just isolated as in
[Gin07], [KL03]). It is one of these methods, combined with the Conley-Salamon-
Zehnder approach, that we use in the proof of the Conley conjecture.

A work of Hingston [Hin09] clearly suggests the idea, which is central to our
proof, that the two approaches outlined above can be extended to cover the case of
an arbitrary Hamiltonian. Namely, the method of [SZ92] detects infinitely many
simple periodic points of arbitrarily large periods, unless there exists a strongly
degenerate � -periodic point p such that the local Floer homology groups of the � -th
iteration '� and of a large iteration of '� at p are nonzero in degree n; see Section 4.
Then we show (Proposition 4.5) that the '� is the time-� flow of a � -periodic
Hamiltonian, say Ht , such that p is a (constant) local maximum of Ht for all t
and this maximum is in a certain sense very degenerate; cf. [Hin09]. (However, the
Hessian d2.Ht /p need not be identically zero.) Finally, we prove (Proposition 4.7)
that large iterations of H have periodic orbits with actions arbitrarily close to the
action of the iterated Hamiltonian at p. These orbits are necessarily simple due
to the lower and upper bounds on the action. Proposition 4.7 is established by
using a simple squeezing argument akin to the ones from [BPS03], [GG04]. This
concludes the proof of the theorem.

This argument is extremely flexible and readily extends to manifolds convex
at infinity or geometrically bounded and wide; see [FS07] and [Gür08] for the def-
initions. We will give a detailed proof of the Conley conjecture for such manifolds
elsewhere.

1.3. Organization of the paper. In Section 2, we set notation and conventions,
briefly review elements of Floer theory, and also discuss the properties of loops of
Hamiltonian diffeomorphisms relevant to the proof. Local Floer homology is the
subject of Section 3. In Section 4, we state Propositions 4.5 and 4.7 mentioned
above and derive Theorem 1.1 from these propositions. Proposition 4.5 reduces the
problem to the case of a Hamiltonian with strict, but “flat”, local maximum. This
proposition is proved in Sections 5 and 6 by adapting an argument from [Hin09].
Proposition 4.7 asserting the existence of simple periodic orbits of large period
for such a Hamiltonian and completing the proof of Theorem 1.1 is established in
Section 7.
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2. Preliminaries
2.1. Notation and conventions.

2.1.1. General. Throughout the paper, a smooth m-dimensional manifold is
denoted by M and W stands for a symplectic manifold of dimension 2n, equipped
with a symplectic form !. The manifold .W; !/ is always assumed to be closed
and symplectically aspherical, i.e., !j�2.W / D 0D c1j�2.W /, where c1 is the first
Chern class of W ; see, e.g., [MS04]. An almost complex structure J on W is said
to be compatible with ! if !.�; J �/ is a Riemannian metric on W . When J D Jt
depends on an extra parameter t (time), this condition is required to hold for every t .
A (time-dependent) metric of the form !.�; J �/ is said to be compatible with !.

The group of linear symplectic transformations of a finite-dimensional linear
symplectic space .V; !/ is denoted by Sp.V /. We will also need the fact that
�1.Sp.V // Š Z (see, e.g., [MS95]), and hence H1.Sp.V /IZ/ Š Z. To be more
specific, fixing a linear complex structure J on V , compatible with !, gives rise
to an inclusion U.V / ,! Sp.V / of the unitary group into the symplectic group.
This inclusion is a homotopy equivalence. The isomorphism �1.Sp.V // Š Z is
the composition of the isomorphism �1.Sp.V //D �1.U.V //, the isomorphism of
the fundamental groups induced by detWU.V /! S1 (the unit circle in C), and the
identification �1.S1/Š Z arising from fixing the counter clock-wise orientation
of S1. Note that the resulting isomorphism is independent of the choice of J . The
Maslov index of a loop in Sp.V / is the class of this loop in H1.Sp.V /IZ/Š Z.

2.1.2. Hamiltonians and periodic orbits. We use the notation S1 for the cir-
cle R=Z and the circle R=TZ of circumference T > 0 is denoted by S1T . All
Hamiltonians H on W considered in this paper are assumed to be T -periodic (in
time), i.e., H WS1T �W ! R. We set Ht D H.t; �/ for t 2 S1T . The Hamiltonian
vector field XH of H is defined by iXH! D�dH .

Let 
 WS1T !W be a contractible loop. The action of H on 
 is defined by

AH .
/D A.
/C

Z
S1T

Ht .
.t// dt:

Here A.
/ is the negative symplectic area bounded by 
 , i.e.,

A.
/D�

Z
z

!;

where zWD2!W is such that zjS1T D 
 .
The least action principle asserts that the critical points of AH on the space

of all contractible maps 
 WS1T !W are exactly the contractible T -periodic orbits
of the time-dependent Hamiltonian flow 'tH of H . When the period T is clear
from the context and, in particular, if T D 1, we denote the time-T map 'TH by
'H . The action spectrum S.H/ of H is the set of critical values of AH . This is
a zero measure, closed set; see, e.g., [HZ94], [Sch00]. In this paper we are only
concerned with contractible periodic orbits. A periodic orbit is always assumed to
be contractible, even if this is not explicitly stated.
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Definition 2.1. A T -periodic orbit 
 of H is nondegenerate if the linearized
return map d'TH WT
.0/W ! T
.0/W has no eigenvalues equal to one. Following
[SZ92], we call 
 weakly nondegenerate if at least one of the eigenvalues is differ-
ent from one. When all eigenvalues are equal to one, the orbit is said to be strongly
degenerate.

When 
 is nondegenerate or even weakly nondegenerate, the so-called Conley-
Zehnder index �CZ.
/ 2 Z is defined, up to a sign, as in [Sal99], [SZ92]. More
specifically, in this paper, the Conley-Zehnder index is the negative of that of
[Sal99]. In other words, we normalize �CZ so that �CZ.
/ D n when 
 is a non-
degenerate maximum of an autonomous Hamiltonian with small Hessian. More
generally, when H is autonomous and 
 is a nondegenerate critical point of H such
that the eigenvalues of the Hessian (with respect to a metric compatible with !) are
less than 2�=T , the Conley-Zehnder index of 
 is equal to one half of the negative
signature of the Hessian.

Sometimes, the same Hamiltonian can be treated as T -periodic for different
values of T > 0. For instance, an autonomous Hamiltonian is T -periodic for every
T > 0 and a T -periodic Hamiltonian can also be viewed as T k-periodic for any
integer k. In this paper, it will be essential to keep track of the period. Unless speci-
fied otherwise, every Hamiltonian H considered here is originally one-periodic and
T is always an integer. When we wish to view H as a T -periodic Hamiltonian,
we denote it by H .T / and refer to it as the T -th iteration of H . (The parentheses
here are used to distinguish iterated Hamiltonians from families of Hamiltonians,
say H s , parametrized by s.) Since H .T / is regarded as a T -periodic Hamiltonian,
it makes sense to speak only about T -periodic (or T k-periodic) orbits of H .T /.
Clearly, T -periodic orbits of H .T / are simply T -periodic orbits of H . When

 WS1!W is a one-periodic orbit of H , its T -th iteration is the obviously defined
map 
 .T /WS1T ! W obtained by composing the T -fold covering map S1T ! S1

with 
 . Thus, 
 .T / is a T -periodic orbit of H and H .T /. We call a T -periodic
orbit simple if it is not an iteration of an orbit of a smaller period.

As is well-known, the fixed points of 'H WD '1H are in one-to-one corre-
spondence with (not-necessarily contractible) one-periodic orbits of H . Likewise,
the T -periodic points of 'H , i.e., the fixed points of 'TH , are in one-to-one cor-
respondence with (not-necessarily contractible) T -periodic orbits. In the proof of
Theorem 1.1, we will work with (contractible!) periodic orbits of a Hamiltonian
H whose time-one map is '. In fact, as is easy to see from Section 2.3, the free
homotopy type of the one-periodic orbit of H through a fixed point p of ' is
completely determined by ' and p and is independent of the choice of H . The
same holds for T -periodic points and orbits. Hence, “contractible fixed points or
periodic points” of ', i.e., those with contractible orbits, are well-defined and we
will establish Theorem 1.1 for points in this class.

When K and H are two (say, one-periodic) Hamiltonians, the composition
K#H is defined by the formula .K#H/t DKt CHt ı .'tK/

�1: The flow of K#H
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is 'tK ı'
t
H . In general, K#H is not one-periodic. However, this will be the case

if, for example, H0 � 0�H1. Another instance when the composition K#H of
two one-periodic Hamiltonians is automatically one-periodic is when the flow 'tK
is a loop of Hamiltonian diffeomorphisms, i.e., '1K D id.

2.1.3. Norms with respect to a coordinate system. In what follows, it will be
convenient to use a somewhat unconventional terminology and work with C k-norms
of functions, vector fields, etc. taken with respect to a coordinate system.

Let � be a coordinate system on a neighborhood U of a point p 2Mm, i.e.,
� is a diffeomorphism U ! �.U / � Rm sending p to the origin. (Thus, U is a
part of the data �.) Let f be a function on U or on the entire manifold M . The
C k-norm kf kCk.�/ of f with respect to � is, by definition, the C k-norm of f on
U with respect to the flat metric associated with �, i.e., the pull-back by � of the
standard metric on Rm. The C k-norm with respect to � of a vector field or a field
of operators on U is defined in a similar fashion.

Likewise, the norm kvk„ of a vector v in a finite-dimensional vector space
V with respect to a basis „ is the norm of v with respect to the Euclidean inner
product for which „ is an orthonormal basis. The norm of an operator V ! V with
respect to „ is defined in a similar way. When � is a coordinate system near p, we
denote by �p the natural coordinate basis in TpM arising from �.

Example 2.2. Let AWV ! V be a linear map with all eigenvalues equal to
zero. Then kAk„ can be made arbitrarily small by choosing a suitable basis „. In
other words, for any � > 0 there exists „ such that kAk„ < � . Indeed, in some
basis A is given by an upper triangular matrix with zeros on the diagonal; „ is
then obtained by appropriately scaling the elements of this basis.

Example 2.3. Restricting � to a smaller neighborhood of p reduces the norm
of f . However, one cannot make, say, kf kC1.�/ arbitrarily small by shrinking
U unless f .p/ D 0 and dfp D 0. Indeed, kf kC1.�/ � maxfjf .p/j; kdfpk�pg.
It is clear that for a fixed basis „ in TpM and a function f near p there exists
a coordinate system � with �p D „, such that kf kC1.�/ is arbitrarily close to
maxfjf .p/j; kdfpk„g.

2.2. Floer homology. In this section, we briefly recall the notion of filtered
Floer homology for closed symplectically aspherical manifolds. All definitions and
results mentioned here are quite standard and well-known and we refer the reader
to Floer’s papers [Flo88a], [Flo88b], [Flo89a], [Flo89c], to [BPS03], [FHW94],
[FH94], [FHS95], [SZ92], [Sch00], or to [HZ94], [MS04], [Sal90], [Sal99] for in-
troductory accounts of the construction of Floer homology in this (or more general)
setting.

2.2.1. Definitions. Let us first focus on one-periodic Hamiltonians. Consider
a Hamiltonian H such that all one-periodic orbits of H are nondegenerate. This
is a generic condition and we will call such Hamiltonians nondegenerate. Let
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J D Jt be a (time-dependent: t 2 S1) almost complex structure on W compatible
with !. For two one-periodic orbits x˙ of H denote by MH .x

�; xC; J / the space
of solutions uWS1 �R!W of the Floer equation

(2.1)
@u

@s
CJt .u/

@u

@t
D�rHt .u/

which are asymptotic to x˙ at ˙1, i.e., u.s; t/! x˙.t/ point-wise as s!˙1.
The energy E.u/ of a solution u of the Floer equation, (2.1), is

E.u/D

Z 1
�1





@u@s




2
L2.S1/

ds D

Z 1
�1

Z
S1





@u@t �JrH.u/




2 dt ds;

where we set u.s/ WD u.s; �/WS1 ! W . Every finite energy solution of (2.1) is
asymptotic to some x˙ and

AH .x
�/�AH .x

C/DE.u/:

When J meets certain standard regularity requirements that hold generically
(see, e.g., [FHS95], [SZ92]), the space MH .x

�; xC; J / is a smooth manifold of
dimension �CZ.x

C/��CZ.x
�/. This space carries a natural R-action .� �u/.t; s/D

u.t; s C �/ and we denote by yMH .x
�; xC; J / the quotient MH .x

�; xC; J /=R.
When �CZ.x

C/��CZ.x
�/D 1, the set yMH .x

�; xC; J / is finite and we denote the
number, mod 2, of points in this set by #

�
yMH .x; y; J /

�
.

Let a<b be two points outside S.H/. Denote by CF.a; b/
k

.H/ the vector space
over Z2 generated by one-periodic orbits ofH with �CZ.x/Dk and a<AH .x/<b.
The Floer differential

@WCF.a; b/
k

.H/! CF.a; b/
k�1

.H/

is defined by

@x D
X
y

#
�
yMH .x; y; J /

�
�y;

where the summation is over all y such that �CZ.y/D k� 1 and a < AH .y/ < b.
As is well-known, @2 D 0. The homology HF.a; b/� .H/ of the resulting complex is
called the filtered Floer homology of H for the interval .a; b/. Thus, HF�.H/ WD
HF.�1;1/� .H/ is the ordinary Floer homology. It is a standard fact that HF�.H/D
H�Cn.W IZ2/. In general, HF.a; b/� .H/ depends on the Hamiltonian H , but not
on J .

The subcomplexes CF.�1; b/� .H/, where b 2 R X S.H/, form a filtration
of the total Floer complex CF�.H/ WD CF.�1;1/� .H/, called the action filtration,
and CF.a; b/� .H/ can be identified with the complex CF.�1; b/� .H/=CF.�1; a/� .H/;
see, e.g., [FH94], [Sch00]. Let now a < b < c be three points outside S.H/.
Then, similarly, CF.a; b/� .H/ is a subcomplex of CF.a; c/� .H/, and CF.b; c/� .H/ is
naturally isomorphic to CF.a; c/� .H/=CF.a; b/� .H/. As a result, we have the long
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exact sequence

(2.2) � � � ! HF.a; b/� .H/! HF.a; c/� .H/! HF.b; c/� .H/! HF.a; b/
��1 .H/! : : : :

The filtered Floer homology of H is defined even when the periodic orbits
of H are not necessarily nondegenerate, provided that a < b are outside S.H/.
Namely, let zH be a C 2-small perturbation1 of H with nondegenerate one-periodic
orbits. The filtered Floer homology HF.a; b/� .H/ of H is by definition HF.a; b/� . zH/.
(Clearly, a < b are still outside S. zH/.) These groups are canonically isomorphic
for different choices of zH (close to H ) and the results discussed here hold for
HF.a; b/� .H/; see, e.g., [BPS03], [FH94], [FHW94], [Sch00], [Vit99]. In fact,
when an assertion concerns individual Hamiltonians (as opposed to families of
Hamiltonians), it is usually sufficient to prove the assertion in the nondegenerate
case, for then it extends “by continuity” to all Hamiltonians.

These constructions carry over to T -periodic Hamiltonians word-for-word by
replacing one-periodic orbits with T -periodic ones. When H is one-periodic, but
we treat it as T -periodic for some integer T > 0, we denote the resulting Floer
homology groups HF.a; b/�

�
H .T /

�
.

2.2.2. Homotopy maps. Consider two nondegenerate Hamiltonians H 0 and
H 1. Let H s be a homotopy from H 0 to H 1. By definition, this is a family of
Hamiltonians parametrized by s 2 R such that H s �H 0 when s is large negative
and H s �H 1 when s is large positive. (Strictly speaking, the notion of homotopy
includes also a family of almost complex structures Js; see, e.g., [BPS03], [FH94],
[FHW94], [Sal99]. We suppress this part of the homotopy structure in the notation.)
Assume, in addition, that the homotopy is monotone decreasing, i.e., H s

t .p/ is a
decreasing function of s for all p 2 W and t 2 S1. (Thus, in particular, H 0 �

H 1.) Then, whenever a < b are outside S.H 0/ and S.H 1/, the homotopy H s

induces a homomorphism of complexes ‰H0;H1 WCF.a; b/� .H 0/! CF.a; b/� .H 1/

by the standard continuation construction; see, e.g., [BPS03], [FHW94], [FH94],
[Sch00]. Namely, for a one-periodic orbit x of H 0 and a one-periodic orbit y
of H 1, let MH .x; y; J / be the space of solutions of (2.1) with H s on the right
hand side, asymptotic to x and, respectively, y at ˙1. Under the well-known
regularity requirements on J andH s , the space MH s .x; y; J / is a smooth manifold
of dimension �CZ.y/��CZ.x/; see, e.g., [FH94], [Sal99], [SZ92], [Sch00], [Sch93].
Moreover, MH s .x; y; J / is a finite collection of points when �CZ.y/D�CZ.x/. The
map ‰H0;H1 is defined by

(2.3) ‰H0;H1.x/D
X
y

#
�
MH .x; y; J /

�
�y;

where the summation is over all y such that �CZ.y/D �CZ.x/ and a < AH .y/ < b.

