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Abstract

We introduce a “geometric” method to bound periods of automorphic forms.
The key features of this method are the use of equidistribution results in place
of mean value theorems, and the systematic use of mixing and the spectral gap.
Applications are given to equidistribution of sparse subsets of horocycles and to
equidistribution of CM points; to subconvexity of the triple product period in the
level aspect over number fields, which implies subconvexity for certain standard
and Rankin-Selberg L-functions; and to bounding Fourier coefficients of automor-
phic forms.
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1. Introduction

1.1. General introduction. Let � �G be a lattice in an S-arithmetic group.
Let Y � �nG be a subset endowed with a probability measure �, and f a func-
tion on �nG. Fixing a basis f .Y /j g for L2.Y; �/, we shall refer to the numbers
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f  

.Y /
j d�, as the periods of f along Y . Evidently, the periods depend heavily

on the choice of basis for L2.Y; �/. They play a major role in the theory of au-
tomorphic forms, in significant part because they often express information about
L-functions.

The present paper is centered around a geometric method yielding upper
bounds for these periods. It is applicable, roughly speaking, when considering the
periods of a fixed function f along a sequence of subsets .Yi ; �i /, with the property
that the Yi are becoming equidistributed; that is to say, the �i approach weakly
the G-invariant measure on �nG. The key inputs of this method are, firstly, the
equidistribution of the �i , and secondly, the mixing properties of certain auxiliary
flows. More precisely, we shall need these properties in a quantitative form; in the
cases we consider, this will follow eventually from an appropriate spectral gap.

This situation might seem rather restrictive. However, it arises often in many
natural equidistribution questions (“sparse equidistribution problems,” as we dis-
cuss below) as well as in the analytic theory of automorphic forms (especially,
subconvexity results for L-functions). There are applications besides those dis-
cussed in the present paper; our aim has not been to give an exhaustive discussion,
but rather just to present a representative sample of interesting cases. We shall
explain the method abstractly in Section 1.3 and will carry out, in the body of the
paper, one example of each of the following cases: Yi is the orbit of a unipotent, a
semisimple, and a toral subgroup of G.

In the present paper, we have focused mostly on the case of PGL2 and GL2
over number fields. All our results pertain to this setting, except for Theorem 3.2,
which applies to a general semisimple group. The geometric methods of this paper
are general and we hope to analyze further higher rank examples in a future paper.

Throughout the present methods we have tried to use “soft” techniques as a
substitute for explicit spectral expansions. However, there still seem to be instances
where the explicit spectral expansions are important. In a future paper [28], joint
with P. Michel, we shall combine ideas drawn from this paper with ideas from
Michel’s paper [27]; in that paper, we shall make much more explicit use of spectral
decomposition.1

We shall use the term “sparse equidistribution problems” to describe questions
of the following flavor: Suppose Zi � Yi is a subset endowed with a measure �Zi ,
and we would like to prove that the �Zi are becoming equidistributed. In other
words, we wish to deduce the equidistribution of the “sparse” subset Zi from the
known equidistribution of Yi . Examples of this type of question are Shah’s conjec-
ture [38, �1, end] (where the Zi are discrete subsets of Yi , a full horocycle orbit) as
well as results of Michel, Harcos-Michel on subsets of Heegner points [27], [17]
(where the Zi are subsets of the Yi , the set of all Heegner points). The connection
to period integrals is as follows: one can spectrally expand the measure �Zi in

1Added in proof: the article [29] contains a further discussion of this idea.
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terms of the basis for L2.Yi ; �i /. Using our results for periods along Yi , it will
sometimes be possible to deduce the equidistribution of �Zi .

We now briefly summarize our results.

(1) Section 3 considers where the Yi s are orbits, or pieces of orbits, of unipotent
groups. The mixing flow is the horocycle flow along Yi .

In Theorem 3.1 (p. 1015) we show that certain sparse subsets of horocycles
on compact quotients of SL2.R/ become equidistributed. This is progress
towards a conjecture of N. Shah. In Theorem 3.2 (p. 1019) we give a fairly
general bound (in the context of an arbitrary semisimple group) on the Fourier
coefficients of automorphic forms. In the case of G D SL2.R/ it recovers re-
sults of Good [16] and Sarnak [37], which resolved a problem of Selberg. The
present proof is more direct, avoiding in particular the triple product bounds
for eigenfunctions.

(2) Section 4 considers the case whenGDPGL2.F˝R/, whereF is a number
field, and � is a congruence subgroup thereof. The Yi are a sequence of closed
diagonal G-orbits on �nG��nG. The mixing flow (after lifting to the adeles)
is the diagonal action of PGL2.AF;f /, where AF;f is the ring of finite adeles
of F .

Propositions 4.1 and 4.2 give period bounds in this context. Proposition
4.1 yields subconvexity for the triple product L-function, in the level aspect
as one factor varies (this is conditional on a property of p-adic integrals, Hy-
pothesis 11.1; this has apparently been established in the time since the paper
was submitted, see the remark following Hypothesis 11.1). In Theorem 5.1
(p. 1028) it is shown that these results yield subconvex bounds, in the level
aspect, for standard and Rankin-Selberg L-functions attached to PGL2.

The results on standard and Rankin-Selberg L-functions generalize results
of Duke-Friedlander-Iwaniec [12] and Kowalski-Michel-Vanderkam [24] from
the case F DQ.2 The third result, concerning subconvexity of the triple prod-
uct period in the level aspect, was not known even over Q; however, Bernstein
and Reznikov [3] have shown subconvexity for the triple product period in the
eigenvalue aspect.

(3) Section 6 considers the case when Yi is a certain family of noncompact torus
orbits on �nG, where .�;G/ is as in Section 4. (In fact, the Yi are obtained by
taking a fixed noncompact torus orbit, and translating by a p-adic unipotent,
where p varies.) The mixing flow is the action of the adelic points of the
torus.

2We have not attempted to address the issue of varying the central character. This, in a sense, is
the most subtle point, as is shown by Michel’s recent work on Rankin-Selberg convolutions. Our aim
in the present paper has been to show that one can derive a coherent theory for PGL2 from the triple
product bound of Proposition 4.1. The case of varying central character will be discussed in a future
paper with Michel.
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We establish in Theorem 6.1 (p. 1034) subconvexity for character twists
of GL.2/ in the level aspect. This was first established for F DQ by Duke-
Friedlander-Iwaniec [11], and the special case where F is totally real and
the form holomorphic at all infinite places was treated by Cogdell, Piatetski-
Shapiro and Sarnak. In particular, (6.2) gives a subconvex bound for Grössen-
character L-functions over F , in the level aspect; this was known over Q by
work of Burgess [6] and some special cases were known in the general case,
e.g., [41].

(4) In Section 7 we consider the case where Yi is a (union of) compact torus orbits
on �nG, where .�;G/ are as in Section 4. The equidistribution of such Yi will
amount to the equidistribution of Heegner points, and we deduce it from Theo-
rem 6.1 in Theorem 7.1 (p. 1042). This result generalizes work of Duke over Q

and was proven, conditionally on GRH, by Zhang [47], Cohen [9], and Clozel-
Ullmo [8] (independently). The present work makes this result unconditional.

Applying mixing properties of the adelic torus flow, we obtain in Theo-
rem 7.2 (p. 1043), under a condition of splitting of enough small primes, the
equidistribution of certain sparse subsets of Heegner points. In the case F DQ,
an unconditional result of this nature is due to Michel and Harcos-Michel.3

In the context of L-functions, one pleasing feature of the present method is
that it is geometric: it proceeds not via Fourier coefficients but via the integral
representation. In practice, this means that there is no difference between Maass
or holomorphic forms, nor between Q and an arbitrary base field. Moreover, we
do not make use of either the trace formula or the Kuznetsov formula; indeed, we
make no explicit use of families.

The recent work of Bernstein-Reznikov [3] is of a similar flavor. They es-
tablish a “subconvex” bound for the triple product when the eigenvalue of one
factor varies, whereas we have treated the case where the level of one factor varies.
Their method is also geometric in nature, and moreover their result applies to a
nonarithmetic group. By contrast, the level aspect question is not well-posed if
one leaves the arithmetic setting.

Throughout the paper we have not attempted to optimize the results. The
input to our method is an equidistribution result. As far as possible we have tried to
establish these results by relatively “geometric” methods, deriving in the end from
the mixing properties of a certain flow. Of course, it is in many contexts better to
use spectral methods, but this would involve departing from the geometric method

3Our method is different to those mentioned: we do not deduce our result from results on Rankin-
Selberg convolutions, and indeed it is possible to deduce a subconvexity result from ours. However,
there seem to be some curious parallels between the methods. In fact, the method of Theorem 7.2
is even more closely related — as Michel has pointed out to me — to the work [13] of Duke, Fried-
lander and Iwaniec. In that paper they amplify class group L-functions but obtain only a conditional
result for precisely the same reason that Theorem 7.2 fails to be unconditional, namely, one cannot
guarantee unconditionally the existence of enough small split primes.
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that is intended to be the central theme of this paper. As remarked, we will pursue
such “spectral” approaches in a forthcoming paper with P. Michel [28]; some of
the results of this have been discussed in [29].

Finally, implicit in various parts of the paper is “adelic analysis”, i.e. the
analytic theory of functions on adelic quotients, in the quantitative sense needed
for analytic number theory. There seems to be considerable scope to develop this
theory fully.

1.2. Other applications. The method of this paper has other applications not
elaborated here. We discuss some of them here.

There are other subconvexity results that are naturally approached by the same
method: for instance, a subconvex estimate for L.�; 1=2C i t/ where t varies and
� is a fixed cuspidal representation of GL.2/ over a number field F . In such a
context it is natural to use the fact that the horocycle flow is (quantifiably) weakly
k-mixing, for certain k > 1; the use of this higher order mixing is closely related
to Weyl’s “successive squaring” approach to �.1=2C i t/. Of course, this particular
instance of subconvexity is approachable by standard methods also; an intriguing
question in the subconvexity context is how to combine the present methods with
those such as Bernstein-Reznikov.

There are certain applications to effective equidistribution theorems: for in-
stance, it is perhaps possible to establish some new effective cases of Ratner’s
theorem by the same ideas. The question of giving such “nontrivial” cases was
raised by Margulis in his talk at the American Institute of Mathematics, June 2004.
Unfortunately, the cases to which our method might apply are very artificial.

One can give certain analytic applications: let � be a cocompact subgroup
of SL.2;R/, and let � � L2.�nSL.2;R// be an irreducible SL.2;R/-subrepresen-
tation. For m 2 Z, let em be the mth weight vector in � , if defined; i.e., a vector
which transforms under the character

� cos.�/ sin.�/
� sin.�/ cos.�/

�
7! e2�im� . We normalize

it (up to a complex scalar of absolute value 1) by requiring that kemkL2 D 1.
Bernstein and Reznikov proved the bound kemkL1 � .1C jmj/1=2, and asked
[2, Remark 2.5(4)] if any improvement of the exponent 1=2 is possible. It is quite
easy to deduce from Lemma 3.1 such a bound; indeed, the analytic properties of
the em, as jmj ! 1, is connected with the long time behavior of the horocycle
flow in the same fashion that the analytic behavior of Laplacian eigenfunctions are
connected to the long time behavior of the geodesic flow. In the time during which
this paper was being revised for submission, Reznikov has proven independently a
result of this type [34]. Since the result he obtains is most likely sharper than that
obtained by the technique indicated above, we will not pursue this further, noting
only that an advantage of the method we have indicated above is that it is likely to
generalize to higher rank.

Moving slightly away from the main subject of the present paper, the idea
of using equidistribution theorems to produce mean value results for L-functions
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seems capable of application in a variety of settings. In particular, equidistribu-
tion results are readily available on GL.n/, owing to Ratner’s work, whereas trace
formulae are extremely unwieldy for n > 2. It would be interesting to see what
mean-value statements can be deduced from Ratner-type equidistribution results.

Historically, one application of such results has been to nonvanishing results;
here the most spectacular results (e.g., [42]) have been achieved through the so-
called mollifier technique. It would be quite interesting to understand if there is a
geometric interpretation of the mollifier technique.

1.3. Discussion of method: equidistribution, mixing, and periods. We now
turn to a discussion of the specifics of the method used in this paper. This method
itself is quite easy to describe. It consists in essence of two simple steps (see (1.2)
and (1.3) below).

We also remark that the discussion that follows is a relatively faithful rendition
of the method of the paper. The body of this paper does not really utilize any new
ideas beyond the ones indicated below. Most of the bulk consists of the technical
details necessary to connect periods with other objects of interest (e.g., equidistri-
bution questions or L-functions), as well as setting up the machinery to quantify
some standard equidistribution results. As much as possible, we have tried to give
a self-contained treatment of all these technical details in Sections 8–11.

We hope the ensuing discussion serves as a unifying thread for the rest of the
paper. We explain the method first in an abstract setting (�1.3.1). We then explain
(��1.3.2 and 1.3.3) these ideas in a more down-to-earth fashion, emphasizing the
parallel with the analytic techniques for studying L-functions. Finally, Section
1.3.4 illustrates these ideas in a simple example – that of Fourier coefficients of
modular forms.

1.3.1. Abstract setting. Let G2 � G1 be locally compact groups, � � G1 a
lattice, X D �nG1. Let xi 2 X and put Yi D xiG2. We shall suppose that there
exists a G2-invariant probability measure �i on Yi . (This does not precisely cover
all the contexts we consider — at some points we will consider Yi which are “long
pieces” of a G2-orbit rather than a single G2-orbit, but the ideas in that case will
be identical to those discussed here.)

Let f be a function on X and  i a function on Yi such that
R
Yi
j i j

2d�i D 1.
We will give a bound for the period

R
Yi
f  id�i .

In words, the idea will be to find certain correlations between the values of
 i at different points; and then show that the values of f at these same points
are “uncorrelated,” in some quantifiable sense. Putting these together will show
that the period must be small. The “hard” ingredient here is some version of the
spectral gap, i.e., quantitative mixing, which is what will show the “uncorrelated-
ness” property of f .

We will suppose that there exists � , a measure on G2, such that

(1.1)  i ?� D �i i ;
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for some �i 2 C. Here ?� denotes the action of � by right convolution. Let L� be
the image of � by the involution g 7! g�1 of G2. Thenˇ̌̌̌Z

f � id�i

ˇ̌̌̌2
D

ˇ̌̌̌
��1i

Z
Yi

f � . i ?�/d�i

ˇ̌̌̌2
(1.2)

D

ˇ̌̌̌
��1i

Z
Yi

.f ? L�/ � id�i

ˇ̌̌̌2
� j�i j

�2

Z
Yi

jf ? L� j2d�i ;

where we have applied Cauchy-Schwarz at the final step. Now, we are assuming
that the Yi are becoming equidistributed, and so �i ! �, the G1 invariant measure
on �nG1. Thus

(1.3)
Z
Yi

jf ? L� j2d�i �

Z
X

jf ? L� j2d�

D

Z
g;g 02G2

hgg0�1 �f; f iL2.X/d�.g/d�.g
0/;

where gg0�1 �f denotes the right translate of f by gg0�1.
If the G2-action on X is mixing in a quantifiable way — i.e., one has strong

bounds on the decay of matrix coefficients — one obtains good upper bounds on
the right-hand side of (1.3); in combination with (1.2) this gives an upper bound
for the period j

R
Yi
f  id�i j.

The strength of the information required about the mixing varies. In the cases
we study where G2 is amenable, any nontrivial information will suffice. In the one
case where G2 is semisimple, a strong bound towards Ramanujan is needed. For
instance, in the case of triple products, we need any improvement of the bound that
the pth Hecke eigenvalue of a cusp form on GL.2/ is bounded in absolute value
by p1=4Cp�1=4. (In this normalization, the trivial bound is p1=2Cp�1=2.)

In the rest of this paper, we shall merely apply this argument many times,
with various different choices for �;G1; G2. The part of the argument which will
vary is quantifying the equidistribution of the �i , i.e. keeping track of the error in
the first approximation of (1.3). Thus we make heavy use of Sobolev norms (�8),
which are an efficient method of bounding this error.

In each instance, the proof of the equidistribution result �i ! � will always
be rather straightforward, except for the result of Section 7. The equidistribution
result needed for the proof of Theorem 7.2 is essentially equivalent to the subcon-
vexity result proved in Section 6. A rather striking point is that a similar logical
dependence (although manifested very differently) is present in the work of Michel.
The meaning of this is unclear to the author.

In certain specific cases, the above technique is quite familiar. When G2 is a
one-parameter real group, the above argument is quite closely related to standard
techniques of analytic number theory.4 On the other hand, when G2 is an adelic

4For example, in certain contexts when G2 is abelian, one can push this method further by
squaring multiple times, that is to say, considering j

R
f  id�i j

4; j
R
f  id�i j

8 and so forth. In this
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group, and � a measure on G2 that corresponds to the action of Hecke operators
(this is carried out in �4, for instance), the above argument will be essentially
“amplification” in the sense of Friedlander-Iwaniec [15].

In the following two sections, we shall attempt to explain more colloquially
the main idea that is at work here, and also discuss how the method described above
fits into the framework of analytic number theory. Modern proofs of subconvex-
ity, following the path-breaking work of Friedlander-Iwaniec [15], have roughly
speaking consisted of a mean-value theorem and an amplification step. We shall
discuss how the proof indicated above may be viewed as geometrizing this strategy,
where the mean-value step is replaced by an equidistribution theorem, and the
amplification step is controlled using mixing.

Note, in particular, that in the work of Friedlander-Iwaniec, families of L-func-
tions play a central role, whereas the method above has in a certain sense eliminated
the family. Although in the discussion below we rephrase matters so as to make
clear the connection with the work of Friedlander-Iwaniec, it seems that from the
perspective of the present paper the phrasing in terms of families is rather artificial.

1.3.2. Connection with analytic number theory: equidistribution, and mean-
value theorem for periods. Follow the notation of the previous section. We choose
an orthonormal basis f i;j g1jD1 for L2.Yi ; �i / so that  i;1 WD  i .

By Plancherel’s formula,
P1
jD1

ˇ̌R
f  i;jd�i

ˇ̌2
D
R
jf j2d�i . Since �i ! �

weakly, and we are holding f fixed, it follows that

(1.4)
1X
jD1

ˇ̌̌̌Z
f  i;jd�i

ˇ̌̌̌2
!

Z
�nG

jf j2d�;

as i!1. Thus the equidistribution property of �i underlies a mean-value theorem
for the Yi -periods.

In many cases involving automorphic forms, the periods will essentially be
special values ofL-functions and (1.4) amounts to a mean-value theorem forL-func-
tions. This is fairly well-known; for example, the mean-value theoremZ T

�T

j�.1=2C i t/j4dt � T log.T /4

is rather closely connected with the equidistribution properties of the cycle

f.1C i=T /x; x 2 Rg;

when projected to SL2.Z/nH. A more striking example is Vatsal’s use of equidistri-
bution to prove nonvanishing results [45]. In general, it seems that there are many
interesting mean value theorems for L-functions that are connected to equidistri-
bution results.

context, one replaces the mixing property of the G2 action with results about higher order mixing
of the G2-flow. Although we will not carry this out in the present paper, this seems rather closely
connected to Weyl’s proof of subconvexity for �.1=2C i t/.
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In any case, (1.4) is not unrelated to the standard methods of obtaining such
results; however, its primary advantage is that it is often technically much simpler,
for example when working over a number field.

1.3.3. Connection with analytic number theory (II): mixing, and bounds for
a single period. We now wish to pass from (1.4) to nontrivial upper bounds for
a single period. It is clear that (1.4) implies at once — by omitting all terms but
one — that j

R
f  i;jd�i j . kf kL2.X/; we shall refer to an improvement of this

bound as nontrivial. It is evident that one must have some further information about
f i;j g in order to do this; otherwise one could simply take  i;1 to be a multiple of
f jYi .

In the context of analytic number theory, this is often carried out by “shorten-
ing the family,” that is to say: proving a sharp mean-value theorem of the form of
(1.4), but over some subfamily of f i;j g1jD1; then omitting all terms but  i;1 D  i
will often give a nontrivial upper bound. In the work of Friedlander-Iwaniec, a
weighted mean-value theorem is derived, which has the same effect as shortening
the family.

Such a weighted mean-value theorem is also implicit in our context. Follow-
ing the notation of Section 1.3.1, suppose that there is a fixed measure � on G2
such that for all i; j , we have  i;j ? � D �i;j i;j (some �i;j 2 C). Then, by
Plancherel’s formula, and using the fact �i ! �, we conclude:

(1.5)
1X
jD1

j�i;j j
2

ˇ̌̌̌Z
f � i;jd�i

ˇ̌̌̌2
! hf ? L�; f ? L�iL2.X/:

This gives a weighted mean value theorem, which for appropriate choices of �
amounts to shortening the effective range of summation in (1.4). Moreover, the
mixing of the G2-flow bounds the right-hand side of (1.5). In this phrasing, it
becomes clear that the measure � has played the role of an “amplifier” and the
orthonormal basis for L2.Yi ; �i / has played the role of the family.

Having now explained the method in an abstract context and indicated its
equivalence with other methods, we now indicate more informally the source of
cancellation in periods that is at the center of our results.

In many natural situations, one obtains a basis for L2.Yi ; �i / by diagonalizing
a geometrically defined algebra of operators on Yi . The result of this process is that
the functions f j g exhibit correlations between their values at different points of
Y (= the relevant Yi ). For instance (for example when G2 is semisimple), it often
will occur that there is a correspondence C W Y 7! Y such the value of each  j at
P 2 Y and at the collection of points C.P / are correlated in some way. On the
other hand (and we shall now speak quite imprecisely), if the correspondence C

“extends” to a correspondence zC WX 7!X , then one can often show, using mixing
properties of zC, that the values of f at P and zC.P / will be uncorrelated, at least
if P is chosen at random with respect to the uniform measure on X .
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However, since the Yi are becoming equidistributed, it amounts to almost the
same thing to choose P at random with respect to �i and with respect to the uniform
measure on X . Thus, for �i -typical P 2 Yi , the values of f at P and C.P / are
uncorrelated, whereas the values of  j at P and C.P / are correlated. One can
then play these phenomena against each other to obtain cancellation in the period
integral

R
f  jd�i .

1.3.4. A concrete example. We shall now discuss how to bound Fourier coef-
ficients of a modular form by the methods just described. Although the material
below is essentially redone - with SL.2;R/ replaced by a general group — in Sec-
tion 3, the example below was very important in motivating the author’s intuition,
and it seems worthwhile to include it in the introduction.

Let � � SL.2;R/ be a lattice containing the element
�
1 1
0 1

�
. Let f .z/ be

a holomorphic form of weight 2 with respect to � , which we write in a Fourier
expansion f .z/D

P1
nD1 ane

2�inz . Hecke proved the bound janj � Cn, a bound
which was only improved (for a general — possibly nonarithmetic — �) much
later, to janj � Cn5=6, by A. Good [16]. We shall sketch a simple proof of a
nontrivial bound janj � Cn1�ı along the lines just indicated; for further details,
we refer the reader to Section 3.2, where the procedure outlined is implemented
for a general semisimple group.

We note that the ideas that will enter here are exactly those that will enter into
the proof of equidistribution of sparse subsets of horocycles (see �3.1), or for the
nontrivial bound for L1-norms in the weight aspect that is discussed in Section
1.2. The proof below also works for Maass forms (in that case the result is due to
Sarnak [37]).

The Fourier expansion implies that

(1.6) an D e
2�

Z
x2R=Z

f
�
xC

i

n

�
e�2�inxdx:

In words, the idea is as follows: the function e�2�inx takes the same values at
x; x C 1

n
; x C 2

n
; : : : . On the other hand, the values of the function f at these

points are (in a quantifiable sense) uncorrelated, as we shall deduce from the mixing
properties of the horocycle flow. Playing these two properties against each other
will yield an improvement of the Hecke bound for jan.5

Let zf be the lift of f to �nSL.2;R/; that is to say,

zf W �

�
a b

c d

�
7! f

�ai C b
ci C d

�
.ci C d/�2:

Let

xn D �

�
n�1=2 0

0 n1=2

�
;

5Underlying this is the usual “van der Corput” trick: to bound
PK
kD1 ck it suffices to bound

correlations
PK
kD1 ckckCh; in effect we apply this with ck D f .

kCi
n /;K D n.)
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and put n.t/ D
�
1 t
0 1

�
. Then the definitions show that zf .xnn.t// D n�1f

�
iCt
n

�
;

consequently, we see that

(1.7) an D e
2�

Z n

tD0

zf .xnn.t//e
�2�itdt:

Equation (1.7) expresses the nth Fourier coefficient of f as the integral of
zf over a closed horocycle of length n. Moreover, (1.7) falls into the pattern of

Section 1.3.1, with G1 D SL2.R/, G2 D fn.t/ W t 2 Rg, Yn D fxnn.t/ W t 2 Rg,
and  n W Yn! C the function given by xnn.t/ 7! e�2�it . The fact that the Yn are
becoming equidistributed amounts to the “equidistribution of low horocycles”; cf.
[35]. In the language of Section 1.3.1, we will take � to be the measure on G2 Š R

that is a sum of point masses ıi , for integers i D 0; : : : ; K � 1. We now carry out
the procedure of Section 1.3.1 in an explicit fashion in the paragraphs that follow.

Let T be the operation of right translation by n.1/ on C1.�nSL2.R//: that
is to say, for F 2 C1.�nSL2.R//, we put TF.g/D F.gn.1//.

The value of the right-hand side of (1.7) remains unchanged if we replace zf
by T zf ; consequently, for any integer K � 1, we have

an D
e2�

K

Z n

tD0

�K�1X
iD0

T i zf .xnn.t/

�
e�2�itdt:

Applying the Cauchy-Schwarz inequality we deduce that

(1.8) janj
2
�

n

e�4�K2

Z n

tD0

ˇ̌̌̌K�1X
iD0

T i zf .xnn.t//

ˇ̌̌̌2
dt:

We now use come to the equidistribution part of the argument. The equidistri-
bution of long closed horocycles asserts that the closed horocycle fxCiy W0�x�1g
becomes equidistributed in �nH as y! 0. Quantitatively, for any F 2 C1.�nH/,
we have

(1.9)
ˇ̌̌̌Z 1

0

F.xC iy/dx�

Z
�nH

F
dx dy

y2

ˇ̌̌̌
� CF y

ı ;

for some CF depending on F , and some ı depending only on � . This assertion,
originally proved by Sarnak [35] by spectral methods, can be deduced quite easily
from the mixing properties of the geodesic flow; this is done, in a somewhat more
general context, in Lemma 9.7.

We note that — a special case of the discussion in Section 1.3.2 — the equidis-
tribution statement (1.9) above reflects a mean-value theorem for periods. Indeed,
if one applies it to F D y2jf j2, one deduces the asymptotic for

P
n<X janj

2.
In any case, what will be more useful is the version of (1.9) that is lifted to

�nSL2.R/. This asserts that for any F 2 C1.�nSL2.R//, we have

(1.10)
ˇ̌̌̌
1

n

Z n

tD0

F.xnn.t//dt �

Z
�nSL2.R/

F.g/dg

ˇ̌̌̌
� CF n

�ı ;
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where ı is an explicit constant depending only on � , and CF is a constant depend-
ing on F . From (1.8) and (1.10) we conclude that

(1.11) janj
2
�
e4�n2

K2

�K�1X
iD0

T i zf

2
L2.�nSL2.R//

CCf;Kn
�ı

�
:

On the other hand, the explicit derivation of (1.10) shows that CF may be
bounded by a Sobolev norm of F , and consequently the constant Cf;K that appears
in (1.11) is bounded by Of .KA/ for some A > 0. Thus

janj
2
�f n

2K�2
�K�1X

iD0

T i zf

2
L2.�nSL2.R//

CKAn�ı
�
:

We now use the fact that the horocycle flow is mixing, in a quantifiable way;
see [32]. This amounts to the assertion that there is an explicit ı0 > 0 and constant
C 0
f

such that, for i 2 Z, jhT i zf ; zf ij � C 0
f
.1C ji j/�ı

0

. We may assume without
loss that ı0 < 1; this being so, it follows:K�1X

iD0

T i zf

2
L2
�f K

2�ı 0 :

We conclude that janj � n.K�ı
0=2 C KA=2�1n�ı=2/. Taking K to be a

sufficiently small power of n, we conclude that an is bounded by n1�ı
00

for some
ı00 > 0 depending only on � .

Clearly ı00 depends only on the spectral gap of �nSL2.R/. Of course, this
dependence does not arise in the “spectral” methods. It can be removed in the above
method, but this seems to require some extra input, e.g., the finite-dimensionality of
the space of functionals on an irreducible SL2.R/-representation that are invariant
under the subgroup fn.t/ W t 2 Rg.

1.3.5. Two other viewpoints on the method of Section 1.3.4. There are two
other viewpoints which might be helpful in thinking about the previous section.
Both of these viewpoints do not literally generalize to the other situations we con-
sider (e.g., triple products) but may be helpful for intuition.

(1) The first is based on the following simple principle: suppose that T is a
measure-preserving transformation of the probability space .Y; �/, and that T
is ergodic. If �1; �2 are two T -invariant probability measures with average
�1C�2
2
D �, then �1 D �2 D �; this follows because � is an extreme point of

the convex set of T -invariant probability measures. More generally, given any
family of probability measures averaging to �, they must almost all equal �.

We will apply this to Y D SL2.Z/nSL2.R/ and T the operation of transla-
tion by n.1/.

Let n be large; for t 2 R=Z, let �t be the probability measure that corre-
sponds to normalized counting measure on fxnn.t C k/ W k 2 Z; 0 � k < ng.
Here notation is as prior to (1.7).



SPARSE EQUIDISTRIBUTION PROBLEMS, PERIOD BOUNDS AND SUBCONVEXITY 1001

Then
R 1
0 �t is the measure on the closed horocycle fxnn.t/ W 0 � t � ng.

Thus the family of measures �t averages to the measure on a long closed horo-
cycle which, as we remarked earlier (see (1.10)) approximates the SL2.R/-
invariant measure dg on �nSL2.R/. But this latter measure dg is ergodic
with respect to T . So applying a more quantitative form of the principle
discussed above shows that, for almost all t 2 Œ0; 1�, �t must be close to
dg. It is simple to see that one can use this to deduce bounds for the Fourier
coefficients, via (1.7).

(2) We will phrase the second rather imprecisely. Consider (1.7). Our strategy
of proof can be rephrased as: The function t 7! zf .xnn.t// is weak-mixing,
whereas the function t 7! e2�it is periodic, and a weak-mixing function cannot
correlate with a periodic function.

To explain this statement, we need to explain what it means for a function
on the real line to be weak-mixing. Consider instead the case of a function
h WZ!R. Furstenberg’s correspondence principle asserts that one can (loosely
speaking) associate to this a dynamical system .Y; �; T / in such a way that
(again loosely speaking) h arises by sampling a function on Y along a generic
trajectory y0; T .y0/; T 2.y0/; : : : . We then say that h is weak-mixing if the
system .Y; �; T / is so. The fact that our function t 7! zf .xnn.t// (say, when
restricted to integer times) is weak-mixing follows from the equidistribution
of long closed horocycles together with the fact that the horocycle flow is,
itself, mixing.

For more on this point of view, see e.g., [44, �4] and [44, Lemma 5.2] for
a version of the statement that weak-mixing functions cannot correlate with
periodic ones.

1.4. Connection to existing methods. The following comments pertain to the
results of the present paper that concern subconvex bounds for L-functions. As we
have emphasized above, the methods presented here are, upon examination, seen
to be closely related to existing methods: in particular, “Sarnak’s spectral method,”
which gave the only hitherto known instance of subconvexity over a base other
than Q.

Indeed, as we have already indicated, the equidistribution step of our method
can be seen as the geometric version of a mean value theorem, and the rest of the
method can be seen as an amplification step (or “shortening the family”). Never-
theless, the key features of the present method are that it is essentially geometric
(in that it avoids Fourier coefficients) and adelic (which allows us to import much
from the modern theory of automorphic forms); it also does not use families in any
explicit way. Once the notation is established — admittedly a nontrivial overhead
— the method allows for very considerable technical simplification.

It is perhaps also noteworthy that the method given here does not require
any exponential decay information for triple products. Although such exponential
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decay information is central only to subconvexity in the eigenvalue aspect, it has
thus far entered as a technical device even in treatments of the level aspect.

In a sense, the present method bears the same relation to existing methods
as adelic methods do to classical methods in the theory of automorphic forms.
The classical situation has the advantage of concreteness, and whatever can be
carried out in the adelic setting can be (in principle) carried out in the classical
setting. However there is often a considerable technical and conceptual advantage
in working adelically.

As we have discussed, the connection between equidistribution results and
mean-value theorems for periods — implicitly exploited throughout this paper —
appears in the work of V. Vatsal.

D. Hejhal considered ideas similar to that of Section 3.2 in the context of
proving bounds towards Fourier coefficients; see [18]. In the language of this
paper, his method used a measure � (notation of �1.3) with much larger support,
and consequently he was unable to get unconditional results.

Finally, as was remarked in Section 1.1, the main result of Section 4.1 is
the analogue in the level aspect of a recent result of Bernstein-Reznikov [3]: they
establish a “subconvex bound” on triple products as the eigenvalue of one factor
varies. Their methods also are geometric, avoiding the use of Fourier coefficients.

1.5. Acknowledgements. This paper grew out of my proof of Theorem 3.1.
The original proof was significantly more complicated, and I am indebted to Elon
Lindenstrauss for his insistence that Theorem 3.1 should amount to nothing more
than equidistribution and mixing. It was thus his intuition that led to a simplifi-
cation of the proof and an important step in my understanding. The idea that the
methods for Theorem 3.1 might be applicable in a more general setting arose during
conversations with Andreas Strömbergsson, who also made many valuable sugges-
tions about an early version of this paper. I thank them both for their significant
contributions.

I am very grateful to Gergely Harcos and Philippe Michel for their encourage-
ment of this project. Philippe read carefully an early draft of this paper and pointed
out many points where the argument and results could be significantly improved. I
am also grateful to Peter Sarnak, from whom I learned much of what I know about
this subject.

I have also benefited from several conversations with Joseph Bernstein and
André Reznikov. I thank them for their generosity in sharing and discussing their
elegant ideas.

I have learned many of the methods that appear here from the work of others.
I mention in particular Peter Sarnak’s paper [36], which uses the idea of changing
the test vector; the Friedlander-Iwaniec idea of amplification and the geometric
version of it that appears in Bourgain-Lindenstrauss [5]; and the recent work of
Bernstein-Reznikov [1], in particular their elegant use of Sobolev norms.
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This paper suffered a considerable delay before submission. I would like to
thank Philippe Michel for his encouragement and insistence that it be revised and
submitted, without which the delay would have likely been considerably longer. I
also thank Nicolas Bergeron and Marina Ratner for comments that improved the
exposition and correctness.

