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Abstract

Let S be the spectrum of a complete discrete valuation ring with fraction field
of characteristic 0 and perfect residue field of characteristic p � 3. Let G be a
truncated Barsotti-Tate group of level 1 over S . If “G is not too supersingular”,
a condition that will be explicitly expressed in terms of the valuation of a certain
determinant, then we prove that we can canonically lift the kernel of the Frobenius
endomorphism of its special fiber to a subgroup scheme of G, finite and flat over S .
We call it the canonical subgroup of G.

1. Introduction

1.1. Let OK be a complete discrete valuation ring with fraction fieldK of char-
acteristic 0 and perfect residue field k of characteristic p>0. We put SDSpec.OK/
and denote by s (resp. �) its closed (resp. generic) point. Let G be a truncated
Barsotti-Tate group of level 1 over S . If Gs is ordinary, then the kernel of its Frobe-
nius endomorphism is a multiplicative group scheme and can be uniquely lifted to
a closed subgroup scheme of G, finite and flat over S . If we do not assume Gs or-
dinary but only that “G is not too supersingular”, a condition that will be explicitly
expressed in terms of the valuation of a certain determinant, then we will prove that
we can still canonically lift the kernel of the Frobenius endomorphism of Gs to a
subgroup scheme of G, finite and flat over S . We call it the canonical subgroup
of G. Equivalently, under the same condition, we will prove that the Frobenius
endomorphism of Gs can be canonically lifted to an isogeny of truncated Barsotti-
Tate groups over S . This problem was first raised by Lubin in 1967 and solved
by himself for 1-parameter formal groups [16]. A slightly weaker question was
asked by Dwork in 1969 for abelian schemes and answered also by him for elliptic
curves [9]: namely, could we extend the construction of the canonical subgroup
in the ordinary case to a “tubular neighborhood” (without requiring that it lifts the
kernel of the Frobenius)? The dimension one case played a fundamental role in the
pioneering work of Katz on p-adic modular forms [14]. For higher-dimensional
abelian schemes, Dwork’s conjecture was first solved by Abbes and Mokrane [1];
our approach is a generalization of their results. Later, there have been other proofs,
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always for abelian schemes, by Andreatta and Gasbarri [3], Kisin and Lai [15] and
Conrad [7].

1.2. For an S -scheme X , we denote by X1 its reduction modulo p. The valu-
ation vp of K, normalized by vp.p/D 1, induces a truncated valuation OS1nf0g!

Q\ Œ0; 1/. Let G be a truncated Barsotti-Tate group of level 1 and height h over S ,
G_ be its Cartier dual, and d be the dimension of the Lie algebra of Gs over k. The
Lie algebra Lie.G_1 / of G_1 is a free OS1-module of rank d� D h� d , canonically
isomorphic to Hom.S1/fppf.G1;Ga/ ([12, 2.1]). The Frobenius homomorphism of
Ga over S1 induces an endomorphism F of Lie.G_1 /, which is semi-linear with
respect to the Frobenius homomorphism of OS1 . We define the Hodge height of
Lie.G_1 / to be the truncated valuation of the determinant of a matrix of F (see
�3.11). This invariant measures the ordinarity of G.

1.3. Following [1], we construct the canonical subgroup of a truncated Barsotti-
Tate group over S by the ramification theory of Abbes and Saito [2]. Let G be a
commutative finite and flat group scheme over S . In [1], the authors defined a
canonical exhaustive decreasing filtration .Ga; a 2Q�0/ by finite, flat and closed
subgroup schemes of G. For a real number a � 0, we put GaC D[b>aGb , where
b runs over rational numbers.

THEOREM 1.4. Assume that p � 3, and let e be the absolute ramification
index of K and j D e=.p� 1/. Let G be a truncated Barsotti-Tate group of level 1
over S , d be the dimension of the Lie algebra of Gs over k. Assume that the Hodge
height of Lie.G_1 / is strictly smaller than 1=p. Then,

(i) the subgroup scheme GjC of G is locally free of rank pd over S ;

(ii) the special fiber of GjC is the kernel of the Frobenius endomorphism of Gs .

1.5. Statement (i) was proved by Abbes and Mokrane [1] for the kernel of
multiplication by p of an abelian scheme over S . We extend their result to trun-
cated Barsotti-Tate groups by using a theorem of Raynaud to embed G into an
abelian scheme over S . To prove statement (ii), which we call “the lifting property
of the canonical subgroup”, we give a new description of the canonical filtration
of a finite, flat and commutative group scheme over S killed by p in terms of
congruence groups. Let xK be an algebraic closure of the fraction field of S , O xK
be the integral closure of OK in xK. Put xS D Spec.O xK/. For every � 2 O xK with
0� vp.�/� 1=.p� 1/, Sekiguchi, Oort and Suwa [20] introduced a finite and flat
group scheme G� of order p over xS (see �7.1); following Raynaud, we call it the
congruence group of level �. If vp.�/D 0, G� is isomorphic to the multiplicative
group scheme �p D Spec.O xK ŒX�=

�
Xp�1/

�
over xS and if vp.�/D 1=.p�1/, then

G� is isomorphic to the constant étale group scheme Fp . For general � 2 O xK with
0� �� 1=.p�1/, there is a canonical xS -homomorphism �� WG�!�p , such that
� ˝ xK is an isomorphism. For a finite, flat and commutative group scheme G over
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S killed by p, �� induces a homomorphism

��.G/WHom xS .G;G�/!G_. xK/D Hom xS .G;�p/:

We prove that it is injective, and its image depends only on the valuation a D
vp.�/; we denote it by G_. xK/Œea�, where e is the absolute ramification index of
K (the multiplication by e will be justified later). Moreover, we get a decreasing
exhaustive filtration .G_. xK/Œa�; a 2Q\ Œ0; e

p�1
�/.

THEOREM 1.6. Let G be a finite, flat and commutative group scheme over S
killed by p. Under the canonical perfect pairing

G. xK/�G_. xK/! �p. xK/;

there is, for any rational number a 2Q�0,

GaC. xK/? D

(
G_. xK/Œ

e
p�1
� a
p
�; if 0� a � ep

p�1
;

G_. xK/; if a > ep
p�1

:

Andreatta and Gasbarri [3] have used congruence groups to prove the existence of
the canonical subgroup for abelian schemes. This theorem explains the relation
between the approach via the ramification theory of [1] and this paper, and the
approach of [3].

1.7. This article is organized as follows. For the convenience of the reader,
we recall in Section 2 the theory of ramification of group schemes over a complete
discrete valuation ring, developed in [2] and [1]. Section 3 is a summary of the
results in [1] on the canonical subgroup of an abelian scheme over S . Section 4
consists of some preliminary results on the fppf cohomology of abelian schemes.
In Section 5, we define the Bloch-Kato filtration for a finite, flat and commutative
group scheme over S killed by p. Using this filtration, we prove Theorem 1.4(i) in
Section 6. Section 7 is dedicated to the proof of Theorem 1.6. Finally in Section 8,
we complete the proof of Theorem 1.4(ii).

1.8. This article is a part of the author’s thesis at Université Paris 13. The
author would like to express his great gratitude to his thesis advisor Professor A.
Abbes for leading him to this problem and for his helpful comments on earlier
versions of this work. The author thanks Professors W. Messing and M. Raynaud
for their help. He is also grateful to the referee for his careful reading and very
valuable comments.

1.9. Notation. In this article, OK denotes a complete discrete valuation ring
with fraction field K of characteristic 0, and residue field k of characteristic p > 0.
Except in Section 2, we will assume that k is perfect. Let xK be an algebraic closure
ofK, GKDGal. xK=K/ be the Galois group of xK overK, O xK be the integral closure
of OK in xK, m xK be the maximal ideal of O xK , and Nk be the residue field of O xK .
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We put S D Spec.OK/, xS D Spec.O xK/, and denote by s and � (resp. Ns and N�)
the closed and generic point of S (resp. of xS ) respectively.

We fix a uniformizer � of OK . We will use two valuations v and vp on OK ,
normalized respectively by v.�/D 1 and vp.p/D 1; so we have vD evp , where e
is the absolute ramification index of K. The valuations v and vp extend uniquely
to xK; we denote the extensions also by v and vp . For a rational number a � 0, we
put ma D fx 2 xKI vp.x/ � ag and xSa D Spec.O xK=ma/. If X is a scheme over S ,
then we will denote respectively by xX , XNs and xXa the schemes obtained by base
change of X to xS , Ns and xSa.

If G is a commutative, finite and flat group scheme over S , then we will denote
by G_ its Cartier dual. For an abelian scheme A over S , A_ will denote the dual
abelian scheme, and pA the kernel of multiplication by p, which is a finite and flat
group scheme over S .

2. Ramification theory of finite flat group schemes over S

2.1. We begin by recalling the main construction of [2]. Let A be a finite and
flat OK-algebra. We fix a finite presentation of A over OK

0! I ! OK Œx1; : : : ; xn�! A! 0;

or equivalently, an S -closed immersion of i WSpec.A/!AnS . For a rational number
a > 0, let Xa be the tubular neighborhood of i of thickening a ([2, �3], [1, 2.1]).
It is an affinoid subdomain of the n-dimensional closed unit disc over K given by

Xa. xK/D f.x1; : : : ; xn/ 2 OnxK j v.f .x1; : : : ; xn//� a; 8f 2 I g:

Let �0.XaxK/ be the set of geometric connected components of Xa. It is a finite
GK-set that does not depend on the choice of the presentation ([2, Lemma 3.1]).
We put

(2.1.1) Fa.A/D �0.X
a
xK
/:

For two rational numbers b � a > 0, Xb is an affinoid sub-domain of Xa. So there
is a natural transition map Fb.A/! Fa.A/.

2.2. We denote by AFPOK the category of finite flat OK-algebras, and by
GK-Ens the category of finite sets with a continuous action of GK . Let

FWAFPıOK ! GK-Ens

A 7! Spec.A/. xK/

be the functor of geometric points. For a 2Q>0, (2.1.1) gives rise to a functor

Fa W AFPıOK ! GK-Ens:

For b � a � 0, we have morphisms of functors �a W F! Fa and �a
b
W Fb! Fa,

satisfying the relations �a D �b ı �a
b

and �ac D �a
b
ı �bc for c � b � a � 0.
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To stress the dependence on K, we will denote F (resp. Fa) by FK (resp. FaK).
These functors behave well only for finite, flat and relative complete intersection
algebras over OK (EGA IV 19.3.6). We refer to [2, Props. 6.2 and 6.4] for their
main properties.