1For the sake of brevity, we refer to the function zH , rather than the difference zH �H , as a
perturbation of H . However, it is the difference zH �H that is required to be C 2-small.
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The induced homotopy map in the filtered Floer homology, also denoted by
‰H0;H1 , is independent of the decreasing homotopy H s and commutes with the
maps from the long exact sequence (2.2); see, e.g., [BPS03], [FH94], [Sal99],
[SZ92], [Sch93], [Sch00]. By “continuity” in the Hamiltonians and the homotopy,
this construction extends to all (not necessarily nondegenerate) Hamiltonians and
all decreasing (but not necessarily regular) homotopies as long as a < b are not in
S.H 0/ and S.H 1/.

A (nonmonotone) homotopy H s from H 0 to H 1 with a and b outside S.H s/

for all s gives rise to an isomorphism between the groups HF.a; b/� .H s/, and hence,
in particular,

(2.4) HF.a; b/� .H 0/Š HF.a; b/� .H 1/I

see [BPS03], [Vit99]. This isomorphism is defined by breaking the homotopy H s

into a composition of homotopiesH i;s close to the identity. Each of the homotopies
H i;s and its inverse homotopy increase action by no more than some small " > 0.
Then, it is shown that the map in HF.a; b/� induced by H i;s is an isomorphism.
Although this construction requires additional choices, it is not hard to see that
the isomorphism (2.4) is uniquely determined by the homotopy H s . Furthermore,
(2.4) commutes with the maps from the long exact sequence (2.2), provided that all
three points a<b < c are outside S.H s/ for all s; see [Gin07]. Note also that when
H s is a decreasing homotopy, the isomorphism (2.4) coincides with ‰H0;H1 .

Example 2.4. A homotopy H s is said to be isospectral if S.H s/ is indepen-
dent of s. In this case, the isomorphism (2.4) is defined for any a < b outside
S.H s/.

For instance, let  ts , where t 2 S1 and s 2 Œ0; 1�, be a family of loops of
Hamiltonian diffeomorphisms based at id, i.e.,  0s D id for all s. In other words,
 ts is a based homotopy from the loop  t0 to the loop  t1. Let Gst be a family of
one-periodic Hamiltonians generating these loops and let H be a fixed one-periodic
Hamiltonian. Then H s WDGs#H is an isospectral homotopy, provided that Gs are
suitably normalized. (Namely, A.Gs/D 0 for all s; see �2.3.)

It is easy to see that if K �H s for all s, the isomorphism (2.4) intertwines
monotone homotopy homomorphisms from K to H 0 and to H 1, i.e., the diagram

(2.5) HF.a; b/� .K/

‰
K;H0

��

‰
K;H1

''

HF.a; b/� .H 0/
Š // HF.a; b/� .H 1/

is commutative. Note that it is not at all clear whether the same is true if we only
require that K �H 0 and K �H 1.
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2.2.3. Nontriviality criterion for a homotopy map. We conclude this section
by establishing a technical result, used later in the proof, giving a criterion for a
monotone homotopy map to be nonzero.

LEMMA 2.5. Let H s be a monotone decreasing homotopy such that a point
p is a nondegenerate constant one-periodic orbit of H s and H s

t .p/D c for all s
and t . Then the monotone homotopy map

‰H0;H1 WHF.a; b/� .H 0/! HF.a; b/� .H 1/

is nontrivial, provided that S.H 0/\ .a; b/D fcg D S.H 1/\ .a; b/.

Remark 2.6. In fact, we will prove a stronger result. Let us perturb H 0 and
H 1 away from p, making these Hamiltonians nondegenerate. Then p is a cycle in
CF.a; b/� .H 0/ and CF.a; b/� .H 1/ and, moreover, this cycle is not homologous to any
cycle that does not include p. (This is easy to see from the energy estimates; see,
e.g., [Sal90], [Sal99].) In particular, Œp� ¤ 0 in HF.a; b/� .H 0/ and HF.a; b/� .H 1/

and we will show that ‰H0;H1 sends Œp� 2 HF.a; b/� .H 0/ to Œp� 2 HF.a; b/� .H 1/.
Moreover, a simple modification of our argument proves the following: There

exist C 2-small nondegenerate perturbations yH 0 of H 0 and yH 1 of H 1 for which
p is still a nondegenerate constant one-periodic orbit, and a regular monotone
decreasing homotopy yH s from yH 0 to yH 1 such that the cycle p for yH 0 is connected
to p for yH 1 by an odd number of homotopy trajectories and all such trajectories
are contained in a small neighborhood of p. (Note that we do not assume that p is a
nondegenerate constant one-periodic orbit of yH s for all s or that yH 0.p/D yH 1.p/.)
Of course, the lemma can be further generalized. For instance, the constant orbit
p can be replaced by a fixed one-periodic orbit.

Proof of Lemma 2.5. Let us perturb the homotopy on the complement of a
neighborhood U of p, keeping the homotopy monotone decreasing, to ensure that
all but a finite number of the Hamiltonians H s are nondegenerate. In particular,
we will assume that H 0 and H 1 are such. This can be achieved by an arbitrarily
small perturbation of H s . We keep the notation H s for the perturbed homotopy.

If the homotopy H s were regular, we would simply argue that the constant
connecting trajectory u � p is the only connecting trajectory from p for H 0 to
p for H 1. Indeed, 0 � E.v/ D AH0.p/�AH1.p/ D 0 for any such connecting
trajectory v, and thus v must be constant. However, while it is easy to guarantee
that H s is regular away from p by reasoning as in, e.g., [FH94], [FHS95], it is
not a priori obvious that the transversality requirements can be satisfied for u� p
because of the constraint H s

t .p/D c. Rather than checking regularity of u by a
direct calculation, we chose to circumvent this difficulty.

As in the proof of (2.4) (see, e.g., [BPS03], [Gin07], [Vit99]), we can break
the homotopy H s by reparametrization of s into a composition of homotopies
Ki;s from Ki WD H si to KiC1 WD H siC1 with K0 D H 0 and Kk D H 1. These
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homotopies are monotone, since H s is monotone, and close to the identity homo-
topy. For every " > 0, this can be done so that the inverse homotopy ‰KiC1;Ki
from KiC1 to Ki increases the actions by no more than " > 0. Without loss of
generality, we may assume that the Hamiltonians Ki are nondegenerate. Since all
“direct” homotopies are monotone decreasing, we have

‰H0;H1 D‰Kk�1;Kk ı � � � ı‰K1;K2 ı‰K0;K1 :

Observe that it suffices to establish the lemma for a and b arbitrarily close to
c. Let U be so small that p is the only one-periodic trajectory of H s entering U for
all s. (Since p is isolated for all H s , such a neighborhood U exists.) There exists a
constant "U > 0 such that every Floer anti-gradient trajectory v connecting p with
any other one-periodic orbit with action in the range .a; b/ has energy E.v/ > "U
for any regular Hamiltonian in the family H s; cf. [Sal90], [Sal99]. In particular,
this holds for Ki and KiC1 and, moreover, for every regular Hamiltonian in the
homotopy Ki;s . We will pick a and b so that c � "U < a and b < cC "U . Then,
for every Ki the point p is a cycle in CF.a; b/� .Ki / and p is not homologous to any
cycle that does not include p.

Now it is sufficient to prove that ‰Ki ;KiC1 sends Œp� 2 HF.a; b/� .Ki / to Œp� 2

HF.a; b/� .KiC1/. To this end, let us first prove that ‰Ki ;KiC1.Œp�/ ¤ 0. We may
assume that none of the points a, aC ", b, bC " is in S.Ki / or in S.KiC1/.

It is easy to see (see, e.g., [Gin07]) that

(2.6) ‰KiC1;Ki ı‰Ki ;KiC1 WHF.a; b/� .Ki /! HF.aC"; bC"/� .Ki /

is the natural “quotient-inclusion” map, i.e., the composition of the “quotient” and
“inclusion” maps HF.a; b/� .Ki /! HF.aC"; b/� .Ki /! HF.aC"; bC"/� .Ki /: Note that
"U is completely determined byH s and U and is independent of howH s is broken
into the homotopies Ki;s , and thus of " > 0. Pick " > 0 so that aC " < c and
bC " < cC "U . Then p is a cycle in CF.aC"; bC"/� .Ki /, which is not homologous
to any cycle that does not include p. As a consequence, Œp� ¤ 0 in both of the
Floer homology groups in (2.6) and ‰KiC1;Ki ı‰Ki ;KiC1.Œp�/D Œp�. Therefore,

‰Ki ;KiC1.Œp�/¤ 0 in HF.a; b/� .KiC1/.
To show that ‰Ki ;KiC1.Œp�/D Œp�, we need to refine our choice of "U . Note

that there exists "U > 0 such that, in addition to the above requirements, every
Ki;s-homotopy trajectory starting at p and leaving U has energy greater than "U .
Then, clearly, the same is true for every sufficiently C 2-small perturbation yKi;s

of Ki;s . Again, "U depends only on H s and U , but not on breaking H s into the
homotopies Ki;s . (The existence of "U > 0 with these properties readily follows
from energy estimates for connecting trajectories; cf. [Sal90], [Sal99].) Pick a C 2-
small regular perturbation yKi;s of Ki;s . We may still assume that yKi;s is monotone
decreasing and p is a nondegenerate constant orbit of yKi and yKiC1. However, p
is not required to be a constant one-periodic orbit of yKi;s for all s; nor is yKi;st .p/
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constant as a function of s and t . Clearly, the inverse homotopy to yKi;s does
not increase action by more than " > 0. Hence, in the homological analysis of
the previous paragraph we can replace Ki and KiC1 by yKi and yKiC1. In fact,
the original and perturbed Hamiltonians have equal filtered Floer homology for
relevant action intervals and the maps ‰Ki ;KiC1 and ‰KiC1;Ki are induced by
the maps for yKi;s acting on the level of complexes. Therefore, ‰ yKi ; yKiC1.Œp�/D

‰Ki ;KiC1.Œp�/¤ 0 in HF.a; b/� . yKiC1/D HF.a; b/� .KiC1/, and thus ‰ yKi ; yKiC1.p/

¤ 0 in CF.a; b/� . yKiC1/. Since c�"U <a and cC"U <b and every connecting orbit
leaving U must have energy greater than "U , we conclude that ‰ yKi ; yKiC1.p/D p
in the Floer complexes, and hence in the Floer homology. �

2.3. Loops of Hamiltonian diffeomorphisms. In this section, we recall a few
well-known facts about loops of Hamiltonian diffeomorphisms of W . We will
focus on loops parametrized by S1, but obviously all results discussed here hold
for loops of any period. Furthermore, throughout the paper all loops  D  t are
assumed to be based at id, i.e.,  1 D  0 D id; contractible loops are thus required
to be contractible in this class.

Recall that, as is proved in [Sch00], the filtered Floer homology of the Hamil-
tonian H is determined, up to a shift of filtration, entirely by the time-one map
'H and is independent of the Hamiltonian H . This fact translates to geometric
properties of loops of Hamiltonian diffeomorphisms, which are briefly reviewed
below, and is actually proved by first establishing these properties.

2.3.1. Global loops. Let  t D 'tG , t 2 S1, be a loop generated by a periodic
Hamiltonian G. Then all orbits 
.t/ D  t .p/ of  t with t 2 S1 and p 2 W
are one-periodic and lie in the same homotopy class. Hence, every orbit of G is
contractible by the Arnold conjecture. The action A.G/ WD AG.
/ is independent
of p 2 W (see, e.g., [HZ94], [Sch00]) and A.G/ D vol.W /�1

R 1
0

R
W G !n dt ,

where vol.W / is the symplectic volume of W . The latter identity is easy to prove
when the loop  t is contractible (see, e.g., [Gin07], [Sch00]); in the general case,
this is a nontrivial result, [Sch00].

For 
 as above pick a trivialization of T W j
 that extends to a trivialization of
T W along a disk bounded by 
 . Using this trivialization, we can view the maps
d t WT
.0/W ! T
.t/W as a loop in Sp.T
.0/W /. Hence, the linearization d t

along 
 gives rise to an element in �1.Sp.T
.0/W //D Z, which could be called
the Maslov index, �. /, of the loop  t if it were nontrivial; cf. [SZ92], [Sal99].
The Maslov index is well-defined: it is independent of 
 , the trivialization, and
the disc. (The latter follows from the fact that c1.W /j�2.W / D 0.) However, as is
well-known and as we will soon reprove, �. /D 0; see also, e.g., [Sch00].

Let H be a periodic Hamiltonian on W . Recall that G#H is the Hamiltonian
generating the flow 'tG'

t
H . This Hamiltonian is automatically one-periodic and its

time-one map is 'H . We claim that there exists an isomorphism of filtered Floer
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homology

(2.7) HF.a; b/� .H/Š HF.aCA.G/; bCA.G//� .G#H/:

Indeed, composition with  t D 'tG sends one-periodic orbits of H to one-periodic
orbits of G#H with shift of action by A.G/ and shift of Conley-Zehnder indices by
�2�. /. (See, e.g., [Sal99], [Sch00]; the negative sign is a result of the difference
in conventions.) Furthermore, let u be a Floer anti-gradient trajectory for H and a
time-dependent almost complex structure J . Then, as a straightforward calculation
shows,  .u/.s; t/ WD  t .u.s; t// is a Floer anti-gradient trajectory for G#H and
the almost complex structure QJt WD d t ı Jt ı .d t /�1. Furthermore, it is clear
that the transversality requirements are satisfied for .H; J / if and only if they are
satisfied for .G#H; QJ /. Therefore, the composition with  commutes with the
Floer differential and thus induces an isomorphism of Floer complexes (and hence
homology groups) shifting action by A.G/ and grading by �2�. /. Applying this
construction to the full Floer homology HF�.H/ŠH�Cn.W /Š HF�.G#H/, we
see that the grading shift must be zero, i.e., �. /D 0.

Remark 2.7. When the loop  is contractible, the existence of an isomorphism
(2.7) readily follows from (2.4); see Example 2.4. However, it is not clear whether
this is the same isomorphism as constructed above.

2.3.2. Local loops. Let now  t be a loop of (the germs of) Hamiltonian dif-
feomorphisms at p 2 W generated by G. In other words, the maps  t and the
Hamiltonian G are defined on a small neighborhood of p and  t .p/D p for all
t 2 S1. Then the action A.G/ and the Maslov index �. / are introduced exactly
as above with the orbit 
 taken sufficiently close to p. In fact, we can set 
 � p
and hence A.G/ D

R 1
0 Gt .p/ dt and �. / is just the Maslov index of the loop

d tp in Sp.TpW /. Note that in this case �. / need not be zero.
We conclude this section by giving a necessary and sufficient condition, to be

used later, for  to extend to a loop of global Hamiltonian diffeomorphisms of W .

LEMMA 2.8. Let  t , t 2 S1, be a loop of germs of Hamiltonian diffeomor-
phisms at p 2W . The following conditions are equivalent:

(i) the loop  extends to a loop of global Hamiltonian diffeomorphisms of W ,

(ii) the loop  extends to a loop of global Hamiltonian diffeomorphisms of W ,
contractible in the class of loops fixing p,

(iii) the loop  is contractible in the group of germs of Hamiltonian diffeomor-
phisms at p,

(iv) �. /D 0.

Proof. The implications (ii))(i) and (iii))(iv) are clear and (i))(iv) is
established above.
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To prove that (iv))(iii), we identify a neighborhood of p in W with a neigh-
borhood of the origin in R2n. Then, as is easy to see, the loop  t is homo-
topy equivalent to its linearization d t , a loop of (germs of) linear maps. By
the definition of the Maslov index, d t is contractible in Sp.R2n/ if and only if
�. / WD �.d /D 0.

To complete the proof of the lemma, it remains to show that (iii))(ii).
To this end, let us first analyze the case where  t is C 1-close to the identity.

Fixing a small neighborhood U of p, we identify a neighborhood of the diagonal
in U �U with a neighborhood of the zero section in T �U . Then the graphs of
 t in U �U turn into Lagrangian sections of T �U . These sections are the graphs
of exact forms dft on U , where all ft are C 2-small and f0 � 0 � f1. Then
we extend (the germs of) the functions ft to C 2-small functions Qft on W such
that Qf0 � 0 � Qf1. The graphs of d Qft in T �W form a loop of exact Lagrangian
submanifolds which are C 1-close to the zero section. Thus, this loop can be viewed
as a loop of Hamiltonian diffeomorphisms of W . It is clear that the resulting loop
is contractible in the class of loops fixing p.

