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Abstract

Consider a system of N bosons in three dimensions interacting via a repulsive
short range pair potential N 2V.N.xi � xj //, where xD .x1; : : : ; xN / denotes the
positions of the particles. Let HN denote the Hamiltonian of the system and let
 N;t be the solution to the Schrödinger equation. Suppose that the initial data
 N;0 satisfies the energy condition

h N;0;H
k
N N;0i � C

kN k

for k D 1; 2; : : : . We also assume that the k-particle density matrices of the initial
state are asymptotically factorized as N !1. We prove that the k-particle density
matrices of  N;t are also asymptotically factorized and the one particle orbital
wave function solves the Gross-Pitaevskii equation, a cubic nonlinear Schrödinger
equation with the coupling constant given by the scattering length of the poten-
tial V . We also prove the same conclusion if the energy condition holds only for
k D 1 but the factorization of  N;0 is assumed in a stronger sense.

1. Introduction

Bose-Einstein condensation states that at a very low temperature Bose systems
with a pair interaction exhibit a collective mode, the Bose-Einstein condensate. If
one neglects the interaction and treats all bosons as independent particles, then
Bose-Einstein condensation is a simple exercise [15]. The many-body effects were
traditionally treated by the Bogoliubov approximation, which postulates that the ra-
tio between the noncondensate and the condensate is small. The coupling constant
�=8� obtained by the Bogoliubov approximation is the semiclassical approxima-
tion of the scattering length a0 of the pair potential. To recover the scattering length,
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one needs to perform a higher order diagrammatic re-summation, a procedure that
yet lacks mathematical rigor for interacting systems.

Gross [12], [13] and Pitaevskii [20] proposed to model the many-body effects
by a nonlinear on-site self interaction of a complex order parameter (the “conden-
sate wave function”). The strength of the nonlinear interaction in this model is
given by the scattering length a0. The Gross-Pitaevskii (GP) equation is given by
(1.1)

i@tut D��ut C � jut j
2ut D

ıE.u; Nu/

ı Nu

ˇ̌̌
ut

; E.u; Nu/D

Z
R3

h
jruj2C

�

2
juj4

i
;

where E is the Gross-Pitaevskii energy functional and � D 8�a0. The Gross-
Pitaevskii equation is a phenomenological mean field type equation and its validity
needs to be established from the Schrödinger equation with the Hamiltonian given
by the pair interaction.

The first rigorous result concerning the many-body effects of the Bose gas
was Dyson’s estimate of the ground state energy. Dyson [5] proved the correct
leading upper bound to the energy and a lower bound off by a factor around 10.
Dyson’s upper bound was obtained by using trial functions with short range two-
body correlations. This short scale structure is crucial for the emergence of the
scattering length and thus for the correct energy. The matching lower bound to the
leading order in the low density regime was obtained by Lieb and Yngvason [19].
Lieb and Seiringer [16] later proved that the minimizer of the Gross-Pitaevskii
energy functional correctly describes the ground state of an N -boson system in the
limit N !1 provided that the length scale of the pair potential is of order 1=N .
For a review on related results, see [17].

The experiments on the Bose-Einstein condensation were conducted by ob-
serving the dynamics of the condensate when the confining traps are removed.
Since the ground state of the system with traps will no longer be the ground state
without traps, the validity of the Gross-Pitaevskii equation for predicting the ex-
perimental outcomes asserts that the approximation of the many-body effects by a
nonlinear on-site self interaction of the order parameter applies to a certain class
of excited states and their subsequent time evolution as well.

In this paper, we shall prove that the Gross-Pitaevskii equation actually de-
scribes the dynamics of a large class of initial states. The allowed initial states
include wave functions with the characteristic short scale two-body correlation
structure of the ground state and also wave functions of product form. Notice
that product wave functions do not have this characteristic short scale structure,
nevertheless the GP evolution equation applies to them. It should be noted that our
theorems concern only the evolution of the one particle density matrix but not its
energy. In fact, for product initial states, the GP theory is correct on the level of
density matrix, but not on the level of the energy. We shall discuss this surprising
fact in more details in Section 3.
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2. The main results

Recall that the Gross-Pitaevskii energy functional correctly describes the en-
ergy in the large N limit provided that the scattering length is of order 1=N [18].
We thus choose the interaction potential to be

VN .x/ WDN
2 V .Nx/D

1

N
N 3V .Nx/ :

This potential can also be viewed as an approximate delta function on scale 1=N
with a prefactor 1=N which we will interpret as the mean field average. The Hamil-
tonian of the Bose system is given by

(2.1) HN WD �

NX
jD1

�j C

NX
j<k

VN .xj � xk/ ; VN .x/ WDN
2 V .Nx/ :

The support of the initial state will not be scaled with N . Thus the density of the
system is N and the typical inter-particle distance is N�1=3, which is much bigger
than the length scale of the potential. The system is really a dilute gas scaled in
such a way that the size of the total system is independent of N .

The dynamics of the system is governed by the Schrödinger equation

(2.2) i@t N;t DHN N;t

for the wave function  N;t 2 L2s .R
3N /, the subspace of L2.R3N / consisting of

all functions symmetric with respect to any permutation of the N particles. We
choose  N;t to have L2-norm equal to one, k N;tk D 1.

Instead of describing the system through the wave function, we can describe
it by a density matrix N 2L1.L2s .R

3N //, where L1.L2s .R
3N // denotes the space

of trace class operators on the Hilbert space L2s .R
3N /. A density matrix is a non-

negative trace class operator with trace equal to one. For the pure state described
by the wave function  N , the density matrix N D j N ih N j is the orthogonal
projection onto  N . The time evolution of a density matrix N is determined by
the Heisenberg equation

(2.3) i@tN;t D ŒHN ; N;t � ;

where ŒA; B�D AB �BA is the commutator.
Introduce the shorthand notation

x WD .x1; x2; : : : ; xN /; xk WD .x1; : : : ; xk/; xN�k WD .xkC1; : : : ; xN /

and similarly for the primed variables, x0
k
WD .x01; : : : ; x

0
k
/. For k D 1; : : : ; N , the

k-particle reduced density matrix (or k-particle marginal) associated with N;t is
the nonnegative operator in L1.L2s .R

3k// defined by taking the partial trace of
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N;t over N � k variables. In other words, the kernel of  .k/N;t is given by

(2.4) 
.k/
N;t .xkI x

0
k/ WD

Z
dxN�kN;t

�
xk; xN�kI x0k; xN�k

�
:

Our normalization implies that Tr  .k/N;t D 1 for all kD 1; : : : ; N and for every t 2R.
We now define a topology on the density matrices. We denote by L1

k
D

L1.L2.R3k// the space of trace class operators acting on the Hilbert spaceL2.R3k/.
Moreover, Kk D K.L2.R3k// will denote the space of compact operators acting
on L2.R3k/ equipped with the operator norm, k � kKk

WD k � k. Since L1
k
D K�

k
, we

can define the weak* topology on L1.L2.R3k//, i.e., !n! ! if and only if for
every compact operator J on L2.R3k/ we have

(2.5) lim
n!1

Tr J !n D Tr J! :

Throughout the paper we will assume that the unscaled interaction potential,
V.x/, is a nonnegative, smooth, spherically symmetric function with a compact
support in the ball of radius R,

(2.6) supp V � fx 2 R3 W jxj �Rg :

With the notation r D jxj, we will sometimes write V.r/ for V.x/. We define the
following dimensionless quantity to measure the strength of V

(2.7) � WD sup
r�0

r2 V.r/C

Z 1
0

dr rV .r/ :

Let f be the zero energy scattering solution associated with V with normal-
ization limjxj!1 f .x/D 1. We will write f .x/D 1�w0.x/. By definition, this
function satisfies the equation

(2.8)
h
��C

1

2
V.x/

i
.1�w0.x//D 0 ;

and limjxj!1w0.x/D 0. The scattering length a0 of V is defined by

(2.9) a0 WD lim
jxj!1

w0.x/jxj :

Since V has a compact support (2.6), we have

(2.10) f .x/D 1�
a0

jxj
jxj �R :

From the zero energy equation, we also have the identity

(2.11)
Z

dx V.x/.1�w0.x//D 8�a0 :
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By scaling, the scattering length of the potential VN .x/ is a WD a0=N and the zero
energy scattering equation for the potential VN is given by

(2.12)
�
��C

1

2
VN .x/

�
.1�w.x//D 0

where w.x/ WD w0.Nx/. Note that w.x/D a=jxj, for jxj �R=N .
We can now state our main theorems.

THEOREM 2.1. Suppose V � 0 is a smooth, compactly supported, spherically
symmetric potential with scattering length a0 and assume that � (defined in (2.7)) is
small enough. We consider a family of systems described by initial wave functions
 N 2 L

2
s .R

3N / such that

(2.13) h N ;H
k
N N i � C

kN k

for all k � 1. We assume that the marginal densities associated with  N factorize
in the limit N !1, i.e., there is a function ' 2 L2.R3/ such that for every k � 1,

(2.14) 
.k/
N ! j'ih'j

˝k

as N !1 with respect to the weak* topology of L1.L2.R3k//. Then ' 2H 1.R3/,
and for every fixed k � 1 and t 2 R, we have

(2.15) 
.k/
N;t ! j't ih't j

˝k

with respect to the same topology. Here 't 2H 1.R3/ is the solution of the nonlin-
ear Gross-Pitaevskii equation

(2.16) i@t't D��'t C 8�a0j't j
2't

with initial condition 'tD0 D '.

Using an approximation argument, we can relax the energy condition (2.13),
and only assume that h N ;HN N i �CN . However, in order to apply our approx-
imation argument, we need to assume stronger asymptotic factorization properties
on  N .

THEOREM 2.2. Suppose V � 0 is a smooth, compactly supported, spherically
symmetric potential with scattering length a0 and assume that � (defined in (2.7)) is
small enough. We consider a family of systems described by initial wave functions
 N 2 L

2
s .R

3N / such that

(2.17) h N ;HN N i � CN :

We assume asymptotic factorization of  N in the sense that there exists ' 2L2.R3/
and, for every N , and every 1� k �N , there exists a �.N�k/N 2L2.R3.N�k// with

k�
.N�k/
N k D 1 such that

(2.18) k N �'
˝k
˝ �

.N�k/
N k! 0
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as N !1. This implies, in particular, that for every k � 1,

(2.19) 
.k/
N ! j'ih'j

˝k

as N !1 with respect to the weak* topology of L1.L2.R3k//. Then ' 2H 1.R3/,
and for every fixed k � 1 and t 2 R we have

(2.20) 
.k/
N;t ! j't ih't j

˝k

with respect to the same topology. Here 't 2H 1.R3/ is the solution of the nonlin-
ear Gross-Pitaevskii equation

(2.21) i@t't D��'t C 8�a0j't j
2't

with 'tD0 D '.

Both theorems have analogous versions for initial data describing mixed states
(that is N is not an orthogonal projection). For example, suppose that N is a
family of density matrices satisfying

(2.22) TrHk
N N � C

kN k and 
.k/
N ! !˝k0

where !0 is a one-particle density matrix and

!˝k0 .xkI x0k/D
kY

jD1

!0.xj I x
0
j /:

Then for every t 2 R and k � 1 we have

(2.23) 
.k/
N;t ! !˝kt

where !t is the solution of the nonlinear Hartree equation

(2.24) i@t!t D Œ��C 8�a0%t ; !t � ; %t .x/D !t .xI x/; !tD0 D !0:

The last equation is equivalent to (2.16) if !t D j't ih't j.
Lieb and Seiringer [16] have proved that, for pure states, the assumption


.1/
N ! j'ih'j as N !1

implies automatically (2.14) for every k � 1 (see the argument after Theorem 1 in
that paper)1. For mixed initial states we still need the second condition in (2.22)
for all k � 1 in order to prove (2.23).

We also remark that the weak convergence in (2.20) implies convergence with
respect to the trace norm

Tr
ˇ̌̌

.k/
N;t � j't ih't j

˝k
ˇ̌̌
! 0 as N !1

for every fixed k 2 N and t 2 R. In fact, testing (2.20) against the compact ob-
servable J .k/ D j't ih't j˝k , and using the fact that . .k/N;t /

2 � 
.k/
N;t , it is simple to

1We thank Robert Seiringer for pointing out this result to us.
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see that  .k/N;t ! j't ih't j
˝k as N !1 with respect to the Hilbert-Schmidt norm

topology. This of course implies convergence in the operator norm. Since the trace
norm of  .k/N;t equals one for every N , we thus obtain convergence in the trace norm
topology by the Grümm’s Convergence Theorem (see [22, Th. 2.19]). We would
like to thank Alessandro Michelangeli for pointing out this argument to us.