LEMMA 2.3 ([1, Lemme 2.1.5]). Let K 0=K be an extension (not necessarily
finite) of complete discrete valuation fields with ramification index eK0=K . Let A
be a finite, flat and relative complete intersection algebra over OK . Then we have
a canonical isomorphism F

aeK0=K
K0 .A0/' FaK.A/ for all a 2Q>0.

2.4. Abbes and Saito show that the projective system of functors

.Fa;F! Fa/a2Q�0

gives rise to an exhaustive decreasing filtration (GaK ; a 2 Q�0) of the group GK ,
called the ramification filtration ([2, Prop. 3.3]). Concretely, if L is a finite Galois
extension of K contained in xK, and Gal.L=K/ is the Galois group of L=K, then
the quotient filtration .Gal.L=K/a/a2Q�0 induced by .GaK/a2Q�0 is determined
by the following canonical isomorphisms:

Fa.L/' Gal.L=K/=Gal.L=K/a:

For a real number a � 0, we put GaCK D [b>aGbK , and if a > 0 Ga�K D\b<aGbK ,
where b runs over rational numbers. Then G0CK is the inertia subgroup of GK ([2,
Prop. 3.7]).

2.5. We recall the definition of the canonical filtration of a finite and flat
group schemes over S , following [1]. Let GrS be the category of finite, flat and
commutative group schemes over S . Let G be an object of GrS and a 2 Q�0.
Then there is a natural group structure on Fa.A/ ([1, 2.3]), and the canonical
surjection F.A/! Fa.A/ is a homomorphism of GK-groups. Hence, the kernel
Ga. xK/D Ker.F.A/! Fa.A// defines a subgroup scheme Ga� of G� over �, and
the schematic closure Ga of Ga� in G is a closed subgroup scheme of G, locally
free of finite type over S . We put G0 D G. The exhaustive decreasing filtration
.Ga; a 2 Q�0/ defined above is called the canonical filtration of G ([1, 2.3.1]).
Lemma 2.3 gives immediately the following.

LEMMA 2.6. Let K 0=K be an extension (not necessarily finite) of complete
discrete valuation fields with ramification index eK0=K , OK0 be the ring of integers
of K 0, and K 0 be an algebraic closure of K 0 containing xK. Let G be an object of
GrS and G0 DG �S Spec.OK0/. Then there is a canonical isomorphism Ga. xK/'

G0aeK0=K .K 0/ for all a 2Q>0.

2.7. For an object G of GrS and a 2Q�0, we denote GaC D[b>aGb and if
a>0, Ga�D\0<b<aGb , where b runs over rational numbers. The construction of
the canonical filtration is functorial: a morphism u WG!H of GrS induces canon-
ical homomorphisms ua WGa!Ha, uaC WGaC!HaC and ua� WGa�!Ha�.
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PROPOSITION 2.8 ([1, Lemmes 2.3.2 and 2.3.5]). (i) For any object G of GrS ,
G0C is the neutral connected component of G.

(ii) Let u WG!H be a finite, flat and surjective morphism in GrS and a2Q>0.
Then the homomorphism ua. xK/ WGa. xK/!Ha. xK/ is surjective.

2.9. Let A and B be two abelian schemes over S , � W A! B be an isogeny
(i.e., a finite, flat morphism of group schemes), and G be the kernel of �. Let �
(resp. �) be the generic point of the special fiber As (resp. Bs), andbO� (resp.bO�)
be the completion of the local ring of A at � (resp. of B at �). Let M and L be
the fraction fields ofbO� andbO� respectively. Now, we have the Cartesian diagram

SpecM //

��

SpecbO� //

��

A

��
SpecL // SpecbO� // B:

We fix a separable closure xL of L containing xK, and an embedding of M in xL.
Since � WA!B is a G-torsor, M=L is a Galois extension, and we have a canonical
isomorphism

(2.9.1) G. xK/D FK.G/
�
! FL.bO�/D Gal.M=L/:

Using the same arguments of ([1, 2.4.2]), we prove the following:

PROPOSITION 2.10. For all rational numbers a � 0, the isomorphism (2.9.1)
induces an isomorphism Ga. xK/' Gal.M=L/a.

3. Review of the abelian scheme case following [1]

From this section on, we assume that the residue field k of OK is perfect of
characteristic p > 0.

3.1. Let X be a smooth and proper scheme over S , and xX D X �S xS . We
consider the Cartesian diagram

XNs
Ni //

��

xX

��

X N�

��

Njoo

Ns D Spec Nk // xS N�D Spec xKoo

and the sheaves of p-adic vanishing cycles on XNs

(3.1.1) ‰
q
X D
Ni�Rq Nj�.Z=pZ.q//;

where q � 0 is an integer and Z=pZ.q/ is the Tate twist of Z=pZ. It is clear
that ‰0X ' Z=pZ. By the base change theorem for proper morphisms, we have a
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spectral sequence

(3.1.2) E
p;q
2 .X/D Hp.XNs; ‰

q
X /.�q/H) HpCq.X N�;Z=pZ/;

which induces an exact sequence
(3.1.3)
0! H1.XNs;Z=pZ/! H1.X N�;Z=pZ/

u
�! H0.XNs; ‰1X /.�1/! H2.XNs;Z=pZ/:

3.2. The Kummer’s exact sequence 0!�p!Gm!Gm! 0 on X N� induces
the symbol map

(3.2.1) h xX W
Ni� Nj�O�X N� !‰1X :

We put U0‰1X D‰
1
X , and for a 2Q>0,

(3.2.2) Ua‰1X D h xX .1C�
aNi�O xX /;

where by abuse of notation �a is an element in O xK with v.�a/ D a . We have
Ua‰1X D 0 if a � ep

p�1
([1, Lemme 3.1.1]).

Passing to the cohomology, we get a filtration on H1.X N�;Z=pZ/ defined by:

U0H1.X N�;Z=pZ/D H1.X N�;Z=pZ/;(3.2.3)

UaH1.X N�;Z=pZ/D u�1.H0.XNs;Ua‰1X /.�1//; for a 2Q>0,

called the Bloch-Kato filtration.

THEOREM 3.3 ([1, Théorème 3.1.2]). Let A be an abelian scheme over S , pA
its kernel of multiplication by p, and e0 D ep

p�1
. Then under the canonical perfect

pairing

(3.3.1) pA. xK/�H1.A N�;Z=pZ/! Z=pZ;

for all a 2Q�0,

pA
aC. xK/? D

(
Ue
0�aH1.ANs;Z=pZ/ if 0� a � e0I

H1.A N�;Z=pZ/ if a > e0.

3.4. Let X be a scheme over S , xX D X �S xS . For all a 2 Q>0, we put
xSa D Spec.O xK=ma/ and xXa D X �S xSa Section 1.9. We denote by D.. xX1/Ket/

the derived category of abelian étale sheaves over xX1. A morphism of schemes is
called syntomic, if it is flat and of complete intersection.

Let X be a syntomic and quasi-projective S -scheme, r and n be integers with
r � 0 and n � 1. In [13], Kato constructed a canonical object J

Œr�

n; xX
in D.. xX1/Ket/,

and if 0 � r � p � 1 a morphism 'r W J
Œr�

n; xX
! J

Œ0�

n; xX
, which can be roughly seen

as “1=pr times of the Frobenius map”. We refer to [13] and [1, 4.1.6] for details
of these constructions. Let Sn.r/ xX be the fiber cone of the morphism 'r � 1 for
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0� r � p� 1; so we have a distinguished triangle in D.. xX1/Ket/

(3.4.1) Sn.r/ xX ! J
Œr�

n; xX

'r�1
���! J

Œ0�

n; xX

C1
��! :

The complexes Sn.r/ xX .0� r � p� 1/ are called the syntomic complexes of xX .
For our purpose, we recall here some of their properties for r D 1.

3.5. According to [13, �I.3], for any integer n � 1, there exists a surjective
symbol map

O�xXnC1
!H1.Sn.1/ xX /:

For a geometric point Nx of XNs , we put

S1
Nx D

�
O xX; NxŒ

1

p
�

��
D .Ni� Nj�O�X N�/ Nx :

By [13, I.4.2], the above symbol map at Nx factorizes through the canonical surjec-
tion O�

xX; Nx
!S1

Nx=p
nS1
Nx .

THEOREM 3.6 ([13, I.4.3]). Assume that p � 3. Let X be a smooth and quasi-
projective scheme over S . Then there is a canonical isomorphism H1.S1.1/ xX / Q!‰

1
X ,

which is compatible with the symbol maps S1
Nx ! H1.S1.1/ xX / Nx and h xX WS

1
Nx !

‰1X; Nx (3.2.1).

3.7. Let X be a smooth and quasi-projective scheme over S . Let � xX1 and � xS1
be the absolute Frobenius morphisms of xX1 and xS1, and let xX .p/1 be the scheme
defined by the Cartesian diagram

xX
.p/
1

��

w // xX1

��
xS1

�xS1 // xS1:

For all integers q � 0, we denote by F the composed morphism

�
q
xX1= xS1

w�

��!�
q

xX
.p/
1 = xS1

!�
q
xX1= xS1

=d.�
q�1
xX1= xS1

/;

where the second morphism is induced by the Cartier isomorphism

C�1xX1= xS1
W�

q

xX
.p/
1 = xS1

�
�!Hq.��xX1= xS1

/:

Let c be the class in O xS1 of a p-th root of .�p/. We set

PD Coker
�

O xX1
F�c
��! O xX1

�
;(3.7.1)

QD Ker
�
�1xX1= xS1

F�1
��!�1xX1= xS1

=d.O xX1/

�
:
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PROPOSITION 3.8 ([1, 4.1.8]). The notation is as above; assume moreover
that p � 3. Let Nx be a geometric point in XNs .

(i) There exist canonical isomorphisms

P
�
�! Coker

�
H0.J

Œ1�

1; xX
/
'1�1
���!H0.J

Œ0�

1; xX
/

�
;

Q
�
�! Ker

�
H1.J

Œ1�

1; xX
/
'1�1
���!H1.J

Œ0�

1; xX
/

�
;

so that the distinguished triangle (3.4.1) gives rise to an exact sequence

(3.8.1) 0! P
˛
�!H1.S1.1/ xX /

ˇ
�! Q! 0:

(ii) Let e.T / D
Pp�1
iD0 T

i=iŠ 2 ZpŒT �. Then the morphism ˛ Nx in (3.8.1) is
induced by the map O xX1; Nx!S1

Nx=pS1
Nx given by

a 7! e.�Qa.� � 1/p�1/;

where Qa is a lift of a 2 O xX1; Nx and � 2 xK is a primitive p-th root of unity.
(iii) The composed map

S1
Nx=pS1

Nx

symbol
����!H1.S1.1/ xX / Nx

ˇ
�! Q Nx

is the unique morphism sending a 2 O�
xX; Nx

to a�1da 2 Q Nx :

Remark 3.9. Statement (ii) of Proposition 3.8 implies that, via the canonical
isomorphism H1.S1.1/ xX /' ‰

1
X Theorem 3.6, P can be identified with the sub-

module Ue‰1X of ‰1X defined in (3.2.2).