To deal with the general case, consider a family  s , s 2 Œ0; 1�, of local loops
with  0 � id and  t1 D  

t . Let 0D s0 < s1 < � � � < sk D 1 be a partition of the
interval Œ0; 1� such that the loops  si and  siC1 are C 1-close for all iD0; : : : ; k�1.
In particular, the loop  s1 is C 1-close to  0D id, and thus extends to a contractible
loop z s1 on W . Arguing inductively, assume that a contractible extension z si of
 si has been constructed. Consider the loop �t D  tsiC1. 

t
si
/�1 defined near p.

This loop is C 1-close to the identity, for  siC1 and  si are C 1-close. Hence,
� extends to a contractible loop Q� on W . Then z tsiC1 WD Q�

t z tsi is the required
extension of  siC1 , contractible in the class of loops fixing p. �

Remark 2.9. It is clear from the proof of Lemma 2.8 that the extension of the
germ of a loop near p to a global loop fixing p can be carried out with some degree
of control of the C k-norm and the support of the loop. We will need the following
simple fact, which can be easily verified by adapting the proof of the implication
(iii))(ii).

Assume that  is the germ of a loop near p and the linearization of  at p
is equal to the identity: d tp D I for all t . Then  extends to a loop z of global
Hamiltonian diffeomorphisms of W such that z is contractible in the class of loops
fixing p and having identity linearization at p.

3. Local Floer homology

3.1. Local Morse homology. Let f WMm ! R be a smooth function on a
manifold M and let p 2M be an isolated critical point of f . Fix a small neighbor-
hood U of p containing no other critical points of f and consider a small generic
perturbation Qf of f in U . To be more precise, Qf is Morse inside U and C 1-close
to f . Then, as is easy to see, for any two critical points of Qf in U , all anti-gradient
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trajectories connecting these two points are contained in U . Moreover, the same
is true for broken trajectories connecting these two points. As a consequence, the
vector space (over Z2) generated by the critical points of Qf in U is a complex with
(Morse) differential defined in the standard way. (See, e.g., [Sch93].) Furthermore,
the continuation argument shows that the homology of this complex, denoted here
by HMloc

� .f; p/ and referred to as the local Morse homology of f at p, is inde-
pendent of the choice of Qf . This construction is a particular case of the one from
[Flo89c].

Example 3.1. Assume that p is a nondegenerate critical point of f of index k.
Then HMloc

� .f; p/D Z2 when � D k and HMloc
� .f; p/D 0 otherwise.

Example 3.2. When p is a strict local maximum of f , we have HMloc
m .f; p/

D Z2. Indeed, in this case, as is easy to see from standard Morse theory,

HMloc
m .f; p/D Hm.ff � f .p/� "g; ff D f .p/� "g/D Z2;

where " > 0 is assumed to be small and such that f .p/� " is a regular value of f .

We will need the following two properties of local Morse homology:

(LM1) Let fs , s 2 Œ0; 1�, be a family of smooth functions with uniformly isolated
critical point p, i.e., p is the only critical point of fs , for all s, in some neigh-
borhood of p independent of s. Then HMloc

� .fs; p/ is constant throughout
the family, and hence HMloc

� .f0; p/DHMloc
� .f1; p/; cf. [GM69, Lemma 4].

(LM2) The function f has a (strict) local maximum at p if and only if HMloc
m .f; p/

¤ 0, where mD dimM .

The first assertion, (LM1), is again established by the continuation argument;
cf. [Sch93]. We emphasize that here the assumption that p is uniformly isolated is
essential and cannot be replaced by the weaker condition that p is just an isolated
critical point of fs for all s. (Example: fs.x/D sx2C .1� s/x3 on R with p D 0.
The author is grateful to Doris Hein for this remark.)

Regarding (LM2) first note that, by Example 3.2, HMloc
m .f; p/¤ 0 when f has

a strict local maximum at p. The converse requires a proof although the argument
is quite standard.

Proof of the implication .(/ in (LM2). Denote by  t the anti-gradient flow
of f . Let B be a closed connected neighborhood of p with piecewise smooth
boundary @B such that whenever x 2B and  t .x/2B the entire trajectory segment
 � .x/ with � 2 Œ0; t � is also in B , and p is the only critical point of f contained
in B . We call B a Gromoll-Meyer neighborhood of p. It is not hard to show that
p has an (arbitrarily small) Gromoll-Meyer neighborhood; see [Cha93, pp. 49–50]
or [GM69]. (Strictly speaking, the above definition is slightly different from the
one used in [Cha93]. However, the existence proof given in [Cha93, pp. 49–50]
goes through with no modifications.) When Qf is a C 2-small generic perturbation
of f supported in B , the Morse complex of Qf jB is defined and its homology is



THE CONLEY CONJECTURE 1143

equal to HMloc
� .f; p/. (The fact that @2 D 0 follows from the requirements on B .)

Assume that HMloc
m .f; p/¤ 0. Then there exists a nonzero cycle C of degree m

in the Morse complex of Qf jB . Let V be the closure of the union of the unstable
manifolds of Qf jB for all local maxima entering C . The set V is the closure of a
domain with piecewise smooth boundary. The condition that C is a cycle implies
that for every critical point x of Qf in V , the intersection of the unstable manifold
of x with B is contained entirely in the interior of V . Hence, @V � @B , and thus
B D V . It follows that at every smooth point z 2 @B , the gradient r Qf .z/Drf .z/
either points inward or is tangent to @B .

Consider a Gromoll-Meyer neighborhood N of p. Note that for a small
generic " > 0 the connected component B of N \ ff .p/� " � f � f .p/C "g
containing p is also a Gromoll-Meyer neighborhood. Clearly, when p is not a local
maximum of f , there are smooth points on @B where rf points inward, provided
that " > 0 is small. As a consequence of the above analysis, HMloc

m .f; p/D 0 if p
is not a local maximum. This completes the proof of the implication .(/. �

Remark 3.3. Generalizing Example 3.2 and the proof of (LM2), it is not hard
to relate local Morse homology to local homology of a function, introduced in
[Mor96]; see also [Cha93], [GM69]. However, we do not touch upon this question,
for such a generalization is not necessary for the proof of Theorem 1.1. In the
setting of local homology, the analogues of (LM1) and (LM2) are established in
[Cha93], [GM69] and, respectively, in [Hin93], [Hin09].

3.2. Local Floer homology: the definition and basic properties. Let 
 be an
isolated one-periodic orbit of a Hamiltonian H WS1 �W ! R. Pick a sufficiently
small tubular neighborhood U of 
 and consider a nondegenerate C 2-small per-
turbation zH of H supported in U . More specifically, let U be a neighborhood of

.S1/, where 
 is viewed as a curve in the extended phase space S1 �W , and let
zH be a Hamiltonian C 2-close to H , equal to H outside of U , and such that all

one-periodic orbits of zH that enter U are nondegenerate. (Such perturbations zH do
exist; see [SZ92, Theorem 9.1].) Abusing notation, we will treat U simultaneously
as an open set in W and in S1 �W .

Consider one-periodic orbits of zH contained in U . Every anti-gradient trajec-
tory u connecting two such orbits is also contained in U , provided that k zH �HkC2
and supp. zH �H/ are small enough. Indeed, the energy E.u/ is equal to the
difference of action values on the periodic orbits, and thus is bounded from above
by O.k zH �HkC2/. The C 2-norm of zH is bounded from above by a constant
independent of zH , say 2kHkC2 . Therefore, j@suj is pointwise uniformly bounded
by O.k zH �HkC2/, and it follows that u takes values in U ; see [Sal90], [Sal99].
Note also that for a suitable small perturbation of a fixed almost complex struc-
ture on W the transversality requirements are satisfied for moduli spaces of Floer
anti-gradient trajectories connecting one-periodic orbits zH contained in U ; see
[FHS95], [SZ92].
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By the compactness theorem, every broken anti-gradient trajectory u con-
necting two one-periodic orbits in U lies entirely in U . Hence, the vector space
(over Z2) generated by one-periodic orbits of zH in U is a complex with (Floer)
differential defined in the standard way. The continuation argument (see, e.g.,
[SZ92]) shows that the homology of this complex is independent of the choice of
zH and of the almost complex structure. We refer to the resulting homology group

HFloc
� .H; 
/ as the local Floer homology of H at 
 . Homology groups of this type

were first considered (in a more general setting) by Floer in [Flo89c], [Flo89b]; see
also [Poź99, �3.3.4]. In fact, an orbit 
 can be replaced by a connected isolated set
� of one-periodic orbits of H ; see [Flo89c], [Flo89b], [Poź99]. (Note that AH j�
is constant, for AH is continuous and S.H/ is nowhere dense.)

Example 3.4. Assume 
 is nondegenerate and �CZ.
/D k. Then HFloc
� .H; 
/

D Z2 when � D k and HFloc
� .H; 
/D 0 otherwise.

We will need the following properties of local Floer homology:

(LF1) Let H s , s 2 Œ0; 1�, be a family of Hamiltonians such that 
 is a uniformly
isolated one-periodic orbit for H s , i.e., 
 is the only periodic orbit of H s ,
for all s, in some open set independent of s. Then HFloc

� .H
s; 
/ is constant

throughout the family, and hence HFloc
� .H

0; 
/D HFloc
� .H

1; 
/.

This is again an immediate consequence of the continuation argument. How-
ever, it is worth pointing out that unless H s is monotone decreasing, the isomor-
phism HFloc

� .H
0; 
/ D HFloc

� .H
1; 
/ is not induced by the homotopy H s in the

same sense as the homomorphism ‰H0;H1 is induced by a monotone homotopy;
see (2.3). The isomorphism in question is constructed similarly to (2.4) by breaking
H s into a composition of homotopies close to the identity.

Local Floer homology spaces are building blocks for filtered Floer homology.
Namely, essentially by definition, we have the following

(LF2) Let c 2 R be such that all one-periodic orbits 
i of H with action c are
isolated. (As a consequence, there are only finitely many such orbits.) Then,
if " > 0 is small enough,

HF.c�"; cC"/� .H/D
M
i

HFloc
� .H; 
i /:

In particular, if all one-periodic orbits 
 ofH are isolated and HFloc
k
.H; 
/D0

for some k and all 
 , we have HFk.H/D 0 by the long exact sequence (2.2)
of filtered Floer homology.

The effect on local Floer homology of the composition of H with a loop of
Hamiltonian diffeomorphisms is the same as in the global setting and is established
in a similar fashion; see Section 2.3.

(LF3) Let  t D 'tG be a loop of Hamiltonian diffeomorphisms of W . Then

HFloc
� .G#H; .
//D HFloc

� .H; 
/
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for every isolated one-periodic orbit 
 of H , where  .
/ stands for the
one-periodic orbit  t .
.t// of G#H corresponding to 
 ; see Section 2.3.

As is clear from the definition of local Floer homology, H need not be a
function on the entire manifold W — it is sufficient to consider Hamiltonians
defined only on a neighborhood of 
 . For the sake of simplicity, we focus on
the particular case, relevant here, where 
.t/ � p is a constant orbit, and hence
dHt .p/D 0 for all t 2 S1. Then (LF1) still holds and (LF3) takes the following
form:

(LF4) Let  t D 'tG be a loop of Hamiltonian diffeomorphisms defined on a neigh-
borhood of p and fixing p (i.e.,  t .p/D p for all t 2 S1). Then

HFloc
� .G#H;p/D HFloc

��2�.H; p/;

where � is the Maslov index of the loop t 7! d tp 2 Sp.TpW /.

Note that in (LF3), in contrast with (LF4), we a priori know that � D 0 as
is pointed out in Section 2.3. Hence, the shift of degrees does not occur when  t

is a global loop. In other words, comparing (LF3) and (LF4), we can say that the
group HFloc

� .H; 
/ is completely determined by the Hamiltonian diffeomorphism
'H WW ! W and its fixed point 
.0/, while the germ of 'H at p determines
HFloc
� .H; p/ only up to a shift in degree. The degree depends on the class of 'tH

in the universal covering of the group of germs of Hamiltonian diffeomorphisms.
Finally note that in the construction of local Floer homology the Hamiltonian

H need not have period one. The definitions and results above extend word-for-
word to T -periodic Hamiltonians and, in particular, to the T -th iteration H .T / of a
one-periodic Hamiltonian H as long as the T -periodic orbit in question is isolated.

3.3. Local Floer homology via local Morse homology. A fundamental prop-
erty of Floer homology is that HF�.H/ is equal to the Morse homology of a smooth
function on W (and thus to the homology of W ). The key to establishing this fact
is identifying HF�.H/ with HM�Cn.H/, when the Hamiltonian H is autonomous
and C 2-small; see [FHS95], [SZ92]. A similar identification holds for local Floer
homology. We consider here the case of T -periodic Hamiltonians, for this is the
(superficially more general) situation where the results will be applied in the sub-
sequent sections.

Example 3.5. Assume that p is an isolated critical point of an autonomous
Hamiltonian F and

(3.1) T � kd2Fpk< 2�:

Then HFloc
�

�
F .T /; p

�
D HMloc

�Cn.F; p/. Indeed, when the condition (3.1) is sat-
isfied, the Hamiltonians sF , s 2 .0; 1�, have no nontrivial T -periodic orbits (uni-
formly) near p. (See [HZ94, pp. 184–185] or the proof of Lemma 3.6 below.)
Thus, p is a uniformly isolated T -periodic orbit of sF for s 2 Œ"; 1� when " > 0
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is small, and HFloc
�

�
sF .T /; p

�
is constant throughout this family by (LF1). The

argument of [FHS95], [SZ92] shows that the Floer complex of sF .T / D sT �F is
equal to the local Morse complex of F when s is close to zero.

In what follows, we will need a slightly more general version of this fact,
where the Hamiltonian is “close” to a function independent of time.

LEMMA 3.6. Let F be a smooth function and let K be a T -periodic Hamil-
tonian, both defined on a neighborhood of a point p. Assume that p is a constant
T -periodic orbit of K and an isolated critical point of F , and that the following
conditions are satisfied:

� The inequalities kXKt �XF k � "kXF k and k PXKtk � "kXF k hold pointwise
near p for all t 2 S1T and some " > 0. (The dot stands for the derivative with
respect to time.)

� The Hessians d2.Kt /p and d2Fp and the constant " > 0 are sufficiently small.
Namely, " < 1 and

(3.2) T �
�
".1� "/�1Cmax

t
kd2.Kt /pkCkd

2Fpk
�
< 2�:

Then p is an isolated T -periodic orbit of K. Furthermore,

(a) HFloc
� .K

.T /; p/D HMloc
�Cn.F; p/;

(b) if HFloc
n .K

.T /; p/ ¤ 0, the functions Kt for all t and F have a strict local
maximum at p.

Remark 3.7. The requirement of this lemma, asserting that K is in a certain
sense close to F , plays a crucial role in our proof of Theorem 1.1 (cf. Lemmas 5.2
and 6.1) and in the argument of [Hin09]. To the best of the author’s knowledge, this
requirement is originally introduced in [Hin09, Lemma 4] as that K is relatively
autonomous. In what follows, we will sometimes call F a reference function and
say that the pair .F;K/ meets the requirements of Lemma 3.6.

Note also that the condition that p is a constant T -periodic orbit of K is
superfluous: it is a consequence of other hypotheses of the lemma. Indeed, we
have kXKt .p/ �XF .p/k � "kXF .p/k, where XF .p/ D 0 since p is a critical
point of F . Hence, XKt .p/D 0 for all t 2 S1T .

Proof. The statement is local and we may assume that p D 0 2 R2n D W .
Consider the family of Hamiltonians Ks D .1� s/KC sF starting with K0 DK
and ending with K1 D F . We claim that 
 � p is a uniformly isolated T -periodic
orbit of Ks for s 2 Œ0; 1�.

We show this by adapting the proof of [HZ94, Proposition 17, p. 184]. Fix
r > 0 and let Br be the ball of radius r centered at p. Since p is a constant T -peri-
odic orbit of Ks , every T -periodic orbit 
 of Ks with 
.0/ sufficiently close to p
is contained in Br . Recall also that 2�kzkL2 � T kPzkL2 for any map zWS1T ! R2n
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with zero mean. Applying this inequality to z D P
 DXKs .
/, we obtain

2�

T
� k P
kL2 � k R
kL2

D





 ddt XKs .
/





L2

�


 PXKs .
/

L2 C 

r2Ks.
/ P


L2
� " kXF .
/kL2 C

�
max
t
kd2.Kst /pkCO.r/

�
k P
kL2 :

Furthermore, from the first requirement on XF and XK , it is easy to see that

(3.3) kXF k � .1� .1� s/"/
�1
kXKsk � .1� "/

�1
kXKsk

pointwise. Hence,

2�

T
� k P
kL2 � ".1� "/

�1
kXKs .
/kL2 C

�
max
t
kd2.Kst /pkCO.r/

�
k P
kL2

� ".1� "/�1 k P
kL2 C
�

max
t
kd2.Kst /pkCO.r/

�
k P
kL2

D

�
".1� "/�1Cmax

t
kd2.Kst /pkCO.r/

�
k P
kL2 :

Once (3.2) holds and r > 0 is small, we have

".1� "/�1Cmax
t
kd2.Kst /pkCO.r/ <

2�

T
:

Therefore, P
 D 0. In other words, 
 is a constant loop, and thus a critical point of
Kst for t 2 S1T . Then, by (3.3), dF.
/D 0. As a consequence, 
 � p since p is an
isolated critical point of F . This shows that p is a uniformly isolated T -periodic
orbit of Ks .

