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Abstract

Let A be an abelian variety over a number field K. An identity between the
L-functions L.A=Ki ; s/ for extensions Ki of K induces a conjectural relation
between the Birch-Swinnerton-Dyer quotients. We prove these relations modulo
finiteness of X, and give an analogous statement for Selmer groups. Based on
this, we develop a method for determining the parity of various combinations of
ranks of A over extensions of K. As one of the applications, we establish the parity
conjecture for elliptic curves assuming finiteness of X.E=K.EŒ2�//Œ61� and some
restrictions on the reduction at primes above 2 and 3: the parity of the Mordell-Weil
rank of E=K agrees with the parity of the analytic rank, as determined by the root
number. We also prove the p-parity conjecture for all elliptic curves over Q and all
primes p: the parities of the p1-Selmer rank and the analytic rank agree.
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1. Introduction

The celebrated conjecture of Birch, Swinnerton-Dyer and Tate asserts that
for every elliptic curve E over a number field K, its Mordell-Weil rank coincides
with the order of vanishing of its L-function at s D 1. The parity of the latter is
determined by the root number w.E=K/D˙1, the sign in the expected functional
equation of the L-function, leading to

CONJECTURE 1.1 (Parity Conjecture). The Mordell-Weil rank rk.E=K/ is
even if and only if the root number w.E=K/ isC1.

Save for the rank 0 and 1 cases over Q, virtually nothing is known about this
problem. At best, one can only lay hands on the p1-Selmer rank rkp.E=K/ for a
prime p, that is the Mordell-Weil rank plus the number of copies of Qp=Zp in the
Tate-Shafarevich group X.E=K/. The Parity Conjecture can also be formulated
for Selmer ranks, as X is supposed to be finite by the Shafarevich-Tate conjecture:

CONJECTURE 1.2 (p-parity). rkp.E=K/ is even if and only if w.E=K/D 1.

In view of the conjectures, the definition of the root number as a product of lo-
cal terms (local root numbers) suggests that the parities of rk.E=K/ and rkp.E=K/
should be governed by local data of the elliptic curve. The purpose of the paper
is to develop a theory that provides such a “local-to-global” expression for various
combinations of ranks of E over extensions of K. The exact description of these
“computable” combinations is a curious group-theoretic problem that we have not
addressed. However, there are enough of them to enable us to prove:

THEOREM 1.3. Assuming the Shafarevich-Tate conjecture, Conjecture 1.1
holds over all number fields for elliptic curves with semistable reduction at primes
vj6 and not supersingular at vj2.

THEOREM 1.4. Conjecture 1.2 holds for all E=Q and all primes p.

Our starting point is a conjectural formula implied by Artin formalism for
L-functions and the Birch-Swinnerton-Dyer conjecture. As above, fix an ellip-
tic curve E=K (or a principally polarised abelian variety). Suppose Li ; L0j are
finite extensions of K such that the Gal. NK=K/-representations

L
i IndLi=K 1Li

and
L
j IndL0

j
=K 1L0

j
are isomorphic. ThenY

i
L.E=Li ; s/D

Y
j
L.E=L0j ; s/;

by Artin formalism. Ignoring rational squares, the conjectural expression for the
leading terms at s D 1 leads to a relation between the regulators and Tamagawa
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numbers that we will refer to as the �-Conjecture. For instance, for semistable
elliptic curves it readsY

i
Reg.E=Li /c.E=Li /�

Y
j

Reg.E=L0j /c.E=L
0
j / .mod Q�2/;

with c the product of local Tamagawa numbers. We will show that the �-Conjec-
ture follows from the Shafarevich-Tate conjecture.

The crucial observation is that the regulators need not cancel by themselves.
It turns out that their quotient can always be expressed through a combination of
Mordell-Weil ranks, whose parity is therefore determined by local data. Here is an
illustration of how this works in the simplest possible setting, semistable elliptic
curves in S3-extensions:

Example 1.5. Suppose Gal.F=K/ �D S3, and let M;L be intermediate exten-
sions of degrees 2 and 3 over K, respectively. There is a relation

.IndF=K 1F /˚ 1˚2K �D .IndM=K 1M /˚ .IndL=K 1L/˚2:

(i) For semistable E=K, the �-Conjecture implies that

Reg.E=F /Reg.E=K/2

Reg.E=M/Reg.E=L/2
�
c.E=F /c.E=K/2

c.E=M/c.E=L/2
.mod Q�2/:

(ii) The quotient of regulators is related to Mordell-Weil ranks (Example 2.18):

3rk.E=K/Crk.E=M/Crk.E=L/
�

Reg.E=F /Reg.E=K/2

Reg.E=M/Reg.E=L/2
.mod Q�2/:

Thus, assuming finiteness of X, we obtain an expression for the sum of the three
ranks rk.E=K/C rk.E=M/C rk.E=L/ in terms of local data.
(ii0) In fact, by a somewhat more sophisticated technique, we can prove an analo-
gous (unconjectural) statement about 31-Selmer ranks (Theorem 4.11):

rk3.E=K/C rk3.E=M/C rk3.E=L/� ord3
c.E=F /c.E=K/2

c.E=M/c.E=L/2
.mod 2/:

(iii) Finally, a purely local computation allows us to relate the Tamagawa numbers
to root numbers (Proposition 3.3):

w.E=K/w.E=M/w.E=L/D 1” ord3
c.E=F /c.E=K/2

c.E=M/c.E=L/2
� 0 .mod 2/;

and we obtain a special case of the parity conjecture for S3-extensions.

The layout of the paper is as follows: In Sections 2.1–2.2 we formulate the
�-Conjecture and prove it assuming finiteness of X (Conjecture 2.4, Corollary
2.5). This relies on invariance of the BSD-quotient under Weil restriction of scalars
and under isogenies. Next, we relate the quotient of regulators from the conjecture
to the parity of Mordell-Weil ranks in Section 2.3 (Theorem 2.12, Corollary 2.13),
and give examples in Section 2.4.
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Thus, we have now complete versions of steps (i) and (ii) of the above exam-
ple (principally polarised abelian varieties and arbitrary field extensions). We do
not attempt to deal with (iii) in such generality, but confine ourselves to elliptic
curves and extensions with Galois group

�
1
0
�

�

�
� GL2.Fp/. After reviewing the

classification of root numbers in Section 3.1, we relate the Tamagawa numbers to
root numbers for such extensions in Section 3.2 (Prop. 3.3). Combined with the
results of [11] on the parity conjecture for elliptic curves with a 2-isogeny, this
proves Theorem 1.3.

So far, we related parities of Mordell-Weil ranks to Tamagawa numbers as-
suming that X is finite. In Section 4 we address the problem of getting an un-
conditional statement about Selmer ranks (as in (ii0)). We prove an analogue of
the �-Conjecture (Theorem 4.3, Corollary 4.5) by tweaking Tate-Milne’s proof
of the isogeny invariance of the Birch-Swinnerton-Dyer conjecture. The quotient
of regulators is replaced by a quantity Q measuring the effect of an isogeny on
Selmer groups. In Section 4.3 we turn Q into Selmer ranks in fair generality
(Theorem 4.7, Corollary 4.8), and we illustrate it for Sn-extensions (Example 4.9),�
1
0
�

�

�
-extensions (�4.4), and dihedral extensions (�4.5). In Section 4.4 we give

an application to ranks of elliptic curves in false Tate curve towers. We end in
Section 4.6 by proving Theorem 1.4; for odd p it is a consequence of our results
for dihedral extensions and the existence of quadratic and anticyclotomic twists for
which the Birch-Swinnerton-Dyer rank formula is known to hold.1

Finally, let us mention how the applications of our theory connect to earlier
work. To our best knowledge, over number fields Theorem 1.3 is the first general
result of this kind, except for the work [7], [11] on curves with a p-isogeny. In
contrast, the p-parity conjecture over Q was known in almost all cases, thanks to
Birch, Stephens, Greenberg and Guo [3], [15], [16] (E CM), Kramer, Monsky [22],
[26] (p D 2), Nekovář [28] (p potentially ordinary or potentially multiplicative)
and Kim [18] (p supersingular). The results for Selmer groups in dihedral and
false Tate curve extensions are similar to those recently obtained by Mazur-Rubin
[23] and Coates-Fukaya-Kato-Sujatha [7], [8], respectively.

Notation. Throughout the paper K always denotes a number field. For a
place v of K we write j � jv for the normalised absolute value at v. If L=K is
a finite extension, we denote by IndL=K 1L the induction of the trivial (complex)
representation of Gal. xK=L/ to Gal. xK=K/. This is the permutation representation
corresponding to the set of K-embeddings of L into xK.

For an elliptic curve E=K we use the following notation:

1Since writing of this paper, we have extended (ii0) and (iii) to arbitrary Gal.F=K/ in [13], [12];
for (ii0) the theory is now as clean as for (ii), e.g. computations with isogenies in Sections 4.4–4.5
are replaced by elementary representation theory, as in Section 2.4.
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rk.E=K/ Mordell-Weil rank of E=K.
rkp.E=K/ p1-Selmer rank of E=K, i.e.

rk.E=K/C number of copies of Qp=Zp in X.E=K/.
w.E=Kv/ local root number of E at a place v of K.
w.E=K/ global root number, D

Q
v w.E=Kv/.

Reg.E=K/ regulator of E=K, i.e. j det j of the canonical
height pairing on a basis of E.K/=E.K/tors.

cv local Tamagawa number at a finite place v.
c.E=K/ product of the local Tamagawa numbers, D

Q
v−1 cv.

