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Abstract

We show how the finiteness of integral points on an elliptic curve over Q with
complex multiplication can be accounted for by the nonvanishing of L-functions
that leads to bounds for dimensions of Selmer varieties.

The study of non-abelian fundamental groups renders it plausible that the
principle of Birch and Swinnerton-Dyer, whereby nonvanishing of L-values, in
some appropriate sense, accounts for the finiteness of integral points, can eventually
be extended to hyperbolic curves. Here we will discuss the very simple case of a
genus 1 hyperbolic curve X=Q obtained by removing the origin from an elliptic
curve E defined over Q with complex multiplication by an imaginary quadratic
field K. Denote by E a Weierstrass minimal model of E and by X the integral
model of X obtained as the complement in E of the closure of the origin. Let S
be a set of primes including the infinite place and those of bad-reduction for E.
We wish to examine the theorem of Siegel, asserting the finiteness of X.ZS /, the
S-integral points of X, from the point of view of fundamental groups and Selmer
varieties. In particular, we show how the finiteness of points can be proved using
‘the method of Coates and Wiles’ which, in essence, makes use of the nonvanishing
of p-adic L-functions arising from the situation.

That is to say, in studying the set E.ZS /.D E.Z/DE.Q//, Coates and Wiles
showed the special case of the conjecture of Birch and Swinnerton-Dyer by de-
riving the finiteness of E.ZS / from the nonvanishing of L.E=Q; s/ at s D 1. Of
course the L-function can vanish at 1 in general, in which case E.ZS / is supposed
to be infinite. But we know that X.ZS / is always finite. From the perspective of
this paper, this is a consequence of the fact that appropriate p-adic L-functions
have only finitely many zeros. More precisely, if we choose a prime p that splits
as pD � x� in K and let L and xL denote the p-adic L-functions associated to the �
and x�-power torsion points of E=K [6], we know that they have only finitely many
zeros. Then the nonvanishing of L-functions forces the vanishing of infinitely many
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Qp-Selmer groups for a family of Galois representations naturally associated to X .
The motivic tool used to put this information together in the present approach is a
natural quotient

W

of the Qp-pro-unipotent fundamental group U of X with basepoint at an S -integral
point b (which we assume to exist) and, as usual, its further quotients Wn modulo
the descending central series. Integral points of X give rise to torsors for the Wn
that are classified by a projective system of global Selmer varieties

H 1
f .�;Wn/;

where � D Gal.xQ=Q/ is the Galois group over Q of an algebraic closure. That is,
there is a diagram

X.ZS / ,! X.Zp/

# #

H 1
f
.�;Wn/ ! H 1

f
.�p; Wn/

obtained from the formalism of the fundamental group that associates to each point
x the U -torsor of paths from b to x and then pushes it out to a Wn-torsor. Here,
�p D Gal.xQp=Qp/ embedded into � as a decomposition group at p.

Let G D Gal.K.EŒ�1�/=K/ and xG D Gal.K.EŒx�1�/=K/, and let ƒ D
ZpŒŒG��, xƒD ZpŒŒ xG�� be the corresponding Iwasawa algebras, so that L 2ƒ and
xL 2 xƒ. Denote by

� Wƒ!Qp; x� W xƒ!Qp

the homomorphisms corresponding to the Galois actions on

V�.E/D .lim
 �

EŒ�n�/˝Q/ and Vx�.E/D .lim
 �

EŒx�n�/˝Q/:

Finally, let r D dimH 1
f
.�; Vp.E// and s D jS j.

THEOREM 0.1. We have the inequality of dimensions

dimH 1
f .�;Wn/ < dimH 1

f .�p; Wn/

for all n sufficiently large.

The fact that the p-adic L-functions can have at most finitely many zeros is
exactly the required input for this theorem. But the location of the zeros, of course,
is a highly nontrivial issue. On the other hand,

THEOREM 0.2. Suppose �k.L/¤ 0 and x�k.xL/¤ 0 for each k < 0. Then

dimH 1
f .�;Wn/ < dimH 1

f .�p; Wn/

for all n� r C sC 1.

