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Abstract

We show that Bloch’s complex of relative zero-cycles can be used as a dualizing
complex over perfect fields and number rings. This leads to duality theorems for
torsion sheaves on arbitrary separated schemes of finite type over algebraically
closed fields, finite fields, local fields of mixed characteristic, and rings of inte-
gers in number rings, generalizing results which so far have only been known for
smooth schemes or in low dimensions, and unifying the p-adic and l-adic theory.
As an application, we generalize Rojtman’s theorem to normal, projective schemes.

1. Introduction

If f W X ! S is separated and of finite type, then in order to obtain duality
theorems from the adjointness

RHomX .G; Rf ŠF/ŠRHomS .RfŠG;F/

for torsion étale sheaves G on X and F on S , one has to identify the complex Rf ŠF.
For example, if f is smooth of relative dimension d and if m is invertible on S ,
then Poincaré duality of [1, Exp. XVIII] states that Rf ŠFŠ f �F˝�˝dm Œ2d � for
m-torsion sheaves F. We show that if S is the spectrum of a perfect field, or a
Dedekind ring of characteristic 0 with perfect residue fields, then Bloch’s complex
of zero-cycles can by used to explicitly calculate Rf ŠF.

For a scheme X essentially of finite type over S , let ZcX be the complex of
étale sheaves which in degree �i associates to U ! X the free abelian group
generated by cycles of relative dimension i over S on U �S �i which meet all
faces properly, and alternating sum of intersection with faces as differentials [5].
Over a field, the higher Chow group of zero-cycles CH0.X; i/ is by definition the
�i th cohomology of the global sections ZcX .X/, and if X is smooth of relative
dimension d over a perfect field k of characteristic p, then ZcX=mŠ �

˝d
m Œ2d � for

m prime to p, and ZcX=p
r Š �dr Œd �, the logarithmic de Rham-Witt sheaf [15], [14].
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Our main result is that if f WX ! Y is separated and of finite type over a perfect
field k, and if F is a torsion sheaf on X , then there is a quasi-isomorphism

(1) RHomX .F;ZcX /ŠRHomY .RfŠF;ZcY /:

If k is algebraically closed and F is constructible, then this yields perfect pairings
of finite groups

Ext1�iX .F;ZcX /�H
i
c .Xet;F/!Q=Z:

In particular, we obtain an isomorphism CH0.X; i;Z=m/ Š H i
c .Xet;Z=m/

� of
finite groups, generalizing a theorem of Suslin [45] to arbitrary m, and an isomor-
phism of the abelianized (pro-finite) fundamental group �ab

1 .X/ with CH0.X; 1; OZ/
for any proper scheme X over k. As an application, we generalize Rojtman’s
theorem [33], [38] to normal schemes X , projective over an algebraically closed
field: The albanese map induces an isomorphism

torCH0.X/Š tor AlbX .k/

between the torsion points of the Chow group of zero-cycles on X and the torsion
points of the albanese variety in the sense of Serre [42]. This is a homological
version of Rojtman’s theorem which differs from the cohomological version of
Levine and Krishna-Srinivas [28], [26] relating the albanese variety in the sense of
Lang-Weil to the Chow group defined by Levine-Weibel [30]. We give an example
to show that for nonnormal schemes, the torsion elements of CH0.X/ cannot be
parametrized by an abelian variety in general.

If k is finite, and X is separated and of finite type over k, we obtain for
constructible sheaves F perfect pairings of finite groups

Ext2�iX .F;ZcX /�H
i
c .Xet;F/!Q=Z:

This generalizes results of Deninger [9] for curves, Spieß [44] for surfaces, and
Milne [35] and Moser [36] for the p-part in characteristic p. In fact, the dualizing
complex of Deninger is quasi-isomorphic to ZcX by a result of Nart [37], and the
niveau spectral sequence of ZcX=p

r degenerates to the dualizing complex of Moser.
If �ab

1 .X/
0 is the kernel of �ab

1 .X/!Gal.k/, then for X proper and xX DX �k Nk,
we obtain a short exact sequence

0! CH0. xX; 1/^G! �ab
1 .X/

0
! CH0. xX/G! 0:

We obtain a similar duality theorem for schemes over local fields of characteristic 0.
If f W X ! S is a scheme over the spectrum of a Dedekind ring of charac-

teristic 0 with perfect residue fields, then, assuming the Beilinson-Lichtenbaum
conjecture, there is a quasi-isomorphism

(2) RHomX .F;ZcX /ŠRHomS .RfŠF;ZcS /:
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Even though the duality theorem over a field of characteristic p could in principle
be formulated by treating the prime to p-part and p-part separately, it is clear that
over a Dedekind ring one needs a complex which treats both cases uniformly.

If S is the ring of integers in a number ring, and if we define cohomology with
compact support H i

c .Xet;F/ as the cohomology of the complex R�c.Set; RfŠF/,
where R�c.Set;�/ is cohomology with compact support of S [31], [34], then com-
bining (2) with Artin-Verdier duality, we get perfect pairings of finite groups

Ext2�iX .F;ZcX /�H
i
c .Xet;F/!Q=Z

for constructible F. This generalizes results of Artin-Verdier [31] for dimX D 1,
Milne [34] for dimX D 1 and X possibly singular, or X smooth over S , and Spieß
[44] for dimX D 2.

If S is a henselian discrete valuation ring of mixed characteristic with closed
point i W s! S , and if we define cohomology with compact support in the closed
fiber H i

Xs ;c
.Xet;F/ to be the cohomology of R�.Set; i�Ri

ŠRfŠF/, then there are
perfect pairings of finite groups

Ext2�iX .F;ZcX /�H
i
Xs ;c

.Xet;F/!Q=Z

for constructible F.
We outline the proof of our main theorem (1). The key observation is that for

i WZ!X a closed embedding over a perfect field, we have a quasi-isomorphism
of complexes of étale sheaves Ri ŠZcX Š ZcZ (purity). In order to prove purity,
we show that ZcX has étale hypercohomological descent over algebraically closed
fields (i.e., its cohomology and étale hypercohomology agree), and then use purity
for the cohomology of ZcX proved by Bloch [4] and Levine [29]. To prove étale
hypercohomological descent, we use the argument of Thomason [46] to reduce to
finitely generated fields over k, and in this case use results of Suslin [45] for the
prime to p-part, and Geisser-Levine [14] and Bloch-Kato [6] for the p-part.

Having purity, an induction and devissage argument is used to reduce to the
case of a constant sheaf on a smooth and proper scheme, in which case we check
that our pairing agrees with the classical pairing of [1, XVIII] and Milne [35] for
the prime to p and p-primary part, respectively.

Throughout the paper, scheme over S denotes a separated scheme of finite
type over S . We always work on the small étale site of a scheme. For an abelian
groupA, we denote byA�DHom.A;Q=Z/ its Pontrjagin dual, byA^D* limA=m
its pro-finite completion, by mA them-torsion of A, and by TAD * limmA its Tate-
module.

2. The dualizing complex

We recall some properties of Bloch’s higher Chow complex [5], see [12] for
a survey and references. For a fixed regular scheme S of finite Krull dimension d ,
and an integral scheme X essentially of finite type over S , the relative dimension
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of X over S is
dimS X D trdeg.k.X/ W k.p//� ht pC d:

Here k.X/ is the function field of X , p is the image of the generic point of X in S ,
and k.p/ its residue field. For example, if K is an extension field of transcendence
degree r over k, then the dimension of K over k is r . For a scheme X essentially
of finite type over S , we define zn.X; i/ to be the free abelian group generated by
closed integral subschemes of relative dimension nC i over S on X �S �i which
meet all faces properly. If zn.X;�/ is the complex of abelian groups obtained
by taking the alternating sum of intersection with face maps as differentials, then
zn.�;�/ is a (homological) complex of sheaves for the étale topology [11]. We
define ZcX .n/ D zn.�;�/Œ2n� to be the (cohomological) complex with the étale
sheaf zn.�;�i � 2n/ in degree i . If nD 0, then we sometimes write ZcX instead
of ZcX .0/, and we sometimes omit X if there is no ambiguity. For a quasi-finite,
flat map f W X ! Y , we have a pull-back f �ZcY .n/! ZcX .n/ because zn.�;�/
is contravariant for such maps, and for a proper map f WX ! Y we have a push-
forward f�ZcX .n/ ! ZcY .n/ because zn.�;�/ is covariant for such maps. We
frequently use that ZcX .n/ is a complex of flat sheaves, hence tensor product and
derived tensor product with ZcX .n/ agree.

From now on we assume that the base S is the spectrum of a field or of a
Dedekind ring. Then for a closed embedding i WZ!X over S , we have a quasi-
isomorphism ZcZ.n/ŠRi

ŠZcX .n/ on the Zariski-site [4], [29]. We will refer to this
fact as purity or the localization property; the fact that the analog statement holds
on the étale site if n � 0 and the residue fields of S are perfect is a key result of
this paper. If p WX �Ar !X is the projection, we have a quasi-isomorphism of
complexes of Zariski-sheaves

(3) p�ZcX�Ar .n/Š ZcX .n� r/Œ2r�:

For a Grothendieck topology t , we define

Hi .Xt ;Z
c.n//DH�iR�.Xt ;Z

c.n//:

We sometimes omit the t when we use the Zariski topology, and note that for X
over a field or discrete valuation ring [5], [29]

CHn.X; i � 2n/ŠHi .XZar;Z
c.n//:

If ZX .n/ is the motivic complex of Voevodsky [47], then on a smooth scheme X
of dimension d over a field k,

(4) ZcX .n/Š ZX .d �n/Œ2d �:

The Beilinson-Lichtenbaum conjecture (translated into homological notation by
(4)) states that for a scheme X as above, and m prime to the characteristic of k, the
change of topology map induces an isomorphism

Hi .XZar;Z
c
X=m.n//

�
�!Hi .Xet;Z

c
X=m.n//
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for i � d Cn. If m is a power of the characteristic of p, then the analog statement
is known [14], and with Q-coefficients, Zariski and étale hypercohomology agree
for smooth schemes and all i . The Beilinson-Lichtenbaum conjecture is implied by
the Bloch-Kato conjecture stating that for any field F of characteristic prime to m,
the norm residue homomorphism KMn .F /=m!Hn.Fet; �

˝n
m / is an isomorphism

for all n [15]. A proof of the Bloch-Kato conjecture is announced by Rost and
Voevodsky, but since there is no published account at this time, we will point out
any use of the Beilinson-Lichtenbaum conjecture.