By (LF1), the local Floer homology HFloc
�

�
.Ks/.T /; p

�
is constant throughout

the family Ks , and HFloc
�

�
K.T /; p

�
D HFloc

�

�
F .T /; p

�
. As a consequence of (3.2),

the condition (3.1) of Example 3.5 is satisfied. Applying this example, we conclude
that HFloc

�

�
K.T /; p

�
D HFloc

�

�
F .T /; p

�
D HMloc

�Cn.F; p/. This proves (a).
By (LM2), p is an isolated local maximum of F DK1t , and hence, as is easy

to see from the first condition of the lemma, p is a uniformly isolated critical point
of Kst for s 2 Œ0; 1� and every fixed t 2 S1T . Now, by (LM1) and (LM2) applied
to fs D Kst , all functions Kst , and, in particular, Kt D K0t , have a (strict) local
maximum at p. This proves (b) and concludes the proof of the lemma. �

4. Proof of Theorem 1.1

As has been pointed out above, it is sufficient to prove the theorem for (con-
tractible!) periodic orbits of a Hamiltonian H generating ' rather than for all
periodic points of '. Let H WS1 �W ! R be a one-periodic Hamiltonian with
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finitely many one-periodic orbits ˛. Then, these orbits are isolated and the action
spectrum of H consists of finitely many points.

For every one-periodic orbit ˛ of H denote by d1.˛/; : : : ; dm˛ .˛/ the degrees
of roots of unity, different from 1, among the Floquet multipliers of ˛.

Arguing by contradiction, assume that for every sufficiently large integer � , all
�-periodic orbits of H are iterated or, in other words, 'H has only finitely many
simple periods, i.e., periods of simple, noniterated, orbits. In particular, every
periodic orbit of H with sufficiently large period is iterated. Let m1; : : : ; mk be
the finite collection of integers comprising all simple periods (greater than 1) and
the degrees dj .˛/ for all one-periodic orbits ˛. Then, in particular, every � -periodic
orbit is an iterated one-periodic orbit when � is not divisible by any of the integers
mj . Moreover, all � -periodic orbits are isolated and S.H .�//D �S.H/.

Recall also that, when ˛ is a weakly nondegenerate one-periodic orbit of H
and � is a sufficiently large integer, not divisible by d1.˛/; : : : ; dm˛ .˛/, we have

(4.1) HFloc
n

�
H .�/; ˛.�/

�
D 0:

Indeed, as is shown in [SZ92], for a generic perturbation of H supported near ˛,
the orbit ˛.�/ splits into nondegenerate orbits with Conley-Zehnder index different
from n.

Next observe that there exists a strongly degenerate one-periodic orbit 
 of
H such that 
 .�i / is an isolated �i -periodic orbit for some sequence �i !1 and

(4.2) HFloc
n

�
H .�i /; 
 .�i /

�
¤ 0;

where all �i are divisible by �1 and none of �i is divisible by m1; : : : ; mk .
To prove this, first note that by (4.1) for any sufficiently large integer � , not

divisible by m1; : : : ; mk , there exists a strongly degenerate one-periodic orbit �
such that HFloc

n

�
H .�/; �.�/

�
¤ 0. (Otherwise, (4.1) held for all �-periodic orbits,

and we would have HFn
�
H .�/

�
D 0 by (LF2).) Pick an infinite sequence � 01 < �

0
2 <

: : : of such integers satisfying the additional requirement that � 0iC1 is divisible by
� 0i for all i � 1. (For instance, we can take � 0i D q

i , where q is a sufficiently large
prime.) As we have observed, for every � 0i there exists a strongly degenerate one-

periodic orbit �i such that HFloc
n

�
H .� 0

i
/; �

.� 0
i
/

i

�
¤ 0. Since there are only finitely

many distinct one-periodic orbits, one of the orbits 
 among the orbits �i and some
infinite subsequence �i in � 0i satisfy (4.2). (We also re-index the subsequence �i to
make it begin with �1.)

Let aD AH .
/. We will use the orbit 
 and the sequence �i to prove

CLAIM. For every " > 0 there exists T0 such that for any T > T0 and some
ıT in the range .0; "/, depending on T , we have

(4.3) HF.T �1aCıT ; T �1aC"/nC1

�
H .T �1/

�
¤ 0:
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The theorem readily follows from the claim. Indeed, set S.H/D fc1; : : : ; csg.
Then, if T >T0 is such that T �1 is not divisible bym1; : : : ; mk , we have S

�
H .T �1/

�
D fT �1c1; : : : ; T �1csg. Thus, for any fixed " > 0 and 0 < ıT < ", the interval
.T �1aCıT ; T �1aC"/ contains no action values of H .T �1/ when T is sufficiently
large. This contradicts the claim. (Note that we have used the assumption that '
has finitely many simple periods twice: the first time to find the orbit 
 and the
sequence �i and the second time to arrive at the contradiction with the claim.)

To establish the claim, it is convenient to adopt the following

Definition 4.1. A one-periodic orbit 
 of a one-periodic Hamiltonian H is
said to be a symplectically degenerate maximum if there exists a sequence of loops
�i of Hamiltonian diffeomorphisms such that 
.t/D �ti .p/, i.e., �i sends p to 
 ,
for some point p 2W and all i and t , and such that the Hamiltonians Ki given by

'tH D �
t
i ı'

t
Ki

and the loops �i have the following properties:

(K1) the point p is a strict local maximum of Kit for all t 2 S1 and all i ,

(K2) there exist symplectic bases „i in TpW such that

kd2.Kit /pk„i ! 0 uniformly in t 2 S1, and

(K3) the linearization of the loop ��1i ı �j at p is the identity map for all i and j
(i.e., d

�
.�ti /
�1 ı �tj

�
p
D I for all t 2 S1) and, moreover, the loop .�ti /

�1 ı �tj
is contractible to id in the class of loops fixing p and having the identity
linearization at p.

Remark 4.2. Regarding (K1) and (K3) note that since 
.t/D �ti .p/, the point
p is a fixed point of the flow

't
Ki
D
�
�ti
��1
ı'tH

of Ki , and thus a critical point of Kit for all t . Furthermore, p is also a fixed
point of the loop ��1i ı �j for all i and j , for �ti D 'tH ı .'

t
Ki
/�1, and hence

.�ti /
�1 ı�tj D '

t
Ki
ı .'t

Kj
/�1. We refer the reader to Section 2.1.3 for the definition

and discussion of the norm with respect to a basis, used in (K2).
The Hamiltonians Ki and H have the same time-one map and there is a nat-

ural one-to-one correspondence between (contractible) one-periodic orbits of the
Hamiltonians. The Hamiltonians Ki can be chosen so that Kit .p/ is constant and
equal to cDAH .
/. In what follows, we will always assume that Ki is normalized
in this way. Then the corresponding orbits of Ki and H have equal actions and,
in particular, all Hamiltonians Ki have the same action spectrum and action filtra-
tion; see Section 2.3. Symplectically degenerate maxima are further investigated
in [GG07]. In particular, it is shown there that condition (K3) is superfluous; see
[GG07, Remark 5.5]. This fact is not used in the present paper.
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Example 4.3. Assume that Ht has a strict local maximum at p (and Ht .p/�
const) and d2.Ht /p D 0 for all t . Then p is a symplectically degenerate maximum
of H . Indeed, we can take Ki DH and �i D id and any fixed symplectic basis as
„i . More generally, vanishing of the Hessian may be replaced by the condition that
kd2.Ht /pk„ can be made arbitrarily small by a suitable choice of „; cf. [Hin09].
This condition is satisfied, for instance, when H is autonomous and all eigenvalues
of the linearization of XH at p are equal to zero; see Lemma 5.1.

Example 4.4. Assume that 
 is a symplectically degenerate maximum of H .
Let zH be a Hamiltonian generating the flow  t ı'tH , where  is a loop of Hamilton-
ian diffeomorphisms. Then, the periodic orbit  .
/.t/ WD  t .
.t// of zH is a sym-
plectically degenerate maximum of zH as is easy to verify. (In other words, sym-
plectic degeneracy is a property of the fixed point 
.0/ of the time-one map 'H .)

For instance, in the notation of Definition 4.1, the constant orbit p is a sym-
plectically degenerate maximum of each Hamiltonian Ki .

Now we are in a position to state the two results that we need to complete the
proof of Theorem 1.1. The first result gives a Floer homological criterion for an
isolated, strongly degenerate orbit 
 to be a symplectically degenerate maximum,
and thus translates local Floer homological properties of 
 to geometrical features
of a constant orbit p of Hamiltonians Ki . The second one asserts nonvanishing
of the filtered Floer homology of an iterated Hamiltonian H .T / for an interval
of actions just above the action T � AH .
/, provided that 
 is a symplectically
nondegenerate maximum of H . When applied to the Hamiltonian H .�1/ in place
of H , where �1 is as in the claim, these results will yield the claim.

PROPOSITION 4.5. Let 
 be a strongly degenerate isolated one-periodic orbit
of H such that its l-th iteration 
 .l/ is also isolated and

(4.4) HFloc
n .H; 
/¤ 0 and HFloc

n

�
H .l/; 
 .l/

�
¤ 0 for some l � nC 1.

Then 
 is a symplectically degenerate maximum of H .

Remark 4.6. Note that, similarly to Definition 4.1, requirement (4.4) is a con-
dition on the fixed point 
.0/ of 'H , independent of a particular choice of H .

PROPOSITION 4.7. Let 
 be a symplectically degenerate maximum of H and
let c D AH .
/. Then for every " > 0 there exists T0 such that

HF.TcCıT ; TcC"/nC1

�
H .T /

�
¤ 0 for all T > T0 and some ıT with 0 < ıT < ".

Combining the propositions, we conclude that whenever a strongly degenerate
one-periodic orbit 
 ofH satisfies the hypotheses of Proposition 4.5, for every ">0
there exists T0 such that

(4.5) HF.TcCıT ; TcC"/nC1

�
H .T /

�
¤ 0 for all T > T0;

where c D AH .
/ and 0 < ıT < ".
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To prove the claim, first note that although Propositions 4.5 and 4.7 are stated
for one-periodic Hamiltonians, similar results hold, of course, for Hamiltonians
and orbits of any period. Thus, consider the Hamiltonian H .�1/ in place of H
and the isolated orbit 
 .�1/ in place of 
 in (4.4) and (4.5). Then the requirement
(4.4) is met due to (4.2): l D �i=�1 � nC 1 if i is large enough, since �i !1.
Furthermore, c D AH .�1/.


.�1//D �1a and (4.3) follows immediate from (4.5).
It remains to establish Propositions 4.5 and 4.7 to complete the proof of the

theorem.

Remark 4.8. It is illuminating to compare the above proof with the argument
due to Salamon and Zehnder from [SZ92] asserting that every large prime is a
simple period whenever all one-periodic orbits of H are weakly nondegenerate.
(In particular, the number of simple periods less than or equal to k is of order at
least k= log k.) In the context of the present paper relying, of course, on [SZ92],
this is an immediate consequence of (4.1). To be more specific, if � is a large prime
and all � -periodic orbits are iterated, (4.1) holds for all weakly nondegenerate one-
periodic orbits and HFn

�
H .�/

�
D 0 by (LF2), if there are no strongly degenerate

one-periodic orbits. When such one-periodic orbits exist, we can no longer use the
Salamon-Zehnder argument to conclude that every large prime is a simple period or
even to establish the existence of infinitely many simple periods. The reason is that
in this case the argument implies that for every large prime � there is a one-periodic
orbit 
 such that HFloc

n

�
H .�/; 
 .�/

�
¤ 0. It is unclear, however, if HFloc

n .H; 
/¤ 0,
and hence whether or not 
 is a symplectically degenerate maximum.

5. Proof of Proposition 4.5

Our goal in this section is to construct the Hamiltonians Ki and the loops
�i meeting requirements (K1)–(K3). This construction relies on two technical
lemmas, proved in Section 6, and is carried out in several steps.

First, in Section 5.1, we reduce the problem to the case where 
 is a fixed
point p of the flow 'tH .

In Section 5.2, we construct the Hamiltonians Ki and the loops �i near p.
We begin by proving in Section 5.2.1 that the time-one map ' D '1H can be made
C 1-close to id by an appropriate choice of a canonical coordinate system � near
p. This is essentially an elementary linear algebra fact (Lemma 5.1, proved in
�5.4), asserting that a strongly degenerate linear symplectomorphism can be made
arbitrarily close to the identity by conjugation within the linear symplectic group.

As a consequence, near p, the map ' is given by a generating function F
in the coordinate system �. In Section 5.2.2, we show that on a neighborhood of
p there exists a Hamiltonian K with time-one map ', which is in a certain sense
close to F . Here, the key result is Lemma 5.2 spelling out the relation between F
and K and established in Section 6. Choosing a sequence of coordinate systems
� i so that k' � idkC1.�i /! 0, we obtain a sequence of Hamiltonians Ki defined
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near p and meeting requirement (K2). Then, again near p, the loop �i is defined
by �ti D '

t
H ı .'

t
Ki
/�1.

Utilizing condition (4.4), we show in Section 5.2.3 that the Maslov index of �i
is zero. This enables us to relate homological properties of 
 �p to the geometrical
properties ofKi near p and prove (K1) as a consequence of Lemma 3.6. (Assertion
(K2) easily follows from the construction of Ki .)

Property (K3) is proved in Section 5.3. At this stage, we further specialize our
choice of canonical coordinate systems � i to ensure that all flows 't

Ki
have the same

linearization at p. Then, the first part of assertion (K3) is obvious. By Lemma 2.8,
the loops �i extend to W , for �.�i /D 0. This, in turn, gives an extension of Ki

to W . Carrying out these extensions with some care, we can guarantee that (K3)
holds in its entirety.

5.1. Reduction to the case of a constant orbit. In this section, we reduce the
proposition to the case where

� 
 �p is a constant, strongly degenerate one-periodic orbit ofH andHt .p/D
c for all t 2 S1

by constructing a loop of Hamiltonian diffeomorphisms  t , t 2 S1, of W such
that 
.t/D  t .p/ with p D 
.0/ 2W .

First recall that for any contractible, closed curve 
 WS1 ! W there exists
a contractible loop of Hamiltonian symplectomorphisms  t for which 
 is an
integral curve, i.e., 
.t/D  t .
.0//; cf. [SZ92, �9].

For the sake of completeness, let us outline a proof of this fact. Consider a
smooth family of closed curves 
sWS1! W , s 2 Œ0; 1�, connecting the constant
loop 
0 � 
.0/ to 
1 D 
 . It is easy to show that there exists a smooth family of
Hamiltonians Gst such that for every t , the curve s 7! 
s.t/ is an integral curve of
Gst with respect to s, i.e., 
s.t/ D 'sG.
.0//. Let  t D '1G be the time-one map
(in s) of this family, parametrized by t 2 S1. Then 
.t/D  t .
.0//. The family
of Hamiltonians Gst can be chosen so that Gs;0 � 0�Gs;1. Then  t is a loop of
Hamiltonian diffeomorphisms with  0 D id D  1. As readily follows from the
construction, the loop  is contractible.

Composing 'tH with the loop . t /�1 and adding, if necessary, a time-depen-
dent constant function to the resulting Hamiltonian yH , we may assume without
loss of generality that 
.t/� p is a fixed point of the flow 't

yH
D . t /�1'tH for all

t 2 S1 and yHt .p/� c. Then yH has the same time-one map and the same filtered
Floer homology as H . By Example 4.4 and Remark 4.6, it is sufficient to prove
the proposition for yH . Thus, we will assume from now on that 
 � p and keep
the notation H for the modified Hamiltonian yH .

5.2. The construction of the Hamiltonians Ki and the loops �i near p. Our
main objective in this section is to show that for every � > 0, there exists a sym-
plectic basis „ in TpW and a Hamiltonian K on a neighborhood of p such that
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the time-one map of K is ', condition (K1) is satisfied, and

kd'tK jTpW � Ik„ < � for all t 2 S1.

