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Abstract

We prove that the normalizer of any diffuse amenable subalgebra of a free group
factor L.Fr/ generates an amenable von Neumann subalgebra. Moreover, any II1
factor of the form Q x̋L.Fr/, with Q an arbitrary subfactor of a tensor product of
free group factors, has no Cartan subalgebras. We also prove that if a free ergodic
measure-preserving action of a free group Fr , 2 � r �1, on a probability space
.X; �/ is profinite then the group measure space factor L1.X/ Ì Fr has unique
Cartan subalgebra, up to unitary conjugacy.

1. Introduction
A celebrated theorem of Connes ([Con76]) shows that all amenable II1 fac-

tors are isomorphic to the approximately finite-dimensional (AFD) II1 factor R of
Murray and von Neumann ([MvN43]). In particular, all II1 group factors L.�/
associated with ICC (infinite conjugacy class) amenable groups � , and all group
measure space II1 factors L1.X/Ì� arising from free ergodic measure-preserving
(m.p.) actions of countable amenable groups � on a probability space � ÕX , are
isomorphic to R. Moreover, by [CFW81], any decomposition of R as a group
measure space algebra is unique, i.e. if RD L1.Xi /Ì�i , for some free ergodic
measure-preserving actions �i ÕXi , i D 1; 2, then there exists an automorphism
of R taking L1.X1/ onto L1.X2/. In fact, any two Cartan subalgebras of R are
conjugate by an automorphism of R.

Recall in this respect that a Cartan subalgebra A in a II1 factor M is a maxi-
mal abelian �-subalgebra A�M with normalizer NM .A/Dfu2U.A/ juAu�DAg

generating M ([Dix54], [FM77a], [FM77b]). Its presence amounts to realizing M
as a generalized, twisted-version of the group measure space construction, corre-
sponding to the equivalence relation induced by the orbits of some ergodic m.p.
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action of a countable group, � Õ X , and a 2-cocycle, with A D L1.X/. De-
composing factors this way is important, especially if one can show uniqueness
of their Cartan subalgebras, because then the classification of the factors reduces
to the classification of the corresponding actions � Õ X up to orbit equivalence
([FM77a], [FM77b]). But beyond the amenable case, very little is known about
uniqueness, or possible nonexistence, of Cartan subalgebras in group factors, or
other factors that are a priori constructed in different ways than as group measure
space algebras.

We investigate in this paper Cartan decomposition properties for a class of
nonamenable II1 factors that are in some sense “closest to being amenable”. Thus,
we consider factors M which satisfy the complete metric approximation prop-
erty (c.m.a.p.) of Haagerup ([Haa79]), which requires existence of normal, finite
rank, completely bounded (cb) maps �nWM ! M , such that k�nkcb � 1 and
lim k�n.x/� xk2 D 0, for all x 2M , where k � k2 denotes the Hilbert norm given
by the trace of M (note that if �n could in addition be taken unital, M would
follow amenable). This is the same as saying that the Cowling-Haagerup constant
ƒcb.M/ equals 1 (see [CH89]). The prototype nonamenable c.m.a.p. factors are
the free group factors L.Fr/, 2� r �1 ([Haa79]). Like amenability, the c.m.a.p.
passes to subfactors and is well-behaved to inductive limits and tensor products.

We in fact restrict our attention to c.m.a.p. factors of the form M DQÌ Fr ,
and to subfactors N of such M . The aim is to locate all (or prove possible absence
of) diffuse AFD subalgebras P �N whose normalizer NN .P / generates N . Our
general result along these lines shows:

THEOREM. Let Fr ÕQ be an action of a free group on a finite von Neumann
algebra. Assume M DQÌ Fr has the complete metric approximation property. If
P �M is a diffuse amenable subalgebra and N denotes the von Neumann algebra
generated by its normalizer NM .P /, then either N is amenable relative toQ inside
M , or P can be embedded into Q inside M .

The amenability property of a von Neumann subalgebra N �M relative to
another von Neumann subalgebra Q �M is rather self-explanatory: it requires
existence of a norm-one projection from the basic construction algebra of the in-
clusion Q �M onto N (see Definition 2.2). The “embeddability of a subalgebra
P � M into another subalgebra Q � M inside an ambient factor M ” is in the
sense of [Pop06c] (see Definition 2.6 below), and roughly means that P can be
conjugated into Q via a unitary element of M .

We mention three applications of the theorem, each corresponding to a par-
ticular choice of Fr ÕQ and solving well-known problems. Thus, taking QD C,
we get:

COROLLARY 1. The normalizer of any diffuse amenable subalgebra P of a
free group factor L.Fr/ generates an amenable (thus AFD by [Con76]) von Neu-
mann algebra.
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If we take Q to be an arbitrary finite factor with ƒcb.Q/D 1 and let Fr act
trivially on it, then M DQ x̋ L.Fr/, ƒcb.M/D 1 and the theorem implies:

COROLLARY 2. If Q is a II1 factor with the complete metric approximation
property then Q x̋ L.Fr/ does not have Cartan subalgebras. Moreover, if N �
Q x̋ L.Fr/ is a subfactor of finite index [Jon83], then N does not have Cartan
subalgebras either.

This shows in particular that any factor of the form L.Fr/ x̋ R, L.Fr1
/ x̋

L.Fr2
/ x̋ � � � , and more generally any subfactor of finite index of such a factor, has

no Cartan decomposition. Besides QDR;L.Fr/, other examples of factors with
ƒcb.Q/D 1 are the group factors L.�/ corresponding to ICC discrete subgroups
� of SO.1; n/ and SU.1; n/ ([DCH85], [Cow83]), as well as any subfactor of a
tensor product of such factors. None of the factors covered by Corollary 2 were
known until now not to have Cartan decomposition.

Finally, if we take Fr Õ X to be a profinite m.p. action on a probability
measure space .X; �/, i.e. an action with the property that L1.X/ is a limit of an
increasing sequence of Fr -invariant finite-dimensional subalgebras Qn � L1.X/,
then M D L1.X/Ì Fr is an increasing limit of the algebras Qn Ì Fr , each one of
which is an amplification of L.Fr/. Since c.m.a.p. behaves well to amplifications
and inductive limits, it follows that M has c.m.a.p., so by applying the theorem
and (A.1 in [Pop06a]) we get:

COROLLARY 3. If Fr Õ X is a free ergodic measure-preserving profinite
action, then L1.X/ is the unique Cartan subalgebra of the II1-factor L1.X/ÌFr ,
up to unitary conjugacy.

The above corollary produces the first examples of nonamenable II1 factors
with all Cartan subalgebras unitary conjugate. Indeed, the “unique Cartan decom-
position” results in [Pop06a], [Pop06c], [IPP08] only showed conjugacy of Cartan
subalgebras satisfying certain properties. This was still enough for differentiat-
ing factors of the form L1.T2/Ì Fr and calculating their fundamental group in
[Pop06a], by using [Gab02]. Similarly here, when combined with Gaboriau’s re-
sults, Corollary 3 shows that any factor L1.X/ÌFr , 2� r <1, arising from a free
ergodic profinite action Fr ÕX , has trivial fundamental group. Also, if Fs ÕX is
another such action, with r < s �1, then L1.X/Ì Fr 6' L

1.Y /Ì Fs . It can be
shown that the factors considered in [Pop06a], [Pop06c], [IPP08] cannot even be
embedded into the factors arising from profinite actions of free groups. Note that
the uniqueness of the Cartan subalgebras of the AFD factor R is up to conjugacy by
automorphisms ([CFW81]), but not up to unitary conjugacy, i.e. up to conjugacy
by inner automorphisms. Indeed, by [FM77a], [FM77b] there exist uncountably
many nonunitary conjugate Cartan subalgebras in R. Finally, note that Connes and
Jones constructed examples of II1 factors M with two Cartan subalgebras that are
not conjugate by automorphisms of M ([CJ82]).
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Corollary 1 strengthens two well-known in-decomposability properties of free
group factors: Voiculescu’s result in [Voi96], showing that L.Fr/ has no Cartan
subalgebras, which in fact exhibited the first examples of factors with no Cartan
decomposition, and the first named author’s result in [Oza04a], showing that the
commutant in L.Fr/ of any diffuse subalgebra must be amenable (L.Fr/ are solid),
which itself strengthened the in-decomposability of L.Fr/ into tensor product of
II1 factors (primeness of free group factors) in [Ge98].

One should point out that Connes already constructed in [Con75] a factor N
that does not admit a “classic” group measure space decomposition L1.X/Ì� .
His factor N is defined as the fixed point algebra of an appropriate finite group of
automorphisms of M D R x̋ L.Fr/. But it was left open whether N cannot be
obtained as a generalized group measure space factor either, i.e. whether it does
not have Cartan decomposition. Corollary 2 shows that indeed it does not.

The proof of the theorem follows a “deformation/rigidity” strategy, being in-
spired by arguments in [Pop07] and [Pop06a]. A key role is played by a property
of group actions � Õ P called weak compactness, requiring L2.P / to be a limit
of finite dimensional subspaces that are almost invariant to both the left multipli-
cation by elements in P and to the �-action, in the Hilbert-Schmidt norm. In case
P D L1.X/, this property is weaker than profiniteness and compactness, and it
is an orbit equivalence invariant. The first step towards proving the theorem is to
show that if a II1 factor M has c.m.a.p. then given any AFD subalgebra P �M the
action implemented on P by its normalizer, NM .P /Õ P , is weakly compact (see
Theorem 3.5). Note that this implies wreath product factors M D B� Ì� , with �
nonamenable and B ¤C, can never have the c.m.a.p. In particular, ƒcb.H o�/ > 1,
for all H ¤ 1, a fact that was open until now.

To explain the rest of the argument, assume for simplicity M D L.Fr/. Let
P �M be AFD diffuse, N D NM .P /

00. Taking
� 2HS.L2.M//' L2.M/ x̋ L2. xM/

to be Følner-type elements, as given by the weak compactness of NM .P /ÕP , and
˛t the “malleable deformation” of L.Fr/�L.Fr/ in [Pop06b], [Pop07], it follows
that for t small the elements .˛t ˝ 1/.�/ 2 L2.M �M/ x̋ L2. xM/ are still “almost
invariant,” in the above sense. We finally use this to prove that L2.N / is weakly
contained in a multiple of the coarse bimodule L2.M/ x̋ L2. xM/, thus showing N
is AFD by the characterizations of amenability in [Con76]. All this is the subject
of Theorem 4.1 in the text.

We recall in Section 2 of the paper a number of known results needed in
the proofs, for the reader’s convenience. This includes a discussion of relative
amenability (�2.2), intertwining lemmas for subalgebras (�2.3) and several facts
on the complete metric approximation property (�2.4). We mention that in the last
section of the paper we prove that for each 2 � r � 1 there exist uncountably
many non orbit equivalent profinite actions Fr ÕX , which by Corollary 3 provide
uncountably many nonisomorphic factors L1.X/Ì Fr as well (see Corollary 5.5).
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2. Preliminaries
2.1. Finite von Neumann algebras. We fix conventions for (semi-)finite von

Neumann algebras, but before that we note that the symbol “Lim” will be used
for a state on `1.N/, or more generally on `1.I / with I directed, which extends
the ordinary limit, and that the abbreviation “u.c.p.” stands for “unital completely
positive.” We say a map is normal if it is ultraweakly continuous. Whenever
a finite von Neumann algebra M is being considered, it comes equipped with a
distinguished faithful normal tracial state, denoted by � . Any group action on a
finite von Neumann algebra is assumed to preserve the tracial state � . If M DL.�/
is a group von Neumann algebra, then the tracial state � is given by �.x/Dhxı1; ı1i
for x 2L.�/. Any von Neumann subalgebra P �M is assumed to contain the unit
of M and inherits the tracial state � from M . The unique � -preserving conditional
expectation from M onto P is denoted by EP . We denote by Z.M/ the center of
M ; by U.M/ the group of unitary elements in M ; and by

NM .P /D fu 2U.M/ W .Adu/.P /D P g

the normalizing group of P in M , where .Adu/.x/D uxu�. A maximal abelian
von Neumann subalgebra A � M satisfying NM .A/

00 D M is called a Cartan
subalgebra. We note that if � Õ X is an ergodic essentially-free probability-
measure-preserving action, then AD L1.X/ is a Cartan subalgebra in the crossed
product L1.X/Ì� . (See [FM77a], [FM77b].)