PROPOSITION 3.10 ([1, 4.1.9]). Assume that p � 3. Let X be a smooth pro-
jective scheme over S , t D .p� 1/=p.

(i) The morphism F�c W O xX1! O xX1 factorizes through the quotient morphism
O xX1 ! O xXt , and we have an exact sequence

(3.10.1) 0! Fp! O xXt
F�c
��! O xX1 ! P! 0:

(ii) Let ıE W H0. xX1;P/! H2. xX1; Fp/ be the cup-product with the class of
(3.10.1) in Ext2.P; Fp/, and

d
0;1
2 W H0. xXNs; ‰1X /.�1/! H2. xXNs; Fp/

be the connecting morphism in (3.1.3). Then the composed morphism

H0. xX1;P/! H0. xXNs;H1.S1.1/ xX //
�
�! H0. xXNs; ‰1X /

d
0;1
2 .1/
�����! H2. xXNs; Fp/.1/

coincides with �ıE , where the middle isomorphism is given by Theorem 3.6, and �
is a chosen p-th root of unity.
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(iii) Assume moreover that H0. xXr ;O xXr /D OSr for r D 1 and t . Then there is
an exact sequence

(3.10.2) 0! H1.XNs; Fp/! Ker
�

H1. xX1;O xXt /
F�c
��! H1. xX1;O xX1/

�
! H0. xX1;P/

ıE
��! H2.XNs; Fp/:

3.11. Let M be a free O xS1-module of rank r and ' WM !M be a semi-linear
endomorphism with respect to the absolute Frobenius of O xS1 . Following [1], we
call M a '-O xS1-module of rank r . Then '.M/ is an O xS1-submodule of M , and
there exist rational numbers 0� a1 � a2 � � � � � ar � 1, such that

M='.M/'˚riD1O xK=mai :

We define the Hodge height ofM to be
Pr
iD1 ai . For any rational number 0� t � 1,

we put Mt DM ˝OxS1
O xSt :

PROPOSITION 3.12 ([3, 9.1 and 9.7]). Assume that p � 3. Let � be an element
in O xK , and r � 1 an integer. We assume that v D vp.�/ < 1

2
and let M be a '-O xS1-

module of rank r such that its Hodge height is strictly smaller than v.
(i) The morphism '�� WM !M factorizes through the canonical map M !

M1�v and the kernel of ' �� WM1�v!M is an Fp-vector space of dimension r .
(ii) LetN0 be the kernel of the morphismM1�v!M induced by '��, andN

be the O xK-submodule of M1�v generated by N0. Then we have dim Nk.N=m xKN/D
dimFp N0 D r .

3.13. We can now summarize the strategy of [1] as follows. Let A be a
projective abelian scheme of dimension g over S . By Proposition 3.10(iii), we
have

dimFp H1. xA1; Fp/C dimFp Ker
�

H0. xA1;P/
ıE
��! H2. xA1; Fp/

�
(3.13.1)

D dimFp Ker
�

H1. xA1;O xAt /
F�c
��! H1. xA1;O xA1/

�
:

By Remark 3.9 and Proposition 3.10(ii), the left-hand side equals

dimFp UeH1.A N�;Z=pZ/

as in (3.2.3). Taking account of Theorem 3.3, we get

(3.13.2) 2g�dimFp

�
pA

jC. xK/
�
DdimFp Ker

�
H1. xA1;O xXt /

F�c
��!H1. xA1;O xX1/

�
;

where j D e
p�1

. Applying 3.12(i) to M D H1. xA1;O xX1/ and �D c, we obtain im-
mediately the first statement of Theorem 1.4 for projective abelian schemes. In fact,
Abbes and Mokrane proved a less optimal bound on the Hodge height ([1, 5.1.1]).
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4. Cohomological preliminaries

4.1. Let f W X ! T be a proper, flat and finitely presented morphism of
schemes. We work with the fppf-topology on T , and denote by PicX=T the relative
Picard functor R1fppff�.Gm/.

If T is the spectrum of a field, then PicX=T is representable by a group scheme
locally of finite type over k. We denote by Pic0X=T the neutral component and put
Pic�X=T D

S
n�1 n

�1 Pic0X=T , where n W PicX=T ! PicX=T is the multiplication by
n. Then Pic0X=T and Pic�X=T are open sub-group schemes of PicX=T .

For a general base, PicX=T is representable by an algebraic space over T
([4, Th. 7.3]). We denote by Pic0X=T (resp. Pic�X=T ) the subfunctor of PicX=T
which consists of all elements whose restriction to all fibers Xt , t 2 T , belong
to Pic0Xt=t (resp. Pic�Xt=t ). By (SGA 6 XIII, Thm 4.7), the canonical inclusion
Pic�X=T ! PicX=T is relatively representable by an open immersion.

4.2. Let f W A! T be an abelian scheme. If T is the spectrum of a field,
the Néron-Séveri group PicA=T =Pic0A=T is torsion free; i.e., we have Pic0A=T D
Pic�A=T . This coincidence remains true for a general base T by the definitions of
Pic0A=T and Pic�A=T . Moreover, Pic�A=T is formally smooth (cf. [18, Prop. 6.7]),
and Pic�A=T is actually open and closed in PicA=T , and is representable by a proper
and smooth algebraic space over T , i.e., an abelian algebraic space over T . By
a theorem of Raynaud ([10, Ch. 1, Th. 1.9]), every abelian algebraic space over
T is automatically an abelian scheme over T . So Pic0A=T D Pic�A=T is an abelian
scheme, called the dual abelian scheme of A, and denoted by A_.

Let H be a commutative group scheme locally free of finite type over T .
Recall the following isomorphism due to Raynaud ([19, 6.2.1]):

(4.2.1) R1fppff�.HA/
�
�!Hom.H_;PicA=T /;

where HA D H �T A, H_ is the Cartier dual of H , and Hom is taken for the
fppf-topology on T .

PROPOSITION 4.3. Let A be an abelian scheme over a scheme T , and H
a commutative group scheme locally free of finite type over T . Then there are
canonical isomorphisms

Ext1.A;H/
�
�!Hom.H_; A_/;(4.3.1)

Ext1.A;H/
�
�! H0fppf.T;Ext1.A;H//

�
�! Hom.H_; A_/:(4.3.2)

Proof. For any fppf-sheaf E on T ,

Hom.H_;Hom.E;Gm//'Hom.H_˝ZE;Gm/'Hom.E;H/:
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Deriving this isomorphism of functors in E and putting EDA, we obtain a spectral
sequence

E
p;q
2 D Extp.H_;Extq.A;Gm//H) ExtpCq.A;H/:

Since Hom.A;Gm/D 0, the exact sequence

0!E
1;0
2 ! Ext1.A;H/!E

0;1
2 !E

2;0
2

induces an isomorphism

Ext1.A;H/'Hom.H_;Ext1.A;Gm//:

Then (4.3.1) follows from the canonical identification Ext1.A;Gm/'A_ ([8, 2.4]).
For (4.3.2), the spectral sequence

E
p;q
2 D Hpfppf.T;Extq.A;H//H) ExtpCq.A;H/

induces a long exact sequence

0! H1fppf.T;Hom.A;H//! Ext1.A;H/

.1/
��! H0fppf.T;Ext1.A;H//! H2fppf.T;Hom.A;H//:

Since Hom.A;H/D 0, the arrow .1/ is an isomorphism, and (4.3.2) follows by
applying the functor H0fppf.T; / to (4.3.1). �

4.4. The assumptions are those of Proposition 4.3. We define a canonical
morphism

(4.4.1) Ext1.A;H/! H1fppf.A;H/

as follows. Let a be an element in Ext1.A;H/ represented by the extension 0!
H ! E ! A! 0. Then the fppf-sheaf E is representable by a scheme over T ,
and is naturally an H -torsor over A. The image of a by the homomorphism (4.4.1)
is defined to be the class of the torsor E. Since this construction is functorial in T ,
by passing to sheaves, we obtain a canonical morphism

(4.4.2) Ext1.A;H/!R1fppff�.HA/:

Via the isomorphisms (4.2.1) and (4.3.1), we check that (4.4.2) is induced by the
canonical map A_ D Pic0A=T ! PicA=T .

Since H is faithfully flat and finite over T , the inverse image of the fppf-sheaf
H by f is representable by HA, i.e., we have f �.H/DHA. Therefore, we deduce
an adjunction morphism

(4.4.3) H !R0fppff�.HA/:

PROPOSITION 4.5. Let f W A! T be an abelian scheme, and H be a com-
mutative group scheme locally free of finite type over T . Then the canonical maps
(4.4.2) and (4.4.3) are isomorphisms.
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Proof. First, we prove that (4.4.2) is an isomorphism. By (4.2.1) and (4.3.1),
we have to verify that the canonical morphism

Hom.H_; A_/!Hom.H_;PicA=T /

is an isomorphism. Let g WH_! PicA=T be a homomorphism over T . For every
t 2 T , the induced morphism gt WH

_
t ! PicAt=t falls actually in Pic�At=t , because

H_ is a finite group scheme. Hence, by the definition of Pic�A=T , the homomor-
phism g factorizes through the canonical inclusion A_D Pic�A=T ! PicA=T ; so the
canonical morphism Hom.H_; A_/! Hom.H_;PicA=T / is an isomorphism.

