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Abstract

Consider a system of N bosons in three dimensions interacting via a repulsive
short range pair potential N2V (N (x; — x;)), where x = (x1, ..., xy) denotes the
positions of the particles. Let Hy denote the Hamiltonian of the system and let
¥, be the solution to the Schrodinger equation. Suppose that the initial data
Y n,o satisfies the energy condition

(N0, HE W o) < CKNK

fork =1,2,.... We also assume that the k-particle density matrices of the initial
state are asymptotically factorized as N — oco. We prove that the k-particle density
matrices of ¥y are also asymptotically factorized and the one particle orbital
wave function solves the Gross-Pitaevskii equation, a cubic nonlinear Schrodinger
equation with the coupling constant given by the scattering length of the poten-
tial V. We also prove the same conclusion if the energy condition holds only for
k =1 but the factorization of ¥ ¢ is assumed in a stronger sense.

1. Introduction

Bose-Einstein condensation states that at a very low temperature Bose systems
with a pair interaction exhibit a collective mode, the Bose-Einstein condensate. If
one neglects the interaction and treats all bosons as independent particles, then
Bose-Einstein condensation is a simple exercise [15]. The many-body effects were
traditionally treated by the Bogoliubov approximation, which postulates that the ra-
tio between the noncondensate and the condensate is small. The coupling constant
o/8m obtained by the Bogoliubov approximation is the semiclassical approxima-
tion of the scattering length ag of the pair potential. To recover the scattering length,
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one needs to perform a higher order diagrammatic re-summation, a procedure that
yet lacks mathematical rigor for interacting systems.

Gross [12], [13] and Pitaevskii [20] proposed to model the many-body effects
by a nonlinear on-site self interaction of a complex order parameter (the “conden-
sate wave function”). The strength of the nonlinear interaction in this model is
given by the scattering length ag. The Gross-Pitaevskii (GP) equation is given by
(1.1

0€(u,u
iatut = —Au[ +0|ut|2ut = M

- 2,9, 14
s, e = [ [1vul+ S

where € is the Gross-Pitaevskii energy functional and o = 8mwag. The Gross-
Pitaevskii equation is a phenomenological mean field type equation and its validity
needs to be established from the Schrédinger equation with the Hamiltonian given
by the pair interaction.

The first rigorous result concerning the many-body effects of the Bose gas
was Dyson’s estimate of the ground state energy. Dyson [5] proved the correct
leading upper bound to the energy and a lower bound off by a factor around 10.
Dyson’s upper bound was obtained by using trial functions with short range two-
body correlations. This short scale structure is crucial for the emergence of the
scattering length and thus for the correct energy. The matching lower bound to the
leading order in the low density regime was obtained by Lieb and Yngvason [19].
Lieb and Seiringer [16] later proved that the minimizer of the Gross-Pitaevskii
energy functional correctly describes the ground state of an N -boson system in the
limit N — oo provided that the length scale of the pair potential is of order 1/N.
For a review on related results, see [17].

The experiments on the Bose-Einstein condensation were conducted by ob-
serving the dynamics of the condensate when the confining traps are removed.
Since the ground state of the system with traps will no longer be the ground state
without traps, the validity of the Gross-Pitaevskii equation for predicting the ex-
perimental outcomes asserts that the approximation of the many-body effects by a
nonlinear on-site self interaction of the order parameter applies to a certain class
of excited states and their subsequent time evolution as well.

In this paper, we shall prove that the Gross-Pitaevskii equation actually de-
scribes the dynamics of a large class of initial states. The allowed initial states
include wave functions with the characteristic short scale two-body correlation
structure of the ground state and also wave functions of product form. Notice
that product wave functions do not have this characteristic short scale structure,
nevertheless the GP evolution equation applies to them. It should be noted that our
theorems concern only the evolution of the one particle density matrix but not its
energy. In fact, for product initial states, the GP theory is correct on the level of
density matrix, but not on the level of the energy. We shall discuss this surprising
fact in more details in Section 3.
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2. The main results

Recall that the Gross-Pitaevskii energy functional correctly describes the en-
ergy in the large N limit provided that the scattering length is of order 1/N [18].
We thus choose the interaction potential to be

Vn(x):=N2V (Nx) = % N3V (Nx).

This potential can also be viewed as an approximate delta function on scale 1/ N
with a prefactor 1/N which we will interpret as the mean field average. The Hamil-
tonian of the Bose system is given by

N N
2.1) Hy:==Y Aj+Y Vn(xj—xx). VN(x):=N>V(Nx).
j=1 j<k

The support of the initial state will not be scaled with N. Thus the density of the
system is N and the typical inter-particle distance is N —1/3_ which is much bigger
than the length scale of the potential. The system is really a dilute gas scaled in
such a way that the size of the total system is independent of N.

The dynamics of the system is governed by the Schrédinger equation

(2.2) 10:Yny = HNYn,

for the wave function Yy, € L2(R3¥), the subspace of L2(R3") consisting of
all functions symmetric with respect to any permutation of the N particles. We
choose ¥, to have L2-norm equal to one, ||y || = 1.

Instead of describing the system through the wave function, we can describe
it by a density matrix yy € $! (L?([F\PN)), where £1(L2 (R3N)) denotes the space
of trace class operators on the Hilbert space L2 (R3N). A density matrix is a non-
negative trace class operator with trace equal to one. For the pure state described
by the wave function V¥, the density matrix ynx = |¥n ) {(¥n| is the orthogonal
projection onto ¥ . The time evolution of a density matrix yy is determined by
the Heisenberg equation

(2.3) i0ryN: = [HN, YN,

where [A, B] = AB — BA is the commutator.
Introduce the shorthand notation

X:=(X1,X2,.... XN)»  Xg:=(X1,...,Xk)s XN—k = (Xkg1.--00XN)

and similarly for the primed variables, X := (x{,...,x;). Fork =1,..., N, the
k-particle reduced density matrix (or k-particle marginal) associated with yy ; is
the nonnegative operator in $1(L?2 (R3%)) defined by taking the partial trace of
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YN,: over N —k variables. In other words, the kernel of )/1(@ is given by

k
(2.4) )/](\72 (Xg:Xp) 1= /dXN—kVN,t (Xk XNk X} XN —k) -
Our normalization implies that Tr ygcz =1forallk=1,..., N and for every ¢ € R.
We now define a topology on the density matrices. We denote by 55}( =
(L2 (R3))) the space of trace class operators acting on the Hilbert space L2(R3%).

Moreover, % = H(L2(R3})) will denote the space of compact operators acting

on L2(R3*) equipped with the operator norm, | - [|s, := || - |l Since &£} =%}, we

can define the weak* topology on $!(L2(R3*)), i.e., w, — o if and only if for
every compact operator J on L2(R3*) we have

(2.5) Iim TrJw, =TrJw.

n—-oo

Throughout the paper we will assume that the unscaled interaction potential,
V(x), is a nonnegative, smooth, spherically symmetric function with a compact
support in the ball of radius R,

(2.6) suppV C {x e R® : |x| < R}.

With the notation r = |x|, we will sometimes write V(r) for V(x). We define the
following dimensionless quantity to measure the strength of V

(2.7) p:=supr2V(r)+ / drrV(r) .
0

r=>0

Let f be the zero energy scattering solution associated with V' with normal-
ization lim| x| f(x) = 1. We will write f(x) =1 —wg(x). By definition, this
function satisfies the equation

1
2.8) [—A+E V() |- wox) =0,
and lim| | o, wo(x) = 0. The scattering length ag of V' is defined by

2.9) ag:= lim wo(x)|x]|.
|[x|—>00

Since V' has a compact support (2.6), we have

(2.10) f(x)=1—|‘;—°| x| > R.

From the zero energy equation, we also have the identity

(2.11) /dx V(x)(1 —wo(x)) =8may .
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By scaling, the scattering length of the potential Vi (x) is a := ao/N and the zero
energy scattering equation for the potential Vy is given by

(2.12) (—A + %VN(X)) 1-w(x))=0

where w(x) := wo(Nx). Note that w(x) = a/|x|, for [x| > R/N.
We can now state our main theorems.

THEOREM 2.1. Suppose V > 0 is a smooth, compactly supported, spherically
symmetric potential with scattering length ag and assume that p (defined in (2.7)) is
small enough. We consider a family of systems described by initial wave functions
N € L2(R3N) such that

(2.13) (v, H ) < CENF

for all k > 1. We assume that the marginal densities associated with W factorize
in the limit N — 00, i.e., there is a function ¢ € L*>(R3) such that for every k > 1,

k
(2.14) v s o) (0| ®F

as N — oo with respect to the weak* topology of £ (L2(R3¥)). Then o H'(RY),
and for every fixed k > 1 and t € R, we have

k
(2.15) v = loe) (90| ®F

with respect to the same topology. Here ¢; € H'(R?) is the solution of the nonlin-
ear Gross-Pitaevskii equation

(2.16) 1010 = —Ag; + 8maolp: *¢;
with initial condition @;=o = .

Using an approximation argument, we can relax the energy condition (2.13),
and only assume that (Y5, Hy ¥ n) < CN. However, in order to apply our approx-
imation argument, we need to assume stronger asymptotic factorization properties
on Yy.

THEOREM 2.2. Suppose V > 0 is a smooth, compactly supported, spherically
symmetric potential with scattering length ag and assume that p (defined in (2.7)) is

small enough. We consider a family of systems described by initial wave functions
vy € L2 (R3N) such that

(2.17) (Yn, HNYUN) <CN .

We assume asymptotic factorization of W in the sense that there exists ¢ € L?(R3?)
and, for every N, and every 1 <k < N, there exists a SI(VN_k) € L2(R3WN=R)) with
1EY ) = 1 such that

(2.18) Iy —9®* @& ) >0
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as N — oo. This implies, in particular, that for every k > 1,
k
(2.19) vy = lo) (el ®*

as N — 0o with respect to the weak* topology of £ (L2(R3¥)). Then ¢ HI(RY),
and for every fixed k > 1 and t € R we have

(2.20) v = loe) (00| ®F

with respect to the same topology. Here ¢, € H'(R?) is the solution of the nonlin-
ear Gross-Pitaevskii equation

(2.21) 19:9r = —Ag; +8raolg:*¢r
with ¢r=0 = ¢.
Both theorems have analogous versions for initial data describing mixed states

(that is Y 1s not an orthogonal projection). For example, suppose that yy is a
family of density matrices satisfying

(2.22) Tr HE yy < CENF and  y) — 0 ®F

where wq is a one-particle density matrix and

k
k(v . :
D xpixp) =[] wolxj: x)).

j=1
Then for every t € R and k > 1 we have
k
(2.23) vy, — 0Pk
where w; is the solution of the nonlinear Hartree equation
2.24)  id;ws =[—A+8mapor, wy] , 0:(x) =wr(x;x), wr=0 = wp.

The last equation is equivalent to (2.16) if w; = |@;) (@:].
Lieb and Seiringer [16] have proved that, for pure states, the assumption

(1) — o) o] as N - oo

implies automatically (2.14) for every k > 1 (see the argument after Theorem 1 in
that paper)!. For mixed initial states we still need the second condition in (2.22)
for all £ > 1 in order to prove (2.23).

We also remark that the weak convergence in (2.20) implies convergence with
respect to the trace norm

(k)

YN — @) e

|®k -0 as N — oo

for every fixed k € N and ¢ € R. In fact, testing (2.20) against the compact ob-
servable J %) = |p;) (¢;|®¥, and using the fact that ()/(k))2 < )/1(\8, it is simple to

I'We thank Robert Seiringer for pointing out this result to us.
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see that yl(\fz — |@:){0:|®* as N — oo with respect to the Hilbert-Schmidt norm
topology. This of course implies convergence in the operator norm. Since the trace
norm of VJ(\Q equals one for every N, we thus obtain convergence in the trace norm
topology by the Griimm’s Convergence Theorem (see [22, Th. 2.19]). We would
like to thank Alessandro Michelangeli for pointing out this argument to us.

Now we comment on the assumption of asymptotic factorization (2.18) for
the initial data vy . The most natural example that satisfies this condition is the
factorized wave function ¥y (X) = ]_[jy:l @(x;). If, additionally, ¢ € H'(R3), then
(2.17) is also satisfied by the Schwarz and Sobolev inequalities. The evolution of
¥ is therefore governed by the GP equation according to Theorem 2.2. This is,
however, somewhat surprising because the emergence of the scattering length in
the GP equation indicates that the wave function has a characteristic short scale
correlation structure, which is clearly absent in the factorized initial data. We shall
discuss this issue in more detail in Section 3.

From the physical point of view, however, the product initial wave function is
not the most relevant one. In real physical experiments, the initial state is prepared
by cooling down a trapped Bose gas at extremely low temperatures. This state can

be modeled by the ground state w;{,ap of the Hamiltonian

N N
HYP =" (=Aj + Vea(x)) + Y Viv(xi — x))
j=1 i<

with a trapping potential Vex(x) — 00 as [x| — oo. In Appendix C, we prove that
assumptions (2.17) and (2.18) are satisfied for w;{,ap. In other words, Theorem 2.2
can be used to describe the evolution of the ground state of H VP after the traps
are removed (see Corollary C.1). This provides a mathematically rigorous analysis
of recent experiments in condensed matter physics, where the evolution of initially
trapped Bose-Einstein condensates is observed.

In Appendix B, we show that Theorem 2.2 can also be applied to a general
class of initial data, which are in some sense close to the ground state of the Hamil-
tonian H]t\r,ap. The ground state of a dilute Bose system with interaction potential

Vi is believed to be very close to the form
(2.25) Wy (x) =[] F(N(xi —x))),
i<j

where f = 1 —wy is the zero-energy solution (2.8). We remark that Dyson [5]
used a different function which was not symmetric, but the short distance behavior
was the same as in Wy . An example of a family of initial wave functions which
have local structure given by W is given by wave functions of the type

N
(2.26) Yv ) =Wy [] o))

Jj=1
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where ¢ € H!(R3). Due to the factor Wy, this function carries the characteristic
short scale structure of the ground state. We will prove in Lemma B.1 that wave
functions of the form (2.26) (with correlations cutoff at length scales £ > N~1)
satisfy the assumptions (2.17) and (2.18).

Part of Theorem 2.2 was proved in [8] for systems with the pair interaction cut
off whenever three or more particles are much closer to each other than the mean
particle distance, N —1/3_ For this model, it was proved that any limiting point
of yj(\ic) satisfies the infinite BBGKY hierarchy (see §3) with coupling constant
8mag. The uniqueness of the solution to the hierarchy was established in [9]. In
the current paper we remove this cutoff and establish the a priori bounds needed
for the uniqueness theorem in [9].

The Hamiltonian (2.1) is a special case of the Hamiltonian

N 1 N

2.27 Hgnyi=—Y Aj+—Y NBVINP(xi —x;
(2.27) BN J;ﬂrN; (NP (xi = x7)
introduced in [6] and [9]. In [9] we have proved a version of Theorem 2.2 for 0 <
B < 1/2 provided the initial data is given by a product state ¥y (x) = ]_[5-;1 o(x;))
for some ¢ € H'(R3). In this case the limiting macroscopic equation was given
by

0191 = —Ag; + bolg: o1 .

with by = [ dx V(x). Note that N 3BY(NPx)isan approximate delta function on a
scale much bigger than O(1/N), the scattering length of % V. This explains why
the strength of the on-site potential is given by the semiclassical approximation b
of the 8ag. With the techniques used in this paper, it is straightforward to extend
the result of [9] to all B < 1 with the same coefficient bg in the limiting one-body
equation provided that p (from (2.7)) is small enough. Combining this comment
with Theorems 2.1 and 2.2, we have shown that the one particle density matrix for
the N-body Schrodinger equation with Hamiltonian given by (2.27) converges to
the Gross-Pitaevskii equation with coupling constant given by

bo, if0<pB <1
(2.28) o= )
8mayp, if =1.

The case § = 0 is the mean-field case and the limiting one-body equation is
the Hartree equation:

(2.29) 10100 = =A@+ (V * |0 Py -

This was established by Hepp [14] for smooth potential. Ginibre and Velo [11]
considered singular potentials but with a specific initial data based on second
quantized formalism. Spohn [23] introduced a new approach to this problem using
the BBGKY hierarchy. Recent progresses on mean-field limit of quantum dynam-
ics have been based on the BBGKY hierarchy and we mention only a few: the
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Coulomb potential case [3], [10], the pseudo-relativistic Hamiltonian with Newto-
nian interaction [7], and the delta function interaction in one dimension by Adami,
Bardos, Golse and Teta [1] [2]. In next section, we review the BBGKY hierarchy
and the two-scale nature of the eigenfunctions of interacting Bose systems.

3. The BBGKY hierarchy

The time evolution of the density matrices )/1(52 fork =1,..., N, is given
by a hierarchy of N equations, commonly known as the BBGKY hierarchy:

3.1 lat)/(k) i[ Aj, y}@]%—Z[VN(XJ Xi), V(k)]

j=1 i<j

+ (N - k)ZTrk+1 [V s =) 75
j=1

fork =1,..., N (we use the convention that y(k) =0if k > N). Here Trr4,
denotes the partlal trace over the (k + 1)-th particle. Tn particular, the density matrix

Vz(vl ), (x1: x}) satisfies the equation

(3.2) latVN (Xl’xl)—( Ax, + Ay )VNt(xl,x1)
+(N—1)[dx2 VN(xl—xz)—VN(xl—XZ))V (Xl X2 X7, X2).

(2) (1)

To close this equation, one needs to assume some relation between y,, and yy

The simplest assumption would be the factorization property, i.e.,

(3.3) )/N,(xl Xz,xl,xz)_V (Xl,xl)l/ (Xz;xé)-

(k) (k)

This does not hold for finite N, but it may hold for a limit point y,~ of YNy s

N — o0, ie.,
(3.4) 72 Gen, x; x4, x5) = v sy (s ).
Under this assumption, y( )
(3.5)

9 (1 _ A Ay 1) . ’ @,
10y, (x1:x7) = (—Ax, + )Vt (x1:x7) + (Qt(xl) Qt(xl)) Ye (x1:x7)

where

36 0= Jim N [ane-ne0) e =y .

satisfies the limiting equation

If 0;(x) is continuous, then Q; is given by

Q1 (x) = boos(x).
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Thus (3.5) gives the GP equation with a coupling constant o0 = bg instead of o =
8magp. This explains the case if § < 1. For 8 = 1, we note that by /87 is the first
Born approximation to the scattering length ag and the following inequality holds:

be 1 1
3.7 <2 _ " | lym)dx.
3.7 40 = g0 T g Ja 2 VA

Recall that the ground state of a dilute Bose system with interaction potential Vy
is believed to be very close to W(x) (see (2.25)). We assume, for the moment, that
the ansatz, V;(x) = W(x)¢;(x) with ¢; a product function, holds for all time. The
reduced density matrices for v, (x) satisfy

(3.8)

y P (1, x2: x4, x5) ~ FIN(Ge1 —x2)) FIN (G = x5) 70 ens Xy (xas )

Together with (2.11) and the assumption that o; is smooth on scale 1/N, we have
(3.9)

fim N / dx2Vy (x1 _XZ)VJ(VZ,)t(xhx2;x/l’x2) = 8maoy;" (x1:x))es (x1).