We refer the reader to Section IX.2 of [Tak03] for the details of the following
facts on noncommutative Lp-spaces. Let N be a semi-finite von Neumann algebra
with a faithful normal semi-finite trace Tr. For 1� p <1, we define the Lp-norm
on N by kxkp D Tr.jxjp/1=p. By completing fx 2 N W kxkp <1g with respect
to the Lp-norm, we obtain a Banach space Lp.N/. We only need L1.N/, L2.N/
and L1.N/D N. The trace Tr extends to a contractive linear functional on L1.N/.
We occasionally write yx for x 2 N when viewed as an element in L2.N/. For any
1� p; q; r �1 with 1=pC 1=q D 1=r , there is a natural product map

Lp.N/�Lq.N/ 3 .x; y/ 7! xy 2 Lr.N/

which satisfies kxykr � kxkpkykq for any x and y. The Banach space L1.N/ is
identified with the predual of N under the duality L1.N/�N3 .�; x/ 7!Tr.�x/2C.
The Banach space L2.N/ is identified with the GNS-Hilbert space of .N;Tr/. El-
ements in Lp.N/ can be regarded as closed operators on L2.N/ which are af-
filiated with N and hence in addition to the above-mentioned product, there are
well-defined notion of positivity, square root, etc. We will use many times the
generalized Powers-Størmer inequality (Theorem XI.1.2 in [Tak03]):

(2.1) k�� �k22 � k�
2
� �2k1 � k�C �k2k�� �k2

for every �; � 2 L2.N/C. The Hilbert space L2.N/ is an N-bimodule such that
hx�y; �i D Tr.x�y��/ for �; � 2 L2.N/ and x; y 2 N. We recall that this gives
the canonical identification between the commutant N0 of N in B.L2.N// and the
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opposite von Neumann algebra Nop D fxop W x 2Ng of N. Moreover, the opposite
von Neumann algebra Nop is �-isomorphic to the complex conjugate von Neumann
algebra xND f Nx W x 2 Ng of N under the �-isomorphism xop 7! Nx�.

Whenever N0 � N is a von Neumann subalgebra such that the restriction of
Tr to N0 is still semi-finite, we identify Lp.N0/ with the corresponding subspace
of Lp.N/. Anticipating a later use, we consider the tensor product von Neumann
algebra .N x̋ M;Tr˝�/ of a semi-finite von Neumann algebra .N;Tr/ and a finite
von Neumann algebra .M; �/. Then, N Š N x̋ C1 � N x̋ M and the restriction
of Tr˝� to N is Tr. Moreover, the conditional expectation id˝ � WN x̋ M ! N

extends to a contraction from L1.N x̋ M/! L1.N/.
Let Q � M be finite von Neumann algebras. Then, the conditional ex-

pectation EQ can be viewed as the orthogonal projection eQ from L2.M/ onto
L2.Q/ � L2.M/. It satisfies eQxeQ D EQ.x/eQ for every x 2 M . The ba-
sic construction hM; eQi is the von Neumann subalgebra of B.L2.M// generated
by M and eQ. We note that hM; eQi coincides with the commutant of the right
Q-action in B.L2.M//. The linear span of fxeQy W x; y 2M g is an ultraweakly
dense �-subalgebra in hM; eQi and the basic construction hM; eQi comes together
with the faithful normal semi-finite trace Tr such that Tr.xeQy/ D �.xy/. See
Section 1.3 in [Pop06a] for more information on the basic construction.

2.2. Relative amenability. We adapt here Connes’ characterization of amen-
able von Neumann algebras to the relative situation. Recall that for von Neumann
algebras N � N, a state ' on N is said to be N -central if ' ıAd.u/D ' for any
u 2U.N /, or equivalently if '.ax/D '.xa/ for all a 2N and x 2 N.

THEOREM 2.1. Let Q;N �M be finite von Neumann algebras. Then, the
following are equivalent:

(1) There exists a N -central state ' on hM; eQi such that 'jM D � .

(2) There exists a N -central state ' on hM; eQi such that ' is normal on M and
faithful on Z.N 0\M/.

(3) There exists a conditional expectation ˆ from hM; eQi onto N such that
ˆjM DEN .

(4) There exists a net .�n/ in L2hM; eQi such that limnhx�n; �ni D �.x/ for every
x 2M and that lim kŒu; �n�k2 D 0 for every u 2N .

Definition 2.2. Let Q;N �M be finite von Neumann algebras. We say N is
amenable relative to Q inside M , denoted by N ÉM Q, if any of the conditions
in Theorem 2.1 holds. We say Q is co-amenable in M if M ÉM Q (cf. [Pop86],
[AD95]).

Proof of Theorem 2.1. The proof follows a standard recipe of the theory (cf.
[Con76], [Haa85], [Pop86]). The implication .1/) .2/ is obvious. To prove
the converse, assume condition .2/. Then, there exists b 2 L1.M/C such that
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'.x/ D �.bx/ for x 2 M . Since ' is N -central, one has ubu� D b for all u 2
U.N /, i.e. b 2 L1.N 0 \M/. We consider the directed set I of finite subsets
of U.N 0 \M/. For each element i D fu1; : : : ; ung 2 I and m 2 N, we define
bi D n

�1
P
ukbu

�
k
2 L1.N 0\M/C, ci;m D �.1=m;1/.bi /b

�1=2
i 2N 0\M and

 i;m.x/D
1

n

nX
kD1

'.u�kci;mxci;muk/

for x 2 hM; eQi. Since ci;muk 2N 0\M , the positive linear functionals  i;m are
still N -central and  i;m.x/D �.�.1=m;1/.bi /x/ for x 2M . We note that

lim
i

lim
m
�.1=m;1/.bi /D lim

i
s.bi /D lim

i

_
s.ukbu

�
k/D z;

where s. � / means the support projection and z is the central support projection of
b in N 0 \M . Since '.z?/ D �.bz?/ D 0 and ' is faithful on Z.N 0 \M/, one
has z D 1. Hence, the state  D Limi Limm  i;m on hM; eQi is N -central and
satisfies  jM D � . This proves .1/.

We prove .1/) .4/: Let a N -central state ' on hM; eQi be given such that
'jM D � . Take a net .�n/ of positive norm-one elements in L1hM; eQi such that
Tr.�n � / converges to ' pointwise. Then, for every x 2 hM; eQi and u 2 U.N /,
one has

lim
n

Tr..�n�Ad.u/�n/x/D '.x/�'.Ad.u�/.x//D 0

by assumption. It follows that for every u 2 U.N /, the net �n � Ad.u/.�n/ in
L1hM; eQi converges to zero in the weak-topology. By the Hahn-Banach sepa-
ration theorem, one may assume, by passing to convex combinations, that it con-
verges to zero in norm. Thus, kŒu; �n�k1! 0 for every u 2U.N /. By (2.1), if we
define �n D �

1=2
n 2 L2hM; eQi, then one has kŒu; �n�k2! 0 for every u 2U.N /.

Moreover, for any x 2M ,
lim
n
hx�n; �ni D lim

n
Tr.�nx/D '.x/D �.x/:

We prove .4/) .3/: For each x 2 hM; eQi, denote '.x/ D Limnhx�n; �ni.
Note that ' is an N -central sate on hM; eQi with 'M D � . Since

j'.bcyz/j D j'.cyzb/j � '.cyy�c�/1=2'.b�z�zb/1=2 � kbk2kck2kykkzk

for every b; c 2 N and y; z 2 hM; eQi, one has j'.ax/j � kak1kxk for every
a 2 N and x 2 hM; eQi. Hence, for every x 2 hM; eQi, we may define ˆ.x/ 2
N D L1.N /� by the duality �.aˆ.x//D '.ax/ for all a 2N . It is clear that ˆ is
a conditional expectation onto N such that ˆjM DEN .

We prove .3/) .1/: If there is a conditional expectation ˆ from hM; eQi
onto N such that ˆjM D EN , then ' D � ı ˆ is an N -central state such that
'jM D � . �

Let N0 �M be a von Neumann subalgebra whose unit e does not coincide
with the unit of M . We say N0 is amenable relative to Q inside M , denoted by
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N0ÉM Q, if N0CC.1� e/ÉM Q. We observe that N0ÉM Q if and only if there
exists an N0-central state ' on ehM; eQie such that '.exe/ D �.exe/=�.e/ for
x 2M .

COROLLARY 2.3. Let Q1; : : : ;Qk; N �M be finite von Neumann algebras
and G � U.N / be a subgroup such that G00 D N . Assume that for every nonzero
projection p 2 Z.N 0 \M/, there exists a net .�n/ of vectors in a multiple ofLk
jD1L

2hM; eQj
i such that:

(1) lim sup kx�nk2 � kxk2 for all x 2M ;

(2) lim inf kp�nk2 > 0; and

(3) lim kŒu; �n�k2 D 0 for every u 2 G.

Then, there exist projections p1; : : : ; pk 2 Z.N 0\M/ such that
Pk
jD1 pj D 1 and

Npj ÉM Qj for every j .

Proof. We observe that if there exists an increasing net .ei /i of projections
in Z.N 0 \M/ such that Nei ÉM Q for all i , then Ne ÉM Q for e D sup ei .
Hence, by Zorn’s lemma, there is a maximal k-tuple .p1; : : : ; pk/ of projections
in Z.N 0 \M/ such that

P
j pj � 1 and Npj ÉM Qj for every j . We prove thatP

j pj D 1. Suppose by contradiction that pD 1�
P
j pj ¤ 0, and take a net .�n/

as in the statement of the corollary. We may assume that all �n’s are in a multiple
of L2hM; eQj

i for some fixed j 2 f1; : : : ; kg. We define a state  on hM; eQj
i by

 .x/D Lim
n
kp�nk

�2
2 hxp�n; p�ni

for x 2 hM; eQj
i. It is not hard to see that  .p/ D 1,  ıAd.u/ D  for every

u 2 G and  .x�x/ � .lim inf kp�nk/�2kxpk22 for every x 2 M . It follows that
 jM is normal and  is N -central. Let q be the minimal projection in Z.N 0\M/

such that  .q/D 1. We finish the proof by showing Nr ÉM Qj for r D pj C q
(which gives the desired contradiction to maximality). Since Npj ÉM Qj , there is
an Npj -central state ' on pj hM; eQj

ipj such that '.pjxpj /D �.pjxpj /=�.pj /
for x 2M . We fix a state extension Q� of � on hM; eQj

i and define a state z' on
hM; eQj

i by

z'.x/D �.pj /'.pjxpj /C �.q/ .qxq/C Q�..1� r/x.1� r//

for x 2 hM; eQj
i. The state z' is .NrCC.1�r//-central, normal onM and faithful

on Z..NrCC.1� r//0\M/D Z.N 0\M/rCZ.M/.1� r/. Hence Theorem 2.1
implies Nr ÉM Qj . �

Compare the following result with [Pop86] and [AD95].

PROPOSITION 2.4. Let P;Q;N �M be finite von Neumann algebras. Then,
the following are true:

(1) Suppose that M D Q Ì � is the crossed product of Q by a group � . Then,
L.�/ÉM Q if and only if � is amenable.
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(2) Suppose that Q is AFD. Then, P ÉM Q if and only if P is AFD.

(3) If N ÉM P and P ÉM Q, then N ÉM Q.

Proof. Denote by �g the unitary element in M which implements the action
of g 2 � . Since eQ�.g/eQ D 0 for g 2 � n f1g, the projections f�geQ��g W g 2 �g
are mutually orthogonal and generate an isomorphic copy of `1.�/ in hM; eQi.
Hence, if there exists an L.�/-central state on hM; eQi, then its restriction to
`1.�/ becomes a �-invariant mean. This proves the “only if” part of assertion (1).
The “if” part is trivial. The assertion (2) easily follows from the fact that hM; eQi
is injective if (and only if) Q is AFD ([Con76]).

Let us finally prove (3). Fix a conditional expectation ˆ from hM; eQi onto
P such that ˆjM DEP . For � D

Pm
iD1 ai ˝ bi 2M ˝M , we denote

k�k2 D k

mX
iD1

aieP bikL2hM;eP i
D

�X
i;j

�.b�i EP .a
�
i aj /bj /

�1=2
:

For � D
Pm
iD1 ai ˝ bi and � D

Pn
jD1 cj ˝ dj in M ˝M , we define a linear

functional '�;� on hM; eQi by

'�;�.x/D
X
i;j

�.b�i ˆ.a
�
i xcj /dj /:

We claim that k'�;�k � k�k2k�k2. Indeed, if ˆ.x/D V ��.x/V is a Stinespring
dilation, then one has

'�;�.x/D h�.x/
X
j

�.cj /Vdjy1P ;
X
i

�.ai /V biy1P i

and k
P
i �.ai /V bi

y1P k D k�k2 and likewise for �. It follows that '�;� is defined
for �; � 2 L2hM; eP i in such a way that k'�;�k � k�k2k�k2. Now take a net of
unit vectors .�n/ in L2hM; eP i satisfying condition (4) in Theorem 2.1, and let
' D Lim'�n;�n

be the state on hM; eQi. Then, one has
' ıAd.u/D Lim

n
'Ad.u/.�n/;Ad.u/.�n/ D Lim

n
'�n;�n

D '

for all u 2U.N / and
'.x/D Lim

n
hx�n; �niL2hN;eP i

D �.x/

for all x 2M . This proves that N ÉM Q. �

2.3. Intertwining subalgebras inside II1 factors. We extract from [Pop06a],
[Pop06c] some results which are needed later. The following are Theorem A.1 in
[Pop06a] and its corollary (also, a particular case of 2.1 in [Pop06c]).