Then, clearly, there exists a sequence of symplectic bases „i and a sequence of
Hamiltonians Ki meeting requirements (K1) and (K2). The loop �i is defined near
p by �ti D '

t
H ı .'

t
Ki
/�1.

5.2.1. Making ' close to the identity. Our first goal is to show that for any
� > 0 there exists a symplectic basis „ in TpW such that kd'p � Ik„ < � . As a
consequence (cf. Example 2.2), for any � > 0 there exists a canonical system of
coordinates � on a neighborhood U of p such that the C 1.�/-distance from ' to
the identity is less than � .

This fact is an immediate consequence of

LEMMA 5.1. LetˆWV ! V be a linear symplectic map of a finite-dimensional
symplectic vector space .V; !/ such that all eigenvalues of ˆ are equal to one.
Then ˆ is conjugate in Sp.V; !/ to a linear map which is arbitrarily close to the
identity.

Indeed, since p is a strongly degenerate fixed point of H , all eigenvalues of
d'p are equal to one. Thus, the desired statement follows from this lemma applied
to ˆD d'p. The proof of the lemma is elementary and provided for the sake of
completeness in Section 5.4. Here we only mention that ˆ is given by an upper
triangular matrix in some basis „ and, by scaling the elements of „ appropriately,
one can make ˆ arbitrarily close to the identity; cf. Example 2.2. Hence, we only
need to show that „ and the scaling can be made symplectic.

5.2.2. The Hamiltonian K near p. Pick a system � of canonical coordinates
near p such that ' is C 1.�/-close to the identity. In particular, kd'p � Ik�p is
small. Furthermore, the map ' is given, near p, by a generating function F . The
precise definition of F and the relation between F and ' and � are immaterial at
the moment and these issues will be discussed in Section 6. At this stage, we only
need to know that F is defined on a neighborhood of p and uniquely determined by
� and '. (To make this statement accurate, let us agree that a canonical coordinate
system is formed by ordered pairs of functions .x1; y1/; : : : ; .xn; yn/ such that
! D

P
dxi ^ dyi . Thus, each coordinate function is assigned to either xi - or

yi -group.) Moreover, F has the following properties:

(GF1) p is an isolated critical point of F ,

(GF2) kF kC2.�/ DO.k' � idkC1.�// and kd2Fpk�p D kd'p � Ik�p .

Item (GF2) requires, perhaps, a clarification. First note that k' � idkC1.�/
stands here for the C 1.�/-distance from ' to id; see Section 2.1.3. Furthermore,
F and k' � idkC1.�/ depend on �. Therefore, in (GF2), we view both kF kC2.�/
and k' � idkC1.�/ as functions of � with ' fixed and the second item asserts that
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kF kC2.�/ � const � k' � idkC1.�/, where const is independent of �, provided that
k' � idkC1.�/ is small enough.

More generally, let f and g be nonnegative functions of � and some (numer-
ical) variables. We write f D O.g/, when f � const � g pointwise, where const
is independent of �. The notation f DO�.g/ will be used when f � const.�/ �g
pointwise as functions of other variables, with const.�/ depending on � and possi-
bly becoming arbitrarily large. Furthermore, we denote by Br.�/ the ball of radius
r with respect to � centered at p.

We will prove

LEMMA 5.2 ([Hin09]). Let � be a coordinate system near p such that the
norm k' � idkC1.�/ is small. Then for every sufficiently small r > 0 (depending
on �), there exists a one-periodic Hamiltonian Kt on Br.�/ such that

(i) the time-one map 'K of K is ',

(ii) p is an isolated critical point of Kt and Kt .p/� c,

(iii) kd2.Kt /pk�p DO.kd'p � Ik�p /,

(iv) the following estimates hold pointwise near p:

kXK �XF k� �
�
O.kd2Fpk�p /CO�.r/

�
� kXF k�

and
k PXKk� �

�
O.kd2Fpk�p /CO�.r/

�
� kXF k� ;

where the dot denotes the time derivative of a vector field.

Note that in (iv) we could have written kd'p � Ik�p in place of kd2Fpk�p
by (GF2). The important point here is that kd'p � Ik�p and kd2Fpk can be made
arbitrarily small by choosing an appropriate coordinate system � . Then, shrinking
the domain of K, we can also make the right hand sides in the estimates (iii) and
(iv) arbitrarily small.

A proof of Lemma 5.2 can be extracted from [Hin09]. However, to make our
proof of Theorem 1.1 self-contained, we provide a detailed argument. Deferring
this to Section 6, we proceed with the proof of Proposition 4.5.

5.2.3. Properties (K1) and (K2). Let K be a Hamiltonian on a neighborhood
of p, such that (i)–(iv) of Lemma 5.2 are satisfied and k' � idkC1.�/ is small. Our
first goal is to prove that K meets requirements (K1) and (K2).

Since kd'p � Ik�p � k' � idkC1.�/, by (iii), we have

(5.1) kd2.Kt /pk�p DO.k' � idkC1.�//;

and hence (K2) is satisfied when k' � idkC1.�/ is sufficiently small.
To establish (K1), consider the loop �t D 'tH .'

t
K/
�1, where t 2 R. Thus,

'tH D �
t'tK for all t 2 R.
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Note that �1D id, i.e., �t with t 2S1 is a loop of Hamiltonian symplectomorphisms
near p. We denote this loop by �jS1 . The T -th iteration �jS1T of �jS1 is simply �t

with t 2 S1T .
First, let us prove that the Maslov index �D �.�jS1/ of �jS1 is necessarily

zero, when k' � idkC1.�/ is small.
Let xK be the time-average of Kt , i.e.,

xK D

Z 1

0

Kt dt:

A straightforward calculation utilizing Lemma 5.2 and (5.1) and detailed in Section
5.2.4 shows that the requirements of Lemma 3.6 are met, for any fixed T , by the
pair . xK;K/, provided that k' � idkC1.�/ is small enough. In other words, these
requirements are satisfied when ' is C 1.�/-close to the identity and xK is taken as
the reference function in Lemma 3.6 (denoted there by F ). In particular, p is an
isolated l-periodic orbit. We set, T D l , where l is as in (4.4).

Then, by Lemma 3.6(a),

HFloc
� .K

.l/; p/D HMloc
�Cn.

xK;p/;

and hence

(5.2) HFloc
k .K

.l/; p/D 0 whenever jkj> n.

Next note that �.�jS1T /D �T for any T 2 Z. By (LF4),

HFloc
n�2�T

�
K.T /; p

�
D HFloc

n

�
H .T /; p

�
;

as long as p is an isolated one-periodic orbit of H .T /. Applying this identity to
T D l , we conclude from (4.4) that

HFloc
n�2�l

�
K.l/; p

�
D HFloc

n

�
H .l/; p

�
¤ 0:

In particular, since l � nC 1,

(5.3) HFloc
k

�
K.l/; p

�
¤ 0 for some k with jkj> n if �¤ 0.

Combining (5.2) and (5.3), we conclude that �D 0. A different proof of this fact,
relying on the properties of the mean Conley-Zehnder index (see [SZ92]), can be
found in [GG09, �5.2].

Recall that the condition HFloc
n .H; p/¤ 0 is a part of the assumption (4.4) in

Proposition 4.5. Using (LF4) again — this time for t 2 Œ0; 1� — and taking into
account that �D 0, we see that

HFloc
n .K; p/D HFloc

n .H; p/¤ 0:

Furthermore, when ' is sufficiently C 1.�/-close to the identity, the require-
ments of Lemma 3.6 with T D 1 and the Hamiltonians K and F as in Lemma 5.2
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are obviously met due to (GF2), (5.1), and (iv). Thus, by Lemma 3.6(b), the func-
tion Kt has strict local maximum at p. This proves (K1).

Applying this construction to a sequence of symplectic bases „i in TpW
such that kd'p � Ik„i ! 0, we obtain a sequence of Hamiltonians Ki , meeting
requirements (K1) and (K2), and also the loops �i . We emphasize that Ki and �i

have so far been defined only on a neighborhood of p.

5.2.4. The pair . xK;K/. The goal of this auxiliary section, which is included
for the sake of completeness, is to show that, as stated above, the pair . xK;K/
satisfies the hypotheses of Lemma 3.6 with T fixed.

To this end, note first that by Lemma 5.2(iv), we have

kXK�XFk�
�
O.kd2Fpk/CO.r/

�
kXFk and k PXKk�

�
O.kd2Fpk/CO.r/

�
kXFk

pointwise near p. (Here the coordinate system � is suppressed in the notation.) Let
us integrate the first of these inequalities with respect to t over S1T . Then, since F
is independent of time, we have, again pointwise near p,

kX xK �XF k �

Z
S1
kXK �XF k dt � akXF k

with aDO.kd2Fpk/CO.r/. Thus,

kX xK �XF k � akXF k

and, as a consequence,

kX xKk � kXF k� akXF k D .1� a/kXF k:

Then

kXK �X xKk � kXK �XF kCkXF �X xKk

� akXF kC akXF k

� 2a.1� a/�1kX xKk

Likewise,
k PXKk � a.1� a/

�1
kX xKk:

Therefore,
kXK �X xKk � "kX xKk and k PXKk � "kX xKk;

where "D 2a.1� a/�1 and all inequalities are pointwise.
Recall now that we can make a > 0 arbitrarily small (with T fixed) by making

a suitable choice of � and then requiring r > 0 to be sufficiently small. It follows
that we can also make " > 0 arbitrarily small. In the same vein, the left hand side
of (3.2) can be made arbitrarily small. Furthermore, since p is an isolated critical
point of F , it is also an isolated critical point of xK. Therefore, the pair . xK;K/
satisfies the hypotheses of Lemma 3.6.
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Remark 5.3. As has been pointed out in Section 5.2.3, a pair of function satis-
fying the hypotheses of Lemma 5.2 also satisfies the hypotheses of Lemma 3.6. We
have shown that . xK;K/ satisfies the conditions of Lemma 3.6 whenever .F;K/
meets the requirements of Lemma 5.2. Moreover, by arguing as in this section, it
is not hard to show that . xK;K/ satisfies the conditions of Lemma 5.2 (and hence
of Lemma 3.6) once .F;K/ does. We omit this (straightforward) calculation, for
it is never used in the proof.

5.3. Property (K3) and the extension to W . To ensure that (K3) holds, we
need to impose an addition requirement on the bases „i . We will prove

LEMMA 5.4. There exists a sequence of symplectic bases „i in TpW such
that kd'p � Ik„i ! 0 and the flows 't

Ki
have the same linearization at p.

Here Ki is the sequence of Hamiltonians constructed in Section 5.2.3 using
Lemma 5.2. We prove Lemma 5.4 in Section 6 along with Lemma 5.2. At this point,
we only note that, as will become clear in Section 6, the linearized flow d.'t

Ki
/p

is completely determined by ' and the basis „i . In particular, the linearization
is independent of the extension of „i to a canonical coordinate system � i near p.
(Here, we use a convention similar to that of Section 5.2.2 for canonical coordi-
nate systems: a symplectic basis is divided into two groups of n vectors spanning
Lagrangian subspaces and this division is a part of the structure of a symplectic
basis.)

Since �ti D '
t
H .'

t
Ki
/�1, we conclude from Lemma 5.4 that

d
�
.�ti /
�1
ı �tj

�
p
D d

�
'tKi

��1
p
ı d
�
'tKj

�
p
D I:

Let us now extend the loops �i and the Hamiltonians Ki to W so that the
remaining part of requirement (K3) is met: the loop ��1i ı �j is contractible to id
in the class of loops with identity linearization at p.

Recall that the Maslov index of the loop �i is zero, as is shown in Section
5.2.3. Hence, by Lemma 2.8, each of these loops extends to a loop of Hamiltonian
diffeomorphisms of W , contractible in the class of loops fixing p. Let us fix such
an extension for �1. For the sake of simplicity we denote this extension by �1
again. Consider now the loop  ti D

�
�t1
��1

�ti . Then d. ti /p D I . Hence, by
Lemma 2.8 and Remark 2.9,  i extends to a loop of Hamiltonian diffeomorphisms
of W , contractible in the class of loops with identity linearization at p. Keeping the
notation  i for this extension, we set �ti D �

t
1 

t
i . It is clear that �i is contractible

in the class of loops with identity linearization at p.

5.4. Proof of Lemma 5.1. Lemma 5.1 is an immediate consequence of the
following stronger result which is also used in the proof of Lemma 5.4.

LEMMA 5.5. LetˆWV ! V be a linear symplectic map of a finite-dimensional
symplectic vector space .V; !/. Assume that all eigenvalues of ˆ are equal to one.
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Then V can be decomposed as a direct sum of two Lagrangian subspaces L and
L0 with ˆ.L/ D L. Moreover, by a suitable choice of ‰ 2 Sp.V; !/ preserving
the subspaces L and L0, the map ‰ˆ‰�1 can be made arbitrarily close to the
identity.

Proof. We prove the lemma by induction in dimV . The statement is obvious
when V is two-dimensional. When dimV > 2, we have the following alternative:

� either K D ker.ˆ� I / contains a symplectic subspace V0
� or K D ker.ˆ� I / is isotropic.

In the former case, we decompose V as V0˚ V !0 , where the superscript !
denotes the symplectic orthogonal. It is easy to see that this decomposition is
preserved by ˆ and ˆjV0 D IV0 . Now the assertion follows from the induction
hypothesis applied to ˆjV !0 .

In the latter case, pick a symplectic subspace V0 complementary to K D
ker.ˆ� I / in K! and an isotropic subspace N complementary to K! in V . (We
are assuming at the moment that V0 ¤ f0g, i.e., L is not Lagrangian.) Thus, V D
K!˚N andK!DK˚V0. Furthermore,K andK! are preserved byˆ; the spaces
V0 and N can be canonically identified withK!=K andK�DV=K! , respectively;
and ˆjK D IK . Note that ˆ induces a symplectic linear map ˆ0WV0! V0 with all
eigenvalues equal to one and the identity map IN on N D V=K! . Hence, using
the decomposition

V DK˚V0˚N;

we can write ˆ in the block upper-triangular form

ˆD

24IK A C

0 ˆ0 B

0 0 IN

35 ;
where AWV0!K and C WN !K and BWN ! V0. (There are relations between
these operators, resulting from the fact that ˆ is symplectic.)

Consider a block-diagonal symplectic linear transformation of the form

‰ D

24ƒ 0 0

0 ‰0 0

0 0 .ƒ�/�1

35 ;
where ‰0WV0! V0 is symplectic, ƒWK!K is invertible, and we have identified
N with K�. Then

‰ˆ‰�1 D

24IK ƒA‰�10 ƒCƒ�

0 ‰0ˆ0‰
�1
0 ‰0Bƒ

�

0 0 IN

35 :
By the induction assumption, there exists a decomposition V0 D L0˚L00, where
ˆ0.L0/DL0, and transformations ‰0 preserving this decompositions and making
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‰0ˆ0‰
�1
0 arbitrarily close to IV0 . Set L D K ˚ L0 and L D L00 ˚ N . Then

ˆ.L/ D L and the decomposition V D L˚L0 is preserved by ‰. Furthermore,
noticing that ƒ� is close to zero when ƒ is close to zero, we can pick ƒ to make
the off-diagonal entries in ˆ arbitrarily small. With this choice of ‰, the map
‰ˆ‰�1 is close to IV if ‰0ˆ0‰�10 is close to IV0 .

When K D ker.ˆ� I / is Lagrangian (i.e., V0 D f0g), no induction reasoning
is needed. We simply set LDK and let L0 D N be an arbitrary complementary
Lagrangian subspace. Then the map ˆ is decomposed as a two-by-two block upper-
triangular matrix, and, similarly to the argument above, ƒ is chosen to make the
off-diagonal block arbitrarily small. �

6. The generating function F and the proofs of Lemmas 5.2 and 5.4

6.1. Generating functions. In this section, we recall the definition of a gen-
erating function on R2n and set the stage for proving Lemma 5.2. The material
reviewed here is absolutely standard — it goes back to Poincaré — and we refer
the reader to [Arn74, App. 9] and [Wei71], [Wei77] for a more detailed discussion
of generating functions.

Let us identify R2n with the Lagrangian diagonal � � R2n � NR2n via the
projection to the first factor, where R2n � NR2n is equipped with the symplectic
structure .!;�!/, and fix a Lagrangian complement N to �. Thus, R2n � NR2n

can now be treated as T ��.
Let ' be a Hamiltonian diffeomorphism defined on a neighborhood of the

origin p in R2n and such that k' � idkC1 is sufficiently small. Then the graph �
of ' is close to �, and hence � can be viewed as the graph in T �� of an exact
form dF near p 2 � D R2n. (We normalize F by F.p/ D 0.) The function F ,
called the generating function of ', has the following properties:

(GF10) p is an isolated critical point of F if and only if p is an isolated fixed point
of ',

(GF20) kF kC2 DO.k' � idkC1/ and kd2Fpk D kd'p � Ik.