Now we comment on the assumption of asymptotic factorization (2.18) for
the initial data  N . The most natural example that satisfies this condition is the
factorized wave function  N .x/D

QN
jD1 '.xj /. If, additionally, ' 2H 1.R3/, then

(2.17) is also satisfied by the Schwarz and Sobolev inequalities. The evolution of
 N is therefore governed by the GP equation according to Theorem 2.2. This is,
however, somewhat surprising because the emergence of the scattering length in
the GP equation indicates that the wave function has a characteristic short scale
correlation structure, which is clearly absent in the factorized initial data. We shall
discuss this issue in more detail in Section 3.

From the physical point of view, however, the product initial wave function is
not the most relevant one. In real physical experiments, the initial state is prepared
by cooling down a trapped Bose gas at extremely low temperatures. This state can
be modeled by the ground state  trap

N of the Hamiltonian

H
trap
N D

NX
jD1

�
��j CVext.xj /

�
C

NX
i<j

VN .xi � xj /

with a trapping potential Vext.x/!1 as jxj !1. In Appendix C, we prove that
assumptions (2.17) and (2.18) are satisfied for  trap

N . In other words, Theorem 2.2
can be used to describe the evolution of the ground state of H trap

N , after the traps
are removed (see Corollary C.1). This provides a mathematically rigorous analysis
of recent experiments in condensed matter physics, where the evolution of initially
trapped Bose-Einstein condensates is observed.

In Appendix B, we show that Theorem 2.2 can also be applied to a general
class of initial data, which are in some sense close to the ground state of the Hamil-
tonian H trap

N . The ground state of a dilute Bose system with interaction potential
VN is believed to be very close to the form

(2.25) WN .x/ WD
Y
i<j

f .N.xi � xj //;

where f D 1�w0 is the zero-energy solution (2.8). We remark that Dyson [5]
used a different function which was not symmetric, but the short distance behavior
was the same as in WN . An example of a family of initial wave functions which
have local structure given by W is given by wave functions of the type

(2.26)  N .x/DWN .x/
NY
jD1

'.xj /
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where ' 2H 1.R3/. Due to the factor WN , this function carries the characteristic
short scale structure of the ground state. We will prove in Lemma B.1 that wave
functions of the form (2.26) (with correlations cutoff at length scales `� N�1)
satisfy the assumptions (2.17) and (2.18).

Part of Theorem 2.2 was proved in [8] for systems with the pair interaction cut
off whenever three or more particles are much closer to each other than the mean
particle distance, N�1=3. For this model, it was proved that any limiting point
of  .k/N satisfies the infinite BBGKY hierarchy (see �3) with coupling constant
8�a0. The uniqueness of the solution to the hierarchy was established in [9]. In
the current paper we remove this cutoff and establish the a priori bounds needed
for the uniqueness theorem in [9].

The Hamiltonian (2.1) is a special case of the Hamiltonian

(2.27) Hˇ;N WD �

NX
jD1

�j C
1

N

NX
i<j

N 3ˇV.N ˇ .xi � xj //

introduced in [6] and [9]. In [9] we have proved a version of Theorem 2.2 for 0 <
ˇ < 1=2 provided the initial data is given by a product state  N .x/D

Qk
jD1 '.xj /

for some ' 2H 1.R3/. In this case the limiting macroscopic equation was given
by

i@t't D��'t C b0j't j
2't ;

with b0D
R

dx V.x/. Note that N 3ˇV.N ˇx/ is an approximate delta function on a
scale much bigger than O.1=N/, the scattering length of 1

N
VN . This explains why

the strength of the on-site potential is given by the semiclassical approximation b0
of the 8�a0. With the techniques used in this paper, it is straightforward to extend
the result of [9] to all ˇ < 1 with the same coefficient b0 in the limiting one-body
equation provided that � (from (2.7)) is small enough. Combining this comment
with Theorems 2.1 and 2.2, we have shown that the one particle density matrix for
the N -body Schrödinger equation with Hamiltonian given by (2.27) converges to
the Gross-Pitaevskii equation with coupling constant given by

(2.28) � D

(
b0; if 0 < ˇ < 1

8�a0; if ˇ D 1 :

The case ˇ D 0 is the mean-field case and the limiting one-body equation is
the Hartree equation:

(2.29) i@t't D��'t C .V � j't j
2/'t :

This was established by Hepp [14] for smooth potential. Ginibre and Velo [11]
considered singular potentials but with a specific initial data based on second
quantized formalism. Spohn [23] introduced a new approach to this problem using
the BBGKY hierarchy. Recent progresses on mean-field limit of quantum dynam-
ics have been based on the BBGKY hierarchy and we mention only a few: the
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Coulomb potential case [3], [10], the pseudo-relativistic Hamiltonian with Newto-
nian interaction [7], and the delta function interaction in one dimension by Adami,
Bardos, Golse and Teta [1] [2]. In next section, we review the BBGKY hierarchy
and the two-scale nature of the eigenfunctions of interacting Bose systems.

3. The BBGKY hierarchy

The time evolution of the density matrices  .k/N;t , for k D 1; : : : ; N , is given
by a hierarchy of N equations, commonly known as the BBGKY hierarchy:

(3.1) i@t
.k/
N;t D

kX
jD1

h
��j ; 

.k/
N;t

i
C

kX
i<j

h
VN .xj � xi /; 

.k/
N;t

i

C .N � k/

kX
jD1

TrkC1
h
VN .xj � xkC1/; 

.kC1/
N;t

i
for k D 1; : : : ; N (we use the convention that  .k/N;t D 0 if k > N ). Here TrkC1
denotes the partial trace over the .kC1/-th particle. In particular, the density matrix

.1/
N;t .x1I x

0
1/ satisfies the equation

(3.2) i@t
.1/
N;t .x1I x

0
1/D .��x1

C�x01
/
.1/
N;t .x1I x

0
1/

C.N � 1/

Z
dx2

�
VN .x1� x2/�VN .x

0
1� x2/

�

.2/
N;t .x1; x2I x

0
1; x2/:

To close this equation, one needs to assume some relation between  .2/N;t and  .1/N;t .
The simplest assumption would be the factorization property, i.e.,

(3.3) 
.2/
N;t .x1; x2I x

0
1; x
0
2/D 

.1/
N;t .x1I x

0
1/

.1/
N;t .x2I x

0
2/ :

This does not hold for finite N , but it may hold for a limit point  .k/t of  .k/N;t as
N !1, i.e.,

(3.4) 
.2/
t .x1; x2I x

0
1; x
0
2/D 

.1/
t .x1I x

0
1/

.1/
t .x2I x

0
2/ :

Under this assumption,  .1/t satisfies the limiting equation
(3.5)
i@t

.1/
t .x1I x

0
1/D .��x1

C�x01
/
.1/
t .x1I x

0
1/C

�
Qt .x1/�Qt .x

0
1/
�

.1/
t .x1I x

0
1/

where

(3.6) Qt .x/ WD lim
N!1

N

Z
dyVN .x�y/%t .y/; %t .x/D 

.1/
t .xI x/ :

If %t .x/ is continuous, then Qt is given by

Qt .x/D b0%t .x/:
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Thus (3.5) gives the GP equation with a coupling constant � D b0 instead of � D
8�a0. This explains the case if ˇ < 1. For ˇ D 1, we note that b0=8� is the first
Born approximation to the scattering length a0 and the following inequality holds:

(3.7) a0 �
b0

8�
D

1

4�

Z
R3

1

2
V.x/ dx :

Recall that the ground state of a dilute Bose system with interaction potential VN
is believed to be very close to W.x/ (see (2.25)). We assume, for the moment, that
the ansatz,  t .x/DW.x/�t .x/ with �t a product function, holds for all time. The
reduced density matrices for  t .x/ satisfy
(3.8)

.2/
t .x1; x2I x

0
1; x
0
2/� f .N.x1� x2//f .N.x

0
1� x

0
2//

.1/
t .x1I x

0
1/

.1/
t .x2I x

0
2/ :

Together with (2.11) and the assumption that %t is smooth on scale 1=N , we have
(3.9)

lim
N!1

N

Z
dx2VN .x1� x2/

.2/
N;t .x1; x2I x

0
1; x2/D 8�a0

.1/
t .x1I x

0
1/%t .x1/ :

This formula is valid for jx1�x01j � 1=N . We have used that limjxj!1 f .x/D 1.
For pure states, this gives the GP equation with the correct dependence on the
scattering length.

Notice that the correlation in  .2/ occurs at the scale 1=N , which vanishes in
a weak limit and the product relation (3.4) will hold. However, this short distance
correlation shows up in the GP equation due to the singular potentialNVN .x1�x2/.
This phenomena occurs for the ground state as proved in [18]. Our task is to
characterize wave functions with this short scale structure and establish it for the
time evolved states. The key observation is the following proposition. Recall the
assumptions on V from Section 2 and that 1�w.x/ denotes the zero energy solution
to ��C 1

2
VN (2.12). We will use the short notation wij WD w.xi � xj /, rwij D

.rw/.xi � xj / (note that rwij D�rwj i ).

PROPOSITION 3.1 (H 2
N -energy estimate). Suppose that � (defined in (2.7)) is

small enough. Then, there exists a universal constant c > 0 such that, for every
 2 L2s .R

N /, and for every fixed indices i ¤ j , i; j D 1; : : : ; N , we have

(3.10) h ;H 2
N i � .1� c�/N.N � 1/

Z �
1�wij

�2
jrirj �ij j

2

where �ij defined by  D .1�wij /�ij .

If �ij is singular when xi approaches xj , thenrirj�ij cannot beL2-integrable.
This proposition thus shows that the short distance behavior of any function  with
h ;H 2

N i � CN
2 is given by .1�w.xi � xj // when xi is near xj .

We emphasized the importance of the local structure .1�w.xi � xj // for ob-
taining the scattering length a0. While Theorem 2.2 concerns only the one particle
density matrix in the weak limit and no statement on the local structure is made
at all, the validity of the GP equation does suggest the existence of this structure.
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For the initial data (2.26) beginning with this local structure, it simply means its
preservation by the dynamics. This is indeed the case if the local structure of the
initial data  is precise enough so that h ;H 2

N i � CN
2; see Proposition 3.1.

For the product initial state, there is no such structure to begin with. Theo-
rem 2.2 thus indicates that on some short length scale a local structure similar to
.1�w.xi � xj // forms in a very short time which approaches zero in the limit
N !1. Heuristically, notice that the two particle dynamics is described by the
operator

i@t ��x1
��x2

�VN .x1� x2/DN
2
�
i@T ��X1

��X2
�V.X1�X2/

�
where Xi DNxi and T DN 2t are the microscopic coordinates. The small positive
time behavior of the original wave function on the short length scale is the same as
the long time behavior in the microscopic coordinates. Clearly, we expect the long
time dynamics to be characterized by the relaxation to the zero energy solution.
This picture, however, is far from rigorous as the true N -body dynamics develops
higher order correlations as well.

On the other hand, the local structure .1�w.xi � xj // cannot be the only
singular piece of the wave function in positive time for product initial states. A
simple calculation shows that the energy per particle of a product initial state
 N .x/D

QN
jD1 '.xj / is given by

(3.11) lim
N!1

N�1h N ;HN N i D

Z
R3

dx jr'.x/j2C
b0

2

Z
R3

dx j'.x/j4

where b0 D
R
V . This is different from the GP energy functional (1.1) due to

the coupling constant. Since the energy is a constant of the motion, this implies
that the GP theory does not predict the evolution of the energy. If we grant that
the local structure .1�w.xi � xj // does form for positive time t > 0, then the
discrepancy in energy suggests that there is some energy on intermediate length
scales of order N�˛, 0 < ˛ < 1 which is not captured by the GP theory. This
excess energy apparently does not participate in the evolution of the density matrix
on length scale of order one which is the only scale that is visible by our weak
limit. We do not know if such a picture can be established rigorously.

Notation. We will denote an arbitrary constant by C . In general C can depend
on the choice of the unscaled potential V . Universal constants, independent of
V , will be denoted by c. We write f .N / D o.N ˛/ if there is ı > 0 such that
N�˛Cıf .N / ! 0 as N ! 1 (unless stated otherwise, this convergence does
not need to be uniform in the other relevant parameters). We also write f .N /�
g.N / if f .N /=g.N /D o.1/. Integrations without specified domains are always
understood on the whole space (R3, R3k or R3N according to the integrand) with
the Lebesgue measure.
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4. Proof of Theorems 2.1 and 2.2

In this section we present the main steps of the proofs and we reduce the
argument to a sequence of key theorems and propositions. These will be proven in
the rest of the paper.

We start with defining the space of density matrices that depend continuously
on the time parameter with respect to the weak* topology. To use the Arzelà-Ascoli
compactness argument, we will need to establish the concept of uniform continuity
in this space, thus we have to metrize the weak* topology.