THEOREM 2.5. Let N be a finite von Neumann algebra and P;Q �N be von
Neumann subalgebras. Then, the following are equivalent:

(1) There exists a nonzero projection e 2 hN; eQi with Tr.e/ <1 such that the
ultraweakly closed convex hull of fw�ew W w 2U.P /g does not contain 0.



722 NARUTAKA OZAWA and SORIN POPA

(2) There exist nonzero projections p 2 P and q 2Q, a normal �-homomorphism
� WpPp! qQq and a nonzero partial isometry v 2N such that

for all x 2 pPp; xv D v�.x/

and v�v 2 �.pPp/0\ qNq, vv� 2 p.P 0\N/p.

Definition 2.6. Let P;Q � N be finite von Neumann algebras. Following
[Pop06c], we say that P embeds into Q inside N , and write P �N Q, if any of
the conditions in Theorem 2.5 holds.

Let � be a �-preserving u.c.p. map on N . Then, � extends to a contraction
T� on L2.N / by T�.yx/D b�.x/. Suppose that �jQ D idQ. Then, � automatically
satisfies �.axb/ D a�.x/b for any a; b 2 Q and x 2 N . It follows that T� 2
B.L2.N // commutes with the right action of Q, i.e., T� 2 hN; eQi. We say �
is compact over Q if T� belongs to the “compact ideal” of hN; eQi (see �1.3.2
in [Pop06a]). If � is compact over Q, then for any " > 0, the spectral projection
e D �Œ";1�.T

�
� T�/ 2 hN; eQi has finite Tr.e/ and

hw�ewy1; y1iL2.N/ � hT
�
� T�bw;bwiL2.N/� "D k�.w/k

2
2� "

for all w 2U.P /. These observations imply the following corollary [Pop06a].

COROLLARY 2.7. Let P;Q � N be finite von Neumann algebras. Suppose
that � is a �-preserving u.c.p. map on N such that �jQ D idQ and � is compact
over Q. If inffk�.w/k2 W w 2U.P /g> 0, then P �N Q.

Finally, recall that A.1 in [Pop06a] shows the following:

LEMMA 2.8. Let A and B be maximal abelian �-subalgebras of a type II1-
factor N . If A�N B , then there exists a nonzero partial isometry v 2N such that
v�v 2A; vv� 2B and vAv�DBvv�. If , moreover, NN .A/

00;NN .B/
00 are factors

(i.e. A;B are semiregular [Dix54]), then v can be taken a unitary element.

2.4. The complete metric approximation property. Let � be a discrete group.
For a function f on � , we write mf for the multiplier on C� � L.�/ defined by
mf .g/D fg for g 2 C� . We simply write kf kcb for kmf kcb and call it the Herz-
Schur norm. If kf kcb is finite and f .1/D 1, then mf extends to a �-preserving
normal unital map on L.�/. We refer the reader to Sections 5 and 6 in [Pis01] for
an account of Herz-Schur multipliers.

Definition 2.9. A discrete group � is weakly amenable if there exist a constant
C � 1 and a net .fn/ of finitely supported functions on � such that lim sup kfnkcb

� C and fn ! 1 pointwise. The Cowling-Haagerup constant ƒcb.�/ of � is
defined as the infimum of the constant C for which a net .fn/ as above exists.

We say a von Neumann algebra M has the .weak�/ completely bounded ap-
proximation property if there exist a constant C � 1 and a net .�n/ of normal finite-
rank maps on M such that lim sup k�nkcb � C and kx � �n.x/k2! 0 for every
x 2M . The Cowling-Haagerup constant ƒcb.M/ of M is defined as the infimum
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of the constant C for which a net .�n/ as above exists. Also, we say that M has
the .weak�/ complete metric approximation property (c.m.a.p.) if ƒcb.M/ D 1:

Note that, by Connes’ theorem [Con76], amenability trivially implies c.m.a.p.

By routine perturbation arguments, one may arrange �n’s in the above defi-
nition to be unital and trace-preserving when M is finite. We are interested here
in the case ƒcb.M/ D 1, i.e. when M has the complete metric approximation
property. We summarize below some known results in this direction. For part
.7/, recall that an action of a group � on a finite von Neumann algebra P is
profinite if there exists an increasing sequence of �-invariant finite-dimensional
von Neumann subalgebras Pn � P that generate P . Note that this implies P is
AFD. If P DL1.X/ is abelian and �ÕP comes from a m.p. action �ÕX , then
the profiniteness of � Õ P amounts to the existence of a sequence of �-invariant
finite partitions of X that generate the � -algebra of measurable subsets of X .

THEOREM 2.10. (1) ƒcb.L.�//Dƒcb.�/ for any � .
(2) If � is a discrete subgroup of SO.1; n/ or of SU.1; n/, then ƒcb.�/D 1.
(3) If � acts properly on a finite-dimensional CAT(0) cubical complex, then

ƒcb.�/D 1.
(4) If ƒcb.�i /D 1 for i D 1; 2, then ƒcb.�1 ��2/D 1 and ƒcb.�1 ��2/D 1.
(5) If N �M are finite von Neumann algebras, then ƒcb.N / �ƒcb.M/. More-

over, if N;M are factors and ŒM W N� <1, then ƒcb.M/ D ƒcb.N / and
ƒcb.M

t /Dƒcb.M/, for all t > 0.

(6) Let M be a finite von Neumann algebra and .Mn/ be an increasing net of
von Neumann subalgebras of M such that M D .

S
Mn/

00. Then, ƒcb.M/D

supƒcb.Mn/.
(7) If P is a finite von Neumann algebra and � Õ P is a profinite action, then

ƒcb.P Ì�/Dƒcb.�/.

The assertions (1), (2), (3) and (4) are respectively due to [CH89], [DCH85],
[Cow83], [GH07] and [RX06]. The rest are trivial. We will see in Corollary 3.3
that property (7) generalizes to compact actions of groups � , and even to actions
of � that are “weakly compact”, in the sense of Definition 3.1.

We prove in this paper a general property about normal amenable subgroups
of groups with ƒcb-constant equal to 1. While this property is a consequence of
Theorem 3.5 (via .3/, .4/ in Proposition 3.2), we give here a direct proof in
group-theoretic framework. To this end, note that if ƒG� is a normal subgroup
then the semi-direct product group ƒ Ì � acts on ƒ by .a; g/b D agbg�1, for
.a; g/ 2ƒÌ� and b 2ƒ.

PROPOSITION 2.11. Suppose that � has an infinite normal amenable sub-
group ƒ G� and that ƒcb.�/ D 1. Then there exists a ƒÌ�-invariant mean on
`1.ƒ/ (i.e., � is co-amenable in ƒÌ�). In particular, � is inner-amenable. (See
§5 for the definition of inner-amenability.)
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Proof. Let fn be a net of finitely supported functions such that sup kfnkcbD 1

and fn! 1 pointwise. By the Bożejko-Fendler theorem (Theorem 6.4 in [Pis01]),
there are Hilbert space vectors �n.a/ and �n.b/ of norm at most one such that
fn.ab

�1/D h�n.b/; �n.a/i for all a; b 2 � . Then, for every g 2 � , one has

lim
n

sup
a2�

k�n.ga/� �n.a/k
2
� lim

n
sup
a2�

2
�
k�n.ga/� �n.a/k

2
Ck�n.a/� �n.a/k

2
�

� lim
n
2.2� 2<fn.g/C 2� 2<fn.1//D 0;

and similarly limn supb2� k�n.gb/� �n.b/k D 0 for every g 2 � . It follows that

lim
n
kfn�f

g
n kcb D 0

for every g2�, where f gn 2C� is defined by f gn .a/Dfn.gag�1/. Now sinceƒG�
is amenable, the trivial representation �0WC �red.ƒ/! C is continuous. We define
a linear functional !n on C �red.ƒ/ by !n D �0 ımfn

jC�red.ƒ/
. Since fn is finitely

supported, !n is ultraweakly continuous on L.ƒ/. We note that lim!n.�.a//D 1

for all a 2ƒ and
lim
n
k!n�!n ıAd.g/k � lim

n
kfn�f

g
n kcb D 0

for all g 2� . Since k!nk� 1 and lim!n.1/D 1, we have lim k!n�j!njkD 0. We
view j!nj as an element in L1.L.ƒ// (which is L1.yƒ/ ifƒ is abelian) and consider
�nDj!nj

1=22L2.L.ƒ//D`2.ƒ/. Then, the net .�n/ satisfies limnh�.a/�n; �niD1
for all a 2 ƒ and limn k�n �Ad.g/.�n/k2 D 0 for all g 2 � by (2.1). Therefore,
the state ! on `1.ƒ/� B.`2.ƒ// defined by

!.x/D Lim
n
hx�n; �ni D Lim

n

X
a2ƒ

x.a/�n.a/
2

is ƒ Ì �-invariant. Since ƒ is infinite, the ƒ-invariant mean ! is singular, i.e,
�n! 0 weakly. This implies inner-amenability of � . �

Recall that the wreath productH o�0 of a groupH by a group �0 is defined as
the semi-direct product .

L
�0
H/Ì�0 of

L
�0
H by the shift action �0Õ

L
�0
H .

COROLLARY 2.12. If �0 is nonamenable and H ¤ f1g, then ƒcb.H o�0/ > 1,
i.e. L.H o�0/ does not have c.m.a.p. Also, if � is a nonamenable group having a
nontrivial normal amenable subgroup ƒ such that the centralizer Z.a/D fg 2 � W

gaD agg of any nonneutral element a 2ƒ is amenable, then ƒcb.�/ > 1.

Proof. Suppose that �0 is nonamenable and ƒcb.H o�0/ D 1. Passing to a
subgroup if necessary, we may assume thatH is cyclic. ThusƒD

L
�0
H is a non-

trivial normal amenable subgroup of � DH o�0 such that the centralizer of any
nonneutral element of ƒ is amenable (finite). It is thus sufficient to prove the sec-
ond part of the statement. We consider ƒ as a set on which � acts by conjugation.
Then, ƒ n f1g D

F
a2X �=Z.a/ as a �-set, where X is a system of representatives

of �-orbits of ƒ n f1g. We observe that there is a �-equivariant u.c.p. map from
`1.�/ into `1.�=Z.a//, which is given by a fixed right Z.a/-invariant mean
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applied to each coset gZ.a/� � . Hence, there is a �-equivariant u.c.p. map from
`1.�/ into `1.ƒn f1g/. Since � is nonamenable, there is no �-invariant mean on
ƒ n f1g. Hence, any �-invariant mean on ƒ has to be concentrated on f1g. Such
mean cannot be ƒ-invariant. This is in contradiction with Proposition 2.11. �

Remark 2.13. Let � D .Z=2Z/ o F2. Since ƒcb is multiplicative ([CH89]) and
satisfies ƒcb.�/ > 1 (by 2.12), the direct product

L
� of infinitely many copies of

� is not weakly amenable, i.e. ƒcb.
L
�/D1. It is plausible that � itself is not

weakly amenable. De Cornulier-Stalder-Valette ([dCSV08]) recently proved the
surprising result that, despite satisfying ƒcb.�/ > 1, the group � (and hence

L
�)

has Haagerup’s compact approximation property [Haa79]. Taken together, these
results falsify one implication of the so-called Cowling’s conjecture, which asserts
that Haagerup’s compact approximation property for a group � is equivalent to
the condition ƒcb.�/D 1. There are still no known examples of groups � which
satisfy ƒcb.�/D 1 but fail Haagerup’s compact approximation property.

3. Weakly compact actions

We introduce in this section a new property for group actions, weaker than
compactness (thus weaker than profiniteness as well) and closely related to the
complete metric approximation property of the corresponding crossed product al-
gebras. The main result of this section will show that if a II1 factor M has the
c.m.a.p. then, given any maximal abelian subalgebra A of M , the action on A
of its normalizer, NM .A/Õ A, is weakly compact. Also, if a group � satisfies
ƒcb.�/D 1 and � ÕX is weakly compact, then M D L1.X/Ì� has c.m.a.p.