The ideas of this paper were worked out during the workshop “Emerging
applications of measure rigidity,” AIM, San Francisco and at the Isaac Newton
Institute.

I was supported by the Clay Mathematics Institute during much of the writ-
ing of the paper, and I thank them for their generous support. I also thank the
Institute for Advanced Study for providing excellent working conditions during
the academic year 2005-2006. I was also partially supported by NSF grants DMS-
0111298 and DMS-0245606.

Last of all, I would like to thank the referees; in particular, one of the re-
ports was extremely detailed and improved the paper very substantively. I am very
grateful for the time they spent on it.

1.6. Structure of paper. The logical structure of this paper is as follows: Sec-
tion 2 introduces all necessary notation. The heart of the paper are Section 3
(unipotent periods), Section 4 (the triple product period), Sections 6 and 7 (torus
periods). The remaining Sections 8–11 are of a technical nature, proving various
technical results required in the main text; at a first reading (or even later) they
should perhaps be referred to only as necessary.

The two examples that best convey the flavor of the paper are Theorem 3.1
and Proposition 4.1. The proofs of these results are relatively self-contained, and
we advise that the reader start with them.

2. Notation
2.1. General notation. We use the symbol� as is standard in analytic num-

ber theory: namely, A� B means that there exists a constant c such that A� cB .
The notation A�f;g;h B means that the constant c may depend on the quantities
f; g; h; the notation A�� B or A�" B will mean, unless otherwise indicated,
that the stated bound holds for all � or " > 0. In general, we will never explicate
the dependence of implicit constants on the number field over which we work; and,
by an abuse of terminology, we will sometimes use the phrase “absolute constant”
to mean a constant that depends only on this number field.

If Z is a space we denote by ız the point measure at z 2Z, i.e., ız.f /D f .z/
for f a continuous function on Z.

Now let Z be a right G-space. For f a function on Z and g 2 G, we write
g �f for the right translate of f by g, i.e., g �f .z/D f .zg/. If � is a measure on
Z — we allow signed or complex-valued measures in what follows — we define
the translate g �� by the rule g ��.g � f /D �.f /. In particular, if �D ız is the
point mass at z 2Z, then g ��D ızg�1 is the point mass at zg�1.
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If � is a compactly supported measure on G, we set f ?� def
D
R
g.g �f /d�.g/,

i.e., f ? �.z/ D
R
g2G f .zg/d�.g/. In particular, if ıg0 is the point-mass at g0,

then f ? ıg0 D g0 �f is the right translate of f by g0.
If �1; �2 are two compactly supported measures on G, we define the con-

volution �1 ? �2 to be the pushforward to G of �1 � �2 on G � G, under the
multiplication map .g1; g2/ 2 G �G 7! g1g2. Notation as above, one has the
(somewhat unfortunate) compatibility relation .f ? �2/ ? �1 D f ? .�1 ?�2/.

For � a measure on a groupG, we denote by L� the image of � by the involution
g 7! g�1, and by k�k the total variation of � . If G is a Lie group, then we denote
by Ad.g/ the endomorphism “X! gXg�1” of its Lie algebra. If B �A is a finite
index subgroup of the group A, then we denote by ŒA W B� the index of B in A.

If h is an entire function, then the notation
R
<.s/D� h.s/ds denotes the line in-

tegral along the line<.s/D� from ��i1 to �Ci1. The notation
R
<.s/�1 h.s/ds

denotes
R
<.s/D� h.s/ds for sufficiently large � ; in the contexts where we use this

notation, the answer will be constant when � is sufficiently large.

2.2. Classical modular forms. As usual H denotes the upper half-plane, i.e.,
fz 2 C W Im.z/ > 0g. It admits the usual action of SL.2;R/ by fractional linear
transformations.

2.3. Number fields and associated notation. LetF be a number field. Through-
out the paper we shall regard F as fixed: that is to say, we allow implicit constants
in�;� to depend on F without explicit statement.

We set F1 D F ˝ R, AF the ring of adeles of F , AF;f the ring of finite
adeles. Thus AF D F1 �AF;f . We will fix once and for all an additive character
eF W AF =F ! C, and denote by eFv the induced additive character of Fv.

For each place v we have a canonical “absolute value” x 7! jxjv on F �v ,
namely, jxjv Dmeas.xS/=meas.S/ for any Haar measure, meas, on F �v , and any
subset S of positive measure.

The same definition defines a character A�F =F
� ! R>0, which we denote

by a 7! jajA, or simply by a 7! jaj if it is clear from context. We denote by A1F
the subgroup of A�F consisting of adeles of norm 1; then the quotient A1F =F

� is
compact. For a finite place v of F , we denote by oFv the maximal compact subring
of the completion Fv , by qv the maximal ideal of oFv , and by qv the cardinality of
the residue field.

We shall generally denote ideals of oF by gothic letters l; q; n, etc. If f is an
integral ideal of oF , we set N.f/ WD joF =fj to be its norm. Moreover, we shall
denote of WD

Q
qjf oq. Here oq denotes the completed ring, not the localized ring,

i.e., of is the inverse limit of the rings oF =f
N .

We denote by d the different of the character eF , i.e. d is a fractional ideal so
that d�1v is, for every finite place v, the largest oFv -submodule of Fv upon which
eF is trivial.
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2.4. Adele groups and their function spaces. Let G be a connected reduc-
tive algebraic group over a number field F , and let Z be its center. Denote by
AF;f the ring of finite adeles, and fix for each finite place v a maximal open
compact subgroup Kv;G �G.Fv/ with the property that Kmax;G WD

Q
v finiteKv;G

is a maximal open compact subgroup of G.AF;f /. Put XG D G.F /nG.AF /,
XG;ad D Z.AF /G.F /nG.AF /. Then XG;ad has finite volume with respect to any
G.AF /-invariant measure.

Let ! W Z.AF /! C� be a unitary character. We define the space C1! .XG/ to
be the space of functions on XG whose stabilizer in Kmax;G has finite index, which
transform under Z.AF / by !, and so that the function g 7!f .xg/ is a C1 function
of g 2 G.F1/, for each x 2 XG. Similarly one defines an L2-space L2!.XG/, or
simply L2 if the central character ! is clear from context, by completing the space
of compactly supported functions in C1! .XG/ with respect to the Hilbert norm

kf k2 WD
�R

XG;ad
jf .g/j2dg

�1=2
.

For  2 C1! .XG/, we denote by Kv; the stabilizer of  in Kv;G, and put

(2.1) K D
Y
v finite

Kv; :

We note that K is, in general, a proper subgroup of the stabilizer of  in Kmax;G.
For  2C1! .XG/, we define the finite set of places Supp. / to be those finite

v for which Kv;G does not fix  , i.e.

(2.2) Supp. / def
D fv WKv;G ¤Kv; g:

It is convenient to introduce some notions of “size” on G.AF /. Let g be the
Lie algebra of G.F1/. It is a finite dimensional real vector space; fix an arbitrary
norm on it. For g1 2G.F1/, we denote by kg1k the operator norm of the adjoint
endomorphism Ad.g�11 / W g! g. If v is a finite place of F and gv 2G.Fv/, then
we set kgvk D ŒKv;GgvKv;G W Kv;G�, i.e. the number of right- Kv;G cosets in
Kv;GgvKv;G. For gf D .gv/v finite 2 G.AF;f / we put kgf k D

Q
v kgvk. Finally,

for gA D .g1; gf / 2G.F1/�G.AF;f /, set kgAk D kg1k � kgf k.
We remark that kg1k; kgf k; kgAk are all invariant by the center of G.

2.5. The groups GD GL.2/ and GD PGL.2/ and some of their subgroups.
We will deal most often with the cases of GD GL.2/ (resp. GD PGL.2/). In that
setting we shall write XGL.2/ (resp. X) for XG.

We will make use of the following algebraic subgroups of GL2, which we
will often also regard as algebraic subgroups of PGL2 in the obvious way:

N D

�
1 �

0 1

�
; B D

�
� �

0 �

�
; AD

�
� 0

0 �

�
; Z D

�
x 0

0 x

�
:
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If R is any ring and x 2R; y 2R�, then we denote6

n.x/D

�
1 x

0 1

�
; n.x/D

�
1 0

x 1

�
; a.y/D

�
y 0

0 1

�
;(2.3)

a0.y/D

�
1 0

0 y

�
; z.y/D

�
y 0

0 y

�
; w D

�
0 1

�1 0

�
;

all elements of GL2.R/.
If v is a place of F and x 2 Fv; y 2 F �v , then we denote by nv.x/ (resp.

av.y/) the element n.x/ (resp. a.y/) considered as an element of GL2.AF / via
the natural inclusion GL2.Fv/ ,! GL2.AF /.

For each place v, we let Kv be the standard maximal compact subgroup of
GL2.Fv/, i.e., Kv is the stabilizer of the norm on F 2v given byq

jxj
2= deg.v/
v Cjyj

2= deg.v/
v

if v is archimedean, where deg.v/ is the degree7 of Fv over R; and max.jxvj; jyvj/
if v is nonarchimedean. Thus, in particular,KvDGL2.oFv / if v is nonarchimedean.
We put Kmax D

Q
v finiteKv. Kv (respectively Kmax) is a maximal compact sub-

group of GL2.Fv/ (respectively GL2.AF;f /), and (by projection) can also be re-
garded as a maximal compact subgroup of PGL2.Fv/ (respectively PGL2.AF;f /).
Similarly Kmax �K1 is a maximal compact subgroup of GL2.AF /, and may also
be regarded as a maximal compact subgroup of PGL2.AF /.

For q a finite prime of F , we denote by $q 2 Fq a uniformizer, and by Œ$q�

the element of A�F that is the image of $q under the natural inclusion F �q ,! A�F .
Let q be a finite prime of F . It will be convenient to define certain open

compact subgroups ofKq. For each eq>0, we defineKŒqeq ��Kq (resp.K0Œqeq ��

Kq) to be the kernel of GL2.oFq/!GL2.oFq=$
eq
q oFq/ (resp. the preimage, under

this map, of the upper triangular matrices). Thus

K0Œq
eq �D

��
a b

c d

�
W a; b; d 2 oFq ; c 2 qeq ; ad � bc 2 o�Fq

�
:

Now let f be a fractional ideal, not necessarily prime, of F . Factorize f DQ
q qeq into prime ideals. We define elements Œf� 2 A�F ; a.Œf�/; n.Œf�/ 2 GL2.AF /

via:

(2.4) Œf�D
Y
qjf

Œ$q�
�eq ; n.Œf�/ WD

Y
qjf

nq

�
$
�eq
q

�
; a.Œf�/D

Y
qjf

aq

�
$
�eq
q

�
:

6In Section 3.1 alone, we will use slightly different notation for a.y/ to accommodate the fact
that we deal with SL2 rather than GL2. We make the relevant notation clear in that section.

7Recall that jxjv , for a complex place v and x 2 Fv , is the square of the usual absolute value
on C!
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Suppose � W A�F =F
�! C� is a character. We define

�.f/D

(
0; � ramified at any place dividing f;Q

qjf �.Œ$q�/
eq ; else.

2.6. Measures. The choice of measure is not especially important, as we are
only interested in upper bounds; thus, so long as we are consistent, the precise
selection does not matter. We choose a “standard” set of measures here; at times in
the text, especially when carrying out equidistribution arguments, it will be more
convenient to use probability measures, and we will indicate when this is the case.

We denote by �X the PGL2.AF /-invariant probability measure on X. We
shall sometimes simply denote it by dx.

Let v be a finite place of F . Unless explicitly stated otherwise, the measures
on GL2.Fv/, PGL2.Fv/, Fv and F �v are the Haar measure which assigns GL2.oFv /
(resp. PGL2.oFv /, oFv , o�Fv ) the total mass 1.

For v archimedean, endow Fv with a multiple of Lebesgue measure cvdx,
where the constants cv are fixed arbitrarily in such a way that the induced product
measure on F1 satisfies vol.F1=oF /D 1; equivalently, the product measure on
AF satisfies vol.AF =F / D 1. In particular, this product measure on AF is self-
dual with respect to eF . We endow F �v with the measure d�x D dx

jxjv
, where dx

is Lebesgue measure.
These choices induce a Haar measure on N.Fv/, by means of the identifica-

tion x 7! n.x/; similarly, the identifications .y; y0/ 7! a.y/a0.y0/ and y 7! z.y/

induce Haar measures on A.Fv/ and Z.Fv/. Equip Kv with the measure of
mass 1, and give GL2.Fv/ the measure arising from the Iwasawa decomposition
N.Fv/�A.Fv/�Kv. Equip PGL2.Fv/ D GL2.Fv/=Z.Fv/ with the “quotient”
measure.

We then take the measures on GL2.AF /;PGL2.AF /;AF ;A�F to be the cor-
responding product measures.

The measure on any discrete group (e.g., PGL2.F /, considered as a subgroup
of PGL2.AF /) will be counting measure.

Usually (indeed, unless otherwise specified) we shall use the PGL2.AF /-
invariant probability measure on XD PGL2.F /nPGL2.AF /. This does not coin-
cide with the quotient measure induced from PGL2.AF /, but they differ by some
constant depending only on F . On the few occasions we shall have occasion to
use the latter measure, we will indicate this.

2.7. Projection onto locally constant functions. For equidistribution questions
it is usually convenient to deal with the constant function and its orthogonal com-
plement separately. Some minor complications arise in our case since the ambient
spaces are not connected. In fact: The space C1.XG/ is a direct limit of func-
tion spaces C1.XG=K/ where K �Kmax;G has finite index. Unless G is simply
connected, the manifolds XG=K need not be connected.
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Of course, to deal with this, one can (if G is semisimple) simply replace the
notion of constant function by locally constant function. However, in the general
case of G reductive, matters are slightly complicated by the necessity of dealing
with central characters.

Since we will only use this definition when G is a product of GL.2/s, we
restrict ourselves to that setting. First suppose that G D GL.2/. We define a
projection P W C1! .XGL.2//! C1! .XGL.2// via

(2.5) Pf .x/D

Z
h2SL2.F /nSL2.AF /

f .hx/dhD
X
�2D!

�.x/

Z
X
f .y/�.y/dy;

where dh is the SL2.AF /-invariant probability measure, dy the GL2.AF /-invariant
probability measure on X, � ranges over characters of A�F =F

� with square !,
�.y/ the function on XGL.2/ defined by g 7! �.det.g//, and the second equality is
easily verified. We note, in particular, that the � sum is finite (any � for which the
corresponding term is nonvanishing must be unramified outside Supp.f /).

Then kPf kL1 � kf kL1 , as is clear from the first equality of (2.5), and P

is a self-adjoint projection with respect to L2, as is clear from the second equality.
We say a function f is totally nondegenerate if Pf D 0.

If GDGL.2/�GL.2/, and !D .!1; !2/ is a character of the center Z.AF /D
A�F �A�F , then we denote by P1 the operator on C1! .XG/ given by

P1f .x1; x2/D

Z
h2SL2.F /nSL2.AF /

f .hx1; x2/dh

D

X
�2D!1

�.x1/

Z
X
f .y; x2/�.y/dy:

We define P2 similarly, interchanging the role of the first and second coordinate.
The operators Pj for j D 1; 2 commute, satisfy kPjf kL1 � kf kL1 and are
commuting self-adjoint projections on L2. We say that a function f is totally
nondegenerate if P1f D P2f D 0.

LEMMA 2.1. Let v be a place of F . The projection P acts by the identity
on the subspace W � L2!.XG/ spanned by one-dimensional representations of
GL2.Fv/ occurring in L2!.XG/.

Similarly, P1 (resp. P2) acts by the identity on the space W1 (resp. W2)
spanned by one-dimensional representations of GL2.Fv/ occurring in L2.X�X/
for the action on the first (resp. second) factor.

Proof. This follows from the spectral decomposition for GL.2/. For instance,
it is known that the space W is precisely the span of functions of the form g 7!

�.det.g//, where � ranges over characters of A�F =F
� satisfying �2 D !. �

2.8. Hecke operators and bounds towards the Ramanujan conjecture. Let l

be a prime ideal of oF and r an integer � 1. Let Fl be the completion of F at the
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prime l. Take the Haar measure on GL2.Fl/ so that it assigns mass 1 to GL2.oFl/.
Define the measure ��lr on GL2.Fl/ to the restriction of Haar measure to the set
GL2.oFl/ �

�
$r

l 0
0 1

�
GL2.oFl/, so that the total mass of ��lr is N.l/r�1.N.l/C 1/.

Moreover, set

(2.6) �lr D
1

N.l/r=2
X
k� r

2

��r�2k; x�lr WD
�lr

k�lrk
;

where k � k denotes total variation. Thus x�lr is a probability measure. Via the
natural inclusion of GL2.Fl/ in GL2.AF;f /, we may regard �lr as a compactly
supported measure on GL2.AF;f /; by abuse of notation, we will not introduce a
different symbol for this measure. If n is an integral ideal of oF , then factorize
nD

Q
i l
ri
i and put �nD

Q
�

l
ri
i

; x�nD
Q
x�

l
ri
i

. Here
Q

is taken to mean convolution
of measures on GL2.AF;f /.

Convolution by �n on L2.X/ corresponds to the nth Hecke operator; in this
normalization the Ramanujan conjecture corresponds to it having eigenvalues � 2
in absolute value.

The adelic measures �n satisfy the usual multiplication laws, appropriately
interpreted: if n and m are ideals, then

(2.7)
Z

PGL2.AF /
h.x/d.�n ?�m/.x/D

X
dj.m;n/

Z
PGL2.AF /

h.x/d�nmd�2.x/;

whenever h is a function on PGL2.AF / that is invariant under PGL2.oFv / for all
vjnm.

Definition 2.1. Let ˛ be a bound towards Ramanujan for GL2 over F , i.e., ˛ is
so that �l acts on any PGL2.oFl/-invariant cuspidal eigenfunction by an eigenvalue
� N.l/˛CN.l/�˛ in absolute value.

Thus ˛ D 0 corresponds to the Ramanujan conjecture, ˛ D 1=2 the trivial
bound. By work of Kim and Kim-Sarnak [22], we can take ˛ D 3=26. For our
applications, any value of ˛ less than 1=4 would suffice.

Note that we shall slightly vary this notation (but in a reasonably compatible
way) in Sections 3.1 and 9.3.1. In those parts, we shall deal with a (not necessarily
arithmetic) quotient �nSL2.R/, and ˛ will denote a number so that L2.�nSL2.R//
does not contain any complementary series with parameter > ˛. (Here the comple-
mentary series is understood to be parametrized by .0; 1=2/). This is compatible
with the above notation; however, e.g., if � were a congruence subgroup, ˛D 3=26
would again be admissible.

2.9. Sobolev-type norms on real and adelic quotients.

2.9.1. General comments. Let M be a real manifold. Recall that the Sobolev
norm on C1.M/ controls, roughly speaking, the Lp-norm of a function together
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with the Lp-norms of certain derivatives. These norms will be tremendously use-
ful throughout the paper to control equidistribution rates. We shall use both the
relatively simple definition when M D �nG and an adelic variant.

First let us remark on the use of Lp-Sobolev norms for p > 2. This is solely
to do with noncompactness. If we were to deal only with compact quotients, then
the L2-Sobolev theory would always suffice. However, in the noncompact case,
the L2-Sobolev norms do not (e.g.) give good bounds on the size of a function
high in a cusp. There are, of course, various ways to rectify this; for example
we could include weights that measure the height into the cusp. We have chosen
instead to use Lp-norms with p > 2, which is technically very simple, but has
some disadvantages (e.g., it does not induce a Hilbert space structure).

Note that we will allow our seminorms and norms to take the value1. Thus
a seminorm on a complex vector space V will be a function from V to R�0[f1g

satisfying

(1) k�vk D j�jkvk, for any v 2 V such that kvk<1;

(2) kv1C v2k � kv1kCkv2k if both kv1k and kv2k are not infinite.

It is a norm if additionally kvkD 0 implies vD 0. Note that giving such a seminorm
on V is equivalent to giving a subspace Vf � V together with a finite-valued
seminorm on Vf . Indeed take Vf Dfv2V W kvk<1g, equipped with the restriction
of k � k.

We remark that we do not require that our norms be complete.

2.9.2. Nonadelic setting. Suppose � �G is a lattice in a connected semisim-
ple Lie group. Fix for all time a basis B for the Lie algebra g of G and a norm k � k
on g. For g 2G, we denote by kgk the operator norm of Ad.g�1/ W g! g, i.e., the
map X 7! g�1Xg.

For f 2 C1.�nG/, and 1� p �1, we put

(2.8) Sp;d D
X

ord.D/�d

kDf .g/kLp.�nG/:

Here D ranges over all monomials in B of order � d , and D acts on f by right
differentiation. (For example, X 2 g acts on f via Xf .g/D d

dt
f .getX /jtD0.)

Changing B only distorts Sp;d by a bounded factor. (That is to say, if S 0
p;d

is the norm obtained by replacing B by another basis, then there are positive reals
c1; c2, possibly depending on d , such that c1Sp;d � S 0p;d � c2Sp;d . )

We will often use the following simple remark: Fix a Riemannian metric
d.�; �/ on G and suppose g 2 G belongs to some fixed compact set. Then, for
f 2 C1.�nG/; x 2 �nG, we have jf .xg/� f .x/j � S1;1.f /d.g; 1/. Indeed,
we may assume that g is close to the identity and write g D exp.X/, with X 2 g;
now apply the mean value theorem to t 7! f .xetX /.

Moreover, the following elementary properties are easily verified (we only
need them in the case p D1).
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LEMMA 2.2. Let f1; f2 2 C1.�nG/ and g 2G. Then

S1;d .f1f2/�d S1;d .f1/S1;d .f2/;(2.9)

S1;d .g �f1/�d kgk
dS1;d .f1/:

We remark that, in the case p D 2, the rule (2.8) also defines a system of
Sobolev norms on any unitary G-representation; the case discussed above corre-
sponds to the unitary representation L2.�nG/.

2.9.3. Adelic Sobolev norms. Let us first describe what the point is intended
to be (evidently there are many ways of implementing it; cf. Remark 2.1). We
would like to put a norm on the adelic function space, suitable for controlling, e.g.,
period integrals. Consider C1! .XG/ in the case of G D SL2, F D Q, ! D 1

as a direct limit of spaces C1.�inSL2.R//, where �i ranges over some class of
congruence subgroups of �0 WD SL2.Z/. We equip each quotient �inSL2.R/ with
the SL2.R/ invariant probability measure. Then, on each space C1.�inSL2.R//
we have the norm Sp;d defined in the previous section. On the other hand, typical
bounds on automorphic forms have an implicit dependence on the “level”, i.e., the
index Œ� W �i �, so one would like to have a norm that increases with the level.
The most naive candidate is, fixing a real number ˇ > 0, to define the “norm” of
f 2 C1.�inSL2.R// to be Œ� W �i �ˇSp;d .f /. This unfortunately does not quite
make sense when we pass to the direct limit: however, we can “force it to make
sense” by considering the maximal norm on the direct limit whose restriction to
each C1.�inSL2.R// is bounded above by Œ� W �i �ˇSp;d .f /. This will suffice
for our purposes.

Let us formalize these ideas. In what follows we return to the setting of G
a reductive group over F . The adelic Sobolev norms will be a family of norms
on C1! .XG/ indexed by a triple .p; d; ˇ/. The d and ˇ indicate, approximately
speaking, how stringently one should “penalize” rapid variation at the infinite and
finite places respectively.

Let p � 1; k 2 N; ˇ � 0. Fix a basis B D fXig for the real Lie group
Lie.G.F1//. Recalling the definition of K from (2.1), we define the pre-Sobolev
functions PSp;d;ˇ on C1! .XG/ via:

PSp;d;ˇ . /D ŒKmax;G WK �
ˇ

X
ord.D/�d

kD kLp.XG;ad/(2.10)

D

Y
v finite

ŒKv;G WKv; �
ˇ

X
ord.D/�d

kD kLp.XG;ad/;

where the sum ranges over D that are monomials in B of order � d .
The function PSp;d;ˇ does not satisfy the triangle inequality. We define the

.p; d; ˇ/-Sobolev norm Sp;d;ˇ to be the maximal seminorm on C1! .XG/ satisfying
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Sp;d;ˇ . /� PSp;d;ˇ . /. Explicitly,

(2.11) Sp;d;ˇ . /D inff
nX
iD1

PSp;d;ˇ . j / W

nX
iD1

 j D  ;  j 2 C
1
! .XG/g:

In fact, it is clear that the right-hand side of (2.11) defines a seminorm that is
dominated by PSp;d;ˇ (take the collection f ig to consist of f g alone); moreover,
it is evidently maximal in the class of such seminorms. Finally, as PSp;d;ˇ . /�
k kLp , the Sp;d;ˇ are in fact norms on C1! .XG/.

It will often be useful to omit the argument ˇ and set it to a “default” value
of 1=p. We therefore define Sp;d WD Sp;d;1=p, for p ¤ 0, and S1;d WD S1;d;0.

Notational convention. We will very often have cause to bound linear func-
tionals L on C1! .XG/ by Sobolev norms. In writing statements of the form
jL.f /j � Sp;d;ˇ .f /, we will always allow the implicit constant to depend on
p; d and ˇ without explicitly saying so.

2.10. Adelic Sobolev norms — a slight generalization. The notation of this
section will only be required in Section 7. We recommend it be omitted at a first
reading.

In the discussion at the start of Section 2.9.3, we did not address what class of
subgroups �i to consider (should we take all finite index subgroups of a fixed �0 or
some subclass?). Implicitly, such a choice was made in defining the Sobolev norms
of the previous section. The Sobolev norms introduced in the previous section are
good for most of our purposes. However, roughly speaking, they have the following
defect: they only measure the index of a stabilizer of a function f 2 C1! .XG/.

That this definition might lead to some peculiar results can be already seen in
the case GD PGL.2/, F DQ. Let �p be the character of A�

Q
=Q� that corresponds

to the quadratic Dirichlet character of Q with conductor p, a prime number. Then
the function g 7! �p.det.g// descends to a function f on X, and it is easy to check
that ŒKmax WKf �D 2, for any p. Thus the index of this stabilizer does not reflect the
conductor of the underlying representation (which, by any reasonable definition of
conductor, should grow as p increases). In this section we shall introduce a slight
modification of the definitions which avoids this problem. (This problem would
not occur for SL.2/).

This is a purely technical matter, and it seems there is much scope for giv-
ing better and more natural definitions. We restrict ourselves to the case G D
GL.n/. For a finite place q and m � 0, we put KŒqm� def

D ker.GL.n; oFq/ !

GL.n; oFq=$
m
q oFq/, where$q is a uniformizer in Fq. Now, for  2C1! .XG/, put

K�q; to be the largest subgroup KŒqm� which stabilizes  , and put K� D
Q

qK
�
q; .

We define the ?-pre-Sobolev norm PS�
p;d;ˇ

by the rule

PS?p;d;ˇ . /D ŒKmax;G WK
�
 �
ˇ

X
ord.D/�d

kD kLp.XG;ad/
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and we define the ?-Sobolev norm S�
p;d;ˇ

to be the maximal seminorm dominated
by PS�

p;d;ˇ
. Clearly, S�

p;d;ˇ
� Sp;d;ˇ .

The eventual purpose of this is that S�
p;d;ˇ

(unlike Sp;d;ˇ ) will never be “too
small” on an automorphic representation whose conductor is large. This can be
quantified, although we do not do so in the present document.

Remark 2.1. Evidently the definitions of this section and the previous are not
the only “sensible” way of defining a notion of adelic Sobolev norms. The results
of this paper do not require any more sophisticated definition, although this would
certainly be of help in optimizing the results.

However, it would be interesting to impose a system of Sobolev-type norms
in a less ad hoc fashion. Moreover, it would be pleasant if the system of norms had
nice interpolation properties (this often is very helpful for getting sharp results).
For example, it would be nice if as one varied ˇ one got a family of interpolation
spaces.

We remark on a simple way of defining Hilbertian norms which seems (more)
appropriate to the adelic context. Let KŒqm� be as above, and let Eqm be the
averaging projection onto the KŒqm�-fixed vectors; i.e. Eqm.v/D

R
k2KŒqm� k �vdk,

where the measure is the Haar probability measure. Then eqm WDEqm �Eqm�1 is a
projection. If fD

Q
i q
mi
i is an arbitrary integral ideal, put ef WD

Q
i eq

mi
i

. Now put
P.s/D

P
f efN.f/

s . Then f 7!
P

ord.D/�d kD �P.s/ �f kL2 defines a Hilbert norm
which seems to have reasonably pleasant formal properties. In fact it is majorized
(up to constants) by a norm of the type described above,.

J. Bernstein has a more canonical notion of norms on representation spaces of
p-adic groups, and he has informed me that these norms have adelic analogues. I
do not know the relation. The norms arising from his constructions are Hilbertian.

2.11. Some properties and uses of the Sobolev norms. We briefly summarize
certain results that will be used in the text. Detailed proofs are given in Section 8.

For general G; ! we have:

Sp;d;ˇ .F1F2/�d S2p;d;ˇ .F1/S2p;d;ˇ .F2/;(2.12)

Sp;d;ˇ .g �F /�kg1k
d
kgf k

ˇSp;d;ˇ .F /:(2.13)

Equation (2.12), proved in Lemma 8.1, and (2.13), proved in Lemma 8.2, give
some basic stability properties of Sobolev norms.

Now we specialize to some results for GL.2/ and PGL.2/. Let F 2 C1.X�
X/, let q be a prime ideal of oF , and suppose F is invariant by PGL2.oFq/ �

PGL2.oFq/. Then for p > 2; d � 1:

(2.14)
ˇ̌̌ Z

X
F.x; xa.Œq�//dx�

X
�2D1

�.Œq�/

Z
X
F.x; y/�.x/�.y/d�X.x/d�X.y/

ˇ̌̌
�� N.q/

2˛�1
p
C�Sp;d .F /:
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Equation (2.14), proved in Lemma 9.9, quantifies Hecke equidistribution. To
understand the relation, take F to be a pure tensor: F.x; y/D f1.x/f2.y/. Then
(2.14) in effect bounds the inner product hTqf1; f2i, where Tq is the Hecke operator
corresponding to q.

2.12. Cusp forms, L-functions and the analytic conductor. As a general re-
mark on notation — and a mild abuse of notation — by cuspidal representation we
shall always mean unitary cuspidal representation. This is automatic for PGL.2/
but not for GL.2/.

2.12.1. L-functions. Let � D˝v�v be an automorphic cuspidal representa-
tion of GL.n/ over F . We denote by Lv.s; �v/ the local L-factor of the repre-
sentation �v; when it causes no confusion, we will sometimes abbreviate this to
L.s; �v/.

We writeL.s; �/ WD
Q
v finiteLv.s; �v/ for the (finite part of) the globalL-func-

tion attached to � , and ƒ.s; �/ WD
Q
v Lv.s; �v/ for the (completed) L-function

attached to � .

2.12.2. The analytic conductor of Iwaniec-Sarnak. We recall the definition
in the context where it will arise. Let � D ˝�v be a cuspidal representation of
GL.n/ over F .

For each finite place v we denote by Condv.�/ the conductor, in the sense of
Jacquet, Piatetski-Shapiro, and Shalika, of �v; thus Condv.�/D q

mv
v , where mv

is the smallest nonnegative integer such that �v possesses a fixed vector under the
subgroup of GLn.oFv / consisting of matrices whose bottom row is congruent to
.0; 0; : : : ; 0; 1/ modulo $m

v .
For each infinite place v, let �v.s/D ��s=2�.s=2/ or .2�/�s�.s/ according

to whether v is real or complex respectively, and put deg.v/D ŒFv WR�. Let �j;v 2C

satisfy L.s; �v/ D
Q
�v.s C �j;v/, and put Condv.�/ D

Q
v.1 C j�j;vj/

deg.v/.
We then put Cond.�/ D

Q
v Condv.�/ (this is within a constant factor of the

Iwaniec-Sarnak definition). Moreover, we put Cond1.�/D
Q
v infinite Condv.�/

and Condf .�/D
Q
v finite Condv.�/ (the “infinite” and “finite” parts of the conduc-

tor).
We will occasionally refer to the “finite conductor” of � as the ideal

Q
v qmvv ,

where qv is the prime ideal corresponding to the finite place v; then Condf .�/ is
the norm of this ideal. Hopefully the distinction between the two usages will be
clear from context.

Remark 2.2 (Explication for GL.1/ in the archimedean case). Let us be slightly
more explicit in the case of a unitary character ! of A�F =F

�. If v is real, then
there is t 2 R such that !v.x/ D xit for x > 0; then Condv.!/ � .1C jt j/. If
v is complex, then there is t 2 R; N 2 Z such that !v.rei� / D r iteiN� ; then
Condv.!/� .1Cjt jCN/2.
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We can heuristically summarize this: in the real case, ! is approximately
constant in a neighborhood of the identity of size Condv.!/�1; in the complex,
case ! is approximately constant in a disc around the identity of area Condv.!/�1.

2.12.3. Cusp forms. If � is a cuspidal representation of GL2.AF / or PGL2.AF /,
it will be convenient to denote by �1 the archimedean representation (of GL2.F1/
or PGL2.F1/) that corresponds to � .

By the dual 4GL2.F1/ or 1PGL2.F1/, we shall mean the space of irreducible,
admissible representations. We say a subset of this dual is bounded if the corre-
sponding set of Langlands parameters is bounded. We may define, in an evident
way, the conductor Cond.�1/ for �1 24GL2.F1/; with this definition, a subset
is bounded exactly when Cond takes bounded values on it.

In a similar fashion, we define the notion of a bounded subset of 3GL2.Fv/ or
4PGL2.Fv/ for any place v, where, again 3GL2.Fv/ denotes the set of irreducible,
admissible representations.

3. Unipotent periods

In this section, we systematically use the (nonadelic) Sobolev norms S1;d
on homogeneous spaces �nG. In rough terms, S1;d controls the L1-norm of the
first d derivatives (see �2.9.2). Note in particular that S1;0 is just the L1-norm.

3.1. Equidistribution of sparse subsets of horocycles. Let � � SL2.R/ be a
cocompact lattice. For this section alone, we will use mildly different notation to
that of Section 2.5, to accommodate the fact we deal with SL2 and not with PGL2.
For x 2 R, put

(3.1) n.x/D

�
1 x

0 1

�
; a.x/D

�
x1=2 0

0 x�1=2

�
; Nn.x/D

�
1 0

x 1

�
:

We denote by C.�nSL2.R// (resp. C1.�nSL2.R//) the space of continuous
(resp. smooth) functions on the compact real manifold �nSL2.R/. We denote by
dg the measure on SL2.R/ that descends to a probability measure on the quotient
�nSL2.R/. Finally, we denote by H the usual upper half-plane fz W =.z/ > 0g with
the standard action of SL2.R/.