Since Kk is separable, we can fix a dense countable subset of the unit ball of
Kk: we denote it by fJ .k/i gi�1 2 Kk , with kJ .k/i kKk

� 1 for all i � 1. Using the
operators J .k/i we define the following metric on L1

k
: for  .k/; N .k/ 2 L1

k
we set

(4.1) �k.
.k/; N .k// WD

1X
iD1

2�i
ˇ̌̌
Tr J .k/i

�
 .k/� N .k/

�ˇ̌̌
:

Then the topology induced by the metric �k and the weak* topology are equivalent
on the unit ball of L1

k
(see [21, Th. 3.16]) and hence on any ball of finite radius

as well. In other words, a uniformly bounded sequence  .k/N 2 L1
k

converges to

 .k/ 2L1
k

with respect to the weak* topology, if and only if �k.
.k/
N ;  .k//! 0 as

N !1.
For a fixed T > 0, let C.Œ0; T �;L1

k
/ be the space of functions of t 2 Œ0; T � with

values in L1
k

which are continuous with respect to the metric �k . On C.Œ0; T �;L1
k
/

we define the metric

(4.2) b�k. .k/.�/; N .k/.�// WD sup
t2Œ0;T �

�k.
.k/.t/; N .k/.t// :

Finally, we denote by �prod the topology on the space
L
k�1 C.Œ0; T �;L

1
k
/ given

by the product of the topologies generated by the metrics y�k on C.Œ0; T �;L1
k
/.

Proof of Theorem 2.1. The proof is divided in several steps.

Step 1. Compactness of �N;t D f
.k/
N;tgk�1. We set T > 0 and work on the

interval t 2 Œ0; T �. Negative times can be handled analogously. We will prove in
Theorem 6.1 that the sequence �.k/N;t Df

.k/
N;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ is compact

with respect to the product topology �prod defined above (we use the convention that

.k/
N;t D 0 if k > N ). Moreover, we also prove in Theorem 6.1, that any limit point

�1;t D f
.k/
1;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ is such that, for every k � 1,  .k/1;t � 0,

and  .k/1;t is symmetric with respect to permutations. In Proposition 6.3 we also
show that

(4.3) Tr .1��1/ : : : .1��k/ 
.k/
1;t � C

k
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for every t 2 Œ0; T � and every k� 1. Note that, for finiteN , the densities  .k/N;t do not
satisfy estimates such as (4.3) (at least not uniformly in N ), because they contain
a short scale structure. Only after taking the weak limit, we can prove (4.3).

Step 2. Convergence to the infinite hierarchy. In Theorem 7.1 we prove that
any limit point �1;t D f

.k/
1;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ of �N;t D f

.k/
N;tgk�1

with respect to the product topology �prod is a solution of the infinite hierarchy of
integral equations (k D 1; 2; : : :)
(4.4)


.k/
1;tD U.k/.t/

.k/
1;0�8�ia0

kX
jD1

Z t

0

dsU.k/.t�s/TrkC1
h
ı.xj � xkC1/; 

.kC1/
1;s

i
with initial data  .k/

1;0 D j'ih'j
˝k . Here TrkC1 denotes the partial trace over the

.kC 1/-th particle, and U.k/.t/ is the free evolution, whose action on k-particle
density matrices is given by

U.k/.t/ .k/ WD eit
Pk

jD1�j  .k/e�it
Pk

jD1�j :

Note that (4.4) is the (formal) limit of the N -particle BBGKY hierarchy (3.1) (writ-
ten in integral form) if we replace the limit of NVN .x/ with 8�a0ı.x/ (see (3.9)).

The one-particle wave function ' was introduced in (2.14). From (2.13) and
the positivity of the potential we note that

(4.5) CN � h N ; .HN CN/ N i �NTr .1��/  .1/N :

Since by (2.14),  .1/N ! j'ih'j as N !1, with respect to the weak * topology of
L1.L2.R3//, it follows from (4.5) that Tr .1��/j'ih'j � C , and therefore that
' 2H 1.R3/.

We remark here that the family of factorized densities,

(4.6) 
.k/
t D j't ih't j

˝k;

is a solution of the infinite hierarchy (4.4) if 't is the solution of the nonlin-
ear Gross-Pitaevskii equation (2.16) with initial data 'tD0 D '. The nonlinear
Schrödinger equation (2.16) is well posed in H 1.R3/ and it conserves the en-
ergy, E.'/ WD 1

2

R
jr'j2C 4�a0

R
j'j4. From ' 2 H 1.R3/, we thus obtain that

't 2H
1.R3/ for every t 2 R, with a uniformly bounded H 1-norm. Therefore

(4.7) Tr .1��1/ : : : .1��k/j't ih't j
˝k
� k'tk

k
H1 � C

k

for all t 2 R, and a constant C only depending on the H 1-norm of '.

Step 3. Uniqueness of the solution to the infinite hierarchy. In Section 9 of [9]
we proved the following theorem, which states the uniqueness of solution to the infi-
nite hierarchy (4.4) in the space of densities satisfying the a priori bound (4.3). The
proof of this theorem is based on a diagrammatic expansion of the solution of (4.4).
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THEOREM 4.1 ([9, Th. 9.1]). Suppose � D f .k/gk�1 2
L
k�1 L1

k
is such

that

(4.8) Tr .1��1/ : : : .1��k/
.k/
� C k :

Then, for any fixed T > 0, there exists at most one solution �t D f
.k/
t gk�1 2L

k�1 C.Œ0; T �;L
1
k
/ of (4.4) such that

(4.9) Tr .1��1/ : : : .1��k/
.k/
t � C

k

for all t 2 Œ0; T � and for all k � 1.

Step 4. Conclusion of the proof. From Steps 2 and 3 it follows that the se-
quence �N;t D f

.k/
N;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ is convergent with respect to the

product topology �prod; in fact a compact sequence with only one limit point is
always convergent. Since the family of densities �t D f

.k/
t gk�1 defined in (4.6)

satisfies (4.7) and it is a solution of (4.4), it follows that �N;t ! �t with respect
to the topology �prod. The estimates are uniform in t 2 Œ0; T �, thus we can also
conclude that y�k.

.k/
N;t ; 

.k/
t /! 0. In particular this implies that, for every fixed

k � 1, and t 2 Œ0; T �,  .k/N;t ! 
.k/
t with respect to the weak* topology of L1

k
. This

completes the proof of Theorem 2.1. �

Next we prove Theorem 2.2; to this end we regularize the initial wave function,
and then we apply the same arguments as in the proof of Theorem 2.1.

Proof of Theorem 2.2. Fix � > 0 and � 2 C10 .R/, with 0� �� 1, �.s/D 1,
for 0� s � 1, and �.s/D 0 if s � 2. We define the regularized initial wave function

z N WD
�.�HN =N/ N

k�.�HN =N/ N k
;

and we denote by z N;t the solution of the Schrödinger equation (2.2) with initial
data z N . Denote by z�N;t D fz

.k/
N;tg
1
kD1

the family of marginal densities associated

with z N;t . By convention, we set z .k/N;t WD 0 if k > N . The tilde in the notation
indicates the dependence on the cutoff parameter �. In Proposition 8.1, part i), we
prove that

(4.10) h z N;t ;H
k
N
z N;t i � zC

kN k

if � > 0 is sufficiently small (the constant zC depends on �). Moreover, using the
strong asymptotic factorization assumption (2.18), we prove in part iii) of Proposi-
tion 8.1 that for every J .k/ 2 Kk ,

(4.11) Tr J .k/
�
z
.k/
N � j'ih'j

˝k
�
! 0

as N !1. From (4.10) and (4.11), we observe that the assumptions (2.13) and
(2.14) of Theorem 2.1 are satisfied by the regularized wave function z N and by the
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regularized marginal densities z .k/N;t . Therefore, applying Theorem 2.1, we obtain
that, for every t 2 R and k � 1,

(4.12) z
.k/
N;t ! j't ih't j

˝k

where 't is the solution of (2.16).
It remains to prove that the densities  .k/N;t associated with the original wave

function  N;t (without cutoff �) converge and have the same limit as the regular-
ized densities z .k/N;t . This follows from Proposition 8.1, part ii), where we prove
that

k N;t � z N;tk D k N � z N k � C�
1=2 ;

where the constant C is independent of N and �. This implies that, for every
J .k/ 2 Kk , we have

(4.13)
ˇ̌̌
Tr J .k/

�

.k/
N;t � z

.k/
N;t

� ˇ̌̌
� C�1=2

where the constant C depends on J .k/, but is independent of N , k or �. Therefore,
for fixed k � 1, t 2 R, J .k/ 2 Kk , we have

(4.14)
ˇ̌̌
Tr J .k/

�

.k/
N;t � j't ih't j

˝k
�ˇ̌̌
�

ˇ̌̌
Tr J .k/

�

.k/
N;t � z

.k/
N;t

�ˇ̌̌
C

ˇ̌̌
Tr J .k/

�
z
.k/
N;t � j't ih't j

˝k
� ˇ̌̌

� C�1=2C
ˇ̌̌
Tr J .k/

�
z
.k/
N;t � j't ih't j

˝k
�ˇ̌̌
:

Since � > 0 was arbitrary, it follows from (4.12) that the left-hand side of (4.14)
converges to zero as N !1. This completes the proof of Theorem 2.2. �

5. Energy estimates

In this section we prove two energy estimates that are the most important new
tools used in the proof of the main theorem. Both estimates concern the smoothness
of the solution  N;t .x/ of the Schrödinger equation (2.2), uniformly in N (for N
large enough) and in t 2 R. However, due to the short scale structure of the inter-
action, VN , uniform smoothness, say in the x1 variable, cannot be expected near
the collision points jx1� xj j � 1=N , j D 2; 3; : : : ; N . The key observation is that
x1!  N;t .x/ will nevertheless be smooth away from these regimes, whose total
volume is negligible. For technical reasons, the excluded regime will be somewhat
larger, jx1 � xj j � `, but still with N`3� 1. The same statement holds for the
smoothness in an arbitrary but fixed number of variables, x1; : : : ; xk . This is the
content of our second energy estimate Proposition 5.3.

Our first energy estimate, Proposition 3.1, controls only two derivatives, but it
is more refined: it establishes smoothness of  N;t .x/ in the xi and xj variables (for
any fixed pair i; j ) after removing the explicit short scale factor .1�w.xi � xj //.
This factor represents the short scale effect of the two body interaction VN .xi �xj /
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on the wave function and it is responsible for the emergence of the scattering
length (2.9).

5.1. H 2
N Energy estimate. In this section, we shall prove Proposition 3.1. We

first collect some important properties of w.x/ (2.12) in the following lemma. This
lemma is an improved version of Lemma A.2 from [8]. By defining � somewhat
differently (see (2.7)), we also correct a minor error in (A.6) and (A.19) of [8].

LEMMA 5.1. Suppose V � 0 is smooth, spherical symmetric, compactly sup-
ported and with scattering length a0. Let

(5.1) �D sup
r�0

r2V.r/C

Z 1
0

dr r V .r/

and let aD a0=N be the scattering length of the rescaled potential VN . Then the
following hold with constants uniform in N :

i) There exists a constant C0 > 0, which depends on the unscaled potential V ,
such that

(5.2) C0 � 1�w.x/� 1 for all x 2 R3:

Moreover, there exists a universal constant c such that

(5.3) 1� c� � 1�w.x/� 1 for all x 2 R3 :

ii) Let R be such that suppV � fx 2 R3 W jxj �Rg. Then

w.x/D
a

jxj
for all x with jxj>R=N :

iii) There exist constants C1, C2, depending on V , such that

(5.4) jrw.x/j � C1N; jr
2w.x/j � C2N

2 ; for all x 2 R3 :

Moreover, there exists a universal constant c such that
(5.5)
jrw.x/j � c

a

jxj2
; jrw.x/j � c

�

jxj
; jr2w.x/j � c

�

jxj2
for all x 2 R3 :

iv) We have

(5.6) 8�aD

Z
dx VN .x/.1�w.x// :

Proof. We prove parts i) and iii) in Appendix D. Part ii) follows trivially by the
definition of the scattering length a and by the fact that the potential has compact
support. As for part iv), note that, due to the spherical symmetry of VN and w.x/,
with the notation r D jxj, the function g.r/ WD rf .r/D r.1�w.r// satisfies

�g00.r/C
1

2
VN .r/g.r/D 0 :
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By ii) of this lemma, g.r/D r � a for r > Ra. We thus obtain

Z
dx VN .x/.1�w.x//D 4�

Z 1
0

dr r2VN .r/.1�w.r//D 8�
Z 1
0

dr r g00.r/

D 8� lim
%!1

�
r g0.r/�g.r/

�
j
%
0 D 8�a :

(5.7)

This proves Lemma 5.1 �

Proof of Proposition 3.1. For j D 1; : : : ; N , we define

(5.8) hj WD ��j C
1

2

X
i¤j

VN .xj � xi /:

Then we clearly have

HN D

NX
jD1

hj :