Definition 3.1. Let � be an action of a group � on a finite von Neumann
algebra P . Recall that � is called compact if �.�/ � Aut.P / is pre-compact in
the point-ultraweak topology. We call the action � weakly compact if there exists
a net .�n/ of unit vectors in L2.P x̋ xP /C such that:

(1) k�n� .v˝ Nv/�nk2! 0 for every v 2U.P /.

(2) k�n� .�g ˝ N�g/.�n/k2! 0 for every g 2 � .

(3) h.x˝ 1/�n; �ni D �.x/D h�n; .1˝ Nx/�ni for every x 2 P and every n.

Here, we consider the action � on P as the corresponding unitary representation
on L2.P /. By the proof of Proposition 3.2, condition (3) can be replaced with a
formally weaker condition

.30/ h.x˝ 1/�n; �ni ! �.x/ for every x 2 P .

Weak compactness is manifestly weaker than profiniteness, which is why in
an initial version of this paper we called it weak profiniteness. We are very grateful
to Adrian Ioana, who pointed out to us that the condition is even weaker than
compactness (cf. .2/) .3/ below) and suggested a change in terminology.
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PROPOSITION 3.2. Let � be an action of a group � on a finite von Neumann
algebra P and consider the following conditions:

(1) The action � is profinite.

(2) The action � is compact and the von Neumann algebra P is AFD.

(3) The action � is weakly compact.

(4) There exists a state ' on B.L2.P // such that 'jP D � and ' ıAduD ' for
all u 2U.P /[ �.�/.

(5) The von Neumann algebra L.�/ is co-amenable in P Ì� .

Then, one has .1/) .2/) .3/, .4/, .5/.

(Note that, by a result of Høegh-Krohn-Landstad-Størmer ([HKLS81]), if in
the above statement we restrict our attention to ergodic actions � Õ P , then the
condition that P is AFD in part .2/ follows automatically from the assumption
� Õ P compact. We observe that weak compactness also implies that P is AFD
by Connes’ theorem ([Con76]).)

Proof. We have .1/) .2/, by the definitions. We prove .2/) .4/. Since P
is AFD, there is a net ˆn of normal u.c.p. maps from B.L2.P // into P such that
� ı .ˆnjP /D � and ka�ˆn.a/k2! 0 for all a 2 P . Let G be the SOT-closure of
�.�/ in the unitary group on L2.P /. By assumption, G is a compact group and
has a normalized Haar measure m. We define a state 'n on B.L2.P // by

'n.x/D

Z
G

� ıˆn.gxg
�1/ dm.g/:

It is clear that 'n is Ad.�/-invariant and 'njP D � . We will prove that the net 'n is
approximately P -central. Let ˆn.x/D V ��.x/V be a Stinespring dilation. Then,
for x 2 B.L2.P // and a 2 P , one has

kˆn.xa/�ˆn.x/ˆn.a/k2 D kV
��.x/.1�V V �/�.a/V y1kL2.P /

� kxkk.1�V V �/1=2�.a/V y1kL2.P /

D kxk�.ˆn.a
�a/�ˆn.a

�/ˆn.a//
1=2

� 2kxkkak1=2ka�ˆn.a/k
1=2
2 :

It follows that for every x 2 B.L2.P // and a 2 P , one has

j'n.xa/�'n.ax/j � 4kxkkak
1=2 sup

g2G

kgag�1�ˆn.gag
�1/k

1=2
2 ;

which converge to zero since fgag�1 W g 2Gg is compact in L2.P / and ˆn’s are
contractive on L2.P /. Hence 'n is approximately P -central and ' D Limn 'n
satisfies the requirement.

We prove .3/, .4/. Take a net �n satisfying conditions .1/, .2/ and .30/ of
Definition 3.1. We define a state ' on B.L2.P // by ' D Limn 'n with 'n.x/D
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h.x˝ 1/�n; �ni. Then, for any u 2U.P /[ �.�/, one has

'.u�xu/D Lim
n
h.x˝ 1/.u˝ Nu/�n; .u˝ Nu/�ni D '.x/

by conditions .1/ and .2/ of Definition 3.1. That 'jP D � follows from .30/. Con-
versely, suppose now that ' is given. We recall that B.L2.P // is canonically
identified with the dual Banach space of the space S1.L2.P // of trace class op-
erators. Take a net of positive elements Tn 2 S1.L2.P // with Tr.Tn/ D 1 such
that Tr.Tnx/! '.x/ for every x 2 B.L2.P //. Let bn 2 L1.P /C be such that
Tr.Tna/ D �.bna/ for a 2 P . Since Tr.Tna/ ! '.a/ D �.a/ for a 2 P , the
net .bn/ converges to 1 weakly in L1.P /. Thus, by the Hahn-Banach separation
theorem, one may assume, by passing to a convex combinations, that kbn�1k1! 0.
By a routine perturbation argument, we may further assume that bn D 1. For the
reader’s convenience we give an argument for this. Let h.t/Dmaxf1; tg and k.t/D
maxf1�t; 0g be functions on Œ0;1/, and let cnDh.bn/�1. We note that 0� cn� 1
and bncnCk.bn/D 1. We define T 0nD c

1=2
n Tnc

1=2
n Ck.bn/

1=2P0k.bn/
1=2, where

P0 is the orthogonal projection onto Cy1. Then, one has

kTn�T
0
nk1 � 2kT

1=2
n � c1=2n T 1=2n k2Ckk.bn/k1

D 2�.bn.1� c
1=2
n /2/1=2Ckk.bn/k1

� 2�.bn.1� cn//
1=2
Ckk.bn/k1

� 2kbn� 1k
1=2
1 Ck1� bnk1! 0:

Hence, by replacing Tn with T 0n, we may assume that Tr.Tna/D �.a/ for a 2 P .
Since for every x 2 B.L2.P // and u 2U.P /[ �.�/, one has

Tr..Tn�Ad.u/Tn/x/! '.x/�'.Ad.u�/.x//D 0;

by applying the Hahn-Banach separation theorem again, one may furthermore as-
sume that kTn�Ad.u/.Tn/kS1

! 0 for every u2U.P /[�.�/. Then by (2.1), the
Hilbert-Schmidt operators T 1=2n satisfy kT 1=2n �Ad.u/.T 1=2n /kS2

! 0 for every
u 2U.P /[ �.�/. Now, if we use the standard identification between S2.L2.P //
and L2.P x̋ xP / given by

S2.L
2.P // 3

X
k

h � ; �ki�k 7!
X
k

�k˝ N�k 2 L
2.P x̋ xP /

and view T
1=2
n as an element �n 2 L2.P x̋ xP /, then we have h.a˝ 1/�n; �ni D

�.a/ D h�n; .1˝ Na/�ni and k�n � .u˝ Nu/�nk2 ! 0 for every u 2 U.P /[ �.�/.
Therefore, the net of �n D .�n��n/

1=2 2 L2.P x̋ xP /C verifies the conditions of
weak compactness.

Finally, we prove .4/ , .5/. We consider P Ì � as the von Neumann
subalgebra of B.L2.P / x̋ `2.�// generated by P x̋ C1 and .� ˝ �/.�/. This
gives an identification between L2.P Ì �/ and L2.P / x̋ `2.�/. Moreover, the
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basic construction hP Ì�; eL.�/i becomes B.L2.P // x̋ L.�/, since it is the com-
mutant of the right L.�/-action (which is given by .1˝ �/.�/). Now suppose
that ' is given as in condition .4/. Then, z' D ' ˝ � on B.L2.P // x̋ L.�/ is
Ad.U.P x̋ C1/[ .� ˝�/.�//-invariant and z'jPÌ� D � . This implies that L.�/
is co-amenable in P Ì � . Conversely, if z' is a .P Ì �/-central state such that
z'jPÌ� D � , then the restriction ' of z' to B.L2.P // satisfies condition .4/. �

Note that by part .7/ in Theorem 2.10, if ƒcb.�/D 1 and �ÕP is a profinite
action then ƒcb.P Ì �/ D 1. More generally we have the following. (Compare
this with [Jol07].)

COROLLARY 3.3. Let � be weakly amenable and � Õ P be a weakly com-
pact action on an AFD von Neumann algebra. Then, P Ì � has the completely
bounded approximation property and ƒcb.P Ì�/Dƒcb.�/.

Proof. By Proposition 3.2, L.�/ is co-amenable in P Ì� . Hence, Theorem
4.9 of [AD95] implies that ƒcb.P Ì�/Dƒcb.L.�//Dƒcb.�/. �

PROPOSITION 3.4. Let P �M be an inclusion of finite von Neumann alge-
bras such that P 0\M � P . Assume the normalizer NM .P / contains a subgroup
G such that its action on P is weakly compact and .P [G/00 D NM .P /

00. Then the
action of NM .P / on P is weakly compact. Moreover, if NM .P /Õ P is weakly
compact and p 2 P.P / then NpMp.pPp/Õ pPp is weakly compact.

Proof. We may clearly assume NM .P /
00 DM . Denote by � the action of

NM .P / on P . If u 2 NM .P /, then by the conditions P 0 \M D Z.P / and
.P [ G/00 DM it follows that there exists a partition fpigi � Z.P / and unitary
elements vi 2 P such that vD†ipiviui for some ui 2 G (see e.g. [Dye59]). Then
�v.x/Dvxv

�D†ipi�viui
.x/. Let now �n2L2.P x̋ xP /C satisfy the conditions in

Definition 3.1 for the action �jG. By 3.1(1) we have k†i .pi ˝ Npi /�n� �nk2! 0,
and thus k.pi ˝ Npj /�nk2 ! 0, for all i ¤ j . Since qi D �u�

i
.pi / are mutually

orthogonal as well, this also implies that for i ¤ j we have

k.pi ˝ Npj /.�viui
˝ N�vjuj

/.�n/k2

D k.�viui
˝ N�vjuj

/..qi ˝ Nqj /�n/k2 D k.qi ˝ Nqj /�nk2! 0:

Also, sincewi Du�i viui 2U.P /, we have k�wi
˝N�wi

/.�n/��nk2!0. Combining
with condition 3.2(2) on the action GÕ P , one gets

k.pi ˝ Npi /.�n� .�viui
˝ N�viui

/.�n//k2! 0:

By Pythagoras’ theorem, and using that
P
i;j kpi ˝ Npj k

2
2 D 1, all this entails

k�n� .�v˝ N�v/.�n/k
2
2 D†i;j k.pi ˝ Npj /�n� .pi ˝ Npj /.�v˝ N�v/.�n/k

2
2

D†i;j k.pi ˝ Npj /�n� .pi ˝ Npj /.�viui
˝ N�vjuj

/.�n/k
2
2! 0;

showing that NM .P /Õ P satisfies 3:1:.2/, thus being weakly compact.
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To see that weak compactness behaves well to reduction by projections, note
that any v 2 NpMp.pPp/ extends to a unitary in NM .P /. Thus, if ' satisfies
3.2(4) for NM .P /Õ P then 'p D '.p � p/ clearly satisfies the same condition
for NpMp.pPp/Õ pPp. �

The above result shows in particular that if a measure-preserving action of
a countable group � on a probability space .X; �/ is weakly compact (i.e., � Õ
L1.X/ weakly compact), then the action of its associated full group Œ��, as defined
in [Dye59], is weakly compact. Thus, weak compactness is an orbit equivalence
invariant for group actions, unlike profiniteness and compactness which are of
course not. In fact, Proposition 3.4 shows that weak compactness is even invariant
to stable orbit equivalence (also called measure equivalence).

An embedding of finite von Neumann algebras P �M is called weakly com-
pact if the action NM .P /Õ P is weakly compact. The next result shows that
the complete metric approximation property of a factor M imposes the weak com-
pactness of all embeddings into M of AFD (in particular abelian) von Neumann
algebras.

THEOREM 3.5. Let M be a finite von Neumann algebra with the c.m.a.p., i.e.
ƒcb.M/ D 1. Then any embedding of an AFD von Neumann algebra P � M
is weakly compact, i.e., NM .P / Õ P is weakly compact, for all P � M AFD
subalgebra.

For the proof, we need the following consequence of Connes’ theorem [Con76].
This is well-known, but we include a proof for the reader’s convenience.

LEMMA 3.6. Let M be a finite von Neumann algebra, P �M be an AFD
von Neumann subalgebra and u 2 NM .P /. Then, the von Neumann algebra Q
generated by P and u is AFD.