We define Hi .Ft ;Zc.n// D * colimUHi .Ut ;Zc.n// for F a finitely gener-
ated field over S , where the colimit runs through U of finite type over S with field
of functions F . ThenHi .Ft ;Zc.n//ŠH 2d�i .Ft ;Z.d�n// if F has dimension d
over S by (4). In particular, this group vanishes for the Zariski topology if i <dCn,
and agrees with KM

d�n
.F / for i D d Cn. The Beilinson-Lichtenbaum conjecture

implies that Hi .F;Zc.n//ŠHi .Fet;Z
c.n// for i � d Cn.

PROPOSITION 2.1. Let X be a scheme over a field or Dedekind ring. Then
there are spectral sequences

(5) E1s;t D
M
x2X.s/

H s�t .k.x/;Z.s�n//)HsCt .X;Z
c.n//:

In particular, Hi .X;Zc.n//D 0 for i < n.

Proof. If we let FsZc.n/ be the subcomplex generated by cycles of dimension
nC i on X ��i such that the projection to X has dimension at most s over S , then
we get the spectral sequence

E1s;t DHsCt .X; Fs=Fs�1Zc.n//)HsCt .X;Z
c.n//:

By the localization property, we get

HsCt .X; Fs=Fs�1Zc.n//Š
M
x2X.s/

HsCt .k.x/;Z
c.n//

Š

M
x2X.s/

H s�t .k.x/;Z.s�n//:

An inspection shows that E1s;t D 0 for t < n, hence the vanishing. �
Recall that �ir D Wr�

i
X;log is the logarithmic de Rham-Witt sheaf. The fol-

lowing proposition is a finite coefficient-version of (4):

PROPOSITION 2.2. Let X be smooth of dimension d over a perfect field k,
and let n� d . Then there are quasi-isomorphisms of complexes of étale sheaves

ZcX=m.n/Š �
˝d�n
m Œ2d � if char k6 jmI

ZcX=p
r.n/Š �d�nr Œd Cn� if p D char k:

This is compatible with the Gysin maps Hj .Zet;Z
c
Z.n//! Hj .Xet;Z

c
X .n//, for

closed embeddings i WZ!X of pure codimension between smooth schemes.
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Proof. The prime to p-part has been proved in [15, Th. 4.14, Prop. 4.5(2)].
For the p-primary part, the quasi-isomorphism is given by [14]

Zc=pr.n/Œ�d �n�
�
 � ��0.Z

c=pr.n/Œ�d �n�/
�
�!H�d�n.Zc=pr.n//

�
�!G.H�d�n.Zc=pr.n///ŠG.�d�nr /

�
 � �d�nr ;

where G.�d�nr / is the Gersten resolution arising as the E1-complex of the niveau
spectral sequence (5)M

x2X.0/

.ix/��
d�n
r;k.x/!

M
x2X.1/

.ix/��
d�n�1
r;k.x/ ! � � � ;

and similarly for H�d�n.Zc=pr.n//. The Gersten resolutions identify via the
isomorphisms HdCn�i .k.x/;Zc=pr.n//

�
 � KM

d�n�i
.k.x//=pr

�
�! �d�n�i

r;k.x/
for a

field k.x/ of codimension i , i.e. transcendence degree d � i . The compatibility of
cohomology with proper push-forward and flat equidimensional pull-back follows
from the corresponding property of the Gersten resolution [16, Prop. 1.18]. �

The p-primary part of Proposition 2.2 can be generalized to singular schemes.
Let Q�r.0/ be the complex of étale sheaves

� � � !

M
x2X.1/

.ix/��
1
r;k.x/!

M
x2X.0/

.ix/��
0
r;k.x/! 0

used by Moser [36, 1.5] (loc. cit. indexes by codimension, which makes the treat-
ment more complicated).

PROPOSITION 2.3. Let X be a separated scheme of finite type over a perfect
field k of characteristic p. Then Zc=p.n/Š 0 for n<0, and there are isomorphisms
of étale sheaves Hi .Z

c=pr.0//ŠHi . Q�r.0//, compatible with proper push-forward.
In particular, Hi .Xet;Z

c=pr.0//ŠHi .Xet; Q�r.0//.

Proof. If n < 0, let R be a finitely generated algebra over k. Write R as a
quotient of a smooth algebra A, and let U D SpecA�SpecR. Then the localization
sequence for higher Chow groups

� � �!HiC1.U;Z
c=p.n//!Hi .SpecR;Zc=p.n//!Hi .SpecA;Zc=p.n//!� � �

together with the fact that Hi .XZar;Z
c=p.n// D 0 for smooth X and n < 0 [14]

shows thatHi .SpecR;Zc=p.n//ŠHi .Zc=p.n/.SpecR//Š 0. For nD 0, we can
assume that k is algebraically closed. Consider the spectral sequence (5) with mod
pr -coefficients. The E1s;t -terms vanish for t < 0, and according to [14], they also
vanish for t > 0. Since H s.k.x/;Z=pr.s//ŠH 0.k.x/et; �

s
r /, the cohomology of

Zc=pr.0/.X/ agrees with the cohomology of the complex Q�r.0/.X/ in a functorial
way. �

It would be interesting to write down a map Zc=pr.0/! Q�r.0/ of complexes
inducing the isomorphism on cohomology of Proposition 2.3. We will see below
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that there is a quasi-isomorphism Zc=pr.0/
�
�! Rf ŠZ=pr . On the other hand,

Jannsen, Saito, and Sato [20] show that there is a quasi-isomorphism Q�r.0/
�
�!

Rf ŠZ=pr .

LEMMA 2.4. If F is an m-torsion sheaf , then we have a quasi-isomorphism

RHomX;Z=m.F;Z
c
X=m/Œ�1�ŠRHomX .F;ZcX /:

Proof. The exact, fully faithful inclusion functor F W ShvZ=m.X/! ShvZ.X/

from étale sheaves of Z=m-modules to étale sheaves of abelian groups has the left
adjoint �˝Z Z=m and the right adjoint “m-torsion” Tm D HomZ.Z=m;�/; in
particular, Tm preserves injectives. Moreover, the left derived functor �˝LZ Z=m

of the tensor product agrees with the shift RTmŒ1� of the right derived functor of
the m-torsion functor as functors D.ShvZ.X//! D.ShvZ=m.X//. Indeed, both

are quasi-isomorphic to the double complex C �
�m
�! C �. Since ZcX consists of flat

sheaves, we have ZcX=mŠ ZcX ˝
L Z=mŠRTmZcX Œ1�. The lemma follows from

RHomX .FF;ZcX /ŠRHomX;Z=m.F; RTmZcX /

ŠRHomX;Z=m.F;Z
c
X=mŒ�1�/: �

We also use frequently that for a complex of torsion abelian groups C � we
have Hom.C �;Q=Z/Œ�1�ŠRHom.C �;Z/, and in particular H iRHom.C �;Z/Š
H 1�i .C �/�.

3. Étale descent

The main result of this section is purity and a trace map for Zc.0/. We give a
conceptual proof assuming the Beilinson-Lichtenbaum conjecture, and an ad-hoc
proof of a weaker, but for our purposes sufficient result, avoiding the use of the
Beilinson-Lichtenbaum conjecture. We first use an argument of Thomason [46] to
show that for n� 0, Zc.n/ has étale cohomological descent.

THEOREM 3.1. Assume that the Beilinson-Lichtenbaum conjecture holds for
schemes over the algebraically closed field k. If X is a scheme over k and n� 0,
then Zc.n/.X/ŠR�.Xet;Z

c.n//.

Proof. Since Zc.n/ satisfies the localization property, we can apply the ar-
gument of Thomason [46, Prop. 2.8] using induction on the dimension of X , to
reduce to showing that for an artinian local ring R, essentially of finite type over
k, we have Zc.n/.SpecR/Š R�.SpecRet;Z

c.n// for n � 0. Since Zc.n/.U /D

Zc.n/.U red/, we can assume that R is reduced, in which case it is the spectrum
of a field F of finite transcendence degree d over k. We have to show that the
canonical map Hi .F;Zc.n//! Hi .Fet;Z

c.n// is an isomorphism for all i and
n � 0. Rationally, Zariski and étale hypercohomology of the motivic complex
agree. With prime to p-coefficients, both sides agree for i � dCn by the Beilinson-
Lichtenbaum conjecture. For i < d both sides vanish because by Proposition
2.2, Hi .Fet;Z

c=m.n// D H 2d�i .Fet; �
˝.d�n/
m / and because the cohomological
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dimension of F is d . With mod p-coefficients, both sides agree for nD 0 because
Zc=pr.0/Š �dr Œd �Š R"��

d
r Œd �Š R"�Zc=pr.0/ from Proposition 2.2 and [23],

where " denotes the map from the small étale site to the Zariski site. Finally,
Z=pr.n/D 0 for n < 0. �

We remark that the same argument gives an unconditional result for the cycle
complex Zc

.p/
.n/ localized at p.