WF=K.E/ the Weil restriction of scalars of E=F to K.

Finally, we will need a slight modification of c.E=K/. Fix an invariant differential
! on E. Let !ov be Néron differentials at finite places v of K, and set

C.E=K/D
Y
v−1

cv

ˇ̌̌ !
!ov

ˇ̌̌
v

:

Note that C.E=K/ depends on the choice of !, although we have omitted this from
the notation. When writing C.E=Li / for various extensions Li=K, we always
implicitly use the same K-rational differential.

We use similar notation for abelian varieties (the analogue of an invariant
differential being a nonzero global exterior form). We write At for the dual abelian
variety.

2. �-Conjecture and regulator quotients

2.1. Artin formalism and BSD-quotients. Let K be a number field and let
A=K be an abelian variety with a fixed nonzero global exterior form !. Recall the
statement of the Birch-Swinnerton-Dyer conjecture:

CONJECTURE 2.1 (Birch-Swinnerton-Dyer, Tate [34]).

(1) The L-function L.A=K; s/ has an analytic continuation to s D 1, and

ordsD1L.A=K; s/D rk.A=K/:

(2) The Tate-Shafarevich group X.A=K/ is finite, and the leading coefficient of
L.A=K; s/ at s D 1 is

BSD.A=K/D
jX.A=K/jReg.A=K/C.A=K/
jA.K/torsjjAt .K/torsjj�K jdimA=2

Y
vj1
real

Z
A.Kv/

j!j
Y
vj1
cplx

2dimA
Z

A.Kv/

! ^ x!:

Notation. We call BSD.A=K/ the Birch-Swinnerton-Dyer quotient for A=K.
We also write BSDp.A=K/ for the same expression with X replaced by its p-pri-
mary component XŒp1�. (They are independent of the choice of ! by the product
formula.)



572 TIM DOKCHITSER and VLADIMIR DOKCHITSER

Now let Li �K and L0j �K be number fields such thatM
i

IndLi=K 1Li �D
M

j
IndL0

j
=K 1L0

j

as complex representations of Gal. xK=K/. In other words, the Gal. xK=K/-sets`
i HomK.Li ; xK/ and j̀ HomK.L0j ; xK/ give rise to isomorphic permutation rep-

resentations. By Artin formalism for L-functions,Y
i
L.A=Li ; s/D

Y
j
L.A=L0j ; s/;

so the following is a consequence of Conjecture 2.1.

CONJECTURE 2.2. With A=K and Li ; L0j as above,

(a)
P
i rk.A=Li /D

P
j rk.A=L0j /,

(b) X.A=Li /;X.A=L0j / are finite, and
Q
i BSD.A=Li /D

Q
j BSD.A=L0j /:

This is in effect a compatibility statement of the Birch-Swinnerton-Dyer con-
jecture with Artin formalism. Part (a) is easily seen to be true: let F=K be a finite
Galois extension containing Li and L0j , and let V D A.F /˝Z C. Then

rk.A=Li /D dimV Gal.F=Li / D h1Li ;ResF=Li V i D hIndF=Li 1Li ; V i

by Frobenius reciprocity, and similarly for L0j ; now, take the sum over i and j .
We now show that (b) is implied by the finiteness of X. As C. S. Dalawat,

K. Rubin and M. Shuter pointed out to us, this is essentially the same as H. Yu’s
Theorem 5 in [38].

THEOREM 2.3. Let A=K be an abelian variety, and let Li ; L0j be finite exten-
sions of K satisfying˚i IndLi=K 1Li �D j̊ IndL0

j
=K 1L0

j
. Suppose that X.A=Li /,

X.A=L0j / are finite. Then Conjecture 2.2b holds.
Furthermore, if we weaken the assumption to X.A=Li /Œp

1�;X.A=L0j /Œp
1�

being finite for some prime p, then the p-part of Conjecture 2.2b holds, i.e.Y
i

BSDp.A=Li /
.Y

j

BSDp.A=L0j /

is a rational number with trivial p-valuation.

Proof. For F=K finite, write WF=K.A/ for the Weil restriction of scalars of
A=F to K. This is an abelian variety over K of dimension ŒF WK� dimA, and
BSDp.WF=K.A//DBSDp.A=F / provided that X.A=F /Œp1� is finite ([24, �1]).

Consider

X D
Y
i

WLi=K.A/; Y D
Y
j

WL0
j
=K.A/:

Then BSDp.X/ D
Q
i BSDp.A=Li / and BSDp.Y / D

Q
j BSDp.A=L0j /. By the

invariance of the Birch-Swinnerton-Dyer quotient under isogenies ([6], [34] and
[25, Th. 7.3, Rem. 7.4]), it suffices to show that X and Y are isogenous.
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As the representations ˚i IndLi=K 1Li and j̊ IndL0
j
=K 1L0

j
are realisable

over Q and are isomorphic over C, they are isomorphic over Q (see e.g. [32, Ch. 12,
Prop. 33 and the remark following it]). So the corresponding integral permutation
modules are isogenous, in the sense that there is an inclusion of one as a finite index
submodule of the other. This induces an isogeny X!Y (see [24, �2, Prop. 6a]). �

2.2. �-Conjecture. Although Conjecture 2.2b has the advantage that it does
not involve L-functions, it still relies on the finiteness of X. Also, even when
X is finite it is hard to determine, which makes the statement difficult to work
with. However, if A is principally polarised and X is finite, then the order of
X is either a square or twice a square by the nondegeneracy of the Cassels-Tate
pairing [35]. (If A is an elliptic curve or has a principal polarisation arising from a
K-rational divisor, then the order of X is a square; see [5], [35], [30].) So we can
eliminate X from the statement by working modulo squares, which also removes
the contribution from the torsion. Moreover, in this combination of BSD-quotients,
the discriminants of fields cancel by the conductor-discriminant formula, as do the
real and complex periods, provided that one chooses the same ! over K for each
term. Thus Conjecture 2.2b implies the following (see Remark 2.7 for an extension
to abelian varieties):

CONJECTURE 2.4 (�-Conjecture). Let E=K be an elliptic curve, and fix
an invariant differential ! on E. Let Li ; L0j be finite extensions of K satisfying
˚i IndLi=K 1Li �D j̊ IndL0

j
=K 1L0

j
. ThenY

i

Reg.E=Li / C.E=Li /�
Y
j

Reg.E=L0j / C.E=L
0
j / .mod Q�2/:

COROLLARY 2.5 (of Theorem 2.3). The p-part of Conjecture 2.4 holds, pro-
vided that X.E=Li /Œp

1� and X.E=L0j /Œp
1� are finite. In other words,Y

i

Reg.E=Li / C.E=Li /
.Y

j

Reg.E=L0j / C.E=L
0
j /

is a rational number with even p-valuation.

We are going to explore the (surprisingly nontrivial) consequences of this for
parities of Mordell-Weil ranks. Here is a simple example:

Example 2.6. Take the modular curve E DX1.11/ over the fields Q, Q.�3/,
LDQ. 3

p
m/ and F DQ.�3;

3
p
m/ for m > 1 cube free. We have an equality of

Gal. NQ=Q/-representations,

.IndF=Q 1F /˚ .1Q/
˚2 �D .IndL=Q 1L/˚2˚ .IndQ.�3/=Q 1Q.�3//:

The Mordell-Weil rank of E is 0 over Q.�3/, so Reg.E=Q/ and Reg.E=Q.�3//

are both 1. The �-Conjecture implies that

Reg.E=F /
Reg.E=L/2

�
c.E=Q.�3// c.E=L/

2

c.E=F / c.E=Q/2
.mod Q�2/:
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For vj11, the local Tamagawa number cv is the valuation of the minimal discrimi-
nant (D�11) at v, because E has split multiplicative reduction at v. So, by a simple
computation, the above quotient of Tamagawa numbers is 1 when 11 − m and 3
when 11jm. On the other hand, let P1; ::; Pn be a basis for E.L/˝Q, and H the
height matrix hPi ; Pj iL, so that Reg.E=L/ is j det.H/j up to a (rational) square.
If g 2 Gal.F=Q/ is an element of order 3, then P1; ::; Pn; P

g
1 ; ::; P

g
n is a basis

for E.F /˝Q. One readily verifies that the height matrix over F is
�
2H
�H
�H
2H

�
, so

the regulator Reg.E=F / is 3nj det.H/j2 up to a square. Hence the �-Conjecture
implies that rk.E=Q. 3

p
m// is odd if and only if 11jm. (See Example 2.18 and

Corollary 2.21 for a generalisation.)

We end with a few observations:

Remark 2.7. There are obvious analogues of the �-Conjecture and Corol-
lary 2.5 for principally polarised abelian varieties. The only difference is that for
p D 2 one needs the polarisation to come from a K-rational divisor.

Remark 2.8. For elliptic curves, the local terms cv and j!=!ov jv can be ob-
tained from Tate’s algorithm, and so the conjecture gives an explicit relation be-
tween regulators. Note also that the advantage of working with regulators up to
rational squares is that one may compute the height matrix on an arbitrary Q-basis
of E.k/˝Q.

Remark 2.9. If E=K is semistable, then C.E=k/ may be replaced by just the
product of the local Tamagawa numbers c.E=k/ in Conjecture 2.2–Corollary 2.5.
Indeed, it suffices to show that above a given prime v of K, the contribution from
the differential to

Q
i C.E=Li /=

Q
j C.E=L

0
j / is trivial. But this contribution is

easily seen to be the same for every choice of a local differential wv=Kv , and it is
1 if wv is minimal (as it stays minimal in every extension).