Proof. Since P is injective, the � -preserving conditional expectation EP from
M onto P extends to a u.c.p. map zEP from B.L2.M// onto P . We note that
zEP is a conditional expectation: zEP .axb/ D a zEP .x/b for every a; b 2 P and
x 2 B.L2.M//. We define a state � on B.L2.M// by

�.x/D Lim
n

1

n

n�1X
kD0

�
�
zEP
�
ukxu�k

��
:

It is not hard to check that � jM D � , � ıAdu D � and � ıAd v D � for every
v 2U.P /. It follows that � is aQ-central state with � jQD � . By Connes’ theorem,
this implies that Q is AFD. �

Proof of Theorem 3.5. First we note the following general fact: Let ! be a
state on a C�-algebra N and u 2 U.N /. We define !u.x/ D !.xu�/ for x 2 N .
Then, one has

(3.1) maxfk! �!uk; k! �! ıAd.u/kg � 2
p
2j1�!.u/j:
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Indeed, one has k�! � u��!k2 D 2.1�<!.u// � 2j1� !.u/j, where �! is the
GNS-vector for !.

Let .�n/ be a net of normal finite rank maps onM such that lim sup k�nkcb�1

and kx��n.x/k2! 0 for all x 2M . We observe that the net .� ı�n/ converges
to � weakly in M�. Hence by the Hahn-Banach separation theorem, one may
assume, by passing to convex combinations, that k� � � ı�nk! 0. Let � be the
�-representation of the algebraic tensor product M ˝ xM on L2.M/ defined by

�
�X
k

ak˝ Nbk

�
� D

X
k

ak�b
�
k :

We define a linear functional �n on M ˝ xM by

�n

�X
k

ak˝ Nbk

�
D

D
�
�X
k

�n.ak/˝ Nbk

�
y1; y1

E
L2.M/

D �
�X

k

�n.ak/b
�
k

�
:

Since �n is normal and of finite rank, �n extends to a normal linear functional
on M x̋ xM , which is still denoted by �n. For an AFD von Neumann subalgebra
Q �M , we denote by �Qn the restriction of �n to Q x̋ xQ. Since Q is AFD, the
�-representation � is continuous with respect to the spatial tensor norm on Q˝ xQ
and hence k�Qn k � k�nkcb. We denote !Qn D k�

Q
n k
�1j�

Q
n j. Since lim sup k�Qn k

� 1 and lim�
Q
n .1˝ 1/D 1, the inequality (3.1), applied to !Qn , implies that

(3.2) lim sup
n
k�Qn �!

Q
n k D 0:

Now, consider the case Q D P . Since �Pn .v ˝ Nv/ D �.�n.v/v
�/ ! 1 for any

v 2U.P /, one has

(3.3) lim sup
n
k!Pn � .!

P
n /v˝Nvk D 0

by (3.1) and (3.2). Now, let u 2 NM .P / and consider the case QD hP; ui, which
is AFD by Lemma 3.6. Since �hP;uin .u˝ Nu/D �.�n.u/u

�/! 1, one has

(3.4) lim sup
n
k�hP;uin ��hP;uin ıAd.u˝ Nu/k D 0

by (3.1) and (3.2). But since .�hP;uin ıAd.u˝ Nu//jP x̋ xP D �
P
n ıAd.u˝ Nu/, one

has

(3.5) lim sup
n
k!Pn �!

P
n ıAd.u˝ Nu/k D 0

by (3.2) and (3.4). Now, we view !Pn as an �n element in L1.P x̋ xP /C and let
�n D �

1=2
n . By (2.1), the net �n satisfies all the required conditions. �

4. Main results

We prove in this section the main results of the paper. They will all follow
from the following stronger version of the theorem stated in the introduction:
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THEOREM 4.1. Let � D Fr.1/� � � � �Fr.k/ be a direct product of finitely many
free groups of rank 2 � r.j / �1 and denote by �j the kernel of the projection
from � onto Fr.j /. Let M DQÌ� be the crossed product of a finite von Neumann
algebra Q by � (action need not be ergodic nor free). Let P �M be such that
P 6�M Q. Let G � NM .P / be a subgroup which acts weakly compactly on P
by conjugation, and denote N D G00. Then there exist projections p1; : : : ; pk 2
Z.N 0\M/ with

Pk
jD1 pj D 1 such that Npj ÉM QÌ�j for every j .

From the above result, we will easily deduce several (in)decomposability prop-
erties for certain factors constructed out of free groups and their profinite actions.
Note that Corollaries 4.2 and 4.3 below are just Corollaries 1 and 2 in the introduc-
tion, while Corollary 4.5 is a generalization of Corollary 3 therein.

COROLLARY 4.2. If P � L.Fr/t is a diffuse AFD von Neumann subalgebra
of the amplification by some t > 0 of a free group factor L.Fr/; 2 � r �1, then
NL.Fr /t .P /

00 is AFD.

Note that the above corollary generalizes the (in)-decomposability results for
free group factors in [Oza04a] and [Voi96]. Indeed, Voiculescu’s celebrated re-
sult in [Voi96], showing that the normalizer of any amenable diffuse subalgebra
P � L.Fr/ cannot generate all L.Fr/, follows from Corollary 4.2 because L.Fr/
is nonAFD by [MvN43]. Also, since any unitary element commuting with a sub-
algebra P � L.Fr/ lies in the normalizer of P , Corollary 4.2 shows in particular
that the commutant of any diffuse AFD subalgebra P � L.Fr/ is amenable, i.e.
L.Fr/ is solid in the sense of [Oza04a], which amounts to the free group case of a
result in [Oza04a]. Note however that the (in)-decomposability results in [Voi96]
and [Oza04a] cover much larger classes of factors, e.g. all free products of diffuse
von Neumann algebras in [Voi96] (for absence of Cartan subalgebras) and all II1
factors arising from word-hyperbolic groups in [Oza04a] (for solidity).

Calling strongly solid (or s-solid) the factors satisfying the property that the
normalizer of any diffuse amenable subalgebra generates an amenable von Neu-
mann algebra, it would be interesting at this point to produce examples of II1
factors that are s-solid, have both c.m.a.p. and Haagerup property, yet are not
isomorphic to an amplification of a free group factor (i.e., to an interpolated free
group factor [Dyk94], [Răd94]).

COROLLARY 4.3. If Q is a type II1-factor with c.m.a.p., then Q x̋ L.Fr/ does
not have Cartan subalgebras. Moreover, if N �Q x̋ L.Fr/ is a subfactor of finite
index, then N does not have Cartan subalgebras either.

This corollary shows in particular that if Q is an arbitrary subfactor of a tensor
product of free group factors, then Q x̋ L.Fr/ (or any of its finite index subfactors)
has no Cartan subalgebras. When applied to QDR, this shows that the subfactor
N �R x̋ L.Fr/ with N 6'N op constructed in [Con75], as the fixed point algebra
of an appropriate free action of a finite group on R x̋ L.Fr/ (which thus has finite
index in R x̋ L.Fr/), does not have Cartan subalgebras.
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Another class of factors without Cartan subalgebras is provided by part .2/ of
the next corollary.

COROLLARY 4.4. Let � D Fr.1/� � � ��Fr.k/, as in Theorem 4.1 , and �ÕX

an ergodic probability-measure-preserving action. Then M D L1.X/Ì� is a II1
factor and for each t > 0 we have:

(1) Assume M t has a maximal abelian �-subalgebra A such that NM t .A/Õ A is
weakly compact and N D NM t .A/00 is a subfactor of finite index in M t . Then
� Õ X is necessarily a free action, L1.X/ is Cartan in M and there exists
a unitary element u 2M t such that uAu� D L1.X/t .

(2) Assume � Õ X is profinite (or merely compact). Then M has a Cartan sub-
algebra if and only if � ÕX is free.

(3) Assume � D Fr . IfM t has a weakly compact maximal abelian �-subalgebra A
whose normalizer generates a von Neumann algebra without amenable direct
summand, then � ÕX follows free and A is unitary conjugate to L1.X/t .

Note that one can view part .1/ of the above corollary as a strong rigidity
result, in the spirit of results in ([Pop06a], [Pop06c], [IPP08]). Indeed, by taking
AD L1.Y / to be Cartan in M t , it follows that any isomorphism between group
measure space II1 factors � W .L1.X/ Ì �/t ' L1.Y / Ìƒ, with the “source”
� a direct product of finitely many free groups and the “target” ƒ arbitrary but
the action ƒÕ Y weakly compact (e.g. profinite, or compact), is implemented
by a stable orbit equivalence of the free ergodic actions � Õ X , ƒÕ Y , up to
perturbation by an inner automorphism and by an automorphism coming from a
1-cocycle of the target action.

COROLLARY 4.5. Let � D Fr.1/ � � � � � Fr.k/ (as in Theorem 4.1, Corollary
4.4) and � ÕX a free ergodic profinite (or merely compact) action. Then, L1.X/
is the unique Cartan subalgebra of the II1-factor L1.X/Ì� , up to unitary con-
jugacy. Moreover, if FP denotes the class of all II1 factors that can be embedded
as subfactors of finite index in an amplification of some L1.X/Ì� , with � ÕX

free ergodic compact action and � as above, then any M 2 FP has unique Cartan
subalgebra, up to unitary conjugacy. The class FP is closed under amplifications,
tensor product and finite index extension/restriction. Also, if M 2 FP and N �M
is an irreducible subfactor of finite index, then ŒM WN� is an integer.

The above corollary implies that any isomorphism between factors M 2 FP

comes from an isomorphism of the orbit equivalence relations RM associated with
their unique Cartan decomposition. Hence, like in the case of the HT-factors in
[Pop06a], invariants of equivalence relations, such as Gaboriau’s cost and L2-Betti
numbers ([Gab02]), are isomorphism invariants of II1 factors in FP. The subfactor
theory within the class FP is particularly interesting: By Corollary 4.5 and its proof
(see Proposition 4.12), and Section 7 in [Pop06a], any irreducible inclusion of finite
index N �M in this class has a canonical decomposition N �Q � P �M , with
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P �M coming from a subequivalence relation of RM , N �Q from a quotient of
RQ and Q � P from an irreducible U.n/-valued 1-cocycle for RQ.

Note that all factors in the class FP have ƒcb-constant equal to 1 by Theo-
rem 2.10 and have Haagerup’s compact approximation property by [Haa79]. The
sub-class of II1 factors L1.X/ Ì Fr 2 FP, arising from free ergodic profinite
probability-measure-preserving actions of free groups Fr Õ X , is of particular
interest, as they are inductive limits of (amplifications of) free group factors. We
call such a factor L1.X/ Ì Fr an approximate free group factor of rank r . By
Corollary 4.5, more than being in the class FP, such a factor has the property
that any maximal abelian �-subalgebra with normalizer generating a von Neumann
algebra with no amenable summand is unitary conjugate to L1.X/. When com-
bined with [Gab02], we see that approximate free group factors of different rank
are not isomorphic and that for r <1 they have trivial fundamental group. Also,
they are prime by [Oza06], in fact by Theorem 4.1 the normalizer (in particular the
commutant) of any AFD II1 subalgebra of such a factor must generate an AFD von
Neumann algebra. We will construct uncountably many approximate free group
factors in Section 5 and comment more on this class in Remark 5.6.

For the proof of Theorem 4.1, recall from [Pop06b], [Pop07] the construction
of 1-parameter automorphisms ˛t (“malleable deformation”) of L.Fr � zFr/. Let zFr
be a copy of Fr and a1; a2; : : : (resp. b1; b2; : : :) be the standard generators of Fr

(resp. zFr ) viewed as unitary elements in L.Fr � zFr/. Let hs D .�
p
�1/�1 log bs ,

where log is the principal branch of the complex logarithm so that hs is a self-
adjoint element with spectrum contained in Œ�1; 1�. For simplicity, we write bts (sD
1; 2; : : : and t 2 R) for the unitary element exp.t�

p
�1hs/. The �-automorphism

˛t is defined by ˛t .as/D btsas and ˛t .bs/D bs .
In this paper, we adapt this construction to � D Fr.1/ � � � � � Fr.k/ acting on

Q and M DQÌ� . We extend the action � ÕQ to that of

z� D .Fr.1/ � zFr.1//� � � � � .Fr.k/ � zFr.k//;

where zFr.j /’s act trivially on Q. We denote by aj;1; aj;2; : : : (resp. bj;1; bj;2; : : :)
the standard generators of Fr.j / (resp. zFr.j /) We redefine the �-homomorphism

˛t WM ! �M DQÌ z�
by ˛t .x/D x for x 2Q and ˛t .aj;s/D btj;saj;s for each 1� j � k and s. (We can

define ˛t on �M , but we do not need it.)
Let


.t/D �.btj;s/D
1

2

Z 1

�1

exp.t�
p
�1h/ dhD

sin.t�/
t�

D 
.�t /

and �j;
.t/WL.Fr.j //! L.Fr.j // be the Haagerup multiplier ([Haa79]) associated
with the positive type function g 7! 
.t/jgj on Fr.j /. We may extend

�
.t/ D �1;
.t/˝ � � �˝�k;
.t/
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to M by defining �
.t/.x�.g//D x�
.t/.�.g// for x 2Q and �.g/ 2 L.�/. We
relate ˛t and �
.t/ as follows (cf. [Pet09]).