This formula is valid for [x; —x}| > 1/N. We have used that limjy|_, o f(x) = 1.
For pure states, this gives the GP equation with the correct dependence on the
scattering length.

Notice that the correlation in )/(2) occurs at the scale 1/N, which vanishes in
a weak limit and the product relation (3.4) will hold. However, this short distance
correlation shows up in the GP equation due to the singular potential N Vi (x1 —x>2).
This phenomena occurs for the ground state as proved in [18]. Our task is to
characterize wave functions with this short scale structure and establish it for the
time evolved states. The key observation is the following proposition. Recall the
assumptions on V' from Section 2 and that 1 —w(x) denotes the zero energy solution
to —A + %VN (2.12). We will use the short notation w;; := w(x; —x;), Vw;; =
(Vw)(x; —x;) (note that Vw;; = —Vwj;).

PROPOSITION 3.1 (H]%, -energy estimate). Suppose that p (defined in (2.7)) is
small enough. Then, there exists a universal constant ¢ > 0 such that, for every
v e L%(RN), and for every fixed indicesi # j,i,j =1,..., N, we have

(3.10) (. H30) = (1—cp)N(N — 1) / (1=wij)? ViV gy 2

where ¢;j defined by ¥ = (1 —w;;)¢ij.

If ¢;; is singular when x; approaches x;, then V; V; ¢;; cannot be L?-integrable.
This proposition thus shows that the short distance behavior of any function ¥ with
(v, H]%IW) < CN? is given by (1 —w(x; —x;)) when x; is near x;.

We emphasized the importance of the local structure (1 —w(x; — x;)) for ob-
taining the scattering length ag. While Theorem 2.2 concerns only the one particle
density matrix in the weak limit and no statement on the local structure is made
at all, the validity of the GP equation does suggest the existence of this structure.
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For the initial data (2.26) beginning with this local structure, it simply means its
preservation by the dynamics. This is indeed the case if the local structure of the
initial data ¥ is precise enough so that (i, H]%,w) < CN?Z; see Proposition 3.1.

For the product initial state, there is no such structure to begin with. Theo-
rem 2.2 thus indicates that on some short length scale a local structure similar to
(I —w(x; —x;)) forms in a very short time which approaches zero in the limit
N — oo. Heuristically, notice that the two particle dynamics is described by the
operator

i0; — Ay, — Ay, — VN (x1 —x2) = N2 [id7 — Ax, — Ax, — V(X1 — X>2)]

where X; = Nx; and T = N2t are the microscopic coordinates. The small positive
time behavior of the original wave function on the short length scale is the same as
the long time behavior in the microscopic coordinates. Clearly, we expect the long
time dynamics to be characterized by the relaxation to the zero energy solution.
This picture, however, is far from rigorous as the true N-body dynamics develops
higher order correlations as well.

On the other hand, the local structure (1 —w(x; — x;)) cannot be the only
singular piece of the wave function in positive time for product initial states. A
simple calculation shows that the energy per particle of a product initial state

Y () =12 ¢(x;) is given by

GAD)  lim N"'(yy. Hyyy) = [ dx Voo + 2 / dx ool
N—oo R3 2 Jpo

where by = f V. This is different from the GP energy functional (1.1) due to
the coupling constant. Since the energy is a constant of the motion, this implies
that the GP theory does not predict the evolution of the energy. If we grant that
the local structure (1 — w(x; — x;)) does form for positive time ¢ > 0, then the
discrepancy in energy suggests that there is some energy on intermediate length
scales of order N™%, 0 < @ < 1 which is not captured by the GP theory. This
excess energy apparently does not participate in the evolution of the density matrix
on length scale of order one which is the only scale that is visible by our weak
limit. We do not know if such a picture can be established rigorously.

Notation. We will denote an arbitrary constant by C. In general C can depend
on the choice of the unscaled potential V. Universal constants, independent of
V, will be denoted by c¢. We write f(N) = o(N%) if there is § > 0 such that
N—ats f(N) = 0 as N — oo (unless stated otherwise, this convergence does
not need to be uniform in the other relevant parameters). We also write f(N) <
g(N)if f(N)/g(N)=o0(1). Integrations without specified domains are always
understood on the whole space (R3, R3 or R3V according to the integrand) with
the Lebesgue measure.
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4. Proof of Theorems 2.1 and 2.2

In this section we present the main steps of the proofs and we reduce the
argument to a sequence of key theorems and propositions. These will be proven in
the rest of the paper.

We start with defining the space of density matrices that depend continuously
on the time parameter with respect to the weak* topology. To use the Arzela-Ascoli
compactness argument, we will need to establish the concept of uniform continuity
in this space, thus we have to metrize the weak™* topology.

Since K is separable, we can fix a dense countable subset of the unit ball of
Hy: we denote it by {Jl.(k)}izl € Ky, with ||Jl~(k)||37{k <1 forall i > 1. Using the
operators Ji(k) we define the following metric on Si}c: for )/(k), )7(") € Si}c we set

o0
(4.1) mer®. 7% =327 T s (y® - 7@
i=1

Then the topology induced by the metric 1y and the weak* topology are equivalent
on the unit ball of EB}C (see [21, Th. 3.16]) and hence on any ball of finite radius
as well. In other words, a uniformly bounded sequence y](éc) € 55}( converges to
y® e SZ}C with respect to the weak™* topology, if and only if 7 (yj(f), y®) =0 as
N — 0.

Forafixed T > 0, let C([0, T, 5!3,1() be the space of functions of ¢ € [0, T'] with
values in 3}( which are continuous with respect to the metric ng. On C([0, T'], SE}C)
we define the metric

(4.2) (PO, 70 ) = up ey ® @), 7% @)).
t€lo,

Finally, we denote by pa the topology on the space Py~ C([0, T1, 5[3,1{) given
by the product of the topologies generated by the metrics 7 on C([0, T1], 52,16).

Proof of Theorem 2.1. The proof is divided in several steps.

Step 1. Compactness of 'y = {Vj(\f,z}kzl- We set T > 0 and work on the
interval ¢ € [0, T]. Negative times can be handled analogously. We will prove in
Theorem 6.1 that the sequence 1"](@ ={ )/](@ Jk=1 € D=1 C([0,T], 58,16) is compact
with respect to the product topology 704 defined above (we use the convention that

)/](\fg = 0if k > N). Moreover, we also prove in Theorem 6.1, that any limit point

Fooyr = {Vé];,)t}kzl € @kzl C([o, T, ££,1€) is such that, for every k > 1, yf,’;}, >0,

and yg?t is symmetric with respect to permutations. In Proposition 6.3 we also

show that

4.3) TT(I_AI)---(I_Ak)Vgg,)tSCk
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for every ¢ € [0, T'] and every k > 1. Note that, for finite N, the densities )/1(@ do not
satisfy estimates such as (4.3) (at least not uniformly in N'), because they contain
a short scale structure. Only after taking the weak limit, we can prove (4.3).

Step 2. Convergence to the infinite hierarchy. In Theorem 7.1 we prove that
.. . k k
any limit point Too,r = {3 }k=1 € Bpay C0. T £L) of Ty = {yjy Nkz1
with respect to the product topology Tproq is a solution of the infinite hierarchy of
integral equations (k =1,2,...)
4.4)

k o

k k .

Véo,)t = Ou(k)(t)yéo,)o—ﬁgmao Z/O ds OU,(k)(t—s)TrkJrl [S(Xj — Xk+1)s yé’éjl)]
j=1

(k)

0.0 = |®) (¢|®*. Here Try 41 denotes the partial trace over the

with initial data y
(k + 1)-th particle, and W& (¢) is the free evolution, whose action on k-particle

density matrices is given by
U (1)) ®) = it Xjmi A () =it Tj A

Note that (4.4) is the (formal) limit of the N -particle BBGKY hierarchy (3.1) (writ-
ten in integral form) if we replace the limit of N Vi (x) with 8ragd(x) (see (3.9)).

The one-particle wave function ¢ was introduced in (2.14). From (2.13) and
the positivity of the potential we note that

(4.5) CN > (Yn,(Hy +N)yn) = NTr(1—A) y.

Since by (2.14), )/1(\,1) — @) {p| as N — oo, with respect to the weak * topology of
L1(L%(R3)), it follows from (4.5) that Tr (1 — A)|¢){¢| < C, and therefore that
0 e H'(R?).

We remark here that the family of factorized densities,

k
(4.6) v = |0 (01| BF.

is a solution of the infinite hierarchy (4.4) if ¢; is the solution of the nonlin-
ear Gross-Pitaevskii equation (2.16) with initial data ¢;—¢9 = ¢. The nonlinear
Schrodinger equation (2.16) is well posed in H'(R3?) and it conserves the en-
ergy, ¢(¢) := %f |Vo|? + 4mag [ |p|*. From ¢ € H!(R3), we thus obtain that
¢: € HY(R?) for every ¢ € R, with a uniformly bounded H !-norm. Therefore

4.7) Tr (1= A1) ... (1= Ap)loe) (0 |BF < Nlgellh, < CF

for all ¢ € R, and a constant C only depending on the H '-norm of ¢.

Step 3. Uniqueness of the solution to the infinite hierarchy. In Section 9 of [9]
we proved the following theorem, which states the uniqueness of solution to the infi-
nite hierarchy (4.4) in the space of densities satisfying the a priori bound (4.3). The
proof of this theorem is based on a diagrammatic expansion of the solution of (4.4).
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THEOREM 4.1 ([9, Th. 9.1]). Suppose T = {y® o1 € Py~ L4 is such
that

(4.8) Tr(1—A1)...(1=Ap)y® < k.

Then, for any fixed T > 0, there exists at most one solution I'y = {)/t(k)}kzl €
@Br=1 C(0.T1. %;) of (4.4) such that

(4.9) Tr(1—Ay)...(1— Ay < c*
forallt €0, T] and for all k > 1.

Step 4. Conclusion of the proof. From Steps 2 and 3 it follows that the se-
quence I'y ; = {Vj(\iiz}kzl € Dr>1 C(0,T], (SB}C) is convergent with respect to the
product topology Tprd; in fact a compact sequence with only one limit point is
always convergent. Since the family of densities I'; = {y,(k)}kzl defined in (4.6)
satisfies (4.7) and it is a solution of (4.4), it follows that I'y ; — I'; with respect
to the topology 7pr0q. The estimates are uniform in ¢ € [0, T'], thus we can also
conclude that 7 ()/](\2, y,(k)) — 0. In particular this implies that, for every fixed

k>1,andt €[0,T], )/](@ — yt(k) with respect to the weak™* topology of 55}{. This

completes the proof of Theorem 2.1. O

Next we prove Theorem 2.2; to this end we regularize the initial wave function,
and then we apply the same arguments as in the proof of Theorem 2.1.

Proof of Theorem 2.2. Fix k > 0 and y € C§°(R), with 0 < y <1, x(s) =1,
for 0 <s <1, and y(s) = 0if s > 2. We define the regularized initial wave function

> _ XwHN/N)YN
N xcHy I NYYN

and we denote by JNJ the solution of the Schrodinger equation (2.2) with initial
data ¥ . Denote by fN,t = {)7](\563 }7—, the family of marginal densities associated

with JN,,. By convention, we set )71(\561)‘ :=0if k > N. The tilde in the notation

indicates the dependence on the cutoff parameter «. In Proposition 8.1, part i), we
prove that

(4.10) (Ung HSUn ) < CENK

if k > 0 is sufficiently small (the constant C depends on «). Moreover, using the
strong asymptotic factorization assumption (2.18), we prove in part iii) of Proposi-
tion 8.1 that for every J®) e 9,

(“.11) Tr I ® (7 = 1)l ®F) > 0

as N — oco. From (4.10) and (4.11), we observe that the assumptions (2.13) and
(2.14) of Theorem 2.1 are satisfied by the regularized wave function 1 and by the
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regularized marginal densities )/( ) . Therefore, applying Theorem 2.1, we obtain
that, for every t € R and k > 1,

(4.12) T = loe) (92| ®F

where ¢; is the solution of (2.16).
It remains to prove that the densities y( ) associated with the original wave
function ¥y, (without cutoff k) converge and have the same limit as the regular-

ized densities yj(\,) This follows from Proposition 8.1, part ii), where we prove
that

1Wn: =Nl = l¥n —onll < Ckl/2,

where the constant C is independent of N and x. This implies that, for every
J®) ¢ K, we have

(4.13) T s ® (i) - 740) | = cx2

where the constant C depends on J (k), but is independent of N, k or k. Therefore,
for fixedk > 1,1 e R, J®) ¢ Iy, we have

k k ~(k
@14y I D (v ~len) (i ®F) | < [T 0P (v§) - 74)
k
+ [T ® (78~ lpo er ) |

k
<Ck'?4 ‘TrJ(k) (75 - |§0t)((/’t|®k)"

Since k > 0 was arbitrary, it follows from (4.12) that the left-hand side of (4.14)
converges to zero as N — oco. This completes the proof of Theorem 2.2. O

5. Energy estimates

In this section we prove two energy estimates that are the most important new
tools used in the proof of the main theorem. Both estimates concern the smoothness
of the solution ¥y (x) of the Schrodinger equation (2.2), uniformly in N (for N
large enough) and in # € R. However, due to the short scale structure of the inter-
action, Vj, uniform smoothness, say in the x; variable, cannot be expected near
the collision points |x; —x;| ~1/N, j =2,3,..., N. The key observation is that
X1 — ¥, (x) will nevertheless be smooth away from these regimes, whose total
volume is negligible. For technical reasons, the excluded regime will be somewhat
larger, |x1 —x;| > £, but still with N 03 < 1. The same statement holds for the
smoothness in an arbitrary but fixed number of variables, x1, ..., xg. This is the
content of our second energy estimate Proposition 5.3.

Our first energy estimate, Proposition 3.1, controls only two derivatives, but it
is more refined: it establishes smoothness of ¥ ;(x) in the x; and x; variables (for
any fixed pair i, j) after removing the explicit short scale factor (1 —w(x; —x;)).
This factor represents the short scale effect of the two body interaction Vi (x; —x;)
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on the wave function and it is responsible for the emergence of the scattering
length (2.9).

5.1. H 1%, Energy estimate. In this section, we shall prove Proposition 3.1. We
first collect some important properties of w(x) (2.12) in the following lemma. This
lemma is an improved version of Lemma A.2 from [8]. By defining p somewhat
differently (see (2.7)), we also correct a minor error in (A.6) and (A.19) of [8].

LEMMA 5.1. Suppose V > 0 is smooth, spherical symmetric, compactly sup-
ported and with scattering length ag. Let

.1y p=supr?V(r) +/ drrv(r)
0

r>0

and let a = ag/ N be the scattering length of the rescaled potential V. Then the
following hold with constants uniform in N :

1) There exists a constant Cy > 0, which depends on the unscaled potential V,
such that

(5.2) Co<l—w(x)<1 forallx e R3.

Moreover, there exists a universal constant ¢ such that
(5.3) l—cp<l—wkx)<1 forallx eR>.

ii) Let R be such that supp V C {x € R : |x| < R}. Then

w(x)zla—| forall x with |x|> R/N .
X

iii) There exist constants Cy, Co, depending on V , such that

(5.4) |Vw(x)| < C1N, IVZw(x)| < C,N?,  forallx e R3.
Moreover, there exists a universal constant ¢ such that
(5.5
a
V)| <c—7, [Vwx)|=c i, IVZw(x)| < ¢ Lz forall x € R3.
|x] | x| |x]
iv) We have
(5.6) 8ma = fdx Ve (x)(1 —w(x)).

Proof. We prove parts i) and iii) in Appendix D. Part ii) follows trivially by the
definition of the scattering length a and by the fact that the potential has compact
support. As for part iv), note that, due to the spherical symmetry of V and w(x),
with the notation r = |x|, the function g(r) :=rf(r) = r(1 —w(r)) satisfies

~€"(r)+ 5 VN (R =0
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By ii) of this lemma, g(r) = r —a for r > Ra. We thus obtain
(5.7)

o0 o0
/dx Vy (x)(1 —w(x)) = 4n / dr r?Vy (r)(1 —w(r)) = 87[/ drrg”(r)
0 0
=8x lim (rg'(r)—g(r))|3 =8na.
0—>00
This proves Lemma 5.1 O
Proof of Proposition 3.1. For j =1,..., N, we define
1
(5.8) b, = —Aj+§§VN(x,-—x,-).
i#]

Then we clearly have

N
Hy = ZE: bj-
j=1

Since v is symmetric with respect to permutations, we have

N
(5.9) (Y, Hyy) =Y (¥, hibjy) = NN = D (¥, bibatr) + N (¥, bv)
i,j

> NN = D)(¥, bih2v) .

Of course, instead of the indices 1,2 we could have chosen any i # ;.
We have

I 1
(5.10) h1w=—A1¢+§VN(xl—x2)W+§j§ Vi (x1— X))V .

Next we write ¥ = (1 —w12)¢12 and we observe that

(5.11) =A1[(1 —w12)¢12] = (1 —w12)(—=A1¢12) +2Vwiz Vig1n + Awiz ¢12.

Hence
(5.12)
\Y%
(1—w12) "1 [(1 = wi2)¢12] = — A1 + 21 —wufz Vigiz
n (=A1+ (1/2)VN (x1 —x2)) (1 — w12)¢12
I —wi2
1
t3 > VN (x1—x))¢a.

Jj=3

Using the definition of w(x) (see (2.12)), we obtain

(5.13)  (I—w12) " 'h1[(1 —wi2)¢12] = L1d12 + % Z VN (x1—Xx;)$12
Jj=3
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where we defined
Vw 12

L Z:—A1+21 V.