Remark 2.10. In Theorem 2.3 and Corollary 2.5, the assumption that XŒp1�

is finite for A over all Li ; L0j follows from its finiteness over their compositum:
if A=K is an abelian variety and L=K a finite extension with X.A=L/Œp1� fi-
nite, then X.A=K/Œp1� is also finite. Indeed, the Weil restriction of scalars
WL=K.A/ after an isogeny contains A as a direct summand. Since, by assumption,
X.A=L/Œp1� �DX.WL=K.A/=K/Œp

1� is finite, so is X.A=K/Œp1�.

2.3. Regulator quotients and ranks. We now explain how to turn the regulator
quotients from the �-Conjecture into parities of Mordell-Weil ranks. If A=K is
an abelian variety and Gal.F=K/ �DG, consider the decomposition A.F /˝Z Q �D

˚�
˚nk
k

into Q-irreducible rational G-representations. We will show that for given
Li ; L

0
j � F the regulator quotient equals

Q
k C.�k/

nk for purely representation-
theoretic quantities C.�k/ (regulator constants) that do not depend on A or the
height pairing.

Let G be a finite group, and H a set of representatives of the subgroups of
G up to conjugacy. Its elements are in one-to-one correspondence with transitive
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G-sets via H 7!G=H . We call an element of ZH,

‚D
X

i
Hi �

X
j
H 0j .Hi ;H

0
j 2H/

a relation between permutation representations if ˚iCŒG=Hi � �D j̊CŒG=H 0j �. If

Gal.F=K/ �DG, then in terms of the fixed fields Li D FHi and L0j D F
H 0
j ,M

i

IndLi=K 1Li �D
M
j

IndL0
j
=K 1L0

j
:

Notation. Suppose V is a complex representation of G, given with a
G-invariant nondegenerate Hermitian inner product h; i and a basis feig. We write
deth; i or det.h; ijV / for the determinant of the matrix .hei ; ej i/ij . If V is defined
over Q, then the class of deth; i in R�=Q�2 does not depend on the choice of a
rational basis.

Definition 2.11. For each Q-irreducible rational representation � of G fix a
G-invariant real-valued symmetric positive definite inner product h; i on it, and
define the regulator constant

C.‚; �/D

Q
i det. 1

jHi j
h; ij�Hi /Q

j det. 1
jH 0
j
j
h; ij�H

0
j /
2Q�=Q�2:

It follows from the theorem below that this is independent of the choice of the inner
product. (In particular, C.‚; �/ is indeed in Q�=Q�2 rather than R�=Q�2, as we
can choose h; i to be Q-valued.)

THEOREM 2.12. For any V �D
L
k �

nk
k

with �k rational Q-irreducible repre-
sentations, Q

i det. 1
jHi j
h; ijV Hi /Q

j det. 1
jH 0
j
j
h; ijV H

0
j /
D

Y
k

C.‚; �k/
nk .mod Q�2/;

for any G-invariant real-valued symmetric positive definite inner product h; i on V .

COROLLARY 2.13. Let A=K be a principally polarised abelian variety, and
let ‚ and F=K;Li ; L0j be as above. Let f�kgk be the set of Q-irreducible rational
representations of G, and let nk be the multiplicity of �k in A.F /˝Z Q. ThenQ

i Reg.A=Li /Q
j Reg.A=L0j /

D

Y
k

C.‚; �k/
nk .mod Q�2/:

In the remainder of Section 2.3 we prove Theorem 2.12. It suffices to show
that the left-hand side is independent of the choice of an inner product.

LEMMA 2.14. Let V be a (complex) vector space and h; i
1
; h; i

2
Hermitian

inner products. Then deth; i
1
=deth; i

2
is independent of the choice of a basis of V .
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Proof. Changing the basis converts the matrix X of an inner product to
M tX NM , where M is the matrix of the basis. The assertion follows from taking
the quotient of the determinants. �

LEMMA 2.15. Let ‚D
P
i Hi �

P
j H
0
j be a relation between permutation

representations and � a complex representation. ThenX
i

dim �Hi �
X

j
dim �H

0
j D 0:

Proof. Writing h; iG for the usual inner product on the space of characters,P
dim �Hi D

P
hResHi �; 1Hi iHi D

P
h�; IndG 1Hi iG D h�;˚ IndG 1Hi iG :

There is a similar expression for H 0j and the right-hand sides of the two are the
same. �

LEMMA 2.16. Let ‚ D
P
i Hi �

P
j H
0
j be as above, and � a complex ir-

reducible representation with a Hermitian G-invariant inner product. For each
subgroup H fix a basis of �H and let MH be the matrix of the inner product on
this basis. Suppose � �D �n with some Hermitian G-invariant inner product h; i.
With respect to the bases of �H induced from those of �H by this isomorphism,Q

det. 1
jHi j
h; ij�Hi /Q

det. 1
jH 0
j
j
h; ij�H

0
j /
D

0@Q det 1
jHi j

MHiQ
det 1
jH 0
j
j
MH 0

j

1An :
In particular the expression is independent of the choice of h; i.

Proof. Since the Hermitian G-invariant inner product on � is unique up to a
scalar, the matrix of h; i on �H with respect to the induced basis is0BBB@

�11MH �12MH : : : �1nMH

�21MH �22MH : : : �2nMH
:::

:::
: : :

:::

�n1MH �n2MH : : : �nnMH

1CCCA ;
for some n�n matrix ƒD .�xy/ not depending on H . Hence

det. 1
jH j
h; ij�H /D .detƒ/dim �H .det 1

jH j
MH /

n:

The dimensions dim �H cancel in ‚ by Lemma 2.15, and the result follows. �

THEOREM 2.17. Let ‚D
P
i Hi �

P
j H
0
j be as above, and � a complex rep-

resentation of G. Suppose h; i
1
; h; i

2
are two Hermitian G-invariant inner products

on �. For each subgroup H fix a basis of �H . Then, computing with respect to
these bases, we haveQ

i det. 1
jHi j
h; i

1
j�Hi /Q

j det. 1
jH 0
j
j
h; i

1
j�H

0
j /
D

Q
i det. 1

jHi j
h; i

2
j�Hi /Q

j det. 1
jH 0
j
j
h; i

2
j�H

0
j /
:
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Proof. For each subgroup H and each isotypical component �l �D �
nl
l

of �,
choose a basis of �H

l
and induce a basis of �H

l
as in the previous lemma. ThenQ

i det. 1
jHi j
h; i

1
j�
Hi
l
/Q

j det. 1
jH 0
j
j
h; i

1
j�
H 0
j

l
/

D

Q
i det. 1

jHi j
h; i

2
j�
Hi
l
/Q

j det. 1
jH 0
j
j
h; i

2
j�
H 0
j

l
/

:

The isotypical components of � are pairwise orthogonal, so taking direct sums
gives the same formula with � in place of �l . Finally, application of Lemma 2.14
for every Hi , H 0j shows that we could take any basis of �Hi , �H

0
j instead of the

constructed one. �

As a consequence we deduce Theorem 2.12: if � is rational, and we work
up to rational squares, then we do not have to compute det. 1

jH j
h; i

1
j�H / and

det. 1
jH j
h; i

2
j�H / in the same basis.

2.4. Regulator constants: examples.

Example 2.18. The group G D S3 has 3 irreducible representations, namely 1
(trivial), " (sign) and � (2-dimensional), and its set of subgroups up to conjugacy
is H D f1; C2; C3; S3g. The submodule of ZH of relations is generated by the
following element ‚, with regulator constants

1 " �

‚D 2S3C 1� 2C2�C3 3 3 3
:

Hence, if Gal.F=K/ �D S3 and A=K is principally polarised, then

Reg.A=K/2 Reg.A=F /Reg.A=F C2/�2 Reg.A=F C3/�1 D 3n13n"3n� ��;

with n� the multiplicity of � in A.F /˝Z Q. So the parity of n1Cn"Cn� (equiva-
lently of rk.A=K/C rk.A=F C3/C rk.A=F C2/) is “computable”, that is, it can be
determined from the local invariants using the �-Conjecture; it is given by

ord3 C.A=K/2C.A=F /C.A=F C2/�2C.A=F C3/�1 mod 2:

This generalises Example 2.6.

Example 2.19. Take G D A5. Here the irreducible rational representations
are 1; �6; �4; �5 of dimensions 1; 6; 4 and 5, respectively, and the subgroups are
HD f1; C2; C3; C2�C2; C5; S3;D10; A4; A5g. The lattice of relations is generated
by 5 elements, and here are the regulator constants:

1 �6 �4 �5

‚1 D 1� 3C2C 2C2�C2 2 1 1 2

‚2 D C2�C2� 2D10�A4C 2A5 3 1 3 3

‚3 D S3�D10�A4CA5 3 1 3 3

‚4 D 1� 2C2�C5C 2D10 5 5 5 1

‚5 D C3�C5� 2A4C 2A5 15 5 15 3:
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If E=K is an elliptic curve, it follows that the “computable” combinations are
1C �5; 1C �4C �5 and 1C �6C �4. (For a general principally polarised abelian
variety only the last two are; see Remark 2.7.) For instance, from 1C�5, the parity
of rk.E=FD10/ can be determined from the local invariants.