THEOREM 3.1. There exists max>0, depending on � , such that fx0n.j 1C / W
j 2 Ng is equidistributed, for any x0 2 �nSL2.R/ and any 0�  < max. In other
words, for any f 2 C.�nSL2.R//,

lim
N!1

PN
jD1 f .x0n.j

1C //

N
D

Z
�nSL2.R/

f .g/dg:

If �1 is the smallest nonzero eigenvalue of the Laplacian on �nH, put

˛ D

(
0; �1 � 1=4p
1=4��1; else.

Then we can take max D
.1�2˛/2

16.3�2˛/
.
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This result represents (extremely modest) progress towards a conjecture of
N. Shah, which asserts that the statement should remain valid for any  > 0. The
method is not restricted to sequences of the specific type in Theorem 3.1, and we
have also not optimized the maximal value for max. Nevertheless the method is
fundamentally limited. As it presently stands, it does not seem capable of achieving
even  D 1.

The dependence of max on � can likely be removed, but this seems to require
using further input (cf. last paragraph of �1.3.4).

The proof follows the line of Section 1.3.1, with G1 D SL2.R/, G2 D fn.x/ W
x 2 Rg. The Yi are not quite closed G2-orbits, but rather long pieces of general
G2-orbits. The basis f i;j g for Yi will correspond to additive characters of G2ŠR.

Let f 2 C1.�nSL2.R//, and let ˛ be as in the statement of Theorem 3.1.
Let T � 1. Let  be a fixed nontrivial character of the additive group of R. Let g
be a fixed smooth function of compact support on R satisfying

R1
�1

g.x/dx D 1.
We denote by h�; �iL2.�nG/ the inner product in the Hilbert space L2.�nG/.

We set:

(3.2) �T .f /D
1

T

Z T

0

f .x0n.t//dt; �T; .f /D
1

T

Z T

0

 .t/f .x0n.t//dt:

Note first that the measures �T are equidistributed as T !1, in the following
quantitative sense: for f 2 C1.�nSL2.R//,

(3.3)
ˇ̌̌̌
�T .f /�

Z
�nSL2.R/

f .g/dg

ˇ̌̌̌
� T ��1S1;1.f /;

for any �1 <
1=2�˛
2

. This is proven in Lemma 9.5, without taking any pains to
optimize the exponent. (We prove it to keep the paper self-contained. However,
we emphasize that neither result nor proof is new; see [31] and [33]. A precise
analysis of the equidistribution of long horocycles is carried out in [14].)

LEMMA 3.1. Suppose
R
�nSL2.R/

f .g/dg D 0. Then:

(3.4) j�T; .f /j � T �bS1;1.f /;

whenever b < .1�2˛/2

8.3�2˛/
and the implicit constant is independent of  .

Note that if  is wildly oscillatory, cancellation in �T; can be proved directly
by integration by parts; on the other hand, if  is almost constant, the cancellation
in �T; arises from the equidistribution of the horocycle x0G2. It is therefore the
intermediate case in which (3.4) is of interest.

Proof. Let H � 1, and let �H be the measure on N.R/ defined by �H .g/D
1
H

RH
0  .x/g.n.x//dx, for g a function on N.R/.
For f 2 C1.�nG/, we denote by f ? �H the right convolution of f by �H .

Then it is easy to verify that
ˇ̌
�T; .f /��T; .f ? �H /

ˇ̌
�

H
T
S1;0.f /: Here

?�H denotes right convolution by �H . On the other hand, by Cauchy-Schwarz,
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j�T; .f ?�H /j
2 � �T .jf ?�H j

2/. Thus, expanding jf ?�H j2 and applying (3.3),
we conclude

(3.5) j�T; .f /j �
H

T
S1;0.f /

C

�
1

H 2

Z
.h1;h2/2Œ0;H�2

ˇ̌̌
�T .n.h1/f �n.h2/f /

ˇ̌̌
dh1dh2

�1=2
�
H

T
S1;0.f /C

�
1

H 2

Z
.h1;h2/2Œ0;H�2

ˇ̌
hn.h1� h2/f; f iL2.�nG/

ˇ̌
dh1dh2

�1=2
C

 
T ��1 sup

.h1;h2/2Œ0;H�2
S1;1.n.h1/f �n.h2/f /

!1=2
:

Utilizing bounds towards matrix coefficients — see Section 9.1.2, especially (9.7)
— and basic properties of Sobolev norms (see8 Lemma 2.2), we note:

hn.h/f; f i �� .1Cjhj/
2˛�1C�S1;1.f /

2;(3.6)

jS1;1.n.h1/f �n.h2/f /j � .1Cjh1jC jh2j/
2S1;1.f /

2:

Thus, j�T; .f /j ��

�
H
T
CH˛�1=2C� C T ��1=2H

�
S1;1.f /: Choose H so that

H˛�1=2 DHT ��1=2 to obtain the claimed result. �

Proof of Theorem 3.1. Given Lemma 3.1, the theorem follows quite readily
by Fourier-expanding the measure on R that is a sum of point masses at j  , for
j 2 N. The argument that follows formalizes a minor variant of this argument (we
first consider instead a sum of point masses along arithmetic progressions which
approximate fj  W j 2 Ng).

Let x0 2 �nSL2.R/, f 2 C1.�nSL2.R//. We first claim that, if b is as in
the previous lemma, f so that

R
�nSL2.R/

f .g/dg D 0, and K � 1, then

(3.7)

P
0�j<K1=b�1 f .x0n.Kj //

K1=b�1
! 0;

as K !1. In other words, K1=b�1 points, distributed along a horocycle with
spacing K, become equidistributed.

This follows from Lemma 3.1: put gı.x/Dmax.ı�2.ı� jxj/; 0/, a function
on R. For � 2 R, write a� D K�1

R
R

exp.�2�iK�1�t/gı.t/dt . Then we haveP
j2Z gı.t CKj/D

P
k2Z exp.2�iK�1kt/ak . Moreover, a simple computation

shows that
P
k2Z jakj � ı�1.

8Lemma 2.2 would actually give the exponent .1Cjh1jC jh2j/4 in the latter inequality, but it is
easy to see directly the stronger result.
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Choose " > 0 so that b C " still satisfies the inequality of Lemma 3.1. By
Lemma 3.1,
(3.8)ˇ̌̌̌ Z T

tD0

dt
�X
j2Z

gı.t CKj/
�
f .x0n.t//

ˇ̌̌̌
�f T

1�b�"
X
k

jakj � T 1�b�"ı�1:

Now, gı has integral 1 and is supported in a ı-neighborhood of 0; in particular,
the left-hand side of (3.8) differs from

P
j2Z;0�Kj�T f .x0n.Kj // by an error that

is�f .1CTK�1ı/. Thusˇ̌̌̌ X
j2Z;0�Kj�T

f .x0n.Kj //

ˇ̌̌̌
�f .1CTK

�1ıCT 1�b�"ı�1/

from which (3.7) readily follows.
We now deduce the theorem from (3.7). Let T0 2 N be large. Then, for t

small, we have .T0C t /1C D T
1C
0 C .1C /T


0 t CO.t

2T
�1
0 /. In particular,

.T0C t /
1C is well-approximated by the linear function T 1C0 C .1C /T


0 t in

the range where jt j � T
1�
2

0 .
The claim of Theorem 3.1 follows from (3.7) as long as 1�

2
> 1=b � 1; in

particular, any  < b=2 will do. �

3.2. Fourier coefficients of automorphic forms. In the notation of Section 1,
if we take for Yi the closed orbits of a unipotent group, the resulting periods are
so-called “Fourier coefficients of automorphic forms.” We shall give a general
nontrivial bound in that context. (The word “nontrivial” must be interpreted with
care; see the discussion at the end of this section.) Our methods are restricted to
the case of horospherical unipotent subgroups.

We have made no effort to optimize the exponents of the results, nor even
to state a result of maximal generality. In fact, one can considerably increase the
scope of Theorem 3.2, since we deal in the present section only with closed orbits
of horospherical subgroups, one can profitably apply spectral theory. We do not
carry this out, instead using [23] to give equidistribution statements in a fairly soft
fashion.

Let G be a connected semisimple real Lie group, � � G a lattice, K � G
the maximal compact subgroup, g the Lie algebra of G, and H 2 g a semisimple
element. Fix a norm k � k on the real vector space g. Let exp W g ! G be the
exponential map. Fix a Haar measure on G so that �nG has volume 1. Let u be
the sum of all negative root spaces for H and let U D exp.u/�G. Let x0 2 �nG
be so that x0U is compact. Let xt D x0 exp.tH/, and let �t be the stabilizer of xt
in U . We denote by h�; �iL2.�nG/ the inner product in the Hilbert space L2.�nG/.

We shall analyze periods of a fixed function along xtU as t varies. The proofs
follow Section 1.3.1 with G1 DG;G2 D U , Yi D xtU , and  i;j corresponding to
characters of U .
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Let T > 0 and let  be any character of U trivial on �T . Recall that �T is
defined to be exp.�TH/�0 exp.TH/. We define �T ; �T; in a closely analogous
fashion to (3.2):

(3.9) �T .f /D

R
�T nU

f .xT u/du

vol.�T nU/
; �T; .f /D

R
�T nU

f .xT u/ .u/du

vol.�T nU/
:

Let f; g 2 C1.�nG/. Let E 2 u have unit length with respect to the fixed
norm k � k on g. It is proven by Kleinbock-Margulis in [23] — see also Lemmas
9.6 and 9.7 — that there are �1; �2 > 0 such thatˇ̌̌̌

hexp.sE/ �f; giL2.�nG/�
Z
�nG

f

Z
�nG

g

ˇ̌̌̌
(3.10)

� .1Cjsj/��1S1;dim.K/.f /S1;dim.K/.g/;

j�T .f /�

Z
�nG

f j � e��2T S1;dim.K/.f /:(3.11)

Equations (3.10) and (3.11) assert, respectively, quantitative mixing of the flow
generated by U on �nG, and the equidistribution of the orbit xTU as T !1.
We may assume that �1 < 1 (since making �1 smaller does not change the truth of
(3.10)). This will ease the notation in the proof of the theorem.

THEOREM 3.2. There exists �3 > 0 such that, for any f 2 C1.�nG/ satisfy-
ing

R
�nG f D 0, we have:

(3.12) j�T; .f /j � exp.�T �3/S1;dim.K/.f /

for all T � 0, and for all characters  of U trivial on �T .
Indeed, if o is the order of the polynomial map R! End.g/ defined by s 7!

Ad.exp.sH//, then any �3 < �1�2
2.2o dim.K/C�1/

is admissible, �1;2 being as in (3.10)
and (3.11).

The relevance to this to “Fourier coefficients” in the classical sense may not
be immediately clear; after the proof, we give the example of SL2.R/ to illustrate.

Also, observe that the estimate (3.12) is uniform in  . In fact, just as in
Lemma 3.1, the case when  is constant amounts to (3.11), whereas the case
where  is highly oscillatory could be handled by integration by parts. It is, again,
the intermediate case where (3.12) has content.

Proof. We first remark that, other than being in a slightly more general setting,
the proof is almost exactly the same as the proof of Lemma 3.1.

The signed measure �T; satisfies �T; .u �f /D  .u/�T; .f /, for u 2 U .
Take E 2 u of unit length with respect to the norm k � k on g. Fix H � 1. Let

� be the measure on U defined via the rule

�.h/D
1

H

Z H

sD0

 .exp.sE//h.exp.sE//ds;
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for h any continuous compactly supported function on U . Then �T; .f / D
�T; .f ? �/; thus:

j�T; .f /j
2
D j�T; .f ? �/j

2
� �T .jf ? � j

2/(3.13)

�

Z
�nG

jf ? � j2C e��2T S1;dim.K/.jf ? � j
2/

�

Z
�nG

jf ? � j2CH 2o dim.K/ exp.��2T /S1;dim.K/.f /
2;

where we have applied Cauchy-Schwarz followed by (3.11), noting that by Lemma
2.2, we have that

S1;dim.K/.jf ? � j
2/� S1;dim.K/.f ? �/

2
�H 2o dim.K/S1;dim.K/.f /

2:

Here o is chosen as in the statement of the theorem.
By (3.10), we see that

(3.14)
Z
�nG

jf ? � j2�

�
1

H

Z H

0

.1Cjt j/��1dt

�
S1;dim.K/.f /

2

�H��1S1;dim.K/.f /
2:

Indeed, this follows simply by expanding the leftmost expression. Thus

j�T; .f /j
2
� .H��1 CH 2o dim.K/ exp.��2T //S1;dim.K/.f /

2:

We choose H so that H 2o dim.K/C�1 D exp.�2T / to conclude. �

Remark 3.1. We now explain, when we specialize G D SL2.R/, why this
recovers Sarnak’s result [37], which was the first improvement of the Hecke bound
for nonarithmetic groups. Take H D

�
�1 0
0 1

�
2 sl2, so that U D

�
1 �
0 1

�
. Let � �G

be a nonuniform lattice so that � \U D
˚�
1 n
0 1

�
; n 2 Z

	
, and take x0 D

�
1 0
0 1

�
. Let

f .xC iy/D
P
n¤0 an

p
yKi�.2�ny/e2�inx be a Maass cusp form of eigenvalue

1=4C �2 on �nH, where H denotes the upper half-plane; it lifts to a function on
�nSL2.R/, viz. g 7! f .g:i/.

Then the theorem implies (in concrete language) that there exists ı > 0 such
that, for any y � 1 and any n 2 Z,

(3.15)
Z
0�x�1

f .xC iy/e.nx/dx� yı :

Taking y� n�1 in (3.15), one easily deduces that the Fourier coefficients an satisfy
the “nontrivial” bound janj � n1=2�ı .

Remark 3.2. The bound Theorem 3.2 is nontrivial in that it improves, as t!1
on the trivial bound: ˇ̌̌̌

ˇ
R
�tnU

f .xu/ .u/du

vol.�tnU/

ˇ̌̌̌
ˇ�f 1;

which follows from Cauchy-Schwarz.
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However, if there is another interpretation for the Fourier coefficients, it is not
always the case that Theorem 3.2 improves on “trivial” bounds arising from that
interpretation.

For instance, Fourier coefficients of cusp forms on GLn admit a spectral inter-
pretation, that is to say, they are connected to the eigenvalues of Hecke operators.
In that case, Theorem 3.2 does not give anything even approaching the bounds of
Jacquet-Piatetski-Shalika. Another example is when G DfSL2.R/, and one takes
for f the Shimura lift of a cusp form of integral weight. In that case the (absolute
values of the squares of) square-free Fourier coefficients of f are given by special
values of a twisted L-function; but the estimate above does not even recover the
convexity bound (in fact, the method as indicated cannot recover this bound, even
under optimal assumptions.)

It seems as though, in these cases, there is extra cancellation in the unipotent
integrals for subtle arithmetic reasons. The crude methods indicated above do not
detect this.

Remark 3.3. We remark that, in the proof just given, the constant �3 depends
on the spectral gap for �nG. This dependence can very likely be removed in many
cases, including the case of G D SL2.R/, but we do not carry this out; again, cf.
the last paragraph of Section 1.3.4. In the higher rank case, if G has property (T),
one has in any case a uniform spectral gap and this point becomes irrelevant.

It seems worthwhile to remark that, whereas the proof above is clearly not
unrelated to that of Sarnak [37], it does not require any information on the decay
of triple products (in particular, the deep “exponential decay” results proved by
Sarnak and Bernstein-Reznikov).

We also remark that the proof indicated above, although it can be optimized
in various ways, probably does not lead to as good an exponent as the work of
Good [16], and the later refinement of Sarnak’s result due to Bernstein-Reznikov
[1]. Its advantage lies, rather, in its robustness and general applicability.

4. Semisimple periods: triple products in the level aspect
In this section, we will give bounds for the triple product period on PGL2 over

a number field F . We will use the notation of Section 2; in particular, AF is the
adele ring of F and XD PGL2.F /nPGL2.AF /.

In Section 4.1, we will give a special case of the triple product bound (Propo-
sition 4.1) which does not require Sobolev norms to state. For some applications
we will require a slight generalization, which will require the Sobolev norms of
Section 2.9.3. This will be carried out in Section 4.2 (see Proposition 4.2).

4.1. Period bound for triple products. We now give a period bound for triple
products on PGL2. Although it is unfortunately somewhat disguised in the adelic
language, the situation and method corresponds to that of Section 1.3.1 with G1 D
PGL2.FS /� PGL2.FS /, G2 D PGL2.FS / embedded diagonally. Here S is a set
of places of F containing all infinite places, and FS D

Q
v2S Fv.
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For 1 � p � 1 we will write Lp for Lp.X/. Thus, e.g., kf1kL4 denotes�R
X jf1.x/j

4dx
�1=4.

PROPOSITION 4.1 (“Subconvexity for the triple product period”). Let � be
an automorphic cuspidal representation of PGL2.AF / with prime finite conduc-
tor p. Let f1; f2 2 C1.X/ be totally nondegenerate9 and such that f1; f2 are
PGL2.oFp/-invariant. Let ' 2 � and suppose10 that there exists b 2 R such that11

(4.1)
Y

q2Supp.'/[Supp.f1/[Supp.f2/

N.q/� N.p/b:

Put I.'/D
R

X f1.g/f2.ga.Œp�//'.g/dg; where a.Œp�/ is as in (2.4) and dg is the
PGL2.AF /-invariant probability measure. Then

(4.2) jI.'/j �b;�;F kf1kL4kf2kL4k'kL2N.p/��
.1�4˛/.1�2˛/
4.3�4˛/ :

We refer to Proposition 4.1 as subconvexity for the triple product period; cf.
first assertion of Theorem 5.1. We note that, with ˛ D 3=26 (Kim’s bound) we
have .1�4˛/.1�2˛/

4.3�4˛/
> 1=26. As we will see, Proposition 4.1 is a very strong result

that implies many subconvexity results on PGL.2/.
First let us explain the content of Proposition 4.1 in a classical setting, and

how it can be regarded as the type of period bound discussed in the introduction.
Suppose F DQ; let p � 1 and let

�0.p/D
n�
a b

c d

�
2 GL2.Z/ W pjc

o
;

and put Y.p/D�0.p/nPGL2.R/. Then there is an embedding Y.p/!Y.1/�Y.1/

which corresponds to the graph of the pth Hecke correspondence on Y.1/; the
image is a certain closed orbit of the diagonally embedded copy of PGL2.R/. More
precisely, this embedding is given by �0.p/g 7!

�
�0.1/g; �0.1/

�
p 0
0 1

�
g
�
, and the

image of Y.p/ projects to each factor Y.1/ with degree pC 1.
Let f1; f2 be fixed functions on Y.1/ and ' a Maass form on Y0.p/. Then the

function f1�f2 W .x1; x2/ 7!f1.x1/f2.x2/ is a function on Y.1/�Y.1/, and we can
construct its restriction f1 � f2jY.p/ by means of the embedding indicated above.
Then, translating from adelic to classical, one finds that (4.2) furnishes precisely
an estimate for

R
Y.p/.f1 � f2/jY.p/'. When we vary p; ' and hold .f1; f2/ fixed,

such an estimate falls precisely into the pattern described in the introduction: we are
computing the periods of the fixed function f1 � f2 along the varying sequence of

9See Section 2.7; equivalent to “orthogonal to locally constant functions” in this case.
10Recall that a finite place v belongs to the support of f 2 C1.X/ exactly when PGL2.oFv /

does not fix f .
11This assumption (4.1) is purely technical and the reader may safely assume that ' is spherical

at all places away from p and f1; f2 are everywhere spherical without losing the gist of the argument.
It is not used in the present document, but will probably be of use in establishing polynomial depen-
dence of subconvex bounds. (4.1) ensures, among other things, that there are many places where all
of f1; f2; ' are unramified, so that we can use the Hecke operators at those places.
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sets Y.p/. The fact that the Y.p/ become equidistributed in Y.1/�Y.1/ is precisely
equivalent to the equidistribution of p-Hecke orbits on Y.1/. Moreover, the key
property of ' that is used is the fact that ' is an eigenfunction of many Hecke
operators; this is used to construct the measure � , in the notation of Section 1.3.

Prior to beginning the proof, we make some comments about applications and
generalizations; for details, we refer to Section 5. The implicit constant of (4.2) is
independent of f1, f2. Taking f1; f2 to be a pair of cusp forms, Proposition 4.1
implies (conditional on some computations of p-adic integrals that we state as
Hypothesis 11.1) subconvexity for certain triple product L-functions. Similarly,
taking f1; f2 to be a cusp form and an Eisenstein series, resp. a pair of Eisenstein
series, Proposition 4.1 implies subconvexity for Rankin-Selberg convolutions and
standard L-functions.

The latter applications are rather delicate because Eisenstein series are not
in L4. To get around this we will eventually replace the Eisenstein series by an
appropriate wave-packet (cf. proof of Theorem 5.1).

Proof. Clearly we may assume that k'kL2 Dkf1kL4 Dkf2kL4 D 1. It follows
that kf1kL2 � 1 and kf2kL2 � 1.

We shall moreover assume, for simplicity, that ' is spherical at all finite places
v ¤ p. The reader may verify that the proof carries through to the more general
situation of Proposition 4.1 without modification.

Put q D N.p/. Let � be a (signed real) measure on PGL2.AF / such that
' ? L� D �', for some � 2 C. We shall assume that supp.�/ commutes with
PGL2.Fp/; we will choose � later. Set further‰.x/Df1.x/f2.xa.Œp�//2C1.X/.
Then

(4.3) � �I.'/D

Z
X
‰.x/ � .' ? L�/.x/dxD

Z
X
.‰?�/.x/ �'.x/dx �

�Z
X
j‰ ?� j2dx

�1=2
D

�Z
X

Z
.g;g0/2PGL2.AF /2

.g �‰/ .g0 �‰/d�.g/d�.g0/dx

�1=2
D

�Z
X

Z
.g;g0/2PGL2.AF /2

f1.xg/f2.xga.Œp�//f1.xg0/f2.xg0a.Œp�//d�.g/d�.g
0/dx

�1=2
D

�Z
X

Z
.g;g0/2PGL2.AF /2

f1.xg/f2.xa.Œp�/g/f1.xg0/f2.xa.Œp�/g0/d�.g/d�.g
0/dx

�1=2
:

In the last step, we have used the fact that PGL2.Fp/, and thus a.Œp�/, commutes
with supp.�/.

For any two functions h1; h2 on X, both right invariant by PGL2.oFp/, the
assumed bound on Ramanujan (Definition 2.1) implies:

(4.4)
ˇ̌̌̌ Z

X
h1.x/h2.xa.Œp�//dx�

X
�2D1

�.Œp�/

Z
X
h1.x/�.x/dx

Z
X
h2.x/�.x/dx

ˇ̌̌̌
� 2q˛�1=2jjh1jjL2 jjh2jjL2 :
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Here � ranges over all characters of A�F =F
� such that �2 D 1, and �.x/

denotes the function g 7! �.det.g// on PGL2.F /nPGL2.AF /. Indeed, to see (4.4),
we note that the quantity inside the absolute value on the left-hand side of (4.4)
equals hh1 � Ph1; a.Œp�/ � .h2 � Ph2/iL2 , where P is as in Section 2.7 (in this
case, the orthogonal projection onto the locally constant functions). But the L2-
orthogonal projection Id�P kills all one-dimensional PGL2.Fp/ representations,
from which the result follows easily.

The functions hj .x/ D fj .xg/fj .xg0/ .j D 1; 2/ are PGL2.oFp/-invariant
for g; g0 2 supp.�/ since supp.�/ commutes with PGL2.Fp/ and p … Supp.f1/[
Supp.f2/. Moreover, khj kL2 � kfj k

2
L4

. Apply (4.4) to these hj , and substitute in
(4.3). One obtains:

(4.5) j� � I.'/j2� q˛�1=2k�k2

C

X
�2D1

Z
.g;g 0/

jhg�1g0 �f1; f1˝�ij�jhg
�1g0 �f2; f2˝�ijd j� j.g/d j� j.g

0/;

where j� j is the total variation measure associated to � , k�k D j� j.X/ is the total
variation of � , fi˝� is the function x 7! fi .x/�.det.x//, and brackets h�; �i denote
inner product in the Hilbert space L2.X/; we will suppress the reference to L2.X/
here and in the rest of the argument.

Put � .2/ D {j� j? j� j. We may rewrite the previous result as

(4.6) j�j2jI.'/j2� q˛�1=2k�k2

C

�Z
g

X
�2D1

jhg �f1; f1˝�ij � jhg �f2; f2˝�ijd�
.2/.g/

�
:

We shall take � in (4.6) to be a linear combination of Hecke operators. We
follow the notation introduced in Section 2.8. For n … Supp.'/, we denote by �.n/
the nth Hecke eigenvalue of ', i.e., ' ?�n D �.n/'. With our normalizations, the
Ramanujan conjecture amounts to j�.l/j � 2 for l prime.

Let an be a sequence of complex numbers indexed by integral ideals of oF .
Assume moreover that an D 0 whenever n is divisible by any place in Supp.'/[
Supp.f1/[Supp.f2/ and whenever N.n/�q. Let � be the measure on PGL2.AF;f /
defined by

P
n an�n. Then � is symmetric under g 7! g�1, and j� j D

P
n janj�n.

Moreover, ' ? � D �', where � D
P

n an�.n/. From the assumed bound on
Ramanujan (see �9.1, esp. equation (9.1))12, an elementary computation shows

(4.7)
ˇ̌̌̌Z
g2PGL2.AF /

jhg �f1; f1˝�ihg �f2; f2˝�ij d�n.g/

ˇ̌̌̌
��N.n/2˛�1=2C�:

12A small caution here is that the vectors f1˝� and f2˝� need not be invariant by GL2.oFp
/,

if pjn, because � may be ramified. However, GL2.oFp
/ always fixes the line spanned by either of

these vectors, and the bound of (9.1) depends only on the dimension of the GL2.oFp
/-span of the

vectors in question.
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Moreover, for fixed g 2 Supp.�n/, the inner product hgf1; f1˝�i is nonvanish-
ing only if � is unramified at those places at all places not in Supp.f1/ and not
dividing n. The number of such quadratic characters is O�.N.n/�q�/, where the
implicit constant (as always) is allowed to depend on the base field F . Thus

(4.8)

ˇ̌̌̌
ˇ̌ X
�2D1

Z
g

jhg �f1; f1˝�ihg �f2; f2˝�ij d�n.g/

ˇ̌̌̌
ˇ̌�� q

�N.n/2˛�1=2C�:

The total variation of � may be computed:

(4.9) k�k��

X
n

N.n/1=2C�janj:

Using (2.7) to compute � .2/, and combining (4.6), (4.7) and (4.9), we conclude:

(4.10) jI.'/j �� q
���P

n N.n/1=2C�janj
�2
q˛�1=2C

P
n;m

P
dj.n;m/

�
N
�

nm
d2

��2˛�1=2
janjjamj

�1=2
ˇ̌P

n an�.n/
ˇ̌ ;

where we have absorbed various epsilons into the q� at the start.
The choice of an follows an idea of Iwaniec; we slightly modify the standard

choice so that we do not need to appeal to Ramanujan on average.13 Fix K with
q1=1000�K�q1000. Let S be the set of prime ideals l such that N.l/2 ŒK; 2K� and
l … Supp.f1/[Supp.f2/[Supp.'/. In view of the assumptions, jS j �b;� K

1��.
For z 2 C we put sign.z/D z=jzj for z ¤ 0 and sign.0/D 1. Put

(4.11) an D

8̂<̂
:

sign.�.n//; n 2 S

sign.�.n2//; nD l2; l 2 S

0; else:

Then
ˇ̌P

n an�.n/
ˇ̌
�b;�;F K

1��, .
P

n N.n/1=2C�janj/�� K
2C�, and

(4.12)
X
n;m

X
dj.n;m/

�
N
�nm

d2

��2˛�1=2
janjjamj �K4˛C1:

We deduce from (4.10) that

(4.13) jI.'/j ��;F .qK/
�

�
K4q˛�1=2CK1C4˛

�1=2
K

:

Taking K D q
1=2�˛
3�4˛ , we obtain jI.'/j ��;F q

�C .2˛�1=2/.1=2�˛/
3�4˛ . �

13The argument that follows was improved by a suggestion of P. Michel.
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4.2. A technical generalization. For certain applications, we shall require a
slight generalization of Proposition 4.1 in which the role of g 7! f1.g/f2.ga.Œp�//

is replaced by g 7!F.g; ga.Œp�//, where F is a function on X�X that is not neces-
sarily of product type. Although the method of proof is identical to Proposition 4.1
the details are slightly more technical; in particular, to state the result we will have
need of the adelic Sobolev norms discussed in Section 2.9.3. We shall also use the
notion of totally nondegenerate for functions on X�X: see Section 2.4.

PROPOSITION 4.2. Suppose F 2 C1.X�X/ is totally nondegenerate and
invariant under PGL2.oFp/� PGL2.oFp/. Suppose moreover that there is b 2 R

with

(4.14)
Y

q2Supp.F /[Supp.'/

N.q/� N.p/b:

Let � be a cuspidal representation of PGL2 over F , with conductor p, and
put I.'/D

R
X F.x; xa.Œp�//'.x/dx, for ' 2 � . Then, for any p > 4; d � 1,

jI.'/j �b;� N.p/�ˇC�k'kL2Sp;d;2=p.F /;

where ˇ D .1�2˛/.1�4˛/
p.7�4˛/

.

With Kim’s bound ˛ D 3=26, we obtain .1�2˛/.1�4˛/
7�4˛

> 1=17.

Proof. The proof follows closely the proof of Proposition 4.1; the only differ-
ence is that we apply (2.14) (proved in Lemma 9.9) in place of (4.4). Again, we
may freely assume that k'kL2 D 1; again we put q D N.p/.

Let notation be as in the proof of Proposition 4.1; in particular, � is a signed
real measure on PGL2.AF;f / whose support commutes with PGL2.Fp/, and � 2C

satisfies ' ? L� D �'. Proceeding as in that proof, and in particular as in (4.3), we
obtain

(4.15) j�I.'/j2 �

Z
X

Z
.g;g 0/2PGL2.AF;f /2

F..x; x/.g; g/.1; a.Œp�///

�F..x; x/.g0; g0/.1; a.Œp�///d�.g/d�.g0/i:

Set Fg;g 0.x1; x2/DF..x1; x2/.g; g//F..x1; x2/.g0; g0// for any g;g02PGL2.AF /.
Then Fg;g 0 is invariant by PGL2.oFp/�PGL2.oFp/ for g; g0 2 supp.�/. By Hecke
equidistribution in the form of (2.14) (proved in Lemma 9.9), we see that for p > 2,
d � 1:

(4.16)ˇ̌̌̌ Z
X
Fg;g 0..x; x/.1; a.Œp�///dx�

X
�2D1

�.p/

Z
X�X

Fg;g 0.x1; x2/�.x1/�.x2/dx1dx2

ˇ̌̌̌
�� q

.2˛�1/=pC�Sp;d .Fg;g 0/:
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Here, as before, �.x/ denotes the function on X defined by g 7! �.det.g//.
By definitionˇ̌̌̌ Z

X�X
Fg;g 0..x1; x2//�.x1/�.x2/

ˇ̌̌̌
D
ˇ̌˝
.g0�1g; g0�1g/F; F ˝ .�; �/

˛
L2.X�X/

ˇ̌
:

By the basic properties of adelic Sobolev norms ((2.12) and (2.13), proofs in
Lemmas 8.1 and 8.2)

Sp;d .Fg;g 0/ WD Sp;d;1=p.Fg;g 0/� S2p;d;1=p..g; g/ �F /S2p;d;1=p..g
0; g0/ �F /

(4.17)

� kgk2=pkg0k2=pS2p;d;1=p.F /
2:

Let us remark that the factors kgk2=p and kg0k2=p arises in the following
way: Lemma 8.2 actually gives a factor k.g; g/k1=p, where the norm k � k (as in
Section 2.4) is computed in PGL2.AF;f /2; this equals kgk2=p where the norm is
computed in PGL2.AF;f /.

Choose � as in the proof of Proposition 4.1 (e.g. paragraph before (4.7)) and
choose the coefficients an as in that proof (see (4.11)). In particular, k�k�� K

2C� .
Since F is totally nondegenerate, the matrix coefficients h.g0�1g; g0�1g/F; F i
satisfy bounds that are of the same quality as in the proof of Proposition 4.1; in
particular, as in (4.8),X

�2D1

Z
g

jh.g; g/F; F ˝ .�; �/ij d�n.g/� q�N.n/2˛�1=2C�kF k2:

Finally, kgk�� K
2C� for all g 2 supp.�/. Proceeding just as in the previous

proof,

jI.'/j�b;� .qK/
�

�
K4q.2˛�1/=pK8=pS2p;d;1=p.F /

2CK1C4˛kF k2
L2.X�X/

�1=2
K

:

Consequently, for any p > 2,

jI.'/j �b;� .qK/
�

�
K8q.2˛�1/=pS2p;d;1=p.F /

2CK1C4˛kF k2
L2

�1=2
K

:

To conclude, choose K D q
1�2˛
p.7�4˛/ and replace p by p=2 (thus, e.g., p > 2

becomes p > 4). �

5. Application to L-functions

We now present the first applications to subconvexity. The rough idea is sim-
ply that certain L-functions are expressed as period integrals of the type that are
bounded by Propositions 4.1 and 4.2. There is one significant issue in implement-
ing this (rather evident) idea: namely, the integral representation that we use for
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Rankin-Selberg and the standard L-functions involve Eisenstein series, which are
not in L2; this causes problems in applying Proposition 4.1!

Thus we need to regularize. Two natural ways of doing this are to replace an
Eisenstein series by a “wave-packet”; or to use a suitable form of truncation in the
defining integrals. In the present paper we will use the wave-packet technique; in
the paper [28] we shall also use truncation.

Let us briefly describe the wave packet technique in a classical language.
Roughly speaking, we can express the Rankin-Selberg L-function of two classical
forms f; g via an integral of the form L.s; f �g/D

R
z f .z/g.z/E.s; z/, for some

Eisenstein series E.s/. We now regularize, replacing E.s; z/ by a wave packet.
Let h.s/ be any holomorphic function: then

(5.1)
Z
Re.s/D1=2

h.s/L.s; f �g/ds D

Z
z

f .z/g.z/

Z
<.s/D1=2

h.s/E.s; z/:

We wish to eventually recover an upper bound for L.1=2; f �g/ (say) from the left-
hand side, so we take h.s/ D L.1� s; f �g/. Then h.s/L.s; f � g/ is positive
along <.s/ D 1=2. To apply Proposition 4.1 to the right-hand side of (5.1), we
shall moreover need to control the behavior of the regularized Eisenstein series
Eh D

R
<.s/D1=2 h.s/E.s; z/; this type of analysis is carried out in Sections 10.2

and 10.3, the main point being that the divergence of the Eisenstein series comes
entirely from the constant term.

It is worth remarking that Iwaniec’s bounds for the L-function near 1 enter
rather crucially in this analysis: in effect, we bound Eh by an easy argument in-
volving shift of contours; this necessitates that h be estimated on a line <.s/D�",
which amounts to estimating L.s; f �g/ for <.s/D 1C ".