Secondly, we prove that (4.4.3) is an isomorphism. For T -schemes U and G,
we denote GU DG�T U . We must verify that for any T -scheme U , the adjunction
morphism

(4.5.1) '.U / WH.U /!R0fppff�.HA/.U /DH.AU /

is an isomorphism. We note that H.U / D HU .U / and H.AU / D HU .AU /;
therefore, up to taking base changes, it suffices to prove that '.T / (4.5.1) is an
isomorphism. We remark that f is surjective, hence '.T / is injective. To prove
the surjectivity of '.T /, we take an element h 2 H.A/, i.e., a morphism of T -
schemes h W A! H ; by the rigidity lemma for abelian schemes (cf. [18, Prop.
6.1]), there exists a section s W T !H of the structure morphism H ! T such that
s ıf D h. Hence we have '.T /.s/D h, and '.T / is an isomorphism. �

COROLLARY 4.6. Let T be the spectrum of a strictly henselian local ring,
f W A! T an abelian scheme, and H a finite étale group scheme over T . Then
we have canonical isomorphisms

H1
Ket.A;H/' H1fppf.A;H/' Ext1.A;H/:

Proof. The first isomorphism follows from the étaleness of H ([11, 11.7]). For
the second one, the “local-global” spectral sequence induces a long exact sequence

0! H1fppf.T;R
0
fppff�.HA//! H1fppf.A;H/! H0fppf.T;R

1
fppff�.HA//

! H2fppf.T;R
0
fppff�.HA//:

By Proposition 4.5, we have R0fppff�.HA/DH . Since T is strictly henselian and
H étale, we have Hqfppf.T;H/D Hq

Ket.T;H/D 0 for all integers q � 1. Therefore,

we obtain H1fppf.A;H/
�
�! H0fppf.T;R

1
fppff�.HA//, and the corollary follows from

Proposition 4.5 and (4.3.2). �

4.7. Let T be a scheme, and G be a commutative group scheme locally free
of finite type over T . We denote by Ga the additive group scheme, and by Lie.G_/
the Lie algebra of G_. By Grothendieck’s duality formula ([17, II �14]), we have
a canonical isomorphism

(4.7.1) Lie.G_/'HomT .G;Ga/;
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where we have regarded G and Ga as abelian fppf-sheaves on T . If T is of char-
acteristic p and G is a truncated Barsotti-Tate group over T , then Lie.G_/ is a
locally free, of finite type OT -module ([12, 2.2.1(c)]).

Similarly, for an abelian scheme f WA! T , we have a canonical isomorphism
([5, 2.5.8])

(4.7.2) Lie.A_/' Ext1T .A;Ga/'R
1f�.Ga/:

In the sequel, we will frequently use the identifications (4.7.1) and (4.7.2) without
any indications.

The following lemma is indicated by W. Messing.

LEMMA 4.8. Let L be an algebraically closed field of characteristic p > 0, R
be an L-algebra integral over L, and M be a module of finite presentation over R,
equipped with an endomorphism ' semi-linear with respect to the Frobenius of R.
Then the map ' � 1 WM !M is surjective.

Proof. First, we reduce the lemma to the case RD L. Consider R as a filtrant
inductive limit of finite L-algebras .Ri /i2I . Since M is of finite presentation,
there exists an i 2 I , and an Ri -module Mi of finite presentation endowed with
a Frobenius semi-linear endomorphism 'i , such that M D Mi ˝Ri R and ' D
'i ˝ � , where � is the Frobenius on R. For j � i , we put Mj D Mi ˝Ri Rj
and 'j D 'i ˝Ri �j , where �j is the Frobenius of Rj . In order to prove ' � 1 is
surjective on M , it is sufficient to prove the surjectivity of 'j � 1 on each Mj for
j � i . Therefore, we may assume that R is a finite-dimensional L-algebra, and M
is thus a finite-dimensional vector space over L.

We put M1 D
S
n�1 Ker.'n/ and M2 D

T
n�1 Im.'n/. Then we have a

decomposition M D M1 ˚M2 as '-modules, such that ' is nilpotent on M1

and bijective on M2 (Bourbaki, Algèbre VIII �2 nı 2 Lemme 2). Therefore, it is
sufficient to prove the surjectivity of ' � 1 in the following two cases:

(i) ' is nilpotent. In this case, the endomorphism 1� ' admits an inverse
1C

P
n�1 '

n. Hence it is surjective.

(ii) ' is invertible. We choose a basis of M over L, and let U D .ai;j /1�i;j�n
be the matrix of ' in this basis. The problem reduces to prove that the equation
system

Pn
jD1 ai;jx

p
j � xi D bi .1 � i � n/ in X D .x1; : : : ; xn/ has solutions

for all b D .b1; : : : ; bn/ 2 L
n. Since U is invertible, let V D .ci;j /1�i;j�n be

its inverse. Then the equation system
Pn
jD1 ai;jx

p
j � xi D bi is equivalent to

x
p
i �

Pn
jD1 ci;jxj D b

0
i for 1� i � n with b0 D

P
j ci;j bj . But these n equations

define a finite étale cover of SpecL of degree pn. Hence they admit solutions in L,
since L is separably closed. This completes the proof. �

COROLLARY 4.9. Let H be a Barsotti-Tate group or an abelian scheme over
xS1 (see §1.9). Then Ext2.H; Fp/D 0 for the fppf topology on xS1.
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Proof. Let K0 be the fraction field of the ring of Witt vectors with coefficients
in k; thus K is a finite extension of degree e of K0. Let OurK0 be the ring of
integers of the maximal unramified extension of K0 in xK. Then O xS1 D O xK=pO xK
is integral over the algebraically closed field Nk D OurK0=pOurK0 . As Ext2.H;Ga/D 0

([5, Prop. 3.3.2]), the Artin-Schreier exact sequence 0! Fp! Ga
F�1
��! Ga! 0

induces an exact sequence

Ext1.H;Ga/
'�1
���! Ext1.H;Ga/! Ext2.H; Fp/! 0:

Since Ext1.H;Ga/ is a free O xS1-module ([5, 3.3.2.1]), the corollary follows imme-
diately from Lemma 4.8. �

5. The Bloch-Kato filtration for finite flat group schemes killed by p

5.1. Recall the following theorem of Raynaud ([5, 3.1.1]): Let T be a scheme,
G be a commutative group scheme locally free of finite type over T . Then locally
for the Zariski topology, there exists a projective abelian scheme A over T , such
that G can be identified to a closed subgroup of A.

In particular, if G is a commutative, finite and flat group scheme over S D
Spec.OK/, we have an exact sequence of abelian fppf-sheaves over S ,

(5.1.1) 0!G! A! B! 0;

where A and B are projective abelian schemes over S . In the sequel, such an exact
sequence is called a resolution of G by abelian schemes.

5.2. Let f W X ! Y be a morphism of proper and smooth S-schemes. For
any integer q � 0, we have a base change morphism f �

Ns .‰
q
Y /! ‰

q
X of p-adic

vanishing cycles (3.1.1) (SGA 7 XIII 1.3.7.1). For q D 1, this morphism respects
the Bloch-Kato filtrations (3.2.2); that is, it sends f �

Ns .U
a‰1Y / to Ua‰1X for all

a 2Q�0.
Passing to cohomology, we get a functorial map

Hp.YNs; ‰
q
Y /.�q/! Hp.XNs; ‰

q
X /.�q/

for each pair of integers p; q � 0. These morphisms piece together to give a mor-
phism of spectral sequences (3.1.2) E.p;q/2 .Y /!E

.p;q/
2 .X/, which converges to

the map HpCq.Y N�;Z=pZ/! HpCq.X N�;Z=pZ/ induced by f �
N� . Therefore, we

have the following commutative diagram:

(5.2.1)

0 // H1.YNs ;Z=pZ/ //

˛1

��

H1.Y N� ;Z=pZ/ //

˛2

��

H0.YNs ; ‰1Y /.�1/

˛3

��

d
1;0
2 // H2.YNs ;Z=pZ/

˛4

��
0 // H1.XNs ;Z=pZ/ // H1.X N� ;Z=pZ/ // H0.XNs ; ‰1X /.�1/

d
1;0
2 // H2.XNs ;Z=pZ/:
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It is clear that the Bloch-Kato filtration on H1.X N�;Z=pZ/ (3.2.3) is functorial in X .
More precisely, the following diagram is commutative:

(5.2.2) UaH1.Y N�;Z=pZ/
� � //

��

H1.Y N�;Z=pZ/

˛2
��

UaH1.X N�;Z=pZ/
� � // H1.X N�;Z=pZ/:

5.3. Let G be a commutative, finite and flat group scheme over S killed by p,
and 0!G!A!B! 0 a resolution of G by abelian schemes (5.1.1). We apply
the construction (5.2.1) to the morphism A! B . Using Corollary 4.6, we obtain
immediately that

Ker˛2 D Ker
�

Ext1.B N�; Fp/! Ext1.A N�; Fp/
�

D Hom.G N�; Fp/DG_. xK/.�1/;

Ker˛1 D Ker
�

Ext1.BNs; Fp/! Ext1.ANs; Fp/
�

D Hom.GNs; Fp/D .GKet/
_. xK/.�1/;

where GKet D G=G
0C is the étale part of G (cf. 2.8. Setting N D Ker˛3, we can

complete (5.2.1) as follows:

(5.3.1)

0 // .GKet/
_. xK/.�1/ //

� _


1

��

G_. xK/.�1/
u //

� _


2

��

N� _


3

��

/________ 0

��
�
�

0 // H1.BNs ;Z=pZ/ //

˛1

��

H1.B N� ;Z=pZ/ //

˛2

��

H0.BNs ; ‰1B /.�1/

˛3

��

d
1;0
2
.B/// H2.BNs ;Z=pZ/

˛4

��
0 // H1.ANs ;Z=pZ/ // H1.A N� ;Z=pZ/ // H0.ANs ; ‰1A/.�1/

d
1;0
2
.A/// H2.ANs ;Z=pZ/:

We will show later that the morphism u is surjective.

Definition 5.4. The assumptions are those of Section 5.3. We call the Bloch-
Kato filtration on G_. xK/, and denote by .UaG_. xK/; a 2 Q�0/, the decreasing
and exhaustive filtration defined by U0G_. xK/DG_. xK/, and for a 2Q>0;

(5.4.1) UaG_. xK/D 
�12 .UaH1.B N�;Z=pZ//.1/:

PROPOSITION 5.5. Let e0 D ep
p�1

, G be a commutative finite and flat group
scheme over S killed by p, and 0! G ! A! B ! 0 be a resolution of G by
abelian schemes (5.1.1).
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(i) For all a 2Q�0,

UaG_. xK/' Ker
�

UaH1.B N�;Z=pZ/.1/
˛2.1/
���! UaH1.A N�;Z=pZ/.1/

�
(5.5.1)

' u�1
�
N.1/\H0.BNs;Ua‰1.B//

�
;

where N.1/ is identified to a subgroup of H0.BNs; ‰1.B// by 
3.1/ in (5.3.1).
(ii) The morphism u WG_. xK/.�1/!N in (5.3.1) is surjective. In particular,

N is contained in the kernel of the morphism d
1;0
2 .B/ in (5.3.1).

(iii) Under the canonical perfect pairing

(5.5.2) G. xK/�G_. xK/! �p. xK/;

we have, for all a 2Q�0;

GaC. xK/? D

(
Ue
0�aG_. xK/ if 0� a � e0;

G_. xK/ if a > e0.