Since  is symmetric with respect to permutations, we have

h ;H 2
N i D

NX
i;j

h ; hihj i DN.N � 1/h ; h1h2 iCN h ; h
2
1 i(5.9)

�N.N � 1/h ; h1h2 i :

Of course, instead of the indices 1; 2 we could have chosen any i ¤ j .
We have

(5.10) h1 D��1 C
1

2
VN .x1� x2/ C

1

2

X
j�3

VN .x1� xj / :

Next we write  D .1�w12/�12 and we observe that

(5.11) ��1Œ.1�w12/�12�D .1�w12/.��1�12/C2rw12 r1�12C�w12 �12:

Hence

.1�w12/
�1h1

�
.1�w12/�12

�
D��1�12C 2

rw12

1�w12
r1�12

C
.��1C .1=2/VN .x1� x2// .1�w12/

1�w12
�12

C
1

2

X
j�3

VN .x1� xj /�12:

(5.12)

Using the definition of w.x/ (see (2.12)), we obtain

(5.13) .1�w12/
�1h1

�
.1�w12/�12

�
D L1�12C

1

2

X
j�3

VN .x1� xj /�12
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where we defined

L1 WD ��1C 2
rw12

1�w12
r1 :

Note that this operator is symmetric with respect to the measure .1�w12/2dx; i.e.,

(5.14)
Z
.1�w12/

2� .L1�/D

Z
.1�w12/

2 .L1�/ �D

Z
.1�w12/

2
r1�r1� :

Analogously to (5.13), we have

(5.15) .1�w12/
�1h2

�
.1�w12/�12

�
D L2�12C

1

2

X
j�3

VN .x2� xj /�12

with

L2 D��2C 2
rw21

1�w12
r2 :

Therefore, from (5.9) we find

(5.16) h ;H 2
N i �N.N � 1/

Z
.1�w12/

2

0@L1C 1
2

X
j�3

VN .x1� xj /

1A
��12

0@L2C 1
2

X
j�3

VN .x2� xj /

1A�12
DN.N � 1/

Z
.1�w12/

2L1�12L2�12

C
N.N � 1/

2

X
j�3

Z
.1�w12/

2
˚
VN .x2� xj / L1�12�12

CVN .x1� xj /�12L2�12
	

C
N.N � 1/

4

X
i;j�3

Z
.1�w12/

2 VN .x1� xj /VN .x2� xi /j�12j
2

DN.N � 1/

Z
.1�w12/

2L1�12L2�12

C
N.N � 1/

2

X
j�3

Z
.1�w12/

2
˚
VN .x1� xj /jr2�12j

2

CVN .x2� xj /jr1�12j
2
	

C
N.N � 1/

4

X
i;j�3

Z
.1�w12/

2 VN .x1� xj /VN .x2� xi /j�12j
2

�N.N � 1/

Z
.1�w12/

2L1�12L2�12:
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Here we used that the potential is positive and that the sum
P
j�3 VN .x1� xj / is

independent of x2 (and analogously
P
j�3 VN .x2� xj / is independent of x1).

From (5.16) we find

h ;H 2
N i �N.N � 1/

Z
.1�w12/

2
r1�12r1L2�12(5.17)

DN.N � 1/

Z
.1�w12/

2
jr1r2 �12j

2

CN.N � 1/

Z
.1�w12/

2
r1 �12Œr1; L2��12 :

To control the last term, we note thatˇ̌̌̌�
r1;

rw21

1�w21

�ˇ̌̌̌
�

ˇ̌
r2w21

ˇ̌
1�w12

C

�
rw12

1�w12

�2
� c�

1

jx1� x2j2

by (5.3) and (5.5), for � small enough. Therefore we have

ˇ̌̌̌Z
.1�w12/

2
r1�12Œr1; L2��12

ˇ̌̌̌
� c�

Z
.1�w12/

2 1

jx1� x2j2
jr1�12jjr2�12j

� c�

Z
1

jx1� x2j2
jr1�12j

2

� c�

Z
jr1r2 �12j

2

� c�

Z
.1�w12/

2
jr1r2�12j

2

(5.18)

where we used (5.3) to remove and then reinsert the factor .1�w12/2 (assuming
� is small enough), and where we used the Hardy inequality to control the 1=jxj2

singularity. From (5.17) we have

(5.19) h ;H 2
N i � .1� c�/N.N � 1/

Z
.1�w12/

2
jr1r2�12j

2:

This completes the proof of the Proposition 3.1. �

For fixed 2� k �N and i; j � k, with i ¤ j , we define the densities  .k/N;i;j;t

by

(5.20) 
.k/
N;i;j;t WD .1�wij /

�1
.k/
N;t .1�wij /

�1 ;

where .1�wij /�1 D .1�w.xi � xj //�1 is viewed as a multiplication operator.
The kernel of  .k/N;i;j;t is given by

(5.21) 
.k/
N;i;j;t .xkI x

0
k/D .1�w.xi � xj //

�1 .1�w.x0i � x
0
j //
�1

.k/
N;t .xkI x

0
k/ :

Then, for every k, and every i; j � k, with i ¤ j ,  .k/N;i;j;t is a positive operator,

with Tr  .k/N;i;j;t � C , uniformly in N; t .
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PROPOSITION 5.2 (A priori bounds for  .k/N;i;j;t ). For any sufficiently small �,
there exists a constant C > 0, such that

(5.22) Tr .1��i /.1��j / 
.k/
N;i;j;t � C

for all t 2 R, 2� k �N , i; j � k, i ¤ j , and for all N large enough.

Proof. For fixed i ¤ j we define the function �i;j;t by  N;t D .1�wij /�i;j;t
(the N dependence of �i;j;t is omitted in the notation). Then we observe that

Tr .1��i /.1��j / 
.k/
N;i;j;t D kSiSj �i;j;tk

2(5.23)

D k�i;j;tk
2
C 2kri�i;j;tk

2
Ckrirj�i;j;tk

2

with Sn WD .1��n/1=2. Next we note that, by (5.3),

(5.24) k�i;j;tk
2
D

Z
dx j�i;j;t .x/j2 � C

Z
dx j N;t .x/j2 � C

uniformly in N and t . Moreover,

kri�i;j;tk
2
D

Z
dx
ˇ̌̌̌
ri

 N;t .x/
1�w.xi � xj /

ˇ̌̌̌2
(5.25)

�

Z
dx

1

.1�w.xi � xj //2
jri N;t .x/j2

C

Z
dx
ˇ̌̌̌
riw.xi � xj /

.1�w.xi � xj //2

ˇ̌̌̌2
j N;t .x/j2

� C

Z
dx jri N;t .x/j2CC

Z
dx

1

jxi � xj j2
j N;t .x/j2

� C

Z
dx jri N;t .x/j2 ;

where we used (5.2), (5.5) and Hardy inequality. Next we note that, for every
i D 1; : : : ; N ,

(5.26) h N;t ;HN  N;t i �N h N;t ; �i N;t i DN

Z
jri N;t j

2 :

Therefore, from (5.25),

kri�i;j;tk
2
� CN�1h N;t ;HN  N;t i D CN

�1
h N ;HN  N i � C(5.27)

by (2.13) and by conservation of energy. Finally, to bound the last term on the
right-hand side of (5.23), we note that, for a sufficiently small �,



DERIVATION OF THE GROSS-PITAEVSKII EQUATION 311

krirj�i;j;tk
2
� C

Z
dx .1�w.xi � xj //2 jrirj�i;j;t .x/j2(5.28)

�
C

N.N � 1/
h N;t ;H

2
N N;t i

D
C

N.N � 1/
h N ;H

2
N N i � C

for all N large enough. Here we used (5.2) in the first line, Proposition 3.1 in the
second line, the conservation of H 2

N in the third line, and the assumption (2.13)
in the last inequality. Proposition 5.2 now follows from (5.23), (5.24), (5.27), and
(5.28). �

5.2. Higher order energy estimates. We will choose a cutoff length scale `.
For technical reasons, we will have to work with exponentially decaying cutoff
functions, so we set

(5.29) h.x/ WD e�
p

x2C`2

` :

Note that h' 0 if jxj � `, and h' e�1 if jxj � `. For i D 1; : : : ; N we define
the cutoff function

(5.30) �i .x/ WD exp
�
�
1

`"

X
j¤i

h.xi � xj /

�
for some " > 0. Note that �i .x/ is exponentially small if there is at least one other
particle at distance of order ` from xi , while �i .x/ is exponentially close to 1 if
there is no other particle near xi (on the length scale `).

As for the choice of `, to make sure that the presence of particles at distances
smaller than ` from xi is a rare event, we will need to assume N`3 � 1. This
condition is not used in Proposition 5.3 below, but if N`3� 1, then our estimates
were empty in the limit N !1 as the right-hand side of the estimate (5.33) below
tended to zero. On the other hand, choosing ` too small makes the price to pay for
localizing the kinetic energy on the length scale ` too high. In Proposition 5.3 we
will actually have to assume N`2� 1.

Next we define

(5.31) �
.n/
i .x/ WD �i .x/2

n

D exp
�
�
2n

`"

X
j¤i

h.xi � xj /

�
and their cumulative versions, for n; k 2 N,

(5.32) ‚
.n/

k
.x/ WD � .n/1 .x/ : : : � .n/

k
.x/D exp

�
�
2n

`"

X
i�k

X
j¤i

h.xi � xj /

�
:

To cover all cases in one formula, we introduce the notation ‚.n/
k
D 1 for any

k � 0, n 2 Z. We will need to use the functions � .n/i (instead of �i .x/) to take into
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account the deterioration of the kinetic energy localization estimates. For example,
the bound jrj �i .x/j � C`�1�i .x/ is wrong, while

jrj �
.n/
i .x/j � C`�1� .n�1/i .x/

is correct and similar bounds hold for ‚.n/
k

. This, and other important properties

of the function ‚.n/
k

, used throughout the proof of Proposition 5.3 are collected in
Lemma A.1 of the appendix.

PROPOSITION 5.3 (Hk energy estimates). Suppose `� N�1=2 and that �
(from (2.7)) is small enough. Then for C0 > 0 sufficiently small (depending on
the constant .1� c�/ in Proposition 3.1) and for every integer k � 1 there exists
N0 DN0.k; C0/ such that

(5.33) h ; .HN CN/k  i � C k0 N
k

Z
‚
.k/

k�1
jr1 : : :rk j

2

CC k0 N
k�1

Z
‚
.k/

k�1
jr
2
1r2 : : :rk�1 j

2

CC k0 N
kC1

Z
‚
.k/

k�1
.x/ VN .xk � xkC1/ jr1 : : :rk�1 .x/j2dx

for every wave function  2 L2s .R
3N / and for every N �N0.

In order to keep the exposition of the main ideas as clear as possible, we defer
the proof of this proposition, which is quite long and technical, to Section 9, at the
end of the paper.

6. Compactness of the marginal densities

In this section we prove the compactness of the sequence �N;t D f
.k/
N;tgk�1

with respect to the topology �prod. (See �4 for the definition of �prod and recall
the convention that  .k/N;t D 0 if k > N .) Moreover, in Proposition 6.3, we prove
important a priori bounds on any limit point �1;t of the sequence �N;t .

THEOREM 6.1. Assume that � is small enough and fix an arbitrary T > 0.
Suppose that �N;t Df

.k/
N;tgk�1 is the family of marginal density associated with the

solution  N;t of the Schrödinger equation (2.2), and that (2.13) is satisfied. Then
�N;t 2

L
k�1 C.Œ0; T �;L

1
k
/. Moreover, the sequence �N;t 2

L
k�1 C.Œ0; T �;L

1
k
/

is compact with respect to the product topology �prod generated by the metrics y�k
(defined in §4). For any limit point �1;t D f

.k/
1;tgk�1,  .k/1;t is symmetric with

respect to permutations,  .k/1;t � 0, and

(6.1) Tr  .k/1;t � 1

for every k � 1.
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Proof. By a standard “choice of the diagonal subsequence”-argument it is
enough to prove the compactness of  .k/N;t , for fixed k � 1, with respect to the metric

y�k . In order to prove the compactness of  .k/N;t with respect to the metric y�k , we

show the equicontinuity of  .k/N;t with respect to the metric �k . The following lemma
gives a useful criterium to prove the equicontinuity of a sequence in C.Œ0; T �;L1

k
/.

Its proof is very similar to the proof of Lemma 9.2 in [8]; the only difference is that
here we keep k fixed and we consider sequences in L1

k
, while in [8] we considered

equicontinuity in the direct sum C.Œ0; T �;H/D˚k�1C.Œ0; T �;Hk/ over all k � 1,
for some Sobolev space Hk .