In what follows we have not attempted to obtain polynomial dependence in
all parameters. This is not hard to do — and, at its essence, a statement that one
can find analytically suitable test vectors in a Rankin-Selberg integral; but we have
not done so here. On the other hand, we give full details of this procedure in the
proof of Theorem 6.1 (in which the polynomial dependence is particularly useful
for applications).

THEOREM 5.1. Let �1; �2 be fixed automorphic cuspidal representations of
PGL2 over F ; fix t 2 R. Let � be an automorphic cuspidal representation with
conductor p, a prime ideal that is prime to the conductors of �1 and �2.

Then, assuming Hypothesis 11.1,

(5.2) L
�
1

2
; �1˝�2˝�

�
��1 N.p/1�

1
13

and, unconditionally,ˇ̌̌
L
�
1

2
C i t; �1˝�

�ˇ̌̌2
��1 N.p/1�

1
100 ;(5.3) ˇ̌̌

L
�
1

2
C i t; �

�ˇ̌̌4
��1 N.p/1�

1
600 :(5.4)
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In these statements, the notation ��1 indicates an implicit constant that
depends continuously on the local archimedean representation �1 of GL2.F1/
underlying � .

Note we make no claim about the dependency of the implicit constant on
t; �1; �2; as remarked above, this dependence could be made polynomial in the
conductors, but this would require more careful analysis of the archimedean inte-
grals.14

We remark that we have used H. Kim’s bound ˛ D 3=26; any value of ˛
less than 1=4 would give subconvexity and under Ramanujan one obtains for (5.2)
the exponent 5=6. The exponents for (5.3) and (5.4) can be improved; e.g., the
present proof does not take into account the fact that unitary Eisenstein series satisfy
Ramanujan!

5.1. Results relating periods and integral representations. For the convenience
of the reader, we summarize here the results that relate periods and integral repre-
sentations (proved in later sections). Roughly speaking, any integral representation
for an L-function expresses it as a period integral with certain test vectors belong-
ing to the space of an automorphic cuspidal representation.

A delicate point, which is quite relevant to issues of polynomial dependence
in auxiliary parameters, is precisely which test vectors. In principle, the proofs
of results about integral representation give explicit test vectors. In practice, it is
tedious to extract these explicit test vectors. Our policy throughout this paper is the
lazy one: to deduce results, as far as possible, by formal arguments and without
choosing explicit test vectors. The price of this is that we will obtain not quite the
L-function, but rather a holomorphic function that differs from the L-function by
some harmless factors.

More precisely, the content of the proposition (Proposition 5.1) that follows
is that one can write down an integral representation I.s/ for the L-functions of
interest, so that:

(1) I.1=2/ is not too much smaller than L.1=2/ — or with 1=2 replaced by the
point of interest — so that a bound for I.1=2/ gives a bound for L.1=2/.

(2) I.s/ is not too much bigger than L.s/ for any s. This type of control will be
useful in shifting contours.

One might prefer to get I.s/D L.s/ but we do not need this stronger statement.
As is discussed at length in Section 10, to a Schwartz function ‰ on A2F is

associated a family of Eisenstein series E‰.s; g/ on X, which varies meromorphi-
cally in the parameter s 2 C.

14It is important to note, however, that this is an entirely local problem; it is intended that this will
be carried out in a more general context in [28]. Both for applications and to illustrate procedure, we
have carried out this type of analysis for the results on subconvexity of character twists in Section 6.
Those results are proved with polynomial dependence on all parameters.
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PROPOSITION 5.1. Let s0; t0; t 00 2 C. Let �1 be a fixed automorphic cuspidal
representation of PGL2.AF / and � an automorphic cuspidal representation of
prime conductor p; assume that the finite conductors of �; �1 are coprime.

Denoting by �1 the representation of PGL2.F1/ corresponding to � , sup-
pose that Cond.�1/ is bounded above; equivalently, �1 belongs to a bounded
subset15 of the dual 1PGL2.F1/ (in what follows the implicit constants may depend
on these bounds).

There exists a fixed finite set F of Schwartz Bruhat functions on A2F and a real
number C > 0 so that:

There exist vectors '1 2 �1; ' 2 � and ‰ 2 F so that

ˆ.s/ WD N.p/1�s
R

X '.g/'1.ga.Œp�//E‰.s; g/dg

ƒ.s; �1˝�/

is holomorphic and satisfies:

(1) jˆ.s0/j � 1 and jˆ.s/j � C j<.s/j.1Cjsj/C .

(2) At any nonarchimedean place v such that �1 is unramified, '1 and ‰ are
invariant by PGL2.oFv /; at any nonarchimedean place v such that �1 and �
are both unramified, ', '1 are both invariant by PGL2.oFv /.

(3) k'1kL1 � 1 and k'kL2.X/�� N.p/�.

Moreover, there exist vectors ' 2 �;‰1; ‰2 2 F so that:

(5.5) ˆ.t; t 0/D N.p/1=2�t
R

X '.g/E‰1.g;
1
2
C t /E‰2.ga.Œp�/;

1
2
C t 0/dg

ƒ.1
2
C t C t 0; �/ƒ.1

2
C t � t 0; �/

is holomorphic and satisfies:

(1) jˆ.t0; t 00/j � 1 and jˆ.t; t 0/j � C j<.t/jCC j<.t
0/j.1Cjt jC jt 0j/C .

(2) For any nonarchimedean place v, each ‰1 and ‰2 is invariant by PGL2.oFv /;
for each place at which � is unramified, the same is true of '.

(3) k'kL2.X/�� N.p/�.

Proof. Lemmas 11.4 and 11.5. �

In effect, we could achieve “ˆ D 1” in Proposition 5.1 by a more careful
choice of local data; but this is irrelevant for the purpose of global estimation.

5.2. Proof of Theorem 5.1.

Proof of (5.2). It follows from Hypothesis 11.1 and Proposition 4.1.

15See Section 2.12.3 for the definition.
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Proof of (5.3). The basic idea is that the Rankin-Selberg convolution is a triple
product, with one factor being an Eisenstein series. However, one cannot naively
apply Proposition 4.1 since Eisenstein series do not belong to L4.X/. To avoid
this, we will use a wave-packet of Eisenstein series.

First, we can assume from the start that �1 belongs to a bounded subset of
the dual 4PGL2.F1/. The implicit constants in the proof that follow depend on
this subset. We denote by ƒ the completed L-function. We begin by remarking
that since N.p/!1 we may assume that �1 is not isomorphic to � , or to any
quadratic twist of � . In particular, we are free to assume that ƒ.s; �1˝�/ has no
poles. Moreover, the finite conductor of ƒ.s; �1˝ �/ differs from N.p/2 by an
absolutely bounded constant.

Fixing t0 2 R, let ‰; '; '1; E‰.g; s/; ˆ be as in Proposition 5.1 with s0 D
1=2C i t0, so that jˆ.1=2C i t0/j � 1. For simplicity we simply write E.g; s/ for
E‰.g; s/. Fix � > 0. In the rest of the proof we omit the subscript �; � from�,
with the understanding that all implicit constants depend on � and �. Put

I.s/D N.p/s�1ƒ.s; �1˝�/ˆ.s/D
Z

X
'1.ga.Œp�//E.s; g/'.g/dg:

From Iwaniec’s upper bounds for L-functions [19, Th. 8.3], the functional equation
for ƒ, and the bounds on ˆ furnished by Proposition 5.1,

(5.6) jI.1C�C i t/j� .1Cjt j/�6N.p/�C�; jI.��C i t/j� .1Cjt j/�6N.p/�C�:

Put h.s/D s.1�s/.s� 1
2
/2I.1� s/. Then h.s/ is holomorphic in���<.s/�

1C � and h.1
2
/D 0.16 Moreover, h.s/ has rapid decay as =.s/!1, in view of

the �-factors of the completed L-function. Put Eh.g/D
R
<.s/D1C� h.s/E.s; g/.

It is proved in Lemma 10.6 that, for such h,

kEh.g/kL1 �

Z 1
�1

.jh.��C i t/jC jh.1C �C i t/j/ dt:

Applying (5.6), we conclude that kEh.g/kL1 � N.p/�C�.
On the other hand, we see from the definition of I.s/ that

(5.7)
Z
<.s/D1C�

h.s/I.s/D

Z
<.s/D1C�

h.s/ds

Z
X
'1.ga.Œp�//E.s; g/'.g/dg:

16The fact that we impose h.1=2/D 0 has a very concrete meaning in classical terms. Fix, for
example, a form f and t 2 R. Consider

P
g jL.

1
2 C i t; f ˝ g/j

2 where the sum is taken over a
basis of holomorphic Hecke eigenforms of level N and trivial Nebentypus. If t D 0, this has the
asymptotic behavior N log.N /3. On the other hand, if t ¤ 0, it behaves like N log.N /. Forcing
h.1=2/D 0 “counteracts” this extra singularity.
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The double integral on the right-hand side of (5.7) is absolutely convergent and
orders may be switched; thusZ

<.s/D1C�

h.s/I.s/D

Z
X
'1.ga.Œp�//Eh.g/'.g/dg(5.8)

D

Z
X
'1.ga.Œp�//E

0
h.g/'.g/dg;

where E0
h
WD P.Eh/ is totally nondegenerate (see �2.7) and satisfies kE0

h
kL1 ��

N.p/�C�.
We then deduce from Proposition 4.1 that

(5.9)
ˇ̌̌̌Z
<.s/D1C�

h.s/I.s/

ˇ̌̌̌
�k'1kL4.X/N.p/

� 1
26
C�C�:

I.s/ and h.s/ both decay exponentially rapidly as =.s/!1. It is therefore
simple to justify shifting the line of integration in (5.9) to <.s/D 1=2. We deduce
thereby that

(5.10)
ˇ̌̌̌ Z
<.s/D

1

2

t2
ˇ̌̌
I
�1
2
C i t

�ˇ̌̌2
dt

ˇ̌̌̌
�k'1kL4.X/N.p/

�� 1
26
C�:

From (5.6) we deduce bounds on I and I 0 inside the strip 0 � <.s/ � 1 by
the maximal modulus principle. In particular,

(5.11)
ˇ̌̌
I 0
�
1

2
C i t

�ˇ̌̌
�t N.p/�C�:

Combining (5.10) and (5.11), and recalling that � is arbitrary, we obtain
jI.1=2C i t/j�t N.p/�

1
5�26
C� . Thus jƒ.1

2
C i t0; �1˝�/j��;t0 N.p/

1
2
� 1
130
C� . �

Proof of (5.4). The proof is similar to that of (5.3), but a slightly more elab-
orate regularization is required, since we shall proceed from the expression (5.5)
of L.s; �/ as a triple product against two Eisenstein series. Again we may assume
from the start that �1 is confined to a bounded subset of 4PGL2.F1/; the implicit
constants will, again, depend on this subset.

Let ƒ.s; �/ be the completed L-function attached to � . Fixing t0; t 00 2 iR,
Proposition 5.1 gives the existence of Eisenstein series E‰1.g; s/DE1.g; s/ and
E‰2.g; s/DE2.g; s/ on X, and ' 2 � so that

ˆ.t; t 0/ WD N.p/1=2�t
R

X '.g/E1.g;
1
2
C t /E2.ga.Œp�/;

1
2
C t 0/dg

ƒ.1
2
C t C t 0; �/ƒ.1

2
C t � t 0; �/

satisfies jˆ.t0; t 00/j � 1 and ˆ.t; t 0/� C j<.t/jCj<.t
0/j.1Cjt jC jt j0j/C .

We put

(5.12) I.z1; z2/Dˆ.z1; z2/N.p/z1�1=2ƒ
�
1
2
C z1C z2; �

�
ƒ
�
1
2
C z1� z2

�
Dˆ.z1; z2/N.p/

z1Cz2
2
�1=4ƒ

�
1
2
Cz1Cz2; �

�
N.p/

z1�z2
2
�1=4ƒ

�
1
2
Cz1�z2; �

�
:
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Then I.z1; z2/ is a holomorphic function of .z1; z2/ 2 C2. I.z1; z2/ has rapid
decay along “vertical lines”; that is, for �; � 0 in a fixed compact set and .t; t 0/ 2 R

we have I.� C i t; � 0C i t 0/�N .1Cjt jC jt
0j/�N .

Let � > 0 be fixed. From (5.12), Iwaniec’s bounds for L-functions near 1,
and the rapid decay of I along “vertical lines,” we obtain by the maximal modulus
principle:

.1Cjz1jC jz2j/
N max.jI.z1; z2/j; j@1I.z1; z2/j; j@2I.z1; z2/j/�N N.p/� ;

j<.z1/jC j<.z2/j � 1=2C �;

where @1 (resp. @2) is the operator of differentiation with respect to z1 (resp. z2).
Put

(5.13) h.z1; z2/D z
2
1z
2
2.1=4� z

2
1/.1=4� z

2
2/I.�z1;�z2/:

Then, in the notation of Section 10.3 (esp. Definition 10.1) , h belongs to the space
H.2/.�/ and satisfies khkN �N N.p/� .

Put I D
R
<.z1/D<.z2/D0

h.z1; z2/I.z1; z2/dz1dz2. Then

I D

Z
<.z1/D0;<.z2/D0

h.z1; z2/dz1dz2(5.14)

�

Z
X
'.g/E1.g; 1=2C z1/E2.ga.Œp�/; 1=2C z2/dg

D

Z
X
'.x/Eh..x; x/.1; a.Œp�///dx;

where the function Eh on X�X is defined by

Eh.g1; g2/D

Z
<.z1/D0;<.z2/D0

h.z1; z2/E1.g1;1=2Cz1/E2.g2; 1=2Cz2/dz1dz2;

and the interchange of orders is justified by the (easily verified) absolute conver-
gence of the double integral defining I . Note that Eh.g1; g2/ is totally nondegener-
ate (see Section 2.7 for the definition.). We now apply Proposition 4.2 to conclude
that jI j �p;d Sp;d;2=p.Eh/k'kL2N.p/�

1
17p for any p > 4; d � 1. We note at this

point that the requirement p > 4 makes it critical that the regularized Eisenstein
series Eh belong to L4; the trivial fact that Eisenstein series belong to L2�� is far
from sufficient.

On the other hand, by Lemma 10.9, Sp;d;2=p.Eh/�khkN for some N (pos-
sibly depending on p; d ) and all p < 4

1�2�
. By Proposition 5.1, k'kL2 �� N.p/� .

Thus jI j �� N.p/��1=68. Now, by the definition of h (5.13) we have I D
N.p/�1

R
.t;t 0/2R2

.1=4C t21 /.1=4C t
2
2 /t

2
1 t
2
2 jI.i t1; i t2/j

2dt1dt2. Thus we obtain

(5.15)
Z
.t;t 0/2R2

jI.i t1; i t2/j
2t21 t

2
2dt1dt2�� N.p/1�1=68C�:
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Using (5.15), and the given properties of ˆ, we deduce thatˇ̌̌
ƒ
�
1

2
C t0C t

0
0

�
ƒ
�
1

2
C t0� t

0
0

�ˇ̌̌2
�t0;t

0
0

N.p/1�1=600

in a similar fashion to the conclusion of the proof of (5.3). We take t 00 D 0 to
conclude. �

6. Torus periods (I):
subconvex bounds for character twists over a number field

In this section we shall work in considerable generality; we shall derive sub-
convex bounds without any assumptions of prime or squarefree conductor, and
obtaining polynomial dependence in all auxiliary parameters. This is useful for
applications, but will involve some notational overhead. As a result, we have
sacrificed good exponents for simplicity at many steps.

THEOREM 6.1. Let � be a (unitary) cuspidal representation of GL2.AF /, and
� a unitary character of A�F =F

�, with finite conductor f. Then there is N > 0 such
that

L
�
1
2
; � ��

�
� Cond.�/NCond1.�/NN.f/1=2�

1
24 ;(6.1)

L
�
1
2
; �
�
� Cond1.�/NN.f/1=4�

1
200 :(6.2)

Note that the result also implies a corresponding statement for the L-functions
evaluated at 1

2
C i t , since one may replace � by �j � jit . Over Q this result is due

to [11]; presently the best known exponent was achieved in [4].
Since it is perhaps hidden in the proof where the polynomial dependence on

conductor arises, we would like to explicate it now. If � is an automorphic cuspidal
representation with analytic conductor Cond.�/, there exists a vector  2 � with
Sobolev norms S2;d;ˇ . / � Cond.�/const max.ˇ;d/. Moreover, one can choose
such a  to be a “good” test vector with respect to certain toral periods. Thus the
analytic conductor enters precisely through the minimal Sobolev norm of a suitable
vector belonging to the space of � . We note that the test vectors we choose are
smooth but not K-finite at infinite places; this idea has been heavily exploited in
the previous work of Bernstein and Reznikov.

Note that some cases of Theorem 6.1 — where � has trivial central character
and � is quadratic — are subsumed by the previous result Theorem 5.1. Never-
theless, we have chosen to give a distinct presentation since the method is entirely
different, it is simpler in the present method to deal with the case of noncuspi-
dal � . Also, we shall consistently deal in the present section with GL2, rather than
PGL2. Thus ! will be a unitary character of A�F =F

�, and C1! .XGL.2// the space
of functions on XGL.2/ D GL2.F /nGL2.AF / with central character !.

In the case F D Q, the subconvexity result (6.2) for characters is due to
Burgess [6]. Burgess’ method gives a much better exponent; of course there is
considerable scope for improvement in the present technique also.



SPARSE EQUIDISTRIBUTION PROBLEMS, PERIOD BOUNDS AND SUBCONVEXITY 1035

For the ease of the reader, we briefly explain in advance the points of our
proof in classical language. The discussion that follows is not a completely faithful
rendition of the proof, but it hopefully conveys the main ideas. While it follows
the pattern of all the proofs in this paper, one minor complication is that we deal
with integrals with respect to certain measures of infinite mass.

(1) If f is a Maass form on SL2.Z/nH, then the integral

(6.3) 1

q

Z 1
yD0

qX
xD1

�.x/f
�
x

q
C iy

�
dy

y

equals, up to some �-factors, 1p
q
L.1

2
; f ��/. This is an exercise in Hecke-

Jacquet-Langlands theory. The version of this equality that we shall use is
proved in Lemma 11.8 when f is a cusp form and Lemma 11.10 when f is
Eisenstein.

(2) It will then suffice to bound
Pq
xD1 �.x/f .

x
q
C iy/ for each fixed value of y.

As it turns out, the crucial range of y is around y D q�1; the contribution
of other ys are small for relatively trivial reasons (use the Fourier expansion).
This is roughly a geometric form of the approximate functional equation: it
says that the Fourier coefficients an.f / with n � q are most important to
determining the L-function. The general version of this fact is proven in
Lemma 11.9.

(3) In the range when y � q�1, the set fx
q
C iygf1�x�q�1g is roughly equidis-

tributed, because it is (with the exception of two points) the orbit of iqy 2H by
the qth Hecke operator. This is easy to quantify and actually can be regarded
as a statement about equidistribution of p-adic horocycles.The general version
of this is proved in Lemma 9.11.

(4) We are now in a situation where we are trying to bound the period of f
along the roughly equidistributed set fx

q
C iygf1�x�q�1g. To do this, we apply

mixing properties of the adelic torus flow, in the same fashion as the previous
proofs of this paper. This shows that

Pq
xD1 �.x/f .

x
q
C iy/ is small.

The computations that underlie steps (1), (2) and (3) are fairly routine but
technically complicated. We have therefore carried them out in Section 11.4. In
the sections that follow, we merely quote the results and carry out what amounts
to step (4).

6.1. Relating integral representations and periods. Let z2R and let�z;�z; �; �
be the measures on XGL.2/ defined by

�z.f /D

Z
jyjDz

f .a.y/n.Œf�//�.y/d�y; �D

Z
z>0

�zd
�z;(6.4)

�z.f /D

Z
jyjDz

f .a.y/n.Œf�//d�y; � D

Z
z>0

�zd
�z:
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In both cases, the measure d�y is the probability measure invariant by A1F =F
� and

the measure d�z is a Haar measure on R�. Thus �z; �z are probability measures,
whereas �; � have infinite mass. It is simple to see that the integrals defining
�.f /; �.f / converge absolutely if f is a function decaying rapidly enough at the
cusps, e.g. satisfying jf .x/j � ht.x/�" (notation of �8.2), for any " > 0. Note also
the analogy between these measures and those used in the analysis of unipotent pe-
riods (cf. (3.2).) Classically, �z.f / should be thought of the measure on SL2.Z/nH
defined by

P
0�x�q�1 f .

x
q
Ciz/, and �z.f / the measure on SL2.Z/nH defined byP

0�x�q�1 f .
x
q
C iz/�.x/. (These statements are not to be interpreted precisely;

they are for intuition only.)
Here is the proposition that formalizes (1) and (2) of the discussion above, in

the cuspidal case.

PROPOSITION 6.1. Let � be a cuspidal representation on GL2.AF /, � a char-
acter of A�F =F

� of finite conductor f. Write

Lunr.s; � ��/D
Y

�v unram:

Lv.s; � ��/;

where the product is taken over all finite places at which � is not ramified.
Let d; ˇ � 0. Let gC; g� be positive smooth functions on R�0, with g� nonin-

creasing and gC nondecreasing, such that gCCg� D 1, gC.t/D 1 for t � 2 and
g�.t/D 1 for all t � 1=2.

Then there exists ' 2 � such that, with

(6.5) ˆ.s/D N.f/1=2
R
z �z.'/z

s�1=2d�z

Lunr.s; � ��/
;

then ˆ.s/ is holomorphic and satisfies:

(1) jˆ.s/j �<.s/;� N.f/� and jˆ.1
2
/j �� N.f/��.

(2) ' is new at every finite place (i.e., for each finite prime q it is invariant by
K0Œq

sq �, where sq is the local conductor of �).

(3) The Sobolev norms of ' satisfy the bounds

(6.6) S2;d;ˇ .'/�� Cond1.�/2dC�Condf .�/
ˇC�Cond1.�/1=2C2d :

(4) The integration of (6.5) may be “truncated without significant change” to the
region z around N.f/�1; more formally,ˇ̌̌̌Z

z

�z.'/gC.z=T /d
�z

ˇ̌̌̌
� .N.f/T /�1=2.TCond.�/Cond.�//�;ˇ̌̌̌Z

z

�z.'/g�.z=T /d
�z

ˇ̌̌̌
� .N.f/T /1=2.TCond.�//�.Cond1.�/Cond.�//1C�:

Proof. Lemmas 11.8 and 11.9. �
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We next give the corresponding result for the “noncuspidal case.” We recall
that the Eisenstein series E‰.s; g/ associated to a Schwartz function ‰ on A2F
are discussed in Section 10. The normalization is so that the functional equation
interchanges s and 1� s. xE.s; g/ denotes, as explained in that section (cf. (10.9))
the truncated Eisenstein series obtained by subtracting the constant term; it is a
function on B.F /nGL2.AF /.

PROPOSITION 6.2. Suppose that � is ramified at least one finite place. Let g˙
be as in Proposition 6.1. There is an absolute C > 0 (i.e., depending only on F )
and a choice of Kmax-invariant Schwartz function ‰ (depending on �) so that if we
put

ˆ.s; s0/ WD N.f/1=2
R
y2A�F =F

�
xE‰.s; a.y/n.Œf�//�.y/jyj

s0d�y

L.�; sC s0/L.�; 1� sC s0/
;

where xE is defined as in (10.9), then the integral defining ˆ is absolutely con-
vergent when <.s/;<.s0/� 1. Moreover, ˆ extends from <.s/;<.s0/� 1 to a
holomorphic function on C2, satisfying:

(1) jˆ.1=2; 0/j � 1 and jˆ.s; s0/j � C 1Cj<.s/jCj<.s
0/j.1CjsjC js0j/C .

Moreover, given N > 0 we have that

(6.7) jˆ.s; s0/j.1CjsjC js0j/N �<.s/;<.s0/;N Cond1.�/N
0

;

where N 0 and the implicit constant may be taken to depend continuously on
N;<.s/;<.s0/.

(2) ‰, and so also E‰.s; g/ is invariant by Kmax.

(3) Let h 2H.�/ be as in (10.18), and put Eh WD
R
<.s/�1 h.s/E‰.s; g/dg. Then,

for each d; ˇ, there is N > 0 such that S1;d;ˇ .Eh/�� khk0Cond1.�/N ,
where the norm khk0 is defined in (10.18).

(4) We have �z.Eh/�K;‰;h min.zK ; z�K/ for each17 K � 1. Moreover, there
is N > 0 such thatˇ̌̌̌Z

z

�z.Eh/gC.z=T /d
�z

ˇ̌̌̌
� .N.f/T /�1=2.TCond.�//�khkN ;ˇ̌̌̌Z

z

�z.Eh/g�.z=T /d
�z

ˇ̌̌̌
� .N.f/T /1=2.TCond.�//�Cond1.�/1C�khkN :

Proof. Lemmas 11.10 and 11.11. �

6.2. Proof of Theorem 6.1 — cuspidal case. Let � be a character of A�F =F
�,

of varying conductor f. Put q D N.f/.
We need the following estimate, proved in Lemma 9.11. It amounts in essence

to a statement about the equidistribution of p-adic horocycles (classically, these

17The implicit constants here are totally unimportant; this estimate will be used only to verify
that certain integrals converge.
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roughly correspond to a statement about the equidistribution of fx
q
C izg0�x�q�1,

if z � q�1).
For any function f that is invariant by

Q
qK0Œq

sq �, we have (with mD
Q

q qsq)
(6.8)ˇ̌̌̌
�z.f /�

Z
X
f

ˇ̌̌̌
�� q

˛�1=2C�N.m/3=2C� max
�
qz;

1

qz

�1=2
S2;d .f /; f 2C

1.X/:

Proof of Theorem 6.1 — cuspidal case. Choose f 2 � to be the “'” of Propo-
sition 6.1, so that j�.f /j �� N.f/�1=2��jLunr.1=2; � � �/j. For each ramified
prime q of � , let qsq be the local conductor of the local representation �q. Set
m WD

Q
q qsq , the finite conductor of � .

Let K � 1 be an integer satisfying K � N.f/. Let S be the set of prime ideals
of oF , with norm lying in ŒK; 2K�, and satisfying .n; f/D 1 and .n;Supp.f //D 1.
Fix n0 2 S. For each prime ideal n 2 S, let $n 2 Fn be a uniformizer. We define
a measure � on GL2.AF / so that

(6.9) � D jSj�1
X
n2S

�.Œ$n�Œ$n0 �
�1/ıa.Œ$n�Œ$n0

��1/:

Clearly � has total mass 1. Moreover, �.f /D �.f ? �/ and f ? � is invariant by
K0Œq

sq � for each qjm.
Choose � “slightly smaller than 1”, to be specified later. Our aim is now

to cut the z integration in � D
R
z �zd

�z into three ranges, the crucial range of
which will be q�2C� � z� q�� ; this avoids the pain of dealing with the infinite
mass measure �. Let gC; g� be as in Proposition 6.1. Define h.t/ by the rule
g�.

t
q�2C�

/C h.t/CgC.
t
q��

/D 1. Then

j�.f /j2 D j�.f ? �/j2 D

ˇ̌̌̌Z
z

�z.f ? �/d
�z

ˇ̌̌̌2
�

ˇ̌̌̌Z
g�.

z

q�2C�
/�z.f ? �/

ˇ̌̌̌2(6.10)

C

ˇ̌̌̌Z
h.z/�z.f ? �/d

�z

ˇ̌̌̌2
C

ˇ̌̌̌Z
gC.

z

q��
/�z.f ? �/d

�z

ˇ̌̌̌2
:

By Proposition 6.1, the first and last term (e.g.,
ˇ̌ R
gC.

z
q��

/�z.f ? �/d
�z
ˇ̌
,

without the square) are�Cond.�/1C�Cond1.�/1C�q
��1
2
C� . More explicitly, we

note that

(6.11) �z.f ? �/D jS j
�1
X
n2S

�N.n/�1N.n0/z.f /:

Now 1=2� N.n/N.n0/�1 � 2 for all n. This was the purpose of the factors involv-
ing n0 in (6.9), and so one easily deduces a bound on

R
g�.

z
q�2C�

/�z.f ? �/d
�z

from the final assertion of Proposition 6.1. Similarly for the term involving gC.
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That the first and last terms of (6.10) should be less significant may be seen
in the classical setting from the Fourier expansion; it should be regarded as a geo-
metric version of the approximate functional equation.

As for the intermediate term, we noteZ
z

h.z/�z.f /D

Z
y2A�F =F

�

h.jyj/�.y/f .a.y/n.Œf�//d�y:

Applying Cauchy-Schwarz, and the fact that
R

A�F =F
� h.jyj/d

�y� log.q/, we get

(6.12)
ˇ̌̌̌Z
z

h.z/�z.f ? �/

ˇ̌̌̌2
�� q

�

Z
z

h.z/�z.jf ? � j
2/d�z

�� q
�

Z
X
jf ? � j2d�XC q

˛��=2C�N.m/3=2C�S2;d .jf ? � j
2/;

where we have applied (6.8). By Lemmas 8.1 and 8.2,

(6.13) S2;d;ˇ .jf ? � j
2/� S4;d;ˇ .f ? �/

2

� .supg2supp.�/kgk/
2ˇS4;d;ˇ .f /

2
�K4ˇS2;d 0;ˇC3=2.f /

2;

where the last line holds for d 0� d , and we have used Lemma 9.4 (which bounds
the L1-norm of a cusp form in terms of L2-norms), together with the easily veri-
fied fact that supg2supp.�/kgk�K2.

By bounds towards Ramanujan (see �9.1),

(6.14) kf ? �k2
L2
D

Z
g;g 0
hg�1g0f; f id�.g/d�.g0/�K2˛�1kf k2

L2
:

Thus

(6.15) j�.f /j �� Cond.�/Cond1.�/.Cond.�/Cond.�//�q
��1
2

C

�
K˛�1=2q�CN.m/3=4C�q��=4C˛=2C�K

�
S2;d 0;2.f /

� q�.q.��1/=2CK˛�1=2C q˛=2��=4K/Cond1.�/NCond.�/N ;

for appropriate N > 0. We have used Proposition 6.1, (3) at the last step.
Proposition 6.1 guarantees that jLunr.1=2; � ��/j �� q

1=2C�j�.f /j. From
this, optimizing �;K, and applying trivial bounds at ramified places, we obtain the
conclusion, taking ˛ D 3=26. �

6.3. Proof of Theorem 6.1 — noncuspidal case. We turn to the proof of (6.2).
This is very similar, but we implement a mild regularization procedure to deal with
the Eisenstein series, just as in the case of Rankin-Selberg L-functions.

Proof of (6.2). We may assume that � ramifies at least at one finite place. Let
‰ be a Schwartz function on A2F , E.g; s/ WDE‰.g; s/ the corresponding Eisenstein
series, chosen as in Proposition 6.2.



1040 AKSHAY VENKATESH

Let �0 > 0, let h be holomorphic in an open neighborhood of the vertical
strip ��0 � <.s/ � 1C �0 and put Eh.s/ D

R
<.s/D1C�0 h.s/E.g; s/ds. Then if

h.0/D h.1
2
/D h.1/D 0, it follows from the third assertion of Proposition 6.2 that

S1;d;ˇ .Eh/��;d Cond1.�/N khk0

for appropriate N D N.d; ˇ/ > 0. Here, as in (10.18) with � replaced by �0, the
norm khkN is defined to be

R1
�1

.jh.1C �0C i t/jC jh.��0C i t/j/ .1Cjt j/Ndt .
Put, in the notation of Proposition 6.2, I.s/Dˆ.s; 0/L.�; s/L.�; 1�s/. Then

(6.16)
Z
z

�z.Eh/d
�z D N.f/�1=2

Z
<.s/D1=2

h.s/I.s/ds:

This is established in (11.31); for now, we remark that this is “almost” obvious
from Proposition 6.2, the only additional point being that one can replace E by xE,
and this is exactly where the fact that � is ramified at a finite place comes in — to
kill the constant term of the Eisenstein series.18

Take h D .s � 1=2/2s.1� s/I.1� s/. The “good” analytic properties of h,
e.g. rapid decay along vertical lines, follow19 from (6.7). In particular, h belongs
to the function spaces H.�/ defined in (10.18) for any � > 0, and the norms khkN
are all bounded by suitable powers of Cond1.�/:q.

Then (6.16) becomes

(6.17)
Z 1
tD�1

t2.1=4C t2/jI.
1

2
C i t/j2 D q1=2

Z
z

�z.Eh/d
�z:

To bound the right-hand side, we proceed as in Section 6.2, but with f re-
placed by Eh. We use notation as in that section, except replacing the “h” defined
before (6.10) by 1�g��gC to avoid clashing with its alternate usage here.

One proves as in that section, that for d � 1,

(6.18)
ˇ̌̌̌Z
z

.1�g��gC/�z.Eh ?�/

ˇ̌̌̌
�� q

�
�
K˛�1=2C q˛=2��=4.supg2supp.�/kgk/

1=2
�
S4;d;1=2.Eh/

� q�
�
K˛�1=2C q˛=2��=4K

�
khk0Cond1.�/N

for some appropriate N > 0. At the last stage we have applied Proposition 6.2 to
control the Sobolev norm.

Proposition 6.2 also guarantees that, for appropriate N > 0, we have

(6.19)
ˇ̌̌̌Z

g�.
z

q�2C�
/�z.Eh ?�/

ˇ̌̌̌
C

ˇ̌̌̌Z
gC.

z

q��
/�z.Eh ?�/d

�z

ˇ̌̌̌
� Cond1.�/1C�q

��1
2
C�
khkN :

18The classical version of this fact — see (6.3) — it is clear that the �-sum will kill any constant
term of f , as long as � is not trivial.

19This point was not clear in a previous version; thanks to N. Bergeron for pointing this out.
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Combining (6.17), (6.18), and (6.19), we obtain as in the previous section the
bound, for sufficiently large N ,

(6.20)
Z 1
tD�1

t2.
1

4
C t2/jL.

1

2
C i t; �/L.

1

2
� i t; �/j2jˆ.1=2C i t; 0/j2

��

�
q
��1
2 CK˛�1=2C q˛=2��=4K

�
khkN q

1=2C�Cond1.�/N :

One applies the convexity bound to bound khkN , obtainingZ 1
�1

t2jL.
1

2
C i t; �/jL.

1

2
� i t; �/j2jˆ.1=2C i t; 0/j2� Cond1.�/N q24=25;

where we have increased N as necessary. From this we get

L
�
1

2
; �
�
� Cond1.�/N q1=4�1=200: �

7. Torus periods (II): equidistribution of compact torus orbits

It has been independently shown by Zhang [47], Clozel-Ullmo [8] and P. Co-
hen [9] that the subconvexity result Theorem 6.1 implies the equidistribution of
Heegner points over totally real fields; in particular, they pointed out that GRH
implies this equidistribution. Theorem 6.1 makes this result unconditional.