In particular, the filtration .UaG_. xK/; a 2Q�0/ does not depend on the resolution
of G by abelian schemes.

Proof. Statement (i) is obvious from Definition 5.4 and diagrams (5.2.2) and
(5.3.1).

For (ii) and (iii), thanks to Lemma 2.6, we need only to prove the proposition
after a base change OK ! OK0 , where K 0=K is a finite extension. Therefore, up to
such a base change, we may add the following assumptions.

(1) We may assume that k is algebraically closed, K contains a primitive p-th
root of unity, and G. xK/DG.K/.

(2) For X D A or B , we consider the Cartesian diagram

Xs
i //

��

X

��

X�

��

joo

s D Ns // S �oo

and the étale sheaf ‰1X;K D i
�R1j�.Z=pZ/ over Xs . By an argument as in the

proof of ([1, 3.1.1]), we may assume that H0.Xs; ‰1X /D H0.Xs; ‰1X;K/.
Since Ua‰1X D 0 for a � e0 ([1, Lemme 3.1.1]), we have Ue

0

G_. xK/ D

Ker.u/.1/D .GKet/
_. xK/: Statement (iii) for aD 0 follows immediately from Propo-

sition 2.8(i). The pairing (5.5.2) induces a perfect pairing

(5.5.3) G0C. xK/� Im.u/.1/ �! �p. xK/:

In particular, dimFp

�
Im.u/.1/

�
D dimFp

�
G0C. xK/

�
.

Let � (resp. �) be the generic point of Bs D BNs (resp. of As D ANs), and x� be
a geometric point over �. Then x�, by the morphism �! �, induces a geometric
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point over �, denoted by x�. Let O� (resp. O�) be the local ring of B at � (resp.
of A at �), Ox� (resp. Ox�) be the henselization of O� at x� (resp. of O� at x�). We
denote bybO� andbO� the completions of O� and O� , and by .bO�/hx� (resp. by .bO�/hx�)

the henselization ofbO� (resp. ofbO�) at x� (resp. at x�). Let L0 (resp. M0) be the
fraction field of O� (resp. of O�), Lur0 (resp. Mur

0 ) be the fraction field of Ox� (resp.
of Ox�). We denote by L (resp. by M ) the fraction field ofbO� (resp. ofbO�), and by
Lur (resp. by Mur ) the fraction field of .bO�/hx� (resp. of .bO�/hx�). We notice that �

is a uniformizing element inbO� and in .bO�/hx�,

Ox� // Lur0
// Lur .bO�/hx�oo

O�

OO

// L0 //

OO

L

OO

bO�:oo

OO

Since G D Ker.A! B/, we have an identification Gal.M=L/ ' G.K/ D
G. xK/. We fix a separable closure xL of L, and an embedding of M in xL, which
induces a surjection ' W Gal.xL=L/! Gal.M=L/. By Proposition 2.10, we have
'.Gal.xL=L/a/D Gal.M=L/a DGa. xK/, for all a 2Q>0. In particular, we have

(5.5.4) '.Gal.xL=Lur//D Gal.M=M \Lur/D Gal.Mur=Lur/DG0C. xK/:

Since Lur=L is unramified, we have, for all a 2Q>0,

(5.5.5) Gal.Mur=Lur/a D Gal.M=L/a DGa:

Let �B be the composition of the canonical morphisms

H0.Bs; ‰1B/D H0.Bs; ‰1B;K/! .‰1B;K/x�

D H1.SpecLur0 ; �p/! H1.SpecLur ; �p/

and define �A similarly. By functoriality and (5.5.4), we have a commutative dia-
gram
(5.5.6)

0 // N.1/ //
� _

��

H0.Bs; ‰1B/� _

�B

��

// H0.As; ‰1A/� _

�A

��
0 // H1.G0C. xK/;�p/

inf // H1.SpecLur ; �p/
res // H1.SpecMur ; �p/;

where the lower horizontal row is the “inflation-restriction” exact sequence in Ga-
lois cohomology. By ([6, Prop. 6.1]), �B and �A are injective. Hence Im.u/.1/�
N.1/ is identified with a subgroup of H1.G0C. xK/;�p/. By assumption (1), we
have H1.G0C. xK/;�p/D Hom.G0C. xK/;�p. xK//, which has the same dimension
over Fp as G0C. xK/. Hence by the remark below (5.5.3), we get

(5.5.7) Im.u/.1/DN.1/' H1.G0C. xK/;�p/D Hom.G0C. xK/;�p. xK//:

This proves statement (ii) of the proposition.
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Statement (iii) for a D 0 has been proved above. Since the filtration Ga is
decreasing and U0G_. xK/D G_. xK/, we may assume, for the proof of (iii), that
0 < a � e0. It suffices to prove that, under the pairing (5.5.3), we have

GaC. xK/? D Im.u/.1/\H0.Bs;Ue
0�a‰1B/:

From (5.5.6) and (5.5.7), we check easily that (5.5.3) is identified with the canonical
pairing

G0C. xK/�H1.G0C. xK/;�p/! �p. xK/:

Hence we are reduced to prove that, under this pairing, we have

(5.5.8) GaC. xK/? D H1.G0C. xK/;�p/\H0.Bs;Ue
0�a‰1B/;

where the “\” is taken in H1.SpecLur ; �p/ (5.5.6).
Let h W .Lur/�!H 1.SpecLur ; �p/ be the symbol morphism. We define a

decreasing filtration on H1.SpecLur ; �p/ in a similar way as (3.2.2) by

U0H1 D H1; and UbH1 D h.1C�b.bO�/hx�/ for all integers b > 0.

We extend this definition to all b 2 Q�0 by setting UbH1 D UŒb�H1, where Œb�
denotes the integer part of b. By ([1, Lemme 3.1.3]), for all b 2 Q>0, we have

H0.Bs;Ub‰1B/D �
�1
B

�
UbH1.SpecLur ; �p/

�
: Therefore, the right-hand side of

(5.5.8) is

(5.5.9) H1.G0C. xK/;�p/\U.e
0�a/H1.SpecLur ; �p/:

We identify H1.G0C. xK/;�p/ with the character group

Hom.Gal.Mur=Lur/; �p. xK//I

then by ([1, Prop. 2.2.1]), the subgroup (5.5.9) consists of the characters � such that
�.Gal.Mur=Lur/.e

0�a/C/D 0: In view of (5.5.5), we obtain immediately (5.5.8),
which completes the proof. �

Remark 5.6. The proof of 5.5(iii) follows the same strategy as the proof of
([1, Th. 3.1.2]). The referee points out that we can also reduce Proposition 5.5(iii)
to Theorem 3.3. Indeed, the commutative diagram

0 // G //

�p

��

A //

�p

��

B //

�p

��

0

0 // G // A // B // 0

induces, by the snake lemma, an exact sequence of finite group schemes 0!G!

pA
�
�! pB

 
�!G! 0: We consider the following perfect pairing:
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pA. xK/

�

��

pA. xK/�H1.A N� ; Fp/
.�;�/A // Fp H1.A N� ; Fp/

pB
aC. xK/

� � //

����

pB. xK/

 
����

pB. xK/�H1.B N� ; Fp/
.�;�/B // Fp H1.B� ; Fp/

˛2

OO

GaC. xK/
� � // G. xK/ G. xK/�G_. xK/.�1/

.�;�/G // Fp G_. xK/:
?�


2

OO

By functoriality, the homomorphism � is adjoint to ˛2 and  is adjoint to 
2;
i.e., we have .�.x/; f /B D .x; ˛2.f //A and . .y/; g/B D .y; 
2.g//G , for all
x 2 pA. xK/, y 2 pB. xK/, f 2 H1.B N�; Fp/ and g 2G_. xK/. By Proposition 2.8(ii),
 induces a surjective homomorphism pB

aC. xK/! GaC. xK/ for all a 2 Q�0.
Now statement 5.5(iii) follows from (5.4.1) and Theorem 3.3 applied to B .

6. Proof of Theorem 1.4(i)

6.1. For r 2Q>0, we denote by Ga;r the additive group scheme over xSr (see
�1.9). Putting t D 1� 1=p, we identify Ga;t with an abelian fppf-sheaf over xS1
by the canonical immersion i W xSt ! xS1. Let F W Ga;1! Ga;1 be the Frobenius
homomorphism, and c a p-th root of .�p/. It is easy to check that the morphism
F � c W Ga;1 ! Ga;1, whose cokernel is denoted by P, factorizes through the
canonical reduction morphism Ga;1 ! Ga;t , and we have an exact sequence of
abelian fppf-sheaves on xS1.

(6.1.1) 0! Fp! Ga;t
F�c
��! Ga;1! P! 0:

This exact sequence gives (3.10.1) after restriction to the small étale topos . xX1/Ket
for a smooth S -scheme X .

PROPOSITION 6.2. Assume p � 3. Let G be a truncated Barsotti-Tate group
of level 1 over S , and t D 1� 1=p. Then there exists the equality

dimFp UeG_. xK/D dimFp Ker
�

Lie. xG_t /
F�c
��! Lie. xG_1 /

�
;

where UeG_. xK/ is the Bloch-Kato filtration Definition 5.4, and the morphism on
the right-hand side is obtained by applying the functor Hom xS1.

xG1; _/ to the map
F� c W Ga;t ! Ga;1.

6.3. Before proving this proposition, we first deduce Theorem 1.4(i). Let
G be a truncated Barsotti-Tate group of level 1 and height h over S satisfying
the assumptions of Theorem 1.4, d be the dimension of Lie.G_s / over k, and
d� D h� d . It follows from Propositions 5.5(iii) and 6.2 that

dimFp G
e
p�1
C. xK/D h� dimFp Ker

�
Lie. xG_t /

F�c
��! Lie. xG_1 /

�
:



CANONICAL SUBGROUPS OF BARSOTTI-TATE GROUPS 975

Since Lie. xG_1 / is a free O xS1-module of rank d�, we obtain immediately Theorem
1.4(i) by applying Proposition 3.12 to �D c and M D Lie. xG_1 /.

The rest of this section is dedicated to the proof of Proposition 6.2.

LEMMA 6.4. Let G be a Barsotti-Tate group of level 1 over S , t D 1 � 1
p

.
Then the morphism � W Ext1. xG1; Fp/! Ext1. xG1;Ga;t / induced by the morphism
Fp! Ga;t in (6.1.1) is injective.