LEMMA 4.6. One has EM ı˛t D �
.t/.

Proof. Since EM .x�.g//D xEL.�/.�.g// for x 2Q and �.g/ 2 L.z�/, one
has EM ı ˛t .x�.g//D xEL.�/.˛t .�.g/// for x 2Q and �.g/ 2 L.�/. Hence it
suffices to show EL.�/ ı ˛t D �
.t/ on L.�/. Since all EL.�/, ˛t and �
.t/ split
as tensor products, we may assume that k D 1. Since a1; : : : ; b1; : : : are mutually
free, it is not hard to check

.EL.Fr / ı˛t /.a
˙1
i1
� � � a˙1in /D 
.t/

na˙1i1 � � � a
˙1
in
D �
.t/.a

˙1
i1
� � � a˙1in /

for every reduced word a˙1i1 � � � a
˙1
in

in Fr . �

In particular, the u.c.p. map EM ı˛t on M is compact over Q provided that
r.j / <1 for every j . In case of r.j / D1, we need a little modification: we
replace the defining equation ˛t .aj;s/ D btj;saj;s with ˛t .aj;s/ D bstj;saj;s . Then,
the u.c.p. map EM ı˛t is compact over Q and ˛t ! idM as t ! 0.

Let �j be the kernel of the projection from � onto Fr.j / andQj DQÌ�j �M .
We consider the basic construction hM; eQj

i of .Qj �M/. Then, L2hM; eQj
i is

naturally an M -bimodule.

LEMMA 4.7. Let Qj � M � �M be as above. Then, L2. �M/	 L2.M/ is
isomorphic as an M -bimodule to a submodule of a multiple of

Lk
jD1L

2hM; eQj
i.

Proof. Let z�j be the kernel of the projection from z� onto Fr.j / � zFr.j /.
By permuting the position appropriately, we consider that z�j � Fr.j / � z� andT
z�j � Fr.j / D � . Let zQj D Q Ì z�j and �Mj D Q Ì .z�j � Fr.j //. Since

L2.M/ D
Tk
jD1L

2. �Mj /, it suffices to show L2. �M/	 L2. �Mj / is isomorphic
as an M -bimodule to a multiple of L2hM; eQj

i.
We observe that

L2. �M/	L2. �Mj /DM
d

h
zQj�.Fr.j /d Fr.j //

i
;

where the square bracket means the L2-closure and the direct sum runs all over
d 2 Fr.j / � zFr.j / whose initial and final letters in the reduced form come from
zFr.j /. Let �j W Fr.j / �zFr.j /! Fr.j / be the projection sending zFr.j / to f1g. It is not
difficult to see that

x�.gdh/ 7! x�.g/eQj
�.�j .d/h/

extends to an M -bimodule isometry from
h
zQj�.Fr.j /d Fr.j //

i
onto L2hM; eQj

i.
�

We summarize the above two lemmas as follows.
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PROPOSITION 4.8. LetQ�Qj �M be as above. Then, there are a finite von
Neumann algebra �M �M and trace-preserving �-homomorphisms ˛t WM ! �M
such that:

(1) limt!0 k˛t .x/� xk2! 0 for every x 2M ;

(2) EM ı˛t is compact over Q for every t > 0; and

(3) L2. �M/	L2.M/ is isomorphic as an M -bimodule to a submodule of a mul-
tiple of

Lk
jD1L

2hM; eQj
i.

We complete the proof of Theorem 4.1 in this abstract setting.

THEOREM 4.9. LetQ�Qj �M be as in Proposition 4.8. Let P �M be such
that P 6�M Q. Let G � NM .P / be subgroup which acts weakly compactly on P
by conjugation, and N D G00. Then there exist projection p1; : : : ; pk 2 Z.N 0\M/

with
Pk
jD1 pj D 1 such that Npj ÉM Qj for every j .

Proof. We may assume that U.P / � G. We use Corollary 2.3 to conclude
the relative amenability. Let a nonzero projection p in Z.N 0\M/, a finite subset
F � G and " > 0 be given arbitrary. It suffices to find � 2

LLk
jD1L

2hM; eQj
i

such that kx�k2 � kxk2 for all x 2 M , kp�k2 � kpk2=8 and kŒ�; u�k22 < " for
every u 2 F .

Let ı D kpk2=8. We choose and fix t > 0 such that ˛ D ˛t satisfies kp �
˛.p/k2 < ı and ku� ˛.u/k2 < "=6 for every u 2 F . We still denote by ˛ when
it is viewed as an isometry from L2.M/ into L2. �M/. Let .�n/ be the net of unit
vectors in L2.P x̋ xP /C as in Definition 3.1 and denote

z�n D .˛˝ 1/.�n/ 2 L
2. �M/ x̋ L2. xM/:

We note that

(4.1) k.x˝ 1/z�nk
2
2 D �.˛

�1.E˛.M/.x
�x///D kxk22

for every x 2 �M . In particular, one has

(4.2) kŒu˝ Nu; z�n�k2 � kŒu˝ Nu; �n�k2C 2ku�˛.u/k2 < "=2

for every u 2 F and large enough n 2 N. We denote �n D .eM ˝ 1/.z�n/ and
�?n D z�n� �n. Noticing that L2.M/ x̋ L2. xM/ is an M x̋ xM -bimodule, it follows
from (4.2) that

(4.3) kŒu˝ Nu; �n�k
2
2CkŒu˝ Nu; �

?
n �k

2
2 D kŒu˝ Nu; z�n�k

2
2 < ."=2/

2

for every u 2 F and large enough n 2 N. We claim that

(4.4) Lim
n
k.p˝ 1/�?n k2 > ı:
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Suppose this is not the case. Then, for any v 2U.P /, one has

Lim
n
k.p˝ 1/z�n� .eM˛.v/p˝ Nv/�nk2

� Lim
n
k.p˝ 1/z�n� .eM˛.v/p˝ Nv/z�nk2CLim

n
k.p˝ 1/�?n k2

� Lim
n
k.p˝ 1/z�n� .eMp˝ 1/.˛.v/˝ Nv/z�nk2CkŒ˛.v/; p�k2C ı

� Lim
n
k.p˝ 1/�?n k2CLim

n
kz�n� .˛.v/˝ Nv/z�nk2C 2kp�˛.p/k2C ı

� 4ı

since peM D eMp. It follows that

(4.5) k.EM ı˛/.v/pk2 D Lim
n
k
�
.EM ı˛/.v/p˝ Nv

�
z�nk

� Lim
n
k.eM ˝ 1/

�
.EM ı˛/.v/p˝ Nv

�
z�nk

D Lim
n
k
�
eM˛.v/p˝ Nv

�
�nk

� kpk2� 4ı > 0

for all v 2 U.P /. (One has k.EM ı ˛/.vp/k2 � kpk2 � 6ı as well.) Since
EM ı ˛ is compact over Q, this implies P �M Q by Corollary 2.7, contra-
dicting the assumption. Thus by (4.3) and (4.4), there exists n 2 N such that
� D �?n 2 .L

2. �M/	 L2.M// x̋ L2. xM/ satisfies jŒu˝ Nu; ��k2 < "=2 for every
u 2 F and k.p˝ 1/�k2 � ı. We note that for all x 2M , equation .4:1/ implies

(4.6) k.x˝ 1/�k22 D k.e
?
M ˝ 1/.x˝ 1/z�nk

2
2 � k.x˝ 1/z�nk

2
2 D kxk

2
2:

By Proposition 4.8, we may view � as a vector .�i / in
L
i L

2hM; eQj.i/
i x̋ L2. xM/.

We consider �i��i 2 L
1.hM; eQj.i/

i x̋ xM/ and define �i D ..id˝ �/.�i��i //
1=2 and

then � D .�i / 2
L
i L

2hM; eQj.i/
i. Then, the inequality (4.6) implies

kx�k22 D
X
i

�.x�x.id˝ �/.�i��i //D k.x˝ 1/�k
2
2 � kxk

2
2;

and for all x 2M . In particular,

kp�k2 D k.p˝ 1/�k2 � ı:

Finally, by (2.1), one has

kŒ�; u�k22 D
X
i

k�i � .Adu/.�i /k22 �

X
i

k�2i � .Adu/.�2i /k1

�

X
i

k�i�
�
i �Ad.u˝ Nu/.�i��i /k1 �

X
i

2k�ik2kŒu˝ Nu; �i �k2

� 2k�k2kŒu˝ Nu; ��k2 < "

for every u 2 F . �
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Before proving the corollaries to Theorem 4.1, we mention one more result
in the spirit of Theorem 4.1. Its proof is similar to the above, but requires more
involved technique from [IPP08].

THEOREM 4.10. Let M DM1 �M2 be the free product of finite von Neumann
algebras and P � M be a von Neumann subalgebra such that P 6�M Mi for
i D 1; 2. If the action of G� NM .P / on P is weakly compact, then G00 is AFD.

Proof. We follow the proof of Theorem 4.1, but use instead the deformation
˛t given in Lemma 2.2.2 in [IPP08]. Let a nonzero projection p 2 Z.G0\M/, a
finite subset F � G and " > 0 be given arbitrary. Since P 6�M Mi for i D 1; 2, one
has

lim
t!0

inffk.EM ı˛t /.vp/k2 W v 2U.P /g< .999=1000/kpk2

by Proposition 3.4 and Theorem 4.3 in [IPP08]. (N.B. This is because Proposition
3.4 is the only part where the rigidity assumption in Theorem 4.3 of that paper is
being used.) Hence, if we choose ı > 0 small enough and t > 0 accordingly, then
one obtains as in the proof of Theorem 4.1 that

Lim
n
k.p˝ 1/�?n k2 � ı

for �?n D ..1� eM /˝ 1/z�n 2 L
2. �M 	M/ x̋ L2. xM/. Since L2. �M 	M/ is a

multiple of L2.M x̋ M/ as an M -bimodule, one obtains � 2
L
L2.M x̋ M/ such

that kx�k2 D k�xk2 � kxk2 for all x 2M , kp�k2 � ı and kŒu; ��k2 < " for every
u 2 F . This proves that G00 is AFD. �

Proof of Corollary 4.2. This is a trivial consequence of Theorems 3.5 and
Theorem 4.1 . �

Proof of Corollary 4.3. Suppose there is a Cartan subalgebra A�M where
M � N D Q x̋ L.Fr/ is a subfactor of finite index. Since Fr is nonamenable,
N is not amenable relative to Q, so by Proposition 2.4, M is not amenable rel-
ative to Q inside N . Hence, by Theorems 3.5 and 4.1, one has A �N Q. By
Theorem 2.5, this implies there exist projections p 2 A0 \N , q 2Q, an abelian
von Neumann subalgebra A0 � qQq and a nonzero partial isometry v 2N such
that p0 D vv� 2 p.A0 \ N/p, q0 D v�v 2 A00 \ qNq and v�.Ap0/v D A0q0.
Since Q D L.Fr/0 \ N , by “shrinking” q if necessary we may clearly assume
q D

W
fuq0u

� W u 2U.L.Fr//g. Since L.Fr/q is contained in .A0q/0\ qNq, this
implies q0 has central support 1 in the von Neumann algebra .A0q/0\ qNq. But
.A0q0/

0\ q0Nq0 D v
�.A0\N/v by spatiality and since M �N has finite index,

A � A0 \N has finite index as well (in the sense of [PP86]) so A0 \N is type
I, implying .A0q0/0 \ q0Nq0 type I, and thus .A0q/0 \ qNq type I as well. But
L.Fr/' L.Fr/q � .A0q/

0\ qNq, contradiction. �

For the proof of Corollary 4.4, we will need the following general observation.
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LEMMA 4.11. Let � be an ICC group and � Õ X an ergodic measure-
preserving action. Let M D L1.X/ Ì � . Then M is a factor. Moreover, the
following conditions are equivalent:

(1) � ÕX is free.

(2) L1.X/ is maximal abelian (thus Cartan) in M .

(3) There is a maximal abelian �-subalgebra A�M such that A�M L1.X/.

Proof. The first part is well-known, its proof being identical to the Murray-
von Neumann classical argument in [MvN43], showing that if a group � is ICC
then its group von Neumann algebra L.�/ is a factor.