COROLLARY 3.2. Let f WX! Y be a map over the perfect field k, and n� 0.
If f is proper, then there is a functorial push-forward f� WRf�ZcX .n/! ZcY .n/ in
the derived category of étale sheaves. For arbitrary f , we obtain for every torsion
sheaf G on Y a functorial map

(6) RfŠ.f
�G˝ZcX .n//! G˝ZcY .n/:

Proof. For proper f , the map is given as

Rf�ZcX .n/
�
 "�Rf Zar

� ZcX .n/
Zar
! "�ZcY .n/

Zar
Š ZcY .n/:

The second map is the map induced by the proper push-forward of higher Chow
groups. The first map is the base-change map between push-forward on the Zariski-
site and push-forward on the étale site "�f Zar

� ! f et
� "
�. The push-forward on

the Zariski site "�Rf Zar
� ZcX .n/

Zar and on the étale site Rf�ZcX .n/ are the com-
plexes of étale sheaves on Y associated to the complexes of presheaves U 7!
R�Zar.f

�1U;Zc.n// and U 7! R�et.f
�1U;Zc.n//, respectively. Showing that

these complexes are quasi-isomorphic is a problem local for the étale topology,
hence we can assume that k is algebraically closed. In this case, the base change
map is a quasi-isomorphism by Theorem 3.1.

For arbitrary f WX ! Y , factor f through a compactification X
j
! T

g
! Y .

Writing G as a direct limit of m-torsion sheaves we can assume that G is m-torsion
and replace G˝ZcY .n/ by G˝Z=m ZcY =m.n/. Then using the proper base-change
theorem, we obtain a map

RfŠ.f
�G˝Z=m ZcX=m.n//DRg�jŠj

�.g�G˝Z=m ZcT =m.n//

!Rg�.g
�G˝Z=m ZcT =m.n//

�
 � G˝L

Z=mRg�ZcT =m.n/! G˝Z=m ZcY =m.n/:

The usual argument comparing compactifications shows that the composition is
independent of the compactification. �

Under the identification of Proposition 2.3, the trace map with mod pr -coef-
ficients and for nD0was constructed by Jannsen, Saito, and Sato [20]. If f WX!k

is proper over a perfect field, then for nD 0, the trace map agrees on the stalk Spec Nk
with the map sending a complex to its highest cohomology group, composed with
the degree map,

t r WRf�ZcX .
Nk/
�
 ZcX .X Nk/! CH0.X Nk/

deg Nk
�! Z:
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COROLLARY 3.3. a) Let i WZ!X be a closed embedding with open comple-
ment U over a perfect field k. Then for every n� 0, we have a quasi-isomorphism
ZcZ.n/

�
�!Ri ŠZcX .n/, or equivalently a distinguished triangle

� � � !R�.Zet;Z
c
Z.n//!R�.Xet;Z

c
X .n//!R�.Uet;Z

c
U .n//! � � � :

b) If p W X � Ar ! X is the projection and n � 0, then we have a quasi-
isomorphism of complexes of étale sheaves Rp�ZcX�Ar

.n/Š ZcX .n� r/Œ2r�.

Proof. a) Over an algebraically closed field, we get ZcZ.n/
�
�! Ri ŠZcX .n/

because Zc.n/.X/ŠR�.Xet;Z
c.n//, and higher Chow groups satisfy localization

[4]. The general case follows by applying R�G to the distinguished triangle over
the algebraic closure of k, for G the absolute Galois group of k.

b) This follows from the homotopy formula (3) for Zc.n/ by Theorem 3.1. �
As in Proposition 2.1, localization gives

COROLLARY 3.4. If X is a scheme over a perfect field k and n� 0, then there
are spectral sequences

(7) E1s;t D
M
x2X.s/

H s�t .k.x/et;Z.s�n//)HsCt .Xet;Z
c.n//:

In particular, Hi .Xet;Z
c.n//D 0 for i < n.

3.1. An alternate argument. We deduce a version of the previous results with-
out using the Beilinson-Lichtenbaum conjecture. Instead, we use a theorem of
Suslin [45], who proves that for a scheme X of dimension d over an algebraically
closed field k, and an integer m not divisible by the characteristic of k, there is
an isomorphism of finite groups CH0.X; i;Z=m/ ŠH 2d�i

c .Xet;Z=m/
�. If X is

smooth, then this implies by Poincaré duality that the groups H j .XZar;Z=m.d//

and H j .Xet;Z=m.d// are abstractly isomorphic, but this is weaker than the Beilin-
son-Lichtenbaum conjecture, which states that the canonical (change of topology)
map is an isomorphism.

PROPOSITION 3.5. Let k be a perfect field and n� 0.
a) For a closed embedding i WZ! X , the canonical map ZcZ.n/! Ri ŠZcX .n/

is a quasi-isomorphism. In particular, we obtain the spectral sequence (7).
b) If p W X �Ar ! X is the projection, then we have a quasi-isomorphism of

complexes of étale sheaves Rp�ZcX�Ar
.n/Š ZcX .n� r/Œ2r�.

c) If f WX ! k is proper, then we have a trace map Rf�ZcX ! Z in the derived
category of étale sheaves on k.

Proof. We first prove a) for n D 0. The statement is étale local, so we can
assume that k is algebraically closed and that Z and X are strictly henselian. Fur-
thermore, it suffices to show the statement for smooth X . Indeed, if we embed
j W X ! T into a smooth scheme, and if ZcX ! Rj ŠZcT as well as the compo-
sition ZcZ ! Ri ŠZcX ! Ri ŠRj ŠZcT are quasi-isomorphisms, then so is the map
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ZcZ!Ri ŠZcX . By the remark after Theorem 3.1 and the proof of Corollary 3.3a),
the statement is known with Zc

.p/
-coefficients, hence it suffices to prove it for mod

m-coefficients, with m not divisible by the characteristic of k.
Consider the following commutative diagram of maps of long sequences,

where the upper vertical maps are the change of topology maps, and the map g
is induced by the base-change "�Ri ŠZarG ! Ri Šet"

�G together with localization
Ri ŠZarZ

c
X Š ZcZ ,

(8)
�����! Hi .ZZar;Z

c
Z=m/ �����!Hi .XZar;Z

c
X=m/ �����!Hi .UZar;Z

c
U =m/ �����!  fi

??y
�����! Hi .Zet;Z

c
Z=m/ �����! Hi .Xet;Z

c
X=m/ �����! Hi .Uet;Z

c
U =m/ �����!

gi

??y  
�����!Hi .Zet; Ri

ŠZcX=m/ �����! Hi .Xet;Z
c
X=m/ �����! Hi .Uet;Z

c
U =m/ �����! :

The left two upper maps are isomorphisms because Z and X are strictly henselian.
The upper row is exact by localization [4], and the lower row is exact by definition.
By Proposition 2.2, the groups Hi .XZar;Z

c
X=m/ vanish for i 6D 2d because X is

strictly henselian. Hence for i 6D 2d; 2d � 1 a diagram chase in the commutative
diagram

HiC1.UZar;Z
c
U =m/ Hi .ZZar;Z

c
Z=m/

f

??y 
HiC1.Uet;Z

c
U =m/ ����! Hi .Zet;Z

c
Z=m/ g

??y
HiC1.Uet;Z

c
U =m/ Hi .Zet; Ri

ŠZcX=m/

shows that all groups are isomorphic. If i D 2d , then by Proposition 2.2, the
map H2d .Xet;Z

c
X=m/ ! H2d .Uet;Z

c
U =m/ is the identity of the group Z=m,

and H2dC1.Uet;Z
c
U =m/ D 0. Consequently the lower row of (8) shows that

H2d .Zet; Ri
ŠZcX=m/DH2d�1.Zet; Ri

ŠZcX=m/D 0. The map H2d .Zet;Z
c
Z=m/

!H2d .Xet;Z
c
X=m/ factors through H2d .Zet; Ri

ŠZcX=m/D 0, hence is the zero
map. Similarly, the mapH2dC1.UZar;Z

c
U =m/!H2d .ZZar;Z

c
Z=m/ factors through

H2dC1.Uet;Z
c
U =m/D 0, hence is the zero map as well and we can conclude that

H2d .ZZar;Z
c
Z=m/ D 0. Finally, a part of the upper two rows of (8) gives the

commutative diagram with exact rows

Z=m ����! H2d .UZar;Z
c
U =m/ ����! H2d�1.ZZar;Z

c
Z=m/ ����! 0 fi

??y
Z=m H2d .Uet;Z

c
U =m/:



DUALITY VIA CYCLE COMPLEXES 1105

We now invoke Suslin’s theorem, which implies that the source and target of the
surjection fi have the same finite order to conclude that H2d�1.ZZar;Z

c
Z=m/D 0.

This finishes the proof that the map ZcZ=m!Ri ŠZcX=m is a quasi-isomorphism.
We now prove b) for n D 0. Rationally and with p-primary coefficients,

we have étale hypercohomological descent, and the claim follows from (3). With
prime to p-coefficients, we embed X into a smooth scheme and use localization
a) to reduce to the case that X is smooth. Then we apply Proposition 2.2, and use
the homotopy invariance of étale cohomology of �˝.dCt�n/m (a consequence of the
smooth base-change theorem and the calculation of étale cohomology of the affine
line).