The main aim of this section is to explain how one can obtain certain con-
ditional results about equidistribution of subsets of Heegner points, and how this
fits into the general framework of “sparse equidistribution questions.” In particular,
this approach does not rely on reducing questions about subsets of Heegner points
to subconvexity, but rather approaches the equidistribution question directly.

The proofs of the results (and various supporting lemmas) will only be sketched,
and we will confine ourselves for simplicity to the case of narrow class number 1;
we will in any case present an unconditional approach, based on combining the
ideas of this paper with the ideas of Michel, in the paper [28] (joint with P. Michel).
We nevertheless feel that the ideas presented here may be of use in other contexts.
Indeed, this section is of a different flavor to the other sections; it uses “adelic
analysis” more genuinely.

In fact, we shall need a mild refinement of the results of [8], which will al-
low better control of the dependence on the test vectors. We state this refinement
without proof in Theorem 7.1; the proof is an exercise in explicating some of the
proofs in [8].

7.1. Equidistribution of Heegner points. We recall the definition of Heegner
points. Let F be a totally real number field of degree d over Q. For simplicity
we shall confine ourselves to the case where the ring of integers of F has narrow
class number 1. This assumption does not change any of the technical details,
which are in any case carried out adelically; it simply allows us to be a little more
explicit about the torus orbits we consider. Let EDF.

p
�d/ be a totally imaginary
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quadratic extension of F , where d 2 oF is totally positive and squarefree. Here
“squarefree” means that it is of valuation � 1 at all finite places.

Let TE be the torus ResE=F .Gm/=Gm; we embed TE in PGL2 via (in obvious
notation):

(7.1) �E W xCy
p
�d 7!

�
x y

�yd x

�
:

Regard d as an element of F ˝R via the inclusion F ,! F ˝R. Since it is
totally positive, it possesses a unique totally positive square root,

p
d 2 F ˝R. Set

Œd�1 D
� 1 0
0
p

d
�
2 PGL2.F ˝R/. We define a map H W TE .AF /=TE .F /! X via

(7.2) H W x 7! �E .x/Œd�1;

where we regard Œd�1 � PGL2.F ˝R/ � PGL2.AF / acting by right translation
on X. Denote by N.d/ the absolute norm of d, i.e., N.d/D joF =doF j.

The F -torus TE is anisotropic, and there is a unique TE .AF /-invariant prob-
ability measure on TE .AF /=TE .F /. Let �E be its image by the map H.

THEOREM 7.1. SetEDF.
p
�d/, where d2 oF is totally positive and square-

free. The measures �E become equidistributed as N.d/!1. Indeed, there exist
ı > 0; d; ˇ such that for f 2 C1.X/ we haveˇ̌̌̌Z

fd�E �

Z
X
f .x/dx

ˇ̌̌̌
� N.d/�ıS�

1;d;ˇ .f /:

Recall the definition of S� from Section 2.10. We do not give the proof; as
we have remarked it can be obtained by following the computations of [8] a little
more explicitly.

One recovers from Theorem 7.1 the equidistribution of certain Heegner points
associated to E D F.

p
�d/ as d varies. Theorem 7.1 also gives an effective rate of

equidistribution for Heegner points with polynomial dependence on the level and
the eigenvalue of a test function. This rather innocuous polynomial dependence
(in the level aspect, at least) will in fact play a crucial role in our deduction of the
equidistribution of sparse subsets in the following section.

7.2. Equidistribution of subsets of Heegner points. We turn to certain condi-
tional results on equidistribution of sparse subsets. F being as in Section 7.1, let
Ei D F.

p
di / be a sequence of distinct quadratic, totally imaginary, extensions of

F . For each Ei , let Si � TEi .AF /=TEi .F / be a subgroup of finite index mi . Let
�
Si
Ei

be the image of the Haar probability measure on Si by the map H.
The import of the next theorem is that, if Ei has enough small split primes,

one can obtain the equidistribution of the measures �SiEi as i !1. This result is
quite similar to the results of Duke-Friedlander-Iwaniec [13] in the case F DQ,
although the method is at least superficially rather different. One can also contrast
with the striking results of Michel [27] and Harcos-Michel [17], for F DQ, that
give comparable results but without the condition on enough small split primes.
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Our method is different to these, where the results are deduced from subconvexity
bounds for Rankin-Selberg L-functions.20 In the present approach, we prove the
equidistribution theorem directly. In a sequel to this paper, the author and P. Michel
combine the methods here with some methods developed by Michel to make the
results of this section unconditional.

To quantify the existence of enough small split primes, one might impose the
condition (as does Linnik [25]) that the Ei vary through a sequence of quadratic
extensions that split at a fixed prime of F . We will prefer to take a more quantitative
approach, which will yield a stronger result at the price of a stronger assumption.
In that regard we introduce the following notation: For ı > 0, we put

wt.Ei ; ı/D #fq� oF prime and split in Ei ;N.di /ı � N.q/� 2N.di /ıg:

THEOREM 7.2. There exists ı1 > 0 such that, if mi
min.N.di /ı1.1=2�˛/;wt.Ei ;ı1/1=2/

! 0, the sequence �SiEi converges, as i !1, to the invariant measure on X.

Proof. This is deduced from Theorem 7.1 by using the mixing properties of
the TE .AF /-flow. Indeed, we fix an index i and a corresponding field Ei . Let
ı1 > 0 be fixed. Let S be the set of prime ideals of F which split in Ei and with
norm in ŒN.di /ı1 ; 2N.di /ı1 �. For each q 2 S, the torus TEi .Fq/ is isomorphic to
F �q . Fix an isomorphism ‡q WTEi .Fq/!F �q , and let$q be an element in TEi .Fq/

such that ‡q.$q/ has valuation ˙1 in F �q .
Let � be a character of TEi .AF /=TEi .F /, trivial on Si . Let �Ei be as defined

prior to Theorem 7.1, and define

�Ei .f /D

Z
t2TEi .AF /=TEi .F /

f .H.t//�.t/dt;

where dt is the Haar probability measure on TEi .AF /=TEi .F /. Let � be the
probability measure 1

jSj

P
q2S �.$q/ı$q on TEi .AF /. Then

�Ei .f /D �Ei .f ?H��/;

where H�� denotes the image of � by the map H.
By Cauchy-Schwarz, and Theorem 7.1,

j�Ei .f ?H��/j
2
� �Ei .jf ?H�� j

2/(7.3)

� kf ?H��k
2
L2
CO

�
N.di /�ıS�1;d;ˇ .jf ?H�� j

2/
�
;

20We note that the required bounds on Rankin-Selberg L-functions are considerably deeper than
(5.3), for they deal with varying central character. For some speculative discussion on the “reason”
that Michel’s method can avoid this condition, see the last paragraph of [29].
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where ı; d; ˇ are as in Theorem 7.1. Now, appropriate variants of Lemmas 8.1
and 8.2 (for S� instead of S ) show that

(7.4) S�
1;d;ˇ .jf ?H�� j

2/� S�
1;d;ˇ .f ?H��/

2

� sup
g2suppH��

kgk6ˇS�
1;d;ˇ .f /

2
� N.di /6ı1ˇS�1;d;ˇ .f /

2

and bounds towards Ramanujan (see �9.1) show that

(7.5) kf ?H��k
2
L2
�

�
N.di /ı1.2˛�1/CjSj�1

�
kf k2

L2
:

We note that (7.4) and (7.5) are very closely analogous to (6.13) and (6.14),
with K replaced by N.di /ı1 . In the context of (6.14), the set S has size K1��; thus
the term jSj�1 that appears in (7.5) could be neglected.

Recalling the definition of �Ei , we conclude

(7.6)
ˇ̌̌̌ Z
t2TEi .AF /=TEi .F /

f .H.t//�.t/dt

ˇ̌̌̌
�

�
N.di /3ı1ˇ�ı=2CN.di /ı1.˛�1=2/CjSj�1=2

�
S�
1;d;ˇ .f /:

Summing the left-hand side of (7.6) over all mi characters � of TEi .AF /=TEi .F /
that are trivial on Si , and substituting jSj D wt.Ei ; ı1/, we obtainˇ̌̌
�
Si
Ei
.f /

ˇ̌̌
�mi

�
N.di /3ı1ˇ�ı=2CN.di /ı1.˛�1=2/Cwt.Ei ; ı1/�1=2

�
S�
1;d;ˇ .f /:

Choosing ı1 sufficiently small (the exact value will depend on the value of
ˇ; ı from Theorem 7.1) we obtain the claimed conclusion. �

8. Background on Sobolev norms and reduction theory

The rest of the paper consists of technical lemmas. The sections that follow
are arranged to be used as a reference, rather than to be read through.

8.1. Formal properties of the Sobolev norms. We begin by explicating certain
formal properties of the Sobolev norms defined in Section 2.9.3.

Remark 8.1. The following properties of this definition are formal and will
be repeatedly used:

(1) Translations by Kmax;G preserve Sp;d;ˇ , i.e., Sp;d;ˇ .k � f / D Sp;d;ˇ .f / for
k 2Kmax;G.

(2) If L WC1! .XG/!C is a linear functional and jL. /j �PSp;d;ˇ . /, then also
jL. /j � Sp;d;ˇ . /. Indeed  7! jL. /j is itself a seminorm on C1! .XG/.

(3) Suppose that E W C1! .XG/! C1! .XG/ is a linear endomorphism satisfying
PSp;d;ˇ .Ef / � A �PSp;d;ˇ .f /, for some A 2 R. Then also Sp;d;ˇ .Ef / �
ASp;d;ˇ .f /. Indeed, f 7! A�1Sp;d;ˇ .Ef / is a seminorm dominated by
PSp;d;ˇ .
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(4) We shall need a slight variant of (3) in the case where we are studying only
the space of f with some invariance property.

Suppose that E W C1! .XG/! C1! .XG/ is a linear endomorphism, M is a
finite set of finite places, and for each v 2M we are given an open compact
K1;v �Kv . Suppose moreover that PSp;d;ˇ .Ef /�A �PSp;d;ˇ .f / for some
A 2 R and for all f which are

Q
v2M K1;v-fixed. Then, for all f which areQ

v2M K1;v-fixed, we have in fact

Sp;d;ˇ .Ef /� A
Y
v2M

ŒKv WK1;v�
ˇSp;d;ˇ .f /:

Indeed, put K1;M D
Q
v2M K1;v and let … be the averaging operatorZ

k2K1;M

�.k/dk;

where K1;M is endowed with the Haar probability measure. Then apply (3)
above to the operator f 7!E.…f /.

LEMMA 8.1. Let F1 2 C1!1 .XG/, F2 2 C1!2 .XG/. Then

Sp;d;ˇ .F1F2/�d S2p;d;ˇ .F1/S2p;d;ˇ .F2/:

Note that F1F2 2 C1!1!2.XG/.

Proof. Put F D F1F2. For any monomial D of degree d in B, we can
write D.F1F2/ D

P
˛2I.D˛;1F1/.D˛;2F2/, where ˛ ranges over an index set I

whose size is bounded by a constant depending only on d , and the D˛;? are certain
monomials in B satisfying ord.D˛;1/C ord.D˛;2/D d . It follows that

kDF kLp.XG;ad/ �

X
˛2I

�Z
XG;ad

jD˛;1F1j
p
jD˛;2F2j

p

�1=p
:

Applying Cauchy-Schwarz, we conclude

(8.1) kDF kLp.XG;ad/ �

X
˛2I

kD˛;1F1kL2p.XG;ad/
kD˛;2F2kL2p.XG;ad/

:

Clearly, for each finite place v, we have Kv;F �Kv;F1 \Kv;F2 ; in particular
ŒKmax;G WKF �� ŒKmax;G WKF1 �ŒKmax;G WKF2 �. It follows that

(8.2) ŒKmax;G WKF �
ˇ
X

D

kDF kLp.XG;ad/

�

�
ŒKmax;G WKF1 �

ˇ
X

D

kDF1kL2p

��
ŒKmax;G WKF2 �

ˇ
X

D

kDF2kL2p

�
;

where the implicit constant depends only on d , and in all three instances D varies
over the set of monomials in B of degree � d .

That is to say, there is a constant C D C.d/ such that

PSp;d;ˇ .F1F2/� C �PS2p;d;ˇ .F1/PS2p;d;ˇ .F2/:
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From (2.11) we deduce

Sp;d;ˇ .F1F2/� C �S2p;d;ˇ .F1/S2p;d;ˇ .F2/;

as required. �

We recall the definition of kgk for g 2G.F1/;G.AF / etc. from Section 2.4.

LEMMA 8.2. Let F 2 C1.XG/ and g D .g1; gf / 2G.AF /.

Sp;d;ˇ .g �F /�kg1k
d
kgf k

ˇSp;d;ˇ .F /:

Proof. Put F 0 D .g1; gf / �F , where gf D .gv/v finite. For each finite place v,
we note that Kv;F 0 � gvKv;F g�1v \Kv;G. The index ŒKv;G WKv;F 0 � is therefore
bounded above by the number of cosets xgvKv;F in Kv;GgvKv;F . Clearly this is
bounded above by the number of left Kv;F cosets in Kv;GgvKv;G; but the number
of such cosets is precisely kgvk � ŒKv;G W Kv;F �. It now follows easily from the
definitions that PSp;d;ˇ .F 0/�kg1kdkgf kˇPSp;d;ˇ .F /. Applying Remark 8.1
to the endomorphism F 7! .g1; gf / �F , we obtain the claim. �

The following crude lemma is as much of interpolation as we need. It will
be applied, in practice, where E is a composite of a Hecke operator and a certain
L2-projection.

LEMMA 8.3. Let E be a linear endomorphism of C1! .XG/ which commutes
with G.F1/ �Kmax;G. Suppose there are real numbers A;B > 0 such that for
any f 2 C1! .XG/, we have kEf jjL2 � Akf kL2 ; kEf kL1 � Bkf kL1 . Then for
2� p �1,

Sp;d;ˇ .Ev/� A
2=pB1�

2
pSp;d;ˇ .v/:

(We admit also B D1, in which case the L1 hypothesis should be seen as
void, and the result becomes S2;d;ˇ .Ev/� AS2;d;ˇ .v/.)

Proof. By interpolation, the operator norm of E with respect to the Lp

norm on C1! .XG/ is � A2=pB1�2=p. Moreover, the assumption on E shows
that KEf �Kf .

It follows that for f 2 C1! .XG/ we have the inequality

PSp;d;ˇ .Ef /� A
2=pB1�2=pPSp;d;ˇ .f /:

Remark 8.1 implies the conclusion. �

8.1.1. Computing Sobolev norms in the Kirillov model. In the present section,
let v be an archimedean place of F .

Let �v be a generic unitary irreducible representation of GL2.Fv/. Recall
that this means that �v is realized in a space of functions K (the Kirillov model,
consisting of restrictions of functions in the Whittaker model to the diagonal torus)
on F �v . Recall also the definition of the local conductor Condv.�v/ from Section
2.12.2.
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In this model, the diagonal torus acts by translation and upper triangular matri-
ces act through multiplication by characters: that is to say, for f 2K, y1; y2 2 F �v ,
z 2 Fv we have the rules

(8.3) �.a.y1//f W y2 7! f .y1y2/; �.n.z//f W y2 7! f .y2/eFv .zy2/:

From these facts it is easy to verify that the space of smooth vectors in �v contains
all compactly supported smooth functions on F �v . Moreover,

(8.4) kf k22 D

Z
F �v

jf .y/j2d�y

defines a GL2.Fv/-invariant inner product on K.
We will eventually have occasion to choose test vectors in �v in this model,

and wish to evaluate the “Sobolev norms” of the resulting vectors.

LEMMA 8.4. Suppose Fv Š R. Let f 2K be C1 and compactly supported.
Then

X
ord.D/�k

kDf k2� Condv.�v/2k

0@ 2kX
jD0

Z
R�
.jyjC jyj�1/2k

ˇ̌̌̌
d jf

d jy

ˇ̌̌̌2
d�y

1A1=2 ;
where the D sum ranges over all monomials in a fixed basis for Lie.GL2.Fv// of
degree � k.

Suppose Fv Š C, and suppose f 2 K is C1 and compactly supported. Then

X
ord.D/�k

kDf k2� Condv.�v/k

0@ X
0�iCj�2k

Z
C�
.jzjC jzj�1/2k

ˇ̌̌̌
@iCjf

@iz@j Nz

ˇ̌̌̌2
d�z

1A1=2 :
Proof. We prove only the case with Fv Š R, the complex case being similar.

Let h; e, f , z be nonzero elements of the (real) Lie algebra of GL2.R/, defined via

hD

�
1 0

0 �1

�
; e D

�
0 1

0 0

�
; f D

�
0 0

1 0

�
; z D

�
1 0

0 1

�
:

These satisfy the usual commutation relations Œh; e�D 2e; Œh; f �D 2f; Œe; f �D h.
Let � be the scalar by which the Casimir operator 1

2
h2C ef Cfe acts, and � the

scalar by which z acts; then 1Cj�jC j�j2� Condv.�v/2.
It is easy to see how h; e act on K: h acts by a multiple of the differential op-

erator c1�Cy d
dy

and e acts by multiplication by c3y, for some constants c1; c2; c3.
The Casimir operator 1

2
h2C ef C fe D 1

2
h2C 2ef � h acts by the scalar �; so it

follows that for v 2K we have ef vD 1
2
.�Ch�h2/v. In particular, f acts on any

compactly supported function via the differential operator c01y
�1Cc02

d
dy
Cc03y

d2

dy2
,

for certain constants c01; c
0
2; c
0
3, satisfying jc01j; jc

0
2j; jc

0
3j � Condv.�v/2. (In fact,

jc0i j � Condv.�v/3�i .)
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Any monomial of degree k in h; e; f; z is therefore a sum of terms cıy@ıy ,
where jcı j � Condv.�v/2k; j j � k; ı � 2k. The claimed result follows in the
case Fv Š R.

A similar proof holds for Fv Š C. �

8.2. Reduction theory. Recall that F1 WD F ˝Q R. Let K1; Kv; Kmax be as
in Section 2.5. Then K1 �Kmax is a maximal compact subgroup of GL2.AF /.
Given g 2 GL2.AF / we may always write g D

�
1 t
0 1

��
x 0
0 y

�
k, with t 2 AF ; x; y 2

A�F ; k 2K1 �Kmax. We set ht.g/D jxy�1jA; this is well-defined, although x; y
are not unique.

Then ht descends to a function B.F /nGL2.AF /! R>0. Explicitly,

(8.5) ht
�
a b

c d

�
D
jad � bcjAQ
v k.cv; dv/k

2
v

;

where one defines k.cv; dv/kv Dmax.jcvjv; jdvjv/ for v finite, and

(8.6) k.cv; dv/kv D
�
jcvj

2= deg.v/
v Cjdvj

2= deg.v/
v

�deg.v/=2

for v infinite, where deg.v/D ŒFv W R�.
Define S.T /�B.F /nGL2.AF / to be S.T / WD fg W ht.g/� T g. Then, for all

T > 0 the natural projection … WS.T /! GL2.F /nGL2.AF / has finite fibers; for
sufficiently large T , it is injective, and for sufficiently small T it is surjective. This
is the content of reduction theory for GL2. As a consequence, the complement of
….S.T // has compact closure, modulo the center, for each T .

Fix T0 such that… WS.T0/!GL2.F /nGL2.AF / is injective. Then we define
a function ht W GL2.F /nGL2.AF /! R via the rule

ht.g/D

(
ht.g0/; if g D….g0/ for some g0 2S.T0/;

T0; else.

In fact, it is clear that ht descends to a function XDPGL2.F /nPGL2.AF /!R�T0 .

LEMMA 8.5. Let U �GL2.F1/ be compact and x 2XGL.2/. The fibers of the
map U �Kmax!XGL.2/ defined by .u; k/ 7! xuk have size bounded by O.ht.x//,
where the implicit constant depends on U .

Proof. Suppose g 2 GL2.AF / is a lift of x 2 XGL.2/. Consider the map
U �Kmax!XGL.2/ given by .u; k/ 7! guk, as above. Let .u; k/ belong to a fiber
of maximal size. Call this size M . Then

M D #f 2 GL2.F / W guk D gu0k0; 9 u0 2 U; k0 2Kmaxg(8.7)

� #f W gu00k00 D g; 9 u00 2 U �U�1; k00 2Kmaxg:

Set V D U �U�1, a compact subset of GL2.F1/. The definition of S.T /

shows that there exists a constant c <1, depending on V , such that S.T /�V �Kmax�
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S.cT /. Choose T so large that the projection S.cT /!XGL.2/ is injective. It will
suffice to show, whenever B.F /g 2S.T /, that

(8.8) #f 2 GL2.F / W g 2 gVKmaxg � ht.g/:

(The B.F /-coset of) both g and gVK belong entirely to S.cT /. By the
choice of T , g 2 gVKmax implies  in B.F /. Write  D an , with a 2 A.F /
and n 2 N.F /; also, write g D ngagkg with ng 2 N.AF /; ag 2 A.AF /; kg 2
K1 �Kmax. We are free to adjust g on the left by an element of N.F /, since
doing so will not affect the cardinality of the set f 2 GL2.F / W g 2 gVKmaxg.
We may thereby assume that ng lies in a fixed compact subset of N.AF /. Thus
we can write g D agk0g , where k0g WD a

�1
g ngagkg lies in a certain fixed compact

subset � of GL2.AF /.
Now, g 2 gVKmax implies that a�1g anag 2 �VKmax�

�1. Noting that
a�1g anag D aa

�1
g nag , we deduce that a lies in a fixed compact subset of

GL2.AF /, depending only on U ; thus the number of possibilities for a are�U 1.
Moreover, it now follows that a�1g nag lies in a compact subset of AF depending
only on U .

Thus, if we write ag D
�
x 0
0 y

�
; n D

�
1 ˇ
0 1

�
, then ˇ 2 xy�1�0, where �0�AF

is a compact subset that depends only on U . It is easy to see that the number of
possibilities for ˇ is�U 1Cjxy

�1jAF . But jxy�1jAF D ht.g/, which is a function
that is bounded away from zero, and we are done. �

LEMMA 8.6. Let notation be as in the previous Lemma 8.5. Consider the

composite map U �Kmax
…
! XGL.2/! X. Each fiber of this map may be written as

the union of at most O.ht.x// sets each of the form yZ.AF /\UKmax, where Z is
the center of GL2 and y 2 GL2.AF /.

Proof. Let Nx be the image of x in X. Let u; u0 2 U; k; k0 2 Kmax. Suppose
that Nxuk D Nxu0k0 in X. Then there is z 2 A�F and  2 GL2.F / such that

(8.9) xuk D xu0k0a.z; z/; equality in GL2.AF /:

For fixed u; k and  , the set of u0k0 satisfying (8.9) is visibly the intersection of
UKmax with a fixed Z.AF /-coset. This coset depends only on the class of  in
PGL2.F /, so it suffices to show that those  2GL2.F / that occur in equalities such
as (8.9) for varying u; k; u0; k0 represent at most O.ht.x// distinct cosets Z.F /
in PGL2.F /.

Taking determinant followed by the norm A�F =F
� ! R, we conclude that

jzjA belongs to a compact subset of R� that depends only on U . The norm map
A�F =F

�! R� being proper, it follows that z itself belongs to a compact subset
A�F =F

� that depends only on U .
In particular, there is a compact subset �� F �1, depending only on U , and

a finite subset P � A�F , containing 1 and also depending only on U , such that
z 2 F ��:P:

Q
v finite o�Fv . Let zU D U � fa.z1; z1/ W z1 2�g. Given a solution to



1050 AKSHAY VENKATESH

(8.9), write z D ız1po, with ı 2 F �; z1 2�;p 2 P; o 2
Q
v finite o�Fv . Then

xuk D a.ı; ı/xa.p; p/u0a.z1; z1/k
0a.o; o/I

in particular, taking QuD u0a.z1; z1/ 2 zU ; k00 D k0a.o; o/ 2 Kmax, the image of
xa.p; p/ Quk00 in XGL.2/ coincides with xuk. So the number of possibilities for the
Z.F /-coset of  is bounded above by the fibers of the map P � zU �Kmax!XGL.2/
given by .p; Qu; k/! xa.p; p/ Quk. The result follows from Lemma 8.5. �

We shall now need a quantitative version of certain statements in reduction
theory. The subsequent lemma is a fancier version of the following statement: the
number of  2 SL.2;Z/ that map a fixed z 2H to the Siegel set fxC iy W 0� x � 1,
y � T g is� 1CT �1:

LEMMA 8.7. Let g 2 GL2.AF / and Y > 0 a positive real number. Then

(8.10) #f 2 B.F /nGL2.F / W ht.g/� Y g �� 1CY
�1��:

Here the implicit constant is independent of g. Moreover, suppose g 2S.T / with
T � 1. Then

(8.11) supfht.g/ W  … B.F /g � T �1:

Proof. The proof of (8.10) is not difficult, generalizing in a straightforward
way the proof with F D Q. However, it is somewhat notationally tedious; the
(hypothetical) reader may wish to simply work out the proof for F DQ, where it
is equivalent to the following fact: the number of primitive vectors in a unimodular
sublattice of R2 that are contained in an R-ball is� .1CR2/, uniformly in the
lattice. (The result can also be deduced if one admits some basic facts from the
theory of Eisenstein series over F , but we wish to rather deduce these basic facts
from the present lemma.) We also remark that the entire content of (8.10) lies in
the uniformity in g.

Without loss of generality, we take g 2S.T0/, where T0 is sufficiently small
that the map S.T0/!XGL.2/ is surjective. So gD

�
1 t
0 1

��
x 0
0 y

�
k with jxy�1jA�T0.

Moreover, replacing g by gz, for any z 2Z.AF / does not affect the problem, so
we may take y D 1. Then, for  D

�
a b
c d

�
2 GL2.F /, we have

(8.12) ht.g/D
jxjAQ

v k.xvc; ctvC d/k
2
v

:

The equivalence class of  in B.F /nGL2.F / depends only on the pair .c; d/2
F 2, considered up to F � equivalence (i.e., it depends only on c=d 2 F [f1g.) It
suffices, then, to estimate the number

(8.13) #fŒc W d� 2 P1.F /;
Y
v

k.xvc; ctvC d/k
2
v � Y

�1
jxjAg:
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If � is any fixed compact subset of A�F , then for ! 2�,Y
v

k.xv!c; ctvC d/kv ��
Y
v

k.xvc; ctvC d/kv:

Consider R>0 as embedded in A�F via R>0 ,!A�
Q
,!A�F . Then there is a compact

subset � 2 A�F such that A�F D F
� �� �R>0.

The size of (8.13) is unaffected by the substitution .x; t/ 7! .x�; t�/, for any
� 2 F �. In view of the above remarks we may assume — decreasing Y by a
constant that depends only on F — that x 2 R>0. Moreover, the size of (8.13) is
also unaffected by the substitution t 7! t C � , for � 2 F . We may therefore assume
that jt jv � 1 for all finite places v.

Fix a set of representatives J1; : : : ; Jh for the class group of oF ; we will
assume each Ji is integral. For any Œc W d� 2 P1.F /, we may find a representative
.c; d/ so that the ideal coF CdoF is one of the Ji ; moreover, replacing .c; d/2 J2i
by .�c; �d/ for � 2 o�F does not change the class Œc W d�.

The restrictions on x; t imply that k.xvc; ctvCd/kv D k.c; d/kv for all finite
v. Then

Q
v finite k.c; d/kv DN.Ji /�1, the inverse of the norm of Ji D coF CdoF .

So it will suffice to bound, for each 1� i � h, the quantity

#
n
.c; d/2 J2i =o

�
F W coF CdoF D Ji W

Y
1jv

.k.xvc; ctvCd/k
2
v/� Y

�1
jxjAN.Ji /2

o
:

Since Ji belongs to a finite set, the quantity N.Ji / is bounded; thus, decreasing
Y again as necessary, it suffices to estimate, for each 1� i � h,

#
n
.c; d/ 2 J2i =o

�
F W coF C doF D Ji ;

Y
1jv

k.xvc; ctvC d/k
2
v � Y

�1
jxjA

o
:

There is only one term corresponding to c D 0. Otherwise, .c/ is a principal
ideal divisible by Ji ; let P be the set of integral principal ideals. Then the size of
the set above is precisely

(8.14)
X
.c/2P

#
n
d 2 Ji W .c/C doF D Ji ;

Y
1jv

k.xvc; ctvC d/k
2
v � Y

�1
jxjA

o
:

We note that the size of the inner set is independent of the choice of generator for
the principal ideal .c/. Moreover, the inequality of (8.14) implies that the norm
N..c// of the principal ideal .c/ satisfies N..c//2 � Y �1jxj�1A .

Let us estimate the number of d that can correspond to a fixed principal ideal
.c/ in (8.14). Recall that jxjA � T0 and that x is in the image of the embedding
R>0 ,! A�Q ,! A�F . In particular, jxjv is bounded below at each infinite place.
Moreover, since o�F is a cocompact subgroup of the elements of F �1 with norm
1, we can choose a representative for the principal ideal .c/ so the same is true of
jcjv. Note that (cf. (8.6)) k.xvc; ctvC d/kv � .jxvcjvCjctvC d jv/.



1052 AKSHAY VENKATESH

So in fact, again decreasing Y as necessary, it will suffice to estimate

(8.15)
X

.c/2PWN.c/�Y�1=2jxj�1=2A

#
n
d 2 Ji W

Y
1jv

.1CjctvC d jv/
2
� Y �1jxjA

o
:

To estimate the right-hand side, first observe that if fMvg1jv is any set of
positive real numbers indexed by the infinite places of F , then #fd 2 Ji W jctvC

d jv �Mv for1jvg �
Q
1jv.1CMv/. Indeed, by subtraction, it will suffice to

estimate #fd 2 Ji W jd jv � 2Mv for1jvg; this amounts to counting points in the
lattice Ji � F1 in a region that is the product of a box and a disc; the result is then
clear.

Next, if T �1, the subset f.y1; : : : ; yd / W
Q
i .1Cyi /�T g in Rd>0 is contained

in the union of O�.T �/ boxes f.y1; : : : ; yd / W yi �Mig, where
Q
i .1CMi /� T .

We may assume Y �1jxjA � 1, else (8.15) has no solutions. We conclude that the
number of d attached to each principal ideal .c/ in (8.15) is�� .Y

�1=2jxj
1=2
A /1C� .

The number of possibilities for .c/ is bounded by the number of integral ideals
with norm � Y �1=2jxj�1=2A , which is�� .Y

�1=2jxj
�1=2
A /1C� . Finally, there is one

class with c D 0. We conclude that the number of pairs .c; d/ up to equivalence is
� Y �1��C 1. This proves (8.10).

As for (8.11), suppose g 2 S.T /, so we may write g D
� x z
0 y

�
k with k 2

K1 �Kmax, and jxy�1jA � T . Suppose  D
� ˛ ˇ
˛0 ˇ 0

�
. If  … B.F /, then ˛0 ¤ 0.

In that case, following the notation of (8.5), we have:Y
v

k.˛0v; ˇ
0
v/gvkv �

Y
v

j˛0vxvjv D jxjA:

and therefore, by (8.5), ht.g/� j det.g/x�2jA � T �1. �

9. Background on quantitative equidistribution results

The aim of this section is to quantify various standard equidistribution results
(equidistribution of long horocycles, Hecke points, etc.), using the adelic Sobolev
norms. As such neither the results nor the methods are new; we just collect together
those results we need and provide brief proofs.

As regards the origin of the ideas used here, we have drawn in particular from
the work of Clozel-Ullmo, Linnik, Oh, Margulis, Ratner and Sarnak.

9.1. Decay of matrix coefficients.

9.1.1. Local setting. Our fundamental tool in establishing all these results is
the spectral gap, i.e., quantitative mixing properties of real and p-adic flow. As
such, we begin by recalling the basic relevant bound on matrix coefficients.

Let 0� ˛ � 1=2. Let v be a place of F , and suppose that .V; �/ is a unitary
representation of GL2.Fv/ which does not contain, in its spectral decomposition,
any complementary series with parameter > ˛. (More formally: V does not weakly
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contain such a representation.) Thus ˛ D 0 corresponds to V being tempered; on
the other hand, any value of ˛ < 1=2 implies that V contains no almost invariant
vectors.

LEMMA 9.1. For w1; w2 any two Kv-finite elements of V , satisfying hw1; w1i
D hw2; w2i D 1, and any x 2 Fv,

(9.1) h�.a.x//w1; w2i ��;F dim.Kvw1/1=2 dim.Kvw2/1=2.1Cjxjv/˛�1=2C�:

The implicit constant of (9.1) depends only on �. Since we do not know of an
available reference, we briefly sketch an argument for (9.1).

Proof. In the case where ˛D 0, i.e., V is tempered, then (9.1) is proven in [10]
(strictly this is for semisimple groups, and the generalization to reductive groups
is established in [30]).

In the general case, we present an argument along the lines of that found in
[39, p. 132] for the case kDR (that reference deals also with other rank one groups,
however); this is also related to an argument presented in [10].

Let .�1=2�˛; W / be the complementary series of trivial central character with
parameter 1=2�˛; let v0 2W be a spherical vector of norm 1. The matrix coeffi-
cient hgv0; v0i is a spherical function. It is positive and satisfies the bound

(9.2) .1Cjxjv/
�˛C�

�� ha.x/v
.0/; v.0/i �� .1Cjxjv/

�˛��:

This (or an even stronger form) is stated and used in [39]; in the present case
it can be verified by direct computation. For example, when v is real, the left-
hand coefficient can be expressed explicitly as 1

2�

R 2�
�D0

d�

.x cos2.�/Cx�1 sin2.�//˛
; the

integrand is positive, thus the positivity; the lower bound follows by considering
the contribution near � D 0, and the upper bound comes from observing that this
contribution is dominant.

Then the representation V ˝W is tempered. Indeed it suffices — again by
[10] — to verify that a dense set of matrix coefficients are in L2C� , which follows
from (9.2).

Now one may estimate the matrix coefficient ha.x/w1 ˝ v0; w2 ˝ v0i by
appealing again to [10]. On the other hand,

ha.x/w1˝ v
0; w2˝ v

0
i D ha.x/w1; w2iha.x/v

0; v0i;

and thus (9.1) follows from the lower bound of (9.2). �

Let us record a useful further variant. Suppose v is finite. Let K1; K2 �Kv
be subgroups and let � be the .K1; K2/-bi-invariant probability measure supported
on K1a.x/K2.