The equivalence of .1/ and .2/ is a classical result of Murray and von Neu-
mann, and .2/) .3/ is trivial. To prove .3/) .2/, denote B D L1.X/ and
let A �M be maximal abelian satisfying A �M B . Then there exists a nonzero
partial isometry v 2 M , projections p 2 A D A0 \M , q 2 B and a unital iso-
morphism � of Ap onto a unital subalgebra B0 of Bq such that va D �.a/v, for
all a 2 Ap. Denoting q0 D vv� 2 B 00 \ qMq, it follows that q0.B 00 \ qMq/q0 D

.B0q
0/0\q0Mq0. Since by spatiality B0q0D vAv� is maximal abelian, this implies

q0.B 00 \ qMq/q0 D vAv�. Thus, B 00 \ qMq has a type I direct summand. Since
.Bq/0 \ qMq is a subalgebra of B 00 \pMp, it follows that B 0 \M has a type I
summand. Since � acts ergodically on Z.B 0\M/� B (or else M would not be
a factor), the algebra B 0\M is homogeneous of type In, for some n <1.

Note at this point that since all maximal abelian subalgebras of the type I
summand of B 00\ qMq containing q0 are unitary conjugate (cf. [Kad84]), we may
assume that q0 is in a maximal abelian algebra containing Bq. Thus, if Z denotes
the center of B 0 \M , then Zq0 � q0.B 00 \ qMq/q0 D B0q

0 � Bq0, showing
that Zq0 D Bq0. Since B;Z are �-invariant with the corresponding �-actions
ergodic, it follows that there exists a partition of 1 with projections of equal trace
p1; : : : ; pm 2 Z such that Z D †iBpi and EB.pi / D m�11, for all i . Since
B 0 \M D Z0 \M has an orthonormal basis over Z with n2 unitary elements,
this shows that B 0 \M has a finite unitary orthonormal basis over B . But if
x 2 .B 0 \M/ nB; and x D †gagug is its Fourier series, with ag ¤ 0 for some
g ¤ e, then pgug 2 B 0 \M , where pg denotes the support projection of ag .
Now, since � is ICC there exist infinitely many hn 2 � such that gn D hngh�1n
are distinct. This shows that all �hn

.pg/ugn
� B 0 \M are mutually orthogonal

relative to B . By [PP86], this contradicts the finiteness of the index of B �B 0\M .
Thus, we must have B 0\M D B , showing that � ÕX is free and B D L1.X/
is maximal abelian, hence Cartan. �

Proof of Corollary 4.4. The factoriality of M was shown in Lemma 4.11
above.

To prove part .1/, note that NM t .A/ÕA weakly compact implies NM .A
1=t /

Õ A1=t weakly compact, where A1=t �M is the semiregular maximal abelian
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�-subalgebra obtained by amplifying A�M t by 1=t (see Proposition 3.4 and the
comments following its proof). This shows that it is sufficient to prove the case
t D 1. Let �j be as in Theorem 4.1 . If N DNM .A/

00ÉM L1.X/Ì�j for some j ,
then by ŒM WN� <1 it follows that M ÉM L1.X/Ì�j as well. But this implies
Fr.j / amenable, a contradiction. Thus, by Theorem 4.1 we have A� L1.X/ and
the statement follows from Lemma 4.11.

Part .2/ follows trivially from part .1/, since � ÕX compact implies M has
c.m.a.p., by Proposition 3.2.

An obvious maximality argument shows that in order to prove .3/ it is suffi-
cient to show: .30/ for all p 2 P.A/, p ¤ 0, 9 v 2M t , nonzero partial isometry,
such that v�v 2Ap, vAv��L1.X/t . By amplifying A�M t by suitable integers,
we see that in order to prove .30/ for arbitrary t > 0, it is sufficient to prove it for
t D 1. Since N ÉM L1.X/ would imply N amenable, by Theorem 4.1 we must
have A� L1.X/. Then Lemma 4.11 implies L1.X/ maximal abelian in M and
Lemma 2.8 applies to get .30/, thus .3/ as well. �

The proof of Corollary 4.5 will follow readily from the next general “princi-
ple”.

PROPOSITION 4.12. Assume a II1 factor M has the property:

(a) 9 A � M Cartan and any maximal abelian �-subalgebra A0 � M with
NM .A0/

00 a subfactor of finite index in M is unitary conjugate to A.

Then any amplification and finite index extension/restriction of M satisfies (a)
as well. Moreover, if M satisfies (a) and N �M is an irreducible subfactor of
finite index, then ŒM WN� is an integer.

Proof. For the proof, we call an abelian von Neumann subalgebra B of a II1
factor P virtually Cartan if it is maximal abelian and Q D NP .B/

00 has finite-
dimensional center with ŒqP q WQq� <1 for any atom q 2 Z.Q/. We first prove
that if P � N is an inclusion of factors with finite index and B � P is virtually
Cartan in P then any maximal abelian �-subalgebra A of B 0\N is virtually Cartan
in N .

To see this, note that, by commuting squares, the index of B �B 0\N (in the
sense of [PP86]) is majorized by ŒN WP �<1, implying that B 0\N is a direct sum
of finitely many homogeneous type Ini

von Neumann algebras Bi , with 1� n1 <
n2 < � � �< nk <1. Since any two maximal abelian �-subalgebras of a finite type
I von Neumann algebra are unitary conjugate and NP .B/ leaves B 0\N globally
invariant, it follows that given any u 2NP .B/, there exists v.u/ 2U.B 0\N/ such
that v.u/uAu�v.u/� D A. Moreover, A is Cartan in B 0 \N , i.e. NB 0\N .A/

00 D

B 0 \ N . This shows in particular that the von Neumann algebra generated by
NN .A/ contains B 0\N and v.u/u, and thus it contains u, i.e. NP .B/�NN .A/

00.
Thus, the [PP86]-index of NN .A/

00 in N is majorized by the index of P in N , and
is thus finite. Since N is a factor, this implies QDNN .A/

00 has finite-dimensional
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center and ŒqNq WQq� <1 for any atom in its center, i.e. A is virtually Cartan
in N .

Now notice that since any unitary conjugacy of subalgebras A;A0 �M as
in (a) can be “amplified” to a unitary conjugacy of At ; At0 in M t , property (a) is
stable to amplifications. This also shows that (a) holds true for a factor M if and
only if M satisfies:

(b) 9A � M Cartan and any virtually Cartan subalgebra A0 of M is unitary
conjugate to A.

Since if a subfactor N �M satisfies ŒM W N� <1 then hM; eN i is an am-
plification of N (see e.g. [PP86]), it follows that in order to finish the proof of the
statement it is sufficient to prove that if M satisfies (b) and N �M is a subfactor
with finite index, then N satisfies (b).

Let A�M be a Cartan subalgebra of M . Let P � N be such that N �M
is the basic construction of P � N (cf. [Jon83]). Thus P is isomorphic to an
amplification of M and so it has a Cartan subalgebra A2 � P . By the first part of
the statement any maximal abelian subalgebra A1 of A02 \N is virtually Cartan
in N . Applying again the first part, any maximal abelian A0 of A01\M is virtually
Cartan in M , so it is unitary conjugate to A. Thus, A0 � M follows Cartan.
Thus, L2.M/ D ˚unL

2.A0/, for some partial isometries un 2 M normalizing
A0. Since A0 is a finitely generated A1-module, it follows that each unL2.A0/ is
finitely generated both as left and as right A1 module, i.e. there exist finitely many
�i ; �

0
j 2 unL

2.A0/ such that †i�iA1 and †A1� 0i are dense in unL2.A0/. Thus,
if we denote by Hn the closure of the range of the projection of unL2.A0/ onto
L2.N / and by �i ; �0j the projection of �i ; � 0j onto L2.N /, then Hn is a Hilbert
A1-bimodule generated as left Hilbert A1-module by �i 2 L2.N / and as a right
Hilbert A1-module by �0j 2 L

2.N /. Moreover, since _nunL2.A0/D L2.M/, we
have _nHn D L

2.N /. Thus, by Section 1.4 in [Pop06a], A1 is Cartan in N .
Note that the above argument shows that N has Cartan subalgebra, but also

that any virtually Cartan subalgebra of N is in fact Cartan. If now B1 � N is
another Cartan subalgebra of N , then let B0 be a maximal abelian subalgebra of
B 01\M . By the first part of the proof B0 is virtually Cartan, so by (b) there exists
v 2 U.M/ such that vA0v� D B0. Thus, if we let vn D vun then L2.M/ D

˚nvnL
2.A0/ D ˚nL

2.B0/vn. Since A0 (resp. B0) is a finitely generated A1
(resp. B1) module, there exist �i ; � 0j 2 vnL

2.A0/DL
2.B0/vn such that †i�iA1 is

dense in vnL2.A0/ and †jB1� 0j is dense in L2.B0/vn. But then exactly the same
argument as above shows that L2.N / is spanned by Hilbert B1�A1 bimodules Hn

which are finitely generated both as right A1 Hilbert modules and as left Hilbert B1
modules. By Section 1.4 in [Pop06a], it follows that A1; B1 are unitary conjugate.

Finally, to see that for irreducible inclusions of factors N �M satisfying .a/
the index ŒM WN� is an integer, when finite, let N �Q� P �M be the canonical
intermediate subfactors constructed in 7.1 of [Pop06a]. Then Q;P satisfy .a/ as
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well and by 7.1 in [Pop06a] the Cartan subalgebra of P is maximal abelian and
Cartan in M . Thus, as in the proof of 7.2.3ı in [Pop06a], we have ŒQ WN�, ŒP WQ�,
ŒM W P � 2 N, implying that ŒM WN� 2 N. �

Proof of Corollary 4.5.. Let M DL1.X/Ì� and assume A�M is a Cartan
subalgebra. By Proposition 3.2 and Corollary 3.3, M follows c.m.a.p. Thus, The-
orem 3.5 applies to show that NM .A/Õ A is weakly compact. Since Fr.j / are all
nonamenable, M DNM .A/

00 cannot be amenable relative to L1.X/Ì�j (with �j
as defined in Theorem 4.1 ), for all j . Hence, Theorem 4.1 implies A�M L1.X/.
Then Lemma 2.8 shows there is u 2 U.M/ such that uAu� D L1.X/, proving
the first part of the statement. The rest is a consequence of Proposition 4.12. �

5. Uncountably many approximate free group factors

In this section we prove that there are uncountably many approximate free
group factors of any rank 2 � n � 1. We do this by using a “separability ar-
gument,” in the spirit of [Pop86], [JP95], [Oza04b]. The proof is independent of
the previous sections. The result shows in particular the existence of uncountably
many orbit inequivalent profinite actions of Fn. The fact that Fn has uncountably
many orbit inequivalent actions was first shown in [GP05]. A concrete family of
orbit inequivalent actions of Fn was recently obtained in [Ioa09]. Note that the
actions FnÕX in [GP05] and [Ioa09] are not orbit equivalent to profinite actions
(because they have quotients that are free and have relative property (T) in the sense
of [Pop06a]).

Definition 5.1. We say a unitary representation .�;H/ of � has (resp. essen-
tial) spectral gap if there is a finite subset F of � and ">0 such that the self-adjoint
operator

1

2jF j

X
g2F

.�.g/C�.g�1//

has (resp. essential) spectrum contained in Œ�1; 1�"�. We say such .F; "/ witnesses
(resp. essential) spectral gap of .�;H/.

It is well-known that .�;H/ has spectral gap if and only if it does not contain
approximate invariant vectors.

Definition 5.2. Let � be a group. We say � is inner-amenable ([Eff75]) if the
conjugation action of � on `2.� n f1g/ does not have spectral gap.

Let f�ng be a family of finite index (normal) subgroups of � . We say � has
the property .�/ with respect to f�ng if the unitary �-representation onM

n

`2.�=�n/
o

has spectral gap, where `2.�=�n/o D `2.�=�n/	C1�=�n
.
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Let I be a family of decreasing sequences

i D
�
� D �

.i/
0 � �

.i/
1 � �

.i/
2 � � � �

�
of finite index normal subgroups of � such that

T
�
.i/
n D f1g. We allow the pos-

sibility that �.i/n D �
.i/
nC1. We say the family I is admissible if � has the property

.�/ with respect to f�.i/m \�
.j /
n W i; j 2 I; m; n 2 Ng and

supfŒ� W �.i/m �.j /n � Wm; n 2 Ng<1

for any i; j 2 I with i ¤ j .

LEMMA 5.3. Let � � SL.d;Z/ with d � 2 be a finite index subgroup and

�n D � \ ker
�
SL.d;Z/! SL.d;Z=nZ/

�
:

Let I be a family of infinite subsets of prime numbers such that ji \ j j <1 for
any i; j 2 I with i ¤ j . (We note that there exists such an uncountable family I .)
Associate each i D fp1 < p2 < � � � g 2 I with the decreasing sequence of finite
index normal subgroups �.i/n D �i.n/ where i.n/D p1 � � �pn. Then, the family I
is admissible.