Proof. By ([12, Th. 4.4(e)]), there exists a Barsotti-Tate group H over S such

that we have an exact sequence 0! G!H
�p
��!H ! 0; which induces a long

exact sequence

Ext1. xH1; Fp/
�p
��! Ext1. xH1; Fp/! Ext1. xG1; Fp/! Ext2. xH1; Fp/:

It is clear that the multiplication by p on Ext1. xH1; Fp/ is 0, and Ext2. xH1; Fp/D 0
by Corollary 4.9; hence the middle morphism in the exact sequence above is an
isomorphism. Similarly, using Ext2. xH1;Ga;t /D 0 ([5, 3.3.2]), we prove that the
natural map Ext1. xH1;Ga;t /! Ext1. xG1;Ga;t / is an isomorphism. So we get a
commutative diagram

Ext1. xH1; Fp/ //

�H
��

Ext1. xG1; Fp/

�

��
Ext1. xH1;Ga;t / // Ext1. xG1;Ga;t /;

where the horizontal maps are isomorphisms. Now it suffices to prove that �H is
injective.

Let K be the fppf-sheaf on xS1 determined by the following exact sequences:

0! Fp! Ga;t ! K! 0I 0! K! Ga;1! P! 0:

Applying the functors Extq. xH1; /, we get

Hom. xH1;K/! Ext1. xH1; Fp/
�H
��! Ext1. xH1;Ga;t /I

0! Hom. xH1;K/! Hom. xH1;Ga;1/! Hom. xH1;P/:

Since Hom. xH1;Ga;1/D 0 ([5, 3.3.2]), the injectivity of �H follows immediately.
�

6.5. Assume that p � 3. Let G be a commutative finite and flat group scheme
killed by p over S , and 0! G ! A! B ! 0 be a resolution of G by abelian

schemes (5.1.1). We denote P.B/D Coker.O xB1
F�c
��! O xB1/ (3.7.1), and similarly

for P.A/. According to Remark 3.9, we have an identification

(6.5.1) H0.BNs;Ue‰1B/' H0.BNs;P.B//D H0. xB1;P.B//
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as submodules of H0.BNs; ‰1B/; in the last equality, we have identified the topos
.BNs/Ket with . xB1/Ket. We denote

Ker.B;F� c/D Ker
�

H1. xB1;Ga;t /
F�c
��! H1. xB1;Ga;1/

�
D Ker

�
Lie. xB_t /

F�c
��! Lie. xB_1 /

�
;

Ker.B; ıE /D Ker
�

H0. xB1;P.B//
ıE
��! H2.BNs; Fp/

�
;

where ıE is the morphism defined in Proposition 3.10(2); we also have similar
notations for A. Since the exact sequence (3.10.2) is functorial in X , we have a
commutative diagram

(6.5.2) 0 // H1.BNs; Fp/ //

ˇ1
��

Ker.B;F� c/ //

ˇ2

��

Ker.B; ıE / //

ˇ3

��

0

0 // H1.ANs; Fp/ // Ker.A;F� c/ // Ker.A; ıE / // 0:

LEMMA 6.6. The assumptions are those of Section 6.5. (i) In diagram (6.5.2),

Kerˇ1 D Ker
�

Ext1.BNs; Fp/! Ext1.ANs; Fp/
�
D .GKet/

_. xK/.�1/I(6.6.1)

Kerˇ2 D Ker
�

Lie. xG_t /
F�c
��! Lie. xG_1 /

�
I(6.6.2)

Kerˇ3 D H0.BNs;P.B//\N.1/� H0.BNs; ‰1B/;(6.6.3)

where N.1/ is as defined in (5.3.1).
(ii) We have the equality

(6.6.4) dimFp UeG_. xK/D dimFp Kerˇ1C dimFp Kerˇ3:

In particular,

(6.6.5) dimFp UeG_. xK/� dimFp Ker
�

Lie. xG_t /
F�c
��! Lie. xG_1 /

�
:

Moreover, the equality holds in (6.6.5) if and only if the morphism Cokerˇ1 !
Cokerˇ2 induced by diagram (6.5.2) is injective.

Proof. (i) By Corollary 4.6, we have a canonical isomorphism Ext1.XNs; Fp/'
H1.XNs; Fp/ for X D A or B . Hence formula (6.6.1) follows easily by applying the
functors Extq. ; Fp/ to the exact sequence 0!GNs!ANs!BNs! 0. Applying the
morphism of functors F� c W Exti . ;Ga;t /! Exti . ;Ga;1/ to the exact sequence
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0!G! A! B! 0, we obtain the following commutative diagram:

0 // Lie. xG_t / //

F�c
��

Lie. xB_t / //

F�c
��

Lie. xA_t /

F�c
��

0 // Lie. xG_1 / // Lie. xB_1 / // Lie. xA_1 /;

where we have used (4.7.1) and (4.7.2). Formula (6.6.2) follows immediately from
this diagram. For (6.6.3), using (6.5.1), we have a commutative diagram

Ker.B; ıE /
.1/ //

ˇ3

��

H0.BNs; ‰1B/

��
Ker.A; ıE /

.2/ // H0.ANs; ‰1A/;

where the maps .1/ and .2/ are injective. Hence we obtain

Kerˇ3 D Ker.B; ıE /\Ker
�

H0.BNs; ‰1.B//! H0.ANs; ‰1.A//
�

D Ker.B; ıE /\N.1/:

The morphisms ıE and d1;02 are compatible in the sense of Proposition 3.10, and
Proposition 5.5 implies that Ker.B; ıE /\N.1/ D H0.BNs;P.B//\N.1/, which
proves (6.6.3).

(ii) By the isomorphism (5.5.1) and the surjectivity of the morphism u in
(5.3.1), we have

(6.6.6) dimFp UeG_. xK/D dimFp

�
G_. xK/.�1/\UeH1.B N�;Z=pZ/

�
D dimFp

�
.GKet/

_. xK/.�1/

�
C dimFp

�
N \H0.BNs;Ue‰1.B//.�1/

�
:

Then the equality (6.6.4) follows from (i) of this lemma and (6.5.1). The remaining
part of (ii) follows immediately from diagram (6.5.2). �

6.7. Proof of Proposition 6.2. We choose a resolution 0!G!A!B! 0

of G by abelian schemes (5.1.1). By Lemma 6.6, we have to prove that if G is a
truncated Barsotti-Tate group of level 1 over S , the morphism �12 W Cokerˇ1!
Cokerˇ2 induced by diagram (6.5.2) is injective.

By Corollary 4.6, we have H1
Ket.XNs; Fp/ D H1

Ket.
xX1; Fp/ D Ext1. xX1; Fp/ for

X D A or B . Thus the morphism ˇ1 is canonically identified to the morphism
Ext1. xB1; Fp/! Ext1. xA1; Fp/ induced by the map A! B . Applying the functors
Exti . ; Fp/ to 0! xG1! xA1! xB1! 0, we obtain a long exact sequence

Ext1. xB1; Fp/! Ext1. xA1; Fp/! Ext1. xG1; Fp/! Ext2. xB1; Fp/:
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Since Ext2. xB1; Fp/D 0 by Corollary 4.9, we have Cokerˇ1 D Ext1. xG1; Fp/. The
commutative diagram

0 // Ker.B;F� c/ //

ˇ2
��

Lie.B_t /
F�c //




��

Lie.B_1 /

��
0 // Ker.A;F� c/ // Lie.A_t /

F�c // Lie.A_1 /

induces a canonical morphism  W Cokerˇ2 ! Coker 
 D Ext1. xG1;Ga;t /. Let
� WExt1. xG1; Fp/!Ext1. xG1;Ga;t / be the morphism induced by the map Fp!Ga;t

in (6.1.1). Then we have the following commutative diagram:

Ext1. xG1; Fp/D Cokerˇ1
�12 //

� ))

Cokerˇ2

 

��
Ext1. xG1;Ga;t /:

Now Lemma 6.4 implies that � is injective, hence so is �12. This completes the
proof.

7. The canonical filtration in terms of congruence groups

7.1. Recall the following definitions in [20]. For any � 2 O xK , let G.�/ be
the group scheme Spec.O xK ŒT;

1
1C�T

�/ with the comultiplication given by T 7!
T ˝1C1˝T C�T ˝T; the co-unit by T D 0 and the coinverse by T 7! � T

1C�T
.

If v.�/� e=.p� 1/, we put

P�.T /D
.1C�T /p � 1

�p
2 O xK ŒT �

and let �� W G.�/! G.�
p/ be the morphism of O xK-group schemes defined on the

level of Hopf algebras by T 7! P�.T /. We denote by G� the kernel of ��, so we
have G� D Spec

�
O xK ŒT �=P�.T /

�
: We call it, following Raynaud, the congruence

group of level �. It is a finite, flat group scheme over xS D Spec.O xK/ of rank p.

7.2. For all � 2 O xK with v.�/� e=.p� 1/, let

�� WG�! �p D Spec.O xK ŒX�=.X
p
� 1//

be the homomorphism given on the level of Hopf algebras by X 7! 1C�T . Then
��˝ xK is an isomorphism, and if v.�/D 0, �� is an isomorphism. For all �; 
 2O xK
with v.
/ � v.�/ � e=.p � 1/, let ��;
 W G� ! G
 be the map defined by the
homomorphism of Hopf algebras T 7! .�=
/T . We have �� D �
 ı ��;
 .



CANONICAL SUBGROUPS OF BARSOTTI-TATE GROUPS 979

7.3. Let � 2 O xK with v.�/ � e=.p � 1/, A be an abelian scheme over S .
Define

(7.3.1) ��.A/ W Ext1xS .A;G�/! Ext1xS .A; �p/

to be the homomorphism induced by the canonical morphism �� WG�!�p , where,
by abuse of notation, A denotes also the inverse image of A over xS , and Ext1

xS
means

the extension in the category of abelian fppf-sheaves over xS . Similarly, let G be a
commutative finite and flat group scheme killed by p over S ; we define

(7.3.2) ��.G/ W Hom xS .G;G�/! Hom xS .G;�p/DG
_. xK/

to be the homomorphism induced by ��. If G D pA, where A is an S-abelian

scheme, the natural exact sequence 0! pA!A
�p
��!A! 0 induces a commutative

diagram

(7.3.3) Hom xS .pA;G�/ //

��.pA/

��

Ext1
xS
.A;G�/

��.A/

��

pA
_. xK/ // Ext1

xS
.A; �p/;

where horizontal maps are isomorphisms (4.3.2). Hence, ��.A/ is canonically
identified to ��.pA/.

LEMMA 7.4. Let �; 
 2O xK with v.
/�v.�/� e=.p�1/,G be a commutative
finite and flat group scheme killed by p over S .

(i) ��.G/ is injective.

(ii) The image of ��.G/ is contained in that of �
 .G/.

(iii) The image of ��.G/ depends only on v.�/, and it is invariant under the action
of the Galois group Gal. xK=K/.