LEMMA 6.2. Fix k 2 N and T > 0. A sequence  .k/N;t 2 L1
k

, N D k; kC 1; : : :,

with  .k/N;t � 0 and Tr  .k/N;t D 1 for all t 2 Œ0; T � and N � k, is equicontinuous
in C.Œ0; T �;L1

k
/ with respect to the metric �k , if and only if there exists a dense

subset Jk of Kk such that for any J .k/ 2 Jk and for every " > 0 there exists a ı > 0
such that

(6.2) sup
N�1

ˇ̌̌
Tr J .k/

�

.k/
N;t � 

.k/
N;s

� ˇ̌̌
� "

for all t; s 2 Œ0; T � with jt � sj � ı.

For the proof of the equicontinuity of  .k/N;t with respect to the metric �k ,
we will choose the set Jk in Lemma 6.2 to consist of all J .k/ 2 Kk such that
SiSjJ

.k/SiSj is bounded, for all i ¤ j , and i; j � k. We recall the notation
Sn D .1��n/

1=2.
Rewriting the BBGKY hierarchy (3.1) in integral form we obtain for any s � t

(6.3) 
.k/
N;t D 

.k/
N;s � i

kX
jD1

Z t

s

dr Œ��j ; 
.k/
N;r �� i

kX
i<j

Z t

s

dr ŒVN .xi � xj /; 
.k/
N;r �

�i.N � k/

kX
jD1

Z t

s

dr TrkC1ŒVN .xj � xkC1/; 
.kC1/
N;r � :

Multiplying the last equation with J .k/ 2 Jk and taking the trace we get the bound
(recall the definition (5.20) of the densities  .k/N;i;j;t )

ˇ̌̌
TrJ .k/

�

.k/
N;t � 

.k/
N;s

�ˇ̌̌
�

kX
jD1

Z t

s

dr
ˇ̌̌
Tr
�
S�1j J .k/Sj �SjJ

.k/S�1j

�
Sj 

.k/
N;rSj

ˇ̌̌(6.4)

C

kX
i<j

Z t

s

dr
ˇ̌̌
Tr
�
SiSjJ

.k/SiSj

� �
S�1i S�1j VN .xi � xj /.1�wij /S

�1
i S�1j

�
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�

�
SiSj 

.k/
N;i;j;rSiSj

� �
S�1i S�1j .1�wij /S

�1
i S�1j

� ˇ̌̌
C

kX
i<j

Z t

s

dr
ˇ̌̌
Tr
�
SiSjJ

.k/SiSj

� �
S�1i S�1j .1�wij /S

�1
i S�1j

�
�

�
SiSj 

.k/
N;i;j;rSiSj

� �
S�1i S�1j VN .xi � xj /.1�wij /S

�1
i S�1j

� ˇ̌̌
C

�
1�

k

N

� kX
jD1

Z t

s

dr
ˇ̌̌
Tr
�
SjJ

.k/Sj

�
�

�
S�1j S�1kC1NVN .xj � xkC1/.1�wj;kC1/S

�1
kC1S

�1
j

�
�

�
SkC1Sj 

.kC1/

N;j;kC1;r
SjSkC1

� �
S�1j S�1kC1.1�wj;kC1/SkC1S

�1
j

� ˇ̌̌
C

�
1�

k

N

� kX
jD1

Z t

s

dr
ˇ̌̌
Tr
�
SjJ

.k/Sj

� �
S�1j SkC1.1�wj;kC1/S

�1
kC1S

�1
j

�
�

�
SkC1Sj 

.kC1/

N;j;kC1;r
SjSkC1

�
�

�
S�1j S�1kC1NVN .xj � xkC1/.1�wj;kC1/S

�1
kC1S

�1
j

� ˇ̌̌
:

Here we used that SkC1 commutes with J .k/. Next we observe that (see Lemma
6.4 below),

(6.5) kS�1i S�1j NVN .xi � xj /.1�wij /S
�1
i S�1j k � CN

Z
VN .1�w/� C ;

by part iv) of Lemma 5.1. Moreover,

(6.6) kS�1i S�1j .1�wij /S
�1
i S�1j k � C

and

(6.7) kS�1j S�1kC1.1�wj;kC1/SkC1S
�1
j k

�

S�1j S�1kC1.1�wj;kC1/S
2
kC1S

�2
j .1�wj;kC1/S

�1
kC1S

�1
j

 1
2

�CC
S�1j S�1kC1rkC1.1�wj;kC1/S

�2
j .1�wj;kC1/rkC1S

�1
kC1S

�1
j

 1
2

C

S�1j S�1kC1.rkC1wj;kC1/S
�2
j .rkC1wj;kC1/S

�1
kC1S

�1
j

 1
2

� C C
S�1j S�1kC1.rwj;kC1/

2S�1kC1S
�1
j

 1
2
� C :



DERIVATION OF THE GROSS-PITAEVSKII EQUATION 315

In the last step we used the second bound in (5.5). Since J .k/ 2 Jk is such that
kSiSjJ

.k/SiSj k � C for all i; j D 1; : : : ; k, it follows from (6.4)–(6.7) that
(6.8)ˇ̌̌
TrJ .k/

�

.k/
N;t � 

.k/
N;s

�ˇ̌̌
�Ck.t�s/ max

nDk;kC1
max

i¤j;i;j�n
sup
r2Œs;t�

Tr
ˇ̌̌
SiSj 

.n/
N;i;j;rSiSj

ˇ̌̌
for a constant Ck depending on k and on J .k/, but independent of t; s; N . From
Proposition 5.2, and from the fact that the subset J.k/ is dense in Kk , it follows that
the sequence  .k/N;t 2 C.Œ0; T �;L

1
k
/ is equicontinuous. Since, moreover, Tr  .k/N;t D 1

uniformly in t 2 Œ0; T � and N , the compactness of the sequence  .k/N;t with respect
to the metric y�k follows from the Arzelà-Ascoli theorem. This proves the com-
pactness of �N;t D f

.k/
N;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ with respect to the product

topology �prod.
Now suppose that �1;t D f

.k/
1;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ is a limit point

of �N;t with respect to �prod. Then, for any k � 1,  .k/1;t 2 C.Œ0; T �;L
1
k
/ is a limit

point of  .k/N;t . The bound Tr
ˇ̌̌

.k/
1;t

ˇ̌̌
� 1 follows because the norm can only drop in

the weak limit.
To prove that  .k/1;t is nonnegative, we observe that, for an arbitrary ' 2

L2.R3k/ with k'k D 1, the orthogonal projection P' D j'ih'j is in Kk and
therefore we have

(6.9) h'; 
.k/
1;t'i D Tr P'

.k/
1;t D lim

j!1
Tr P'

.k/
Nj ;t
D lim
j!1

h'; 
.k/
Nj ;t

'i � 0 ;

for an appropriate subsequence Nj with Nj !1 as j !1.
Similarly, the symmetry of  .k/1;t with respect to permutations is inherited from

the symmetry of  .k/N;t for finite N . For a permutation � 2 Sk , we denote by „�
the operator on L2.R3k/ defined by

„�'.x1; : : : xk/D '.x�1; : : : ; x�k/ :

Then the permutation symmetry of  .k/1;t is defined by

(6.10) „�
.k/
1;t„

�1
� D 

.k/
1;t

for every � 2 Sk . To prove (6.10), we note that, for an arbitrary J .k/ 2 Kk and a
permutation � 2Sk , we have, for an appropriate subsequence Nj !1, as j !1,

Tr J .k/ .k/1;t D lim
j!1

J .k/
.k/
Nj ;t
D lim
j!1

Tr J .k/„�
.k/
Nj ;t

„�1�(6.11)

D lim
j!1

Tr„�1� J .k/„�
.k/
Nj ;t

D Tr„�1� J .k/„�
.k/
1;t D Tr J .k/„�

.k/
1;t„

�1
� ;

where we used that, since J .k/ 2 Kk , also „�1� J .k/„� 2 Kk . �
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In the next proposition we prove important a priori bounds on the limit points
�1;t . These bounds are essential in the proof of the uniqueness of the solution to
the infinite hierarchy (4.4), in Theorem 4.1.

PROPOSITION 6.3. Suppose that � is small enough, and assume that (2.13)
is satisfied. Let �1;t D f

.k/
1;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ is a limit point of the

sequence �N;t D f
.k/
N;tg

N
kD1

with respect to the product topology �prod. Then  .k/1;t
(has a version which) satisfies

(6.12) Tr .1��1/ : : : .1��k/
.k/
1;t � C

k
1

for a constant C1 independent of t 2 Œ0; T � and k � 1.

Proof. We fix ` as a function of N , such that N`2 � 1, and N`3 � 1.
Moreover we fix " > 0 so small that N`3�"� 1. With this choice of ` and ", we
construct, for integer n; k the cutoff functions ‚.n/

k
.x/ as in (5.32). For k 2 N, we

will use the notation

Dk WD r1 : : :rk; D0k WD r
0
1 : : :r

0
k; with r

0
j Drx0j

:

We also set Dk D I for k � 0 to cover all cases in a single formula. From Propo-
sition 5.3, it follows that, for any fixed k � 1,Z

‚
.k/

k�1
jDk N;t j

2
�

1

C k0 N
k
h N;t ; .HN CN/

k N;t i(6.13)

D
1

C k0 N
k
h N;0; .HN CN/

k N;0i � C
k
2

for any N large enough (depending only on k). In the last inequality we applied
the assumption (2.13).

For k D 1; : : : ; N , we define the densities U .k/N;t by their kernels

(6.14) U
.k/
N;t .xkI x

0
k/ WD

Z
dxN�k ‚

.k/

k
.xk; xN�k/‚

.k/

k
.x0k; xN�k/

�Dk N;t .xk; xN�k/ D0k x N;t .xk; xN�k/ :

Note that the operator U .k/N;t is the k-particle marginal density associated with the

N -body wave function ‚.k/
k
.x/Dk N;t .x/. Therefore U .k/N;t � 0. Moreover, it

follows from (6.13) that, for N large enough,

Tr U .k/N;t D

Z �
‚
.k/

k

�2
jDk  N;t j

2
�

Z
‚
.k/

k�1
jDk N;t j

2
� C k2 :(6.15)

It follows from (6.15) that for every fixed integer k � 1, and for every t 2 Œ0; T �, the
sequence U .k/N;t is compact with respect to the weak* topology of L1

k
. Moreover, if

U
.k/
1;t denotes an arbitrary limit point of U .k/N;t , then

(6.16) Tr U .k/1;t � C
k
2 :
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Next we assume that  .k/1;t 2C.Œ0; T �;L
1
k
/ is a limit point of  .k/N;t with respect

to the topology y�k . It follows that for any fixed t 2 Œ0; T �,  .k/1;t is a limit point

of  .k/N;t with respect to the weak* topology of L1
k

. Because of the compactness of

the sequence U .k/N;t with respect to the weak * topology of L1
k

, we can assume, by

passing to a common subsequence Ni , that there exists a limit point U .k/1;t 2 L1
k

of

U
.k/
N;t such that

(6.17) Tr J .k/  .k/Ni ;t
! Tr J .k/  .k/1;t

and

(6.18) Tr J .k/ U .k/Ni ;t
! Tr J .k/ U .k/1;t

for every J .k/ 2 Kk . For notational simplicity, we will drop the index i , but keep
in mind that the limits hold only along a subsequence.