Proof. First, we note that �m\�n D �gcd.m;n/. By the celebrated results of
Kazhdan for d � 3 (see [BdlHV08]) and Selberg for d D 2 (see [Lub94]) the group
� has the property .�/ with respect to the family f�n W n 2Ng. We observe that the
index Œ� W �.i/m �

.j /
n � is the cardinality of �-orbits of .�=�.i/m /� .�=�

.j /
n /. Since

SL.d;Z=p1 � � �plZ/D
lY

kD1

SL.d;Z=pkZ/

for any mutually distinct primes p1; : : : ; pl , one has a group isomorphism

SL.d;Z=i.m/Z/�SL.d;Z=j.n/Z/Š SL.d;Z=kZ/�SL.d;Z=lZ/;

where k D gcd.i.m/; j.n// and l D i.m/j.n/= gcd.i.m/; j.n//. Since

.�=�.i/m /� .�=�.j /n /� SL.d;Z=i.m/Z/�SL.d;Z=j.n/Z/

as a �-set, one has

Œ� W �.i/m �.j /n �� jSL.d;Z=kZ/j ŒSL.d;Z=lZ/ W �=�l �:

Therefore, the condition supfŒ� W �.i/m �
.j /
n � Wm; n 2 Ng<1 follows from the fact

that ji \ j j<1. �
For example, we can take ��SL.2;Z/ to be h

�
1 2
0 1

�
;
�
1 0
2 1

�
iŠF2. By [Sha99],

one may relax the assumption that “� �SL.d;Z/ has finite index” to “� �SL.d;Z/
is co-amenable,” so that one can take � to be isomorphic to F1.

Let S D .�n/
1
nD1 be a decreasing sequence of finite index subgroups of a

group � . We write XS D lim
 �

�=�n for the projective limit of the finite probability
space �=�n with uniform measures. We note that L1.XS/D .

S
`1.�=�n//

00,
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where the inclusion �nW `1.�=�n/ ,! `1.�=�nC1/ is given by �n.f /.g�nC1/D
f .g�n/. There is a natural action � Õ L1.XS/ which is ergodic, measure-
preserving and profinite. (Any such action arises in this way.) The action is
essentially-free if and only if

(5.1) for all g 2� nf1g jfx 2XS W gxD xgjD lim
n

jfx 2 �=�n W gx D xgj

j�=�nj
D 0:

This condition clearly holds if all �n are normal and
T
�n D f1g. We denote

AS D L
1.XS/ and AS;n D `

1.�=�n/� AS. Since

L2.AS/Š C1˚

1M
nD1

�
L2.AS;n/	L

2.AS;n�1/
�
� C1˚

1M
nD1

`2.�=�n/
o

as a �-space, the action � Õ AS is strongly ergodic if � has the property .�/ with
respect to S.

THEOREM 5.4. Let � be a countable group which is not inner-amenable, and
I be an uncountable admissible family of decreasing sequences of finite index nor-
mal subgroups of � . Then, all Mi D L.Xi /Ì� are full factors of type II1 and the
set fMi W i 2 I g contains uncountably many isomorphism classes of von Neumann
algebras.

Proof. That all Mi are full follows from [Cho82]. Take a finite subset F of
� and " > 0 such that .F; "/ witnesses spectral gap for both non-inner-amenability
and the property .�/ with respect to f�.i/m \�

.j /
n g. We write �i .g/ for the unitary

element in Mi that implements the action of g 2 � .
We claim that if i ¤ j , then .F; "/ witnesses essential spectral gap of the

unitary �-representation Ad.�i ˝ �j / on L2.Mi x̋ Mj /. First, we deal with the
Ad.�i ˝�j /.�/-invariant subspace

(5.2) L2.Ai x̋ Aj /Š C1˚

1M
nD1

�
L2.Ai;n x̋ Aj;n/	L

2.Ai;n�1 x̋ Aj;n�1/
�
:

We note that the unitary �-representation on

L2.Ai;n x̋ Aj;n/Š `
2..�=�.i/n /� .�=�.j /n //

is contained in a multiple of `2.�=.�.i/n \ �
.j /
n //. Hence if we show that the

subspace of �-invariant vectors in L2.Ai x̋ Aj / is finite-dimensional, then we can
conclude by the property .�/ that .F; "/ witnesses essential spectral gap. Suppose
� 2L2.Ai;n x̋ Aj;n/ is �-invariant. Since �.i/n acts trivially on L2.Ai;n/, the vector
� is Ad.1˝�j /.�

.i/
n /-invariant. The same thing is true for j . It follows that � is

in the �.i/n �
.j /
n ��

.i/
n �

.j /
n -invariant subspace, whose dimension is Œ� W �.i/n �

.j /
n �2.

Since this number stays bounded as n tends to1, we are done. Second, we deal
with the Ad.�i ˝�j /.�/-invariant subspace

(5.3) .L2.Mi /	L
2.Ai // x̋ L

2.Mj /Š `
2.� n f1g/ x̋ L2.Ai / x̋ L

2.Mj /;
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where � acts on the right-hand side Hilbert space (which will be denoted by H) as
Ad.�.g/˝�i .g/˝�j .g//. For every vector � 2H, we write it as .�g/g2�nf1g with
�g 2 L

2.Ai / x̋ L
2.Mj / and define j�j 2 `2.� n f1g/ by j�j.g/D k�gk. It follows

that

<hAd.�.g/˝�i .g/˝�j .g//�; �i D <
X

h2�nf1g

hAd.�i .g/˝�j .g//�h; �ghg�1i

�

X
h2�nf1g

k�hkk�ghg�1k D hAd�.g/j�j; j�ji

for every g 2 � and � 2H. Since .F; "/ witnesses spectral gap of the conjugation
action on `2.� nf1g/, it also witnesses spectral gap of the �-action on H. Similarly,
.F; "/ witnesses spectral gap of

(5.4) L2.Mi / x̋ .L
2.Mj /	L

2.Aj //:

Since the Hilbert spaces (5.2)–(5.4) cover L2.Mi x̋ Mj /, we conclude that .F; "/
witnesses essential spectral gap of the �-action Ad.�i ˝ �j /. This argument is
inspired by [Cho82].

We claim that for any i 2 I and any unitary element u.g/ 2Mi with k�i .g/�
u.g/k2 < "=4, the essential spectrum of the self-adjoint operator

hF D
1

2jF j

X
g2F

�
Ad.�i .g/˝u.g//CAd.�i .g�1/˝u.g�1//

�
onL2.Mi x̋Mi / intersects with Œ1�"=2; 1�. We fix i 2 I and define for every n2N

the projection �n 2Mi x̋ Mi by �nD
P
ek˝ ek , where fekg is the set of nonzero

minimal projections in Ai;n Š `1.�=�
.i/
n /. We normalize �n D Œ� W �

.i/
n �1=2�n

so that k�nk2 D 1. Then, it is not hard to see

Ad.�i .g/˝�i .g//�n D �n

for all g 2 � , and

k.1˝ a/�nk
2
2 D kak

2
2 D k�n.1˝ a/k

2
2

for all a 2Mi . It follows that

hhF �n; �ni D
1

jF j

X
g2F

<hAd.�i .g/˝u.g//�n; �ni

�
1

jF j

X
g2F

.1� 2k�i .g/�u.g/k2/ > 1� "=2:

Since �n! 0 weakly as n!1, the claim follows (cf. [Ioa]).
From the above claims, we know that if i ¤ j , then there is no �-isomorphism

� from Mi onto Mj such that k�.�i .g//��j .g/k2 < "=4 for all g 2 F . Now, if
the isomorphism classes of fMi W i 2 I g were countable, then there would be M0
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and an uncountable subfamily I0 � I such that Mi ŠM0 for all i 2 I0. Take an �-
isomorphism �i WMi!M0 for every i 2 I0. Since MF

0 is separable in k � k2-norm,
there has to be i; j 2 I0 with i ¤ j such that

max
g2F
k�i .�i .g//� �j .�j .g//k2 < "=4;

in contradiction to the above. �
When combined with Lemma 5.3, Theorem 5.4 shows in particular that any

arithmetic property (T) group has uncountably many orbit inequivalent free ergodic
profinite actions, thus recovering a result in [Ioa]. However, [Ioa] provides a “con-
crete” family (consequence of a cocycle superrigidity result for profinite actions of
Kazhdan groups) rather than an “existence” result, as Theorem 5.4 does. But the
consequence of Theorem 5.4 and Lemma 5.3 that is relevant here is the following:

COROLLARY 5.5. For each 2 � r � 1, there exist uncountably many non-
isomorphic approximate free group factors of rank r . In particular, there exist
uncountably many orbit inequivalent free ergodic profinite actions of Fr .

Remark 5.6. Note that if 2� r �1 and SD .�n/ is a decreasing sequence
of finite index subgroups of the free group Fr satisfying condition (5.1), then
the associated free group factor of rank r is the inductive limit of AS;n Ì Fr Š

B.`2.Fr=�n// x̋ L.�n/, which is isomorphic to L.F1C.r�1/=Œ�W�n�/, by Schreier’s
and Voiculescu’s formulae ([VDN92]). Since 1C.r�1/=Œ� W�n�! 1, this justifies
the notation L.Fr;S

1
/ for the approximate free group factor L1.XS/ Ì Fr . The

factors L.F�
1
/ can be viewed as complementing the one parameter family of free

group factors L.F1Ct /; 0 < t �1, in [Dyk94], [Răd94].
As mentioned in Section 4, all L.Fr;S

1
/ have Haagerup’s compact approxi-

mation property (by [Haa79]), the complete metric approximation property (by
Theorem 2.10) and unique Cartan subalgebra, up to unitary conjugacy (by Corol-
lary 4.5). Also, by [Oza06], the commutant of any hyperfinite subfactor of L.Fr;S

1
/

must be an amenable von Neumann algebra, in particular L.Fr;S
1
/ is prime, i.e.

it cannot be written as a tensor product of two II1 factors. By [Pop06a], since
the factors L.Fr;S

1
/ have Haagerup property they cannot contain factors M which

have a diffuse subalgebra with the relative property (T). In particular, the HT-
factors considered in [Pop06a]) cannot be embedded into approximate free group
factors. Same for the factors arising from Bernoulli actions of “w-rigid” groups in
[Pop06b].

Corollary 4.5 combined with [Gab02] shows that approximate free group fac-
tors of different rank are nonisomorphic, L.Fr;S

1
/ 6'L.F

s;S
1
/, for all 2� r ¤ s �1,

and have trivial Murray-von Neumann fundamental group [MvN43] when the rank
is finite, F.L.Fs;S

1
//D f1g, for all 2� r <1. (Recall from [MvN43] that if M is

a II1 factor then its fundamental group is defined by F.M/D ft > 0 jM t 'M g.)
The first examples of factors with trivial fundamental group were constructed in
[Pop06a], were it is shown that F.L1.T2/Ì Fr/D f1g, for any finite r � 2, the
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action of Fr on T2 being inherited from the natural action SL.2;Z/Õ T2 DcZ2,
for some embedding Fr � SL.2;Z/.

One can show that amplifications of approximate free group factors are related
by the formula L.Fr;S

1
/t DL.F

r 0;S0

1
/, with r 0 D t�1.r �1/C1, whenever t�1 is an

integer dividing the index of some Œ� W �n� in the decreasing sequence of groups
SD .�n/, with S0 appropriately derived from S. It is not clear however if this is
still the case for other values of t for which t�1.r � 1/C 1 is still an integer.

Finally, note that L.Fr;S
1
/ is non� if and only if the action �ÕXS has spectral

gap. Indeed, since the acting group is Fr , any asymptotically central sequence in
L.F

r;S
1
/ D L1.XS/Ì Fr must lie in L1.XS/, so L.Fr;S

1
/ is non� if and only if

Fr ÕXS is strongly ergodic, which by [AE] is equivalent to Fr Õ XS having
spectral gap. For each 2� r �1, one can easily produce sequences of subgroups
SD .�n/ such that FrÕXS does not have spectral gap, thus giving factors L.Fr;S

1
/

with property � . On the other hand, as mentioned before, if Fr is embedded with
finite index in SL.2;Z/ (or merely embedded “co-amenably,” see [Sha99]) and
S D .�n/ is given by congruence subgroups, then Fr Õ XS has spectral gap
by Selberg’s theorem. Thus, the corresponding approximate free group factors
L.F

r;S
1
/ are non� . By Corollary 5.5 and its proof, there are uncountably many

nonisomorphic such factors L.Fr;S
1
/ for each 2 � r �1. It is an open problem

whether there exist solid factors within this class.
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