To obtain a) for arbitrary n� 0, we let r D�n, consider the diagram

Z �Ar
i1

����! X �Ar

p0
??y p

??y
Z

i
����! X

and get that

Ri ŠZcX .n/ŠRi
ŠRp�ZcX�Ar .0/Œ2n�

ŠRp0�Ri
Š
1ZcX�Ar .0/Œ2n�ŠRp

0
�ZcZ�Ar .0/Œ2n�Š ZcZ.n/:

Now b) for arbitrary n� 0 follows from this as above.
We now prove c). Since it suffices to find a map over the algebraic closure of

k compatible with the Galois action, we can suppose that k is algebraically closed;
in this case Rf�ZcX can be identified with R�.Xet;Z

c
X /. From localization a), we

obtain a spectral sequence (7),

E1s;t D
M
x2X.s/

H s�t .k.x/et;Z.s//)HsCt .Xet;Z
c
X /:

The terms E1s;t vanish for t < 0 as in Theorem 3.1 by reasons of cohomological
dimension. Hence R�tf�ZcX DHt .Xet;Z

c
X /D 0 for t < 0, and the map E20;0!

R0f�ZcX is an isomorphism. On the other hand, comparing spectral sequences (5)
and (7), we obtain a diagramM
x2X.1/

H 1.k.x/;Z.1// ����!
M
x2X.0/

H 0.k.x/;Z.0// ����! CH0.X/! 0

??y ??y ??yM
x2X.1/

H 1.k.x/et;Z.1// ����!
M
x2X.0/

H 0.k.x/et;Z.0// ����! E20;0! 0:
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Since the left vertical maps are isomorphisms, so is the right vertical map. We get
the trace map as the map of complexes of Galois modules

tr WRf�ZcX
�
 � ��0Rf�ZcX !R0f�ZcX

�
 �E20;0

�
 � CH0.X/

tr
�! Z: �

4. The main theorem

THEOREM 4.1. Let f W X ! k be separated and of finite type over a per-
fect field. Then for every constructible sheaf F on X , there is a canonical quasi-
isomorphism

RHomX .F;ZcX /ŠRHomk.RfŠF;Z/:

Proof. We can assume that k is algebraically closed, because if G is the Galois
group of Nk=k, thenRHomX .F;G/ŠR�GRHom xX .F;G/. Indeed, for an injective
sheaf G, Hom xX .F;G/ is flabby [32, III Cor. 2.13c)]. Note that RfŠGDR�c.Xet;G/

over an algebraically closed field. If X
j
! T

g
! k is a compactification, then the

trace map of Proposition 3.5c) induces by adjointness the pairing

˛.F/ WRHomX .F;ZcX /ŠRHomT .jŠF;ZcT /

! RHomk.Rg�jŠF; Rg�ZcT /!RHomk.RfŠF;Z/:

The standard argument comparing compactifications shows that this does not de-
pend on the compactification. We proceed by induction on the dimension d of X ,
and assume that the theorem is known for schemes of dimension less than d .

LEMMA 4.2. If f W U ! X is étale, then ˛.fŠF/ is a quasi-isomorphism
on X if and only if ˛.F/ is a quasi-isomorphism on U . In particular, if f is
finite and étale, then ˛.F/ is a quasi-isomorphism if and only if ˛.f�F/ is a quasi-
isomorphism.

Proof. If f W U !X is étale, then since Rf ŠZcX D f
�ZcX D ZcU , ˛.fŠF/ can

be identified with ˛.F/ by adjointness. If f is also finite, then f� D fŠ. �

LEMMA 4.3. Let j W U ! X be a dense open subscheme of a scheme of
dimension d . Then ˛.F/ is a quasi-isomorphism if and only if ˛.j �F/Š ˛.jŠj

�F/

is a quasi-isomorphism.

Proof. This follows by a 5-Lemma argument and induction on the dimension
from the map of distinguished triangles

RHomZ.i
�F;ZcZ/ ! RHomX .F;Z

c
X / ! RHomU .j

�F;ZcU /??y ??y ??y
RHom.R�c.Zet; i

�F/;Z/ ! RHom.R�c.Xet;F/;Z/ ! RHom.R�c.Uet; j
�F/;Z/

arising by adjointness from the short exact sequence 0! jŠj
�F!F! i�i

�F! 0

and purity for ZcX , Proposition 3.5a). �
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LEMMA 4.4. Let X be a scheme of dimension d over an algebraically closed
field k. Then for any constructible sheaf F, we have ExtiX .F;Z

c/D 0 for i > 2dC1.

Proof. If F is locally constant, then the stalk of ExtiX .F;Z
c/x agrees with

ExtiAb.Fx;Z
c
x/ by [32, III Ex. 1.31b], hence vanishes for i > 1 because Zc is

concentrated in nonpositive degrees. Since X has cohomological dimension 2d ,
we conclude by the spectral sequence

(9) E
s;t
2 DH

s.Xet;ExttX .F;G//) ExtsCtX .F;G/

in this case. In general, we proceed by induction on the dimension of X . Let
j W U !X be a dense open subset with complement i WZ!X such that FjU is
locally constant. The statement follows with the long exact Ext-sequence arising
from the short exact sequence 0! jŠj

�F! F! i�i
�F! 0 by purity,

� � � ! ExtiZ.F;Z
c
Z.n//! ExtiX .F;Z

c
X .n//! ExtiU .F;Z

c
U .n//! � � � : �

LEMMA 4.5. If ˛.F/ is a quasi-isomorphism for all constant constructible
sheaves F on smooth and projective schemes, then ˛.F/ is a quasi-isomorphism
for all constructible sheaves F on all schemes X .

Proof. Replacing X by a compactification j WX ! T and F by jŠF, we can
assume that X is proper. We fix X and show by descending induction on i that the
map

˛i .F/ W ExtiX .F;Z
c
X /!RHomik.R�.X;F/;Z/ŠH

1�i .Xet;F/
�

induced by ˛ is an isomorphism for all constructible sheaves F on X . By Lemma
4.4, both sides vanish for large i . We can find an alteration � W Y ! X with Y
smooth and projective, together with a dense open subset j W U !X such that the
restriction p W V D ��1U ! U is étale and p�j �FD CV is constant:

V ����! Y

p

??y �

??y
U

j
����! X:

Indeed, find an open subset U of X and a finite étale cover V 0 of U such that FjV 0

is constant. Let Y 0 be the closure of V 0 in X�T for some compactification T of V 0.
Now let Y be a generically étale alteration of Y 0 which is smooth and projective,
and shrink U such that V D V 0 �Y 0 Y D U �X Y is finite and étale over U .

By hypothesis, ˛.CY / is a quasi-isomorphism, hence ˛.CV / is a quasi-iso-
morphism by Lemma 4.3 (note that CY jV D CV because Y is smooth), and so
is ˛.p�CV / by Lemma 4.2. By the proper base change theorem, ����F is con-
structible, and j �����F D p�p

�j �F D p�CV . Thus ˛.����F/ is a quasi-
isomorphism by Lemma 4.3. Let F0 be the cokernel of the adjoint inclusion
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F! ���
�F, and consider the map of long exact sequences

(10)

ExtiX .F
0;ZcX / ����! ExtiX .���

�F;ZcX / ����! ExtiX .F;Z
c
X /

˛i .F
0/

??y  ˛i .F/

??y
H 1�i .Xet;F

0/� ����! H 1�i .Xet; ���
�F/� ����! H 1�i .Xet;F/

�:

If j̨ .F/ is an isomorphism for j > i and all constructible sheaves F, then a
5-Lemma argument in (10) shows that ˛i .F/ is surjective. Since this holds for all
constructible sheaves, in particular F0, another application of the 5-Lemma shows
that ˛i .F/ is an isomorphism. �

It remains to prove

PROPOSITION 4.6. Let X be smooth and projective over an algebraically
closed field k. Then for every positive integer m, the map ˛.Z=m/ is a quasi-
isomorphism

RHomX .Z=m;ZcX /
�
�!RHomk.Rf�Z=m;Z/:

Proof. We can assume that X is irreducible of dimension d . By Lemma 2.4,
the pairing agrees up to a shift with

RHomX;Z=m.Z=m;ZcX=m/ ����! RHomk;Z=m.Rf�Z=m;Z=m/ 
R�.Xet;Z

c
X=m/ ����! HomAb.R�.Xet;Z=m/;Z=m/:

By induction on the number of prime factors of m we can assume that m is a prime
number. If m is prime to the characteristic of k, then we claim that the lower row
of the diagram agrees with Poincaré duality [32, VI Th. 11.1]

R�.Xet; �
˝d
m /Œ2d �! HomAb.R�.Xet;Z=m/;Z=m/:

Since Rf�GDRHomX;Z=m.Z=m;G/, it is easy to see that our pairing agrees with
the Yoneda pairing, and it remains to show that the trace map agrees with the map
of Proposition 3.5c), i.e., the following diagram commutes:

R�.Xet;Z
c
X=m/

f�
����! R�.ket;Z

c
k
=m/ 

R�.Xet; �
˝d
m Œ2d �/

tr0
����! Z=m:

The trace map tr0 is characterized by the property that it sends the class i�.1/ 2
H 2d .Xet; �

˝d
m / of a closed point i W p ! X to 1 [32, VI Th. 11.1], a property

which is clear for the map of Proposition 3.5c) by functoriality. Hence it suffices
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to show the commutativity of the diagram

Z=mŠR�.ket;Z
c
k
=m/

i�
����! R�.Xet;Z

c
X=m/ 

Z=mŠR�.ket;Z=m/
i�
����! R�.Xet; �

˝d
m Œ2d �/;

which follows from Proposition 2.2.
If m D p is the characteristic, then we claim that our pairing agrees with

Milne’s duality [35]

(11) R�.Xet; �
d /Œd �! HomAb.R�.Xet;Z=p/;Z=p/:

More precisely, consider the complexes of commutative algebraic perfect p-torsion
group schemes H �.X; �d / and H �.X;Z=p/ over k; see [35]. Finite generation of
H i .Xet;Z=p/ implies that the unipotent part of H i .X;Z=p/ is trivial, and the
same then holds for the unipotent part of H i .X; �d / by [35, Th. 1.11]. Hence
the same theorem shows that the Yoneda pairing induces a duality of étale group
schemes

H �.X; �d /! Hom.H �.X;Z=p/;Z=p/Œ�d�;

and (11) are the global sections over k. By the argument above, it suffices to show
that the following diagram commutes

R�.Xet;Z
c
X=p/

f�
����! R�.ket;Z

c
k
=p/ 

R�.Xet; �
d Œd �/

tr0
����! Z=p:

Again the trace map is characterized by the property that it sends the class of a
closed point i W p!X to 1 [35, p. 308], and it suffices to show the commutativity
of the diagram

Z=p ŠH 0.ket;Z
c
k
=p/

i�
����! H 0.Xet;Z

c
X=p/ 

Z=p ŠH 0.ket;Z=p/
i�
����! Hd .Xet; �

d /;

which again is Proposition 2.2. �

Remark. If X is smooth of dimension d over a perfect field of characteristic p,
and F a locally constant m-torsion sheaf, then we can identify the left-hand side
of Theorem 4.1,

ExtiX .F;Z
c
X /ŠH

2dCi�1.Xet;F
D/;

where FD D HomX .F; �
˝d
m / if p6 jm, and FD D HomX .F; �

d
r /Œd � if m D pr .

Indeed, consider the spectral sequence (9). The calculation of the Ext-groups is
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local for the étale topology, and since F is locally constant, we can calculate them
at stalks [32, III Ex. 1.31b] and assume that FD Z=m. Then by Lemma 2.4 and
Proposition 2.2,

ExtqX .Z=m;Z
c
X /DHq�1.ZcX=m/Š

8̂<̂
:
�˝dm ; p6 jm; q D 1� 2d

�dr ; mD pr ; q D 1� d

0; otherwise:

COROLLARY 4.7. Let f WX ! Y be a map of schemes over a perfect field k
and n� 0.

a) For every locally constant constructible sheaf G on Y , the map (6) induces
a quasi-isomorphism

ZcX .n/˝f
�GŠRf Š.ZcY .n/˝G/:

b) For every torsion sheaf F on X and finitely generated, locally constant
sheaf G on Y , we have a functorial quasi-isomorphism

RHomX .F;ZcX .n/˝f
�G/ŠRHomY .RfŠF;ZcY .n/˝G/:

It was pointed out to us by A. Abbes that a) is false for general constructible
sheaves G. For example, if i is the inclusion of a point into the affine line, G D

i�Z=m and n D 0, then the left-hand side is Z=m, but the right-hand side is
Ri Š.Zc

A1
˝ i�Z=m/ŠRi Š.i��mŒ2�/Š �mŒ2� by Proposition 2.2.

Proof. a) Since the statement is local for the étale topology on Y , we can
assume that G is of the form Z=m. If Y D Spec k and n D 0, let j W U ! X be
an étale map and g D f ı j . Then it suffices to show that the upper row in the
following diagram is an isomorphism

RHomU .Z=m;ZcU =m/
ad.tr/
����! RHomU .Z=m; j �Rf ŠZck=m/??y 

RHomk.RgŠZ=m;RgŠZcX=m/
tr

����! RHomk.RgŠZ=m;Zck=m/:

The diagram commutes by the property of adjoints, and the lower left composition
is a quasi-isomorphism by Theorem 4.1. For arbitrary Y , if t W Y ! k is the
structure map, then by the previous case, the second map and the composition in

ZcX=m!Rf ŠZcY =m!Rf ŠRt ŠZck=m

are quasi-isomorphisms, hence so is the first map. If n< 0, let r D�n and consider
the following commutative diagram

X �Ar
p0

����! X

g

??y f

??y
Y �Ar

p
����! Y:
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By homotopy invariance Rp�ZcY�Ar
.0/Œ2n�Š ZcY .n/ and similar for X , and we

obtain

ZcX .n/ŠRp
0
�ZcX�Ar Œ2n�ŠRp

0
�Rg

ŠZcY�Ar Œ2n�

ŠRf ŠRp�ZcY�Ar Œ2n�ŠRf
ŠZcY .n/:

b) If F is a constructible m-torsion sheaf, we can replace G by G=m and use a).
For general F, write FD * colimFi as a filtered colimit of constructible sheaves
[34, II Prop. 0.9]. Then the canonical map

R * limRHomX .Fi ;ZcX .n/˝f
�G/!R * limRHomY .RfŠFi ;ZcY .n/˝G/

induces a map of spectral sequences [39]

E
s;t
2 D * lims ExttX .Fi ;Z

c
X .n/˝f

�G/ ) ExtsCtX .* colimFi ;Z
c
X .n/˝f

�G/??y ??y
E
s;t
2 D * lims ExttY .RfŠFi ;Z

c
Y .n/˝G/ ) ExtsCtY .* colimRfŠFi ;ZcY .n/˝G/:

The map on E2-terms is an isomorphism by the above, and by the following lemma
the spectral sequences converge. Hence the map on abutments is an isomorphism.
Finally, étale cohomology with compact support commutes with filtered colimits.

�

LEMMA 4.8. Let F be a torsion sheaf and G be finitely generated locally
constant sheaf on a scheme X of dimension d over an algebraically closed field.
Then ExtiX .F;Z

c
X .n/˝G/D 0 for i < �2d and n� 0.

Proof. By (9) it suffices to show that ExtiX .F;Z
c
X .n/˝G/D 0 for i <�2d , and

since this is étale local, we can assume that GD Z or GD Z=m. By the long exact
coefficient sequence, both cases follows from ExtiX .F;Z

c
X .n//D 0 for i <�2dC1.

Since F is torsion, this will follow if ExtiX .F;Q=ZcX .n//D 0 for i <�2d , which by
[32, III Rem. 1.24] will follow from ExtiV .FjV ;Q=ZcV .n//D 0 for all V étale over
X . Let U be a dense smooth open subscheme of V with complement Z. Then we
conclude by induction on the dimension of V , Proposition 2.2 and the long exact
localization sequence arising from purity

! ExtiZ.FjZ ;Q=ZcZ.n//! ExtiV .FjV ;Q=ZcV .n//! ExtiU .FjU ;Q=ZcU .n//! :

�

COROLLARY 4.9. Let F be a torsion sheaf on a scheme X over a perfect
field k, and let n � 0. Then for any constructible sheaf F, ExtiX .F;Z

c
X .n// and

ExtiX .F;Z
c
X .n// vanish for i > cd kC 1. In particular, Zc.n/ has quasi-injective

dimension cd kC 1 in the sense of [2, I, Def. 1.4].

Proof. If k is algebraically closed, then

ExtiX .F;Z
c
X .n//ŠExtiAb.R�c.Xet;F/;Z

c
k.n//ŠHom.H 1�i

c .Xet;F/;Q=Zck.n//:
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By Proposition 2.2, the complex Q=Zc
k
.n/ is concentrated in degree zero, hence

this vanishes for i > 1. In the general case, we use the spectral sequence

H s.Gal.k/;ExttxX .F;Z
c
X .n///) ExtsCtX .F;ZcX .n//:

The statement for the extension sheaves follows because ExtiX .F;Z
c.n// is the

sheaf associated to the presheaf U 7! ExtiU .FjU ;Z
c
U .n//. �

5. Duality

If a perfect field k has duality for Galois cohomology with a dualizing sheaf
that is related to some Zc

k
.n/, then Theorem 4.1 gives a duality theorem over k. For

example, if k is algebraically closed, then we immediately obtain from Theorem
4.1 a quasi-isomorphism

RHomX .F;ZcX /ŠRHomAb.R�c.Xet;F/;Z/

for every constructible sheaf F on X . In particular, we get perfect pairings of
finitely generated groups

Ext1�iX .F;ZcX /�H
i
c .Xet;F/!Q=Z:

From Lemma 2.4 and Theorem 3.1 this gives

(12) CH0.X; i;Z=m/ŠH i
c .Xet;Z=m/

�;

generalizing Suslin’s theorem [45] to arbitrary m.

5.1. Finite fields. Let G be the absolute Galois group of xFq=Fq with q D pr .
The following theorem has been proved by Jannsen, Saito, and Sato [20] and Moser
[36] for p-power torsion sheaves, by Deninger [9, Ths. 1.4, 2.3] for curves, and
smooth schemes over curves and coefficients of order prime to p, and by Spieß
[44] for surfaces.