I am informed by John Coates that the nonvanishing in the hypothesis is a
conjecture appearing in folklore.
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The way the implication works out is that each nonvanishing of an L-value im-
plies the vanishing of some H 2 in Galois cohomology, and W is constructed so as
to avoid the complications that arise when working directly with U . The finiteness
of global points then follows in a straightforward way as in previous work (e.g.,
[4]) whereby the inequality implies the existence of certain p-adic iterated integrals
that vanish on the global points. Since we hope the method will eventually lead to
a direct construction of a p-adic analytic function that annihilates the global points,
the more refined statement of the second theorem seems worth making explicit. Of
course in the present work the main emphasis is the sequence of implications

Non-vanishing of L–values) control of Selmer varieties) finiteness
of global points,

entirely parallel to the case of rational points on compact elliptic curves, with just
the replacement of Selmer groups by Selmer varieties.

A word of caution regarding the notation: At the urging of Richard Hain,
the indexing of the finite-dimensional quotients of U has been shifted, so our Un
is UnC1 from the papers [4] and [5], for example. However, the scheme here is
consistent with that of [3].

1. A quotient of the unipotent fundamental group

The quotient in question is constructed as follows. Let U D �un1 . xX; b/ be
the Qp-pro-unipotent completion of y�1. xX; b/ (see [2]) and let U n denote the de-
scending central series, normalized so that U 1 D U . Define Un D U nC1nU . We
then have exact sequences

0! U nC1nU n! Un! Un�1! 0

for n � 1. Denote by L the Lie algebra of U with descending central series Ln.
Thus, we have natural isomorphisms

U nC1nU n ' LnC1nLn

compatible with the action of � . Since y�1. xX; b/ is pro-finite free on two generators,
L is the pro-nilpotent completion of the free Lie algebra on two generators, where
the generators can be any two elements projecting to a basis of L1 DH1. xX;Qp/.
Therefore, L comes with a natural grading (not compatible with the Galois action)

LD˚1nD1L.n/;

where L.n/ is generated by the Lie monomials of degree n in the generators [7].
On the other, in the current situation, we have

L1 D Vp.E/' V�.E/˚Vx�.E/

so that L even has a bi-grading

LD˚Li;j :
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That is, taking e and f to be elements in L1 that map to bases of V� and Vx�
respectively, Li;j is spanned by Lie monomials that have i number of e’s and j
number of f ’s, e.g.,

adi�1.e/.adj�1.f /.Œe; f �//:

This bi-grading also induces a filtration

L�n;�m WD ˚i�n;j�mLi;j

by Lie ideals. Let N D Gal.xQ=K/ � � so that � D N� , where � is complex
conjugation. Then if x 2N , we have

xe D �.x/eC z and xf D x�.x/f C z0

for z; z0 2L2. But L2 �L�1;�1. Hence, if l 2Li;j , then an easy induction shows
that

xl D �.x/i x�.x/j l C z

for z 2 L�iC1;�jC1. In particular, each L�n;�m is stabilized by N . Similarly,

�.L�i;�j / 2 L�j;�i

so we see that L�n;�n is stabilized by � for each n. Therefore, we get a quotient
Lie algebra

L!W WD L=L�2;�2! 0

and a corresponding quotient group U !W ! 0 with a compatible �-action. If
we choose the ordering e < f , then Œe; f � is a Hall basis [7] for L3nL2, and inside
the Hall basis for LnC1nLn, n� 3, are the elements

adn�2.e/.Œe; f �/ and adn�2.f /.Œe; f �/:

All the other basis elements are clearly in L�2;�2. Thus,

W nC1
nW n

'WnC1
nWn

is generated by the class of adn�2.e/.Œe; f �/ and adn�2.f /.Œe; f �/. That is, as
�-modules, we have

W nC1
nW n

'Qp.�
n�2.1//˚Qp.x�

n�2.1//; n� 2;

where � acts by sending the generator adn�2.e/.Œe; f �/ to �adn�2.f /.Œe; f �/.

2. The unipotent Albanese map

There are various ways to see that W is unramified outside S and crystalline
at p. For example, by construction, the coordinate ring of W is a subring of that
of U , and hence, the conditions of being unramified or crystalline ([4, �2]) are
inherited from U .