— W12

Note that this operator is symmetric with respect to the measure (1 — wlz)zdx; i.e.,

(5.14) /(1—w12)2$(L1)() =/ (1-wi2)? (L1$)X=/ (1—w12)* V1gVi .

Analogously to (5.13), we have

(5.15)  (I—w12) " 'hao[(1 —wi2)¢12] = Lagp12 + % Z VN (X2 —xj)p12
Jj=3

with

v
Ly=—Ay 4222

V,.
—Wi2

Therefore, from (5.9) we find
160 (0 B39} = NV 1) [ (= wia)? [ Lo+ 3 3 Vvt —xp)
j>3
— 1
X1 L2+§;VN(x2—xj) $12

— N(V—1) / (1= w12)® L1$ 15 Lotz

N(N 1) Z/(l_wlz) {VN(Xz—X])L1¢12¢12

Jj=3
+VNn(x1—x)¢1,Lod12}

N(N—l) Z /(1_w12) VN(xl_x/)VN(x2—Xl)|¢12|

i,j=3
=N(N — 1)/(1 —wi12)* L1¢15 Lagrz
YD 5 > [ - wia? (Van -5 VagiaP
Jj=3
+ VN (x2 — xj)| Vig12]?}

Z /(1—w12) VN (x1 = xj) Vi (x2 = x;) 12>

i,j>3

LNV -1
4

> N(N —1) / (1—w12)> L1¢1, Lo,
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Here we used that the potential is positive and that the sum > ;-5 Vi (x1 — x;) is
independent of x5 (and analogously > >3 VN (x2 — x;) is independent of xy).
From (5.16) we find

(5.17) (V. Hyy) = N(N = 1) / (1—w12)*> Vig1,V1 Ladi2
= N(N — 1)/(1 —w12)? |V1V2 12

+NW =) (120022 ViV, Lol

To control the last term, we note that

v V2w \Y 2 1
[Vl, el } < [V2a| +( b1 ) <p—p

1 —ws 1 —wi2 I —wi2 |x1 — x2]
by (5.3) and (5.5), for p small enough. Therefore we have
(5.18)
'/ (1—w12)* Vig12[Vi, La]¢12

1
<cp / (1—wi2)? _—xz|2|V1¢12||V2¢12|

|1
cp/ T |2|V1<I512|
SCP/ IV1V2 ¢12)?
2 2
<ep [ (1= w122 [V1Vaga]

where we used (5.3) to remove and then reinsert the factor (1 —wi2)? (assuming
p is small enough), and where we used the Hardy inequality to control the 1/|x|?
singularity. From (5.17) we have

G19 W HRY) = (=N =) [ (- V1 agral?

This completes the proof of the Proposition 3.1. O
For fixed 2 <k < N and i, j <k, withi # j, we define the densities VI(\;C,g,j,t

by

(5.20) v = =wi) Ty —wi)™"

where (1 — w; j)_l =(1-wx —x j))_1 is viewed as a multiplication operator.
The kernel of y](\fz it is given by

k —
521) ¥ (ex) = (1= w(xr =) ™ (1= w(x] —x)) Ty i (e xp) -
Then, for every k, and every i, j <k, withi # j, yg? it is a positive operator,

with Tr )/1(\53 it < C, uniformly in N, ¢.
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(k)

PROPOSITION 5.2 (A priori bounds for yy;; it

there exists a constant C > 0, such that

). For any sufficiently small p,

(5.22) Tr(l_Ai)(l_Aj)Vj(\;ig,j,t <C

forallt e R,2<k <N,i,j <k,i+# j,andforall N large enough.

Proof. For fixed i # j we define the function ¢; j; by ¥n; = (1 —w;; )i,
(the N dependence of ¢;_ ;; is omitted in the notation). Then we observe that

(5.23) Tr (1= A)(=A) vl ., = 115:S) il

= lIgi. e I + 20 Vihi, je I + 1Vi Vi jue >
with S, == (1— An)l/z. Next we note that, by (5.3),
520 Il = [axiguP =[xy =c

uniformly in N and 7. Moreover,

(5.25) ||Vi¢i,j,t||2=/dx ‘V- Y. (x)

"1—w(x —X;j)

IVivn, (x)]

1
S/d"a—w(xi—xj)ﬁ

Viw(xi — x;)
+[d" '(1—w(x,- —x)))?
1

sc/dx|vin,t(x)|2+c/dx—wN,t(x)P

|xi —x;?

2

W, ()

<C / dx |V ¥y (%)%,

where we used (5.2), (5.5) and Hardy inequality. Next we note that, for every
i=1,...,N,

(5.26) (YN HN YN = N(UNs AiYnyg) = N/ IVivw,|*.
Therefore, from (5.25),

(527)  IVigijil> < CN" N YNy Hy Yng) = CN N Yy, Hy yn) <C

by (2.13) and by conservation of energy. Finally, to bound the last term on the
right-hand side of (5.23), we note that, for a sufficiently small p,
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(528) ViVl <C / dx (1= w(x; — )2 [V, V1,0 (2

< ]\,(N—_I)(WNJ»HJZVWN,I.‘)

. C

T N(N-1)
for all N large enough. Here we used (5.2) in the first line, Proposition 3.1 in the
second line, the conservation of H ]%, in the third line, and the assumption (2.13)
in the last inequality. Proposition 5.2 now follows from (5.23), (5.24), (5.27), and
(5.28). O

(Yn, Hyyn) <C

5.2. Higher order energy estimates. We will choose a cutoff length scale £.
For technical reasons, we will have to work with exponentially decaying cutoff
functions, so we set

e
(5.29) h(x):=e T .

Note that # >~ 0 if |x| > €, and h ~ e~ 1 if |[x| <« £. Fori = 1,..., N we define
the cutoff function

(5.30) 0; (x) := exp (_els > h(xi— xj))

J#i
for some ¢ > 0. Note that 6; (x) is exponentially small if there is at least one other
particle at distance of order £ from x;, while 6; (x) is exponentially close to 1 if
there is no other particle near x; (on the length scale £).

As for the choice of £, to make sure that the presence of particles at distances
smaller than £ from x; is a rare event, we will need to assume N{3 < 1. This
condition is not used in Proposition 5.3 below, but if N £3 > 1, then our estimates
were empty in the limit N — oo as the right-hand side of the estimate (5.33) below
tended to zero. On the other hand, choosing £ too small makes the price to pay for
localizing the kinetic energy on the length scale £ too high. In Proposition 5.3 we
will actually have to assume N {2 > 1.

Next we define

n 2"
(5.31) 07 (x) := 6;(>" = exp (_e_s > hxi - x,-))
J#i
and their cumulative versions, for n,k € N,
2n
5320 W :=0"x...00"(x) = exp(—z—g 33 hxi - xj)).
i<k j#i
To cover all cases in one formula, we introduce the notation @,(Cn) = 1 for any
k <0, n € Z. We will need to use the functions Qi(") (instead of 6; (x)) to take into
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account the deterioration of the kinetic energy localization estimates. For example,
the bound |V, 6; (x)| < C£~16;(x) is wrong, while

V6 x)] < ce16" D (x)

is correct and similar bounds hold for @1(;'). This, and other important properties

of the function ®,(c"), used throughout the proof of Proposition 5.3 are collected in
Lemma A.1 of the appendix.

PROPOSITION 5.3 (H¥ energy estimates). Suppose £ >> N2 and that o
(from (2.7)) is small enough. Then for Cy > 0 sufficiently small (depending on
the constant (1 — cp) in Proposition 3.1) and for every integer k > 1 there exists

No = No(k, Cy) such that
(533) (v (Hy + N)* ) > CEN* f 0¥ 1V,... Yy
Cka—l @(k) VZV \V/ 2
+Co kg IVIV2. . Vi 1y
k
+CENFH [ 00,00 Vi (o = 3i0) Vi . Ve w0

for every wave function ¥ € L? (R3N) and for every N > Np.

In order to keep the exposition of the main ideas as clear as possible, we defer
the proof of this proposition, which is quite long and technical, to Section 9, at the
end of the paper.

6. Compactness of the marginal densities

In this section we prove the compactness of the sequence I'y ; = {y](@ Ye>1
with respect to the topology yrod. (See §4 for the definition of Tpoq and recall
the convention that )/1(@ = 0if k > N.) Moreover, in Proposition 6.3, we prove
important a priori bounds on any limit point I'c s of the sequence I'y ;.

THEOREM 6.1. Assume that p is small enough and fix an arbitrary T > 0.
Suppose that I'n s = {yj(\icz Yk>1 1S the family of marginal density associated with the
solution Y ¢ of the Schrodinger equation (2.2), and that (2.13) is satisfied. Then
In: € D1 C(0, T, 58}() Moreover, the sequence I'y ¢ € Py C([0, T],i}c)

is compact with respect to the product topology Tproa generated by the metrics 0y
(k) k)

(defined in §4). For any limit point Ueot = {Voot k=15 Yoo, i Symmetric with
respect to permutations, yc(,]g,), >0, and
(6.1) Tryd) <1

forevery k > 1.
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Proof. By a standard “choice of the diagonal subsequence”-argument it is
(k)

t’
k. In order to prove the compactness of Yn.
(k )

enough to prove the compactness of y N. for fixed k > 1, with respect to the metric

(k ) with respect to the metric 7, we

show the equicontinuity of y ", with respect to the metric 0. The following lemma
gives a useful criterium to prove the equicontinuity of a sequence in C ([0, T'], (EB,IC).
Its proof is very similar to the proof of Lemma 9.2 in [8]; the only difference is that
here we keep k fixed and we consider sequences in EB}C, while in [8] we considered
equicontinuity in the direct sum C([0, T'], %) = @x>1C([0, T'], ¥y ) over all k > 1,

for some Sobolev space 7.

LEMMA 6.2. Fixk e Nand T > 0. Asequencey()eifl N=kk+1,...

with y(k) >0 and Tr )/( ) — =1forallt € [0,T] and N > k, is equicontinuous
in C([0, T], £} &) with respect to the metric 1y, if and only if there exists a dense

subset $y of Xy such that for any JH) ¢ $i and for every & > 0 there existsa § > 0

such that
k k
6.2) sup |17 7% () = vvy) | <

forallt,s €0, T] with |t —s| <.

()

For the proof of the equicontinuity of y,; with respect to the metric 7y,

we will choose the set $; in Lemma 6.2 to cons1st of all J®) ¢ Ky such that
SiS; J &) SiS; is bounded, for all i # j, and i, j < k. We recall the notation
Sn=(1—2n)"/2

Rewriting the BBGKY hierarchy (3.1) in integral form we obtain for any s <¢

k k k k
63 ¥ = y}vi—zZ/ dr [ ,,y,(vil—zZ/ ar Vi (s — ), 1))

1<j S

iV - k>Z [ dr T g1 [Viy () — xie 1), 7601

Multiplying the last equation with J *) € §4 and taking the trace we get the bound
(recall the definition (5.20) of the densities yg? it

6.4)

k) (,,0) (k)
)TrJ( )(VNz VNs

Z/dr|Tr $ity®s; —5;0® 57 )S,y(k’sjj

+Z/ ar [T (5:8;0®5:8;) (S71S7 V(i = x)(1 = i) ST 87

i<j
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k 1 o 1 a—
< (SiSiv e Si5) (8787 —wipst s |
+Z/ dr ’Tr (58700 si87) (71871 (1= wyj) ST 877

i<j

< (SiSiva, rSi SJ') (St v G = xp) (1 —wi) ;s )

+ (1 - —) dr ‘Tr (s;7®s;)

X

Sj ISk-‘rlNVN(xJ — x4+ ) (1 =) k11841 S; 1)

(
X (Sk+151 VNJk+1 »S Sk—H) (Sj_ Sk_+1(1 _wf’k“)Sk“Sf_l) ‘

+ (1 ) dr ‘Tr (SJJ< )S; ) (Sj—lskﬂ(l —wj,kH)S,;lej—l)

X

X (Sk+1S, yN] k+1 S Sk+1)
(s

i TS NV (6 = X4 D (= wj k1) Sy S j 1) ) :

Here we used that S; 4, commutes with J () Next we observe that (see Lemma
6.4 below),

65) [IS7LSTINVy (xi —x,)(1—wi) ST STV < CN / Vv (1—w)<C.
by part iv) of Lemma 5.1. Moreover,

(6.6) IS S (1 —wi)STHST = €

and

6.7) 187 Sy (1= wjjer 1) Sk 57|

1
_ —_1112
HS NS (U= wj k4 1) SE 1 872 = wig1) Sig, S5

1
2

=C+ H SJ'_ISk_ileH(l—wj,k+1)5j_2(1—wj,k+1)vk+1Sk_Jl1Sj_l

1
— — — — — 2
- HSj LSt (Ver1wjk4+1)S; Z(Vk—i—le,k-i-l)sk-il-lsj !

1
2
= €+ |s7sEl (Vu?Si, 87 = €
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In the last step we used the second bound in (5.5). Since J%) e §; is such that
1S;S;J®)S;S;|| < C foralli, j =1,...,k, it follows from (6.4)—(6.7) that
(6.8)

TrJ(k)< k) _ (k))‘<C t—s) max max sup Tr|S;S O S; S;
’ YNt~ VN % ( )n kk+117éjzj<nr€[sp,] i9j YNi, jroio)

for a constant C; depending on k and on J ®), but independent of 7, s, N. From
Proposition 5.2, and from the fact that the subset j(k) is dense in JH, it follows that
the sequence y(k) e C(Jo, T], 331) is equicontinuous. Since, moreover, Tr y(k) =1

uniformly in ¢ € [0, T] and N, the compactness of the sequence y( ) with respect

to the metric 7 follows from the Arzela-Ascoli theorem. This proves the com-
pactness of 'y ; = {VNt}k>1 € Dr>1 C([0,T], 2! ) with respect to the product
topology Tprod-

Now suppose that I'so ; = {yoo t}k>1 € D=1 C(0,T], 2 &) is a limit point

of I'y,, with respect to Tprq. Then, for any k > 1, y(k) e C([0,T], <! &) 1s a limit

point of )/1(\,) The bound Tr ’yoo’t < 1 follows because the norm can only drop in

the weak limit.

To prove that ygf’), is nonnegative, we observe that, for an arbitrary ¢ €
L2(®3) with ||¢|| = 1, the orthogonal projection Py, = |@){¢| is in Ky and
therefore we have

6.9 (o, yéo)t§0> Tr P(pyéo)t = 1irgoTr sz(v)t hm (w Vj(v)tfﬁ) >0,

for an appropriate subsequence N; with N; — oo as j — oo.

Similarly, the symmetry of y( )

the symmetry of Vl(v) for finite N. For a permutation = € ¥}, we denote by E

the operator on L2(R3¥) defined by

with respect to permutations is inherited from

Erp(X1,...Xk) = @(Xn1, .oy Xgk) -
Then the permutation symmetry of y( ) is defined by

(610) = (k) =—1 k)

ﬂyoot“ _yoot

for every w € ¥. To prove (6.10), we note that, for an arbitrary J ®) € %, and a
permutation 7w € ¥, we have, for an appropriate subsequence N; — 0o, as j — oo,

6.11) Tr J©y®), = = lim J®)y (") = lim TrJ®E,yP 51
Jj—o00 Ny
T =—1 k = (k)
—ﬁggomn g "By

=Tr 8,V PEyE, =Try® g, & e

where we used that, since J %) € 9y, also E 1J ® &, e Hy. O
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In the next proposition we prove important a priori bounds on the limit points
I'so,:- These bounds are essential in the proof of the uniqueness of the solution to
the infinite hierarchy (4.4), in Theorem 4.1.

PROPOSITION 6.3. Suppose that p is small enough, and assume that (2.13)
is satisfied. Let I'no; = {Vg;,)t}kzl € D> C([0,TT, 58116) is a limit point of the
sequence 'y ; = {)/1(;{2}]]{\’:1 with respect to the product topology Tprod. Then )/goc’),

(has a version which) satisfies

k
(6.12) Tr(1—Ay) ... (1= Ay, < cF
for a constant Cy independent of t € [0, T] and k > 1.

Proof. We fix { as a function of N, such that N¢? > 1, and N¢3 <« 1.
Moreover we fix £ > 0 so small that N £3~¢ < 1. With this choice of £ and ¢, we
construct, for integer n, k the cutoff functions @,(cn)(x) as in (5.32). For k e N, we
will use the notation

Dy :=Vi... Vg, D],c ::Vi...V,’C, with V}:Vx}.

We also set Dy = I for k <0 to cover all cases in a single formula. From Propo-
sition 5.3, it follows that, for any fixed k > 1,

6.13) / O® | Deyal? < Wva (Hy +N* )

1
- k
Co N k
1
=7
Cy Nk
for any N large enough (depending only on k). In the last inequality we applied
the assumption (2.13).
For k =1,..., N, we define the densities U j(f z) by their kernels

(Yn.0, (Hy + N)¥yn o) < CF

k k k
(6.14)  UR) (x4 %) := / dxy i O (e, xy ) O (X}, Xy )
X D (X, Xn—k) DR ¥ (X, XN —k) -

Note that the operator U ](\fc 3 is the k-particle marginal density associated with the

N-body wave function @,Ek)(X)Dk YN, (x). Therefore U l(vk 3 > 0. Moreover, it
follows from (6.13) that, for N large enough,

k k)12 k
6.15)  TrUN) = / (091 Dy, ? < / O | Deyn.? < CK.

It follows from (6.15) that for every fixed integer k > 1, and for every ¢ € [0, T], the
sequence U ](Vk 3 is compact with respect to the weak* topology of & Ilc Moreover, if

Uo(f)t denotes an arbitrary limit point of U ](th) , then

(6.16) T ud), <ck.
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Next we assume that yg,), e C([0, T1, ‘SB}C) is a limit point of )/1(\563 with respect
to the topology 7. It follows that for any fixed ¢ € [0, T'], yé]g?t is a limit point
(k)

of yy; with respect to the weak* topology of EE}C. Because of the compactness of
the sequence U Islkz) with respect to the weak * topology of £}, we can assume, by

passing to a common subsequence V;, that there exists a limit point Uéf), € SE}C of
U ](f 2 such that

(6.17) TrJ® y P, - Te 7 © &),
and
(6.18) Tr J & UI(\fj)t —TrJ® Uo(éc,)t

for every J (k) € 9. For notational simplicity, we will drop the index i, but keep
in mind that the limits hold only along a subsequence.