THEOREM 5.1. Let X be a scheme over a finite field, and F be a torsion sheaf
on X . Then there is a quasi-isomorphism

RHomX .F;ZcX /
�
�!RHomAb.R�c.Xet;F/;Z/Œ�1�:

In particular, if F is constructible, there are perfect pairings of finite groups

Ext2�iX .F;ZcX /�H
i
c .Xet;F/!Q=Z:

Proof. If Nf WX �Fq
NFq! NFq is the structure map, and if we apply R�G to the

pairing over xFq , then we get

RHomX .F;ZcxX /DR�GRHom xX .F;Z
c
xX
/ŠR�GRHomNFq .R

NfŠF;Z/:

By duality for Galois cohomology, this is quasi-isomorphic to

RHomAb.R�GR NfŠF;Z/Œ�1�ŠRHomAb.R�c.Xet;F/;Z/Œ�1�: �



DUALITY VIA CYCLE COMPLEXES 1113

Let HK
i .X;Z=m/ be the i th homology group of the Kato complex [22]

(13) ˚X.0/H
1.k.x/et;Z=m/ ˚X.1/H

2.k.x/et;Z=m.1// � � � :

Kato [22, Conj. 0.3] conjectures thatHK
i .X;Z=m/D 0 for i > 0 and X smooth and

proper. Kato’s conjecture has been proved in low degrees by Colliot-Thélène [7],
and in general by Jannsen and Saito [18], [19] assuming resolution of singularities.
One important application of Kato homology is, in view of H 1.Xet;Z=m/

� Š

�ab
1 .X/=m, the following

COROLLARY 5.2. Assuming the Beilinson-Lichtenbaum conjecture, there is,
for every scheme over a finite field, an exact sequence

(14) � � � ! CH0.X; i;Z=m/ ! H iC1
c .Xet;Z=m/

�
! HK

iC1.X;Z=m/ ! � � � :

Proof. By Theorem 5.1 and Lemma 2.4, we have

H iC1
c .X;Z=m/� D Ext1�iX .Z=m;ZcX /

Š Ext�iX;Z=m.Z=m;Z
c
X=m/ŠHi .Xet;Z

c
X=m/:

The corollary follows by comparing the niveau spectral sequences (5) and (7) with
Z=m-coefficients, and identifying the terms E1s;t with t � n by the Beilinson-
Lichtenbaum conjecture. �

5.2. Local fields. Let k be the field of fractions of a henselian discrete valu-
ation ring of characteristic 0 with finite residue field, for example a local field of
mixed characteristic, and G the Galois group of k.

THEOREM 5.3. If f WX ! k is a scheme over k, and F a torsion sheaf , then
there is a quasi-isomorphism

RHomX .F;ZcX .�1//ŠRHomAb.R�c.X;F/;Z/Œ�2�:

In particular, for constructible F, we have perfect pairings of finite groups

Ext3�iX .F;ZcX .�1//�H
i
c .Xet;F/!Q=Z:

Proof. From Corollary 4.7 we get the following quasi-isomorphisms

RHomX .F;ZcX .�1//ŠR�G Hom xX .F;Z
c
xX
.�1//

ŠR�GRHom Nk.R�c. xX;F/;Z
c
Nk
.�1//ŠRHomG.R�c. xX;F/;ZcNk.�1//:

The claim follows with the following lemma. �

LEMMA 5.4 (Duality for Galois cohomology). If G is the Galois group of
Nk=k, and C � a complex of torsion G-modules, then there is a quasi-isomorphism

RHomG.C �;Zck.�1//ŠRHomAb.R�.G;C
�/;Z/Œ�2�:

Proof. Since Zc
k
.�1/Š GmŒ�1�, this is local duality

RHomG.C �;Gm/Œ�1�ŠRHomAb.R�.G;C
�/;Q=Z/Œ�3�:
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Indeed, the Yoneda pairing induces an isomorphism [34, I Th. 2.14]

ExtiG.M;Gm/Š HomAb.H
2�i .G;M/;Q=Z/

for every G-module M , and the result for complexes follows by a spectral sequence
argument. �

Remark. If X is smooth of dimension d over a local field k of characteris-
tic 0, F is a locally constant m-torsion sheaf, and FD WDHom.F; �dC1m /, then we
recover the perfect pairing of finite groups

H 2dC2�i .Xet;F
D/�H i

c .Xet;F/!Q=Z:

This follows from Theorem 5.3, using Proposition 2.2, and the degeneration of the
local-to-global spectral sequence of Ext-groups.

Let HK
i .X;Z=m/ be the i th homology of the Kato complex

(15) ˚X.0/H
2.k.x/et;Z=m.1// ˚X.1/H

3.k.x/et;Z=m.2// � � � :

Kato conjectures [22, Conj. 5.1] that the terms HK
i .X;Z=m/ vanish for X smooth

and proper and i > 0. The same proof as for (14) gives

COROLLARY 5.5. Assuming the Beilinson-Lichtenbaum conjecture, there is,
for every scheme over a local field of characteristic 0, a long exact sequence,

(16) � � � ! CH�1.X; i;Z=m/!H i
c .Xet;Z=m/

�
!HK

i .X;Z=m/! � � � :

Remark. If K is a r-local field of characteristic 0 such that the finite field in
the definition of K has characteristic p, then one can use local duality for its Galois
cohomology to prove a quasi-isomorphism

RHomX .F;ZcX .�r//ŠRHomAb.R�c.X;F/;Z/Œ�r � 1�

for torsion sheaves F of order not divisible by p, generalizing a result of Deninger
and Wingberg [10].

6. Applications

6.1. Rojtman’s theorem. We generalize Rojtman’s theorem [33], [38] to nor-
mal projective varieties. Our proof follows the line of Bloch [3] and Milne [33]. Let
X be a proper scheme over an algebraically closed field. Then by [32, Prop. 4.16]
there is an isomorphism H 1.Xet;Z=m/Š Homk.�m;PicX /, where Homk is the
group of homomorphisms of flat group schemes over k. Let Pic�X be the scheme rep-
resenting line bundles, such that a power is algebraically equivalent to 0. Then the
quotient PicX =Pic�X is a finitely generated free group, hence Homk.�m;PicX /Š
Homk.�m;Pic�X /. The quotient C D Pic�X =Pic0;red

X by the reduced part of the con-
nected component is a finite group scheme, and Pic0;red

X is a smooth commutative
algebraic group, which by Chevalley’s theorem is an extension of an abelian variety
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by a linear algebraic group. Since Extk.�m; G/D 0 for every smooth connected
group scheme, we obtain a short exact sequence

0! Homk.�m;Pic0;red
X /! Homk.�m;PicX /! Homk.�m; C /! 0:

If .mPic0;red
X /_ is the Cartier dual of the m-torsion part m Pic0;red

X , then by Cartier-
Nishi duality, we obtain a short exact sequence

0! Homk..mPic0;red
X /_;Z=m/! Homk.�m;PicX /! Homk.C

_;Z=m/! 0:

Since Z=m is étale, Homk.G;Z=m/Š HomAb.G.k/;Z=m/ for every finite group
scheme G, hence taking Pontrjagin duals we arrive at

(17) 0! C_.k/=m!H 1.Xet;Z=m/
�
! .m Pic0;red

X /_.k/! 0:

Let AlbX be the albanese variety in the sense of Serre [42], i.e., the universal
object for maps from X to abelian varieties. The universal map X!AlbX induces
the albanese map CH0.X/0! AlbX .k/, which is covariantly functorial for maps
between normal schemes.

THEOREM 6.1. Let X be a normal scheme, projective over an algebraically
closed field. Then the albanese map induces an isomorphism

torCH0.X/
�
�! tor AlbX .k/;

and CH0.X; 1/˝Q=ZD 0.

The theorem re-proves and generalizes (to include the p-part) a result of S.
Saito [40]. Our result differs from the results of Levine and Krishna-Srinivas
[28], [26], who compare the torsion in the (cohomological) Chow group of Levine-
Weibel [30] to the torsion of the albanese variety in the sense of Lang-Weil, i.e.,
the universal object for rational maps from X to abelian varieties.

Proof. For normal, projective X , Pic0;red
X is an abelian variety by [17, Cor. 3.2]

or [25, Rem. 5.6], and its dual .Pic0;red
X /t is AlbX by [17, Th. 3.3] or [25, Rem. 5.25].

In particular, .mPic0;red
X /_ D m AlbX . The usual argument of induction on the

dimension [33, Lemma 2.1] shows that the albanese map is surjective on ln-torsion
for every l , because a generic hyperplane section of a normal scheme is again
normal [41]. Consider the diagram with exact rows arising from (12) and (17),

CH0.X; 1/˝Z=ln ����! CH0.X; 1;Z=ln/ ����! lnCH0.X/ ����! 0
C_.k/=ln ����! H 1.Xet;Z=l

n/� ����! ln AlbX .k/ ����! 0:

Since C is a finite group scheme, the lower left term vanishes in the colimit.
Counting (finite) coranks we obtain CH0.X; 1/˝Ql=Zl D 0, and an isomorphism
torCH0.X/Š tor AlbX .k/. Since the albanese map is a map of divisible l-torsion
groups of the same corank which is a surjection on ln-torsion, it must be an iso-
morphism. �
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If X is an arbitrary proper scheme, we define M 1.X/ to be the quotient of
Pic0;red

X by its largest unipotent subgroup. Then we have a short exact sequence

(18) 0! TX !M 1.X/! AX ! 0;

where TX is a torus andAX an abelian variety. We letM1.X/ be the dual ofM 1.X/

in the category of 1-motives; see [8, �10] for the definition and basic properties.

Concretely, M1.X/ is the complex �.TX /
f
! AtX .k/, where �.TX / is the character

group of TX , AtX the dual abelian variety of AX , and f is given by pushing-out (18)
along a given map TX!Gm to obtain an element in Ext1.AX ;Gm/DAtX .k/. The
Tate realization Tm.M/ of a 1-motive M D ŒF !G� is the cone of multiplication
by m. Since abelian varieties and tori are divisible, Tm.M/ is concentrated in
a single degree, and there is a short exact sequence 0! mG.k/! Tm.M/!

F=m! 0. In our case, we obtain a short exact sequence

(19) 0! torA
t
X .k/! * colimmTmM1.X/! �.TX /˝Q=Z! 0:

If M and M_ are dual 1-motives, then Cartier duality gives a perfect pairing
Tm.M/�Tm.M

_/! �m.