Next we fix J .k/ 2Kk such that r1 : : :rkJ .k/r�k : : :r
�
1 is compact and such

that

sup
xk

Z
dx0k

4X
bD0

jr
b
x0n
ri1 : : :rijr

0
r1
: : :r 0rm

J .k/.xkI x0k/j<1 ;(6.19)

sup
x0

k

Z
dxk

4X
bD0

jr
b
xn
ri1 : : :rijr

0
r1
: : :r 0rm

J .k/.xkI x0k/j<1

for every j;m; n� k, and .i1; : : : ij /; .r1; : : : ; rm/� f1; 2; : : : ; kg. Then we have,
applying (6.17) to the derivatives of J .k/,

(6.20) Tr r1 : : :rkJ
.k/
r
�
k : : :r

�
1 

.k/
Ni ;t
! Tr r1 : : :rkJ

.k/
r
�
k : : :r

�
1 

.k/
1;t

as Ni!1. For such observable J .k/ we rewrite the left-hand side of (6.18), using
(6.14), as

Tr J .k/ U .k/N;t D

Z
dxkdx0kdxN�k J .k/.xkI x0k/‚

.k/

k
.xk; xN�k/‚

.k/

k
.x0k; xN�k/

�Dk N;t .xk; xN�k/D0k x N;t .x
0
k; xN�k/ :

(6.21)

From (6.21), we will show later that

Tr J .k/ U .k/N;t D

Z
dxkdx0kdxN�k

�
DkD

0
k J

.k/
�
.xkI x0k/(6.22)

� N;t .xk; xN�k/ x N;t .x0k; xN�k/C o.1/

as N !1.
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Before proving (6.22), let us show how Proposition 6.3 follows from it. Equa-
tion (6.22) implies that

Tr J .k/ U .k/N;t D Tr r1 : : :rkJ
.k/
r
�
k : : :r

�
1 

.k/
N;t C o.1/(6.23)

! Tr r1 : : :rkJ
.k/
r
�
k : : :r

�
1 

.k/
1;t

as N !1 (using (6.20)). Comparing with (6.18), we obtain that

(6.24) Tr J .k/ U .k/1;t D Tr r1 : : :rkJ
.k/
r
�
k : : :r

�
1 

.k/
1;t :

Since the set of all J .k/ 2Kk with the property that r1 : : :rkJ .k/r�1 : : :r
�
k
2Kk

and such that (6.19) is satisfied is a dense subset of Kk , it follows that

(6.25) r1 : : :rk
.k/
1;tr

�
k : : :r

�
1 D U

.k/
1;t :

From (6.16), we find

(6.26) Tr .��1/ : : : .��k/
.k/
1;t � C

k
2 :

Now suppose that �1;t D f
.k/
1;tgk�1 2 C.Œ0; T �;L

1
k
/ is a limit point of the

sequence �N;t . Then, for every fixed k � 1 and t 2 Œ0; T �,  .k/1;t is a limit point of


.k/
N;t and thus satisfies (6.26), for a constant C2 independent of t and k. Moreover,

for any m� k we also have

(6.27) Tr .��1/ : : : .��m/
.k/
1;t � Cm2 :

To prove the last equation, we repeat the same argument leading from (6.14) to
(6.26), but with the densities U .k/N;t replaced by

U
.k/
m;N;t .xkI x

0
k/D

Z
dxN�k ‚

.k/

k
.xk; xN�k/‚

.k/

k
.x0k; xN�k/(6.28)

�Dm N;t .xk; xN�k/ D0m x N;t .xk; xN�k/ :

From (6.26), (6.27), and from the permutation symmetry of  .k/1;t , we find
(6.29)

Tr .1��1/ : : : .1��k/
.k/
1;t D

kX
mD0

 
k

m

!
Tr .��1/ : : : .��m/

.m/
1;t � .C2C 1/

k

which completes the proof of Proposition 6.3.
It remains to prove (6.22). To this end, we rewrite the right-hand side of (6.21)

by using ‚.k/
k
D �

.k/

k
‚k
k�1

as follows:

(6.30) Tr J .k/ U .k/N;t D .I/� .II/
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with

.I/ WD
Z

dxkdx0kdxN�kJ .k/.xkI x0k/‚
.k/

k�1
.xk; xN�k/‚

.k/

k
.x0k; xN�k/(6.31)

�Dk N;t .xk; xN�k/D0k x N;t .x
0
k; xN�k/

.II/ WD
Z

dxkdx0kdxN�kJ .k/.xkI x0k/

� .1� �
.k/

k
.xk; xN�k//‚

.k/

k�1
.xk; xN�k/‚

.k/

k
.x0k; xN�k/

�Dk N;t .xk; xN�k/D0k x N;t .x
0
k; xN�k/ :

By integration by parts

(6.32) .I/D .Ia/C .Ib/

with

.Ia/ WD �
Z

dxkdx0kdxN�krkJ .k/.xkI x0k/‚
.k/

k�1
.xk; xN�k/‚

.k/

k
.x0k; xN�k/

(6.33)

�Dk�1 N;t .xk; xN�k/D0kS N;t .x
0
k; xN�k/ ;

.Ib/ WD �
Z

dxkdx0kdxN�kJ .k/.xkI x0k/rk‚
.k/

k�1
.xk; xN�k/‚

.k/

k
.x0k; xN�k/

�Dk�1 N;t .xk; xN�k/D0kS N;t .x
0
k; xN�k/:

The main term is (Ia). To bound the term (Ib), we use Schwarz inequality with
some ˛ > 0:

j.Ib/j � ˛
Z

dxkdx0kdxN�kjJ .k/.xkI x0k/j

(6.34)

�

ˇ̌̌
rk‚

.k/

k�1
.xk; xN�k/

ˇ̌̌2
jDk�1 N;t .xk; xN�k/j2

C˛�1
Z

dxkdx0kdxN�kjJ .k/.xkI x0k/j

�‚
.kC1/

k
.x0k; xN�k/jD

0
k N;t .x

0
k; xN�k/j

2

� ˛

�
sup
xk

Z
dx0kjJ

.k/.xkI x0k/j
� Z

dx
ˇ̌̌
rk‚

.k/

k�1
.x/
ˇ̌̌2
jDk�1 N;t .x/j2

C˛�1

 
sup
x0

k

Z
dxkjJ .k/.xkI x0k/j

!

�

Z
dx0kdxN�k ‚

.k/

k�1
.x0k; xN�k/jD

0
k N;t .x

0
k; xN�k/j

2:
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Using that

(6.35)
ˇ̌̌
rk‚

.k/

k�1
.x/
ˇ̌̌2
� C`�2

0@2k
`"

kX
mD2

h.x1� xm/

1A2 ‚.kC1/
k�1

.x/ ;

we obtain that

(6.36)
Z

dx
ˇ̌̌
rk‚

.k/

k�1
.x/
ˇ̌̌2
jDk�1 N;t .x/j2

� C`�2
Z

dx

0@2k
`"

kX
mD2

h.x1� xm/

1A2 ‚.kC1/
k�1

.x/jDk�1 N;t .x/j2

�C.N�k/�1`�2
X
i�k

Z
dx

0@2k
`"

kX
mD2

h.xi � xm/

1A2 ‚.kC1/
k�1

.x/jDk�1 N;t .x/j2;

where we used the symmetry of the Dk�1 N;t with respect to permutations of the
last N � k variables. Since

(6.37)
X
i�k

0@2k
`"

kX
mD2

h.xi � xm/

1A2‚.kC1/
k�1

.x/

�

0@2k
`"

X
i�k

kX
mD2

h.xi � xm/

1A2‚.kC1/
k�1

.x/� C‚.k/
k�1

.x/

(see part ii) of Lemma A.1), it follows from (6.36) that

Z ˇ̌̌
rk‚

.k/

k�1

ˇ̌̌2
jDk�1 N;t j

2
� C`�2.N � k/�1

Z
‚
.k/

k�1
jDk�1 N;t j

2

� C`�2.N � k/�1
Z
‚
.k�1/

k�2
jDk�1 N;t j

2

� Ck `
�2.N � k/�1

(6.38)

by (6.13) (here the constant Ck depends on k and on the observable J .k/). From
(6.34), from the assumptions (6.19), and again using (6.13), it follows that

(6.39) j.Ib/j � Ck
�
˛.N � k/�1`�2C˛�1

�
D o.1/

because N`2� 1.
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Next we consider the term (II) in (6.31). By Schwarz inequality, we have

(6.40) j.II/j � ˛
Z

dxkdx0kdxN�k jJ .k/.xkI x0k/j

�‚
.kC1/

k�1
.xk; xN�k/jDk N;t .xk; xN�k/j2

C˛�1
Z

dxkdx0kdxN�k jJ .k/.xkI x0k/j.1� �
.k/

k
.xk; xN�k//

�‚
.kC1/

k
.x0k; xN�k/jD

0
k N;t .x

0
k; xN�k/j

2

� ˛

�
sup
xk

Z
dx0k jJ

.k/.xkI x0k/j
�Z

dx‚.kC1/
k�1

.x/jDk N;t .x/j2

C˛�1

 
sup

x0
k
;xN�k

Z
dxk jJ .k/.xkI x0k/j.1� �

.k/

k
.xk; xN�k//

!

�

Z
dx0kdxN�k ‚

.kC1/

k
.x0k; xN�k/jD

0
k N;t .x

0
k; xN�k/j

2

� Ck

 ̨
C˛�1 sup

x0
k
;xN�k

Z
dxk jJ .k/.xkI x0k/j.1� �

.k/

k
.xk; xN�k//

!
where we used (6.13). Next we note that

(6.41)
Z

dxk jJ .k/.xkI x0k/j.1� �
.k/

k
.xk; xN�k//

�
2k

`"

X
m¤k

Z
dxk jJ .k/.xkI x0k/jh.xk � xm/

� C kN`3�"
Z

dxk jr4kJ
.k/.xkI x0k/jC jJ

.k/.xkI x0k/j

because, with h.x/D exp.�.x2C `2/1=2=`/, we have, by the Sobolev inequality,

(6.42)
Z

dx h.x/jf .x/j � khk1kf k1 � C`3
Z 4X
bD0

jr
bf j :

From (6.40), (6.41), and from the assumptions (6.19) we find

(6.43) j.II/j � Ck
�
˛C˛�1N`3�"

�
! 0

as N !1, because N`3�"� 1.
From (6.30), (6.39) and last equation we find

(6.44) Tr J .k/ U .k/N;t

D

Z
dxkdx0kdxN�krkJ .k/.xkI x0k/‚

.k/

k�1
.xk; xN�k/‚

.k/

k
.x0k; xN�k/

�Dk�1 N;t .xk; xN�k/D0kS N;t .x
0
k; xN�k/C o.1/ :
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Repeating the same arguments to move the derivative r 0
k

from  N;t to J .k/, we
obtain

(6.45) Tr J .k/ U .k/N;t

D

Z
dxkdx0kdxN�krkr 0kJ

.k/.xkI x0k/‚
.k/

k�1
.xk; xN�k/‚

.k/

k�1
.x0k; xN�k/

�Dk�1 N;t .xk; xN�k/D0k�1S N;t .x
0
k; xN�k/C o.1/ :

Iterating this argument k� 1 more times to move all derivatives to the observable,
we prove (6.22). �

The following lemma was used in the proof of Theorem 6.1, and will also be
used in the next sections, in order to bound potentials by the action of derivatives.

LEMMA 6.4. i) Suppose V 2 L3=2.R3/. Then

(6.46)
Z

dx V.x/j'.x/j2 � CkV kL3=2

Z
dx
�
jr'.x/j2Cj'.x/j2

�
:

ii) Suppose V 2 L1.R3/. Then the operator V.x1 � x2/, viewed as a multi-
plication operator on L2.R3 �R3; dx1 dx2/, satisfies the following operator
inequalities

(6.47)
V.x1�x2/�CkV kL1 .1��1/.1��2/; and V.x1�x2/�CkV kL1.1��1/

2:

The proof of (6.46) is given in Lemma 5.2 of [8], the proof of the first inequality
of (6.47) is found in Lemma 5.3 of [10]. The last inequality follows from the usual
Sobolev imbedding. �

7. Convergence to the infinite hierarchy

The aim of this section is to prove that any limit point

�1;t 2
M
k�1

C.Œ0; T �;L1k/

of the sequence �N;t satisfies the infinite hierarchy (4.4).

THEOREM 7.1. Suppose the assumptions of Theorem 2.1 are satisfied and
fix T > 0. Suppose �1;t D f

.k/
1;tgk�1 2

L
k�1 C.Œ0; T �;L

1
k
/ is a limit point of

�N;t D f
.k/
N;tg

N
kD1

with respect to the topology �prod. Then �1;t is a solution of the
infinite BBGKY hierarchy


.k/
1;t DU.k/.t/ 

.k/
1;0(7.1)

� 8�ia0

kX
jD1

Z t

0

dsU.k/.t � s/TrkC1
h
ı.xj � xkC1/; 

.kC1/
1;s

i
with initial data  .k/

1;0 D j'ih'j
˝k .
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Remark. Note that in terms of kernels�
TrkC1 ı.xj � xkC1/

.kC1/
1;s

�
.xkI x0k/D 

.kC1/
1;s .xk; xj I x0k; xj / :

To define this kernel properly, we choose a function g 2 C10 .R
3/, g � 0,

R
g D 1,

and we let gr.x/D r�3g.x=r/. Then the definition is given by the limit

(7.2) lim
r;r 0!0

Z
dx0kC1dxkC1 gr.x

0
kC1� xkC1/gr 0.xkC1� xj /

�  .kC1/1;s .xk; xkC1I x0k; x
0
kC1/DW 

.kC1/
1;s .xk; xj I x0k; xj /:

The existence of this limit in a weak sense (tested against a sufficiently smooth
observable) follows from the a priori estimate (6.12) and from the following lemma
(whose proof was given in Lemma 8.2 in [9]).