Then

(9.3) kv ? �k2� ŒKv WK1�
1=2ŒKv WK2�

1=2.1Cjxjv/
˛�1=2C�

kvk2:
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Indeed, for i D 1; 2 let …Ki be the projection operator w 7!
R
Ki
kw on V , where

Ki is endowed with the Haar probability measure. Then

kv ? �k2 D sup
w2V

hv ? �;wi

kwk2
D sup
w2V

ha.x/…K1v;…K2wi

kwk2
(9.4)

� ŒKv WK1�
1=2ŒKv WK2�

1=2.1Cjxjv/
˛�1=2C�

kvk2:

9.1.2. Variant for �nSL2.R/. Let 0 � ˛ � 1=2, suppose G D SL2.R/, and
let V be a unitary representation of G such that V does not weakly contain any
complementary series with parameter � ˛. The normalization is again so that ˛D 0
corresponds to tempered and ˛D 1=2 corresponds to V not having almost invariant
vectors.

Then one has the following variant of (9.1), proved by the same method:

(9.5)
�
�

�
y1=2 0

0 y�1=2

�
w1; w2

�
�� dim.SO.2/ �w1/1=2 dim.SO.2/ �w2/1=2.1Cjyj/˛�1=2C�:

It is convenient to extend the validity of (9.5) beyond the K-finite space by
replacing dim.SO.2/wi / by appropriate Sobolev norms. We confine ourselves to
the case of main interest, where V is the orthogonal complements of the constants
in L2.�nSL2.R//, where � is a lattice in SL2.R/. The estimates we are about
to describe are, again, not new; estimates for effective mixing of geodesic and
horocycle flows in this setting are contained in [32].

For our purposes it would be optimal to use fractional Sobolev norms; since
we have not defined these, we shall use a rather crude form of interpolation instead.

Thus let f1; f2 2 C1.�nSL2.R//. One expands both f1 and f2 into a sum
of SO.2/-types and applies (9.5). Indeed, write for i 2 f1; 2g an expansion fi DP1
nD�1 f

.n/
i , where f .n/i transforms under the character

� cos.�/ sin.�/
� sin.�/ cos.�/

�
7! ein� .

Expanding:

��
y1=2 0

0 y�1=2

�
f1; f2

�
D

X
n;m2Z

��
y1=2 0

0 y�1=2

�
f
.n/
1 ; f

.m/
2

�(9.6)

�� .1Cjyj/
˛�1=2C�

X
n;m

kf
.n/
1 k2kf

.m/
k2

D .1Cjyj/˛�1=2C�
�X

n

kf
.n/
1 k2

��X
m

kf
.m/
2 k2

�
:

Our definitions of the Sobolev norms (Section 2.9.2) are so that S2;1.f1/2 �P
n.1Cjnj/

2kf
.n/
1 k

2
2, and similarly for f2. On the other hand, it is an elementary
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estimate that�X
n

kf
.n/
1 k2

�2
��

�X
n

kf
.n/
1 k

2
2.1Cjnj/

2

�1=2C��X
n

kf
.n/
1 k

2
2

�1=2��
:

It follows from this that for any k; k0 2 SO.2/ we have the matrix coefficient
bound

(9.7)
ˇ̌̌̌�
k

�
y1=2 0

0 y�1=2

�
k0f1; f2

�ˇ̌̌̌
� .1Cjyj/˛�1=2C�.S2;1.f1/S2;1.f2//

1=2C�
kf1k

1=2��
kf2k

1=2��;

at least for f1; f2 which are SO.2/-finite. But the general case of smooth f1; f2
follows from density.

Note that in (9.7) that the factor kf1k1=2��S2;1.f1/1=2C� is a crude substitute
for the fractional (1=2C �)- Sobolev norm of f1.

9.2. Pointwise bounds. In this section, we make free use of the adelic Sobolev
norms introduced in Section 2.9.3. We recall the definition Sp;d WD Sp;d;1=p. We
also recall that in statements of the form jL.f /j � Sp;d .f /, for certain linear
functionals L, we shall allow the implicit constant of � to depend on p and d
without explicit mention.

LEMMA 9.2. Let f 2 C1! .XGL.2// and let x 2 XGL.2/. Then, for any p � 2
and d � 1,

(9.8) jf .x/j � ht.x/1=pSp;d .f /:

Moreover, if F 2 C1.X�X/, and p > 2; d � 1,

(9.9)
Z

X
jF.x; x/jdx� Sp;d .F /:

Proof. As in (2.1), set Kf D
Q
v finiteKv;f , where Kv;f is the stabilizer of

f in Kv. Fix an open neighborhood of the identity U � GL2.F1/. Consider the
map … W U �Kf ! X defined by .u; k/ 7! xuk. By Lemma 8.6, the fibers are
unions of at most O.ht.x// sets, each of the form yZ.AF /\UKf . Moreover, for
any y 2 U �Kf , the measure of fz 2 A�F W ya.z; z/ 2 U �Kf g is bounded above by
a constant depending only on U . Indeed, the set of such z is contained in a fixed
compact subset of A�F that depends only on U .

Equip U �Kf with the restriction of Haar measure from GL2.AF /. From the
preceding paragraph, one easily deduces that the push-forward of this measure to
X, under .u; k/ 7! xuk, is bounded above by C � ht.x/ times the measure on X,
where the constant C depends only on U .
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Then: Z
u2U

jf .xu/jp D vol.Kf /
�1

Z
u2U;k2Kf

jf .xuk/jpdudk(9.10)

� ht.x/ŒKmax WKf �

Z
X
jf .x/jpd�X.x/:

Equation (9.10) holds with f replaced by Df , for D any fixed monomial in
Lie.GL2.F1//. The standard Sobolev estimate, applied to the function u 7! f .xu/

on the real manifold U , implies that jf .x/j � ht.x/1=pPSp;d;1=p.f / for suffi-
ciently large d . (Indeed, it suffices to take any d > dim.U /=2D 2ŒF WQ�.) Then
Remark 8.1, (2) implies the conclusion.

As for the second conclusion, we proceed in a similar fashion as above (with
X replaced by X�X) to obtain the estimate jF.x; y/j� ht.x/1=pht.y/1=pSp;d .F /.
It is easy to see that

R
X ht.x/2=pdx <1 for p > 2, and the conclusion follows. �

The next lemma quantifies the rapid decay of a cuspidal function, or more
generally a truncated automorphic function, in the cusp. Recall that for T0 > 0 we
have defined the Siegel domain S.T0/ in Section 8.2.

LEMMA 9.3. Let f 2 C1! .XGL.2//. Put f N .g/ D
R
N.F /nN.AF /

f .ng/dn,
where the measure on N.F /nN.AF / is the N.AF /-invariant probability measure.
Then for x 2S.T0/, p � 2; k � 0 and d � 1,

(9.11) jf .x/�f N .x/j �T0 ht.x/1=p�kSp;d;1=pCk.f /:

Proof. We may assume that x 2N.AF /A.R/�.K1 �Kmax/, for some fixed
compact set � � A.AF /. Here A.R/ is regarded as a subset of A.F1/ via the
natural inclusion R ,! F1. Write accordingly x D na!k, where ! 2�.

Consider the function on F1 defined by g.t/ D f .n.t/x/ � f N .x/. Let
ƒ D ft 2 oF W n.t/ 2 GL2.F1/!kKf k�1!�1g, where Kf is again as in .2:1/.
Then the function g.t/ is invariant under ƒ (thought of as a sublattice of F1).

One sees that, since ! belongs to the fixed compact �, the covolume bound
vol.F1=ƒ/� ŒKmax W Kf �. Moreover, since ƒ may be regarded as a fractional
ideal of F , the homothety class of ƒ lies in a fixed compact set in the space of
homothety classes of lattices in F1. Also, g.t/ defines a function on F1=ƒ, with
integral 0.

Suppose now that G is a smooth function on Rd=L, for some d > 1 and some
lattice L � Rd , with integral 0. Let kGk.i/ D supD supz2Rd=L jDG.z/j, where
D varies over all monomials in @1; : : : ; @d of exact order i . Then an elementary
argument shows that kGk.0/ � vol.Rd=L/i=dkGk.i/, and the implicit constant
may be taken to vary continuously with the homothety class of L.

Apply this lemma to the function g on F1=ƒ, with i D kŒF W Q� for some
k � 1. The norm kgk.kŒF WQ�/, in the sense of the above paragraph, is bounded, by
Lemma 9.2 and an elementary computation, by ht.x/�k.ht.x/1=pPSp;d 0.f //, for
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some d 0� 1. It follows that

sup jg.t/j � ht.x/1=p�kPSp;d 0.f /ŒKmax WKf �
k
D ht.x/1=p�kPSp;d 0;1=pCk.f /:

Applying Remark 8.1, (2), we conclude

jf .x/�f N .x/j � ht.x/1=p�kSp;d 0;1=pCk.f /: �

LEMMA 9.4. Suppose f 2 C1! .XGL.2// is cuspidal. Then S1;d;ˇ .f / �
S2;d 0;ˇC3=2.f /, for sufficiently large d 0.

Proof. By Lemma 9.3 for f cuspidal, applied with p D 2; k D 1, we see
that jf .x/j � S2;d;3=2.f / for d � 1. Applying this inequality to Df , for D

in the universal enveloping algebra of GL2.F1/, we see that PS1;d;ˇ .f / �
PS2;d 0;ˇC3=2.f /, for d 0 sufficiently large. This inequality holds for cuspidal f .

Let … be the L2-orthogonal projection onto the space of cuspidal functions;
then … commutes with GL2.AF /, and it follows that

PS1;d;ˇ .…f /� PS2;d 0;ˇC3=2.…f /� PS2;d 0;ˇC3=2.f /

for arbitrary f 2 C1! .XGL.2//. Now Remark 8.1, (3) (or, more precisely, a trivial
modification thereof) implies the conclusion. �

9.3. Equidistribution of long horocycles and closed horospheres. Let G be
a semisimple group, � � G a lattice, U a unipotent subgroup of G. It is well-
known that one can prove, in a quantitative fashion, the equidistribution of U -orbits
on �nG if U is a horospherical subgroup, i.e., the unipotent radical of a proper
parabolic subgroup. We shall quantify two instances of this that will be of interest
to us.

We emphasize that neither the results nor the techniques of this section are
new; we have included proofs only to keep the present paper as self-contained as
possible.

Effective estimates for equidistribution of long horocycles on quotients of
SL2.R/ are already implicit in the work of Ratner [31] and [33], where the effective
mixing of the horocycle flow is used. We will proceed in a closely related fashion,
using the mixing property of the Cartan action; again, this is definitely not new and
appears already, although in a different context, in the doctoral thesis of Margulis
(reprinted in [26]).

9.3.1. Equidistribution of long horocycles in hyperbolic 2-space. Let � �
SL.2;R/ be a lattice such that L2.�nSL.2;R// does not contain any comple-
mentary series representation with parameter > ˛, for any 0 � ˛ < 1=2. (That
is: ˛ 2 Œ0; 1=2/ is such that all nonzero eigenvalues of the hyperbolic Laplacian
�y2.@xxC @yy/ on �nH2 are bounded below by 1=4�˛2.)

We define n; a; Nn as in (3.1).
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The following lemma quantifies the equidistribution of long horocycles. Re-
sults of this type are already implicit in [31] and [33]. This problem is analyzed in
much more detail than we go into, in [43] and [14].

LEMMA 9.5. Assume � is cocompact, and let x0 2 �nSL2.R/.

(9.12)
ˇ̌̌̌
1

T

Z T

tD0

f .x0n.t//dt �

Z
�nSL2.R/

f .g/dg

ˇ̌̌̌
�� T

˛�1=2
2
C�S1;1.f /:

Proof. The idea (which is certainly not new; cf. remarks at start of �9.3) is that,
upon flowing a small ball in �nG for a long time by the geodesic flow, it turns into
a narrow neighborhood of a long horocycle. One thereby can deduce the equidis-
tribution of the long horocycle from the mixing properties of the geodesic flow.

Let N;A; xN be the images of n; a; Nn respectively. Let g1 be a smooth function
of compact support on the real line, with integral

R1
�1

g1.x/dx D 1. It will remain
fixed for all time throughout our arguments. Fix 1> ı > 0 and let gı WR!R be the
convolution of the characteristic function of Œ0; 1� with g1.x=ı/ı�1; that is to say

gı.x/D ı
�1

Z 1

tD0

g1

�
x�t

ı

�
dt:

Then gı is a smooth function of integral 1, which is supported in a small interval
around Œ0; 1�.

Define a probability measure �ı on �nSL2.R/ via the rule

�ı.f /D ı
�1

Z
x;y;z2R

f .x0n.x/a.e
y/ Nn.z//gı.x/g1.y=ı/g1.z/dxdydz:

In words, �ı is a measure supported on a small box around x0; this box has width
O.1/ in the N and xN directions, and O.ı/ in the A direction. When we flow this
by A, it will become a measure supported along a box that closely approximates
an N -orbit.

We observe that

�ı.a.T
�1/f /D

1

ı

Z
x;y;z

f .x0a.T /
�1n.x/a.ey/ Nn.z//gı.x=T /g1.y=ı/g1.T z/dxdydz:

On the other hand, for any fixed x1 2 �nSL2.R/, we note that
(9.13)ˇ̌̌
ı�1T

Z
f .x1a.e

y/ Nn.z//g1.y=ı/g1.T z/dydz�f .x1/
ˇ̌̌
�max.T �1; ı/S1;1.f /:

Indeed, (9.13) merely quantifies the fact that the right-hand side integral is against
a probability measure supported in a very small ball (of size max.T �1; ı/) around
x1. Since �nSL2.R/ is assumed compact, the implicit constant of (9.13) may be
taken independent of x1.

Consequently,
(9.14)ˇ̌̌̌
1

T

Z
t2R

gı.t=T /f .x0a.T /
�1n.t//dt ��ı.a.T /

�1f /

ˇ̌̌̌
�max.T �1; ı/S1;1.f /:
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On the other hand, the measure �ı has a continuous distribution function hı ,
i.e. �ı.f /D

R
�nSL2.R/

f .g/ �hı.g/dg, and �ı.a.T /�1f / may be estimated using
(9.7), i.e., the decay of matrix coefficients.

A routine computation shows that khıkL2� ı�1=2 and S2;1.hı/� ı�3=2; on
account of the cocompactness of �nSL2.R/, both these estimates are uniform in x0.

Using (9.7) now yields

(9.15)
ˇ̌̌̌
�ı.a.T /

�1f /�

Z
�nSL2.R/

f .g/dg

ˇ̌̌̌
�� T

˛�1=2C�S2;1.f /ı
�1��:

Finally, note that if �Œ0;T � denotes the characteristic function of Œ0; T � in the
real line, then 1

T

R
t2R
jgı.t=T /��Œ0;T �.t/jdt � ı. It follows that

(9.16)
1

T

ˇ̌̌̌ Z T

0

f .x0a.T /
�1n.t//dt �

Z
t

gı.t=T /f .x0a.T /
�1n.t//dt

ˇ̌̌̌
� ı �S1;0.f /:

Combining (9.14), (9.15) and (9.16), and replacing x0 by x0a.T /, we con-
clude that the left-hand side of (9.12) is bounded by

O�

�
S1;1.f /.max.T �1; ı/CT ˛�1=2C�ı�1��C ı/

�
:

We choose ı2 D T ˛�1=2 to obtain the claimed conclusion. �

9.3.2. Equidistribution of large horospheres on higher rank groups. We now
prove quantitative equidistribution of large closed horospheres. This result is well-
known and generalizes the result of Sarnak, that the closed horocycle fxCiyg0�x�1
is equidistributed in SL2.Z/nH, as y! 0.

We shall follow the notation of Section 3.2, which we briefly reprise. Let G
be a connected semisimple (real) Lie group, � �G a lattice, K �G the maximal
compact subgroup, g the Lie algebra of G, and H 2 g a semisimple element. Fix
arbitrarily a norm k � k on g. We equip G with the Haar measure in which �nG
has volume 1. Let exp W g! G be the exponential map. Let u be the sum of all
negative root spaces for H , and let U D exp.u/�G. Let x0 2�nG be so that x0U
is compact; note that the existence of such x0 implies that �nG is noncompact.

Let xt D x0 exp.tH/, and let �t be the stabilizer of xt in U . We denote by
h�; �iL2.�nG/ the inner product in the Hilbert space L2.�nG/.

LEMMA 9.6. There is �1 > 0 such that, for any f; g 2 C1.�nG/ and for any
U 2 u with unit length (with respect to the fixed norm k � k on g) we have
(9.17)ˇ̌̌̌
hexp.tH/ �f; gi �

Z
�nG

f

Z
�nG

g

ˇ̌̌̌
� exp.��1jt j/S1;dim.K/.f /S1;dim.K/.g/;ˇ̌̌̌

hexp.sU / �f; gi �
Z
�nG

f

Z
�nG

g

ˇ̌̌̌
� .1Cjsj/��1S1;dim.K/.f /S1;dim.K/.g/:

Of course the constant �1 will depend on the choice of the norm k � k.
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Proof. This follows from a nice result of Kleinbock and Margulis; see [23].
(The orthogonal complement L20 of the identity representation in L2.�nG/ is
isolated, by [23, Th. 1.12], from the trivial representation in the unitary dual ofbG. A sufficiently high tensor power of L20 is therefore tempered, whereupon one
applies the bounds of [10].) Note that [23] only claims the result (in effect) with
S1;d for some d . The fact that we can take d D dim.K/ follows by explicating
the argument just sketched; indeed, the necessary argument is substantially that
presented in Section 9.1.2, with .SL2.R/;SO.2// replaced by .G;K/. �

Recall the definition of �T from Section 3.2; i.e., �T .f /D
R
�T nU

f .xT u/du

vol.�T nU/
:

Thus �T is the measure supported on a closed horosphere, and this horosphere
expands as T ! 1. One deduces from Lemma 9.6 that the measures �T are
equidistributed as T !1:

LEMMA 9.7. Set �2 D �1
dim.G/Cdim.K/C1 , �1 being as in the previous lemma.

Then, for T � 0 and f 2 C1.�nG/,ˇ̌̌̌
�T .f /�

Z
�nG

f

ˇ̌̌̌
� e��2T S1;dim.K/.f /:

Proof. The idea is identical to Lemma 9.5 and we refer to the first paragraph
of that proof for a description of it.

Fix a left-invariant Riemannian metric on G. This descends to a metric on
�nG. We first choose some “smoothing kernels” on G. For each � > 0, choose a
function k� 2 C1.G/ such that k� is positive, supported in an �-neighborhood of
the identity,

R
G k� D 1, and so that for any X1; X2; : : : ; Xl 2 g we have

(9.18) sup
g2G

jX1 : : : Xlk�j �X1;:::;Xl �
�l�dim.G/:

It is easy to see this is possible (for example: choose an appropriate sequence of
functions on g and transport to G via the exponential map).

The measure �0 is a U -invariant probability measure supported on the closed
orbit x0U . �0 ? k� is supported in an �-neighborhood of x0U and is given by
integration against a C1 density function g�, that is: �0 ?k�.f /D

R
�nG fg�:

Moreover, it follows from (9.18) that g� satisfies the bounds S1;l.g�/ �
��l�dim.G/, for any l � 0.

The translate of �0 ?k� by exp.�TH/ is supported in an �-neighborhood of
xTU ; note it is essential that T � 0 for this. (Recall that our conventions are such
that the right translate of the point mass at x by g 2G is the point mass at xg�1;
see �2.1.)

In fact, one verifies that

(9.19) j�T .f /� �0 ?k�.exp.TH/ �f /j � �S1;1.f /:

Indeed, let g 2 supp.k�/ and let ıg be the point mass at g. It suffices to check
that the identical bound holds for

ˇ̌
�T .f /� �0 ? ıg.exp.TH/ �f /

ˇ̌
, which equals
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j�T .f /� �0.g exp.TH/ �f /j. Let b the sum of nonnegative root spaces for H on
g. If � is sufficiently small, we may write gD um, with u2 exp.u/ and m2 exp.b/.
Moreover, again if � is sufficiently small, u;m lie in a C�-neighborhood of the
identity, for some fixed constant C . Then exp.�TH/g exp.TH/ D u0m0, with
u0 2 exp.u/ and where m0 2 exp.b/ is in a C 0�-neighborhood of the identity, for
some absolute C 0. Also, �0.g exp.TH/ �f /D �T .m0f /. Thus it suffices to bound
j�T .f /� �T .m

0f /j. But the L1-norm of f �m0 �f is� �S1;1.f /.
On the other hand, by Lemma 9.6, for T � 0: we have

(9.20)
ˇ̌̌̌
�0 ?k�.exp.TH/ �f /�

Z
�nG

f

ˇ̌̌̌
D

ˇ̌̌̌
hexp.TH/f; g�iL2.�nG/�

Z
�nG

f

ˇ̌̌̌
� exp.��1T /S1;dim.K/.f /�

� dim.G/�dim.K/:

It follows from this and (9.19) thatˇ̌̌̌
�T .f /�

Z
�nG

f

ˇ̌̌̌
� .�C exp.��1T /�� dim.G/�dim.K//S1;dim.K/.f /:

To conclude, take � D exp.� �1T
dim.G/Cdim.K/C1/. �

9.4. The equidistribution of Hecke orbits and p-adic horocycles. In this sec-
tion, we prove some “p-adic” equidistribution statements, pertaining to the equidis-
tribution of Hecke points and p-adic horocycles.

In the lemmas that follow, f will be a prime ideal of F , x�f, the normalized
Hecke measure defined subsequent to (2.6), and Œf� as defined in Section 2.5.

The first lemma is an adelic version of the fact that the Hecke orbit Tq.z/ of
a point z 2 SL.2;Z/nH is equidistributed, as q!1.

LEMMA 9.8. Let f 2C1! .XGL.2// and f an ideal of F . Then, for x0 2XGL.2/,
d � 1,

(9.21)
ˇ̌̌̌
f ? x�f.x0/�

X
�2D!

�.f/�.x0/

Z
x2X

f .x/�.x/d�X.x/

ˇ̌̌̌
� N.f/˛�1=2C�ht.x0/1=2S2;d .f /:

Here �.x/ denotes the function g 7! �.det.g// on XGL.2/.

Proof. Let P be the projection defined in Section 2.7. Let E be the en-
domorphism f 7! .f � Pf / ? x�f of C1! .XGL.2//. The operator E has norm
�� N.f/˛�1=2C� with respect to the L2-norm (this follows from Lemma 2.1 and
the bounds of �9.1). By Lemma 8.3 it follows that the operator norm of E with
respect to S2;d;ˇ is also�� N.f/˛�1=2C�.

The left-hand side of (9.21) is exactly jEf .x0/j. Now apply Lemma 9.2, with
p D 2, to conclude. �
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The next lemma is an adelic version of the following (again closely connected
to equidistribution of Hecke points). Let Y.p/ be embedded in Y.1/�Y.1/ (nota-
tion of discussion after Proposition 4.1). Then Y.p/ is equidistributed as p!1.
The quantification of this is slightly complicated by noncompactness; in particular,
we must use Sobolev norms Sp;d for p > 2. (cf. discussion in �2.9.1).

LEMMA 9.9. Let q be a prime ideal of oF . LetF 2C1.X�X/ be PGL2.oFq/�

PGL2.oFq/ invariant.Then, for any d � 1; p > 2,

(9.22)
ˇ̌̌̌ Z

X
F.x; xa.Œq�//dx�

X
�2D1

�.Œq�/

Z
X
F.x; y/�.x/�.y/d�X.x/d�X.y/

ˇ̌̌̌
�� N.q/

2˛�1
p
C�Sp;d .F /:

Proof. Let � be the measure ı1�x�q on PGL2.Fq/�PGL2.Fq/, where ı1 is the
measure consisting of a point mass at the identity. Recalling (see (2.6) in the case
of a prime ideal, and �2.5 for the definition of Kq) that x�q is the Kq-bi-invariant
probability measure supported on Kqa.Œq�/Kq, we note that

.F ?�/.x; x/D

Z
k1;k22Kq

F.x; xk1a.Œq�/k2/dk1dk2D

Z
Kq

F.xk; xka.Œq�//dk;

where we equip Kq with the Haar measure of mass 1, and we use the PGL2.oFq/-
invariance of F at the second step. It follows that

(9.23)
Z

X
F.x; xa.Œq�//dx D

Z
X
.F ? �/.x; x/dx:

Let P2 be as in Section 2.7. Let E be the endomorphism of C1.X � X/
defined by E.F / D .F � P2F / ? � . Combining (9.23) and the easily verified
equalityZ

X
.P2F ?�/.x; x/dx D

X
�2D1

�.Œq�/

Z
X
F.x; y/�.x/�.y/d�X.x/d�X.y/;

we see that the left-hand side of (9.22) is precisely j
R

XEF.x; x/dxj.
Since P2 does not increase L1-norms, and � is a probability measure, it

follows that the operator norm of E with respect to the L1-norm is � 2. Moreover,
the operator norm of E with respect to the L2-norm is� N.q/˛�1=2, as follows
from Lemma 2.1.

Lemma 8.3 now implies that for 2�p�1we have the majorization Sp;d .EF /

� N.q/
2˛�1
p
C�Sp;d .F /. Now Lemma 9.2 shows thatˇ̌̌̌ Z

X
EF.x; x/dx

ˇ̌̌̌
� Sp;d .EF /� N.q/

2˛�1
p
C�Sp;d .F /

for p > 2; d � 1; whence the conclusion of the Lemma. �
The next lemma shows the equidistribution of certain p-adic horocycle orbits,

as p varies. The idea will be as follows: (speaking very loosely, in the case of
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SL2) a typical p-adic horocycle orbit, when projected to SL.2;Z/nH, looks like
fz C i

p
g0�i�p�1. This set looks very much like the image, under the p-Hecke

operator, of the point pz. Thus one can deduce distribution properties of the p-adic
horocycle orbit from some standard facts about Hecke operators.

This is a rather ad hoc argument. Let us say a few words about why this
problem does not quite fit into the usual setup of such questions. We are proving
statements about the distribution of e.g., p-adic horocycles when p varies. This
does not fit easily into the usual context of such matters, where one considers,
e.g., a fixed unipotent flow on an S-arithmetic homogeneous space. It would be
interesting to have a more conceptual and natural way of treating such questions,
in the aspect where “p varies.”

LEMMA 9.10. Let f 2C1.X/ and let f be an integral ideal of oF , factorizing
as fD

Q
q qeq . For each qjf, let sq� 0 be a nonnegative integer, and suppose f is in-

variant by
Q

qjfK0Œq
sq �. Put mD

Q
qjf q

sq . Let �f be the Haar probability measure
on
Q

qjfN.q
�eqoq/ and dh the Haar probability measure on SL2.F /nSL2.AF /.

Then, for y 2 F �nA�F ,

(9.24)
ˇ̌̌̌
f ? �f.a.y//�

Z
h2SL2.F /nSL2.AF /

f .ha.y//dh

ˇ̌̌̌
�� N.f/˛�1=2C� max

�
N.f/jyj; 1

N.f/jyj

�1=2
N.m/3=2C�S2;d .f /:

Proof. As usual let Kv;f be the stabilizer of f in Kv D GL2.oFv /, so that
Kq;f contains K0Œqsq � for each qjf.

We now define a measure Q�q on PGL2.Fq/ for each qjf. It will “approximate”
�f but will be composed of Hecke operators.

For those q such that sq D 0, put

(9.25) Q�q D N.q/�eq=2ı
a.$

�eq
q /

?�qeq �N.q/
�eq�1

2 ı
a.$

�eq�1
q /

?�qeq�1 :

(We refer to �2.8 for definitions of �‹ appearing above.) For q such that sq � 1, we
set �q to be the unique bi-K0Œqsq �-invariant probability measure on

K0Œq
sq �a.$eq/K0Œq

sq �;

normalized to have mass 1, and we put Q�qD ıa.$
�eq
q /

?�q. Finally, set Q�fD
Q

qjf Q�q.
One then verifies by a direct computation that

(9.26) f ? �f D f ? Q�f:

The intuition for this statement, in the classical setting, as follows: let z 2SL2.Z/nH.
Then (for a prime number p) the set fzC i=pg0�i�p�1 is the p-Hecke orbit of pz,
with the point p2z removed. In the case eqD 1, the first term on the right-hand side
of (9.25) corresponds to the p-Hecke orbit of pz, and the second term corresponds
to removing the point p2z.
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More formally, to verify (9.26), the unramified computation, at those places
where sq D 0, is easy; the ramified computation is just Hecke theory at ramified
primes, see e.g., [40, Prop. 3.33].21

The projection P of Section 2.7 commutes with the action of GL2.AF /, and
so (9.26) holds also with f replaced by Pf or f �Pf . Moreover, Pf ?�fDPf .
It follows that

(9.27) f ? �f.x/D

Z
h2SL2.F /nSL2.AF /

f .hx/dhC .f �Pf / ? Q�f.x/:

Set Nf D f �Pf . Then, expanding the term Nf ? Q�f:

(9.28) Nf ? Q�f D

X
S�fqjf;sqD0g

Nf ?
Y

qjfWsq�1

ı
a.$

�eq
q /

?�q?

Y
qjfW

sqD0;q…S

�
N.q/�eq=2ı

a.$
�eq
q /

?�qeq

�
?
Y
q2S

�
�N.q/�

eqC1

2 ı
a.$

�eq�1
q /

?�qeq�1

�
:

We now specialize to the case under consideration where x D a.y/ for some
y 2 A�F . For S � fqjf; sq D 0g set

�S D
Y

qjfWsq�1

�q

Y
qjfWsqD0;q…S

N.q/�eq=2�qeq ?
Y

sqD0;q2S

�N.q/�
eqC1

2 �qeq�1 :

With this notation, we have

(9.29) Nf ? Q�f.a.y//D
X

S�fqjf;sqD0g

Nf ? �S

�
a.yŒf�/

Y
sqD0;q2S

a.Œq�/

�
:

Now apply Lemma 9.2 to see that, for any z 2 A�F and d � 1, we have

(9.30) Nf ? �S .a.z//�max.jzj; jzj�1/1=2PS2;d . Nf ? �S /;

where we have used the easily verified fact that ht.a.z//�max.jzj; jzj�1/.
Now, for any f 2 C1.X/, we have

ŒKmax WK Nf ?�S
��

Y
sq�1

ŒKq WK0Œq
sq ��ŒKmax WKf ��� N.m/1C�ŒKmax WKf �:

21For the unramified assertion, let BD PGL2.Fq/=Kq and let x0 2B be the identity coset. The
set B has the structure of the vertices of a qv C 1-valent tree. Let S1 be the set of all vertices at
distance eq � 2i (some i � 0) from a.$

�eq
q /x0. Let S2 be the set of all vertices at even distance

� eq�1�2i (some i � 0) from a.$
�eq�1
q /x0. Then S2 � S1 and S1�S2 is precisely the n.q�eq/-

orbit of x0. As for the ramified case: one notes that, if sq > 0, the Haar measure on K0Œqsq � is just
the pushforward of the Haar measure on n.oq/�a.o

�
q /� Nn.q

sq/ by the product map .n; a; Nn/ 7! na Nn.



SPARSE EQUIDISTRIBUTION PROBLEMS, PERIOD BOUNDS AND SUBCONVEXITY 1065

By the bounds on matrix coefficients (9.3), and recalling that m D
Q

qjf q
sq , we

compute that

PS2;d . Nf ? �S /�� N.m/3=2C�.N.f/
Y
q2S

N.q/�1/˛�1=2C�
Y
q2S

N.q/�1PS2;d .f /:

Combining this with (9.29) and (9.30), we find that for each S � fq W sq � 1g,

(9.31)
ˇ̌
Nf ? Q�f.a.y//

ˇ̌
�� N.f/˛�1=2C�N.m/3=2C� max.N.f/jyj;N.f/�1jyj�1/1=2PS2;d .f /:

This bound is valid for all f 2 C1.X/, not merely those f that are invariant byQ
qjfK0Œq

sq �. Apply Remark 8.1, (3) to the endomorphism f 7! Nf ? Q�f; this shows
that (9.31) remains valid, for any f 2 C1.X/, if we replace PS2;d by S2;d on
the right-hand side. Now, specialize to the case where f 2 C1.X/ is actuallyQ

qjfK0Œq
sq �-invariant and apply (9.27) to obtain the conclusion of the lemma. �

The following lemma states an adelic version of the fact that the measure
on SL2.Z/nH defined by �y WD q�1

P
0�x�q�1 ıxqCiy

, approximates the uniform
measure if y�q�1. More precisely we have an inequality that

ˇ̌
�y.f /�

R
SL2.Z/nH

f
ˇ̌

is bounded by max.qy; 1
qy
/1=2q�ıS.f /, where S is an appropriate Sobolev norm

and ı > 0.

LEMMA 9.11. Let f 2 C1.X/ and let notation be as in Section 6 (see esp.
(6.4)). In particular, f is an integral ideal of oF , q D N.f/, Œf� is as in (2.4) and

�z.f /D

Z
jyjDz;y2A�F =F

�

f .a.y/n.Œf�//d�y:

Suppose f is invariant by K0Œqsq �, for each qjf, and put mD
Q

qjf q
sq . Then,

(9.32)
ˇ̌̌̌
�z.f /�

Z
X
f .x/d�X.x/

ˇ̌̌̌
�� N.f/˛�1=2C�N.m/3=2C� max

�
N.f/z; 1

N.f/z

�1=2
S2;d .f /:

Proof. For each qjf and integer 0 � e 2 Z, let �qe be the Haar probability
measure on the group N.q�eoq/. Then, since the assumption implies that f is
right invariant by aq.o

�
q /, for each q dividing f, we see that for any x 2 X:Z

y2o�Fq

f .xa.y/nq.$
�e
q //d�y D

Z
y2o�Fq

f .xnq.y$
�e
q //d�y(9.33)

D
f ? .�qe �N.q/�1�qe�1/.x/

1�N.q/�1
:
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It follows that

�z.f /D
Y
qjf

.1�N.q/�1/�1 �
Z
y2A�F =F

�;jyjDz

f ?
Y
qjf

.�qeq �N.q/�1�qeq�1/.a.y//:

We conclude by applying the previous lemma. �

10. Background on Eisenstein series

This section essentially develops the theory of Eisenstein series on PGL2 over
a number field. This is needed for the Rankin-Selberg method that we reprise in
the next section, which in turn is used in the text to relate a period integral with an
L-function.

Let Z be a topological space. In this section, we will often speak — in various
contexts, often with Z D X or GL2.AF / — of a function F.s; z/ on C�Z being
“holomorphic” or “holomorphic in s”. For the purposes of this document, this can
be assumed to mean that the function is jointly continuous and holomorphic for
each z individually.

Note that s 7!
R
Z F.s; z/dz, if absolutely convergent and uniformly so in s,

defines a holomorphic function. Indeed, it suffices to verify that its integral over a
closed curve in the s-variable is zero, which follows by Fubini’s theorem.

Similarly, we will say that F.s; z/ is meromorphic if there exists a holomor-
phic function h.s/ so that h.s/F.s; z/ is holomorphic.

10.1. Construction and basic properties of the Eisenstein series. We recall
the Eisenstein series that we shall have need of and its basic properties, following
Jacquet [20, �19]. We will need Eisenstein series only on PGL2.