It is interesting to note that A5 is the only group of order <120 for which there
is a computable combination of representations (1C�6C�4) where the dimensions
add up to an odd number.

Example 2.20. Let G D
�
1
0
�

�

�
� GL2.Fp/ for some fixed odd prime p. We

write Cp D
�
1
0
�

1

�
and Cp�1 D

�
1
0
0
�

�
. The group G has p � 1 one-dimensional

complex representations whose direct sum is IndG 1Cp , and one other .p�1/-
dimensional irreducible representation �, namely .IndG 1Cp�1/	 1G . There is
a relation

‚D 1� .p�1/Cp�1�CpC .p�1/G:

We have C.‚; 1/D p and for Q-irreducible rational � � .IndG 1Cp /	 1G ,

�G D �Cp�1 D 0; �1 D �Cp D �;

so that C.‚; �/D pdim� . It remains to determine C.‚; �/. We have

�G D �Cp D 0; �1 D �; dim �Cp�1 D 1:

If v 2 �Cp�1 is nonzero, then v; gv; : : : ; gp�2v is a basis for � with g D
�
1
0
1
1

�
.

Note that v C gv C : : : C gp�1v D 0 since it is in �Cp . Take the Hermitian
G-invariant inner product on � with hv; vi D 1, and let us compute the matrix
X D .hgnv; gmvi/. By G-invariance we only need hv; gmvi, but

0D hv;

p�1X
mD0

gmvi D

p�1X
mD0

hv; gmvi

and the terms on the right-hand side are equal for m¤ 0 by Cp�1-invariance. So
hv; gmvi D � 1

p�1
, and

X D

0BBBB@
1 �

1
p�1

: : : � 1
p�1

�
1
p�1

1 : : : � 1
p�1

:::
:::

: : :
:::

�
1
p�1

�
1
p�1

: : : 1

1CCCCA :
The determinant of X is pp�2

.p�1/p�1
and it follows that C.‚; �/ D p. (For p D 3

this recovers Example 2.18.)

COROLLARY 2.21. Suppose F=K is a Galois extension with Galois group�
1
0
�

�

�
� GL2.Fp/; write M for the fixed field of the commutator subgroup

�
1
0
�

1

�
and

L for the fixed field of
�
1
0
0
�

�
. For any principally polarised abelian variety A=K

with finite X.A=F /Œp1�,

rk.A=K/C rk.A=M/C rk.A=L/� ordp
C.A=F /

C.A=M/
.mod 2/:
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Proof. Decompose A.F /˝Z Q D 1n1 ˚ �n� ˚
L
i �
n�i
i into rational irre-

ducibles, with �i � .IndG 1Cp /	1G . Combining the above example with Corollary
2.13 and Corollary 2.5 (and Remark 2.7), we obtain

n1Cn�C
X

i
n�i dim �i � ordp

C.A=F /C.A=K/p�1

C.A=M/C.A=L/p�1
.mod 2/:

Finally, rk.A=K/Dn1, rk.A=M/Dn1C
P
n�i dim �i and rk.A=L/Dn1Cn�. �

3. Tamagawa numbers and root numbers for elliptic curves

3.1. Review of root numbers. We now turn to Tamagawa numbers and their
relation to root numbers, in the special case of elliptic curves. We refer to [31], [19]
for the classification of root numbers of elliptic curves in odd residue characteristic.
Incidentally, while proving Proposition 3.3 we came upon the following formula
(case (4)) for local root numbers. It summarises [19, Th. 1.1 (i), (ii) and Rems. 1.2
(ii), (iii)].

THEOREM 3.1. Let E=Kv be an elliptic curve over a local field. Then

(1) w.E=Kv/D�1 if vj1 or E has split multiplicative reduction.

(2) w.E=Kv/D 1 if E has either good or nonsplit multiplicative reduction.

(3) w.E=Kv/D .�1k / if E has additive, potentially multiplicative reduction, and
the residue field k of Kv has characteristic p � 3.

(4) w.E=Kv/ D .�1/b
ordv.�/jkj

12
c, if E has potentially good reduction, and the

residue field k of Kv has characteristic p � 5. Here � is the minimal discrim-
inant of E, and bxc is the greatest integer n� x.

Proof. The proof of (1)–(3) follows from the results of [31], [19].
(4) Since p � 5, we have ordv.�/ 2 f0; 2; 3; 4; 6; 8; 9; 10g, and it specifies

the Kodaira-Néron reduction type of E. Moreover, the class of jkj modulo 24
determines the quadratic residue symbols .�1

k
/, . 2

k
/ and . 3

k
/. Because in our case

w.E=Kv/ only depends on the reduction type, ordv.�/ and these symbols ([19,
Th. 1.1, Rem. 1.2]), this reduces the proof to a (short) finite computation. �

Remark 3.2. In cases (3) and (4) we have the following results, which are
elementary to verify:

(a) The local root number is unchanged in a totally ramified extension of degree
prime to 12, and

(b) If the residue field has square order, then w.E=Kv/D 1.

3.2. The case of
�
1
0
�

�

�
-extensions. As in Example 2.20 and Corollary 2.21,

suppose F=K has Galois group G D
�
1
0
�

�

�
� GL2.Fp/ for some odd prime p, and

let M and L be the fixed fields of
�
1
0
�

1

�
and

�
1
0
0
�

�
, respectively. Fix an elliptic curve
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E=K with an invariant differential !. For a prime v of K, and k DK;L;M;F set

Wv.k/D
Y
�jv

w.E=k�/; Cv.k/D
Y
�jv

c�

ˇ̌̌ !
!o�

ˇ̌̌
�
;

where !o� is a Néron differential for E at a prime � of k. For vj1 we define Wv.k/
by the same formula and set Cv.k/D 1.

PROPOSITION 3.3. With fields as above, let E=K be an elliptic curve with a
chosen invariant differential !, and let v be a place of K. If vj6 and ramifies in
L=K, assume that E is semistable at v. Then

ordp
Cv.F /Cv.K/

p�1

Cv.M/Cv.L/p�1
� 0 .mod 2/”Wv.K/Wv.M/Wv.L/D 1:

Proof. Clearly the left-hand side is the same as ordp.Cv.F /=Cv.M// mod 2.
Now consider the following cases depending on the behaviour of v in the (degree
p Galois) extension F=M . Note that this extension is ramified if and only if v is
ramified in L=K.

Case 1: primes above v in M split in F=M (this includes all Archimedean
places). Then Cv.F /D Cv.M/p , so Cv.F /=Cv.M/ is a square. Under the action
of the decomposition groupDv at v, theG-setsG=Gal.F=L/ and .G=Gal.F=M//`
.G=G/ are isomorphic. So the number of primes above v with a given ramifi-

cation and inertial degree is the same in L as in M plus in K. It follows that the
local root numbers cancel, Wv.L/DWv.K/Wv.M/.

Case 2: F=M is inert above v. Then v must be totally split in M=K, by the
structure of Gal.F=K/. As the number of primes above v in M is even, Cv.F /
and Cv.M/ are both squares, and Wv.M/D 1. Since in this case Lv=Kv is Galois
of odd degree, Wv.L/DWv.K/ by Kramer-Tunnell [21, proof of Prop. 3.4].

Case 3: F=M is ramified above v and E is semistable at v. The contributions
from ! cancel modulo squares, and Wv.K/DWv.L/. If E has split multiplicative
reduction over a prime of M above v, this prime contributes p to Cv.F /=Cv.M/

and �1 to the root number. If the reduction is either good or nonsplit, it contributes
to neither.

Case 4: F=M is ramified above v − 6p, and E has additive reduction at v.
Since v − p, there is no contribution from !, and v is unramified in M=K (again,
using the structure of Gal.F=K/ and the fact that totally and tamely ramified Galois
extensions of local fields are abelian). In particular, either M has an even number
of primes above v, or these primes have even residue degree. In each case Wv.M/

D 1 by Remark 3.2(b). It remains to compare Wv.K/;Wv.L/ and the Tamagawa
numbers.

Case 4a: p ¤ 3. All the Tamagawa numbers are prime to p. Also, be-
cause .p; 12/ D 1 and Lv=Kv is totally ramified, the root numbers w.E=Kv/
and w.E=Lv/ are equal by Remark 3.2(a).
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Case 4b: p D 3 and E has reduction type II; II�; I�0 ; I
�
n (resp. III; III�)

over Kv, and the reduction becomes I�0 ; I
�
n (resp. III; III�) over Lv. By in-

spection, the root numbers w.E=Kv/ and w.E=Lv/ are given by the same residue
symbol (this is also clear from [19, 1.1, 1.2]), so they cancel. Also the Tamagawa
numbers are coprime to 3 ([33, IV.9.4]).

Case 4c: p D 3 and E has reduction IV; IV � over Kv. The reduction be-
comes good over L, so that Wv.L/D 1 and Cv.F /D 1. Over Kv the root number
is 1 if and only if �3 2K�2v ([19, Rem. 1.2 (iii)]), that is if �3 �K. This in turn
is equivalent to v being split in M=K (Kv has a cubic ramified Galois extension
if and only if �3 �Kv). Equivalently, there are two primes above v in M and the
contribution from the Tamagawa numbers is a square. In the other case, M=K is
inert and Cv.M/D 3 ([33, IV.9.4, Steps 5, 8]).

Case 5: F=M is ramified above vjp, p > 3 and E has additive reduction
at v. According to Remark 3.2, w.E=Kv/D w.E=Lv/, so we need the parity of
ordp.Cv.F /=Cv.M// and Wv.M/.