Next we fix J ®) € 9¢;. such that V . .. VkJ(k)V,’: ... V{ is compact and such
that

4
(6.19) sup/dx;c Z |V£§, Vi, ... Vi, V;l ...V;mJ(k)(xk;x;cﬂ <00,
b=0

Xk
4
sup/dxk Z |V£n Vi, ... Vi,V "'V;m‘](k)(ka}()l o
X heo
for every j,m,n <k, and (i1,...1;),(r1,...,rm) C{l1,2,...,k}. Then we have,
applying (6.17) to the derivatives of J (k)
6200 TeVy...Vd®OvE iy, 5> TV Vg ®ve vy,

as N; — co. For such observable J &) we rewrite the left-hand side of (6.18), using
(6.14), as

6.21)
k k k
Tr J® UI(Vt) = /dxkdx;chN—k T® (%) 0 (x. Xy ) O (X} x3v_1)

X DV, (i, XN 1) DR YN (X XN —k) -
From (6.21), we will show later that
(6.22) O uk) = / dxjedx), dxy_ (Dk D}, J(k)) (X¢: X))

X YN (X XNk )UN, (X} Xy—k) + 0(1)

as N — oo.
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Before proving (6.22), let us show how Proposition 6.3 follows from it. Equa-
tion (6.22) implies that

(6.23) TrJ® U =Tr V.. Ve d OVE Vi) +o(D)
STV VIOV v ),

as N — oo (using (6.20)). Comparing with (6.18), we obtain that

(6.24) TrJ®O U =1ev, . Vg ®vE vy &,

oot =
Since the set of all J*) € 9(; with the property that V; ...V, J®V¥ . Vi e
and such that (6.19) is satisfied is a dense subset of K, it follows that

(6.25) Vi Virve vi=ud,.

From (6.16), we find

(6.26) Tr(=A1). . (~AR)yS%y = CF .

Now suppose that o ; = {yoo t}k>1 e C([0,T], &L &) 1s a limit point of the

sequence I'y ;. Then, for every fixed k > 1 and r € [0, T, yéo)t is a limit point of

)/1(@ and thus satisfies (6.26), for a constant C, independent of ¢ and k. Moreover,

for any m < k we also have
_ (k) m
(6.27) Tr (~AD) ... (~Am)y S, < Cf.

To prove the last equation, we repeat the same argument leading from (6.14) to
(6.26), but with the densities U JSsz replaced by

k k k
6289  UB,,xx) = / dxy—k 0% (e xy-1)OP (X, xy 1)
X DN+ (Xie, XN —1) Dy N2 (Xpc, XN —k) -
(k)

From (6.26), (6.27), and from the permutation symmetry of ys;;, we find
(6.29)

k
Tr(1-Ay)...(1-AyE), =Y (}';)Tr (=A1) - (=AY < (C + 1)
m=0

which completes the proof of Proposition 6.3.
It remains to prove (6.22). To this end, we rewrite the right-hand side of (6.21)
by using ®](€k) = Q(k)(ai , as follows:

(6.30) TrJ® U = ) -
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with
6.31) (D:= /dxkdx;chN—kJ(k)(XkQ X;) ®1(€k_)1(xk»XN—k)®1(€k) (X} XN 1)
X De Y (Xks XN —k) Dy Wi, (g, X —i)
1) := /dxkdx;de_kJ(k)(xk; X;)

k k k
x (1= 67 ¢k Xy ) O (% X 1) O (%), Xy )
X D VN, (Xi, XN —k) DLW (%), Xn—k) -

By integration by parts
(6.32) (1) = (Ia) + (Ib)
with
(6.33)
() = [ dxeaxi i O e O, (s xy—1) O (. xv0)
X Dk 1Y Nt Xk Xn—k) D WN e (X Xn—k) .
() = — [ sy D k%) V4O, (v x-) O (x xr—1)
X D1 YNt (X, XN—k) DU, (X XN —ic).

The main term is (Ia). To bound the term (Ib), we use Schwarz inequality with
some « > 0:

(6.34)
|(Ib)| 5a/dxkdx;CdXN—kU(k)(Xk?X;(N
X ‘Vk®1(ck_)1(xk’XN—k)‘2 | Di—1¥ N, (X, Xy —i0) |2
—i—a_l/dxkdx;cde_li(k)(Xk;X;cﬂ
X ®](€k+1)(X;€’ XN_k)|D1/€WN,t(X;¢» xy—i)|*

2
<a(sup [ vl il ) [ ox |V @ 1D wawr?

Xk

+a7 ! (sup/dxku(k)(xk;x;cﬂ)
X

k
X /dXLdXN—k ®](<_)1(X;<,XN—k)|D]/¢¢N,t(X;<vXN—k)|2‘
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Using that

2
2 [ 2k k
635 [0 [ = T Y hw—xm) | 0.,
m=2

we obtain that

2
636 [ x[70f, [ IDerva P

2
. ok &
<cr? / dx | 72 2 hern—xm) | O 1Dy (02
m=2

2
. ok &
scW-07 Y [ax | 5 30 hi—am) | O 1D v WP,
m=2

i>k

where we used the symmetry of the Dy _;vy, with respect to permutations of the
last N — k variables. Since

2
o K
637 3| Z 2 hi—xm) | O
m=2

i~k

2
2k £ k k
< Ze 20 2 hxi —xm) | O P00 < €O, )

ik m=2
(see part ii) of Lemma A.1), it follows from (6.36) that
(6.38)
[ [wo® [ 1Derpwa? < cerw -kt [ O, 1Dyl
sce2 -0 [ FD 1Dyl

<Cp 073N —k) !

by (6.13) (here the constant Cj, depends on k and on the observable J (k)). From
(6.34), from the assumptions (6.19), and again using (6.13), it follows that

(6.39) |(Ib)| < Ci (e(N —k) 2+ a7 1) =0(1)

because N£2 > 1.
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Next we consider the term (II) in (6.31). By Schwarz inequality, we have
(640 10| = o [ dxediinn—i 1P xeixg)
xOP D (i, Xy i) DRV (% Xy )2
ot [ o dxi 170010 - 60 6o xy—1)
x O TV x| DY (5 Xy )

k
<a (sup / dx, |J‘k><Xk;x;>|) / dx O V(%) Dy, (%) 2

Xk

— k
+a 1( sup / dxg |8 (e %) 11— 6 ’(xk,xN_k)))

X XN —k

k+1
X /dx}cde_k @,(C + )(X;C,XN—k)lD];wN,t(X;(’XN—k)F

e (a +a' sup / dxge |7 (xz: %)) (1 —e,ik’<xk,xN_k>))

X XNk

where we used (6.13). Next we note that

k
(6.41) / e |70 (x50 (1= 6% (kg 1)
<ﬁ > dxie |7 O (e ) (e — xm)
= 58 k ks Xk k m

m#k

kaN£3_8/dxk |V,‘:J(k)(xk;x;€)|+|J(k)(xk;x;€)|

because, with /2 (x) = exp(—(x2 + £2)'/2/£), we have, by the Sobolev inequality,

4
64 [ah@lf @IS e <8 [ Y190,
b=0

From (6.40), (6.41), and from the assumptions (6.19) we find
(6.43) |(AD| < Cx (@ +a 'NEF) >0

as N — 0o, because N£37¢ « 1.
From (6.30), (6.39) and last equation we find

k) r7(k)
644) TrJOUY)
k k
= /dxkdx;cde—kaJ(k)(XkQ X ®1(€_)1(Xk»XN—k) ®;(€ )(X}c, XN—k)

X D1 YNt (X, Xy —k) Dy YN (K)o Xy —g) +0(1).
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Repeating the same arguments to move the derivative V,’c from ¥y ; to J ®) we
obtain

k) 7k)
645 TrJ O UY)
k k
= / dxgdx dxy— Vi Vi T O (0 %) OF2 (xe xv ) O, (64 Xy )

X D1 YNt (ks XN—k) D1 VN, (X, Xy —k) +0(1) .
Iterating this argument k — 1 more times to move all derivatives to the observable,
we prove (6.22). O

The following lemma was used in the proof of Theorem 6.1, and will also be
used in the next sections, in order to bound potentials by the action of derivatives.

LEMMA 6.4. i) Suppose V € L32(R3). Then
(6.46) / dx V@)oo < C VI e / dx (IVe()2 + o)) -

ii) Suppose Ve LY(R3). Then the operator V(xi — x2), viewed as a multi-
plication operator on L?(R3 x R3, dx; dx»), satisfies the following operator
inequalities

(6.47)
V(x1—x2) C[V[p (1=AD(1=A2), and V(x1—x2) <C||V]1(1-A1)>.

The proof of (6.46) is given in Lemma 5.2 of [8], the proof of the first inequality
of (6.47) is found in Lemma 5.3 of [10]. The last inequality follows from the usual
Sobolev imbedding. O

7. Convergence to the infinite hierarchy

The aim of this section is to prove that any limit point
o € P C(0.T]. %})
k>1
of the sequence I'y; satisfies the infinite hierarchy (4.4).

THEOREM 7.1. Suppose the assumptions of Theorem 2.1 are satisfied and
fix T > 0. Suppose I'ngs = {yg?,}kzl € D1 C([O, T],SB}() is a limit point of

I'y: = {)/](\?3 },]CV=1 with respect to the topology Tprod. Then I'g ¢ is a solution of the
infinite BBGKY hierarchy

k k
71y =u® )y,

k t
—8miag Zfo dsu® (¢ —$)Trg 4 [S(XJ' _xk+1),)/g§jl)]
j=1

with initial data yg?o = o) {p|®¥.
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Remark. Note that in terms of kernels

(Trk+1 8(x; —xk+1)7/£§jl)) (X X,) = V&Il)(xk,XﬁX}c,xj).

To define this kernel properly, we choose a function g € C® (R3), g >0, [g=1,
and we let g,(x) = r~3g(x/r). Then the definition is given by the limit

02 tim [ a8 Vs g i =)

k+1 Lo / o (k+1 .o/
Xl/éo,s )(Xk,Xk+1,Xk,xk+1) —'Véo,s )(Xk,Xj,Xk,Xj)-

The existence of this limit in a weak sense (tested against a sufficiently smooth

observable) follows from the a priori estimate (6.12) and from the following lemma
(whose proof was given in Lemma 8.2 in [9]).

LEMMA 7.2. Suppose that §,(x) is a function satisfying
0<8e(x) < Ca™ 1(|x| <)

and [ 8o(x)dx = 1 (for example §q(x) = a3g(x/a), for a bounded probability
density g(x) supported in {x : |x| < 1}). Moreover, for J® e %y, and for j =
1,....k, we define the norm

7.3) NP, = sup (o) ) )t ()

Xfe X
x (1999 (e X1 + 1V, T B i )]+ Vs I (x5 )
for any j < k and for any function J % (x: x;) (here (x)? := 14 x2). Then if

)/(k+1)(xk+1 ; X;C_H) is the kernel of a density matrix on L2(R3*+D) we have, for
any j <k,

(7.4) ‘/dxk_,_ldx;c“ J(k)(xk;x;c)(Sa](xk+1—x,/c+1)5a2(xj-—xk+1)

—8((6ge1 = Xy )8 () xk+1))y<k+”(x;c+1:x;<+1)
< (const)* |7 P (@1 + vaz) TS Sk 17 * VS Skl -

Recall that Sy = (1 — Ax()l/z. The same bound holds if x; is replaced with x]’. in
(7.4) by symmetry.

Proof of Theorem 7.1. For every integer k > 1, and every J ®) ¢ Iy, we have
(7.5) sup Te s ® (v, —y&h) >0

t€[0,T] "
along a subsequence N; — oo. For an arbitrary integer k > 1, we define
k

Qp = 1_[ ((Xj> +Sj) .

Jj=1
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In the following we assume that the observable J®) e 9, is such that
(7.6) [21s®a7| <o

where || A|lgs denotes the Hilbert-Schmidt norm of the operator A, that is || A ||12{s =
TrA* A. Note that the set of observables J*) satisfying the condition (7.6) is a
dense subset of Hy.

It is straightforward to check that

1.7) I1S1... S JOS, . S| < “Q,ZJU‘)Q,Z“HS.
Moreover, for any j <k,
(7.8) 17 ®; < (const.)k H QlJ®Q7 HHS,

where the norm ||.||; is defined in (7.3). This follows from the standard Sobolev
inequality || f ||co < (const.) || '||2.2 in three dimensions applied to each variable
separately in the form

(Sup () (XY Ve I (x, ’”')2

x,x’

(1= a0 [0 (Vs ) )4
< (const.) Tr (1 — A)(x)*V J (x)8 J* V* (x)* (1 - A)
< (const.) Tr Q7J QM J*Q7

< (const.) / dxdx’

with © = (x) + (1 — A)!/2. Similar estimates are valid for each term in the
definition of || - ||, for j < k. Here we commuted derivatives and the weights (x);
the commutators can be estimated using Schwarz inequalities.

For J®) e 9t satisfying (7.6), we prove that

k
(7.9) TrJ ©y O = Tr 7B ) (| ®F
and that, forz € [0, T'],
(7.10)

Tr J ©y &, = Tr 7 OO )y &)
kot
—8magi Z/ dsTr J Ou® ¢ —s) [5(Xj_xk+1)7y<g§jv-l)] :
: 0
Jj=1

Note that the trace in the last term of (7.10) is over k + 1 variables. The theorem
then follows from (7.9) and (7.10), because the set of J ®) ¢ Ky satisfying (7.6) is
dense in J{y.

The relation (7.9) follows from the assumption (2.14) and (7.5).
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In order to prove (7.10), we fix ¢t € [0, T], we rewrite the BBGKY hierarchy
(3.1) in integral form and we test it against the observable J (k) We obtain

71D Trd® y) =Te 7O a® @)y )

—1 Z/ ds Tr J(")ou(")(z )V (xi —xj), )/(k)]

i<j
—i(N— k)Z/ ds TeJ ®u® (1 — ) [Viy (x; — x4, Vs V1.

From (7.5) it follows immediately that
(7.12) Tr J® y ) —Tr 7 ©y %)
and also that
(7.13) TrJ O u® @)y =T (ou(k)(_,) J(k)) &
= T (U007 90) y ) = T s O U0 11y B,

as N — oo. Here we used that, if J®) e %, then also WX (—r)J &) e ;.
Next we consider the second term on the right-hand side of (7.11) and we

prove that it converges to zero, as N — oco. To this end, we recall the definition
5.21)

y ) ix) = (1= w(xi —x) 7 (1 —w(x, =) 8 e xp)

for every i # j, i, j < k. Then we obtain

(7.14) ‘TrJ(k)Ou(k)(t W (i —x)), y &

< )Tr (S,-S,(m<’<)(s —t)J(k))Sl-Sj) (S;ISJ.— Vi (xi —x;)(1 — w,-j)Sl-_lSj_l)
x (Sl-sjy}\ﬁfg’j,ssisj) (Sl.—lsj—l(1 - w,-j)si—ls]n) ‘

[ (8:87@B s =07 D)sis;) (7187 - wi) ST
X (SiSiv 1 Si8;) (7S5 Vi e =) (1 = wip) ST s |

Since, by part iv) of Lemma 5.1,
(7.15)

157187 Vi =) (1= w8787 < € [ - wio) < N
and

(7.16) 15718 —w(x —x)) SIS < 1
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we find

)TrJ(k) Ou(k)(t VN (xi = xj), vy

< ot (W ) s PSP

From ||S; S; (Gu(k)(s —t)J(k)) SiSill =18 S; NAQKY S;|l < oo, and from Propo-
sition 5.2 it follows immediately that, for any ¢ € [0, T'],

(7.17) Zf ds Tr J © u® (1 —5)[Viy (x; —x7). iy 2] = 0

i<j

as N — oo (the convergence is not uniform in k).
Finally we consider the last term on the right-hand side of (7.11). First of all,
we note that

(7.18) kZ / ds Tr J ©u® (1 —5)[Viy (x; = xp41). 55 21— 0
j=

as N — oo. In fact,

(7.19) ‘TrJ(k)Ou(k)(t )V (xj — Xgt1), y(k-H)]‘
)Tr ( Ou(k)(s—t)J(k)SJ> (s;ls,;HVN(xj — ) (=W )SE ST )
X (Sk+1SjVN,j-:/?.4_1,sSjSk+1) (Sj_ISk__{l_l(l W) k+1)Sk+15; )‘

n ‘Tr (SjJ(k)Sj) (57" Skea (1 —wp) Sty 577
(Sk+1SJVNjk+1 Y Sk+1)
X (S;ls,;leVN(xj ) —wj,kH)S,;Hsj—l) ‘ .

As in (7.15) we have [|S7 1St Viv (6 — X ) (L= wj 4 ) S St I < CN L
Moreover (see (6.7)),

(7.20) 17 Sk (1= wj a1 S 1S5 I < C.