For instance, it is clear that the critical points of F are in one-to-one correspondence
with the fixed points of '. If p (the origin) is an isolated fixed point of ', the origin
is also an isolated critical point of F . Hence, (GF10) holds. The second property
of F , (GF20), is also easy to check; see the references above.

The function F depends on the choice of the Lagrangian complement N
to �. To be specific, we take as N the linear subspace of vectors of the form
..x; 0/; .0; y// in R2n� NR2n, where xD .x1; : : : ; xn/ and yD .y1; : : : ; yn/ are the
standard canonical coordinates on R2n, i.e., ! D

P
dyi ^ dxi .

In the setting of Section 5.2.2, let � be a coordinate system near p 2 W .
Using � , we identify a neighborhood of p in W with a neighborhood of the origin
in R2n, keeping the notation p for the origin. With this identification, ' defined
near p 2W turns into a Hamiltonian diffeomorphism �'��1 defined near the origin
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p 2 R2n. By definition, k' � idkC1.�/ D k�'�
�1� idkC1 . Abusing notation, we

denote the resulting Hamiltonian diffeomorphism �'��1 near p 2 R2n by ' again.
By our background assumptions, p is an isolated fixed point of ', and thus (GF1)
and (GF2) follow immediately from (GF10) and (GF20), respectively.

Furthermore, Lemma 5.2 is an immediate consequence of

LEMMA 6.1 ([Hin09]). Let ' be a Hamiltonian diffeomorphism of a neigh-
borhood of the origin p 2 R2n. Assume that p is an isolated fixed point of ' and
k' � idkC1 is so small that the generating function F is defined. Then for every
sufficiently small r > 0 (depending on '), there exists a one-periodic Hamiltonian
Kt on the ball Br of radius r centered at p such that

(i) the time-one map 'K of K is ',

(ii) p is an isolated critical point of Kt and Kt .p/D 0 for all t 2 S1,

(iii) kd2.Kt /pk DO.kd2Fpk/,

(iv) the upper bounds

(6.1) kXK �XF k �
�
O.kd2Fpk/CO'.r/

�
� kXF k

and

(6.2) k PXKk �
�
O.kd2Fpk/CO'.r/

�
� kXF k

hold pointwise near p.

The notation used here is similar to that of Section 5.2.2. For instance, (6.1)
should be read as that its left hand side is pointwise bounded from above by�
C1kd

2FpkCC2.'/r
�
� kXF k, where C1 is independent of ' and C2.'/ depends

on ' and can be arbitrarily large.
Although the proof of Lemma 6.1 is essentially contained in [Hin09], for the

sake of completeness we give a detailed argument here.

6.2. Proof of Lemma 6.1. The proof of the lemma is organized as follows.
First we consider the time-dependent Hamiltonian zK generating the flow 't given
by the family of generating functions Ft D tF , t 2 Œ0; 1�, and verify (i)–(iv) for
zK. The time-one map of zK is '. However, in general, the Hamiltonian zK is

not periodic in time. Hence, as the next step, we modify zK to obtain the required
periodic Hamiltonian K and then again check that the new Hamiltonian K satisfies
(i)–(iv).

6.2.1. The Hamiltonian zK; properties (i) and (ii). Consider the family of gen-
erating functions Ft D tF with t 2 Œ0; 1�. The family of graphs �t of dFt in T ��
beginning with �0 D � and ending with �1 D � can be viewed as a family of
graphs of Hamiltonian diffeomorphisms 't near p with '0 D id and '1 D '. Thus,
't is a time-dependent Hamiltonian flow with the time-one map ', defined near p.
Let zKt be the Hamiltonian generating this flow, normalized by zKt .p/D 0.
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Condition (i) is satisfied for zK by definition, and (ii) is an immediate conse-
quence of (GF10) and (6.1). Below, we will also give a direct proof of (ii).

6.2.2. The Hamiltonian vector field X zK . Set

x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/;

and
@1 D .@x1 ; : : : ; @xn/ and @2 D .@y1 ; : : : ; @yn/:

Let . Nxt ; Nyt / D 't .x; y/. Then, as is well-known and can be checked by a
simple calculation, we have

(6.3)

(
Nxt � x D�@2Ft . Nx

t ; y/

Nyt �y D @1Ft . Nx
t ; y/:

Differentiating with respect to time, we obtain the following expression for the
Hamiltonian X zK (cf. [Hin09]):

(6.4) X zKt
. Nxt ; Nyt /D At . Nx

t ; y/XF . Nx
t ; y/;

where

At .x; y/D

�
.I C @12Ft .x; y//

�1 0

.I C @12Ft .x; y//
�1@11Ft .x; y/ I

�
:

Here @12Ft stands for the matrix of partial derivatives @2Ft=.@xi@yj / and, simi-
larly, @22Ft is the matrix @2Ft=.@yi@yj /.

In other words, introducing the auxiliary diffeomorphism �t sending . Nxt ; Nyt /
to . Nxt ; y/, we can rewrite (6.4) as

(6.5) X zKt
.z/D At .�

t .z//XF .�
t .z//

for every z near the origin.
Clearly,

(6.6) k't � idkC1 DO.k' � idkC1/ and k�t � idkC1 DO.k' � idkC1/

uniformly in t . In particular, �t is indeed a diffeomorphism, fixes p, and is, more-
over, C 1-close to the identity when ' is close to id. Furthermore,

(6.7) kAt � Ik DO.k' � idkC1/

pointwise near p and uniformly in t . Hence, A is invertible near p. Since p is an
isolated critical point of F by (GF10), p is also an isolated zero of XF , and thus
an isolated zero of X zKt . This gives a direct proof of (ii) for zK.

6.2.3. Property (iii) for zK. Since XF .p/D 0, the linearization of (6.5) at p
yields

d.X zKt
/p D At .p/ ı d.XF /p ı d.�

t /p:

Here, d.X zKt /p and d.XF /p are the linear Hamiltonian vector fields on TpR2n D

R2n with quadratic Hamiltonians d2. zKt /p and, respectively, d2Fp. Furthermore,
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it is easy to see from (6.7) and (6.6) that At .p/ and d.�t /p are both close to I ,
with error O.kd2Fpk/, and hence are small. Combining these observations, we
conclude that

kd2. zKt /pk DO.kd
2Fpk/

proving (iii) for zK.

6.2.4. The upper bound (6.1) for zK. Turning to the proof of (iv) for zK, ob-
serve that for every small R > 0 there exists r > 0 such that . Nxt ; Nyt / and . Nxt ; y/
are in BR for all t 2 Œ0; 1� and all .x; y/ in Br . Furthermore, it is clear that

(6.8) RDO.k' � idkC1/ � r DO'.r/:

To establish the upper bound (6.1) of (iv), let us first show that

(6.9) kX zKt
.z/�X zKt

.�t .z//k D
�
O.kd2Fpk/CO'.r/

�
� kXF .�

t .z//k

for every z in Br and all t 2 Œ0; 1�. We have

kX zKt
.z/�X zKt

.�t .z//k D





Z 1

0

d

ds
X zKt

�
szC .1� s/�t .z/

�
ds






�

Z 1

0

kdX zKt

�
szC .1� s/�t .z/

�
k ds � kz� �t .z/k

� max
w2BR

kdX zKt
.w/k � kz� �t .z/k

� max
w2BR

kdX zKt
.w/k � kXF .�

t .z//k;

where in the last inequality we used the fact that, by (6.3),

kz� �t .z/k D ky � Nytk D k@1Ft .�
t .z//k � kXF .�

t .z//k:

Thus, we only need to show that

max
BR
kdX zKt

k DO.kd2Fpk/CO'.r/:

By (6.5), we have

max
w2BR

kdX zKt
.w/k � max

w2BR



�dAt .�t .w//d�t .w/�XF .�t .w//


C max
w2BR



At .�t .w// �dXF .�t .w//d�t .w/�

 :
Since �t .p/ D p and XF .p/ D 0, the first summand is obviously O'.r/.

(When z 2 Br , both w D �t .z/ and �t .w/ are, by (6.8), in the ball of radius
O'.r/.) The second summand is bounded as

max
w2BR



At .�t .w// �dXF .�t .w//d�t .w/�


� max
w2BR



At .�t .w//

 � max
w2BR



dXF .�t .w//

 � max
w2BR



d�t .w/

 :
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Here, the first and the last factors are O.k' � idkC1/, and hence bounded from
above by a constant independent of ', when ' is sufficiently close to id. The middle
factor is O.kd2Fpk/CO'.r/, for kdXF .p/k D kd2Fpk and, as a consequence,

dXF .�t .w//

DO.kd2Fpk/CO'.k�t .w/k/:
Thus, the second summand is O.kd2Fpk/CO'.r/, which completes the proof
of (6.9).

Then

kX zKt
.�t .z//�XF .�

t .z//k � kX zKt
.z/�X zKt

.�t .z//kCkX zKt
.z/�XF .�

t .z//k:

By (6.5), the second term is bounded as

kX zKt
.z/�XF .�

t .z//k � kAt .�
t .z//� Ik � kXF .�

t .z//k

D
�
O.kd2Fpk/CO'.r/

�
� kXF .�

t .z//k

and the first term is
�
O.kd2Fpk/CO'.r/

�
� kXF .�

t .z//k by (6.9). This proves
the pointwise estimate (6.1) at �t .z/ in place of z. Since �t is a diffeomorphism
fixing p, the upper bound (6.1) in its original form (at z) follows.

6.2.5. The upper bound (6.2) for zK. Arguing exactly as in the proof of (6.9),
it is easy to show that

kXF .z/�XF .�
t .z//k D

�
O.kd2Fpk/CO'.r/

�
� kXF .�

t .z//k

and, as a consequence,�
1�

�
O.kd2Fpk/CO'.r/

��
� kXF .z/k � kXF .�

t .z//k:

Therefore, to establish (6.2) for zK, it is sufficient to prove the upper bound

(6.10) k PX zKt
.z/k D

�
O.kd2Fpk/CO'.r/

�
� kXF .�

t .z//k

for z 2 Br .
Differentiating (6.5) with respect to t and setting w D �t .z/, we obtain

PX zKt
.z/D PAt .w/XF .w/

C
�
dAt .w/ P�

t .w/
�
XF .w/

CAt .w/
�
dXF .w/ P�

t .w/
�
:

(6.11)

To prove (6.10), we will estimate all three terms in this identity. As a straightfor-
ward calculation shows,

PAt D�.I C @12Ft /
�2

�
@12F 0

@22Ft@12F � .I C @12Ft /@11F 0

�
:

Thus, k PAtk DO.kd2Fpk/CO'.r/ and

k PAt .w/XF .w/k D
�
O.kd2Fpk/CO'.r/

�
� kXF .w/k:
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Furthermore,
P�t .w/D

�
0;�

�
I � @12Ft .w/

��1
@1F.w/

�
as follows from the definition of �t and (6.3). Using again the inequality k@1F.w/k
� kXF .w/k, we see that

kP�t .w/k �O.k' � idkC1/ � kXF .w/k

� const � kXF .w/k;

where const is independent of ', when ' is sufficiently close to id. Then, since
kXF .w/k DO'.r/, we have

�dAt .w/ P�t .w/�XF .w/

DO'.r/ � kXF .w/k
and 

At .w/ �dXF .w/ P�t .w/�

D �O.kd2Fpk/CO'.r/� � kXF .w/k;
for kdXF .w/k DO.kd2Fpk/CO'.r/.

These estimates combined with (6.11) yield (6.10), and hence (6.2) for zK.

6.2.6. The Hamiltonian K; properties (i), (ii), and (iii). Fix a monotone in-
creasing function �W Œ0; 1�! Œ0; 1� such that �.t/� 0 when t is near 0 and �.t/� 1
when t is near 1. This function is independent of ', and hence j�0j and j�00j are
bounded from above by constants independent of '.

The Hamiltonian K is the one generating the flow

(6.12) 'tK D '
t��.t/
F '

�.t/

zK
:

Explicitly, since F is autonomous,

(6.13) Kt .z/D .1��
0.t//F.z/C�0.t/ zK�.t/

�
'
�.t/�t
F .z/

�
:

It is clear that Kt � F when t is close to 0 and 1 and hence K can be viewed
as a Hamiltonian one-periodic in t . Also, '1K D '

1
zK
D ', i.e., requirement (i) is

satisfied. As has been pointed out, the second condition, (ii), follows from (GF10)
and (iv) which is proved below.

Passing to the Hessians of the Hamiltonians in (6.13) at p, we have

d2.Kt /p D .1��
0.t//d2FpC�

0.t/d2. zK�.t//p ı d
�
'
�.t/�t
F

�
p
:

By (iii) for zK and (6.6), kd2.Kt /pk DO.kd2Fpk/, which proves (iii) for K.

6.2.7. The upper bound (6.1) for K. The Hamiltonian vector field of K is

(6.14) XKt .z/D .1��
0.t//XF .z/C�

0.t/d'
t��.t/
F .w/

�
X zK�.t/

.w/
�
;

where w D '�.t/�tF .z/. Since F is autonomous, XF .z/D d'
t��.t/
F .w/ .XF .w//.

In particular,

(6.15) kXF .w/k � const � kXF .z/k;



THE CONLEY CONJECTURE 1165

when z is close to p. Also note that when z 2 Br , the point w D '�.t/�tF .z/ is in
BR, where the radius R satisfies (6.8).

With these facts in mind, we have

kXKt .z/�XF .z/k � j�
0.t/j




d't��.t/F .w/
�
X zK�.t/

.w/
�
�XF .z/





� j�0.t/j




d't��.t/F .w/
�
X zK�.t/

.w/
�
� d'

t��.t/
F .w/.XF .w//





� j�0.t/j



d't��.t/F .w/


 � 


X zK�.t/.w/�XF .w/




D
�
O.kd2Fpk/CO'.r/

�
kXF .w/k

D
�
O.kd2Fpk/CO'.r/

�
kXF .z/k;

when z 2 Br . Here, the next to the last estimate follows from (6.1) for zK. This
proves (6.1) for K.

6.2.8. The upper bound (6.2) for K. Differentiating (6.14) with respect to t ,
we obtain

PXKt .z/D �
00.t/

�
d'

t��.t/
F .w/

�
X zK�.t/

.w/
�
�XF .z/

�
C�0.t/2d'

t��.t/
F .w/

�
PX zK�.t/

.w/
�

C�0.t/.�0.t/� 1/d'
t��.t/
F .w/ŒXF ; X zKt

�.w/:

Arguing as in Section 6.2.7, we see that the norm of the first term in this sum is�
O.kd2Fpk/CO'.r/

�
kXF .z/k. Similarly, the same holds for the second term by

(6.2) for zK. (In both cases we use (6.15) to relate XF .z/ and XF .w/ and also the
fact that kd't��.t/F .w/k � const when z 2 Br .)

To estimate the third term, it is sufficient to show that

(6.16) kŒXF ; X zKt
�.w/k D

�
O.kd2Fpk/CO'.r/

�
kXF .w/k;

for then, by (6.15), this term is
�
O.kd2Fpk/CO'.r/

�
kXF .z/k when z 2 Br . To

prove (6.16), observe that

ŒXF ; X zKt �.w/

D 

ŒXF ; X zKt �XF �.w/


� ˛.w/kXF .w/kCˇ.w/kX zKt

.w/�XF .w/k;

where the functions ˛.w/� 0 and ˇ.w/� 0 are bounded from above by the partial
derivatives of X zKt �XF and, respectively, XF at w. Hence, both of these functions

are O.kd2Fpk/CO'.r/ and (6.16) follows from (6.1) for zK.
This completes the proof of (6.2) for K and the proof of the lemma.

6.3. Proof of Lemma 5.4. Let ˆD d'p and let V D L˚L0 be the decompo-
sition of V D TpW from Lemma 5.5. Pick a linear canonical coordinate system
.x; y/ on TpW , which is compatible with the decomposition, i.e., such that the
x-coordinates span L and the y-coordinates span L0. By Lemma 5.5, we can do
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this so that kˆ� Ik is small in this coordinate system, and thus ' is given by the
generating function F . Denote by Q the Hessian of F at p and let XQ be the
linear Hamiltonian vector field of Q on V .

Linearizing (6.3) at p, we see that ˆ and Q are related via the equation

(6.17) ˆ� I DXQP.ˆ/:

Here P.ˆ/WV ! V is obtained from ˆ by replacing its y-component by the iden-
tity map, i.e., P.ˆ/.x; y/ D . Nx; y/ in the decomposition V D L ˚ L0, where
ˆ.x; y/D . Nx; Ny/. Note that (6.17) uniquely determines XQ.