Fix a place w over v in M . We can replace ! by the Néron differential of
E=M at w, as this changes Cv.F /=Cv.M/ by a number of the form �p=� (which
is a square), and the parity of its p-adic valuation remains unchanged.

Case 5a: E=Mw has semistable reduction. Our minimal model at w stays
minimal in any extension, and so there is no contribution from !. The result follows
as in Case 3.

Case 5b: E=Mw has additive reduction. The reduction stays additive over F
and, since p > 3, all the Tamagawa numbers are prime to p. If M has either even
number of primes above v or the residue fields have even degree over Fp, then
Wv.M/D 1 (by Remark 3.2) and it also follows that the contributions from ! are
squares.

Thus we may assume that Mw=Kv has even ramification degree; in particular
E has potentially good reduction at v (for otherwise it would be multiplicative
at w). We may also assume that there is an odd number of primes over v in M ,
and their residue fields are of odd degree over Fp. By Theorem 3.1 and the fact
that p2 � 1 mod 24,

w.Mw/D .�1/
b

ordv.�/jkj
12

c
D .�1/b

ordv.�/p
12

c;

and the right-hand side exactly measures the contribution from
ˇ̌
!
!oz

ˇ̌
z

for a prime
zjw of F . The result follows by taking the product over wjv. �

Now we reap the harvest:
THEOREM 3.4. Let p be an odd prime. As above, let F=K have Galois group

G D
�
1
0
�

�

�
� GL2.Fp/, and let M and L be the fixed fields of

�
1
0
�

1

�
and

�
1
0
0
�

�
,

respectively. Let E=K be an elliptic curve such that
(1) The p-primary component X.E=F /Œp1� is finite.
(2) E is semistable at primes vj6 that ramify in L=K.
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Then

rk.E=K/Crk.E=M/Crk.E=L/ is even” w.E=K/w.E=M/w.E=L/D 1:

Proof. As X.E=F /Œp1� is assumed to be finite, by Remark 2.10 the same is
true over K, M and L. We now apply the theory from Section 2 to the relation

IndF=K 1F ˚ .IndK=K 1K/˚p�1 �D IndM=K 1M ˚ .IndL=K 1L/˚p�1:

According to Corollary 2.21, the sum rk.E=K/Crk.E=M/Crk.E=L/ is congruent
to ordp C.E=F /=C.E=M/ modulo 2. By Proposition 3.3, it is even if and only ifY

v place ofK

w.E=Kv/
Y

v place of L

w.E=Lv/
Y

v place ofM

w.E=Mv/D 1: �

3.3. Application to the parity conjecture. In [11, Th. 2 ] we established the
following result:

THEOREM 3.5. Suppose that E=K is semistable at primes above p and has
a K-rational isogeny of degree p. If p D 2, assume furthermore that E is not
supersingular at primes above 2. Then

rkp.E=K/ even” w.E=K/D 1:

As an application of Theorem 3.4 to F D K.EŒ2�/ we can prove a form of
the parity conjecture (Conjecture 1.1) without the isogeny assumption:

THEOREM 3.6 (DTheorem 1.3). Let E=K be an elliptic curve. Suppose E is
semistable at primes dividing 2 and 3 and not supersingular at primes dividing 2.
If X.E=K.EŒ2�// has finite 2- and 3-primary parts, then

rk.E=K/ even” w.E=K/D 1:

Proof. Write F D K.EŒ2�/, and note that Gal.F=K/ � GL2.F2/ �D S3. By
Remark 2.10, the 2- and 3-primary parts of X.E=k/ are finite for K�k�F .

If E has a K-rational 2-torsion point, the result follows from Theorem 3.5.
If F=K is cubic, then rk.E=K/ and rk.E=F / have the same parity, and also
w.E=K/D w.E=F /, so the result again follows.

We are left with the case when Gal.F=K/ �D S3 �D
�
1
0
�

�

�
� GL2.F3/. Let M

be the quadratic extension of K in F and L one of the cubic ones. By the above
argument, we know that

rk.E=M/ even ” w.E=M/D 1;

rk.E=L/ even ” w.E=L/D 1:

On the other hand, by Theorem 3.4 with p D 3,

rk.E=K/Crk.E=M/Crk.E=L/ is even”w.E=K/w.E=M/w.E=L/D 1: �

Remark 3.7. Instead of assuming that X is finite in the theorem one may
give a statement about Selmer ranks, by replacing the use of Theorem 3.4 by
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Corollary 4.12 in the proof. When Gal.F=K/ �D S3, the parity of

rk3.E=K/C .rk3.E=M/� rk2.E=M//C .rk3.E=L/� rk2.E=L//

is given by the root number w.E=K/, unconditionally on the finiteness of X. In
all other cases it is the parity of rk2.E=K/.

We would also like to remark that if Theorem 3.5 can be extended to curves
with arbitrary reduction at vj2, and Proposition 3.3 to extensions where additive
primes vj6 are allowed to ramify, the parity conjecture for all elliptic curves over
number fields would follow from the finiteness of X.

4. Selmer groups

Hitherto our main tool was Corollary 2.5, relating regulators to Tamagawa
numbers assuming that X is finite. In Section 4.1 we extend this to an uncondi-
tional statement about Selmer ranks. We get our results (Theorem 4.3 and Corollary
4.5) by tweaking Tate-Milne’s proof of the isogeny invariance of the BSD quotient
([25, �1.7]). The quotient of regulators is replaced by a quantity Q measuring
the effect of an isogeny on Selmer groups. In Section 4.2 we review how to con-
struct isogenies between products of Weil restrictions of an abelian variety, and
in Section 4.3 address the question of turning Q into Selmer ranks (somewhat
analogous to turning regulators into Mordell-Weil ranks). This can be done in
fair generality (Theorem 4.7, Corollary 4.8), and we illustrate it for Sn-extensions
(Example 4.9),

�
1
0
�

�

�
-extensions (�4.4), and dihedral extensions (�4.5). As a final

application, in Section 4.6 we establish the p-parity conjecture for elliptic curves
over Q.

4.1. Invariance of the BSD-quotient for Selmer groups.

Definition 4.1. For an isogeny  W A! B of abelian varieties over K, let
Q. /D j coker. W A.K/=A.K/tors! B.K/=B.K/tors/j

�j ker. WX.A/div!X.B/div/j;

where Xdiv denotes the divisible part of X.

LEMMA 4.2. Q. / is finite and satisfies the following properties:

(1) Q. 0 /DQ. /Q. 0/ if  W A! B and  0 W B! C are isogenies.

(2) Q. ˚ 0/DQ. /Q. 0/ if  W A! B and  0 W A0! B 0 are isogenies.

(3) Q. /D prkp.A=K/ if  W A! A is multiplication by p.

(4) If deg is prime to p, then so is Q. /.

Proof. (2) and (3) are clear. The assertion (1) follows from the fact that
 WX.A/div!X.B/div is surjective, and  W A.K/=A.K/tors! B.K/=B.K/tors

is injective. Next, consider the conjugate isogeny  c W B ! A, so that  c is
the multiplication by deg map on A. From (1) and (3), Q. c/Q. / is finite, so
Q. / is finite. (4) also follows. �
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THEOREM 4.3. Let X; Y=K be abelian varieties given with nonzero global
exterior forms !X ; !Y . Suppose � W X ! Y is an isogeny and �t W Y t ! X t its
dual. Writing X0.X=K/ for X.X=K/ modulo its divisible part and

�X D
Y
vj1
real

Z
X.Kv/

j!X j �
Y
vj1

complex

2dimX
Z
X.Kv/

!X^!X

and similarly for Y , we have

jY.K/torsj

jX.K/torsj

jY t .K/torsj

jX t .K/torsj

C.X=K/

C.Y=K/

�X

�Y

Y
pjdeg�

jX0.X/Œp
1�j

jX0.Y /Œp1�j
D
Q.�t /

Q.�/
:

Proof. Recall that !X and !Y enter into the definition of C.X=K/ and
C.Y=K/. The left-hand side of the asserted equation is independent of the choices
of !X and !Y by the product formula, so choose !X D ��!Y . Note also that � is
an isomorphism between the p-primary parts of X0.X/ and X0.Y / for p − deg�,
so the product involving X may be taken over any sufficiently large set of primes.
(In fact, it is simply jX.X/j=jX.Y /j if both groups are finite.)

Now we follow closely Tate-Milne’s proof in [25, �1.7]. If f is a homomor-
phism of abelian groups with finite kernel and cokernel, write

z.f /D
j kerf j
j cokerf j

:

For k�K denote by �.k/ WX.k/!Y.k/ the map induced by � on k-rational points,
and similarly for �t . For a sufficiently large set of places S of K ([25, I.(7.3.1)]),Y

v2S

z.�.Kv//D
z.�.K//

z.�t .K//

jXŒ�t �j

jXŒ��j
:

Moreover, z.�.Kv// is the contribution from v to C.Y=K/=C.X=K/ for finite
places, and the quotient of the corresponding integrals for infinite places with our
choice for !X ; !Y . (Milne also relates z.�.K//=z.�t .K// to the torsion and the
regulators and, assuming finiteness of the Tate-Shafarevich groups, jXŒ�t �j=jXŒ��j

to jX.Y /j=jX.X/j. This gives the usual formula for the isogeny invariance of the
BSD-quotient.)