Proof. There is a commutative diagram

(7.4.1) Hom xS .G
_
�
; G_/

��.G///

.1/

��

Hom xS .Z=pZ; G_/

Hom N�.G_� ; G
_/

.2/ // Hom N�.Z=pZ; G_/;

where the horizontal maps are induced by �_
�
W Z=pZ ! G_

�
, and the vertical

maps are induced by the base change N�! xS . Since �� is an isomorphism over
the generic point Section 7.2, the map .2/ is an isomorphism. Hence statement (i)
follows from the fact that .1/ is injective by the flatness of G and G�.

Statement (ii) follows easily from the existence of the morphism ��;
 WG�!

G
 with �� D �
 ı ��;
 . The first part of (iii) follows immediately from (ii). Any
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� 2Gal. xK=K/ sends the image of ��.G/ isomorphically to the image of ��.�/.G/,
which coincides with the former by the first assertion of (iii). �

7.5. Filtration by congruence groups. Let a be a rational number with 0 �
a � e=.p� 1/, and G be a commutative finite and flat group scheme over S killed
by p. We choose � 2 O xK with v.�/ D a, and denote by G_. xK/Œa� the image of
��.G/. By Lemma 7.4, G_. xK/Œa� depends only on a, and not on the choice of �.
Then

�
G_. xK/Œa�; a 2Q\ Œ0; e=.p� 1/�/ is an exhaustive decreasing filtration of

G_. xK/ by Gal. xK=K/-groups.

7.6. Let �2O xK with 0� v.�/� e=.p�1/, f WA!S be an abelian scheme,
and Nf W xA! xS its base change by xS ! S . In ([3, �6]), Andreatta and Gasbarri
consider the homomorphism � 0

�
.A/ W H1fppf.

xA;G�/! H1fppf.
xA;�p/ induced by ��,

where by abuse of notation, G� denotes also the fppf-sheaf G� restricted to xA. We
have a commutative diagram

(7.6.1) Ext1
xS
.A;G�/

'.G�/ //

��.A/

��

H1fppf.
xA;G�/

� 0
�
.A/

��
Ext1
xS
.A; �p/

'.�p/// H1fppf.
xA;�p/;

where the horizontal arrows are the homomorphisms (4.4.1).

LEMMA 7.7. (i) The homomorphisms '.G�/ and '.�p/ in (7.6.1) are iso-
morphisms. In particular, the homomorphism � 0

�
.A/ is canonically isomorphic to

��.A/ (7.3.1).
(ii) The canonical morphism H1fppf.

xA;�p/!H1.A N�;�p/ is an isomorphism. Let
H1.A N�; �p/Œv.�/� be the image of � 0

�
.A/ composed with this isomorphism. Then via

the canonical isomorphism H1.A N�; �p/'pA_. xK/, the subgroup H1.A N�; �p/Œv.�/�

is identified to pA_. xK/Œv.�/�.

Proof. (i) For H D G� or �p, the “local-global” spectral sequence induces
an exact sequence
(7.7.1)

0! H1fppf.
xS;R0fppf

Nf�.H xA//! H1fppf.
xA;H xA/

 .H/
����! H0fppf.

xS;R1fppf
Nf�.H xA//:

By Proposition 4.5 and (4.3.2), there are isomorphisms

H0fppf.
xS;R1fppf

Nf�.H xA//' H0fppf.
xS;Ext1xS .A;H//' Ext1xS .A;H/:

Therefore, we obtain a homomorphism  .H/ W H1fppf.
xA;H xA/! Ext1

xS
.A;H/. We

check that the composed map .H/ı'.H/ is the identity morphism on Ext1
xS
.A;H/;

in particular,  .H/ is surjective. By Proposition 4.5, we have also R0fppf
Nf�.H xA/D

H xS ; on the other hand, it follows from ([3, Lemma 6.2]) that H1fppf.
xS;H xS / D 0.
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Hence  .H/ is injective by the exact sequence (7.7.1), and '.H/ and  .H/ are
both isomorphisms.

(ii) There is a commutative diagram

Ext1
xS
.A; �p/

'.�p/ //

.1/

��

H1fppf.
xA;�p/

.2/

��
Ext1
N�.A N�; �p/

// H1.A N�; �p/;

where the vertical maps are base changes to the generic fibers, and the horizontal
morphisms are (4.4.1), which are isomorphisms in our case by Corollary 4.6 and
statement (i). The morphism .1/ is easily seen to be an isomorphism by (4.3.2),
hence so is the morphism .2/. The second part of statement (ii) is a consequence
of (i). �

The following proposition, together with Proposition 5.5, implies Theorem 1.6.

PROPOSITION 7.8. Let G be a commutative finite and flat group scheme over
S killed by p. Then, for all rational numbers 0 � a � e=.p � 1/, we have
G_. xK/Œa� D UpaG_. xK/, where U�G_. xK/ is the Bloch-Kato filtration Defini-
tion 5.4.

Proof. Let 0! G! A! B ! 0 be a resolution of G by abelian schemes
(5.1.1). We have, for all �2 O xK with 0� v.�/� e=.p�1/, a commutative diagram

0 // Hom xS .G;G�/ //
� _

��.G/

��

Ext1
xS
.B;G�/ //

� _

��.B/

��

Ext1
xS
.A;G�/

� _

��.A/

��

0 // G_. xK/ //
pB
_. xK/ //

pA
_. xK/:

Hence, for all rational numbers a satisfying 0� a � e=.p� 1/, we have by 7.7(ii)

(7.8.1) G_. xK/Œa� DG_. xK/\pB
_. xK/Œa� DG_. xK/\H1.B N�; �p/Œa�:

According to ([3, Th. 6.8]), the filtration .H1.B N�; �p/Œa�; 0� a � e=.p� 1// coin-
cides with the filtration .UpaH1.B N�; �p/; 0� a � e

p�1
/ (3.2.3). Hence by (7.8.1)

and (5.4.1), the two filtrations
�
G_. xK/Œa�

�
and

�
UpaG_. xK/

�
on G_. xK/ coincide.

This completes the proof. �

8. The lifting property of the canonical subgroup

In this section, by abuse of notation, Ga will denote the additive group both
over S and over xS . For a rational number r > 0, we denote by Ga;r , G

.�/
r and G�;r

the base changes to xSr of the respective group schemes.
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8.1. Following [21], for a; c 2 O xK with ac D p, we denote by Ga;c the group
scheme Spec

�
O xK Œy�=.y

p � ay/
�

over O xK with comultiplication

y 7! y˝ 1C 1˝yC
cwp�1

1�p

p�1X
iD1

yi

wi
˝
yp�i

wp�i

and the counit given by y D 0, where wi .1 � i � p� 1/ are universal constants
in O xK with v.wi / D 0 (see [21, p. 9]). Tate and Oort proved that .a; c/ 7! Ga;c
gives a bijection between equivalence classes of factorizations of pD ac in O xK and
isomorphism classes of O xK-group schemes of order p, where two factorizations
p D a1c1 and p D a2c2 are called equivalent if there exists u 2 O xK such that
a2 D u

p�1a1 and c2 D u1�pc1.
Let �2O xK with 0� vp.�/� 1=.p�1/. There is a factorization pD a.�/c.�/

such that G� 'Ga.�/;c.�/. More explicitly, we may take c.�/D .�.1�p//p�1

wp�1
and

a.�/ D p
c.�/

, and we notice that vp.a.�// D 1 � .p � 1/vp.�/ is well defined
independently of the factorization p D a.�/c.�/.

LEMMA 8.2 ([3, Lemmas 8.2 and 8.10]). Let 0 < r � 1 be a rational number
and � 2 O xK with vp.�/� 1� 1=p and vp.�p�1/� r .

(i) Let ��r be the morphism of groups schemes

G.�/r D Spec
�
O xSt ŒT �

�
! Ga;r D Spec

�
O xSr ŒX�

�
defined on the level of Hopf algebras by X 7!

Pp�1
iD1 .��/

i�1 T i

i
. Then ��r is an

isomorphism. Moreover, the following diagram is commutative

G
.�/
r

��;r //

��r
��

G
.�p/
r

��
p

r

��
Ga;r

F�a.�/// Ga;r ;

where F is the Frobenius homomorphism and a.�/ 2 O xK is as introduced in Sec-
tion 8.1.

(ii) Let ı�;r be the composed morphism G�;r
i
�! G

.�/
r

��r
�! Ga;r : Then ı�;r

generates Lie.G_
�;r
/' Hom xSr .G�;r ;Ga;r/ as an O xSr -module.

LEMMA 8.3 ([3, Lemma 8.3]). Let � 2 O xK with 1
p.p�1/

� vp.�/�
1
p�1

, and
r D .p� 1/vp.�/. Then the following diagram is commutative

G
.�/
1

�1;r

��

��;1 // G
.�p/
1

��
p

r

��

G
.�/
r

��r // Ga;r
F�a.�/// Ga;1;

where �1;r is the reduction map.
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8.4. Let � 2 O xK with vp.�/D 1
p

, t D 1�1=p, and G be a commutative finite
and flat group scheme killed by p over S . We define ˆG to be
(8.4.1)

ˆG W Hom xS . xG;G�/
�t
�! Hom xSt .

xGt ; G�;t /
ı
�! Hom xSt .

xGt ;Ga;t /D Lie. xG_t /;

where �t is the canonical reduction map, and ı is the morphism induced by the
element ı�;t 2 Hom xSt .G�;t ;Ga;t / Lemma 8.2(ii).

PROPOSITION 8.5. Let � 2 O xK with vp.�/D 1
p

, t D 1�1=p, and G be a trun-
cated Barsotti-Tate group of level 1 over S , satisfying the hypothesis of Theorem
1.4. Then we have an exact sequence

(8.5.1) 0! Hom xS . xG;G�/
ˆG
��! Hom xSt .

xGt ;Ga;t /
F�a.�/
�����! Hom xS1.

xG1;Ga;1/;

where a.�/ is as defined in Section 8.1.

Proof. From Lemma 8.3, we deduce a commutative diagram
(8.5.2)

Hom xS1.
xG1; G�;1/ //

�1;t

��

Hom xS1.
xG1;G

.�/
1 /

��;1 //

�0
1;t

��

Hom xS1.
xG1;G

.�p/
1 /

��
p

1

��
Hom xSt .

xGt ; G�;t / // Hom xSt .
xGt ;G

.�/
t /

��t // Hom xSt .
xGt ;Ga;t /

F�a.�/// Hom xS1.
xG1;Ga;1/;

where the upper row is exact and �1;t and �01;t are reduction maps. Therefore, the
composition of ˆG with the morphism F� a.�/ in (8.5.1) factorizes through the
upper row of (8.5.2), and thus equals 0. Let L be the kernel of the map F�a.�/ in
(8.5.1). Then ˆG induces a map ˆ0 W Hom xS . xG;G�/! L. We have to prove that
ˆ0 is an isomorphism.