By an argument very similar to (7.14)—(7.17) and by Proposition 5.2 we obtain
(7.18).
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It remains to consider

kot
k+1
(7.21) NZ/O ds Tr JOUB (1 —5)[Viy (xj — xp 1), Vg5 )
j=1
k ¢ .
1
=3 /0 ds Tr (U (s =0 @) [N Vi () = X )T =0 Vir f 15
j=1
k ¢ .
1
=3 [ T (U500 ©) NV () =) (=000 Ly e
j=1

k ot
k
+ Z/o ds Tr (OlL(k)(s—t)J(k)) wj,k+1)/j(v,;~t;?+1,s(1—wj,k+1)NVN(Xj—xk+1)-
—

The terms on the third and fourth lines converge to zero, as N — co. For example,
the contributions on the third line can be bounded by

k
(.22) [T (R (s =0T ©) NV (7 = 30001 = 014DV Ty 50k 1
<115 (uP s —0I®) 55

X ”Sj_lSk__{l_l (NVN(xj —xp+1) (1 —wj k41)) S]'_ISk__|l_1 [

(k+1)

-1 —-1¢-1 2¢2
X “Sj Sk+1W) k+15; Si1 |l Tr SiSit1 YN, jk+1,s"

Then we use
(7.23) 1S St i NV () = xieq ) (1 —wj ke 41) S Sy 1 < €
and
(7.24) 1187 Skr1w)e+1S; " Sl
o 12

= “Sk-il-lsj le,k+lslf+1wj,k+lsj 1Sk-|1-1H

<185 w7 it ST+ 1St S (Vwyer 1) S Sty 12

<CN'4+CNTV4
To prove (7.24), we applied Lemma 6.4 and the fact that, by Lemma 5.1, with R
such that supp V C {x € R3: |x| < R},

x(x|>R/N) _ C
xS NIl

w(x) < Cx(x| < R/N) +a

and
a 1
ER N12|x[3/2
(the last bound is obtained interpolating the first bound in (5.4) and the second
bound in (5.5)). It follows that

IVw(x)]?> <C [Vw(x)| <C
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(7.25)
k ¢ .
1
) Z[o ds Tr (Ou(k)(s —t)J(k)) NVN(xj —xg41)(1— wj’k+1))/1(v’j:k)_}_l’swj’k+1
j=1

< CthkN~Y* max sup TrSjSkHy](\ﬁI;)H,sSjSkH

J=k sefo,e]

which converges to zero, as N — 0o, by using Proposition 5.2. The fourth line of
(7.21) can be handled analogously. Hence, from (7.21),

k o

(7260 N /dsTrJ(k)m(")(z—s)[VN(xj—xk+1),y}§j”]
: 0 ’
Jj=1

k o
= ds Tr Ou(k)(s — Z)J(k)
> [ )

k+1
X [NVN(xj — X+ (L= wjk41), VI(V,j:k)+1,s:| + Cr,r on (1)

where oy (1) — 0 as N — oo and Ci_r is a constant depending on k and on 7.
To handle the right-hand side of (7.26), we choose a compactly supported

positive function & € COOO([R3) with [ dx h(x) = 1. For g > 0, we define 8g(x) =

B 3h(x/B),ie., 8 g is an approximate delta-function on the scale 8. Then we have

k
727) ) / t ds Tr (ou<k)(s —t)J(k)>
j=179
k+1) ]

v [N VN () =Xk )0 = Wik Yy g s

k
= Z/t ds Tr (Ou(k)(s—z)J(k))
j=1"°
(k+1) ]

x [NVN(xj — X4 1) (1 —wjk41) = 8maodp (Xj — Xk 1) Viy g1

kot
+ Z/O ds Tr (Ou(k)(s—t)J(k)) [87[a08ﬁ()€j —xk+1),ygf;i,&l,s]
j=1

LY’
= Z/o ds Tr (Ou(k)(s —t)J(k)) [SnaOSﬂ (Xj = Xk+41)s y](\;cj_ll)—i-ls]
=1

+Cer (0N + 0(8Y/))

for some constant Cy 7 which depends on k > 1, on T', and on J® (O(,Bl/z) is
independent of N). Here we used that, by (5.6),

(7.28) /de Vu(x)(1 —w(x)) = 8mag,
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and we applied Lemma 7.2. To apply Lemma 7.2, we used Proposition 5.2 and
that, by (7.8),
k k
s (s — )7 ©); < € [F uF (s = )70 Q] |45

with a k-dependent constant C. Since

eTTOTORT () CTOR = (xj + 2(s = 1) pj)™.
forany j =1,...,k, m € N, we obtain that

k

59 s = )T ©Y; < 1+ 1t —s1)| Q] T© Q] -

(k+1)

To control the first term on the right-hand side of (7.27) we go back to yy
We write

(k+1) (k+1) ( 1 ) k+1)
7.29 S ——
(7.29) YNjk+1,s = VNs T —wea,  )Ns

1 (e+1) 1
P R I Y
T—wjgg M M —wjgy
When we insert (7.29) in the right-hand side of (7.27), the contributions arising
from the last two terms in (7.29) converge to zero, as N — oo, for any fixed § > 0.

For example, to bound the contribution of the second term on the right-hand side.
of (7.29), we use that

1
(7.30) |Tr (Ou(k)(s —t)J(k)) |:8na085 (Xj — Xk +1)» (— — l) ygcjl)} ‘
1—wj,k_|_1 ’
< C‘Tr (m<k>(s—z)J<k)) (St 85 (xj — X4 1)Sk41)
— Wik+1 - +1

X (SkLJ—jSkH) (Sk+1)’](vs )Sk+1) ‘

- Wik+1 -1

C‘T @ (s —ryg©) (g7t Ik g

+ O ( (s —1) ) R T gy, gy K

(Sk+1VNS Sk+1) (Si4188(x) — Xk 41)Sk+1) ‘

K+1 k+1
< C|Sii18p(xs xk+1)Sk+1||HSk+1 /wk Sk+1HTrSk+1V( )
Js
Now we have
-1 Wik+1 -1 -1
(7.31) ‘S pp— L . <CN
k+11_wjk ey

because w(x) < Ca|x|~! and thus, as an operator inequality, w; ik+1 =Ca Sk 1

(and @ ~ N—1). Moreover

(7.32) Tr SZ, 75 = <sz,(1 — A )VNs) < N W, (Hy + N)Ys)
"Ny, (Hy + N)yy) <C



330 LASZLO ERDOS, BENJAMIN SCHLEIN, and HORNG-TZER YAU

by the assumption (2.13). It is also easy to see that

(7.33) 1S5 188 (X7 = Xk 1) Skl < CB*

for B < 1. The contribution arising from the last term on the right-hand side of
(7.29) can also be controlled similarly. Therefore, it follows from (7.26), (7.27),
(7.29), and (7.30) that

kot
a3 N / asTrJ ©u® @ =) [V () = v, 7550 ]
j 0
—Sﬂato dsr (195 =07 ©) [3 —xe). 73|

+8na02/ ds Tr Ou(k)(s t)J(k))[SB(xJ—ka) y(kH) yéﬁjl)]
+Cer (0B +on (1) .

where o (1) = 0 as N — oo (for any fixed B > 0). The first term is the main term.
To control the second term, we rewrite it, for € > 0, as

(7.35) Z / ds Tr (WP (s = 1) ®) [85.05; — v vk P = y&sD |

k+1 k+1
(Vl(\ls ) V(go—; ))

kot
= ds Tr Ou(k)(s—t)J(k) Sg(xj —Xpqp1)——————
;/0 ( ) PR VT 4 eSk

k
+Z/ ds Tr (Ou(k)(s—t)J(k))
— Jo
j=1
(k+1) (k+1))

1
85 (x) j—
X ﬂ(XJ Xk+1)( 1 +8Sk+1) (VN,S —Voo,s

kot
1
- P — R K)o _ (k) (k+1) (k+1)
;/0 ds Trdg (x; xk+1)1+85k+1 (Ou (s—1)J )(VN,S — v )

1
_Z/ dsTrSﬂ(xJ—xk_H)( 1+8Sk+1)

(W 0) (0 30
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The second term on the right-hand side of (7.35) can be bounded by using that

(7.36)

1
&Ko o 7k o _ (k+1) (k+1) ‘
‘Tr (OIL (s—1)J )Sﬂ(xj xk+1)(l Toesi . PR ) (yNs — Yoo.s )

= (W s =17 ®) 85 (x) — xicr1)|
(Tf Sk-l—lVNs RO + TSk 175D Sp s )
<Cp (Tr Sk+17’(k+1) +TrSk+1V(k+1))
<Cp~?
where we used (7.32) and Proposition 6.3. Also the fourth term on the right-hand
side of (7.35) can be controlled analogously. As for the first and third term on the

right-hand side of (7.35), we note that for every fixed ¢ > 0, § > 0 and s € [0, ¢],
the integrand converges to zero, as N — oo, by (7.5), and because

1

(737) (Ou(k)(s—t)l(k)) 85()6] —Xk+l)m,

84 (Xj = Xkt1) UB (s = 1)1 ®) €y

1 +eSk41 (
Since, moreover, the integrand is bounded uniformly in s € [0, 7] (because for fixed

e, B > 0 the norm of the operators (7.37) is bounded uniformly in s), it follows
from Lebesgue dominated convergence theorem and from (7.34) that

ka1
(7.38) NZ/O dsTr J O ® (¢ _ ) [VN(x, Xpg1), y(k+1)]

= Z/ ds Tr OU(k)(s I)J(k)) [Sﬂaofsﬂ(x/ — Xk 41) V(k+1)]

+Cer (0" +B720() +on (1) .

where the convergence oy (1) — 0 as N — oo depends on ¢ and 8. By applying
Lemma 7.2 again and by using that, by Proposition 6.3,

max  sup Tr(1—A;)(1—Ax41) y(k+1) <C,
j=1,...k t€[0,T]

we can replace dg(x; — xg41) with §(x; — xg41) in (7.38) at the expense of an
error O(B~1/2).
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From (7.11), (7.12), (7.13), (7.17), (7.18), and (7.38) with §(x; — xg41) it
follows, letting N — oo with fixed 8 > 0 and ¢ > 0, that

Tr J(k)ygg’)t =Tr J O ®) (1) Vc(ﬁ,)o

k
— i Z /t ds Tr (%(k)(s—z)J(k)) [8na08(x]~ — Xk+1), ygjl)]
j=179

+ 0B+ 8740 .

Equation (7.10) now follows from the last equation letting first ¢ — 0 and then
B — 0. O

8. Regularization of the initial wave function

In this section we show how to regularize the initial wave function ¥y given
in Theorem 2.2.

PROPOSITION 8.1. Suppose that (2.17) is satisfied. For k > 0 we define
~ kHy /N)Yn
8.1) Gy = NN
Ix(HN/N)Yn |l

Here x € C§°(R) is a cutoff function such that 0 < y <1, y(s) =1for0 <s <1 and
x(s) = 0 for s > 2. We denote by )7}@,]‘01’ k=1,...,N, the marginal densities

associated with 1; N-

i) For every integer k > 1 we have

_ _ 2ka
(8.2) (Wn. Hy In) = =

ii) We have
sup [yy — V| < Ci'/?.
N
iii) Suppose, moreover, that the assumption (2.18) is satisfied, that is, suppose
that there exists ¢ € L>(R3) and, for every N e Nandk = 1,..., N, there
exists EI(VN_k) € L?(R3(N_k)) with ||§](VN_k) | = 1 such that

8.3 I —® RN =0,
83) Jim [y~ e
Then, for k > 0 small enough, and for every fixed k > 1 and J® e I, we
have
(8.4) tim 77 J® (7~ 0) (/%) = 0.
N—o0

Proof. The proof of parts i) and ii) is analogous to the proof of parts i) and
i) of Proposition 5.1 in [9]. Introduce the shorthand notation E := y(k Hy/N).
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In order to prove i), we note that 1(Hy < 2N/k)E = &, where 1(s < 1) is the
characteristic function of [0, A]. Therefore,

8.5 o, HE U =< e >
@5 WnHy ) =g I iy

:< EVN
IEynI’

< |1(Hy <2N/i)HE|| <

A(Hy <2N/x)HE Iz u‘/’N”>

ka

To prove ii), we compute

36 I1Eyn—ynI? =(vn. (1= EVyn) = (v, 1ecHy = N)yy ).
Next we use that 1(s > 1) <, for all s > 0. Therefore

(8.7) |E¥n —ywI? = - (Wn. Hyyw) < Cx

by the assumption (2.17). Hence

(8.8) |EvN — vl = Ci'2

Since ||¥n || = 1, part ii) follows by (8.8), because

EYN
[EVnN

EYn
<llyn—E e e
| B2

=lynN —E¥nI+I1=[EY¥nNII
<2|lyn —E¥n].

Finally, we prove iii). For any sufficiently small ¥ we will prove that for any
fixed k > 1, J®) ¢ J and € > 0 (small enough)

(8.10) T ® (7 ~10)(01%%) | <&

39 |uw-

holds if N > Ny(k, ¢) is large enough. To this end, we choose ¢, € H?(R3) with
o]l = 1, such that ||¢ — @« || < &/(32k||J®)|). Then we have

— &
811 ®k Q (N k) ®k ® (N=k)) k < '

Therefore,

= (N—k)
BYN 8 (v2 oty ) |
& = N—k
Ul iz (o8 20 |
2
E ~
12vn]

(8.12) H ”

2 (oo el ) [ <P o E )
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for ¥ > 0 small enough (by (8.8) and because || E| < 1). Hence

(N—k)
- WN ( ®$ ) ®k (N k)
8.13 <4 %
®k (N—k) (N—k) e
Ml e e et = gy

for N large enough. Here we used (8.11) and the assumption (8.3). Next we define
the Hamiltonian

N N
(8.14) Hy :=— Z Aj + Z Vn(xi —xj).
j=k+1 k<i<j

Note that Hy acts only on the last N — k variables. We set g .= X(Kﬁ ~N/N).
Then, from (8.13), we will obtain

= (N—k)
sy S ey |<_
= A — - k
Byl e ((pii)k@EI(VN k)) I 3| J®)|

(8.15) H ”

for N sufficiently large (if €« > 0 and ¢ > 0 are small enough).
Before proving (8.15), let us show how (8.10) follows from it. Let

A N—-k
- 2 (¢S @50’ )

k)
EeN
YN =

®k
= = ® -
I (o2* @£ ) | 126 I

acts only on the last N — k variables and since ||¢«| = 1. Moreover, we

A~
™
=

since
define

~(k ~ =
50 gy x) 1= f Gxy_t D s Xy —) Ty (K Xt -

Note that {ﬂ\N is not symmetric in all variables, but it is symmetric in the first k

and the last N — k variables. In particular, y( )isa density matrix and clearly

k

k . ~(k _

N = loa) (el i P xkixp) = [ 0 ()T ().
Jj=1

Therefore, since ||y — @NH < ¢/@B|J®) by (8.15) and since [¢ — g« <
e/(32k||J®|), we have

(8.16) ‘TrJ(k) (~<k> B |¢)((p|®k) ‘

10 7% (75 = lpa)0el®F) | + 10 7® (12 ia | — o)) |

21O NN = Il + 2k 1T O o — gl < e
for N sufficiently large (for arbitrary «, & > 0 small enough). This proves (8.10).

A

A
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(N— k) and
we expand the operator E — g = x(kHy/N)— X(KﬁN/N) using the Helffer—
Sjostrand functional calculus (see, for example, [4]). Let ¥ be an almost analytic
extension of the smooth function y of order three (that is |077(z)| < C|y|3, for
y = Imz near zero): for example we can take y(z = x +iy) := [y(x) +iy ' (x) +
1" (X)(@y)?/2 4 x" (x)(iy)3/6]0(x, y), where 6§ € C{°(R?) and 6(x, y) = 1 for
z = x + iy in some complex neighborhood of the support of y. Then

8.17)

It remains to prove (8.15). To this end, we set Yy « := @@ ®§

A 1 1 1
E-E)WnNsx=—— [ dxdydzx(z — = N,
( ) 7.[/ Y ZX()(z—(KHN/N) Z—(KHN/N))W i
K A~ 1
=——— [ dxdydz:x(z) ————~(HN —HN)———— VN«
Nn/ Y ZX()Z—(KHN/N)( )z—(KHN/N)w
Taking the norm we obtain
Ck 051 (z
8.18) [(E—E)ynal = — dxdy|ZX( )
N |yl
|y — Ay
2= GHN/N) N TN el Ny
Notice that the operator
k
(8.19) Hy—-Hy=-) A+ > Vn(xi—x))
Jj=1 i<k,ji<j<N

is positive, hence (Hy — Hy)/? exists. By using ||ABY ||? < || A||*(y, B* By),

1 A~ 1 2
(8.20) HW(HN—HN)WW,*
A N1)2 1 A N1)2
< || ctw = A ey ) |
A~ 1
X <WN,*, m(HN —HN)WWN,*> .

Moreover (since || BA2B|| = ||[AB2A| < || AC?A|| for positive operators 4, B, C
with B2 < C?),

(8.21) H(HN _ﬁN)l/zlz—(KI-;N/N)lz(HN - Mot H
1 A~ 1
- H |z—(kHNn/N)| (Hy = Hn) |z—(HN/N)| H
1 1 H - CN

= | i e i = s
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for z in the support of Y, where we used the spectral theorem in the last step. On
the other hand, the second factor on the right-hand side of (8.20) can be bounded by

1 A~ 1
(WN,*, m(HN - HN)m‘/’N,*>
§k<WN,*,m(—A1+kVN(X1—X2)
ENVN (1 = X)) ey >
N (X1 — Xk 41 BN Nox)-

Here we used the fact that ¥ x is symmetric with respect to permutations of
the first £ and the last N — k variables, and that the operator H N preserves this
property. Since NV (x1 —xk11) < C||[V |1 (1 —A1)?, and kVy(x1 — x2) <
C|V|p1(1—A1)? (see (6.47)) we find

1 ~ 1
(8.22) <WN,*, TI—AIN/N)(HN - HN)mlﬂN,*>
1 5 1
=K ey 2 020 g 7wy

< Ck Iy lle«lz,

because A1 commutes with ﬁN (recall that Yy « = <p§k ® EI(VN_k)). From (8.18),
(8.20), (8.21) and (8.22) we find that ||(E — E)¢¥n.«|| < Cx.oN /2 for a constant
Ck.. depending on k and ¢ (through the norm |¢*|| z2) but independent of «, for
k small enough. This implies that

(oot ) & (ory)
o | — |
— N—k A N—k)
12 (e2* 26 )1 18 (e2F @0 )
2
= N—k)
12 (2% @£y
for N large enough (and assuming that ¢ > 0 and x > 0 are small enough, indepen-
dently of N). Here we used that (by (8.3), (8.8), and (8.11))
(8.24)
= N—k = = N—k
12 ($* @60 ™) I = lywll - 1EYn —wwll - IE (vn —¢®* @7 7F) |
= N—k N—k
I (¢®* @&y T —oP @ V) |

1—CK1/2—0(1)—

E_u * 4 u_A *|| =
gy e D E D NI

>
32| J® |~

for «, & small enough and for N large enough. From (8.23) and (8.13) we obtain
(8.15). This completes the proof of part iii). O
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9. Proof of Proposition 5.3

This section is devoted to the proof the Proposition 5.3. Let us recall the
definition of the cutoff functions

®](€n) (n)(x) = exp(—— Z Z h(x; — xj))

i<k j#i

from (5.32) with the function / defined in (5.29). We introduce the notation /;; =
h(x; — x;) and we also adopt the convention that s;; = 0 for any i € N. Moreover
we recall that Dy :=V;...Vg.