PROPOSITION 6.2. Let X be a proper scheme over an algebraically closed
field. Then there is an isomorphism

CH0.X; 1;Q=Z/Š * colimTmM1.X/:

Proof. There are no homomorphisms and extensions between �m and a unipo-
tent group, hence

Homk.�m;Pic0;red
X /Š Homk.�m;M

1.X//Š Homk.�m; TmM
1.X//;

and the argument which leads to (17) gives a short exact sequence

0! C_.k/=m! CH0.X; 1;Z=m/! TmM1.X/! 0:

The result follows because, in the colimit, the first term vanishes. �

Example. Let C D E=0 � P be an elliptic curve E with the points 0 and
P identified to the point Q 2 C . Then from the long exact sequences for higher
Chow groups and étale cohomology arising from the blow-up diagram

fP; 0g ����! E??y ??y
Q ����! C

we obtain H 1.Cet;Z/ D Z, hence �.TC / Š Z [13], and CH0.C; 1;Ql=Zl/ has
corank 3 for l 6D char k. If P is not a torsion point, then CH0.C; 1/˝Ql=Zl D 0



DUALITY VIA CYCLE COMPLEXES 1117

and l1CH0.C / has corank 3. Hence the maps

torA
t
C .k/

f
�! torCH0.C /

CH0.C; 1/˝Q=Z
g
�! �.TC /˝Q=Z;

obtained from (19) have infinite cokernels, and torCH0.C / cannot be parametrized
by an abelian variety because it has odd corank. If P is an m-torsion point, then
CH0.C; 1/˝Q=ZDQ=Z and f and g are surjective with kernel Z=m.

6.2. The fundamental group. Let X be a proper scheme over an algebraically
closed field and consider the (pro-finite) fundamental group. Then we have an
isomorphism

�ab
1 .X/DH

1.Xet;Q=Z/� Š CH0.X; 1; OZ/;

in particular, a short exact sequence

(20) 0! CH0.X; 1/^! �ab
1 .X/! TCH0.X/! 0:

If X is normal, then taking the inverse limit in (17), and using Theorem 6.1, we
see that this sequence agrees with the sequence

(21) 0! C_.k/! �ab
1 .X/! T AlbX .k/! 0;

in particular, CH0.X; 1/^ is finite. The latter sequence can be found in Milne [32,
Cor. III 4.19], and in Katz-Lang [24, Lemma 5].

For geometrically connectedX over a perfect field k, the dual of the Hochschild-
Serre spectral sequence H s.k;H t . xXet;Q=Z//)H sCt .Xet;Q=Z/ gives an exact
sequence

(22) H 2.ket;Q=Z/�! �ab
1 .X �k

Nk/Gal.k/! �ab
1 .X/! Gal.k/ab

! 0;

which is short exact if X has a k-rational point [24, Lemma 1], or if k is finite,
local, or global, because then H 2.ket;Q=Z/ D 0. By the argument in [24], the
sequence (21) implies that �ab

1 .X �k
Nk/Gal.k/ is finite if k is absolutely finitely

generated and X is proper and normal.
Let X be a proper scheme over a finite field k with Galois group G. Let

�ab
1 .X/

0 be the kernel of �ab
1 .X/! G, and CH0.X/0 the subgroup of cycles of

degree zero of CH0.X/.

PROPOSITION 6.3. If X is proper and geometrically connected over a finite
field, then we have a short exact sequence

0! CH0. xX; 1/^G! �ab
1 .X/

0
! .CH0. xX/0/G! 0:

If X is normal, then these groups are finite, and the right-hand term agrees with
AlbX .k/.

Proof. By (22), it suffices to calculate the cokernel of 1�F on the sequence
(20), for F the Frobenius, and to show that TCH0. xX/1�F Š .CH0. xX/0/G . We
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can replace CH0. xX/ by the divisible group CH0. xX/0 in (20). Since the finitely
generated group CH0.X/0 surjects onto .CH0. xX/0/G , the cokernel of F � 1 on
CH0. xX/0 is divisible and finite, hence vanishes. The short exact sequence

0! .CH0. xX/0/G! CH0. xX/0
1�F
�! CH0. xX/0! 0

gives rise to the exact sequence

0! m.CH0. xX/0/G! mCH0. xX/0
1�F
�! mCH0. xX/0! .CH0. xX/0/G=m! 0:

The result follows by taking limits. �

6.3. Duality theory. For a complex G� of torsion sheaves on a scheme X over
a perfect field k, we consider the functor

D.G�/DRHomX .G
�;ZcX /

(if G� is unbounded, this is defined using a K-injective resolution as in [43, Prop. 6.1]).

PROPOSITION 6.4. The functor D sends bounded above complexes to bounded
below complexes and conversely.

Proof. Since the statement is étale local, we can assume that k is algebraically
closed. By Lemma 4.8 and Corollary 4.9, ExtiX .F;Z

c
X / vanishes for any torsion

sheaf F unless �2d � i � 1. Hence the spectral sequence

E
p;q
2 D ExtpX .H

�q.G�/;ZcX /) ExtpCqX .G�;ZcX /;

converges, and the claim follows. �

THEOREM 6.5 (Exchange formulas). Let f W X ! Y be a map between
schemes over a perfect field and G and F be constructible sheaves on X . Then
the following formulas hold

D.F˝G/ŠRHom.F;D.G//;

Rf�D.G/Š D.RfŠG/;

Rf ŠD.G/Š D.f �G/:

Proof. The first formula is adjointness of Hom and ˝. For the second formula,
in view of

RHom.F;G/.U /ŠRHomU .FjU ;GjU /ŠRHomX .jŠj �F;G/;

it suffices to prove that RHomX .F;ZcX /ŠRHomY .RfŠF;ZcY /, for constructible
F, which is Corollary 4.7. The last formula holds by [1, XVIII Cor. 3.1.12.2]. �

THEOREM 6.6 (Biduality). Let G be a constructible m-torsion sheaf for some
integer m not divisible by the characteristic of k. Then

GŠ D.D.G//:
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In particular,

D.F˝D.G//ŠRHom.F;G/;

RfŠD.G/Š D.Rf�G/;

f �D.G/Š D.Rf ŠG/:

Proof. For a closed embedding i WZ!X with open complement j W U !X ,
RHom.jŠF;G/ Š jŠRHom.F; j �G/, hence D.D.jŠj

�G// Š jŠD.D.j
�G// on

the one hand, and RHom.i�F;G/ Š i�RHom.F; Ri ŠG/ hence D.D.i�i
�G// Š

i�D.D.i�G// on the other hand. Thus we can use devissage to reduce to the case
that G Š Z=m on a smooth and proper scheme X of dimension d over k. In
this case, by Lemma 2.4, the statement reduces to Z=mŠRHomZ=m.�

˝d
m ; �˝dm /.

Since�m is locally constant, this can be checked at stalks, where it is clear. The other
formulas follow from this by substitution in Theorem 6.5; see [2, I, Prop. 1.12]. �

Remark. The biduality map at the characteristic is not an isomorphism in
general. For example, if k is algebraically closed and U is an open subset of the
projective line P1

k
, then the localization sequence for cohomology with compact

support gives a short exact sequence

0!
M

x2P1�U

i�x �
1
!H 1

c .Uet; �
1/! Z=p! 0

and it follows that the dual

HomZ=p.�
1; �1/.U /D HomP1;Z=p.jŠ�

1; �1/

of H 1
c .Uet; �

1/ is very large, hence Z=p 6D RHomZ=p.�
1; �1/. The small étale

site does not give well-behaved extension groups for nonconstructible sheaves. See
Kato [21] for a good duality using the relative perfect site.

7. One dimensional bases

For the remainder of the paper we assume the validity of the Beilinson-Lichten-
baum conjecture. Let S be a connected one-dimensional regular scheme such that
all closed points have perfect residue fields, and the generic point � has characteris-
tic 0 (the case that S is a curve over a finite field is covered by Theorem 5.1). The
dimension of an irreducible scheme is the relative dimension over S ; in particular,
an irreducible scheme of dimension d over � has dimension d C 1 over S , and the
complex ZcX .n/ restricted to the generic fiber would be the complex ZcX�

.n� 1/Œ2�

if it were viewed relative to the generic point.

THEOREM 7.1. Let S be a strictly henselian discrete valuation ring of mixed
characteristic with algebraically closed residue field. If X is essentially of finite
type over S and n� 0, then ZcX .n/.X/ŠR�.Xet;Z

c
X .n//.

Proof. As in the proof of Theorem 3.1, it suffices to show that Zc.n/.SpecF /Š
R�.SpecFet;Z

c.n// for an extension of finite transcendence degree d of the residue
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field of the closed point or the generic point of S , because ZcX .n/ has the localiza-
tion property for schemes of finite type over a discrete valuation ring by Levine
[29]. The case that F lies over the closed point was treated in the proof of The-
orem 3.1, hence we can assume that F lies over �. We have to show that the
map Hi .F;Zc.n//!Hi .Fet;Z

c.n// is an isomorphism for all i . (It is important
to remember that we use dimension relative to S here, so that F is a limit of
schemes of dimension d C 1.) Rationally, Zariski and étale hypercohomology of
the motivic complex agree. With mod m-coefficients, we get the isomorphism
from the Beilinson-Lichtenbaum conjecture for i � d C 1 C n. On the other
hand, by Proposition 2.2, Hi .Fet;Z

c=m.n// Š H 2dC2�i .Fet; �
˝.dC1�n/
m /, and

this vanishes for i < d C 1 because F has cohomological dimension d C 1. �

COROLLARY 7.2. Let S be a Dedekind ring of characteristic 0 with perfect
residue fields, and let n� 0.

a) If i W Z! X is a closed embedding of schemes over S with open comple-
ment U , then we have a quasi-isomorphism ZcZ.n/ Š Ri

ŠZcX .n/, hence a distin-
guished triangle

� � � !R�.Zet;Z
c
Z.n//!R�.Xet;Z

c
X .n//!R�.Uet;Z

c
U .n//! � � � :

b) If f W X ! Y is a proper map between schemes over S , we have a push-
forward map f� WRf�ZcX .n/! ZcY .n/.