Let d� be the rank of Lie. xG_1 /D Hom xS1.
xG1;Ga;1/ over O xS1 , and recall that

vp.a.�// D 1=p. Since G satisfies the assumptions of Theorem 1.4, applying
Proposition 3.12 to Lie. xG_1 / and the operator F � a.�/, we see that the group
L is an Fp-vector space of dimension d�. On the other hand, Hom xS . xG;G�/ is
identified with G

e
p�1
C. xK/? by Theorem 1.6. Thus it is also an Fp-vector space

of dimension d� by Theorem 1.4(i). Therefore, to finish the proof, it suffices to
prove that ˆ0 is surjective.

By Lemma 8.2(i), we have the following commutative diagram

0 // L //

˛

��

Hom xSt .
xGt ;Ga;t /

F�a.�/// Hom xS1.
xG1;Ga;1/

�1;t

��

0 // Hom xSt .
xGt ; G�;t / // Hom xSt .

xGt ;Ga;t /
F�a.�/// Hom xSt .

xGt ;Ga;t /;

where �1;t is the reduction map. The composed morphism ˛ ıˆ0 is the canonical
reduction map, whose injectivity will imply the injectivity of ˆ0. Thus the follow-
ing lemma will conclude the proof of the proposition. �
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LEMMA 8.6. Assume that p � 3. Let t D 1� 1=p, � 2 O xK with vp.�/D 1=p,
and G be a commutative, finite, flat group scheme killed by p over S . Then the
reduction map

�t W Hom xS . xG;G�/! Hom xSt .
xGt ; G�;t /

is injective.

Proof. We putG�S xS DSpec.A/, where A is a Hopf algebra over O xK with the
comultiplication �. An element f 2 Hom xS . xG;G�/ is determined by an element
x 2 A satisfying

�.x/D x˝ 1C 1˝ xC�x˝ x;

P�.x/D
.1C�x/p � 1

�p
D 0:(8.6.1)

Suppose that �t .f /D 0, which means x 2mtA. We want to prove that in fact xD 0.
Let us write x D �ay where a � p� 1� 2 is an integer, and y 2 A. Substituting
x in (8.6.1), we obtain

.�ay/pC

p�1X
iD1

1

�p

 
p

i

!
�i.aC1/yi D 0:

Since vp. 1�p
�
p
i

�
/ D 0 for 1 � i � p � 1 and A is flat over OK , we see easily

that y D �aC1y1 for some y1 2 A. Continuing this process, we find that x 2
\a2Q>0maAD 0 (�1.9). �

LEMMA 8.7. Let G be a Barsotti-Tate group of level 1 and height h over S ,
and H be a flat closed subgroup scheme of G. We denote by d the dimension of
Lie.Gs/ over k, and d� D h� d . Then the following conditions are equivalent:

(i) The special fiber Hs of H coincides with the kernel of the Frobenius of Gs .

(i0) The special fiber H?s of H? D .G=H/_ coincides with the kernel of the
Frobenius of G_s .

(ii) H has rank pd over S and dimk Lie.Hs/� d .

(ii0) H? has rank pd
�

over S and dimk Lie.H?s /� d
�.

Proof. We have two exact sequences

0!H !G!G=H ! 0; 0!H?!G_!H_! 0:

Denote by FGs (resp. by VGs ) the Frobenius (resp. the Verschiebung) of Gs . As-
sume that (i) is satisfied; then we have H_s D Coker.VG_s

/ by duality. Since G
is a Barsotti-Tate group of level 1, H?s coincides with Im.VG_s

/ D Ker.FG_s /.
Conversely, if H?s D Ker.FG_s /, we have also Hs D Ker.FGs /. This proves the
equivalence of (i) and (i0).

If (i) or (i0) is satisfied, then (ii) and (ii0) are also satisfied (SGA 31 VIIA
7.4). Assume (ii) satisfied. Since Ker.FHs / has rank pdimk Lie.Hs/ (loc. cit.) and is
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contained in both Ker.FGs / and Hs , condition (ii) implies that these three groups
have the same rank; hence they coincide. This proves that (ii) implies (i). The
equivalence of (i0) and (ii0) is proved in the same way. �

8.8. Proof of Theorem 1.4(ii). By Lemma 8.7, the following lemma will
complete the proof of 1.4(ii).

LEMMA 8.9. Let G be a Barsotti-Tate group of level 1 and height h over S ,
satisfying the hypothesis of Theorem 1.4, d be the dimension of Lie.G_s / over
k, and d� D h � d . Let H be the flat closed subgroup scheme G

e
p�1
C, and

H? D .G=H/_. Then H? has rank pd
�

over S and dimk Lie.H?s /� d
�.

Proof. Since H has rank pd over S by Theorem 1.4(i), H? has rank pd
�

over S and dimFp .G=H/.
xK/Dd�. Let �2O xK with vp.�/D 1=p, and t D 1�1=p.

The canonical projection G!G=H induces an injective homomorphism

(8.9.1) Hom xS . xG= xH;G�/! Hom xS . xG;G�/:

By Theorem 1.6, we see that H?. xK/Œ
e
p
�
D Hom xS . xG= xH;G�/ is orthogonal to

.G=H/
e
p�1
C. xK/ under the perfect pairing .G=H/. xK/�H?. xK/! �p. xK/. As

H D G
e
p�1
C, Proposition 2.8(ii) implies that the group scheme .G=H/

e
p�1
C is

trivial. Hence,

dimFp Hom xS . xG= xH;G�/D dimFp H
?. xK/D d� D dimFp Hom xS . xG;G�/;

and the canonical map (8.9.1) is an isomorphism. By the functoriality of ˆG
(8.4.1), we have a commutative diagram

(8.9.2) Hom xS . xG= xH;G�/

ˆG=H
��

Hom xS . xG;G�/

ˆG
��

Lie. xH?t / // Lie. xG_t /;

where the lower row is an injective homomorphism of O xSt -modules. Put N0 D
Hom xS . xG;G�/, M D Lie. xG_1 / and Mt D Lie. xG_1 / ˝OxS1

O xSt D Lie. xG_t /. By
Proposition 8.5(ii), N0 is identified with the kernel of F� a.�/ WMt !M . Let
N be the O xK-submodule of Mt generated by N0. Applying Proposition 3.12(ii) to
the morphism F� a.�/, we get

dim Nk.N=m xKN/D dimFp N0 D d
�:

By (8.9.2), N is contained in M 0 D Lie. xH?t /�M . By applying Lemma 8.10 (ii)
below to N �M 0, we obtain

(8.9.3) d� D dim Nk.N=m xKN/� dim Nk.M
0=m xKM

0/:
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Let ! xH?t be the module of invariant differentials of xH?t over O xSt . Then

!H?
Ns
D ! xH?t

˝OxSt
Nk and

M 0 D Lie. xH?t /D HomOxSt
.! xH?t

;O xSt /:

Applying Lemma 8.10 (i) to ! xH?t , we obtain

(8.9.4) dim Nk.M
0=m xKM

0/D dim Nk !H?Ns :

From the relations Lie.H?s /˝k Nk D Lie.H?
Ns /D Hom Nk.!H?Ns ;

Nk/, we deduce

(8.9.5) dim Nk !H?Ns D dimk Lie.H?s /:

The desired inequality dimk Lie.H?s /� d
� then follows from (8.9.3), (8.9.4) and

(8.9.5).
�

LEMMA 8.10. Let t be a positive rational number, M be an O xSt -module of
finite presentation.

(i) Put M � D HomOxSt
.M;O xSt /. Then we have

dim Nk.M
�=m xKM

�/D dim Nk.M=m xKM/:

(ii) If N is a finitely presented O xSt -submodule of M , then dim Nk.N=m xKN/�
dim Nk.M=m xKM/.

Proof. Since M is of finite presentation, up to replacing K by a finite ex-
tension, we may assume that there exist a positive integer n and a finitely gen-
erated OK=�

nOK-module M0, where � is a uniformizer of OK , such that O xSt D

O xK=�
nO xK andM DM0˝OK O xK . Note that there exist integers 0<a1� � � � ar �n

such that we have an exact sequence of OK-modules

(8.10.1) 0! OrK
'
�! OrK !M0! 0;

where ' is given by .xi /1�i�r 7! .�aixi /1�i�r . In order to prove (i), it suffices
to verify that dimk.M �0 =�M

�
0 /D dimk.M0=�M0/, where

M �0 D HomOK .M0;OK=�
nOK/:

Let
.OK=�

nOK/
r 'n
�! .OK=�

nOK/
r
!M0! 0

be the reduction of (8.10.1) modulo �n. Applying the functor

HomOK . ;OK=�
nOK/

to the above exact sequence, we get

0!M0! .OK=�
nOK/

r
'�n
��! .OK=�

nOK/
r
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with '�n D 'n. Hence M �0 is isomorphic to the submodule

˚
r
iD1.�

n�aiOK=�
nOK/

of .OK=�nOK/
r , and

dimk.M
�
0 =�M

�
0 /D r D dimk.M0=�M0/:

For statement (ii), by the same reasoning, we may assume that there exists a
finite OK-submodule N0 of M0 such that N D N0 ˝OK O xK .We need to prove
that dimk.N0=�N0/ � dimk.M0=�M0/. Let �M0 be the kernel of M0 of the
multiplication by � . We have an exact sequence of Artinian modules

0! �M0!M0
��
��!M0!M0=�M0! 0:

By the additivity of length of Artinian modules, we obtain dimk.�M0/ D

dimk.M0=�M0/. Similarly, we have dimk.�N0/ D dimk.N0=�N0/. The asser-
tion follows from the fact that �N0 is a submodule of �M0. �

Remark 8.11. If we could prove the exact sequence (8.5.1) without knowing a
priori the rank of Hom xS . xG;G�/ for vp.�/D 1=p, then we would get another proof
of the existence of the canonical subgroup of G. Since then, by Proposition 3.12
and (8.5.1), Hom xS . xG;G�/ has Fp-rank d� under the assumptions of Theorem 1.4.
Then we identify it to be a subgroup of G_. xK/ by ��.G/ (7.3.2), and define H
to be the subgroup scheme of G determined by H. xK/? D Hom xS .G;G�/: The
arguments in this section imply that H is the canonical subgroup of G. For abelian
schemes, this approach is due to Andreatta-Gasbarri [3].
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