LEMMA 7.2. Suppose that ı˛.x/ is a function satisfying

0� ı˛.x/� C˛
�31.jxj � ˛/

and
R
ı˛.x/dx D 1 (for example ı˛.x/D ˛�3g.x=˛/, for a bounded probability

density g.x/ supported in fx W jxj � 1g). Moreover, for J .k/ 2 Kk , and for j D
1; : : : ; k, we define the norm

(7.3) jjjJ .k/jjjj WD sup
xk ;x0k

hx1i
4 : : : hxki

4
hx01i

4 : : : hx0ki
4

�

�
jJ .k/.xkI x0k/jC jrxj

J .k/.xkI x0k/jC jrx0j J
.k/.xkI x0k/j

�
for any j � k and for any function J .k/.xkI x0k/ (here hxi2 WD 1C x2). Then if
 .kC1/.xkC1I x0kC1/ is the kernel of a density matrix on L2.R3.kC1//, we have, for
any j � k,

(7.4)
ˇ̌̌ Z

dxkC1dx0kC1 J
.k/.xkI x0k/

�
ı˛1
.xkC1� x

0
kC1/ı˛2

.xj � xkC1/

� ı.xkC1� x
0
kC1/ı.xj � xkC1/

�
 .kC1/.xkC1I x0kC1/

ˇ̌̌
� .const:/k jjjJ .k/jjjj

�
˛1C

p
˛2
�

Tr jSjSkC1
.kC1/SjSkC1j :

Recall that S` D .1��x`
/1=2. The same bound holds if xj is replaced with x0j in

(7.4) by symmetry.

Proof of Theorem 7.1. For every integer k � 1, and every J .k/ 2 Kk , we have

(7.5) sup
t2Œ0;T �

Tr J .k/
�

.k/
Ni ;t
� 

.k/
1;t

�
! 0

along a subsequence Ni !1. For an arbitrary integer k � 1, we define

�k WD

kY
jD1

�
hxj iCSj

�
:
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In the following we assume that the observable J .k/ 2 Kk is such that

(7.6)
�7kJ .k/�7kHS

<1;

where kAkHS denotes the Hilbert-Schmidt norm of the operator A, that is kAk2HSD

TrA�A. Note that the set of observables J .k/ satisfying the condition (7.6) is a
dense subset of Kk .

It is straightforward to check that

(7.7) kS1 : : : Sk J
.k/S1 : : : Skk �

�7kJ .k/�7kHS
:

Moreover, for any j � k,

(7.8) jjjJ .k/jjjj � .const./k
�7kJ .k/�7kHS

;

where the norm jjj:jjjj is defined in (7.3). This follows from the standard Sobolev
inequality kf k1 � .const:/ kf kW 2;2 in three dimensions applied to each variable
separately in the form�

sup
x;x0
hxi4hx0i4jrxJ.x; x

0/j
�2

� .const:/
Z

dxdx0
ˇ̌̌
.1��x/

h
hxi4

�
rxJ.x; x

0/
�
hx0i4

iˇ̌̌2
� .const:/ Tr .1��/hxi4r J hxi8 J � r� hxi4 .1��/

� .const:/ Tr�7J�14J ��7

with � D hxi C .1 � �/1=2. Similar estimates are valid for each term in the
definition of jjj � jjjj , for j � k. Here we commuted derivatives and the weights hxi;
the commutators can be estimated using Schwarz inequalities.

For J .k/ 2 Kk satisfying (7.6), we prove that

(7.9) TrJ .k/ .k/
1;0 D TrJ .k/j'ih'j˝k

and that, for t 2 Œ0; T �,

Tr J .k/ .k/1;t D Tr J .k/U.k/.t/
.k/
1;0

(7.10)

� 8�a0i

kX
jD1

Z t

0

dsTrJ .k/U.k/.t � s/
h
ı.xj � xkC1/; 

.kC1/
1;s

i
:

Note that the trace in the last term of (7.10) is over kC 1 variables. The theorem
then follows from (7.9) and (7.10), because the set of J .k/ 2 Kk satisfying (7.6) is
dense in Kk .

The relation (7.9) follows from the assumption (2.14) and (7.5).
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In order to prove (7.10), we fix t 2 Œ0; T �, we rewrite the BBGKY hierarchy
(3.1) in integral form and we test it against the observable J .k/. We obtain

(7.11) Tr J .k/  .k/N;t D Tr J .k/ U.k/.t/
.k/
N;0

� i

kX
i<j

Z t

0

ds Tr J .k/ U.k/.t � s/ŒVN .xi � xj /; 
.k/
N;s�

� i.N � k/

kX
jD1

Z t

0

ds TrJ .k/U.k/.t � s/ŒVN .xj � xkC1/; 
.kC1/
N;s � :

From (7.5) it follows immediately that

(7.12) Tr J .k/  .k/N;t ! Tr J .k/ .k/1;t

and also that

(7.13) Tr J .k/ U.k/.t/
.k/
N;0 D Tr

�
U.k/.�t /J .k/

�

.k/
N;0

! Tr
�

U.k/.�t /J .k/
�

.k/
1;0 D Tr J .k/ U.k/.t/

.k/
1;0

as N !1. Here we used that, if J .k/ 2 Kk , then also U.k/.�t /J .k/ 2 Kk .
Next we consider the second term on the right-hand side of (7.11) and we

prove that it converges to zero, as N !1. To this end, we recall the definition
(5.21)


.k/
N;i;j;t .xkI x

0
k/D .1�w.xi � xj //

�1.1�w.x0i � x
0
j //
�1

.k/
N;t .xkI x

0
k/

for every i ¤ j , i; j � k. Then we obtain

(7.14)
ˇ̌̌
Tr J .k/ U.k/.t � s/ŒVN .xi � xj /; 

.k/
N;s�

ˇ̌̌
�

ˇ̌̌
Tr
�
SiSj .U

.k/.s� t /J .k//SiSj

� �
S�1i S�1j VN .xi � xj /.1�wij /S

�1
i S�1j

�
�

�
SiSj 

.k/
N;i;j;sSiSj

� �
S�1i S�1j .1�wij /S

�1
i S�1j

� ˇ̌̌
C

ˇ̌̌
Tr
�
SiSj .U

.k/.s� t /J .k//SiSj

� �
S�1i S�1j .1�wij /S

�1
i S�1j

�
�

�
SiSj 

.k/
N;i;j;sSiSj

� �
S�1i S�1j VN .xi � xj /.1�wij /S

�1
i S�1j

� ˇ̌̌
:

Since, by part iv) of Lemma 5.1,
(7.15)

kS�1i S�1j VN .xi � xj /.1�wij /S
�1
i S�1j k � C

Z
dxVN .x/.1�w.x//� CN�1

and

(7.16) kS�1i S�1j .1�w.xi � xj //S
�1
i S�1j k � 1
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we findˇ̌̌
Tr J .k/ U.k/.t � s/ŒVN .xi � xj /; 

.k/
N;s�

ˇ̌̌
� CN�1kSiSj

�
U.k/.s� t /J .k/

�
SiSj k Tr S2i S

2
j 

.k/
N;i;j;s :

From kSiSj
�

U.k/.s� t /J .k/
�
SiSj k D kSiSjJ

.k/SiSj k <1, and from Propo-
sition 5.2 it follows immediately that, for any t 2 Œ0; T �,

(7.17)
kX
i<j

Z t

0

ds Tr J .k/ U.k/.t � s/ŒVN .xi � xj /; 
.k/
N;s�! 0

as N !1 (the convergence is not uniform in k).
Finally we consider the last term on the right-hand side of (7.11). First of all,

we note that

(7.18) k

kX
jD1

Z t

0

ds TrJ .k/U.k/.t � s/ŒVN .xj � xkC1/; 
.kC1/
N;s �! 0

as N !1. In fact,

(7.19)
ˇ̌̌
TrJ .k/U.k/.t � s/ŒVN .xj � xkC1/; 

.kC1/
N;s �

ˇ̌̌
�

ˇ̌̌
Tr
�
SjU.k/.s� t /J .k/Sj

� �
S�1j S�1kC1VN .xj � xkC1/.1�wj;kC1/S

�1
kC1S

�1
j

�
�

�
SkC1Sj 

.kC1/

N;j;kC1;s
SjSkC1

� �
S�1j S�1kC1.1�wj;kC1/SkC1S

�1
j

� ˇ̌̌
C

ˇ̌̌
Tr
�
SjJ

.k/Sj

� �
S�1j SkC1.1�wj;kC1/S

�1
kC1S

�1
j

�
�

�
SkC1Sj 

.kC1/

N;j;kC1;s
SjSkC1

�
�

�
S�1j S�1kC1NVN .xj � xkC1/.1�wj;kC1/S

�1
kC1S

�1
j

� ˇ̌̌
:

As in (7.15) we have kS�1j S�1
kC1

VN .xj �xkC1/.1�wj;kC1/S
�1
j S�1

kC1
k � CN�1.

Moreover (see (6.7)),

(7.20) kS�1j SkC1.1�wj;kC1/S
�1
kC1S

�1
j k � C:

By an argument very similar to (7.14)–(7.17) and by Proposition 5.2 we obtain
(7.18).
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It remains to consider

(7.21) N

kX
jD1

Z t

0

ds TrJ .k/U.k/.t � s/ŒVN .xj � xkC1/; 
.kC1/
N;s �

D

kX
jD1

Z t

0

ds Tr
�

U.k/.s�t /J .k/
� h
NVN .xj � xkC1/.1�wj;kC1/; 

.kC1/

N;j;kC1;s

i

�

kX
jD1

Z t

0

ds Tr
�

U.k/.s�t /J .k/
�
NVN .xj �xkC1/.1�wj;kC1/

.kC1/

N;j;kC1;s
wj;kC1

C

kX
jD1

Z t

0

ds Tr
�
U.k/.s�t /J .k/

�
wj;kC1

.kC1/

N;j;kC1;s
.1�wj;kC1/NVN .xj�xkC1/ :

The terms on the third and fourth lines converge to zero, as N !1. For example,
the contributions on the third line can be bounded byˇ̌̌

Tr
�

U.k/.s� t /J .k/
�
NVN .xj � xkC1/.1�wj;kC1/

.kC1/

N;j;kC1;s
wj;kC1

ˇ̌̌
(7.22)

� kSj

�
U.k/.s� t /J .k/

�
Sj k

� kS�1j S�1kC1
�
NVN .xj � xkC1/.1�wj;kC1/

�
S�1j S�1kC1k

� kS�1j SkC1wj;kC1S
�1
j S�1kC1k Tr S2j S

2
kC1 

.kC1/

N;j;kC1;s
:

Then we use

(7.23) kS�1j S�1kC1NVN .xj � xkC1/.1�wj;kC1/S
�1
j S�1kC1k � C

and

(7.24) kS�1j SkC1wj;kC1S
�1
j S�1kC1k

�

S�1kC1S�1j wj;kC1S
2
kC1wj;kC1S

�1
j S�1kC1

1=2
� kS�1j w2j;kC1S

�1
j k

1=2
CkS�1kC1S

�1
j .rwj;kC1/

2S�1j S�1kC1k
1=2

� CN�1CCN�1=4 :

To prove (7.24), we applied Lemma 6.4 and the fact that, by Lemma 5.1, with R
such that suppV � fx 2 R3 W jxj �Rg,

w.x/� C�.jxj<R=N/C a
�.jxj>R=N/

jxj
�

C

N jxj
;

and

jrw.x/j2 � C
a

jxj2
jrw.x/j � C

1

N 1=2jxj5=2

(the last bound is obtained interpolating the first bound in (5.4) and the second
bound in (5.5)). It follows that
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ˇ̌̌ kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
�
NVN .xj � xkC1/.1�wj;kC1/

.kC1/

N;j;kC1;s
wj;kC1

ˇ̌̌
� CtkN�1=4 max

j�k
sup
s2Œ0;t�

Tr SjSkC1
.kC1/

N;j;kC1;s
SjSkC1

(7.25)

which converges to zero, as N !1, by using Proposition 5.2. The fourth line of
(7.21) can be handled analogously. Hence, from (7.21),

(7.26) N

kX
jD1

Z t

0

dsTrJ .k/U.k/.t � s/ŒVN .xj � xkC1/; 
.kC1/
N;s �

D

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
�

�

h
NVN .xj � xkC1/.1�wj;kC1/; 

.kC1/

N;j;kC1;s

i
CCk;T oN .1/

where oN .1/! 0 as N !1 and Ck;T is a constant depending on k and on T .
To handle the right-hand side of (7.26), we choose a compactly supported

positive function h 2 C10 .R
3/ with

R
dx h.x/D 1. For ˇ > 0, we define ıˇ .x/D

ˇ�3h.x=ˇ/, i.e., ıˇ is an approximate delta-function on the scale ˇ. Then we have

(7.27)
kX

jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
�

�

h
NVN .xj � xkC1/.1�wj;kC1/; 

.kC1/

N;j;kC1;s

i
D

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
�

�

h
NVN .xj � xkC1/.1�wj;kC1/� 8�a0ıˇ .xj � xkC1/; 

.kC1/

N;j;kC1;s

i
C

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
� h
8�a0ıˇ .xj � xkC1/; 

.kC1/

N;j;kC1;s

i

D

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
� h
8�a0ıˇ .xj � xkC1/; 

.kC1/

N;j;kC1;s

i
CCk;T

�
O.N�1=2/CO.ˇ1=2/

�
for some constant Ck;T which depends on k � 1, on T , and on J .k/ (O.ˇ1=2/ is
independent of N ). Here we used that, by (5.6),