It remains to show that for every prime p,

ordp
z.�t .K//

z.�.K//

jXŒ��j

jXŒ�t �j
D ordp

Q.�/

Q.�t /

jY t .K/torsj

jX t .K/torsj

jY.K/torsj

jX.K/torsj

jX0.X/Œp
1�j

jX0.Y /Œp1�j
:

Take an integer N D pm large enough, so that it kills both the p-power torsion in
X.K/ and Y.K/ and the p-parts of X0.X/ and X0.Y /. Applying Lemma 4.2 (1)
and (3), we see that

Q.pm�/D pm rkp.X=K/Q.�/; Q.pm�t /D pm rkp.Y t=K/Q.�t /:
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Since X; Y and their duals all have the same p1-Selmer rank (they are all isoge-
nous), it suffices to verify the claim for  D pm�. But

ordp jXŒ �j D ordp jX0.X/j � j ker. jX.X/div/j

ordp j ker. .K//j D ordp jX.K/torsj

ordp j coker. .K//j D ordp jY.K/torsj � j coker. X.K/
X.K/tors

 
!

Y.K/
Y.K/tors

/j;

and similarly for  t . Combining these together yields the assertion. �

Remark 4.4. For � WE!E 0 a cyclic isogeny of degree p, this gives

C.E=K/

C.E 0=K/

�E

�E 0
�
Q.�t /

Q.�/
�Q.�t /Q.�/DQ.Œp�/D prkp.E=K/ .mod Q�2/;

which is a formula of Cassels (see Birch [2] or Fisher [14]).

COROLLARY 4.5. LetE=K be an elliptic curve with a chosen invariantK-diff-
erential !. Suppose Li=K;L0j =K are finite extensions such that

X D
Y
i

WLi=K.E/; Y D
Y
j

WL0
j
=K.E/

are isogenous. If � WX ! Y is an isogeny and �t its dual, thenQ
i C.E=Li /Q
j C.E=L

0
j /
�Q.�t /Q.�/ .mod Q�2/:

The same is true if E is replaced by a principally polarised abelian variety over K,
possibly up to a factor of 2 if the polarisation is not induced by a K-rational divisor.

Proof. Inducing exterior forms on WLi=K.E/ and WL0
j
=K.E/ by !, we have

�X D�Y . Moreover, X �DX t , Y �D Y t and the p-primary parts of X=Xdiv have
square order by the properties of the Cassels-Tate pairing. �

4.2. Isogenies between products of Weil restrictions. To make Corollary 4.5
explicit, recall from Milne’s [24, �2] how to construct isogenies

X D
Y

i
WLi=K.A/

�
�!

Y
j
WL0

j
=K.A/D Y

for a principally polarised abelian variety A=K. For an extension L=K write GLD
Gal. xK=L/. Suppose ˚i IndLi=K 1Li �D j̊ IndL0

j
=K 1L0

j
, and consider

MX D˚iZŒGK=GLi �; MY D j̊ZŒGK=GL0
j
�:

These are GK-modules, and satisfy MX˝Q�DMY ˝Q. In general, if M is such a
module with a given identification M �D Zn (as an abelian group), the composition

s WGK �! AutZ.M/D Aut.Zn/D GLn.Z/ �! Aut.An/

is an element of H 1.GK ;Aut xK.A
n//. It corresponds to a unique form of An

over K, that is an abelian variety over K such that An is isomorphic to it via an
isomorphism  defined over xK. (The relation between  and s is s.�/D �1 � .)
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Milne denotes this form A˝M , and with this notation X D A˝MX and Y D
A˝MY .

Next, a principal polarisation � W A! At induces one on An. So we can view
.A˝M/t as a form of An, which is seen to be the same as A˝Hom.M;Z/. If M
is a permutation module, there is a natural isomorphism M �D Hom.M;Z/, and it
induces a principal polarisation on A˝M .

Now suppose f WMX !MY is an isogeny of GK-modules (a GK-invariant
injection with finite cokernel), viewed as an n�n-matrix with integer coefficients.
Then

�f WX
 �1X
�!An

f
�!An

 Y
�!Y

is an isogeny of degree jdetf j2 dimA defined over K ([24, Prop. 6a]), with the dual
isogeny

�tf WX
t
. �1X /t

 � .An/t
f t

 �.An/t
 tY
 �Y t :

With respect to the above polarisations, f t is the transpose of f (see e.g. [10, �1.6,
esp. Lemma 3]).

To summarise: the natural identifications MX �DZn and MY
�DZn induce prin-

cipal polarisations on X and Y ; an isogeny f WMX !MY induces an isogeny �f W
X! Y of degree jdetf j2 dimA; suppressing the principal polarisations, .�f /t�f D
�f tf where f t is the transposed matrix and .�f /t is the dual isogeny. Thus, the
right-hand side in Corollary 4.5 for �f becomes Q of an explicit endomorphism
�f tf of X .

4.3. Determining Q. Fix a principally polarised abelian variety A=K and a
finite extension F=K with Galois group G.

Let f�kgk be the set of Q-irreducible rational representations of G. For � 2
f�kg we will write rkp.A; �/ for the p1-Selmer rank of A˝ƒ, where Zdim� �D

ƒ� � is any G-invariant lattice. Since the Selmer rank is the same for isogenous
abelian varieties, this is independent of the choice of the lattice. Moreover, for
K � L� F with QŒG=Gal.F=L/� �D˚�nkk ,

rkp.A=L/D
P
k nk rkp.A; �k/:

We want to express Q in terms of these Selmer ranks.

LEMMA 4.6. Let V be a rational representation of G, and f 2 AutG.V /. For
any G-invariant lattice ƒ with ƒ˝Z Q D V there is an integer m � 1 such that
mf preserves ƒ, and the quantity

Q.f / WDQ.�mf Wƒ!ƒ/=Q.�mWƒ!ƒ/ 2Q�

is independent of ƒ and m. It satisfies the following properties:

(1) Q.f 0f /DQ.f 0/Q.f / for f; f 0 2 AutG.V /.

(2) Q.f ˚f 0/DQ.f /Q.f 0/ for f 2 AutG.V /; f 0 2 AutG.V 0/.
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(3) Q.f / D
Q
k p

nk rkp.A;�k/ if f W V ! V is multiplication by p, with V D
˚k�

˚nk
k

the decomposition into rational irreducibles.

(4) Suppose f 2AutG.V / has an irreducible minimal polynomial with p-adically
integral coefficients and p − detf . Then ordpQ.f /D 0.

Proof. Independence of m follows from the (obvious) special case mjm0. Sim-
ilarly we can reduce to the case ƒ1 � ƒ2 with m1 D m2 D m. Let � W ƒ1! ƒ2
be the inclusion map, and n� 1 an integer such that nƒ2 �ƒ1. Then

n ı .�mf Wƒ2!ƒ2/D � ı .�mf Wƒ1!ƒ1/ ı .n�
�1/:

The independence of ƒ now follows from Lemma 4.2 (1).
(1)–(3) are immediate from Lemma 4.2.
(4) Let m.x/ be the minimal polynomial of f . After scaling f by an integer

coprime to p if necessary, we may assume that m.x/ has integer coefficients. Let
˛ 2 NQ be a root of m, and let KDQ.˛/. Note that ˛ is an algebraic integer, ˛ 2 OK.

Via the action of f and of G, the representation � is naturally a KŒG�-module.
Take aG-invariant full OK-latticeƒ. (It exists, since one may take any full OK-lattice,
and generate a lattice by its G-conjugates.) In particular, it is a full G-invariant
Z-lattice preserved by f , so that Q.f /DQ.�f /=Q.�id/ is an integer. By Lemma
4.2(4) it is prime to p, as p does not divide deg�f D jdetf j2 dimA. �

THEOREM 4.7. Let V �D �˚n, with � a Q-irreducible rational representation
of G, and let f 2 AutG.V /. Suppose p is a prime such that either

(1) � is irreducible as a QpŒG�-representation, or

(2) for every irreducible factor m.x/j det.f �xI / 2QŒx�, all of the roots of m.x/
in xQp have the same valuation.

Then

ordpQ.f /�
ordp detf

dim �
rkp.A; �/ mod 2:

Proof. (2) First, we can break up V as follows. Let

det.f � xI /D
Y
k

mk.x/
nk

be the factorisation into irreducibles. Then Vk D kermk.f /nk is G-invariant
because f commutes with the action of G (so that G preserves its generalised
eigenspaces). Since V D˚Vk , by Lemma 4.6 (2) it suffices to prove the statement
with V DVk and det.f �xI / a power of an irreducible polynomial m.x/.

Suppose all the roots of m.x/ in xQp have the same valuation. Write

f dimV
D pordp detf

�f 0;

so that the roots of the characteristic polynomial of f 0 in xQp are all p-adic units.
Then ordpQ.f 0/D 0 by Lemma 4.6 (4), and the claim follows by Lemma 4.6 (1)
and (3).
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(1) Fix an identification V D �˚n. As D D EndG.�/ is a skew field, we can
put f into a block-diagonal form by multiplying it on the left and on the right by
n�n matrices with values in D that are (a) permutation matrices and (b) identity
plus some element of D in .i; j /-th place (i ¤ j ). (This is just the usual Gaussian
elimination over a skew field.) All of these elementary matrices have QD 1 (they
are either of finite order or commutators) and detD˙1, so we are reduced to the
case V D �.