Furthermore, let ẑ t be the linearization of 't
zK

at p. This family of linear
symplectic transformations satisfies the equation

(6.18) ẑ
t D I C tXQP. ẑ t /;

which again uniquely determines ẑ t .
It is clear from (6.17) and (6.18) that XQ and ẑ t depend only on the decom-

position V D L˚L0. Hence, any other coordinate system compatible with this
decomposition will give rise to the same quadratic form Q and the same maps ẑ t .

Due to (6.12), the linearization d.'tK/p is equal to

ˆt D exp
�
.t ��.t//XQ

�
ẑ
�.t/:

Hence, ˆt also depends only on the decomposition, but not on the coordinate
system as long as the latter is compatible with the decomposition. In other words,
all such coordinate systems result in the flows 'tK with linearization ˆt .

Lemma 5.4 follows now from Lemma 5.5, which guarantees that there exist
symplectic bases „ (or, equivalently, linear canonical coordinate systems) compat-
ible with V D L˚L0 and making kˆ� Ik„ arbitrarily small.

Remark 6.2. Recall that Q � 0 due to (K1) and that all eigenvalues of ˆ are
equal to one. Combining these facts with the normal forms of quadratic Hamil-
tonians (see [Arn74, Appendix 7] and [Wil36]), it is not hard to show that Q D
�.y21 C � � � C y

2
k
/ in some symplectic basis compatible with the decomposition

TpW D L˚L
0. Then it is straightforward to write down an explicit expression

for ẑ t and ˆt . This, however, does not lead to any simplification in the line of
reasoning used here, for the required result readily follows from (6.17) and (6.18).

7. Proof of Proposition 4.7

7.1. Outline of the proof. First note that it is sufficient to prove the proposi-
tion for the Hamiltonian K1 in place of H and the constant orbit p of K1 in place
of 
 .

Indeed, p is a symplectically degenerate maximum of K1 as is pointed out in
Example 4.4. The Hamiltonians K1 and H have the same time-T flow and there
is a natural one-to-one correspondence between (contractible) T -periodic orbits of
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the Hamiltonians, for 'tH D �
t ı 't

K1
with t 2 S1T . Due to our normalization of

K1, the corresponding T -periodic orbits of K1 and H have equal actions and, in
particular, .K1/.T / has the same action spectrum and action filtration in the Floer
complex as H .T /; see Section 2.3. As a consequence,

HF.TcCıT ; TcC"/nC1

�
H .T /

�
D HF.TcCıT ; TcC"/nC1

�
.K1/.T /

�
:

Thus, the proposition holds for H if (and only if) it holds for K1. Furthermore,
when H is replaced by K1, the loops �ti get replaced by the loops �ti ı .�

t
1/
�1

which have the identity linearization at p by (K3).
To summarize, keeping the notation H for the Hamiltonian K1, we may as-

sume throughout the proof that the Hamiltonian H is such that

� the point p is a strict local maximum of Ht for all t 2 S1, and

� d.�ti /p D I for all t 2 S1.

With these observations in mind, we establish the proposition by using the
squeezing method of [BPS03], [GG04]. Namely, closely following [GG04], we
construct functions H˙ such that H� � H � HC (see Fig. 1) and such that the
map ‰HC;H� in the filtered Floer homology for the interval .T cC ıT ; T cC "/
induced by a monotone homotopy from HC to H� is nonzero. This map factors
as

HF.TcCıT ;TcC"/nC1

�
H
.T /
C

�
!HF.TcCıT ; TcC"/nC1

�
H .T /

�
!HF.TcCıT ; TcC"/nC1

�
H .T /
�

�
;

and, therefore, HF.TcCıT ; TcC"/nC1

�
H .T /

�
¤ 0 as required.

The Hamiltonian HC depends only on H and ". Outside a ball BR of radius
R > 0, centered at p, the function HC is constant and equal to maxHC. (Here
the distance is taken with respect to some fixed metric compatible with !.) Within
BR, the Hamiltonian HC is a function of the distance to p, equal to c D H.p/
when the distance is small, dropping to some constant a < c, and then increasing
to maxHC near the boundary of BR.

HC

H

H�

c
a

p W

Figure 1. The functions H and H˙

The period T is required to be large enough, i.e., T � T0, where T0 is deter-
mined by HC (see �7.4) and ultimately by how fast the function H decreases on
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a neighborhood of p. A larger variation of H on a neighborhood of p results in a
smaller period T0. The function H� and the constant ıT > 0 depend on T � T0.
The condition that p is a symplectically degenerate maximum of H is used in the
construction of H� and also in proving that ‰HC;H� ¤ 0.

The function H� is constructed as follows. Pick i so that T � kd2.Kit /pk„i
is small. (Here, as above, Kti is normalized by Kit .p/� c.) There exists a bump
function F �Ki , supported near p, with nondegenerate maximum at p and F.p/D
c and such that T � kd2Fpk„i is also small. Then ‰HC;F ¤ 0. Setting H� to be
the Hamiltonian generating the flow �ti ı'

t
F , normalized by H�.p/� c, we note

that H� �H . Hence, H� �H �HC. The Hamiltonian H� has the same filtered
Floer homology as F , and we show that ‰HC;H� ¤ 0 using (K3).

7.2. Bump functions. In this section we recall a few standards facts needed
in the proof, concerning the filtered Floer complex of a bump function.

7.2.1. Bump functions on R2n. Set �D .x21C� � �Cx
2
nCy

2
1 C� � �Cy

2
n/=2 in

the standard canonical coordinates .x1; : : : ; xn; y1; : : : ; yn/ on R2n. All orbits of
't� are closed and have period 2� . Fix a ball Br � R2n of radius r > 0, centered
at the origin p.

Consider a rotationally symmetric function F on R2n supported in Br . The
function F depends only on the distance to p and it will be convenient in our
analysis to also view F as a function of �. Assume, in addition, that F has the
following properties (see Fig. 2):
� F is decreasing as a function of �;

� jF 0j< � and jF 0j is increasing on some closed ball NBr� � Br ; and

� on the shell Br XBr� ,
ı F is concave, i.e., F 00 � 0, on Œr2�=2; .r

0/2=2�, where r� < r 0 < r ,
ı F is convex (F 00 � 0) on Œ.r 00/2=2; r2=2�, where r 0 < r 00 < r ,
ı F has constant slope (F 0 D const) on the interval Œ.r 0/2=2; .r 00/2=2�,

where const=� is irrational.

We will refer to F as a standard bump function on R2n and we will call C WD
F.p/ and r� and r and other constants from the construction of F the parameters
of F . In what follows, it will also be convenient to assume that on the interval
Œ0; .r 0/2=2� the function F is C 0-close to the constant C , or equivalently the dif-
ference F..r 0/2=2/�C is small, and that F is C 0-close to zero on Œ.r 00/2=2; r2=2�,
i.e., F..r 00/2=2/ is small.

The trivial one-periodic orbits of F (i.e., its critical points) are either contained
in NBr 0 or in the complement to Br 00 . The orbits from the first group form a closed
ball (possibly of zero radius) centered at p and have action C ; the orbits from the
second group are exactly the points where F D 0.

Nontrivial one-periodic orbits fill in spheres of radii r˙i with

r� < r
�
1 < r

�
2 < � � �< r

0 and r 00 < � � �< rC2 < r
C
1 < r:
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F

C

p
r2�
2

x

.r0/2

2
.r00/2

2

y

r2

2

�

Figure 2. The bump function F

Let zF be the standard C 2-small (periodic in time) perturbation of F as the
ones considered in, e.g., [FHW94], [GG04], and still supported in Br . For such a
perturbation each sphere filled in by one-periodic orbits of F breaks down into 2n
nondegenerate orbits. Within NBr� , we may assume that zF is still autonomous and
rotationally symmetric and 0 < j zF 0j< � . (Hence the only one-periodic orbit of zF
in NBr� is the trivial orbit p of Conley-Zehnder index n.)

As is well-known, the filtered Floer complex of zF and the filtered Floer ho-
mology of zF (and F ) are still defined, say, for any positive interval of actions
0� a < b even though R2n is not compact; see, e.g., [FH94], [FHW94], [FS07],
[CGK04], [Gin07], [GG04]. Here we adopt the conventions of [CGK04], [Gin07],
[GG04].

Pick " > ı > 0 so that

(7.1) " > �r2; and C � ı > 2�r2 and ı < �r2�:

We are interested in the periodic orbits of zF with indices n� 1 or n or nC 1 and
action in the range .C � ı; C C "/.

It is not hard to see that zF has no one-periodic orbits of index n� 1. Further-
more, it has exactly two one-periodic orbits of index n. One of these is the constant
orbit p. The second orbit y arises from the sphere of periodic orbits farthest from
the origin. This sphere has radius rC1 and A zF .y/ D �.rC1 /

2 C : : : , where the
dots denote an error which can be made arbitrarily small by a suitable choice of
F and zF ; cf. [GG04, �5.2]. (There are two terms contributing to this error. The
first term reflects the fact that the value of F on this sphere is not exactly zero but
can be made arbitrarily close to zero. This term has order O.r � r 00/. The second
term has order O.kF � zF kC1/ and is due to the fact that x is a periodic orbit of
zF rather than of F .) By (7.1), y is outside the range of action.

Finally, zF has two one-periodic orbits of index nC 1, but only one of them,
x, has action in .C � ı; C C "/. (The action of the second orbit is approximately
equal to �.rC1 /

2.) The orbit x arises from the sphere of periodic orbits closest to
the origin. This is the sphere of radius r�1 and A zF .x/D C C�.r

�
1 /
2C : : : , where

again the dots denote an error which can be made arbitrarily small by a suitable
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choice of F and zF . (To be more precise, the error is bounded from above by
.F..r 0/2=2/�C/CO.kF � zF kC1/. See [CGK04], [GG04] or �7.3, where we
analyze in detail periodic orbits of a function similar to F .)

It is well-known that @x D yCp in the Floer complex of zF for the interval
.0; 1/; see, e.g., [Gin07, pp. 138–139]. Summarizing these observations, we
conclude that

� zF has no one-periodic orbits of index n� 1;
� p is the only one-periodic orbit of zF with index n and action in .C �ı; CC"/;
� x is the only one-periodic orbit of zF with index nC 1 and action in .C � ı,
C C "/;

� the connecting map from the long exact sequence

Z2 Š HF.CCı;CC"/nC1 .F /! HF.C�ı;CCı/n .F /Š Z2

is an isomorphism sending Œx� to Œp�, and hence HF.C�ı;CC"/n .F /D 0.

7.2.2. Bump functions on a closed manifold. Let U be a small neighborhood
of p 2 W . Fixing a canonical coordinate system on U , denote the open ball of
radius r > 0 in U , centered at p, by Br and let Sr be the boundary of Br .

We define a bump function F on W exactly as for R2n by using the coordinate
system in U . Furthermore, since W is compact, now we need not assume that F
is supported in Br . Instead we just require F to be constant outside Br . In other
words, we allow F to be shifted up and down.

The description of periodic orbits of zF and the Floer homology of F given in
Section 7.2.1 extends word-for-word to this case, provided that Br is sufficiently
small (e.g., displaceable) and the variation C �minF is sufficiently large. The
requirement C >�r2 is replaced by that C �minF >h.Br/, where h.Br/ depends
only on Br and goes to zero as r! 0; see, e.g., [Gin07]. (Hypothetically, h.Br/
is equal to the displacement energy of Br , although the estimate we have been
able to prove is somewhat weaker.) The requirement (7.1) carries over to this case
unchanged when F is supported in Br , and is, in general, replaced by

(7.2) " > �r2; and C � ı >minF C 2�r2 and ı < �r2�:

7.2.3. Connecting trajectories from x to p. Let us show that by making r
sufficiently small, we can ensure that the Floer gradient trajectories of F from x

to p are close to p. (When F is a bump function on R2n, all such trajectories are
contained in NBr by the maximum principle.)

To this end, pick a ball BR � NBr contained in U and fix once and forever a
compatible with ! almost complex structure J0 on W coinciding with the standard
complex structure on a neighborhood of NBR. Consider holomorphic curves v in
NBRXBr with boundary in Sr[SR and such that the part of the boundary of v lying

in Sr is nonempty. (Then the part of the boundary of v in SR is also nonempty
due to the maximum principle.) Denote by A.r;R/ > 0 the infimum of the areas
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of such curves v. It is easy to see that A.r;R/ remains separated from zero as
r ! 0. (Otherwise we would have A.r;R/ D 0 for some fixed r > 0 as is clear
from considering the intersections with NBR XBr of holomorphic curves whose
areas approach zero.) In other words, lim infr!0CA.r;R/ > 0. Replacing R by
R=2, we see that there exists r0.R; J0/ > 0 such that

(7.3) �r2 < A.r;R=2/ for all positive r < r0.R; J0/ < R=2.

LEMMA 7.1. Let F be an arbitrary bump function F such that (7.3) holds
and C �minF > h.Br/. Assume that " > 0 and ı > 0 satisfy (7.2). Then for a
perturbation zF of F as above and any regular perturbation of J of J0 all Floer
anti-gradient trajectories from x to p are contained in BR.

Proof. Assume the contrary. Then for some zF close to F and for some
sequence of regular perturbations Jl ! J0, there exists a sequence of connect-
ing trajectories ul from x to p, leaving a neighborhood of NBR=2. Observe that
the part of ul contained in NBR=2 XBr is a Jl -holomorphic curve. By the com-
pactness theorem, in the limit we have a J0-holomorphic curve v in NBR=2 XBr
with nonempty boundary in Sr . By the definition of A.r;R=2/, the area of v is
greater than A.r;R=2/. Therefore, the same is true for the part of ul contained in
NBR=2XBr when Jl is close to J0. Thus, E.ul/ > A.r;R=2/ > �r2 by (7.3). This

is impossible, for

E.ul/D A zF .x/�A zF .p/D �.r
�
1 /
2
C � � �< �r2;

where as in Section 7.2.1 the dots denote an error which can be made arbitrarily
small by a suitable choice of F and zF . �

7.3. The functionHC. Without loss of generality, we may assume that H � 0.
Furthermore, throughout this section we will keep the notation and convention of
Section 7.2. In particular, we fix a system of canonical coordinates on a neighbor-
hood U of p and let, as in Section 7.2, the function � on U be one half of the
square of the distance to p with respect to this coordinate system.

7.3.1. The description of HC. Pick four balls centered at p in U :

Br� � Br � BR � BRC b U:

Let HC be a function of �, also treated as a function on U , with the following
properties (see Fig. 1):
� HC �H ;
� HCjBr� � c DH.p/;
� on the shell Br XBr� the function HC is monotone decreasing, as a function

of �, and

ı HC is concave (H 00
C
� 0) on Œr2�=2; .r

0/2=2�, where r� < r 0 < r ,
ı HC is convex (H 00

C
� 0) on Œ.r 00/2=2; r2=2�, where r 0 < r 00 < r ,
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ı HC has constant slope (H 0
C
D const) on the interval Œ.r 0/2=2; .r 00/2=2�,

where const=� is irrational;
� HC � a on the shell BR XBr , where the constant a is to be specified latter;
� HC is monotone increasing on the shell BRC XBR, and
ı HC is convex (H 00

C
� 0) on ŒR2=2; .R0/2=2�, where R <R0 <RC,

ı HC is concave (H 00
C
� 0) on Œ.R00/2=2; R2

C
=2�, where R0 <R00 <RC,

ı HC, as a function of �, has constant slope (H 0
C
D const) on the interval

Œ.R0/2=2; .R00/2=2�, where const=� is irrational;
� HC �maxHC on U XBRC , with the constant maxHC > c to be specified.

Furthermore, we extend HC to W by setting it to be constant and equal to
maxHC on the complement of U . The constant maxHC is chosen so thatH �HC
on W and maxHC > c.

Note that within BR, the function HC is a standard bump function of Section
7.2. This bump function has variation c�a which, due to the requirement HC>H ,
may be very small.

7.3.2. The parameters of HC. Let us now specify the parameters of HC. The
main, but not the only, requirement on HC is that HC �H .

The neighborhood U is chosen so that c DH.p/ is a strict global maximum
of H on U and U is displaceable in W by a Hamiltonian diffeomorphism. The
values RC >R > 0 are chosen arbitrarily, with the only restriction that BRC b U .

To pick r , we fix " > 0 and also fix a compatible with ! almost complex struc-
ture J0 on W coinciding with the standard complex structure on a neighborhood
of the closed ball NBR. The radius r is chosen so that

(7.4) 0 < r < r0.R; J0/ and �r2 < ";

where the upper bound r0.R; J0/ is as in Section 7.2.3. The radius r�>0 is chosen
arbitrarily with the only restriction that 0 < r� < r .

The constants a and maxHC are picked so that a < c and HC � H on
Œr2�=2; R

2=2� and on W X BRC . (This may require a to be very close to c.)
Likewise, on the intervals Œr2�=2; r

2=2� and ŒR2=2; R2
C
=2�, the behavior of HC is

specified to guarantee thatHC�H . Finally, we will also impose the condition that

(7.5) maxHC > cC ":

At this stage we fix HC satisfying the above requirements.