Proof. a) Since the statement is local for the étale topology, we can assume
that S is strictly henselian local. Let s D Spec k be the closed point, � be the
generic point, and Xs and X� be the closed and generic fiber, respectively. We
first treat the case Z DXs , U DX� . Consider the following map of distinguished
triangles, where the global section functor is with respect to the étale topology,

Zc.n/.Xs/ //

��

Zc.n/.X/ //

��

Zc.n/.X�/

��
R�.Xs;Z

c
Xs
.n// // R�.X;ZcX .n//

// R�.X�;Z
c
X�
.n//:

The vertical maps are quasi-isomorphisms by Theorem 7.1, and the upper triangle
is exact by [29], hence the lower triangle is exact. For arbitrary Z, we consider the
diagram

R�.Zs;Z
c.n// ����! R�.Z;Zc.n// ����! R�.Z�;Z

c.n//??y ??y ??y
R�.Xs;Z

c.n// ����! R�.X;Zc.n// ����! R�.X�;Z
c.n//??y ??y ??y

R�.Us;Z
c.n// ����! R�.U;Zc.n// ����! R�.U�;Z

c.n//:
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The horizontal triangles are distinguished by the above, and the outer vertical trian-
gles are distinguished by Corollary 3.3. Hence the middle vertical triangle is dis-
tinguished as well. Part b) is proved exactly like Corollary 3.2, using Theorem 7.1.

�

THEOREM 7.3. Let f W X ! S be a scheme over a Dedekind ring of mixed
characteristic with perfect residue fields. Then for every torsion sheaf F on X , and
n� 0, there is a quasi-isomorphism

RHomX .F;ZcX .n//ŠRHomS .RfŠF;ZcS .n//:

Proof. Replacing X by a compactification j W X ! T and F by jŠF, we
can assume that X is proper. Writing F as a colimit of constructible sheaves, we
can assume that F is constructible; see the proof of Corollary 4.7. The quasi-
isomorphism is induced by the map Rf�ZcX .n/! ZcS .n/ of Corollary 7.2b). We
can assume that F is m-torsion for some integer m, and it suffices to show that the
adjoint map ZcX=m.n/!Rf ŠZcS=m.n/ is an isomorphism. We can check this at
stalks and assume that the base is a henselian discrete valuation ring; the case that
the base is an algebraically closed field is Corollary 4.7. Consider the following
commutative diagram, coming from Corollary 7.2, and the quasi-isomorphisms
Rj�Rf

Š DRf ŠRj� and i�Rf Š DRf Ši�:

i�ZcXs
=m.n/ ����! ZcX=m.n/ ����! Rj�ZcX�

=m.n/??y ??y ??y
i�Rf

ŠZcs=m.n/ ����! Rf ŠZcS=m.n/ ����! Rj�Rf
ŠZc�=m.n/:

The outer maps are quasi-isomorphisms by Corollary 4.7a), hence so is the middle
map. �

LEMMA 7.4. Under the conditions of Theorem 7.3, we have ZcS Š GmŒ1�

on S .

Proof. By [27, Lemma 11.2], ZcS is acyclic (as a complex of étale sheaves) ex-
cept in degree �1. The quasi-isomorphism is induced by the map Gm!H�1.ZcS /,
sending a unit u on U to the subscheme . 1

1�u
; �u
1�u

/. �

7.1. Local duality. Let f WX ! S be a scheme over a discrete valuation ring
and i W s!X be the closed point. For a torsion sheaf F, we define cohomology with
compact support in the closed fiber R�Xs ;c.Xet;F/ to be R�.Set; i�Ri

ŠRfŠF/.

THEOREM 7.5. Let X ! S be a scheme over a henselian discrete valuation
ring of characteristic 0 with finite residue field. Then for every torsion sheaf F on
X , there is a quasi-isomorphism

RHomX .F;ZcX /ŠRHomAb.R�Xs ;c.Xet;F/;Z/Œ�1�:
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In particular, for constructible F, there are perfect pairings of finite groups

Ext2�iX .F;ZcX /�H
i
Xs ;c

.Xet;F/!Q=Z:

Proof. From Theorem 7.3 we get

RHomX .F;ZcX /ŠRHomS .RfŠF;ZcS /;

hence the result follows from

LEMMA 7.6. For every complex of constructible sheaves G� on S , we have a
quasi-isomorphism

RHomS .G�;ZcS /ŠRHomAb.R�s.Set;G
�/;Z/Œ�1�:

Proof. This follows using Lemma 7.4 from the local duality quasi-isomorphism
[34, II Th. 1.8]

RHomS .G;ZcS /Œ�1�ŠRHomS .G;Gm/ŠRHomAb.R�s.Set;G/;Q=Z/Œ�3�:

�

Kato-homology HK
i .X;Z=m/ over a henselian discrete valuation ring is de-

fined as in (13). If X is proper and regular over S , with generic fiber X� and
closed fiber Xs , then Kato conjectures [22, Conj. 5.1] that the Kato-homology
HK
i .Xs;Z=m/ of the closed and HK

i .X�;Z=m/ of the generic fiber agree, or
equivalently that the Kato-homology of X vanishes for all i . The same proof as
for (14) gives

COROLLARY 7.7. For every scheme over a henselian discrete valuation ring
of characteristic 0 with finite residue fields, there is a long exact sequence

(23) � � � ! CH0.X; i;Z=m/!H iC1
Xs ;c

.Xet;Z=m/
�
!HK

iC1.X;Z=m/! � � � :

Note that the exacts sequences (14), (16), and (23) fit together into a double-
complex

CH�1.X�; i;Z=m/ ����! CH0.Xs; i � 1;Z=m/ ����! CH0.X; i � 1;Z=m/??y ??y d

??y
H i
c ..X�/et;Z=m/

� ����! H i
c ..Xs/et;Z=m/

� ����! H i
Xs ;c

.Xet;Z=m/
�??y ??y ??y

HK
i .X�;Z=m/ ����! HK

i .Xs;Z=m/ ����! HK
i .X;Z=m/:

7.2. Number rings. Let B be the spectrum of a number ring. For a torsion
sheaf G on B , the cohomology with compact supports R�c.Bet;G/ is defined, for
example, in [34, II �2] and differs from R�.Bet;G/ only at the prime 2 and only
for those B having a real embedding. For a torsion sheaf F on X , we define co-
homology with compact support H i

c .Xet;F/ to be the cohomology of the complex
R�c.Bet; RfŠF/. The following generalizes and unifies [34, II Thms. 6.2, 7.16].



DUALITY VIA CYCLE COMPLEXES 1123

THEOREM 7.8. For every scheme f WX ! B and torsion sheaf F on X , we
have a quasi-isomorphism

RHomX .F;ZcX /ŠRHomAb.R�c.Xet;F/;Z/Œ�1�;

which induces perfect pairings of finite groups for constructible F,

Ext2�iX .F;ZcX /�H
i
c .Xet;F/!Q=Z:

Proof. For a complex of constructible sheaves G� on B , we have by Artin-
Verdier duality [31][34, II Th. 3.1b)] a quasi-isomorphism

RHomB.G�;Gm/ŠRHomAb.R�c.B;G
�/;Q=Z/Œ�3�:

If we apply this to the quasi-isomorphism of Theorem 7.3, we get

RHomX .F;ZcX /ŠRHomB.RfŠF;Gm/Œ1�

ŠRHomAb.R�c.Xet;F/;Q=Z/Œ�2�: �

Over the spectrum of a number ring, higher Chow groups CHi .X; n/ are de-
fined as the Zariski-hypercohomology of the complex zn.�;�/, and Kato-homology
HK
i .X;Z=m/ is defined [22, Conj. 05] as the homology of the cone of the canoni-

cal map of the complex (13) to the direct sum of the complexes (15) for X �B F� ,
where F� runs through the real places of B . Kato conjectures that HK

i .X;Z=m/D

0 for i > 0 and X regular, flat and proper over B .

COROLLARY 7.9. For every scheme over a number ring, there is a long exact
sequence

� � � ! CH0.X; i;Z=m/!H iC1
c .Xet;Z=m/

�
!HK

iC1.X;Z=m/! � � � :

For completeness we give the following analog of Corollary 4.7 and Theo-
rem 6.5.

PROPOSITION 7.10. Let f WX ! Y be a map of schemes over the spectrum
of a number ring S , and let n� 0.

a) For every locally constant constructible sheaf G on Y , the map of Corollary
7.2b) induces a quasi-isomorphism

ZcX .n/˝f
�GŠRf Š.ZcY .n/˝G/:

b) For every torsion sheaf F on X and every finitely generated, locally con-
stant sheaf G on Y , we have a functorial quasi-isomorphism

HomY .RfŠF;ZcY .n/˝G/Š HomX .F;ZcX .n/˝f
�G/:

c) (Exchange formulas) If F and G are constructible, then

D.F˝G/ŠRHom.F;D.G//;

Rf�D.G/Š D.RfŠG/;

Rf ŠD.G/Š D.f �G/:
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Proof. a) Since the statement is local for the étale topology, we can assume
that S is strictly henselian and that G is a constant sheaf of the form Z=m. Then
the proof of Theorem 7.3 works in this situation. b) follows from a) as in Corollary
4.7, and c) is proved as in Theorem 6.5. �
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