Proof of Proposition 5.3. We prove (5.33) by induction over k. For k =1 we
clearly have

NN — ”/VN(xl—xz)W

For k =2 we have, from (5.9), (5.16) (but keeping the term on the sixth line, which
was neglected, because of its positivity, in the last inequality in (5.16)), (5.17), and
(5.18) we find, for p small enough (recall the definition of p in (2.7)),

9.2) (., (Hy + N)*¥) > (¢, HZ¥) = N(N = 1){(y, hihayr) + N (y, h2y)
> N(N = D)(1—cp) / (1= w12)?| V1 Vadia
N(N —1)(N —2)
+ : / (1

©O.1) (Y. (Hy+N)p) = N f Vv P+

—w12)* Vy (x2 — x3)|[Vig12|* + N / LIVAR

where 0;, fori =1,..., N, was defined in (5.8). From the last term we get

©.3) /|rmp|2z[@?’mlwlzz/ef’mmlw

b3 3 [ 67 (8T V= x)w +he).

/>2

where h.c. denotes the hermitian conjugate. The last term is exponentially small
in N because on the support of the potential Vi (x1 —x;) the point x; is close to
x;j (on the length scale N ~1) and this makes the factor 9(2) exponentially small.

Hence we find (with the notation V{ = Bx(j) where x1 = (x(l) (2), x§3)) e R3),
1

9.4)
[ o@we = [oP1viur+ fZ (Vi0D) V{7 Viv]y +he)

a.]_l

v [ Y vivisviEely —on| [ 60wy [ 1w

i,j=1
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by using |V 91(2)| < CE_IQI(I) from Lemma A.1, part iii). From parts ii) and iv)
of the same lemma we also have

2
ot

9.5)
6

=ce2o and V30| < ce0,

and therefore we obtain

©6)
@) y2y12 4 o1 Vi (2) 2
<o [o@wiyp 4o [E0E 0 C vy

/(Vl 9(2))(VJ w)vl V]

i,j=1
<o(l) / 62|92y 2 4 o(N) / OIS

where we used that N2 > 1 (and an appropriate choice of the parameter o).
Analogously

(9.7) Z /‘vzvfe(z)v wfw( <o(N)/9(1)|V V2.

i,j=1

From (9.2)—(9.7), we find

98) (V. (Hy + N)*y) = N2(1—cp—o(1)) / (1= w12)?|V1 Vagral?

3
F =0 [ w02 V(e —x5) Vagral?

+N(1—o(1))/9§2)|v12w|2—o(1v2){f9f1)|V1w|2+/91(1)|1/f|2} -

Next we apply Lemma 9.4 (with n = 0) to replace, in the first and second
term on the right-hand side of the last equation, ¢12 by . We find

9.9) (. (Hy + N)*¢) = N*(1—cp—o(1)) / 02 V1 Vay 2
+N73(1—o<1)) / 0 Viy (x2—x3)| V12 + N(1 = o(1)) / 07 |VEy [
—oV?) [ {01919 2+ 60 W2 4+ N V(s —xa) w2}
By (9.1) we have

0100 ov?) [{BPIViw P + 61y P + NV (1 )l 2}
<o(N)(Y, (Hy + N)¥) <o(){y, (Hy + N)*y).
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Hence, from (9.9), we obtain
O (14 o) (Hiy + NP9} = N2(1 = cp=o(1) [ 6719,V

2 1m0 [ 00 Vi ame vy NG -o) [ 021930
It follows that, for p small enough, there exists Cop > 0 such that we have
©12) (9. + N2 = N2 [ 6019,y
+C02N3/91(2) VN(xz—X3)|V11/f|2+C02N/91(2)|V12W|2

if N is large enough.

We assume now that (5.33) is correct for all k <n + 1 and we prove if for
k =n 42, assuming n > 1. To this end we note that, for N > Ny (n), using the
induction hypothesis we have

(9.13) (Y, (Hy + N)""2y) > (Hyy, (Hy + N)"Hy )

> CIN™ / O™ |D,Hyv|?

> CoN" f 00+ D, Hy |2

where we used that 1 > 01.(") > Qi("+2) foreveryi = 1,...,n. We write Hy =
> 6% with
(9.14)

hﬁn): _Aj+%2i>n,i7$j Vi (xi —xj) if j >n

—Aj + 5 Yi<n VNG = X))+ Xisy Vv (30 — X)) ifj=n.
Then we have
(9.15)
v+ NP2y = Nt S [ 002 D, Dby

i,j>n

+C6’N”{ > /@ﬁ,"“) Db ¥ Duhy + hec.

i<n<j
+CgNt Y [0 Db g Dy
i,j<n

The last term on the right-hand side (where i, j < n) is positive and therefore
it can be neglected. In the first term on the right-hand side. we can neglect all
terms where i = j (because they are all positive). Therefore we obtain
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(9.16) (Y. (Hy+N)""2y)=CaN" Y / O+ D, b™ Y Dy by
i,j>n,i#j

+CEN" Y / 00+ Db ¥ Duh”  +he.f.

i<n<j

In Proposition 9.1 below we give a lower bound for the first term in (9.16), while
Proposition 9.5 estimates the second term. Combining these two estimates, we find
that, for p small enough (independently of N and n) and for N large enough,

9.17) (Y, (Hy + N)"2y)
> CIN"2(1—cp—o(1)) / 0D D, Ly ?

L CPNTHI (1= o(1)) [ 00D |7, Dy 2
CnNn+3
+ 05 =0) [ O Vi Cinsa—ns2) D ¥~ ().
where the error 2, () is given by
(9.18) (1) = o(N"?) / OUHD Yy (onst —xms2) | D ¥
L o(NH) { [ oo+ [ @,‘,’?1|v10n_1w|2}
L o(N"?) { / OV | D,y + / 0" 1Dy
+ [ D+ [ @2'1;2’|Dn_2w|2} .

Now we use the induction hypothesis, equation (5.33), withk =n—1,n,n+ 1 to
bound the negative contributions. For example, (5.33) with k = n + 1 implies that

o(N") f O Vi (1 = Xn2) | Dn Y17

<o(N)(y, (Hy + N)"t'y) <o(1)(y, (Hy + N)"?y)

because Hy > 0. The other terms in (9.18) are treated similarly. It follows that

(1 +o(1)) (¥, (Hy +N)""2y)

> CIN"2(1—cp—o(1)) / O D, oy
L CINTTI (1 - o(1) / O+ |V, Dyyy v

C(;an+3 (n+2) 2
+—— (1 —o(1) | O,y VN(nt2 = Xn43) [Dnp1¥ ]
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Therefore, if p and Cy are small enough (independently of ), we are able to find
No(n +2, Co) > No(n, Cp) such that

(9.19)
(W, (Hy + N)"™2y) = CIr2Nm+2 / 0" D, 2y |?

+ C(’)l-i_an—H / ®§;n_:—12) |V1Dn+1 W|2

+ N [ O iy (2 = 3 12) IDaia v
g

In the rest of this section we will state and prove Propositions 9.1 and 9.5 used
in (9.16). Both proofs will be divided into several lemmas.
Similarly to the H 1%, -energy estimate from Proposition 3.1, the key idea in

Proposition 9.1 is that f)l(")w can be conveniently estimated by the derivatives of
¢ij, where ¢;; is given by the relation ¥ = (1 —wj;;)¢;;. The estimates of all errors
are done in terms of ¢;; and its derivatives. Finally, Lemma 9.4 will show how to
go back from the estimates on ¢);; to estimates involving ¥ with a cutoff supported
on a bigger set.

PROPOSITION 9.1. Suppose p is small enough and £ > N~Y2 Fori =
1,..., N, let f)l(n) be defined as in (9.14). Then

©20) CIN" > [ 00t Dy Y Dby
i,j>n,i#j

> CEN"2(1—cp—o(1)) / OV | Duiav|?
CnNn+3
+ 050 [ O Vi (insa = 042) [Dasa P ul)

where the error term 2, (¥) has been defined in (9.18).

Proof. Forany i # j, i, j > n, we write ¥ = (1 —w;;)¢;;. Then we have,
similarly to (5.13),

le-j

©21) (1—wi)) o[ —wij)i;] = —Aigpij +2 Vigij

I —w;;

Z VN (Xi = Xm)ij
m>n,m#i,j

1
=Li¢ij+§ Z VN (Xi = Xm)ij

m>n,m#i,j

| =

+
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where the differential operator L; := —A; + 2 1V_u$ji

V; is such that

(9.22) /(l—wij)z(Lia)X = /(1—wij)2$(LiX) = /(l—wij)zviavi)(-

Note that the operator L; also depends on the choice of the index j. Analogously,
we have

- 1
A= wip) "o [ —wip)gis] = Lidij +5 D0 V(g —xm)dy
m>n,m#i,j

with L; = —A; + ZF_iji"jVj. Note that D, commutes with L;, L; and 1 —w;; if
i, j > n. The left-hand side of (9.20) is thus given by

CEN" Y f(l—w,-,-)2®§,”+2)
i,j>n,i#j

1 —
XDp | | Li+5 > VnGm—xi) | ¢

m>n,m%#i,j

1
XDn || Lj+3 > VNG —x) | i

r>n,r#i,j

>CyN" Y /(1—w,-,-)2®§l"+2>LiDn$ijL,-ans,-j
i,j>n,i#j
CIN™
+ 02 > > /(l_wij)2
L, j>n,i#j r>n,r#i,j
x O Yy (x; = x;) Li Dn §i; Dnpij +hec..

because of the positivity of the potential. Proposition 9.1 now follows from Lem-
mas 9.2 and 9.3, where we consider separately the two terms on the right-hand side
of the last equation. O

LEMMA 9.2. Suppose the assumptions of Proposition 9.1 are satisfied. Then
we have

9.23) CN" Y / (1—w;j)? OV +2 L; D, ¢;; Lj Dy ¢y
i, j>n,i#j

= CIN™ (1= cp—o(1) [ O D2y

—o(N"*2) (/ e+ |Dn+1w|2+/®§,’?1 Ianlz) :
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Proof. By the symmetry (9.22) we have

924) CEN" Y f (1—=w;j)2 0"+ L;Dyy p;; L Dy i)

L,j>n,i#j
=C{N" > /(1—wi,-)2§®;"+2>v,-1)n$i,~v,-L,-ans,-,
ij>n,i#j

+ V,'@SH_Z) ViDy 517 LjDn ¢ij}
=GN )] /(1 - wij)z% O [V, Vi Dy i
L,j>n,i#j
+ V00DV, Dy ¢ ViViDn dij + ViOPTD ViV Dy §; Vi Dy i)

+Vi VOV Vi Dy §ij V; Du i + 05D Vi Dy 6y [Vi. L1 Dy i } -

To bound the second and third terms on the right-hand side of (9.24), we note that,
by part iii) of Lemma A.1,

2n+2 n
(9.25) ‘v,-@g"”))gcz—l( s D hmy | O
m=1

Therefore the second term on the right-hand side of (9.24) can be bounded by

(9.26) Z

/(1 —w;j)? V;0U 2D VD, ¢, V;V; Dy ¢ij

i j>nidt]
<a Z (1—w;j)? O+ |V;V; D, ;|
i,j>n,i#j
2n+2 n 2
+Ce 27! Z /(l—wij)2 Iz th/‘ 0"t |V, D, ¢ij|?
L, j>n,i#j m=1

for some « > 0. Next we use that ¢;; = (1 — wl-j)_l. Since i, j > n, we have
ViDp (Y (1 —wij)™Y) = Viwij (1 —wij) 2Dy + (1 —w;;) "'V Dy

and thus

Vw;; \?
—w’) |Dp¥r|* +2|Vi Dpyr|?

(9.27) (1—w;j)? |V Dpgpij|* <2 (1 )
—wy;

< oo/ Pry AV Dy
l J
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Therefore the second term on the right-hand side of (9.26) is bounded by

) on+2 7 2 )
(9.28) > [(1—w,~,~) (ze thj) 0"+ |V, D, ¢;; |?
L,j>n,i#j m=1
2n+2 n 2 (n+2) 5 1 2
¢ ¥ [(F Xtw) 02 miow? 4 Dl
i,j>n,i#j m=1 ! /
on+2 M 2
¢ & (% Xm)
i,j>n,i#j m=1

1
X{ O+ |V; Dy | + ‘Vi (@;(1"+2)) ’

2
|an|2}

where we used Hardy inequality and the fact that i # j and i > n. Using a bound
similar to (9.25), and part ii) of Lemma A.1, we can continue this estimate

) on+2 2
929 Y /(1—w,~,~) (zs thj) O+ |V; D, ¢i;1?
i,j>n,i#j m=1
mn+2 M 2
< ¥ [(FXm)
i, j>n,i#j m=1
2
x@U+2 v, D 1//|2+£—2(2n+1 Xn:h ) |Dayr|?
n 1 n Ee mi n
m=1

on+2 n 2 (n42) )
SCZ[( IT Z thj) ®nn+ [ViDny|

i>n j>nm=1
_2 2n-‘r—2 n 2 2n+1 n 2 5 )
+e [ (% X ) (T X 2 i) 0 10y

<C QU IV, Dy P +Ce™2 | M |D,y|?
n n

i>n
sCN/@),S"“’ |Dn+1w|2+ce—2/®,s”) Dayl?.

because of the permutation symmetry of ¥. From (9.26) we find

(9.30) Z

L,j>n,i#j

SOCNZ/(I —Wat1.42)° OV DDy i1 nsol?

[(1 —w;ij)? V;00 2 V; Dy §,; ViViDy ¢y

-I—a_lCK_zN/@,(f"'l) |Dn+lw|2+a—lcg—4/®’({1) |an|2
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2 2 2 2
< oV ([ (1= wr1042 421D 42 941002

+/®§,”+1) |Dn+1¢|2+/®f,”_)1 |an|2)

for an appropriate choice of « (using that N£2 >> 1). In the last term we also used
that ™ < 1.

The third term on the right-hand side of (9.24), being the hermitian conjugate
of the second term can be bounded exactly in the same way.

Now we consider the fourth term on the right-hand side of (9.24). To this end
we use that, since i # j, and i, j > n, we have, by Lemma A.1, part v),

) (2 ont2 ni2)
©31)  |v;v; o (gce ((ze ) hm,-)(g—EE hm,-)®n” .
=1 m

=1

Therefore

(9.32) Z ’ /(1 — wij)ZViVj®£l”+2) V; D, Eij VD, ¢ij
i j>n,it]

on+2 2
<ce? /(l—wij)2 (z—s > hmf) Ot |V, Dppyj |
m=1

i,j>n,i#j

gcz—ZN/(a;"“) |Dn+1w|2+cz—4/®,(,") |Dpyr|?

<o(N?) ( / O+ D,y + / o |an|2) ,

where in the second line we used (2.51) and a Schwarz inequality, in the third line
we used the bound (9.29), while in the last line we used N£2 > 1.

Next we consider the last term on the right-hand side of (9.24). To this end
we note that, by (5.3) and (5.5),

) 2 N2
‘[vi,lvw” } Y w”|+( Vi ) <ep—
— Ww;j |x

1 —w;j 1 —w;; i —xj|?
assuming that p is small enough. Therefore, the terms in the sum on the last line
of (9.24) can be bounded by using Hardy inequality as
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(9.33) ‘ / (1—w;j)? OV V; Dy ¢;; [Vi. Lj1Dn ¢y

Scp/(l_wij)2®f1n+2)

2

1
< ent2) __ ~ \vy.D. b2
_CP/ n |xi—xj|2| i n¢l/|

1,2
50P/®§zn+2)|VjViDn¢ij|2+C[‘vj (@flnﬂ))z Vi Dudbij |*

(9.25)
< CP/(I —wij)? OV |V, Vi Duij|?

2
—2 , (2" - (n+2) 2
+CY (l—u),'j) 1B Zhjm ®n |ViDn¢ij| .
m=1

Next we sum over i, j >n (i # j); to control the contribution originating from the
second term on the right-hand side of the last equation we use (9.29). We obtain

O30 3| [a-w? 0t IViD, Gy i LDy o
ij>n,ist)

<cp Y. /(l_wij)2®§zn+2)|vjviDn¢ij|2
i,j>n,i#j

2N [ iy et [ o 1D,y
<cp Y. /(l—wij)2®fz"+2)IVjViDn¢ij|2
i, j>n,i#j

+o(N?) ( / QU Dy v + / o |an|2) :

Inserting (9.30), (9.32), and (9.34) into the right side of (9.24) it follows that
(9.35)

C(;an Z /A(l_wij)2 @Sln—i-Z) LiDy aij Lan ¢ij
Lj>n,i#j

> C{N" "2 (1—cp—o(1)) /(1 — Wast1,42)> O | Dyiodpiintal

_O(Nn+2) (/ @}(111-1-1) |Dn+1 W|2+/®§ln—)1 |an|2) ]

Lemma 9.2 now follows from (9.41) in Lemma 9.4 below that shows how to replace
estimates involving the function ¢;; = (1 —w;;) ™' with estimates on /. O
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LEMMA 9.3. Suppose the assumptions of Proposition 9.1 are satisfied. Then
we have

ClN™ .
©-36) X > (1 —wij)
i, j>n,i#j r>n,r#i,j
X®£n+2) Vn(xj —xp) Li Dy aij Dy ¢ij +h.c.
CnNn+3
= OT(I _0(1)) / ®£n++12) VN(xn+2 _xn+3) |Dn-+-11)”|2

—o(N"3) / O Y Vi (xpt1 — Xn42)| Dnr |2

Proof. Using (9.22), we find

(9.37)
CEN" s s _
Y X [a- et vty —x) LiDayDay

Lj>ni#j r>n,r#i,j

CIN"
S lD DED SIN (BTN MRS
i,j>ni#jr>n,r#i,j

X {®fzn+2) Vi Duhis |* + ViOL D Vi D, ¢ Dndh‘j} :

Using (9.25) (with j replaced by i), the second term in the curly bracket can
be bounded by

(9.38)

> oy

Lj>ni#jr>n,r#i,j

/(1 —wij)? Vy (x; —x,) ViOF T2 V; D, ¢;; Dnoij

N
<Ca Y Y A—wi)?OyTP Vy(xj —xr) [Vi Dngtij |
I, j>n,i#jr#i,j

N on+2 2

+Ce 2t Y Z/(l—w,-j)2< G Zh,-m)
i J>ni] i m=1

x O0F2 Yy (x; — xp) [ Duis |-
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Since i, j > n, and ¥ = (1 —w;;)¢;;, the second term can be estimated as
(9.39)

2
o on+2 n
et Y ) / ( Iz Z’“m) OU 2 Yy (xj —x) [ Doy |2

i,j>n,i#jr>n,r#i,j m=1

2
2n+2 n
sty Y ( Iz Zthm) O+ Vy (xj —x7) | D P

j>nr>nr#j i>nm=1

<C{ 27! Z Z /@,(1"+1) Vn(xj —xr) |Dpyr|?