10.1.1. Schwartz functions. Let ‰ be a Schwartz-Bruhat function on A2F , i.e.,
‰ is a finite linear combination of functions

Q
v ‰v, where each ‰v is locally

constant of compact support, for v finite, ‰v is a Schwartz function on F 2v for v
infinite, and ‰v is the characteristic function of o2Fv for almost all v.

If v is a real place, choose av 2 Fv so that eFv .x/ D e2�iavx , and say a
Schwartz function ‰v on F 2v is standard if it is the product of a polynomial and
e��jav jv.jxj

2
vCjyj

2
v/. If v is a complex place, choose av 2 Fv so that eFv .x/ D

e2�iTrC=R.avx/; we say that a Schwartz function ‰v is standard if it is the product
of a polynomial and e�2�jaj

1=2
v .jxjvCjyjv/. The significance of this normalization

is twofold: a standard function is automatically Kv-finite and also the class of
standard functions is self-dual under the Fourier transform corresponding to the
character eFv .

If V is a real vector space, then by a Schwartz norm on the space of Schwartz
functions on V , we shall mean a norm S of the form

(10.1) S.‰/D sup
D

sup
x
j.1Ckxk/MD‰.x/j;
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for some finite collection of constant-coefficients differential operators D on V and
some norm kxk on V .

Put, for g 2 GL2.AF /,

f‰.s; g/D j det.g/js
Z
t2A�F

‰..0; t/g/jt j2sd�t:

The integral converges absolutely for <.s/ > 1=2 and extends to a meromorphic
function of s with possible poles at most at s D 0; 1=2. Moreover, for all s,

(10.2) f‰

��
a x

0 b

�
g

�
D ja=bjsf‰.g/:

Put E‰.s; g/ D
P
2B.F /nGL2.F / f‰.s; g/. This converges when Re.s/ > 1,

extends to a meromorphic function of s with a simple pole at s D 0; 1 and satisfies
the functional equation

E‰.s; g/DEb‰.1� s; g/;
where b‰ is the Fourier transform

(10.3) b‰.x1; y1/D Z
A2F

‰.x; y/eF .x1y �y1x/dxdy:

This is not the conventional normalization; it is chosen so that the map ‰ 7! b‰ is
SL2.AF /-equivariant. Moreover, the pole at s D 1 is the constant function with
value c1

R
A2F
‰.x; y/dxdy, and the pole at sD 0 is the constant function with value

c2‰.0/, where c1; c2 are constants (depending only on the choice of measure).
Finally, for any fixed g the function s 7! s.1�s/E‰.s; g/ decays rapidly in vertical
strips, i.e., .1C jsj/N js.1� s/E‰.s; g/j is bounded in any strip A � <.s/ � B .
The proof of all these properties follows from “Poisson summation” for F 2 � A2F ,
and we omit them.

Moreover, the association ‰ 7! E‰ is twisted-equivariant for the natural
GL2.AF /-action on the space of Schwartz functions and on C1.X/; i.e.,

(10.4) Eh:‰.s; g/D j det.h/j�s.h �E‰.s; g//;

where h� denotes right translation by h.
We give an example with F DQ (cf. [19, (3.29)]).

Example 10.1. Suppose F DQ,‰D
Q
v ‰v where, for each finite v,‰v is the

characteristic function of the maximal compact of Fv , and‰1.x; y/D e��.x
2Cy2/.

Then E‰.g/ is determined by its restriction to SL2.R/.
Moreover, E‰.s; g/ descends from a function of g 2 SL2.R/ to a function

E�.s; z/ on HD SL2.R/=SO2, where the identification is g 7! g � i . In fact,

(10.5) E�.s; z/D ��s�.s/�.2s/
X

ŒcWd�2P1.Q/

ys

jczC d j2s
:
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If we put �.s/D ��s=2�.s=2/�.s/, then E�.s; z/ has the Fourier expansion

E�.s; z/D �.2s/ysC �.2� 2s/y1�s(10.6)

C 4
p
y
X
n2N

Ks�1=2.2�ny/ cos.2�ny/
X
abDn

�a
b

�s�1=2
:

It satisfies the functional equation E�.s; z/DE�.1� s; z/. Moreover it is a mero-
morphic function of s with poles precisely at s D 0 and s D 1. In both cases the
residue is the constant function.

Motivated by this example, the reader may find it helpful to keep in mind the
“dictionary”: f‰.s; g/ corresponds to ��s�.s/�.2s/ys D �.2s/ys , and E‰.s; g/
to E�.s; z/ as defined in (10.5).

Remark 10.1. Suppose ‰ is invariant by K1 �Kmax. Then f‰ is a multiple
of g 7! ht.g/s , as follows from the uniqueness of spherical functions satisfying
(10.2). Thus, for <.s/ > 1, E‰.s; g/D c.s/

P
2B.F /nGL2.F / ht.g/s .

We now proceed to establish the “standard” properties of the Eisenstein series
for E‰. It is convenient to first recall an explicit bound for archimedean Mellin
transforms; the first part is Tate’s thesis, and the second will only be needed much
later.

LEMMA 10.1. Let v be archimedean and let ‰v be a Schwartz function on Fv .
The integral G.s/ WD

R
x2F �v

‰v.x/jxj
sd�x extends to a meromorphic function and

(1) G.s/
�F;v.s/

is holomorphic, where �F;v.s/ is the local factor of the Dedekind
�-function of F at v.

(2) For any N � 0, the function GN .s/ WD
QN
iD0.sC i/G.s/ is holomorphic in

<.s/ � �N , and the absolute value of .1C jsj/MGN .s/ in any strip �N �
<.s/ � A is bounded by some Schwartz norm (depending on A;N;M ; see
(10.1) for the definition) of ‰v.

Proof. The first assertion is Tate’s thesis, and we leave the second (if any) to
the reader. �

LEMMA 10.2. The function s 7! s.1=2� s/f‰.s; g/ extends to a holomorphic
function of s. It decays rapidly along vertical lines

(10.7) j.1Cj=.s/j/N s.1=2� s/f‰.s; g/j �‰;N ht.g/<.s/;

where the implicit constant is uniform for <.s/ in a compact set.

Proof. By (10.2) and the Iwasawa decomposition, it will suffice to prove the
assertions in the special case g 2K1 �Kmax. So we write g D k 2K1 �Kmax

and denote by kv the component of k in PGL2.Fv/. Moreover, without loss of
generality, we may assume ‰ is a product of Schwartz functions at each place, i.e.,
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‰ D
Q
v ‰v. Then

f‰.s; g/D
Y

v infinite

Z
F �v

‰v..0; t/kv/jt j
2sd�t

Y
v finite

Z
F �v

‰v..0; t/kv/jt j
2sd�t:

By Tate’s thesis, it follows that the product over finite places is of the form
�F .2s/h.s/, where �F .�/ is the (finite part of the) Dedekind �-function of the num-
ber field F and h.s/ is a holomorphic function with at most polynomial growth
in vertical strips (indeed, a polynomial in q˙s for various q). All the assertions
of the lemma now follow from Lemma 10.1, and standard facts about the analytic
properties of �F .

In fact, if the ‰v for v finite are regarded as fixed, then the implicit constant
in (10.7) is bounded by an appropriate Schwartz norm, depending on N and the
compact set to which <.s/ is constrained, of

Q
v infinite‰v. This follows from the

second assertion of Lemma 10.1. �

LEMMA 10.3. The constant termEN‰ .s;g/ WD
R
x2F nAF

E‰.s; n.x/g/dx equals
f‰.s; g/Cfb‰.1� s; g/.

Sketch of proof. A double coset decomposition shows that, for s� 1, EN‰ .s; g/
D f‰.s; g/C

R
n2N.AF /

f‰.s; wng/dn, where w is as in (2.3). So it will suffice
to show that

R
n2N.AF /

f‰.s; wng/ D fb‰.1 � s; g/. The left-hand side may be
expressed as

(10.8) j det.g/js
Z
t2A�F

Z
x2AF

‰..t; tx/g/jt j2sd�t dx

D j det.g/js
Z
t2A�F =F

�

Z
x2AF

X
ı2F �

‰.t.ı; x/g/jt j2sd�t dx:

For any Schwartz function ‰ on A2F , one hasX
˛2F

Z
y2AF

‰.˛; y/D
X
ˇ2F

b‰.0; ˇ/:
The result follows from routine manipulation and use of Tate’s functional equation.

�

We set

(10.9) xE‰.s; g/DE‰.s; g/�f‰.s; g/�fb‰.1� s; g/;
so xE‰ defines a function on B.F /nPGL2.AF /. It is a “truncated” Eisenstein
series where we have removed the constant term. Moreover, xE‰.s; g/ is holomor-
phic in s (this follows, for example, by computing residues at each of the points
s D 0; 1=2; 1 and seeing they are all zero). By definition, for g 2 GL2.AF / we
have an equality

(10.10) E‰.s; g/D xE‰.s; g/Cf‰.s; g/Cfb‰.1� s; g/:
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LEMMA 10.4. Let T;N > 0 and let <.s/ lie in a fixed compact subset of R.
Then

(10.11) .1Cjsj/4 xE‰.s; g/�‰;N;T ht.g/�N ;

for g2S.T /. In particular, if��X is compact, then s.1�s/E‰.s; g/ is uniformly
bounded in j<.s/j � 2; g 2�.

Proof. We first claim that, for t 2R, we have j.1Ct4/ xE‰.NC1Ci t; g/j�‰;N

ht.g/�NC�. Indeed, by definition,

xE‰.s; g/D
X

2B.F /nPGL2.F /;…B.F /

f‰.s; g/�fb‰.1� s; g/:
In view of Lemma 10.2, it will suffice to show that

(10.12)
X

2B.F /nPGL2.F /;…B.F /

ht.g/� �� ht.g/1��C�;

which follows from (8.10) and (8.11).
Now (10.11) follows from the functional equation xE‰.s; g/D xEb‰.1� s; g/,

the maximal modulus principle in the strip j<.s/j � N C 1, and the previous
lemma.22

The second assertion (involving �) follows from (10.7) and (10.11). �

We now compute the Fourier coefficients of the Eisenstein series in general.
Recall that eF is a fixed additive character of AF =F .

LEMMA 10.5. Set W‰.s; g/ D
R
x2F nAF

E‰.s; n.x/g/eF .x/dx. Then, for
<.s/ > 1,

(10.13) W‰.s; a.y//D jyj
1�s

Z
t2A�F ;x2AF

‰.t; tx/eF .xy/jt j
2sdxd�t:

In particular, if ‰ D˝v‰v, then W‰ D
Q
vW‰v , where for <.s/ > 1,

W‰v .s; a.y//D jyj
1�s
v

Z
t2F �v ;x2Fv

‰v.t; tx/eF .xy/jt j
2s
v dxd

�t for y 2 Fv.

Finally, if ‰v.x; y/D '1.x/'2.y/, !v a character of F �v , and <.s0/Cj<.s/j � 1,

(10.14)
Z
y2F �v

W‰v .s; a.y//jyj
s0!v.y/d

�y

D

Z
y2F �v

'1.y/jyj
s0Cs!v.y/d

�y

Z
y2F �v

b'2.y/jyj1Cs0�s!v.y/d�y;
where b'2 is the Fourier transform, defined by b'2.y/D RFv '2.y/eFv .yt/dt .

22To apply the maximal modulus principle in this context, one needs some a priori decay of xE‰ ,
which follows easily from the corresponding properties of E‰ and f‰ .
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Proof. By the Bruhat decomposition,

W‰.s; g/D

Z
F nAF

eF .x/
X

2B.F /nPGL2.F /

f‰.s; n.x/g/(10.15)

D

Z
AF

f‰.s; wn.x/g/eF .x/dx:

Thus

W‰.s; g/D j det.g/js
Z
x2AF

Z
t2A�F

‰..t; 0/n.x/g/d�t jt j2seF .x/(10.16)

D j det.g/js
Z
t2AF ;x2A�F

‰..t; tx/g/jt j2seF .x/dxd
�t:

The claimed conclusion follows upon substituting g D a.y/, together with some
routine computations. �

Remark 10.2. Remark that W‰.s; g/ belongs to the Whittaker model of a cer-
tain induced representation of PGL2.AF /, namely the representation �.s/ induced
from the character a.y/ 7! jyjs�1=2 of the maximal torus (unitary induction, so
�.s/ is tempered for <.s/ D 1=2). This representation is the tensor product of
local representations �v.s/, analogously defined; these local representations are
irreducible and generic for all s.

Thus (10.13) determines W‰ uniquely (the theory of the Kirillov model). Sim-
ilarly the condition W‰v;s.1/D 1 uniquely determines the (spherical) vector W‰v;s .

We finally remark that W‰v;s , as ‰v ranges over all Schwartz-Bruhat func-
tions onF 2v if v is nonarchimedean, or over all standard functions if v is archimedean,
exhausts the Whittaker model of �.s/. Indeed, the set of such functions W‰v;s is
a subspace of the Whittaker model of �.s/ that is stable under the action of the
Hecke algebra of PGL2.Fv/; this action is irreducible, whence the result.

We recall that d denotes the different (�2.3) and we denote by �F;v.s/ or
simply �v.s/ the local factor of the Dedekind �-function of F at the place v.

COROLLARY 10.1. Suppose v is nonarchimedean, and ‰v the characteristic
function of o2Fv . Then Wv.a.y// satisfies

(10.17)
Z
F �v

Wv.a.y//jyj
s0d�y D qdv.1Cs

0�s/
v �v.sC s

0/�v.1� sC s
0/;

with dv D v.d/. Note that this specifies Wv, because it is Kv-invariant.

In particular, for each finite v with v.d/D 0, the function Wv.g/ is the unique
spherical Whittaker function on GL2.Fv/ with Hecke eigenvalue qsvC q

1�s
v , and

with Wv.1/D 1.
As is evident from (10.6), the Eisenstein series themselves are not bounded.

They belong to L2�", but not L2. To avoid some difficulties with growth, we shall
use wave-packets of Eisenstein series. We now turn to their analysis.
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10.2. Regularization of Eisenstein series on PGL2. Our aim in this section
is to show that an appropriate “wave packet” of the Eisenstein series E‰.g; s/
constructed in the previous section lies in L1.

Note that, in Example 10.1 above E�.s; z/ differs from the usual unitary
Eisenstein series by a factor �.2s/. This factor ensures that E�.s; z/ is holomor-
phic, but this causes an inconvenience at s D 1=2, which will manifest itself in
our construction of bounded wave-packets. Recall that this pole can be interpreted
rather naturally; see footnote on page 1031.

Let � > 0, and let H.�/ be the family of functions holomorphic in an open
neighborhood of the strip �� � <.s/ � 1C �, with rapid polynomial decay in
vertical strips (i.e., supt2R.1 C jt j/

N jh.� C i t/j is bounded, for each N , by a
continuous function of � ) and satisfying h.0/D h.1

2
/D h.1/D 0. For each N 2 Z

we have a norm k � kN on H.�/ defined via

(10.18) khkN D

Z 1
�1

.jh.1C �C i t/jC jh.��C i t/j/ .1Cjt j/Ndt:

LEMMA 10.6. Let h 2H.�/, and set Eh;‰.g/D
R
<.s/D1C� h.s/E‰.g; s/ds.

Then:

kEh;‰.g/kL1 �‰;�;F khk0:

Proof. In the notation of (10.10),

(10.19) Eh;‰.g/D

Z
<.s/D1C�

xE‰.s; g/h.s/ds

C

Z
<.s/D1C�

h.s/f‰.s; g/dsC

Z
<.s/D1C�

h.s/fb‰.1� s; g/ds:
Fix T > 0 so that S.T / surjects onto X (see Section 8.2 for definitions). We

will bound each term on the right-hand side of the above equation for g 2S.T /.
By Lemma 10.4, the first term on the right-hand side is O‰;�.khk0/. By

Lemma 10.2, the function fb‰.1 � s; g/ is uniformly bounded above in the re-
gion <.s/ D 1C �; g 2 S.T /; thus the third term on the right-hand side is also
O‰;�.khk0/.

As for the second term, we shift contours to the line <.s/ D ��. The shift
of contours is justified by the rapid decay of h.s/ along vertical lines and Lemma
10.2. Moreover, since h.0/D h.1=2/D 0, the function s 7! h.s/f‰.s; g/ has no
poles in between the contours.

Applying Lemma 10.2 one more time to control the contour integral along
<.s/D��, we conclude. �

Remark 10.3. Suppose ‰ D
Q
v ‰v, and the ‰v are regarded as fixed for v

finite. Put‰f D
Q
v finite‰v , a Schwartz function on A2

F;f
, and‰1D

Q
v infinite‰v .
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Then the above argument gives the slightly more explicit bound

(10.20) kEh;‰kL1 ��;‰f khk0S.‰1/;

where S is a Schwartz norm on F 21. This follows by explicating the above argu-
ment, taking into account the last sentence of the proof of Lemma 10.2. Indeed,
one obtains even the corresponding bound for Sobolev norms, namely

(10.21) S1;d;ˇ .Eh;‰/��;‰f khk0S.‰1/

for an appropriate Schwartz norm of F 21. One deduces this from (10.20) upon
noting that, if D belongs to the universal enveloping algebra of SL2.F1/, then, by
(10.4), DE‰.s; g/DED‰.s; g/, so also DEh;‰ DEh;D‰. It is then easy to check
that a Schwartz norm of D‰1 is bounded by a Schwartz norm of ‰1.

10.3. Regularization of Eisenstein series on PGL2�PGL2. In this section we
carry out the analogue of Lemma 10.6 in the context of PGL2�PGL2 (this amounts
to regularizing the rank 2 Eisenstein series on PGL2 �PGL2).

To ease the reader’s path, we briefly mention what the point of this section is
in classical notation: Suppose h.s1; s2/ is holomorphic in two variables inside the
square j<.s1/jC j<.s2/j � 1=2C �, and, moreover, h.s1; s2/ has zeroes along the
six planes defined by any of the linear constraints s1 D 0, s1 D 1=2; s1 D �1=2,
s2 D 0, s2 D�1=2, s2 D 1=2.

Define the wave-packet Eh.z1; z2/ on SL2.Z/nH�SL2.Z/nH via

Eh.z1; z2/D

Z
t;t 02R

h.it1; i t2/E
�.1=2C i t; z1/E

�.1=2C i t 0; z2/dtdt
0:

Here E� is as in Example 10.1. We shall show — under mild decay conditions
on h — that Eh.z1; z2/ is majorized, on the product of two fundamental regions,
by A.y1; y2/ WD

p
y1y2

y
1=2C�
1 Cy

1=2C�
2

. Since
R
y1�1;y2�1

A.y1; y2/
4 dy1dy2
y21y

2
2

is finite, Eh

lies in L4, and even in L4C� for � small.
As the reader may verify at this point, the majorization is little more than an

exercise in complex integration, using the fact that the large contribution to the
Eisenstein series comes from the constant term.

We will need to repeatedly shift contours in the setting of a function of two
complex variables. To clarify matters, we state the following lemma, which we
will use repeatedly without explicitly invoking it.

LEMMA 10.7. Suppose U � R2 is an open domain and f .z1; z2/ a holo-
morphic function on the complex domain f.z1; z2/ 2 C2 W .<.z1/;<.z2// 2 U g.
Suppose, moreover, that there is a continuous function M W U ! R such that

(10.22) sup
.t1;t2/2R2

jf .�1C i t1; �2C i t2/j.1Cjt1jC jt2j/
3
�M.�1; �2/:
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Then the function

(10.23) .�1; �2/ 7!

Z
<.z1/D�1;<.z2/D�2

f .z1; z2/dz1dz2

is locally constant on U .

We omit the easy proof.
We will now introduce a family of normed spaces H.2/.�/. In fact, the spaces

themselves are independent of �, but the norm depends on �. These are spaces
of holomorphic functions in two variables z1; z2; and the norm, roughly speaking,
controls the behavior of h when the real parts of .z1; z2/ lie in the square j<.z1/jC
j<.z2/j � 1=2C �.

Definition 10.1. Let 0 < � < 1. Let H.2/.�/ be the family of functions
h.z1; z2/ in two complex variables, holomorphic in a neighborhood of .0; 0/, and
satisfying:

(1) Write h0 D h.z1;z2/

z1z2.1=4�z
2
1/.1=4�z

2
2/

. Then h0, originally a meromorphic function

in a neighborhood of 0, extends to a holomorphic function in the strip

fz1 W j<.z1/j � 2g � fz2 W j<.z2/j � 2g:

(2) Growth condition: for every N � 0,

sup
.�;� 0/2Œ�2;2�2

sup
.t;t 0/2R2

.1Cjt jC jt 0j/Nh.� C i t; � 0C i t/ <1

For each N 2 Z we introduce a norm on H .2/.�/ via

(10.24) khkN D
Z
.t;t 0/2R2

X
�1;�22f˙1g

.1Cjt jC jt 0j/N

�
�
jh0.�1.1=2C �/C i t; i t

0/jC jh0.i t; �2.1=2C �/C i t
0/j
�
dtdt 0:

LEMMA 10.8. For h 2H .2/.�/, put

Eh;‰;‰0.g1; g2/D

Z
<.t/D0

Z
<.t 0/D0

h.t; t 0/E‰.g1;1=2Ct /E‰0.g2;1=2Ct
0/ dt dt 0:

Then

Eh;‰;‰0.x1; x2/�‰;‰0 khk0
ht.x1/1=2ht.x2/1=2

ht.x1/1=2C� C ht.x2/1=2C�
:

Proof. We may assume that khk0 D 1. Let notation be as established prior to
Lemma 10.4. We will proceed as in Lemma 10.6, expanding E‰ via (10.10).

It will suffice to give an upper bound, in absolute value, for each of

I0.g1; g2/D

Z
t;t 0
h.t; t 0/ xE‰1.g1; 1=2C t /

xE‰2.g2; 1=2C t
0/dtdt 0;(10.25)

I1.g1; g2/D

Z
t;t 0
h.t; t 0/ xE‰1.g1; 1=2C t /f‰2.g2; 1=2˙ t

0/dtdt 0;(10.26)
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I2.g1; g2/D

Z
t;t 0
h.t; t 0/f‰1.g1; 1=2˙ t /

xE‰2.g2; 1=2C t
0/dtdt 0;(10.27)

I3.g1; g2/D

Z
t;t 0
h.t; t 0/f‰1.g1; 1=2˙ t /f‰2.g2; 1=2˙ t

0/dtdt 0;(10.28)

whenever ‰1; ‰2 are Schwartz functions on A2F , and in each case the contour of
integration is the surface <.t/D<.t 0/D 0. Moreover, in view of condition (1) in
Definition 10.1, each integrand extends to a holomorphic function of .t; t 0/ in the
region j<.t/j � 1=2C �; j<.t 0/j � 1=2C �.

The bound jI0j � ht.g1/�N ht.g2/�N follows from Lemma 10.4, whereas
the bounds jI1j � ht.g1/�N ht.g2/�� and jI2j � ht.g2/�N ht.g1/�� follow from
moving the t 0 (in the case of I1) integral to the contour <.t 0/ D ˙.1=2C �/,
applying Lemmas 10.4 and 10.2.

We now turn to I3. We shall consider the case where both signs are C, the
other cases being similar with appropriate interchanges of sign. Thus set

(10.29) Z.t; t 0/D h.t; t 0/f‰1.g1; 1=2C t /f‰2.g2; 1=2C t
0/

D h0.t; t 0/t.1=4� t2/f‰1.g1; 1=2C t /t
0.1=4� t 02/f‰2.g2; 1=2C t

0/:

In view of Lemma 10.2, the function Z.t; t 0/ satisfies the conditions for f in
Lemma 10.7. We apply Lemma 10.7 to shift the contour to <.t/ D �1=2 � �,
<.t 0/ D 0. Now Lemma 10.2 implies that j

R
<.t/D�1=2��;<.t 0/D0Z.t; t

0/j �

ht.g2/1=2ht.g1/�� . A similar bound holds with .g1; g2/ interchanged, so in fact we
have the stronger bound jZ.t; t 0/j �min.ht.g2/1=2ht.g1/�� ; ht.g1/1=2ht.g2/��/.
This may also be written jZ.t; t 0/j � ht.g1/1=2ht.g2/1=2

ht.g1/1=2C�Cht.g2/1=2C�
.

Similar considerations apply to the terms in I3 corresponding to other choices
of sign, so we conclude that jI3j �

ht.g1/1=2ht.g2/1=2

ht.g1/1=2C�Cht.g2/1=2C�
. �

LEMMA 10.9. Let notation be as in the previous lemma. For any p < 4
1�2�

,
any d; ˇ > 0, there exists N such that

Sp;d;ˇ .Eh;‰/�‰;�;p;ˇ khkN :

Proof. Indeed, we note thatZ
y1;y2�1

 p
y1y2

y
1=2C�
1 Cy

1=2C�
2

!p
dy1dy2

y21y
2
2

<1

whenever p < 4=1� 2�. We apply the previous lemma and reduction theory to
conclude. �

11. Background on integral representations of L-functions

The purpose of this section is as follows. The geometric method we have
explained in the text yields upper bounds for certain periods; to obtain subconvexity,
we need to know that L-functions can be expressed in terms of these periods. This
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is the whole point of the theory of integral representations of L-functions; however,
we cannot quite simply quote from that theory, as we often need, e.g., some analytic
control on the choice of test vector for which there is no readily available reference.

On occasion we have only sketched proofs in this section, as they amount to
simple explications of standard techniques such as the Rankin-Selberg method, and
moreover they are in some sense irrelevant to the main point of this paper (which
is to bound periods, not L-functions!).

11.1. Cuspidal triple product L-functions.

HYPOTHESIS 11.1. Let �2 and �3 be fixed automorphic cuspidal representa-
tions of PGL2 over F . Let �1 be an automorphic cuspidal representation, whose
finite conductor is a prime ideal, prime to the finite conductors of �2 and �3. Sup-
pose that �1;1 (the representation of PGL2.F1/ underlying �1) is restricted to a
bounded set; let '1 be the new vector in �1.

Then there exists finite collections of vectors F2 � �2;F3 � �3 so that, for
any such �1, there exist 'j 2 Fj .j D 2; 3/ with

(11.1)
L.1

2
; �1˝�2˝�3/ˇ̌R

X '2.xa.Œp�//'3.x/'1.x/dx
ˇ̌2 ��;F;�1;1 N.p/

1C�:

Note that no claim is made about the dependence of the constants in (11.1)
on �2; �3 or the bounded set containing �1;1; presumably with enough effort one
could obtain polynomial dependence on the conductors.

Remark 11.1. In the time since this paper was submitted, the above Hypoth-
esis has been apparently established by M. Woodbury, and will appear in his PhD
thesis [46]; it uses in particular the work of A. Ichino. This renders the application
to the triple product L-functional unconditional.

11.2. Rankin-Selberg convolutions.

11.2.1. The Rankin-Selberg integral representation. Let �1; �2 be two auto-
morphic representations, with �2 cuspidal.

Let ‰v be a Schwartz-Bruhat function on F 2v such that, for almost all v, ‰v
is the characteristic function of o2Fv . Put ‰ D

Q
v ‰v , a Schwartz function on A2F .

Let 'j belong to the space of �j for j D 1; 2 and put

(11.2) I.'1; '2; ‰; s/D

Z
X
'1.g/'2.g/E‰.s; g/dg:

Unwinding, we see that for <.s/ > 1,

(11.3) I.'1; '2; ‰; s/D cF

Z
B.F /nPGL2.AF /

f‰.s; g/'1.g/'2.g/dg

D cF

Z
B.F /nPGL2.AF /

f‰.s; g/

�Z
n2N.F /nN.AF /

'1.ng/'2.ng/dn

�
dg:



SPARSE EQUIDISTRIBUTION PROBLEMS, PERIOD BOUNDS AND SUBCONVEXITY 1077

Here the constant cF arises from change of measure: the measure on X is the
PGL2.AF /-invariant probability measure, which is not the same as the quotient
measure from PGL2.AF /. Note that cF will be unimportant in our arguments, as
it depends only on F and we are only interested in bounds.

PutW1.g/D
R
F nAF

'1.n.x/g/eF .x/dx, and defineW2 similarly but with eF
replaced by eF . Recall that our normalizations are so that the volume of AF =F

is 1. Fourier inversion shows that 'i .g/ D
P
˛2F � Wi .a.˛/g/ if 'i is cuspidal.

Thus, as long as one of '1; '2 is cuspidal, we see that

I.'1; '2; ‰; s/D cF

Z
B.F /nPGL2.AF /

f‰.s; g/

 X
˛2F �

W1.a.˛/g/W2.a.˛/g/

!
dg

(11.4)

D cF

Z
N.AF /nPGL2.AF /

W1.g/W2.g/f‰.s; g/dg:

If '1; '2 are pure tensors, then there is a corresponding product decomposition
W1 D

Q
vW1;v; W2 D

Q
vW2;v , where Wj;v belongs to the local Whittaker model

of �j;v, a representation of PGL2.Fv/. In that case,

(11.5) I.'1; '2; ‰; s/D cF
Y
v

Iv.W1;v; W2;v; ‰v; s/;

where

(11.6) Iv.W1;v; W2;v; ‰v; s/

D

Z
N.Fv/nPGL2.Fv/

dgv W1.gv/W2.gv/

�
j det.gv/jsv

Z
t2F�v

‰v..0; t/gv/jt j
2sd�t

�
:

We note that the bracketed quantity, defined a priori for gv 2 GL2.Fv/, descends
to PGL2.Fv/.

Applying the Iwasawa decomposition to (11.6) yields the equivalent

(11.7) Iv.W1;v; W2;v; ‰v; s/

D

Z
y2F�v ;k2Kv

W1.a.y/k/W2.a.y/k/jyj
s�1d�y dk

�Z
t2F�v

‰..0; t/k/jt j2sd�t

�
:

LEMMA 11.1. Let v be nonarchimedean. Suppose W1;v; W2;v are the new
vectors associated to spherical representations �1;v; �2;v , ‰v is the characteristic
function of o2Fv , and eFv is unramified. Then

Iv.W1;v; W2;v; ‰v; s/D Lv.s; �1;v˝�2;v/:

If W1;v; W2;v are nonzero and PGL2.oFv /-invariant, ‰v as above, but eFv
is possibly ramified, then Iv.W1;v; W2;v; ‰v; s/D aqksv Lv.s; �1;v ��2;v/ where
k 2 Z is so that eFv is trivial on $�kv oFv but not on $�k�1v oFv . Moreover, aD 1
if W1;v.$�kv /DW2;v.$

�k
v /D 1.



1078 AKSHAY VENKATESH

Suppose W1;v; W2;v are the new vectors associated to �1;v a spherical and
�2;v a Steinberg representation, and that eFv is unramified. Then, with ‰v the
characteristic function of o2Fv , we have

Iv

�
�1;v

�
1 0

0 $v

�
W1;v; W2;v; ‰v; s

�
D˙

qsv
qvC 1

L.s; �1;v˝�2;v/:

Proof. See [20, Th. 15.9] for the first assertion. The second assertion is an
easy consequence. See Section 11.3 for the final assertion. �

11.2.2. Topologizing the space of local representations. The results in [20]
provide “good” test vectors for the functionals Iv when the local representations
�1;v; �2;v are fixed. On the other hand, we will need such results with some mild
uniformity in �1;v. One can certainly extract the stronger results from the proofs
in [20]. For now, we will proceed by deducing the results “by continuity”; to
do this, we will need to define the topology on the space of possible �1;v. The
considerations that follow are not really very crucial; it would be better simply to
explicate the implicit dependences in [20].

Let S be a finite set of irreducible (continuous) representations of Kv D
PGL2.oFv /. For any representation W of Kv, we denote by W S that subspace
of W consisting of vectors whose Kv-span contains only irreducibles that belong
to S. We shall say that elements of W S are of type S.

Let Gv be the set of isomorphism classes of generic irreducible representations
of PGL2.Fv/. If � is a generic irreducible representation which is a discrete series
or supercuspidal, we shall define it to be isolated. Otherwise, � is induced from
two quasicharacters �; � WF �v !C. For s 2C, let .�.s/; V .s// be the representation
induced from the quasicharacters �j � jsv; �j � j

�s
v . Then �.s/ is generic for all s 2 C

and irreducible in a neighborhood of 0. We shall topologize Gv in such a way that
sets of the form Œ�.s/�, for jsj< " form a basis.

IfE�Gv is a closed subset that is bounded (when considered as a subset of the
set of isomorphism classes of irreducible admissible representations, and bounded
in the sense of �2.12.3), then E is compact, as one checks by direct verification.

For each � 2 G, we have a Whittaker model W.�/. Consider a function
� 7! W� , that assigns to each � 2 Gv an element W� of its Whittaker model.
We shall say that such an assignment � 7! W� is continuous if there exists a
neighborhood of each � , which we may assume to be of the form, f�.s/ W jsj< "g,
and a set S of irreducible representations of Kv so that

(1) W�.s/ is of type S, for each jsj< ".

(2) The assignment s 7! W�.s/.g/ is continuous for each g 2 PGL2.Fv/, uni-
formly for g in any fixed compact.

It can be verified that if W0 is an element of the Whittaker model of �0, there
exists a continuous assignment � 7!W� in a neighborhood of �0 which has the
value W0 at �0.
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The requirement (2) is not very strong, as it does not impose any uniformity
on all of PGL2.Fv/. However, in every context we shall consider, the necessary
uniformity in g is automatic. Let us sketch how one can prove such results. Assume
that v is finite; the infinite case is similar although more technically involved. One
first observes that if � 7!W� is a continuous assignment on some open set, then, for

a fixed character �v of F �v , the quotient
R
y2F�v

W� .a.y//�v.y/jyj
s�1=2d�y

Lv.s;�˝�v/
is a poly-

nomial of the form
PN
kD�N ckq

ks
v ; moreover, the degreeN is locally bounded as �

varies, and all the coefficients ck can be taken to depend continuously on � . To ver-
ify the local boundedness of the degree — which requires only property (1) above
— one just notes that there is (locally) a fixed M such that W�.a.y// vanishes for
jyjv >M ; this, together with the functional equation, gives the local boundedness.
To see that the coefficients vary continuously, it suffices to check that, for any
fixed integer t , the integral

R
v.y/Dt W�.a.y//�v.y/jyj

s�1=2d�y varies continu-
ously, which follows from the definition of continuity for the assignment � 7!W� .
The archimedean case proceeds similarly, but one replaces the role of polynomials
in q˙sv by functions of the form csP.s/, where P is a polynomial and c 2 R.

In the next few pages, we will make certain claims regarding the continuity
of various integrals involving W� , if � 7! W� is a continuous assignment. One
can reduce all the claimed continuity statements (by standard “Mellin transform”
arguments) to the result just discussed. We will omit the details.

11.2.3. Choice of test vectors.

LEMMA 11.2. Let notation be as above.

(1) The quotient

„v.W1;v; W2;v; ‰v; s/ WD
Iv.W1;v; W2;v; ‰v; s/

Lv.s; �1;v˝�2;v/

is holomorphic in s. If v is nonarchimedean, „v is a polynomial in q˙sv ; if v
is archimedean and ‰v is standard, then „vjavj2sv is a polynomial in s. Here
av is as in Section 10.1.1.