We claim that for V irreducible over Qp, the eigenvalues of f in xQp have
the same valuation (so (2) applies). But otherwise the minimal polynomial of f is
reducible over Qp, and we can decompose V over Qp as above, contradicting the
irreducibility. �

COROLLARY 4.8. Let K � Li ; L0j � F be finite extensions with F=K Galois
with Galois group G. Suppose there is an isogeny of ZŒG�-modules

f W
Y
i

ZŒG=Hi � �!
Y
j

ZŒG=H 0j �;

where Hi D Gal.F=Li / and H 0j D Gal.F=L0j /. Assume furthermore that on every
isotypical component �n� of

Q
i QŒG=Hi � the automorphism f tf satisfies either

(1) or (2) of Theorem 4.7. Then for every elliptic curve E=K with a chosen invari-
ant K-differential !,

ordp

Q
i C.E=Li /Q
j C.E=L

0
j /
�

X
�

ordp det
�
f tf

ˇ̌
�n�

�
dim �

rkp.E; �/ mod 2;

the sum taken over the distinct Q-irreducible rational representations of G.

Remark. This also holds for principally polarised abelian varieties for odd p,
and for p D 2 provided the polarisation is induced by a K-rational divisor.

Here are some special cases when the theorem applies:

Example 4.9. If G D Sn, then every Q-irreducible rational representation is
absolutely irreducible, so the condition (1) of Theorem 4.7 always holds. Thus the
corollary applies for every isogeny and all p.

Example 4.10. For all groups with jGj � 55, every relation of permutation
representations and every prime p, we have checked that there is always an isogeny
satisfying one of the conditions of Theorem 4.7 on every isotypical component.
In each case, the coefficient of rkp.A; �/ agrees with the regulator constant of
Section 2.3. Is this true in general?2

4.4. Example: Selmer ranks for
�
1
0
�

�

�
-extensions. As an illustration, we ex-

tend Corollary 2.21 to Selmer ranks:

2Yes, see [13] which provides an analogue of regulator constants for Selmer groups.
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THEOREM 4.11. Let p be an odd prime. Suppose F=K has Galois group
G D

�
1
0
�

�

�
� GL2.Fp/, and let M and L be the fixed fields of

�
1
0
�

1

�
and

�
1
0
0
�

�
,

respectively. For every principally polarised abelian variety A=K,

rkp.A=K/C rkp.A=L/C rkp.A=M/� ordp
C.A=F /

C.A=M/
.mod 2/:

Proof. Consider the abelian varieties

X DWL=K.A/
p�1
�WM=K.A/; Y D Ap�1 �WF=K.A/:

By Corollary 4.5, it suffices to show that

rkp.A=K/C rkp.A=L/C rkp.A=M/� ordpQ.�t�/ .mod 2/

for some isogeny � W X ! Y . Write Gal.F=M/ D hgi;Gal.F=L/ D hhi with
gp D 1D hp�1, and introduce permutation modules

ZK D ZŒG=G� D Z

ZL D ZŒG=hhi� D ˚Zgi 0� i � p� 1

ZM D ZŒG=hgi� D ˚Zhj 0� j � p� 2

ZF D ZŒG� D ˚Zgihj :

Consider

V1 D ZLx1˚ : : :˚ZLxp�1˚ZMxp;

V2 D ZKy1˚ : : :˚ZKyp�1˚ZFyp;

and take the G-invariant map f W V1! V2 determined by

x1 7! y1 C
P
j h

j yp;

xk 7! y1�yk C
P
j h

j .1�g1�k/yp .k D 2; : : : ; p� 1/;

xp 7! y1C : : :Cyp�1 �
P
ih
�1giyp:

It is easy to check that the map is well-defined. Moreover, when written as a matrix
on the chosen Z-basis of V1 and V2, it has

j detf j D .p2�pC 1/p
p.p�1/
2
�1;

which is nonzero. So f induces an isogeny �f WX ! Y (�4.2). Next, �t
f

is given
by the transposed matrix (�4.2 again), and the composition f tf by

x1 7!
P
i¤0 .g

ix1Cpxi /;

xk 7! pxkC
P
i¤0 pxi ; .k D 2; : : : ; p� 1/;

xp 7! .pC
P
j .p� 1/h

j / xp:
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(As an example, for p D 3 the maps f and f tf are

f W

0BBBBBBB@

1 1 1 1 1 1 1 1
0 0 0 -1 -1 -1 1 1
1 0 0 1 -1 0 0 -1
0 1 0 0 1 -1 0 -1
0 0 1 -1 0 1 0 -1
1 0 0 1 0 -1 -1 0
0 0 1 0 -1 1 -1 0
0 1 0 -1 1 0 -1 0

1CCCCCCCA
and f tf W

0BBBBBBB@

3 1 1 3 0 0 0 0
1 3 1 0 3 0 0 0
1 1 3 0 0 3 0 0
3 0 0 6 0 0 0 0
0 3 0 0 6 0 0 0
0 0 3 0 0 6 0 0
0 0 0 0 0 0 5 2
0 0 0 0 0 0 2 5

1CCCCCCCA
with respect to the bases fx1; gx1; g2x1; x2; gx2; g2x2; x3; hx3g of V1 and fy1; y2,
y3; gy3; g

2y3; hy3; hgy3; hg
2y3g of V2.)

Clearly f tf D ˛1˚ ˛2, with ˛1 an endomorphism of Z
p�1
L and ˛2 of ZM .

To prove the theorem it suffices to show that

ordpQ.˛1/D .p� 2/ rkp.WL=K.A/=K/;
ordpQ.˛2/D rkp.WM=K.A/=K/� rkp.A=K/:

The map ˛1 is the composition of id˚p˚ � � �˚p with an endomorphism of de-
terminant p2�pC1. Each multiplication by p on a copy of WL=K.A/ contributes
prkp.WL=K.A/=K/ to Q.˛1/, and the remaining endomorphism contributes nothing
(Lemma 4.2).

As for ˛2, consider

˛2˚ Œp� W ZMz1˚ZKz2 �! ZMz1˚ZKz2:

It is easy to check that

˛3 ı .˛2˚ Œp�/D .Œp�˚ id/ ı˛4;

with

˛3 W

�
z1! z1C

P
j h

j z1

z2! .p� 1/
P
j h

j z2
; ˛4 W

�
z1! z1Cp

P
j h

j z1C z2

z2! .p� 1/.p2�pC 1/
P
j h

j z1
:

Furthermore, det˛3 and det˛4 are prime to p, and it follows that ordpQ.˛2/ is
rkp.WM=K.A/=K/� rkp.A=K/, as asserted. �

Using the result on the local Tamagawa numbers in this extension (Proposi-
tion 3.3) we obtain the following strengthening of Theorem 3.4.

COROLLARY 4.12. Let p be an odd prime. As above, let F=K have Galois
group G D

�
1
0
�

�

�
� GL2.Fp/, and let M and L be the fixed fields of

�
1
0
�

1

�
and

�
1
0
0
�

�
,

respectively. For every elliptic curve E=K with semistable reduction at the primes
vj6 that ramify in L=K,

rkp.E=K/Crkp.E=M/Crkp.E=L/ is even, w.E=K/w.E=M/w.E=L/D 1:

This can be used to study the ranks of elliptic curves in an infinite “false Tate
curve extension” with Galois group

�
1
0
�

�

�
�GL2.Zp/. Arithmetic of elliptic curves

(ordinary at p) in such extensions has been studied in the context of noncommuta-
tive Iwasawa theory; see e.g. [17], [7], [8].
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Fix a number field K, an odd prime p, and ˛ 2K�. We are interested in the
extensions K. pn

p
˛/ and K.�pn ; p

np
˛/ of K. We will assume that their degree is

maximal possible, i.e. pn and .p� 1/p2n�1, respectively.

PROPOSITION 4.13. Let E=K be an elliptic curve for which the parity of
the p1-Selmer rank agrees with the root number over K and over K.�p/, and
semistable at all primes vj6 that ramify in K. pn

p
˛/=K. Then

rkp.E=K. p
np
˛// is even” w.E=K. p

np
˛//D 1:

Proof. For brevity, let us write Li D K. p
ip
˛/ and Fi D K.�p;

pi
p
˛/ for

i � 0. We prove the result by induction on i , by showing that if the parity of the
p1-Selmer rank agrees with the root number over Li�1 and Fi�1 then it does so
over Li and Fi (for 1� i � n).

The extension Fi=Fi�1 is Galois of odd degree, so thatw.E=Fi /Dw.E=Fi�1/.
By Corollary 4.15 below, the parity of the p1-Selmer rank is also unchanged in
this extension. The fact that the parity of the p1-Selmer rank agrees with the root
number over Li follows from Corollary 4.12 applied to the extension Fi=Li�1. �

The following is a standard result on the behaviour of Selmer groups in Galois
extensions. We give a brief proof for lack of a reference. Write Selpn and Selp1
for the pn- and p1-Selmer groups, and set

Xp.E=K/D Hom.Selp1.E=K/;Qp=Zp/˝Zp Qp:

The p1-Selmer rank of E=K is the same as the dimension of Xp.E=K/ as a
Qp-vector space.

LEMMA 4.14. Let E=K be an elliptic curve, and let F=K be a finite Galois
extension with Galois group G. Then

rkp.E=K/D dimQp Xp.E=F /
G :

Proof. The restriction map from H 1.K;EŒpn�/ to H 1.F;EŒpn�/G induces a
map Selpn.E=K/! Selpn.E=F /G whose kernel and cokernel are killed by jGj2.
Taking direct limits gives a map from Selp1.E=K/ to Selp1.E=F /G , whose
kernel and cokernel are killed by jGj2. The result follows by taking duals and
tensoring with Qp. �

A cyclic group of order p has only two Qp-irreducible p-adic representations,
the trivial one and one of dimension p� 1. Thus,

COROLLARY 4.15. The parity of the p1-Selmer rank in unchanged in cyclic
p-extensions.