7.3.3. Periodic orbits ofH .T /
C

. In this section, we analyze the relevant T -peri-
odic orbits of HC when T is sufficiently large. Since HC is autonomous, its
T -periodic orbits can simply be treated as one-periodic orbits of T �HC. Further-
more, it is clear that all T -periodic orbits of HC outside U are trivial. Those in U
are either trivial or fill in spheres of certain radii. Replacing HC by its standard
time-dependent C 2-small perturbation zHC as in [CGK04], [FHW94], [GG04] and
Section 7.2 results in each of these spheres splitting into 2n nondegenerate orbits.
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Here, as in Section 7.2, we are primarily interested in the orbits with index n� 1
or n or nC 1 and action in the interval .T c � ı; T c C "/ for some small ı > 0.
We will show that these orbits are essentially the same as for a bump function with
(large) variation T � .c � a/ > �r2.

The perturbation zHC is similar to zF from Section 7.2. We emphasize that HC
is perturbed not only within the shells NBRC XBR and NBr XBr� where nontrivial
periodic orbits are, but also within the ball Br� where HC � c. On this ball, zHC
is a monotone decreasing function of � with a nondegenerate maximum at p equal
to c. This function is C 2-close to the constant function HC so that (for a fixed T )
the function T � zHC is C 2-close to Tc on Br� . In particular, the eigenvalues of
the Hessian d2.T � zHC/p are close to zero and the Conley-Zehnder index of the
constant T -periodic orbit p of zHC is n. In what follows, we will always assume
that zHC is as close toHC as necessary. In the shell BRXBr and in the complement
to BRC we keep zHC constant and equal to HC.

With HC and " > 0 fixed, assume throughout this subsection that T is suffi-
ciently large and ı > 0 is small or, more specifically, that

(7.6) T � .c � a/ > 2�r2C ı; where ı < �r2� and ı < c � a:

The trivial T -periodic orbits of HC are the points of NBr� (with action Tc),
the points of NBR XBr (with action Ta), and the points of W XBR (with action
T �maxHC). Here, only the points of NBr� have action within the range in question.
Indeed, T �maxHC>T.cC"/ by (7.5) and Ta<Tc�ı, for 0< ı < c�a by (7.6).
Thus, p is the only trivial T -periodic orbit of zHC with action in .T c � ı; T cC "/;
it has index n.

We divide nontrivial T -periodic orbits of HC and zHC into four groups.
The first group is formed by the T -periodic orbits in the shell NBr 0XBr� . These

orbits fill in a finite number of spheres Sr�
l

of radii r�
l

with

r� < r
�
1 < r

�
2 < � � �< r

0:

The orbits on Sr�
l

have action TcC �.r�
l
/2 � l C : : : . Here and throughout this

section, the dots denote, as in Section 7.2.1, an error which can be made arbitrar-
ily small. Once the Hamiltonian HC is replaced by zHC, a sphere Sr�

l
breaks

down into 2n nondegenerate orbits. The Conley-Zehnder indices of these orbits
are .2l � 1/nC 1; : : : ; .2l C 1/n as is proved in [CGK04], [GG04]. Only one of
the orbits in this group has index from n � 1 to nC 1 and action in the range
.T c � ı; T cC "/. This is a periodic orbit, denoted by x, of index nC 1 and action
TcC�.r�1 /

2C : : : , arising from the sphere Sr�1 . The Conley-Zehnder indices of
the remaining orbits are greater than nC 1 although some of these orbits may have
action within the range .T c � ı; T cC "/.

The second group consists of the T -periodic orbits in the shell NBr X Br 00 .
These orbits fill in the spheres S

r
C

l

of radii rC
l

with

r 00 < � � �< rC2 < r
C
1 < r:
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The orbits on S
r
C

l

have action TaC�.rC
l
/2 � lC : : : . Again, once the Hamiltonian

HC is replaced by zHC, each sphere S
r
C

l

breaks down into 2n nondegenerate orbits.
The Conley-Zehnder indices of these orbits are .2l � 1/n; : : : ; .2l C 1/n� 1; see
[CGK04], [GG04]. Only the orbits arising from S

r
C

1

and S
r
C

2

can have index n�1
or n or nC 1. (Other spheres give rise to orbits of index greater than 5n� 1 >
nC 1.) However, the orbits coming from the spheres S

r
C

1

and S
r
C

2

have action not

exceeding TaC 2�r2 if zHC is close to HC. By (7.6), these orbits are outside the
action range .T c � ı; T cC "/.

The T -periodic orbits in the shell NBR0 XBR are in the third (possibly empty)
group. These orbits fill in the spheres SR�

l
of radii R�

l
with

R <R�1 <R
�
2 < � � �<R

0;

and the orbits on SR�
l

have action Ta��.R�
l
/2 � lC : : : . Hence, all of these orbits

are outside of the range of action .T c � ı; T cC "/.
The fourth group, which may also be empty, is formed by the T -periodic

orbits in the shell NBRC XBR00 . These orbits fill in a finite collection of spheres
S
R
C

l

of radii RC
l

such that

R00 < � � �<RC2 <R
C
1 <RC;

and the orbits on S
R
C

l

have action T �maxHC � �.RCl /
2 � l C : : : , which can

be in the interval .T c � ı; T c C "/. However, calculating the Conley-Zehnder
indices of the resulting orbits of zHC as in [CGK04], [GG04], it is easy to see
that the sphere S

R
C

l

breaks down into nondegenerate orbits of zHC with indices
�.2l C 1/nC 1; : : : ;�.2l � 1/n. In particular, all resulting orbits have indices not
exceeding �n, and none of the orbits has index n� 1 or n or nC 1.

To summarize, the perturbation zHC has only one T -periodic orbit of index n
with action in .T c � ı; T cC "/ — this is the trivial orbit p — and only one orbit,
namely x, of index nC 1 with action within this range. The action of p is Tc and
the action of x is TcC �.r�1 /

2C : : : . There are no orbits with index n� 1 and
action in the range .T c � ı; T cC "/.

7.3.4. The Floer homology of H .T /
C

. As in the previous section, assume that
T is sufficiently large and ı > 0 is small (independently of T ). Explicitly, now we
require in addition to (7.6) that

(7.7) T .c � a/ > h.BR/;

where h.BR/ is defined in Section 7.2.2. In this section we prove

LEMMA 7.2. Under the above assumptions on the function HC, the period T ,
and " and ı, we have

HF.Tc�ı; TcCı/n

�
H
.T /
C

�
Š Z2 and HF.TcCı; TcC"/nC1

�
H
.T /
C

�
Š Z2
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with generators Œp� and, respectively, Œx�. Moreover, the connecting map

(7.8) Z2 Š HF.TcCı; TcC"/nC1

�
H
.T /
C

�
! HF.Tc�ı; TcCı/n

�
H
.T /
C

�
Š Z2

is an isomorphism.

Proof. Since (7.6) is satisfied, the results of the previous section apply, and
x and p are the only T -periodic orbits of zHC of index n � 1 or n on n C 1
with action in the range .T c � ı; T c C "/. It is clear that Œp� is the generator
of HF.Tc�ı; TcCı/n

�
H
.T /
C

�
Š Z2. Furthermore, x is the only T -periodic orbit of

index nC 1 with action in .T cC ı; T cC "/ and there are no T -periodic orbits of
index n with action in this interval. Hence, the homology HF.TcCı; TcC"/nC1

�
H
.T /
C

�
,

generated by Œx�, is either zero or Z2. (The former is a priori possible, for in fact
there exists a T -periodic orbit of index nC 2 with action in .T cC ı; T cC "/.) To
finish the proof of the lemma, it is sufficient now to show that the connecting map
(7.8) is onto or, equivalently,

(7.9) HF.Tc�ı; TcC"/n

�
H
.T /
C

�
D 0;

i.e., the number of Floer anti-gradient trajectories for zH .T /
C

from x to p is odd.
Within BR, the Hamiltonian T �HC coincides with a standard bump function

F whose variation C �minF D T .c�a/ is greater than h.BR/ by (7.7). Thus, the
assumptions of Section 7.2.2 are satisfied, and HF.C�ı;CC"/n .F /D 0. Furthermore,
zH
.T /
C

agrees with zF on BR. Due to our choice of r , the condition (7.3) holds and

Lemma 7.1 is applicable. Therefore, zF , and hence zH .T /
C

, have an odd number
of Floer anti-gradient trajectories from x to p contained in BR. Moreover, every
Floer anti-gradient trajectory for zH .T /

C
from x to p is automatically in BR. This

is established by arguing exactly as in the proof of Lemma 7.1 with F replaced by
zH
.T /
C

and using again (7.4). As a consequence, zH .T /
C

and F have the same Floer
anti-gradient trajectories from x to p, and the total number of such trajectories is
odd. This concludes the proof of (7.9) and of the lemma. �

7.4. The function H�. Recall that the function HC and the parameter " > 0
were fixed above, while T and ı have been variable. At this point, we also fix a
large period T meeting the requirement (7.7) and such that T � .c � a/ > 2�r2.
Then, condition (7.6) is satisfied if ı > 0 is small, and hence Lemma 7.2 applies.

In this section, we construct a Hamiltonian H� � 0, depending on T , such
that H� �H and H�.p/D c, and the connecting map

(7.10) Z2 Š HF.TcCıT ; TcC"/nC1

�
H .T /
�

�
! HF.Tc�ıT ; TcCıT /n

�
H .T /
�

�
Š Z2

is an isomorphism if ıT > 0 is sufficiently small.
Recall from Section 7.1 (see also Definition 4.1) that there exist

� a loop �t D �ti , t 2 S
1, of Hamiltonian diffeomorphisms fixing p and

� a system of canonical coordinates � D � i on a neighborhood V of p
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such that the Hamiltonian K D Ki generating the flow .�t /�1 ı 'tH has a strict
local maximum at p and

(7.11) max
t
kd2.Kt /pk�p <

�

T
:

Moreover, the loop � has identity linearization at p, i.e., d.�t /p D I for all t 2 S1,
and is contractible to id in the class of loops with identity linearization at p. (See
(K3) and �7.1.) Let �s be a homotopy from � to the identity such that d.�ts/p � I
and let Gst be the one-periodic Hamiltonian generating �ts and normalized by
Gst .p/� 0. The condition d.�ts/p D I is equivalent to that d2.Gst /p D 0.

As usual, we normalize K by requiring that Kt .p/� c or, equivalently, by
H DG#K. Without loss of generality, we may also assume that NV �Br� , where V
is the domain of the coordinate system � and Br� is the ball from the construction
of KC; see Section 7.3. Note that this ball is taken with respect to the original
metric and is not related to � .

Let F be a bump function, “centered” at p, with respect to the coordinate
system � . As in Section 7.2.2, we do not require F to be supported in V , but only
constant outside V . Thus, F �minF on W XV . We may assume that minF < a.
It is also clear that F can be chosen so that

� F.p/D c DK.p/ and F �K and, by (7.11),

(7.12) kd2Fpk�p <
2�

T
:

Furthermore, utilizing the condition d2.Gst /p D 0 and the flexibility in the choice
of minF (e.g., making minF large negative), we can ensure that

� F s WDGs#F �HC for all s.

Then F s is an isospectral homotopy (cf. Example 2.4) beginning with

(7.13) H� WDG
0#F �G0#K DH �HC

and ending with F 1 D F . Throughout the homotopy, F s.p/D c and F s �HC.
The variation of T �F , equal to T .c�minF /, is much larger than T .c�a/�

h.Br�/� h.V /. Hence, as shown in Section 7.2, we have the isomorphism

Z2 Š HF.TcCıT ; TcC"/nC1 .T �F /! HF.Tc�ıT ; TcCıT /n .T �F /Š Z2;

provided that ıT > 0 is sufficiently small. Finally note that A.Gs/D 0 for all s, for
Gst .p/ � 0. Therefore, the functions F s have equal filtered Floer homology for
any period T . In particular, the filtered Floer homology of H .T /

� and of F .T / are
the same and the latter is identical to the (one-periodic) filtered Floer homology of
T �F . Thus, we obtain the desired isomorphism (7.10).

7.5. The monotone homotopy map. By construction, HC �H�. A monotone
decreasing homotopy from HC to H� induces maps of filtered Floer homology,
which commute with the maps from the long exact sequence; see, e.g., [Sch00,
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�2.4] or [BPS03, �4.4] and references therein. In particular, combining the mono-
tone homotopy maps with the connecting maps (7.8) for HC and (7.10) for H�,
we obtain the following commutative diagram:
(7.14)

Z2 Š HF.TcCıT ; TcC"/nC1

�
H
.T /
C

� Š
����! HF.Tc�ıT ; TcCıT /n

�
H
.T /
C

�
Š Z2??y ??y‰

Z2 Š HF.TcCıT ; TcC"/nC1

�
H .T /
�

� Š
����! HF.Tc�ıT ; TcCıT /n

�
H .T /
�

�
Š Z2:

To prove the theorem, it is sufficient to show that the right vertical arrow ‰

in the diagram (7.14), i.e., the homotopy map

‰WHF.Tc�ıT ; TcCıT /n

�
H
.T /
C

�
! HF.Tc�ıT ; TcCıT /n

�
H .T /
�

�
is an isomorphism. Indeed, the rows of (7.14) are isomorphisms, and hence the
left vertical arrow is an isomorphism whenever ‰ is an isomorphism. Since H� �
H �HC by (7.13), the left vertical arrow factors as

HF.TcCıT ; TcC"/nC1

�
H
.T /
C

�
!HF.TcCıT ; TcC"/nC1

�
H .T /

�
!HF.TcCıT ; TcC"/nC1

�
H .T /
�

�
;

and, as a consequence, the middle group is nonzero as desired.
To show that ‰ is an isomorphism, first observe that since F s �HC for all s

and F 0 DH� and F 1 D F , the diagram

HF.Tc�ıT ; TcCıT /n

�
H
.T /
C

�
‰

�� **

HF.Tc�ıT ; TcCıT /n

�
H .T /
�

� Š // HF.Tc�ıT ; TcCıT /n

�
F .T /

�
is commutative, where the horizontal isomorphism is induced by the isospectral
homotopy F s and the remaining two arrows are monotone homotopy maps. (See
Section 2.2.2 and, in particular, (2.5).) Recall also that HC and F are autonomous.
It remains to prove that the diagonal arrow, which can be identified with

Z2 Š HF.Tc�ıT ; TcCıT /n .T �HC/! HF.Tc�ıT ; TcCıT /n .T �F /Š Z2

is an isomorphism.
Consider a C 2-small autonomous perturbation yHC � F of HC such that

d2. yHC/p is negative definite and S. yHC/D S.HC/. (It is straightforward to con-
struct yHC by modifying HC on a neighborhood of NBr� .) Then yHC.p/� c and
kd2. yHC/pk can be made arbitrarily small, for d2.HC/p D 0. We take yHC such
that T � yHC is C 2-close to T �HC, and, in particular, kd2.T � yHC/pk is small.
Essentially by definition, the filtered Floer homology of T � yHC is isomorphic to
the filtered Floer homology of T �HC, and it suffices to show that

(7.15) Z2 Š HF.Tc�ıT ; TcCıT /n .T � yHC/! HF.Tc�ıT ; TcCıT /n .T �F /Š Z2

is an isomorphism for some small ıT > 0 independent of the choice of yHC.
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Recall that Tc is an isolated action value of T � F and T �HC, and hence
of T � yHC, for a generic choice of parameters of these functions. Fix ıT > 0

meeting the requirement (7.6) and such that Tc is the only action value of these
Hamiltonians in .T c � ıT ; T cC ıT /. Consider the linear decreasing homotopy
yH sD .1�s/ yHCCsF . Since both of the Hessians d2. yHC/p and d2Fp are negative

definite, d2.T � yH s
C
/p is also negative definite. Thus, p is a nondegenerate critical

point of yH s
C

for all s 2 Œ0; 1� with yH s
C
.p/D c. Furthermore, by (7.12) and since

kd2.T � yHC/pk is small, kd2.T � yH s
C
/pk<2� . As a consequence, p is a uniformly

isolated one-periodic orbit of T � yH s
C

; see, e.g., [SZ92, pp. 184–185] or Section 3.3.
By Lemma 2.5, the homotopy map (7.15) is nonzero, and hence an isomorphism.

This concludes the proof of Proposition 4.7 and of Theorem 1.1. A slightly
different proof of the proposition, although based on the same ideas as the present
argument and following the same line of reasoning, can be found in [GG09, �5].

Acknowledgments. The author is deeply grateful to Başak Gürel, Doris Hein,
Ely Kerman, and Felix Schlenk for their numerous valuable remarks and sugges-
tions.
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