Jj>nr>n,r#£j

— Cl % (N —n)(N —n— 1)/@5"“) Vi Gonst — Xns2)| Dntr 2.

because of the permutation symmetry of i and @;nﬂ). From (9.39) and (9.38),
it follows that

040) > >

Lj>n,i#j r>nr#i,j

(1—w;j)? V; 082 Vi (xj —xy) Vi Dy ¢ Dndij

N
<o() Do >, f(l—w,-,-ﬁ@;"“)VN(x,-—xr)|vl-Dn¢U-|2
L, j>n,i#jr#i,j

o) [ O+ V(s = i) Dy P
where we used that N£2 > 1 and we made a suitable choice of the parameter o.
Inserting this bound into (9.37), using the permutation symmetry, and (9.42) from

Lemma 9.4, the lemma follows easily. O

The next lemma, showing how to replace estimates on ¢;; with estimates
on V¥, has already been used in the previous proofs.

LEMMA 9.4. Suppose the assumptions of Proposition 5.3 are satisfied. Recall
that ¢;; is defined by ¥ = (1 —w;;)¢;;.

1) Forn > 0, we have
(9.41) /(1 —Wat1.n42)2 O | Dyiodni1ntal®
+2
> (1 —0(1))[®fzn+1 | Dpiay?

—o(l){/®5,"+”|Dn+1w|2+/®,‘:21 |Dnz/f|2} .
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i) Forn > 0, we have

(9-42) /(1 — Wnt1042)% OF T2 VN (tng2 — Xn43) [ Dnt1ns1nt2l®
> (1—0(1) [ OV Viv(rsa = 0s3) [Das1 v
—o(1) / O Vi (Xn41 — Xnt2) [ Dn]?.
Proof. In order to prove part i) we start by noticing that
(9.43) /(1 — Wt 1,142)208 2 Dy ot 2]

+2 2
> | (1= wpt1,n42)> ®f,n 1 | Dpsabniintal®
+

Using that ¢y 41,442 = 1- wn+1,n+2)_1 ¥, we find

1 VWnii,n+2
Dniopntiny2=7——"——Dni2¥ + Dy Vg2 ¥
I —wpt1,n+2 (I —wn+1,n+2)
Vw V2w Vw 2
n+2.n+1 2Dn+11ﬂ+( n+1,n+2 42 (Vwp+1,n+2) 3) Dy ¥
(I —wn+1,n+2) (I —wn+1,n+2) (I —wn+1,n+2)

and thus, from (5.3) bounds

O (1= 1012700 Dot insal
2/(95,”:12) |Dn+21//|2—C/@,(1n++12) IVwnt1n+2| [Dnt2¥| | Dnt1¥]
(n+2) 2 2
_C/®n+1 (IVWnt1.n+2° + IV2Wnt1,n+21) [Dnt2¥| |1Davy].

The second term can be bounded by

045 [ 21V wns1ns2l IDnsav] IDasav
501/@,(,"+Jr12)|Dn+2lﬂ|2+“_1/®§,n+t2)|vwn+1,n+2|2|Dn+11ﬁ|2
<o [0 Dusavl?

+04—1/®,(1n+ﬁ2) X(Xng1 = Xn42| = 0) [Vwng1nt2]? | Dngr v ?

+a! / ®,(1n++12) X(xXnt1 = Xn12| < OIVwpy1ns2l? |1Durrv|?
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506/@5,”:12) |Dntavr|?

- X(Xn+1 —Xn42| =)
+Ca 1a2f@;1+12> il =2 =0 | Dy
|Xn41 — Xn2|

+ Ca—1N2/®I(1n++12) X(Xn1 = Xn42| <€) |Dns1y [,

where in the last inequality we used that, by Lemma 5.1, |Vw,41,,42| < CN.
Moreover we used that Vw(x) = a/|x| for |x| > R/N (with R such that supp V' C
{x € R3:|x| < R}), and that R/N < { for N large enough. Using that

(9.46) 00D A (xnt1 — xnpal 0 < Ce 0",
we have (recall that a = ag/N)

/ OV 2 \Vwy i1 izl [Dnta¥| |Dpav| < / OV |Dyiay|?

+Ca—1a2£—4 / @}(1n+2) |Dn+1w|2 + Ca—lNZe—CZ_s / ®’(1n+2) |Dn+1W|2-
Since N£? > 1, we find

(9.47) /®£,n+—i_12)|vwn+l,n+2||Dn+2W||Dn+1‘/’|

O e T
As for the third term on the right-hand side of (9.44), we proceed as follows.

(9.48) /@),(fﬂz) (IVwns1,n421> + IV Wnt1,042]) |Dns2¥| | Dni]
SOl/@,(ﬁ:rlz) |Dngavr|?
+0€_1/®f,n4:r12) (|an+1,n+2|2+|V2wn+1,n+2|)2 |Du|?
<o / ®£,n++12) |Dpsa¥y|*+ Cata? / en+2) 21(Xnt1 = Xn+2| = 6) | Dy |?

ntl [Xn4+1— Xn42[®

+Cam N / OHD y([xns1 — Xntal < 0) | Dot |2
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where we used the bounds for |Vw| and |VZw| from (5.4) and that w(x) = a/|x|
for |x| > £ since £ > R/N. Using (9.46) to bound the last term, we obtain

(9.49) /®,(1n++12) (IVWas1,n421% + V2 Wns1,042]) [Dns2¥| [ Dnt]

<a / ®’(1n++12) |Dn+2w|2 + Ca—1a2€—4 / @}(1n+2) |an|2

|Xn+1—Xn+2|2
+ca—1N4e—C‘f‘€/®,§’21 1Dur 2.

To bound the second term on the right-hand side, we apply Hardy inequality. We
have

(9.50) / en+2) 1Dy |

[Xn+1 _xn+2|2

1,2
SC/®£,n+2)|Dn+11/f|2+C/ Va+1 (@)SZ"H))Z |Du|?

¢ [orr D+ ce? [(

n+l1 1 2 )
£ hi,n-i—l) ®$1n+2) |Dn1ﬂ|
i=1

A

< C/®,$"+2) Dur1y

2n+1 n 2
+C(N—n)_1€_2/(g_s Z Zhij) ®;(1n+2) | Dy |?

j>n+1i=1

<C / O D1y [P+ C(N —n) 102 / O, 1Dyl
Since N €2 > 1, it follows from (9.49) that
/®,(,n+ﬁ2) (IVwn+ 1421 + [V Wnt10+42]) [Dns2v] | Dnvs]

<o(1) { / OUD D, Lyl + / O+ | D,y + / o |Dnvf|2} .

Part 1) of Lemma 9.4 follows now from (9.44), (9.47) and from last equation.
In order to prove part ii) we rewrite the left-hand side of (9.42) as follows.

(9.51) /(1 — W 1,042) 2O D Vy (xpt2 — Xn+3) | Dnt1Ont 10421

2 +2 2
> /(1 - wn+1,n+2) ®£,n+1 ) VN (Xn42 —Xn43) |Dn+1¢n+l,n+2| .

Using

1 Vwnti1,n42
Dpniidnvint2=T———""Dnr1¥ + >Dnr,
l—wnyint2 (1= wnt1,n42)
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we find

(9.52) /(1 — Wyt 1,042)2O8 D Vy (Xnt2 — Xn+3) | Dt 1@nt1n+2]
>(l1-a) / ®fzn++12) VN (Xnt2 = Xn+3) | Dus1¥|*

—Ca™! / ®;(1n+-|-12) \Vwnt1,n42]% VN (Xn42 — Xnt3) [ Dar 2.

The last term can be controlled by using (5.4) and that w(x) = a/|x| for |x| > £ >
R/N by

(9.53) /®£,n+ﬁ2)|vwn+1,n+2|2 VN (Xn+2 — Xn+3) | Dntr|?

=< CN? / ®$1rf:—12))((|xn+l _xn+2| <O VN(xn+2 — Xn+3) |DnW|2

(|xp+1—x >/{
+Ca2/®,(1”++12)x [ Xn41— Xn2| = ) Vi (nsz — Xnss) | Dutr[?
|Xn+1— Xn+2|
< CN2e~Ct” / ®£,n_:_11) VN (Xnt2 — Xn43) [ D |?
+ Ca?¢™* / B2 Viy (xnt2 — Xn+3) | Dur|?

< o(l) / O D Uy (tnsz — xns3) | Dy

From (9.51), we have
(9.54) /(1 — Wt 1,142)2O0 2 Viy (Xnt2 — Xn+3) | Dnt1bnt 1,421
= (1=0(1) [ O Vv G2 = 3012) IDuia v

—o(1) / @,(1"+1) VN (Xn41—Xn42) [ Da|?.

In the last term we used ®’(1r:_+11) < @,(1"'“), the permutation symmetry of ¢ and
we shifted the indicesn +2,n +3 —>n+1,n42 O

PROPOSITION 9.5. Suppose N{? > 1. Let bl(") be defined as in (9.14). Then,
if N is large enough (depending on n),

9.55) CiN" S / 00+ D™ ¥ Dy ¥ +hec.

i<n<j
> PN (1—o(1)) / 0D 19, Dy Y — 2u(y) .

where the error term 2, (¥) has been defined in (9.18).
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Proof. We rewrite the left-hand side of (9.55) as

9.56) CyN" Y / ©0*2 D5 ¥ Dy ¥ + hec.

i<n<j

= C/N" ) f@,(f“) Duli ¥ Dulj ¥
i<n<j
CEN™ _
SO Y Y [ vty ) Dan T Dy

i<n<jm>n,m#j

~CINT 3D Yo [ O DV (i —x) ) Dady ¥

i<n<jr#i
CoN” (n+2)
L _ZAZA’ 2 ./®”n
i<n<jr#i m>n,m#j

X Dy (VN (xi — x) ‘7) Dn(VN(xj —Xxm) ¥) + h.c.

with A, = 1if r > n, and A, = 1/2 if r < n (recall the definition of h™, for
i <n,in (9.14)). The terms on the last two lines are easy to bound because the
potential Vy (x; — x,) forces the particle i to be close (on the length scale N 1)
to the particle r. But then the factor Qi("+2) in ®§,n+2) makes this contribution
exponentially small. More precisely, for i <n, we have the bound

(9.57) (VaG),([H_Z)) |v5 VN(xi _xr)l < e—C£_€®§1n+1)

fora =0,1, 8 =0,1,2, and for all N large enough. It is therefore easy to prove
that

can® Y / ©%*2 D5 D™ ¥ +hec.

i<n<j

i<n<j
CJN" 3
- 02 Z Z / ®£zn+2) VN(Xj —xm) DnAi ¥ Dy ¥ +hec.

isn<jm>n,m#j

—0(e€) / {00 DID, 112 + O Day 2 + O Doy 2

+ 00 DDy P}

n

Proposition 9.5 now follows from Lemmas 9.6 and 9.7 below, where we handle the
first and, respectively, the second term on the right-hand side of the last equation.
d
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LEMMA 9.6. Suppose the assumptions of Proposition 9.5 are satisfied. Then
we have

958) C{N" > / ©"+2 D, A; Y DyA; ¥ +hec.

i<n<j
= PN A= o) [ O V1 Dy v
—on*2) [ O FVID oV H) [ 0 HVIV Dy .
Proof. Integration by parts leads to

959 > /®("+2)D Ai ¥ DyA; ¥ +hec.

i<n<j
= > /®("+2)|VVD vIP+ Y /V®<"+2>VVD YV, Dy
i<n<j i<n<j
+ Y [v,-@;"“)v,-z)nwv,-vjz)nw
i<n<j
+ Y /VVO(”“)V,anV,DnW—i—hc
1<n<j

The second term on the right-hand side of the last equation can be bounded by

(9.60) ‘/V@“’“)VVD ¥V, Dy w‘
i<n<j
Vi ®r(1n+2) |2 2 (n +2) 2
i<n<j n i<n<j

for some o > 0. Next we use that, by Lemma A.1, part iv),

n+2)2
IVi®, | —2 o (n+1)
Z ®(n+2) =Ct @n”

i <n
and therefore, since N2 > 1,

9.61) ‘/VG)("“)VV Du ¥ V; Dy w‘

i<n<j

aCl™ 22/@)("“) IViDp >+ )Y /9("“) ViV Dy ¢ |?

j>n isn<j

o(N )/ OV D1y > +o() Y- / Oyt |V;V; D, y|?.

i<n<j

A

A
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The estimate of the third term on the right-hand side of (9.59) is almost identical
to the second term;

962 > ‘/vj O+ ViDnWViVanw‘

i<n<j

v, o5 2P

<a )

\ViDpyP+a™t > /@2”“’|Viijnw|2

(n+2)
i<n<j C”f i<n<j
< Cat? Y [P+t Y [0 9,90, P
i<n i<n<j

A

o) [ O V1D +o() 3 [ € 19,90, v P

i<n<j

Finally, to bound the fourth term on the right-hand side of (9.59), we use that, by
Lemma A.1, part vi),

(9.63)
Y IViVietd <ce?eft) and Y|V, V 00D <ceof Y.
j>n i<n

This implies that

©0.64) N ‘/Vjvi e(+2 ViDnJVanw|

i<n<j

M DAL L TN

i<n j>n

+Z[Z|vl~vj(®,s"“>>| 1V, Da v

j>n i<n

< o(N) [ O+ |7, Dy ? + o(N?) / O Dy 1y 2.

Lemma 9.6 now follows from (9.59), (9.61), (9.62) and (9.64). O

LEMMA 9.7. Suppose the assumptions of Proposition 9.5 are satisfied. Then
we have, for N large enough (depending on n),

CIN™

9.65) —°

ooy f@,g"“) VN (xj = Xm) DuAA; ¥ Dy ¥ +hec.

i<n<jm>n,m#j

> —o(N"13) [ OtV Yy (Xpt1 — Xnt2) | Dn V2.
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Proof. We have

966 — > > /@5,"“) VN (xj —Xm) DnA;i ¥ Dy +hec.

i<n<jm>n,m#j

= f@ﬁ””’vzv(xm—xj)lvmnmz

i<n<jm>n,m#j
+ > > fv,- O Yy (xj —Xm) ViDp ¥ Dy ¥ +hec.
i<n<jm>n,m#j
The second term can be bounded by

(9.67) ‘Z > /v,.@gnu) VN (Xj = Xm) Vi D ¥ Dy ¥ +hec.

isn<jm>n,m#j

DS

i<n<jm>n,m#j

vt 3 [0 V) VD v

i<n<jm>n,m#j

(n+2)2
Vi©, 7|
l@(:_l_z) VN(xj_xm)|Dn W|2
n

Since, by Lemma A.1, part iv),

IV, @0+ 2 (nt1)
— n
n

i<n
using the permutation symmetry and optimizing o, we obtain

(9.69) ‘ > /Vl- O+ Yy (xj — xm) ViDp ¥ Dp ¥ +hec.

i<n<jm>n,m#j

< o(N?) / OWHD Yy (xyi 1 — xnsa) | D Y2

o) 3 3 [ v ) 9D P

isn<jm>n,m#j

Inserting the last bound in (9.66), we conclude the proof of Lemma 9.7. O

Appendix A. Properties of the cutoff function 91.(")

Recall that the cutoff functions ®,(c") = @,(cn)(x) defined for k = 1,..., N
and n € N, in equation (5.32). In the following lemma we collect some of their
important properties which were used in the energy estimate, Proposition 5.3.

LEMMA A.1. 1) The functions @,(Cn) are monotonic in both parameters, that
is forany n, k € N,

n) n) (n+1) (n)
®k+1§®k <1, @k §®k <1.
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Moreover, @](C”) is permutation symmetric in the first k and the last N — k

variables.
ii) We have, foranyn e N,k =1,...,N,
ok N "
(A.1) T k| e <Cmeph.

i=1j#i
iii) Foreveryk =1,...,N,n €N, we have

N
2" -
A2 |[v;e|<ce! (z_e > :h,,-) o <cete™ i<k

r=1
k
2" _
Vo cet | T ha O <ce ol ifi> k.
r=1

iv) Foreveryk =1,...,N,n € N we have
2

N o™
‘VJ ®k < CK_ZG)](:_I).

(A.3)

)
j=1 O

v) Forevery fixedk = 1,..., N and n € N we have

o K on K "
2 n
m=1 r=1

<ct20" ™V, if i#jandi,j >k,

(n)
(A4) ViV;0,"

ViVjG)](cn) <C(? @,((n_l), forany i,j.

vi) Forevery fixedk =1,..., N and n € N we have

(n)
(A.5) > ‘Vz‘ Vi®k
l’./

<ce2el Y.