Example 4.16. Let p D 3 and consider the elliptic curve

E W y2C xy D x3� x2� 2x� 1 .49A1/:

It has additive reduction of Kodaira type III at 7 and is supersingular at 3.
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For a false Tate curve extension, we take Q.�3n ;
3n
p
m/ for some cube free

m> 1. Using 3-descent for E and its quadratic twist by �3 over Q, it is easy to
see that rk.E=Q/Drk3.E=Q/D0 and rk.E=Q.�3//Drk3.E=Q.�3//D1, both in
agreement with the root numbers.

By Proposition 4.13, the 31-Selmer rank of E over Ln DK. p
np
m/ agrees

with the root number, which equals .�1/n for every m (�1 from vj7 and .�1/n�1

from vj1). Because the Selmer rank is nondecreasing in extensions (e.g. by
Lemma 4.14), the 31-Selmer rank must be at least n over Ln. In fact, using
Lemma 4.14 and the fact that IndLn=Q 1Ln 	 IndLn�1=Q 1Ln�1 is irreducible, it is
easy to see that the 31-Selmer rank over Q.�3n ;

3n
p
m/ is at least 3n.

4.5. Example: Dihedral groups. As another illustration, we consider dihedral
groups to obtain results similar to [23, e.g. Th. 8.5]. For simplicity, we will only
look at D2p with p an odd prime.

PROPOSITION 4.17. Suppose Gal.F=K/ D D2p with p an odd prime, and
pick extensions M=K and L=K in F of degree 2 and p, respectively. For every
principally polarised abelian variety A=K,

rkp.A=M/C 2
p�1

.rkp.A=L/� rkp.A=K//� ordp
C.A=F /
C.A=M/

.mod 2/:

Proof. First let G DD2n D hg; hjgn D h2 D hghg D 1i for a general n, and
write nD 2mC ı with ı 2 f0; 1g. Take the permutation modules

V1 D v1ZŒG=hg�1hi�˚ v2ZŒG=hg�2hi�˚ v3ZŒG=hgi�;

V2 D w1ZŒG=G�˚w2ZŒG=G�˚w3ZŒG�:

Consider f W V1! V2 and f tf W V1! V1 given respectively by

v1 7! .1Cg�1h/w3; v1 7! 2v1;

v2 7! w2Cg
m�2.1�g1Cı/.g�h/w3; v2 7!

�
4�2g1Cı�2g�1�ıC

n�1P
iD0

gi
�
v2;

v3 7! w1C
n�1P
iD0

gi .1� h/w3; v3 7!
�
.2nC 1/� .2n� 1/h

�
v3:

Note that f tf decomposes naturally as ˛1˚˛2˚˛3 on V1, and that ˛2 is given
on the basis fv2; gv2; : : : gn�1v2g by the matrices0BBBBBBBBBB@

5 -1 1 1 1 : : : 1 1 -1
-1 5 -1 1 1 : : : 1 1 1
1 -1 5 -1 1 : : : 1 1 1
1 1 -1 5 -1 : : : 1 1 1
1 1 1 -1 5 : : : 1 1 1
:::

:::
:::

:::
:::
: : :

:::
:::

:::
1 1 1 1 1 : : : 5 -1 1
1 1 1 1 1 : : : -1 5 -1

-1 1 1 1 1 : : : 1 -1 5

1CCCCCCCCCCA

0BBBBBBBBBB@

5 1 -1 1 1 : : : 1 -1 1
1 5 1 -1 1 : : : 1 1 -1

-1 1 5 1 -1 : : : 1 1 1
1 -1 1 5 1 : : : 1 1 1
1 1 -1 1 5 : : : 1 1 1
:::

:::
:::

:::
:::
: : :

:::
:::

:::
1 1 1 1 1 : : : 5 1 -1

-1 1 1 1 1 : : : 1 5 1
1 -1 1 1 1 : : : -1 1 5

1CCCCCCCCCCA
n�4 even n�3 odd

with det˛2 D 2n�1n3 for any n� 2.
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Now suppose that nD p is an odd prime, so that

A˝V1 DWL=K.A/
2
�WM=K.A/; A˝V2 D A

2
�WF=K.A/:

By Corollary 4.5, it suffices to show that ordpQ.�f tf / has the same parity as the
left-hand side of the formula in the proposition. Since f tf D ˛1˚ ˛2˚ ˛3, it
remains to determine ordpQ.˛i /. Clearly Q.˛1/ is prime to p. Next, ˛3 acts as
multiplication by 2 (resp. 4p) on the trivial (resp. “sign”) component of QŒG=hgi�;
so ordpQ.˛3/D rkp.A=M/� rkp.A=K/.

Finally, ˛2 on QŒG=hg�2hi� �D 1˚ � has determinant p on 1 and therefore
determinant 2p�1p2 on �. As 1; � are Qp-irreducible, Theorem 4.7 applies:

ordpQ.˛2/D rkp.A; 1/C 2
p�1

rkp.A; �/:

Since rkp.A; �/D rkp.A=L/� rkp.A=K/, this completes the proof. �

Remark 4.18. Let E=K be an elliptic curve, and for simplicity let p > 3. Then

ordp
C.E=F /

C.E=M/
� jS1jC jS2j mod 2;

where S1 (resp. S2) is the set of primes v of M that ramify in F=M where E
has split multiplicative reduction (resp. additive reduction, vjp, Mv=Qp has odd
residue degree, and bp ordv.�v/=12c is odd; �v is the minimal discriminant of E
at v). So if rkp.E=M/CjS1jC jS2j is odd, then

rkp.E=L/� rkp.E=K/C
p�1
2
:

4.6. Application to the p-Parity Conjecture over Q.

THEOREM 4.19 (DTheorem 1.4). For every elliptic curve E=Q and every
prime p,

rkp.E=Q/� ordsD1L.E; s/ mod 2:

Proof. For pD 2 this is due to Monsky [26], so suppose p is odd. (Presumably
the proof below would work for modular abelian varieties over totally real fields.)

By the results of Bump-Friedberg-Hoffstein-Murty-Murty-Waldspurger [4],
[27], [37], there is an imaginary quadratic field M0 where all bad primes of E
split, and such that the quadratic twist of E by M0 has analytic rank at most 1. By
Kolyvagin’s theorem [20], the parity conjecture holds for the twist, so it suffices to
prove it for E=M0.

Let Mn denote the n-th layer in the anticyclotomic Zp-extension of M0. The
parity of the analytic rank is the same over Mn as over M0 since the root number
is unchanged in cyclic odd-degree extensions. The same holds for the p1-Selmer
rank (Corollary 4.15), so it suffices to prove the parity statement for E=Mn for
some n.
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Embedding MnC1 in C, we see that complex conjugation acts on the cyclic
group Gal.MnC1=M0/ as �1, so that Gal.MnC1=Q/ is dihedral. Write

F DMnC1; M DMn; LDMnC1\R; K DMn\R:

Then H D Gal.F=K/ �DD2p. It has three Qp-irreducible p-adic representations:
trivial 1, sign " and .p�1/-dimensional �. As before, write Xp.E=k/ for the dual
Selmer group Hom.Selp1.E=k/;Qp=Zp/˝Zp Qp, and decompose

XD Xp.E=F / �D 1˚m1 ˚ "˚m" ˚ �˚m� :

As Xp.E=K/D XH etc. (Lemma 4.14),

rkp.E=K/Dm1 ; rkp.E=M/Dm1Cm"; rkp.E=L/Dm1C
p�1
2
m�:

Now we invoke Proposition 4.17:

rkp.E=M/Cm� � ordp
C.E=F /
C.E=M/

mod 2:

Since all bad primes of E split in M=K, the root number w.E=M/D�1 and both
C.E=F / and C.E=M/ are squares. So the right-hand side in the above formula
is zero, and it suffices to show that m� is odd.

Now take n large enough. Then Cornut-Vatsal’s [9, Th. 1.5] provides a primi-
tive character � of Gal.F=M0/ such that the twisted L-function L.E=M0; �; s/ has
a simple zero at sD 1. Their theorem requiresNE ; �M0 and p to be coprime, but as
they explain this is only necessary to invoke the Gross-Zagier-Zhang formula; this
formula has now been proved in complete generality by Yuan-Zhang-Zhang [39].

By Tian-Zhang [36], which generalises the earlier work by Bertolini-Darmon
[1], the �-component of X has multiplicity 1. So X contains exactly one copy of the
unique .p�1/pn-dimensional Qp-irreducible p-adic representation of Gal.F=Q/.
Its restriction to H is �˚p

n

, and no other representation contributes to �, so
m� D p

n is odd.
(As an alternative to the yet unavailable [39], [36], one may bypass the L-func-

tions completely by combining Cornut-Vatsal’s [9, Th. 4.2] with Nekovář’s [29, Th.
3.2]. This directly yields a � such that the �-component of X has multiplicity 1.) �

COROLLARY 4.20. For every E=Q, either the Birch-Swinnerton-Dyer rank
formula holds modulo 2 (Conjecture 1.1), or X.E=Q/ contains a copy of Q=Z.
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