Now we examine the unipotent Albanese map [4],

X.ZS /!H 1.�; Un/;
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obtained by associating to x 2 X.ZS / the class of the Un-torsor

P.x/ WD �un1 . xX I b; x/

of unipotent paths from b to x. We will continue this map to

X.ZS /!H 1.�; Un/!H 1.�;Wn/

obtained by composing with the quotient map. At the level of torsors, the map

H 1.�; Un/!H 1.�;Wn/

is given by the pushout:
Z 7! .Z �Wn/=Un

Since the condition of being crystalline at p ([4, �2]) merely signifies that a torsor
has a �p-invariant Bcr point, this condition is clearly preserved by push-out. Thus
we have an induced map

H 1
f .�p; Un/!H 1

f .�p; Wn/;

where the subscript f refers exactly to the subset

H 1
f .�p; Wn/�H

1.�p; Wn/

of cohomology classes that are crystalline. Similarly, the condition of being un-
ramified at v … T D S [fpg is preserved under pushout. Let �T denote the Galois
group of the maximal extension of Q unramified outside T . By [3], the system

H 1.�T ; Wn/

has the structure of a pro-algebraic variety over Qp, as does the subsystem

H 1
f .�T ; Wn/�H

1.�T ; Wn/

classifying torsors that are unramified outside T and crystalline at p. Thus we also
have an induced map of global Selmer varieties

H 1
f .�; Un/!H 1

f .�;Wn/

giving rise to a commutative diagram

X.ZS / ! X.Zp/

# #

H 1
f
.�;Wn/ ! H 1

f
.�p; Wn/:

Since each map
X.Zp/!H 1

f .�p; Un/

has Zariski dense image, so do the maps

X.Zp/!H 1
f .�p; Wn/:

As in [3] and [4], this denseness is an important ingredient in extracting Diophan-
tine finiteness out of the theorems.
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3. Proof of the theorems

The proof is now straightforward. Recall that we have a sequence

0!H 1.�T ; W
nC1
nW n/!H 1.�T ; Wn/!H 1.�T ; Wn�1/

which is exact in that the vector group kernel acts on the middle term with quotient
variety being the image of the second map. Furthermore, if we examine

H 1
f .�p; W

nC1
nW n/'H 1

f .�p;Qp.�
n�2.1//˚Qp.x�

n�2.1///;

we see that all classes are crystalline for n� 3. This is because, for example, the
crystalline classes in H 1.�p;Qp.�

n�2.1/// are classified by

DDR.Qp.�
n�2.1///=F 0;

where DDR.�/D Œ.�/˝BDR��p is Fontaine’s Dieudonné functor [1]. But

DDR.Qp.�
n�2.1///DDDR.Qp.�

n�2//.1/

and the Hodge filtration on DDR.Qp.�n�2// is nonpositive. Therefore, the Hodge
filtration on DDR.Qp.�n�2.1/// is strictly negative. Then a simple dimension
count shows that

H 1
f .�p;Qp.�

n�2.1///DH 1.�p;Qp.�
n�2.1///

for n� 3 and the previous exact sequence can be rewritten

0!H 1.�T ; W
nC1
nW n/!H 1

f .�T ; Wn/!H 1
f .�T ; Wn�1/

for n� 3. For nD 2, we have

0!H 1
f .�T ;Qp.1//!H 1

f .�T ; W2/!H 1
f .�T ; W1/

and
H 1
f .�T ;Qp.1//' .Z

�
S /˝Qp

(as in [5, �2]) so that
dimH 1

f .�T ; W2/� r C s� 1:

If we put this together, we get

dimH 1
f .�T ; Wn/� r C s� 1C†

n
iD3 dimH 1.�T ; W

iC1
nW i /;

for n � 3. As for the dimensions of the intervening H 1’s, we have the Euler
characteristic formula

dimH 1.�T ; W
iC1
nW i /D dimH 2.�T ; W

iC1
nW i /C dim.W iC1

nW i /�

where the superscript refers to the subspace where � acts as .�1/. However, �
exchanges the one-dimensional factors of Qp.�

n�2.1//˚Qp.x�
n�2.1// so that

dim.W iC1nW i /� D 1.
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Meanwhile, for the local cohomologies, we can calculate the dimensions ex-
plicitly. Firstly, we know that

dimH 1
f .�p; W2/D dimH 1

f .�p; U2/D 2

([4, �4]). On the other hand, H 2.�p; W
nC1nW n/D 0 for n� 3 so that the map

H 1.�p; WnC1/!H 1.�p; Wn/

is surjective for n� 3. As remarked above, we also have H 1
f
.�p; W

nC1nW n/D

H 1.�p; W
nC1nW n/ for n� 3. This implies that we have an exact sequence

0!H 1
f .�p; W

nC1
nW n/!H 1

f .�p; Wn/!H 1
f .�p; Wn�1/! 0

for n� 3, where each H 1
f
.�p; W

nC1nW n/ has dimension 2. Thus

dimH 1
f .�p; Wn/D 2.n� 2/C 2D 2n� 2

for n� 2.
It remains to prove the following two claims.

CLAIM 3.1. H 2.�T ; W
nC1nW n/D 0 for n sufficiently large.

CLAIM 3.2. If �k.ƒ/¤0 and x�k.xƒ/¤0 for k<0, thenH 2.�T ; W
nC1nW n/

D 0 for n� 3.

Since Claim 3.1 implies that

dimH 1.�T ; W
nC1
nW n/D 1

for n sufficiently large, we see that there is a constant such that

H 1
f .�T ; Wn/D C Cn

while the local dimensions grow like 2n. Thus we get the statement of Theorem 0.1.
On the other hand, with Claim 3.2, we get

dimH 1
f .�T ; Wn/� r C sCn� 2

so that we get the desired inequality of dimensions as soon as

r C sCn� 2 < 2n� 2

or n� r C sC 1.
We proceed to prove the claims. Clearly it suffices to consider the Galois

cohomology of NT �GT , where NT is the Galois group of the maximal extension
of K unramified outside the primes dividing T . For any continuous representation
M of NT , we define the kernel Shai of the localization maps on cohomology as

0! Shai .M/!H i .NT ;M/!˚vjTH
i .Nv;M/;

where Nv �NT is a decomposition group for the prime v. Thus we have

0! Sha2.W nC1
nW n/!H 2.�T ; W

nC1
nW n/!˚vjTH

2.Nv; W
nC1
nW n/:
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By local duality,

H 2.Nv; W
nC1
nW n/DH 2.Nv;Qp.�

n�2.1//˚Qp.x�
n�2.1///

'H 0.Nv;Qp.�
2�n/˚Qp.x�

2�n//� D 0

for n� 3 from which we get

Sha2.W nC1
nW n/'H 2.NT ; W

nC1
nW n/:

By Poitou-Tate duality, we have

Sha2.W nC1
nW n/' Sha1..W nC1

nW n/�.1//�

' Sha1.Qp.�2�n//�˚Sha1.Qp.x�2�n//�:

However, using the inflation-restriction exact sequence, we get

Sha1.Qp.�2�n//' Hom
ƒ
.A˝Q;Qp.�

2�n//;

whereA is the Galois group of the maximal unramified pro-p extension ofK.EŒ�1�/
split above the primes dividing T . Now, by [6], we know that the p-adic L-function
L annihilates A˝Q. On the other hand, ƒ acts on Qp.�

2�n/ through the character
�2�n and we know �2�n.L/¤ 0 for n sufficiently large. Therefore,

Hom
ƒ
.A˝Q;Qp.�

2�n//D 0

for n >> 0. There is a parallel argument for Sha1.Qp.x�2�n// which then yields
Claim 3.1. For Claim 3.2, the argument is exactly the same, except that the refined
nonvanishing hypothesis implies

Sha1.Qp.�2�n//˚Sha1.Qp.x�2�n//D 0

for n� 3.
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Irene I. Bouw and Martin Möller. Teichmüller curves, triangle groups,

and Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139–185
Igor Rodnianski and Jacob Sterbenz. On the formation of singularities

in the critical O.3/ � -model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187–242
Yuan-Pin Lee, Hui-Wen Lin and Chin-Lung Wang. Flops, motives, and

invariance of quantum rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243–290
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