Proof. Part 1) follows trivially from the definition of 91‘(”)' Part ii) follows
from x™e™* < Cpe™*/2 for every real x. To prove part iii), we observe that, for
i>k

- on k on k
(A.6) ViOr' == 75 D Vhir |exp [ =5 D0 > hir
r=1 r=1j#r

Since |VA(x)| < C£~1h(x), we obtain

<ce! %Xk:hir exp —sz:Zh-
= Iz Z I jr

an |y
r=1j%r
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Similarly, for i <k, we have

68

) on N on k
(A.8) vieor =— E—gZVhir(lJrnr) exp| = "> hj
r=1j#r

r=1
with n, =0 if r > k and 5, = 1 if r < k. Therefore, in this case
Ny N on N
<C/¢ g_szh” exp —E—SZZ}U, .
r=1 r=1j#r

Equations (A.7) and (A.9), together with part ii), prove (A.2).
As for part iv), we have, from (A.7),

49 |vey

(A.10)
N ‘VJ’@/(:) ? N (o k 2 ok
N < CZ_Z Z <£_8 hj,.) exp (— K_'s Z Zh]r)
j=k+1 Oy j=k+1 r=1 r=1;#r
o Nk 2 on K
SC€_2<£—8 Z Zhjr) exp(—FZZhjr) SC€_2®](€"_1)
j=k+1r=1 r=1j#r

by part ii) of this lemma. The contribution to (A.3) from terms with j < k can be
controlled similarly, using (A.9). The proof of parts v) and vi) is based on simple
explicit computations and the same bounds used for parts iii) and iv). O

Appendix B. Example of an initial data

In this section, we denote by (1 — w(x)) the ground state solution of the
Neumann problem

(<8 + 37w} (=00 = eet1 — ()

on the ball {x : |x| < £} with the normalization condition w(x) = 0 if |x| = £. We
extend w(x) = 0 for all x € R3 with |x| > £. We will choose £ such that a < £ < 1.
Recall that a = ag/ N is the scattering length of the potential Vy (x) = N2V (Nx).
Assuming that V' > 0 is smooth spherical symmetric and compactly supported, we
have, from Lemma A.2 in [8], the following properties of ey and w(x).

i) If a/¢ is small enough, then

(B.1) eg =3al3(1+0(a/l)).
ii) There exists co > 0 such that ¢y < 1 —w(x) < 1 for all x € R3. Moreover
1 </ 1 </
(B.2) lw(x)] < CaM and |Vo(x)| < CaM

x| +a (IxI+a)*
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We define the N-body wave function

N
Wy (x) := l_[(l —o(x;i —xj)).

i<j

Form =1,..., N, we also define

N
WZE,m](me, C L XN) = 1_[ (I —o(x; —xj)).

m<i<j

LEMMA B.1. Define

Wy (%) [T/ @(x))

U0 =
N Iy @ T, o)

forany ¢ € HY(R®) with ||¢||;2 = 1. Then, ifa < £ < 1, we have

(B.3) (Un,Hvyn) =CN
and, for any fixed k,
(B.4) Jim yy —¢® eyl =0.
where
SI(VN—k)(xk_H’ X)) = [Tr<ic; (1 —0(xi —x;)) l_LN=k+1 o(x;)

I TTwi<; (1= 0(x; — ) TT gy )

Proof. Let ¢y (x) := ]_[]1.\;1 ¢(xj),and, form=1,..., N,

N
S Comatoxw) = [ o).
j>m
We start by noticing that
B.5 Lo w61 < e on I < [ ol
(B.5) (1—o(1)) N PN = NON| = N PN | -

359

Here || WZE,I]q&E] || is the norm on L2(R3V=1). The upper bound in (B.5) is clear
since | —w <1 and ||¢| = 1. To prove the lower bound, we note that, by (B.2),
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and using the notation w;; = w(x; —Xx;),

N
Wi ol = [ ox [T -2 lgw P

i<j

— [« T (=0 o 0P

1<i<j

N N
—/dx =T -w?| T] (—en?lenxP?
j=2

1<i<j
N
[1] 40112 [1] 2 2
> e l2Iw el —22 axon; [WH G2, xn) | w0

1(x1 —xj] < 0) 2
> (wlp2 e g / e (Wi, x| 1gn 2
J

> (1—CNatll|3 )W gh)2

using that 1(]x; — x;| <€) < £|x; —x;|~1, and then applying a Hardy inequality
in the variable x;. This proves (B.5), because { < 1. Analogously, we can prove
that

2
@6 (o)Wl < [ o[ < [ w1
where 0 (1) — 0 as N — oo, for every fixed k > 1, and where ||W[k]¢[k] || is the

norm on L2(R3WV—5)).
Next we prove (B.4). To this end we remark that, by (B.6),

(B.7) H ”WN¢N WnoN ”< IWNnon |l

Wyonll wikgr 1= Tw gk

as N — o0o. Moreover, since
®k
P R& N

we observe from (B.7) and (B.6) that

k] 2
[ oW —wihen |
(B.8) limsup |y x —9®* ® SI(VN_k)HZ < lim sup T
N—oo N—o0 ”W[ ]¢[ ]”2
N YN




DERIVATION OF THE GROSS-PITAEVSKII EQUATION 361

Now we have

[ Wi

N
= / ax [1— [T =op)? | Wi Cugrn o xm] [T o)

i<j<k,i<k<j j=1

N , N
CZZ/an)ij[ngc](xk+1,..-,xN)] 1_[1 |§0(xj)|2
]=

i<k j=1

A

k k
< CNkatllp|2, Wi pl)2

by using (B.2) and Sobolev inequality in x; (see Lemma 6.4, part i)). By (B.8) and
£ < 1, this proves (B.4).
Finally, we prove (B.3). To this end we observe that

N N
1
B9 - HvWndw) =) Lign +ee ) Uxm—xj| <Oy
Jj=1 J#m
N N Va),-j Va),-m
_Z Z l—wij 1—ow oN
i=1j,m#i,j#m Y o
where
j j —wm

m#j
Note that

fWJ%EN Liyn =/W1% Lipn VN =/ Wi Vion Vivn .

From (B.9) we find, by using (B.1), Wy < W}lk] and by applying the Sobolev type
inequalities of Lemma 6.4 and the permutational symmetries,

(B.10) (WNoN. HNWN N )
N N
=3 [ WhiviewPre 3 [ @iyl <Olpn P
j=1 j#m

N N
I B
N1 —w;

-
i=1jm#i,j#m Y "

2 2
= Nlolz [wifel! |+ eV = Dallgliy [w e

2
+ NN = DNV =2)a g3 [ W6
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for any ¢ > 0. From (B.6), and since ¢ < 1, we have

W, 44
(B.11) ( NON Hy NON >§CN
IWnén | IWhén |
which completes the proof of (B.3). O

Appendix C. Trapped condensates

In this Appendix we show that Theorem 2.2 can be applied to the ground
state of interacting Bose-Hamiltonians with a trap. Recall the definition of the
Hamiltonian Hp without a trap from (2.1), and define

N N
HY® = Hy + Z Vet (x/) = > (=Aj + Vex(x))) + Y Vv (xi — x))
j=1 Jj=1 i<j
with a smooth trapping potential Vex; > 0 satisfying lim| x| o0 Vext(x) = 0o . Denote
by w;{,ap the positive normalized ground state vector of H;\r]ap. The corresponding
Gross-Pitaevskii energy functional is given by

€I () = f dx (IVP)2 + Ve (Ol (1)1 + daolg ()1*)

and we denote by (/ﬁg;p the L2-normalized, positive minimizer of % P. As proven

in [16], the ground state energy per particle is given by minimum value of %th;p as

N — o0,

(C 1) (wtrap Htrapwtrap) trap (¢trap)
and the one-particle marginal density y](vl{ rap associated with wt P satisfies VI(vl Zrap —

|per ) (Pep | (with convergence in the trace-norm). From (C.1), (¥ nF, Hy P yn’) <
CN andsince Hy < H “% we obtain that Yy P satisfies (2.17). The goal of this
section is to prove in Proposition C.2 below that v, P satisfies the asymptotic
factorization property (2.18). From Theorem 2.2 we therefore immediately obtain

the following corollary:

COROLLARY C.1. Suppose V satisfies the same conditions as in Theorem 2.2.
Let Yy ,s be the solution of the Schridinger equation without a trap, i0; YN =
Hyn YNy, but with initial data given by the trapped ground state, Y o := wtrdp.
Fork=1,...,N, let y(k) be the one-particle marginal density associated with
YN, Then, for everyt € [R and k > 1,

(C2) v = lo) (e ®F as N > o0

in the weak* topology of $Y(L2(R3K)). Here ¢, is the solution to the Gross-

Pitaevskii equation i0;¢; = —A@; + 8mwag|e: |?@; with initial data ¢;=o = trdp
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PROPOSITION C.2. For any fixed k = 1,2,..., there exists a sequence of
normalized wave functions, S(N k) e L2(R3WN=K) N > k, such that

Hwtrap trap]®k Q é](vN_k) ” —0 as N — .

We will prove this proposition only for k = 1, the proof for arbitrary k > 1
can be obtained similarly. For brevity, we set £y = EJ(VN_I). For the proof, we
make use of the following three lemmas.

LEMMA C.3. There exists a constant C > 0 independent of R, N such that
(C.3) 11061 > Rypy" | < Ce™®
where 1(s > A) denotes the characteristic function of the interval [A, 00).
LEMMA C.4. We have ¢, rap(x) > 0 for all x € R3. Moreover,
(1= A)ggpll <00, (dgp VeulX)dgp) <00
and there exists a constant C > 0 such that

11()x| > Ryl < Ce R

forall R > 0.
LEMMA C.5. For fixed R >0, N € N define £y € L2(R3N D) py
trap
3 ! trap 2 WN (Xl XN—I)
RGN ) = / vy [ (rp) 2 P TN
f|x1|<R dxy |¢tGr?ap(X1)|2 Ix1|<R trap( D
where Xn_1 = (x2, ..., xn). Then we have
(C4)

/dXN 1/| | RdX1 ’lﬂNp(xl,XN 1) — b (x1) RN (XN —1) <CRdN,

where cg < 00 is independent of N and dy is independent of R and satisfies
dy —>0as N — oo.

Using these three lemmas we can prove Proposition C.2.

Proof of Proposition C.2 for k = 1.. Using the notation introduced in Lemma
C.5 we have

(€35 Yy® oy @Er >

fde I/dxl 5 e xy—1) — S8R (o) Ry (xy—1)
/ dxy_1 /| U0 — g xR (-

/dXN 1[| N dxp [Y NP (%) — par (x1)ER, ¥ (Xn—1)|?

<crdy +Ce R
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where we used Lemma C.5 to bound the term on the second line, and Lemmas C.3
and C.4 to bound the term on the third line. Equation (C.5) implies that
trap b ® ER N
v ||¢“a" RErN|
2 IIwtrap or @RV |
— vy —¢ trap Er NIl

Now choose a sequence RN such that Ry — oo and cRNdN —0as N — oo.

Then, taking £y = SRN,N/”ERN,NH we clearly have ||£x| = 1 for all N, and, by
(C.5) and (C.6),

wtrap ¢trap E R,N
RN

(C.6)

||1ﬂtrap trap(X)SNH -0 as N — 00. O

We still have to prove Lemmas C.3, C.4 and C.5. Lemma C.4 is a standard
result which follows from the fact that ¢p S is the solution of the elliptic nonlinear
eigenvalue equation

(C.7) —Adgp + Vextbgp +87aoldsy PG = ndGp

with some constant . Lemma C.5 has been proven in [16], more precisely, it
follows from equation (13) of [16] by noticing that the two terms in the parenthesis
in this equation converge to zero, uniformly in R, because of equation (7) and
Lemma 1 in [16]. It only remains to prove Lemma C.3. To this end we use the
following two lemmas.

LEMMA C.6. Let y € C*®°(R) with y(s) =0ifs <1 and x(s) =1ifs > 2,
and let f € C(R) be a monotonically increasing function with sup,, | f'(x)| < co.
Then we have, for R > 0 large enough,

x (e l/R) (H =1 (a2 = En ) 2(x11/R) = x(1x11/ R,

rap

where EN denotes the ground state energy of H y
Proof. Define

N N
Hy", Z —Aj + Veu(x) + > VN (xi—x;))

= 2<i<j

and let EN—l = infa(HIt\r,El). Moreover, we define J;afl € L2([R§3(N_1)) to be

the positive normalized ground state of I-?I[\r,ap

Vv (x) 20,
€8 x(xil/R)(Hy® =1 (51D = En ) x(x11/R)
11/ R) (AR + VesCen) = | f (512 = Ex ) x(1|/R)

111/ B (Vexs(1) = € = (En — En-1))

_1- Then we have, since —A; > 0 and

A%

v
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where we used the assumption | /| < C. Next we remark that there exists a constant
C > 0 such that
En<En_1+C for all N .

In fact (using the symmetry of the wave function),
(C9)  En = by @VUNT\ H b ®VNT))
= En—1+ (88 (=1 + Vex(x1)) 53)
+ (dp @ UNTy (N = DN?V(NG1 = x2))gg’ @ VyTs)
< En-1+C (1= 8y |17 + Clggp  Vexx1)dgp )
<Ey_1+C

where we used the operator inequality W(x; — x2) < C|[W | 1(1 — A1)? and
Lemma C.4. Since lim|y|— o0 Vext(x) = oo, the lemma now follows from (C.8). O

LEMMA C.7. Suppose that f, x are as in Lemma C.6. Then we have, for R
large enough,

(C.10) le? 1D x(erl/RyW "Il < Cr

for some constant Cg depending on R but not on N.
Proof. We compute

PACH (Htrap — En)e/(x1D

HS | f/(x1)2 = En +i (pl TR R rey pl),

with p; = —i V. Therefore, for R large enough,
(€11 Re(e/ P (i |/ Ry,
S (g ( trap EN) —f(x1]) f(|x1|))((|x1|/R)1p“ap>
= /Gy Py (x11/R),

(HNP =1 (xiDP = En ) x(xil/Rye? =10y )
> [le/ Dy (x1l/RywyI1?
where we used Lemma C.6. On the other hand

(€12) Re(e/ D y(xi1/R)wRY.
eSUxi) (H;\r,ap—EN) —f(x1D) f(IX1I)X(|x1|/R)1/,trap>
e/ D l/ Ryl e/ 0 (HP = En) x(il/ Ry

e/ Dy (eal/ RyWRP I e/ 0D [P x(al/R) | wrig?

A

A
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because (H y v _ g )wmp 0. Combining (C.11) and (C.12) we obtain that, for
R large enough,

e/ Dgeal/ R = [ 0 [y (Lo /80 [y
Next we note that
(AN, x(|x1]/R)]

/
S X1 _ X1 R
= 2R (/R Vi + B2 (/R + R 1%.
1 1

Since f is monotone increasing, we see that

(C.13) e 1Dy /<|x1|/R>ﬁ < Ce/CP,
H s X X/BY | ot rR)
|x1] -
and
Hemxl Dy (lx11/R)| < CefCR.

The energy estimate (C.1) and Vy > 0 imply that |V wtrapH < C uniformly in N.
From these estimates the lemma follows. O

Proof of Lemma C.3. Suppose yx is as in Lemmas C.6 and C.7. For a fixed Ry
large enough, we have, by Lemma C.7,

ety 5P < lle® iy (x11/Ro)WRPI + lle™ T (1= x(1x11/Ro)) ¥yl < C.
Therefore,

11(x1] > Ry NI < lle ™ 1(|x1| > R)e*tly P < Ce™R. O

Appendix D. Properties of the one-body scattering solution 1 — w(x)

In this section we prove parts i) and iii) of Lemma 5.1.

LEMMA D.1. Suppose that V > 0 is smooth, spherical symmetric with com-
pact support and with scattering length ag. Let

(D.1) p=supr V(r)-l—/oodrr V(r),

r>0

and suppose @go(x) is the solution of
1
(D.2) (—A—i—EV) 0o =20 with @9 —>1 as|x|—o0.

i) There exists Coy > 0, depending on V., such that Co < @o(x) <1 for all x € R>.
Moreover there exists a universal constant ¢ such that

(D.3) l—cp<g@o(x)<1  forallx e R>.
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ii) There exists a universal constant ¢ > 0 such that

ao 0
(D.4) [Voo(x)| < CW’ Voo (x)| < Cﬂ and  |V?@o(x)| < CW.

Moreover there are constant Cy, Ca, depending on the potential V', such that
(D.5) IVoo(x)| <C1 Vg0l < Ca.

Proof. Let R be such that supp V C {x € R3 : |x| < R}, and let a¢ denote the
scattering length of V. Then we fix R > R such that ag/ R < min (p, 1/2), with p
defined in (D.1).

In order to prove part i), we observe that, for [x| > R, ¢o(x) = 1 —ag/|x|.
Hence

1 -
(D.6) Efwo(x)fl, and l—p=<go(x) <1, for [x| = R.

Next, by Harnack principle the ratio between the supremum and the infimum of
@o in a given ball is bounded: therefore ¢¢ is bounded away from zero in the
ball |x| < R and thus there exists Co > 0 such that @o(x) = Cy for all x € R3.
Moreover, by the maximum principle, and since, from (D.2), —Agg < 0, it follows
that ¢g (x) < 1, for all x € R3. To prove (D.3) for |x| < R, we write o (x) =m(r)/r,
with r = |x|. Then m’(R) = 1, and, from (D.2),

(D.7) —m"(r) + %V(r)m(r) =0.

Since 0 < po(x) < 1, it follows that m(0) = 0 and 0 < m(r)/r < 1. Therefore, for
r <R,

R
D8)  m'(r)=m'(R)— dsm”(s)—l—% / ds s V(s) (S)

oo
zl—c/ dssV(s)>1—cp
0

and

(D.9) m(r)z/rdsm(s)>r(1 —cp) = (po(r)—ﬁ>l —cp forall r <R.
0

The last equation, together with (D.6), implies (D.3).
Next we prove ii). For |x| > R, we have ¢o(x) = 1 —ap/|x| and thus
ap ao P

(D.10) IVgo(x)| < —= < =—— < —,  for |x| > R,
x| = R|x| ~ x|
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by definition of R. Next, for |x| < R, we write ¢o(x) = m(r)/r, with r = |x|.
Then

(D.11) Vo (x)| =

1 r 1 r N
= ‘—/ dsm”(s)——z/ ds/ de//(K)‘
rJo r=Jo 0

1 r
= —2/ dickm” (k) ,
r=Jo

|m’(r)r2—m(r)|

because m” (k) > 0. From (D.7) we obtain

(D.12) Vool = 505 [ de?Vi0 D < L0
2r2 Jo x|?

because 8ag = [ V(x)po(x) (see Lemma 5.1), part iv). Moreover, again from
(D.11) and (D.7), we have

1 (7 sup,o k2 V(x
(D.13)  [Veo(x)| 5—/ dic 2V (1) ") <SPz KT VE) _ o
2r2 Jo K r r

Together with (D.10) we obtain the first two inequalities in (D.4). From (D.10) and
from the first inequality in (D.13), it also follows that there exists C1, depending
on the bounded potential V, such that |Vgo(x)| < C;. To prove the second bounds
in (D.4) and (D.5), we note that
ao o

(D.14) Vool =5 < 1m
by the definition of R. For |x| < R, we have (expanding m(r) and m’(r) and using
that m(0) = 0)

for |x| > R,

me) o) e

3
1 () (s)

= ‘EV( )m il r3/0 ds s2 V(s)mss
.

upy0 52V () _ p
> = Cr—z.

-2

(D.15) V20 (x)| < \

r

The last equation, together with (D.14), implies the third bound in (D.4). Moreover,
from (D.14) and the second line in (D.15), it also follows that there exists C,,
depending on the bounded potential V, such that |VZ¢q(x)| < Cs. O

Proof of Lemma 5.1, parts i) and iii). By scaling 1 —w(x) = ¢o(N x), with

@o defined in Lemma D.1. Therefore part i) of Lemma 5.1 follows immediately
by part i) of Lemma D.1, and part iii) of Lemma 5.1 follows from (D.4) and (D.5).
d
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