(2) For any fixed s0 2 C we may choose data .W1;v; W2;v; ‰v/ of the type de-
scribed in (1) with „v.W1;v; W2;v; ‰v; s0/¤ 0.

(3) If �2;v is regarded as fixed, and �1;v remains within a fixed compact subset
of Gv consisting entirely of unitarizable representations, then there exists a
constant C depending on the compact set so that one may choose data as in
(2) in such a way that:
(a) ‰v and W2;v may both be chosen from a finite list of size � C ;
(b)

R
F �v
jW1;v.a.y//j

2d�y � C ;
(c) j„v.s0/j � 1 and, for all s 2 C, we have j„v.s/j � C j<.s/j.1Cjsj/C .

Proof. The first two assertions are [20, Ths. 14.8, 17.2]. We will only sketch
the last assertion. It can be also be proved directly by exhibiting such data by
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explicating the arguments of [20]. In any case, we start by noting: Given any contin-
uous assignment �1;v 7!W1;v; �2;v 7!W2;v , the functions „v.W1;v; W2;v; ‰v; s/
and

R
jWi;v.a.y/j

2d�y all vary continuously in �1;v; �2;v. This assertion can be
deduced by the methods explained in Section 11.2.2. Here, when we speak of
„v.W1;v; W2;v; ‰v; s/ varying continuously, we mean this in the “strong sense”,
i.e., the statement that „v can be expressed as a polynomial in qsv (nonarchimedean
case) or bsP.s/ where P is polynomial (archimedean case), so that all coefficients
vary continuously with �1;v; �2;v.

Now, fix momentarily �1;v and �2;v and suppose that we have chosen data
.W1;v; W2;v; ‰v/ as in (2). Extend W1;v to a continuous assignment � 7! W�
in a neighborhood of �1;v. By the remarks above, .W� ; W2;v; ‰v/ will satisfy
(b) and (c), for a suitable constant C , whenever � belongs to a sufficiently small
neighborhood of �1;v. Now a compactness argument demonstrates (3). �

We emphasize again that (11.6) is valid so long as one of �1; �2 is cuspidal.

LEMMA 11.3. Let � be an automorphic cuspidal representation in L2.X/,
and let ' 2 � be so that W' WD

R
F nAF

eF .x/'.n.x/g/ factorizes as a productQ
vWv.gv/. Then, for a certain absolute constant c,

(11.8)
Z

X
j'.g/j2dg D cRessD1ƒ.s; � ˝ Q�/

Y
v

R
F �v
jWv.a.y//j

2d�y

Lv.s; �v˝ Q�v/
:

Observe that the product on the right-hand side defines a holomorphic function
of s; this follows from the prior lemmas.

Proof. This follows by taking the residue of I.'; x';‰; s/ at s D 1. Indeed,
this residue equals, up to a constant depending only on the measure normaliza-
tion,

� R
X j'.g/j

2dg
�� R

A2F
‰.x; y/dxdy

�
(see discussion of properties of E‰ after

(10.3)).
On the other hand, by (11.5) and (11.6) I.'; x';‰; s/ may be written as a

product cF
Q
v Iv.Wv; Wv; ‰v; s/, where each Iv is given by (11.7). The integralR

F �v
jWv.a.y/k/j

2d�y is independent of k 2Kv , so Iv.Wv; Wv; ‰v; 1/ factors as
the product of

R
y2F �v

jWv.a.y//j
2d�y and

R
t2F �v ;k2Kv

‰v..0; t/k/jt j
2d�t . The

latter integral differs from
R
F 2v
‰v.x; y/dxdy by a factor that depends only on the

normalizations of measure; moreover, this factor equals .1� q�2v /�1 for almost
all v, so the product of these factors is convergent. The conclusion easily follows.

�

We now specialize to the cases of interest. Fix �1. We vary �2 WD � through
a sequence of automorphic cuspidal representations with prime conductor p, prime
to the conductor of �1. In particular, the local constituent of � at p is a special
representation. We denote by �1 the representation of GL2.F1/ underlying the
representation � .
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LEMMA 11.4. Suppose the archimedean constituent �1 belongs to a bounded
subset of 4PGL2.F1/ (in what follows the implicit constants may depend on this
subset) and regard �1 as being fixed.

Let s0 2 C. There exists a fixed finite set F of Schwartz Bruhat functions and
a real number23 C > 0 so that, for any such � ,

There exist vectors '1 2 �1; ' 2 � and ‰ 2 F so that

ˆ.s/ WD N.p/1�s
I.a.Œp�/ �'1; ';‰; s/

ƒ.s; �1˝�/

is holomorphic and satisfies:

(1) jˆ.s0/j � 1 and jˆ.s/j � C j<.s/j.1Cjsj/C ;

(2) At any nonarchimedean place v such that �1 is unramified, '1 and ‰ are
invariant by PGL2.oFv /; at any nonarchimedean place v such that �1 and �
are both unramified, both ' and '1 are invariant by PGL2.oFv /;

(3) k'1kL1 is O.1/;

(4) k'kL2.X/�� N.p/�.

Proof. We first choose local data. For each place where eF;v and �1 are not
ramified, we take Wv (resp. Wv;1) to be the new vector in the Whittaker model of
�v (resp �1;v). We put ‰v to be the characteristic function of o2Fv .

Let B be the set of remaining v. For v 2 B, the assumptions show that �v
is restricted to a bounded set. We choose Wv, Wv;1; ‰v for v 2 B according to
Lemma 11.2. Finally we choose ' so that

R
x2F nAF

eF .x/'.n.x/g/D
Q
vWv.gv/,

and similarly for '1, and take ‰ D
Q
v ‰v. The first two assertions of the lemma

are immediate (cf. Lemma 11.1).
To bound the L2-norm of ', use Lemma 11.2 (b), Lemma 11.3, and Iwaniec’s

bounds on L-functions near 1 (see [19, Th. 8.3]). As for '1, it in fact belongs to a
fixed finite set of cusp forms, so the third assertion is immediate. �

We continue to keep � an automorphic cuspidal representation of PGL2.AF /
with prime conductor.

LEMMA 11.5. Suppose �1 belongs to a bounded subset of 4PGL2.F1/ (in
what follows the implicit constants may depend on this bounded subset).

Let t0; t 00 2 C. There exists a fixed finite set F of Schwartz Bruhat functions
and a real number C > 0 so that:

There exist vectors ' 2 �;‰1; ‰2 2 F so that:

(11.9) ˆ.t; t 0/D N.p/1=2�t
R

X '.g/E‰1.g;
1
2
C t /E‰2.ga.Œp�/;

1
2
C t 0/dg

ƒ.1
2
C t C t 0; �/ƒ.1

2
C t � t 0; �/

is holomorphic and satisfies:

23depending on �1 and the choice of bounded subset of 3PGL2.F1/.
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(1) jˆ.t0; t 00/j � 1 and jˆ.t; t 0/j � .1Cjt jC jt 0j/CC j<.t/jCj<.t
0/j;

(2) For any nonarchimedean place v, each ‰1 and ‰2 is invariant by PGL2.oFv /,
for each nonarchimedean place v at which � is unramified, the same is true
of ';

(3) k'kL2.X/�� N.p/�.

Proof. The proof is similar to that of the previous lemma; recall that (11.6)
was valid as long as one of �1; �2 were cuspidal.

Let ‰02 be the translate of the Schwartz function ‰2 by a.Œp�/. Then by (10.4),

E‰02
.s; g/D N.p/�sEa.Œp�/‰2

.s; g/:

Suppose ‰1; ‰2 factorize as
Q
v ‰1;v;

Q
v ‰2;v, and define W‰1;v .s; g/ and

W‰2;v .s; g/ as in Lemma 10.5. Suppose moreover that
R
x2F nAF

eF .x/'.n.x/g/

factorizes as
Q
vWv.g/. Then we can express the global integral of (11.9) as a

product in two different ways, depending on whether we let E‰1 or E‰2 play the
role of �2. Namely, as in (11.7),

(11.10)
Z

X
'.g/E‰1.g; 1=2C t /E‰2.ga.Œp�/; 1=2C t

0/dg

D cFN.p/1=2Ct
0
Y
v

Iv.Wv; W‰1;v .1=2C t; �/; ‰
0
2;v; 1=2C t

0/

D cF
Y
v

Iv.Wv; W‰2;v .1=2C t
0; �/a.Œp�/v ; ‰1;v; 1=2C t /:

Here W‰2;v .1=2C t
0; �/a.Œp�/v denotes the translate of W‰2;v by the vth com-

ponent of a.Œp�/.
For v nonarchimedean (notation being similar to that of the previous lemma)

we take ‰1;v and ‰2;v to be the characteristic function of o2v for every finite v, and
Wv to be the new vector.

For v archimedean we first apply Lemma 11.2 with s0D 1=2Ct0, and �2;v the
representation of PGL2.Fv/ spanned by E‰2.1=2C t

0
0; g/, i.e., the representation

unitarily induced from the character a.y/ 7! jyj
it 00
v . Lemma 11.2 providesWv in the

Whittaker model of �v , W2;v in the Whittaker model of �2;v , and a Schwartz func-
tion ‰1;v with jIv.Wv; W2;v; ‰1;v; 1=2C t0/j � 1. The last comment of Remark
10.2 shows that there is a standard ‰2;v so that W‰2;v .1=2C t

0
0; gv/DW2;v.gv/

(notation of Lemma 10.5). Moreover, Lemma 11.2 also shows that ‰1;v and W2;v
(so also ‰2;v) may be chosen from a fixed finite set of possibilities (depending, of
course, on the original bounded set to which �1 belongs, as well as t0 and t 00).

Again we put‰i D
Q
v ‰i;v for i D 1; 2 and take ' with

R
x2F nAF

'.n.x/g/DQ
vWv.g/. From (11.10) we deduce that, with our choices, jˆ.t0; t 00/j � 1. The

assertion about k'kL2.X/ follows as in the proof of the previous lemma. The second
assertion of the Lemma (concerning invariance of ‰1; ‰2) is immediate.
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It remains to prove thatˆ is actually holomorphic in .t; t 0/ and that jˆ.t; t 0/j�
.1C jt j C jt 0j/C eC j<.t/jCC j<.t

0/j. Put „v D Iv
Lv.

1
2
CtCt 0;�v/Lv.

1
2
Ct�t 0;�v/

. It is

simple to explicitly compute „v for nonarchimedean v, using Corollary 10.1 and
Lemma 11.1. One thereby sees that it will suffice to check, by similar arguments
to those used in Lemma 11.2, the following statement for v archimedean: „v D
csc0s

0

P.s; s0/, where P is a polynomial, and moreover c; c0; P vary continuously in
�v , if �v 7!Wv is a continuous assignment. We only sketch the proof of this. From
(11.7) and the fact that Wv; ‰1;v; ‰2;v are all Kv-finite, it suffices to prove the
corresponding assertions for

R
F �v

Wv.a.y//W‰1;v .s; a.y//jyj
s0�1d�y. For this

we use Barnes’ formula as in [20]; see e.g., [20, Lemmas 17.3.1, 17.3.2]. �

11.3. Local Rankin-Selberg convolutions. Let v be a nonarchimedean place
of F with residue characteristic qv. Let �1; �2 be generic irreducible admissible
representations of GL.2; Fv/ with trivial central character. (Since we shall work
purely locally over Fv throughout the present subsection, we shall use the notation
�1 rather than, e.g., �1;v.)

Then �1; �2 are self-dual. We assume that �2 is unramified and �1 has con-
ductor qv, and denote by L.s; �j / the local L-factors.

Fix once and for all an additive unramified character  of Fv . Let v WF �v ! Z

be the valuation, put oFv D fx 2 F
�
v W v.x/ � 0g, and choose a uniformizer $ 2

F �v . Let o�Fv be the multiplicative group of units in oFv . Let d�x; dx be Haar
measures on F �v ; Fv respectively, assigning mass 1 to o�Fv and oFv respectively.
For x 2Fv , put n.x/D

�
1 x
0 1

�
. Also let wD

�
0 1
�1 0

�
: We choose a Whittaker model

for �1 transforming by the character n.x/ 7!  .x/, and a Whittaker model for �2
transforming by the character n.x/ 7!  .x/.

Let ‰v be the characteristic function of o2Fv . Set W1 to be the new vector in
the Kirillov model of �1, let W �2 be the new vector in the Kirillov model of �2,
and set W2 D �2

�
1 0
0 $

�
W �2 . Then both W1; W2 are invariant by the subgroup

(11.11) K0 D

��
a b

c d

�
W a; b; d 2 oFv ; c 2$oFv

�
:

Moreover W2 is invariant by n.$�1oFv /.

LEMMA 11.6. Notation being as in (11.6), let L.s; �1 ��2/ be the local L-
factor. Then

Iv.W1;v; W2;v; ‰v; s/

L.s; �1 ��2/
D˙

qsv
qvC 1

:

Proof. We shall often use the following shorthand: if W is a function in the
Whittaker model of � 2 f�1; �2g and for z 2 F �v , we write W.z/ for W

�
z 0
0 1

�
.

Thus, for instance, W2.z/DW �2 .z$
�1/. The function z 7!W.z/ belongs to the

Kirillov model of � .
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Let � 2 f�1; 1g be the local root number of �1 (it lies in f�1; 1g since �1 is
self-dual). ThenZ

a2F �v

W1.a/jaj
s�1=2d�aD L.s; �1/;(11.12) Z

a2F �v

W2.a/jaj
s�1=2d�aD q�.s�1=2/v L.s; �2/;

as follows from defining properties of newforms and the fact W2.z/DW �2 .z$
�1/;

moreover Z
a2F �v

�1.w/W1.a/jaj
s�1=2d�aD �q.s�1=2/v L.s; �1/;(11.13) Z

a2F �v

�2.w/W2.a/jaj
s�1=2d�aD q.s�1=2/v L.s; �2/;

as follows from local functional equation for the standard L-function on GL.2/:
see [21, 2.18].24

Note moreover that W1, W2, �1.w/W1, and �2.w/W2 are all invariant by the
maximal compact subgroup of the diagonal torus of GL2. Thus (11.12) and (11.13)
completely determine their restriction to the diagonal torus; we now explicate this.

Choose ˛ 2 C so that L.s; �1/ D .1� ˛q�sv /�1. In fact, ˛ D ��q�1=2v , by
[21, Prop. 3.6]. Choose 1; 2 so that L.s; �2/ D ..1 � 1q

�s
v /.1 � 2q

�s
v //�1.

Recalling the notational convention established in the paragraph prior to (11.12),
we see:

W1.$
r/D

(
˛rq
�r=2
v ; r � 0

0; r < 0;
(11.14)

�1.w/W1.$
r/D

8<:�˛rC1q�
rC1
2

v ; r � �1

0; r < �1;

W2.$
r/D

8̂̂<̂
:̂
0; r � 0

1; r D 1

.r�11 C r�21 2C � � �C 
r�1
2 /q

� r�1
2

v ; r � 2;

�2.w/W2.$
r/D

8̂̂<̂
:̂
0; r < �1

1; r D�1

.rC11 C r12C � � �C 
rC1
2 /q

�
rC1
2

v ; r � 0:

24That is,
R
a2F � W.a/jaj

s�1=2d�aD
L.s;�/

�.s;�/L.1�s; Q�/

R
F � W.aw/jaj

1=2�s!�1.a/d�a, where
! denotes the central character. In particular, if � is a representation with trivial central character,

and � a character of F�,
R
a2F � W.a/�.a/d

�aD
L. 12 ;�˝�/

�. 12 ;�˝�/L.
1
2 ; Q�˝ N�/

R
F � W.aw/�

�1.a/d�a:
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The local integral we wish to evaluate is the right-hand side of (11.6). In the case
at-hand, with N;G;Z denoting the Fv-points of the respective groups, we have
(11.15)

I.s/ WD

Z
ZNnG

W1.g/W2.g/

�
j det.g/js

Z
t2F �v

‰v..0; t/ �g/jt j
2sd�t

�
dg:

Using the Iwasawa decomposition, and recalling ‰v was the characteristic
function of o2Fv one finds

I.s/D .1� q�2sv /�1
Z
A�Kv

�1.k/W1.a/�2.k/W2.a/jaj
s�1d�adk;

where the measure dk is the Haar measure of total mass 1, and d�a assigns mass
1 to A\Kv.

The function k 7! �1.k/W1.a/�2.k/W2.a/ is right invariant by K0 (see
(11.11) for definition) and left invariant by N \Kv. There are two .N \Kv; K0/
double cosets in Kv, and we may therefore express I.s/ as a sum:

(11.16) .1� q�2sv /I.s/D
1

qvC 1

Z
a2F �v

W1.a/W2.a/jaj
s�1d�a

C
qv

qvC 1

Z
a2F �v

�1.w/W1.a/�2.w/W2.a/jaj
s�1d�a:

To evaluate I.s/, we use (11.14). Noting thatL.s; �1��2/D 1
.1�˛1q

�s
v /.1�˛2q

�s
v /

,
an easy computation shows

I.s/D
L.s; �1 ��2/

.qvC 1/.1� q�2sv /

�
˛q�1=2v q�.s�1/v C �qvq

s�1
v

�
from where we obtain I.s/D � qsv

qvC1
L.s; �1��2/. Note also that I.s/ satisfies the

necessary functional equation. �

11.4. Hecke-Jacquet-Langlands integral representations for standard L-func-
tions. Our goal here is to prove Propositions 6.1 and 6.2, used in the text. This
amounts to explicit computations connected to Hecke-Jacquet-Langlands integral
representations. Since, in the main text, we obtain subconvexity for GL.1/ twists
of GL.2/ L-functions, with polynomial dependence in all parameters, we will have
to be somewhat more precise than in the case of Rankin-Selberg L-functions.

Let � be a cuspidal representation of GL2 over AF . Let � be a unitary char-
acter of A�F =F

� of finite conductor f. Put Lunr.s; � ��/ to be the unramified part
of the (finite) standard L-function:

Lunr.s; � ��/ WD
Y

v finite;�v unramified

Lv.s; �v ��v/:
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Define �z as in (6.4), i.e., the measure on XGL.2/ defined as

�z.f /D

Z
jyjDz

f .a.y/n.Œf�//�.y/d�y:

We refer to Sections 2.3 and 2.5 for notation, as well as the start of Section 6 for a
discussion of the meaning of �z in classical terms.

LEMMA 11.7. Let v be a nonarchimedean place of F with residue character-
istic qv, and �v an irreducible generic representation of GL2.Fv/. Let  v be an
unramified additive character of Fv. Let �v W F �v ! C a multiplicative character
of conductor r , Wv be the new vector in the  v-Whittaker model of �v. ThenZ

y2F �v

Wv.a.y/n.$
�r
v //�v.y/jyj

s�1=2d�y D

(
Lv.s; �v ��v/; r D 0

�; r � 1;

where � is a scalar of absolute value q�r=2v .1� q�1v /�1.

Proof. If r D 0, then �v is unramified, and the result follows immediately
from the definition of the new vector. Otherwise, �v is ramified, and we rewrite
the integral under consideration as

(11.17)
Z
y2F �v

Wv.a.y// v.$
�r
v y/�v.y/jyj

s�1=2d�y:

Now Wv.a.y// vanishes when v.y/ < 0 and it is o�Fv -invariant. The integralR
v.y/Dk �v.y/ v.$

�r
v y/d�y is nonvanishing only when k D 0. (The vanishing

for k > 0 may be seen by considering the substitution y yz; z 2 1C$r�1
v oFv .)

In that case, it is a Gauss sum with absolute value q
�r=2
v

.1�q�1v /
, where the factor

.1� q�1v /�1 arises from the measure normalization (cf. �2.6) namely
R
v.y/D0 d

�y

D 1. The result follows. �

LEMMA 11.8. Let d; ˇ � 0. Then there exists ' 2 � such that if

(11.18) ˆ.s/D N.f/1=2
R
z �z.'/jzj

s�1=2d�z

Lunr.s; � ��/
;

then ˆ.s/ is holomorphic and satisfies:

(1) jˆ.s/j �<.s/;� N.f/� and jˆ.1
2
/j �� N.f/��.

(2) ' is new at every finite place (i.e., for each finite prime q it is invariant by
K0Œq

sq �, where sq is the local conductor of the local constituent �q).

(3) The Sobolev norms of ' satisfy the bounds (conductor notation as in §2.12.2)

(11.19) S2;d;ˇ .'/�� Cond1.�/2dC�Condf .�/
ˇC�Cond1.�/1=2C2d :

Proof. For each infinite place w of F , denote by Condw.�/ the contribution
from w to the Iwaniec-Sarnak analytic conductor of � (see �2.12.2.)
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The map ' 7!W' D
R
F nAF

eF .x/'.n.x/g/ is an isomorphism between the
space of � and the Whittaker model of � . For each finite v, take Wv to be a new
vector in the Whittaker model of �v. A point of caution is that eF may not be
unramified on Fv; to be absolutely concrete, we set Wv.g/DWv;new.a.$

dv
v /g/,

where Wv;new is ehe new vector in the Whittaker model of �v taken with respect
to an unramified additive character of Fv, and dv D v.d/ is the local valuation of
the different.

Let us now choose Wv at the infinite places. Let g1 be a smooth positive
function of compact support on Fv, with support containing 0. Let deg.v/D 2 if
v is complex and deg.v/D 1 if v is real. For1jv, define

Wv.y/D Condv.�/g1.Condv.�/1= deg.v/.y � 1//:

This is possible by the theory of the Kirillov model; thus Wv is a smooth (but not
Kv-finite) vector. In words, if v is real, the function Wv is supported in a neigh-
borhood of the identity of size Condv.�/�1 and takes values of size jCondv.�/j
there; if v is complex, a similar statement holds but now Wv is supported in a disc
around the identity with area Condv.�/�1.

Then there exists ' 2 � with W' D
Q
vWv. By unfolding, it follows that for

<.s/� 1,
(11.20)Z

z

�z.'/jzj
s�1=2d�z D cF

Y
v

Z
y2F �v

Wv.a.y/n.Œf�//jyj
s�1=2�v.y/d

�y:

Here cF is a constant depending only on F , arising from change of measure; it is
entirely unimportant as we will be only interested in bounds.25

By Lemma 11.7, with ˆ.s/ as in the statement of the lemma,

(11.21) ˆ.s/D cF �
0
�N.d/s�1=2

Y
infinitev

Z
F �v

Wv.a.y//jyj
s�1=2�v.y/d

�y;

where j� 0j D
Q

qjf.1�N.q/�1/�1. For this choice of ', the second assertion if the
lemma is clear, and, if we choose the support of g1 to be small enough, the first
assertion also follows easily.26

(11.19) follows from Lemma 8.4, together with Lemma 11.3 and the upper
bound for L-functions near 1 due to Iwaniec. See [19, Chap. 8] for this bound. �

The previous lemma shows that L.1=2; � ��/ may be “well-approximated”
by an appropriate period integral. Unfortunately, this period integral is against a

25The measure �z is normalized as a probability measure, whereas to unfold from A�
F

to
Q
v F
�
v

we use the measures previously set up there (see §2.6).
26For the assertion concerning the lower bound for jˆ.1=2/j, the point, in words, is that our

choices are so that �v does not oscillate over the support of Wv ; cf. Remark 2.2. Note how convenient
it is, here and elsewhere, to use smooth vectors rather than K1-finite vectors; one could not, e.g.,
achieve Wv of compact support with K1-finite vectors.
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measure of infinite mass, since A�F =F
� is of infinite volume. It is, therefore, con-

venient to know that the �z-integral of (11.18) can be truncated to a compact range
without affecting the answer too much. This is, roughly speaking, the geometric
equivalent of the approximate functional equation in the classical theory, and is
provided by the next lemma. It says, roughly speaking, that the integral of (11.18)
can be truncated to the range where z is around N.f/�1.

LEMMA 11.9. Let notation be as in Lemma 11.8. Let gC; g� be positive
smooth functions on R�0 such that gCCg�D 1, gC.t/D 1 for t � 2 and g�.t/D 1
for all t � 1=2. Then

ICW D

Z
z

�z.'/gC.z=T /d
�z�gC;� .N.f/T /

�1=2.TCond.�/Cond.�//�;

I�W D

Z
z

�z.'/g�.z=T /d
�z

�g�;� .N.f/T /
1=2.TCond.�//�.Cond1.�/Cond.�//1C�:

Proof. Recall the definition of �z from (6.4). Put cg˙.s/D R g˙.x/xs�1dx,
the Mellin transform of g˙; then g˙ is holomorphic in ˙<.s/ < 0 and for any
M � 0;˙� < 0 the integral

R
<.s/D� jcg˙.s/j.1Cjsj/Mds is convergent. Then, for

any ˙� > 0, we have, by the Plancherel formula on R�, thatZ
z

�z.'/g˙.z=T /d
�z D

1

2�i

Z
<.s/D��

�Z
�z.'/jzj

�sd�z

�
T scg˙.s/ds:

So, for any M > 0,

jI˙j ��;g˙;M
T ��N.f/�1=2 sup

<.s/D1=2C�

jLunr.s/ˆ.s/j

.1Cjsj/M
i;

where ˆ is as in the previous lemma.Take � D 1=2C " in the C case, �1=2� " in
the � case.

Using Iwaniec’s bounds on L-functions near 1 [19, Chap. 8] and the functional
equation, we see that for sufficiently large M :

sup
<.s/D1C"

jLunr.s; � ��/j � Cond.� ˝�/";(11.22)

sup
<.s/D�"

jLunr.s; � ��/j

.1Cjsj/M
�M Cond.� ˝�/1=2C"

�

Y
�v ramified finite

sup
<.s/D�"

jLv.s; �v ��v/j
�1:

For each v where �v is ramified and Lv.s; �v ��v/ is not identically 1, the rep-
resentation �v must also be ramified (i.e., not spherical). So one can bound the
product on the second line on (11.22), using trivial bounds towards the Ramanu-
jan conjecture, by Cond.�/1=2C2". The fact that Cond.�/D Cond1.�/N.f/, the
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bound [7] Cond.�˝�/� Cond.�/Cond.�/2, and the (easily verified) analogue
of this bound of [7] at archimedean places, allows one to conclude. �

We now address the analogue of the previous lemmas when � is noncuspi-
dal.27

LEMMA 11.10. There is an absolute C > 0 (i.e., depending only on F ) and a
Schwartz function ‰ (depending on �) so that if we put

ˆ.s; s0/ WD N.f/1=2
R
y2A�F =F

�
xE‰.s; a.y/n.Œf�//�.y/jyj

s0d�y

L.�; sC s0/L.�; 1� sC s0/
;

where xE is defined as in (10.9), then the integral defining ˆ is absolutely conver-
gent in a right half-plane <.s/� 1. Moreover, ˆ extends from <.s/;<.s0/� 1

to a holomorphic function on C2, satisfying

(1) jˆ.1=2; 0/j � 1 and jˆ.s; s0/j � C 1Cj<.s/jCj<.s
0/j.1CjsjC js0j/C .

Moreover, given N > 0 we have that

(11.23) jˆ.s; s0/j.1CjsjC js0j/N �<.s/;<.s0/;N Cond1.�/N
0

;

where N 0 and the implicit constant may be taken to depend continuously on
N , <.s/, <.s0/.

(2) ‰, and so also E‰.s; g/ is invariant by Kmax.

(3) Let h 2 H.�/ be as in (10.18), and put Eh WD
R
<.s/�1 h.s/E‰.s; g/dg. For

each d; ˇ there is N such that S1;d;ˇ .Eh/�� khk0Cond1.�/N .

Proof. We shall not explicitly address details of convergence. The manipula-
tions that follow may be justified by similar reasoning to that of Lemma 10.6.

We now define a Schwartz function ‰v on F 2v for each place v. For each
finite place v, let ‰v be the characteristic function of o2Fv .

For infinite v, we will first define a Schwartz function �v on Fv , and then take
‰v.x; y/D �v.x/b�v.y/; here b�v is the inverse Fourier transform of �v , satisfyingR
Fv
b�v.y/eFv .xy/dy D �v.x/.
Let g1 be a smooth positive function of compact support on Fv , with support

containing 0. Let deg.v/D 2 if v is complex and deg.v/D 1 if v is real. For1jv,
define

�v.y/D Condv.�/g1.Condv.�/1= deg.v/.y � 1//:

27The content of the following lemma, in classical language, is related to the following observa-
tion. Let � be an even Dirichlet character mod q, and let E�.s; z/ to be the Eisenstein series of (10.6),
and xE�.s; z/ WD E�.s; z/ � �.2s/ys � �.2.1 � s//y1�s , then 1

q

R1
0

P
1�x�q�1 �.x/

xE�.s; xq C

iy/ys
0
d�y coincides, up to some harmless factor, with q�1=2ƒ.�; sC s0/ƒ.�; 1� sC s0//, where

ƒ.�; s/ is the usual Dirichlet L-function completed to include the �-factor at1. This particular
expression is actually not quite suitable for our needs, because of the rapid decay of the �-factor
swamps information about the finite L-function, and in fact the lemma uses (the equivalent of) a
different test vector belonging to the automorphic representation underlying E�.z; s/.
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In words: in the real (resp. complex) case, �v is localized in a real (resp. com-
plex) interval (resp. disc) around 1, of length (resp. area) Condv.�/�1. Now put
‰v.x; y/D �v.x/b�v.y/. The function ‰v is not compactly supported; however, it
is of rapid decay. Indeed for each Schwartz norm S, there is M > 0 such that

(11.24) S.‰v/� Condv.�/M :

Define a Schwartz function on A2F via ‰.x; y/D
Q
v ‰v.x; y/. As in Lemma

10.5, define W‰.s; g/ as the Fourier coefficient of E‰.s; g/. The choice of ‰ and
Lemma 10.5 shows that W‰.s; g/ D

Q
vWv.g/, where, for each finite v, Wv is

given by Corollary 10.1, and satisfies

(11.25)
Z
F �v

Wv.a.y//jyj
s0d�y D qdv.1Cs

0�s/
v Lv.j � j

s; s0/Lv.j � j
1�s; s0/:

For infinite v, Wv satisfies (Lemma 10.5)

(11.26)
Z
F �v

Wv.a.y//�v.y/jyj
s0d�y

D

Z
F �v

�v.x/�v.x/jxj
sCs0d�x

Z
F �v

�v.x/�v.x/jxj
1�sCs0d�x:

By Fourier analysis and Lemma 10.3, xE‰.s; g/D
P
˛2F � W‰.a.˛/g/. Thus,

for <.s/� 1,

(11.27)
Z
y2A�F =F

�

xE‰.s; a.y/n.Œf�//�.y/jyj
s0d�y

D

Z
y2A�F

W‰.s; a.y/n.Œf�//�.y/jyj
s0d�y

D

Y
v

Z
y2F �v

Wv.a.y/n.Œf�//�v.y/jyj
s0d�y:

For s � 1, we use (10.17), (11.26) and Lemma 11.7 to evaluate the local
factors, obtaining

(11.28) ˆ.s; s0/D � 0 �N.d/1Cs
0�s

Y
v infinite

Z
y2F�v

Wv.a.y//�v.y/jyj
s0d�y

D � 0 �N.d/1Cs
0�s

Y
v infinite

Z
F�v

�v.x/�v.x/jxj
sCs0d�x

Z
F�v

�v.x/�v.x/jxj
1�sCs0d�x;

where j� 0j D
Q

qjf.1�N.q/�1/�1. Now, by choice of 'v, the integral

Iv.s/ WD

Z
y2F �v

�v.y/�v.y/jyj
sd�y

satisfies jIv.1=2/j� 1 and jIv.s/j� .1Cjsj/CC 1Cj<.s/j, at least when we choose
the support of g1 to be sufficiently small. It also satisfies

jIv.s/j.1Cjsj/
N
�N;<.s/ Cond1.�/N

0

;

whereN 0 and the implicit constant may be taken to depend continuously onN;<.s/.
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The corresponding facts (i.e., the first assertion of the lemma) about ˆ follow
immediately. The second assertion of the lemma is immediate from our choice
of ‰. As for the third and final assertion, it follows from Remark 10.3 and (11.24).

�

LEMMA 11.11. Let notation be as in the previous lemma. Assume � is rami-
fied at least one finite place. Let gC; g� be positive smooth functions on R�0 such
that gCCg� D 1, gC.t/D 1 for t � 2 and g�.t/D 1 for all t � 1=2.

Then

(11.29) �z.Eh/�K;‰;h min.zK ; z�K/

for any K � 1.
Moreover, there is an absolute N > 0 such that

ICW D

Z
z

�z.Eh/gC.z=T /d
�z� .N.f/T /�1=2.TCond.�//�khkN ;

I�W D

Z
z

�z.Eh/g�.z=T /d
�z� .N.f/T /1=2.TCond.�//�Cond1.�/1C�khkN :

(Here the norms k � kN are as in (10.18).)

Proof. Again, we shall leave verification of convergence to the reader. Recall
that, with the relevant measure on A�F =F

� having mass 1,

�z.Eh/D

Z
y2A�F =F

�;jyjDz

Eh.a.y/nŒf�/�.y/d
�y(11.30)

D

Z
y2A�F =F

�;jyjDz

Z
<.s/�1

h.s/E‰.s; a.y/n.Œf�//�.y/d
�y

D

Z
y2A�F =F

�;jyjDz

Z
<.s/�1

h.s/ xE‰.s; a.y/n.Œf�//�.y/d
�y:

Here, the last equality is justified by the fact that .E‰ � xE‰/.s; a.y/n.Œf�// is
invariant under y 7! yy0, for y0 2

Q
v o�Fv . On the other hand, � is nontrivial onQ

v o�Fv , by assumption.
Combining (11.30) with Lemma 11.10, we have

(11.31)
Z
z

�z.Eh/z
s0d�z

D cFN.f/�1=2
Z
<.s/�1

h.s/L.�; 1� sC s0/L.�; sC s0/ˆ.s; s0/ds:

Here cF is an (unimportant) constant arising from measure normalization, as in
(11.20).

The assertion (11.29) follows immediately from this, inverse Mellin transform,
and analytic properties of the right-hand side.
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Now proceed as in Lemma 11.9; it follows that (for any M )

jI˙j � T�.1=2C"/N.f/�1=2 sup
<.s0/D˙.1=2C"/

.1Cjs0j/�M

�

Z
h.s/L.�; 1� sC s0/L.�; sC s0/ˆ.s; s0/ds:

We deal with the case of I�. In that case, we take the inner integral to be over
<.s/D 1=2, and put s0 D�1=2� "� i t 0, and it will suffice to boundZ

h.1=2C i t/L.�;�"� i t � i t 0/L.�;�"C i t � i t 0/.1Cjt jC jt 0j/C :

This is bounded, up to an implicit constant depending on ", by

Cond.�/1C2"khkM 0.1Cjt 0j/C
0

for sufficiently big M 0; C 0, whence the result. �
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