(7.28)
Z

dxNVN .x/.1�w.x//D 8�a0 ;
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and we applied Lemma 7.2. To apply Lemma 7.2, we used Proposition 5.2 and
that, by (7.8),

jjjU
.k/
0 .s� t /J .k/jjjj � C

�7k U
.k/
0 .s� t /J .k/ �7k


HS

with a k-dependent constant C . Since

e�i.s�t/�j hxj i
mei.s�t/�j D hxj C 2.s� t /pj i

m;

for any j D 1; : : : ; k, m 2 N, we obtain that

jjjU
.k/
0 .s� t /J .k/jjjj � C.1Cjt � sj

7/
�7k J .k/ �7kHS :

To control the first term on the right-hand side of (7.27) we go back to  .kC1/N;t .
We write


.kC1/

N;j;kC1;s
D 

.kC1/
N;s C

� 1

1�wj;kC1
� 1

�

.kC1/
N;s(7.29)

C
1

1�wj;kC1

.kC1/
N;s

� 1

1�wj;kC1
� 1

�
:

When we insert (7.29) in the right-hand side of (7.27), the contributions arising
from the last two terms in (7.29) converge to zero, as N !1, for any fixed ˇ > 0.
For example, to bound the contribution of the second term on the right-hand side.
of (7.29), we use that

(7.30)
ˇ̌̌
Tr
�

U.k/.s� t /J .k/
��
8�a0ıˇ .xj � xkC1/;

�
1

1�wj;kC1
� 1

�

.kC1/
N;s

� ˇ̌̌
� C

ˇ̌̌
Tr
�

U.k/.s� t /J .k/
� �
S�1kC1ıˇ .xj � xkC1/SkC1

�
�

�
S�1kC1

wj;kC1

1�wj;kC1
S�1kC1

��
SkC1

.kC1/
N;s SkC1

� ˇ̌̌
CC

ˇ̌̌
Tr
�

U.k/.s� t /J .k/
��
S�1kC1

wj;kC1

1�wj;kC1
S�1kC1

�
�

�
SkC1

.kC1/
N;s SkC1

� �
S�1kC1ıˇ .xj � xkC1/SkC1

� ˇ̌̌
� CkS�1kC1ıˇ .xj�xkC1/SkC1k

S�1kC1 wj;kC1

1�wj;kC1
S�1kC1

TrS2kC1
.kC1/
N;s :

Now we have

(7.31)
S�1kC1 wj;kC1

1�wj;kC1
S�1kC1

� CN�1
because w.x/� Cajxj�1 and thus, as an operator inequality, wj;kC1 � CaS2kC1
(and a'N�1). Moreover

Tr S2kC1
.k/
N;s D h N;s; .1��kC1/ N;si �N

�1
h N;s; .HN CN/ N;si(7.32)

DN�1h N ; .HN CN/ N i � C
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by the assumption (2.13). It is also easy to see that

(7.33) kS�1kC1ıˇ .xj � xkC1/SkC1k � Cˇ
�4

for ˇ < 1. The contribution arising from the last term on the right-hand side of
(7.29) can also be controlled similarly. Therefore, it follows from (7.26), (7.27),
(7.29), and (7.30) that

(7.34) N

kX
jD1

Z t

0

ds TrJ .k/U.k/.t � s/
h
VN .xj � xkC1/; 

.kC1/
N;s

i

D 8�a0

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
� h
ıˇ .xj � xkC1/; 

.kC1/
1;s

i

C 8�a0

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
�h
ıˇ .xj � xkC1/; 

.kC1/
N;s � 

.kC1/
1;s

i
CCk;T

�
O.ˇ1=2/C oN .1/

�
;

where oN .1/! 0 as N !1 (for any fixed ˇ > 0). The first term is the main term.
To control the second term, we rewrite it, for " > 0, as

(7.35)
kX

jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
� h
ıˇ .xj � xkC1/; 

.kC1/
N;s �  .kC1/1;s

i

D

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
�
ıˇ .xj �xkC1/

1

1C "SkC1

�

.kC1/
N;s �  .kC1/1;s

�

C

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
�

� ıˇ .xj � xkC1/

�
1�

1

1C "SkC1

��

.kC1/
N;s �  .kC1/1;s

�
�

kX
jD1

Z t

0

ds Tr ıˇ .xj�xkC1/
1

1C "SkC1

�
U.k/.s� t /J .k/

��

.kC1/
N;s �  .kC1/1;s

�

�

kX
jD1

Z t

0

ds Tr ıˇ .xj � xkC1/
�
1�

1

1C "SkC1

�
�

�
U.k/.s� t /J .k/

� �

.kC1/
N;s �  .kC1/1;s

�
:
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The second term on the right-hand side of (7.35) can be bounded by using that

ˇ̌̌
Tr
�

U.k/.s� t /J .k/
�
ıˇ .xj � xkC1/

�
1�

1

1C "SkC1

��

.kC1/
N;s �  .kC1/1;s

�ˇ̌̌(7.36)

� "
 �U.k/.s� t /J .k/

�
ıˇ .xj � xkC1/


�

�
Tr SkC1

.kC1/
N;s SkC1CTrSkC1

.kC1/
1;s SkC1

�
� Cˇ�3"

�
Tr S2kC1

.kC1/
N;s CTrS2kC1

.kC1/
1;s

�
� Cˇ�3" ;

where we used (7.32) and Proposition 6.3. Also the fourth term on the right-hand
side of (7.35) can be controlled analogously. As for the first and third term on the
right-hand side of (7.35), we note that for every fixed " > 0, ˇ > 0 and s 2 Œ0; t �,
the integrand converges to zero, as N !1, by (7.5), and because

(7.37)
�

U.k/.s� t /J .k/
�
ıˇ .xj � xkC1/

1

1C "SkC1
;

ıˇ .xj � xkC1/
1

1C "SkC1

�
U.k/.s� t /J .k/

�
2 KkC1 :

Since, moreover, the integrand is bounded uniformly in s 2 Œ0; t � (because for fixed
"; ˇ > 0 the norm of the operators (7.37) is bounded uniformly in s), it follows
from Lebesgue dominated convergence theorem and from (7.34) that

(7.38) N

kX
jD1

Z t

0

dsTrJ .k/U.k/.t � s/
h
VN .xj � xkC1/; 

.kC1/
N;s

i

D

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
� h
8�a0ıˇ .xj � xkC1/; 

.kC1/
1;s

i
CCk;T

�
O.ˇ1=2/Cˇ�3O."/C oN .1/

�
;

where the convergence oN .1/! 0 as N !1 depends on " and ˇ. By applying
Lemma 7.2 again and by using that, by Proposition 6.3,

max
jD1;:::;k

sup
t2Œ0;T �

Tr.1��j /.1��kC1/ 
.kC1/
1;t � C ;

we can replace ıˇ .xj � xkC1/ with ı.xj � xkC1/ in (7.38) at the expense of an
error O.ˇ�1=2/.
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From (7.11), (7.12), (7.13), (7.17), (7.18), and (7.38) with ı.xj � xkC1/ it
follows, letting N !1 with fixed ˇ > 0 and " > 0, that

Tr J .k/ .k/1;t D Tr J .k/U.k/.t/ 
.k/
1;0

� i

kX
jD1

Z t

0

ds Tr
�

U.k/.s� t /J .k/
� h
8�a0ı.xj � xkC1/; 

.kC1/
1;s

i
C O.ˇ1=2/Cˇ�4O."/ :

Equation (7.10) now follows from the last equation letting first "! 0 and then
ˇ! 0. �

8. Regularization of the initial wave function

In this section we show how to regularize the initial wave function  N given
in Theorem 2.2.

PROPOSITION 8.1. Suppose that (2.17) is satisfied. For � > 0 we define

(8.1) z N WD
�.�HN =N/ N

k�.�HN =N/ N k
:

Here �2C10 .R/ is a cutoff function such that 0��� 1, �.s/D 1 for 0� s� 1 and
�.s/ D 0 for s � 2. We denote by z .k/N , for k D 1; : : : ; N , the marginal densities
associated with z N .

i) For every integer k � 1 we have

(8.2) h z N ;H
k
N
z N i �

2kN k

�k
:

ii) We have

sup
N

k N � z N k � C�
1=2 :

iii) Suppose, moreover, that the assumption (2.18) is satisfied, that is, suppose
that there exists ' 2 L2.R3/ and, for every N 2 N and k D 1; : : : ; N , there
exists �.N�k/N 2 L2s .R

3.N�k// with k�.N�k/N k D 1 such that

(8.3) lim
N!1

k N �'
˝k
˝ �

.N�k/
N k D 0 :

Then, for � > 0 small enough, and for every fixed k � 1 and J .k/ 2 Kk , we
have

(8.4) lim
N!1

Tr J .k/
�
z
.k/
N � j'ih'j

˝k
�
D 0 :

Proof. The proof of parts i) and ii) is analogous to the proof of parts i) and
ii) of Proposition 5.1 in [9]. Introduce the shorthand notation „ WD �.�HN =N/.
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In order to prove i), we note that 1.HN � 2N=�/„ D „, where 1.s � �/ is the
characteristic function of Œ0; ��. Therefore,

h z N ;H
k
N
z N i D

�
„ N

k„ N k
;Hk

N

„ N

k„ N k

�
(8.5)

D

�
„ N

k„ N k
; 1.HN � 2N=�/Hk

N

„ N

k„ N k

�
� k1.HN � 2N=�/Hk

N k �
2kN k

�k
:

To prove ii), we compute

(8.6) k„ N � N k
2
D

D
 N ; .1�„/

2 N

E
�

D
 N ; 1.�HN �N/ N

E
:

Next we use that 1.s � 1/� s, for all s � 0. Therefore

(8.7) k„ N � N k
2
�
�

N
h N ;HN N i � C�

by the assumption (2.17). Hence

(8.8) k„ N � N k � C�
1=2:

Since k N k D 1, part ii) follows by (8.8), because N � „ N

k„ N k

� k N �„ N kC „ N � „ N

k„ N k

(8.9)

D k N �„ N kC j1�k„ N kj

� 2k N �„ N k :

Finally, we prove iii). For any sufficiently small � we will prove that for any
fixed k � 1, J .k/ 2 Kk and " > 0 (small enough)

(8.10)
ˇ̌̌
Tr J .k/

�
z
.k/
N � j'ih'j

˝k
�ˇ̌̌
� "

holds if N �N0.k; "/ is large enough. To this end, we choose '� 2H 2.R3/ with
k'�k D 1, such that k' �'�k � "=.32kkJ .k/k/. Then we have

(8.11) k'˝k˝ �
.N�k/
N �'˝k� ˝ �

.N�k/
N k � kk' �'�k �

"

32kJ .k/k
:

Therefore,

(8.12)
 „ N

k„ N k
�

„
�
'˝k� ˝ �

.N�k/
N

�
k„

�
'˝k� ˝ �

.N�k/
N

�
k


�

2

k„ N k

„ � N �'˝k� ˝ �.N�k/N

� � 4 N �'˝k� ˝ �.N�k/N
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for � > 0 small enough (by (8.8) and because k„k � 1). Hence

(8.13)
 „ N

k„ N k
�

„
�
'˝k� ˝ �

.N�k/
N

�
k„

�
'˝k� ˝ �

.N�k/
N

�
k

� 4 N �'˝k˝ �.N�k/N


C4
'˝k˝ �.N�k/N �'˝k� ˝ �

.N�k/
N

� "

6kJ .k/k

for N large enough. Here we used (8.11) and the assumption (8.3). Next we define
the Hamiltonian

(8.14) yHN WD �

NX
jDkC1

�j C

NX
k<i<j

VN .xi � xj / :

Note that yHN acts only on the last N � k variables. We set y„ WD �.� yHN =N/.
Then, from (8.13), we will obtain

 „ N

k„ N k
�

y„
�
'˝k� ˝ �

.N�k/
N

�
k y„

�
'˝k� ˝ �

.N�k/
N

�
k

� "

3kJ .k/k
(8.15)

for N sufficiently large (if � > 0 and " > 0 are small enough).
Before proving (8.15), let us show how (8.10) follows from it. Let

y N WD

y„
�
'˝k� ˝ �

.N�k/
N

�
k y„

�
'˝k� ˝ �

.N�k/
N

�
k

D '˝k� ˝
y„�

.N�k/
N

k y„�
.N�k/
N k

since y„ acts only on the last N � k variables and since k'�k D 1. Moreover, we
define

y
.k/
N .xkI x0k/ WD

Z
dxN�k y N .xk; xN�k/ y N .x

0
k; xN�k/ :

Note that y N is not symmetric in all variables, but it is symmetric in the first k
and the last N � k variables. In particular, y .k/N is a density matrix and clearly

y
.k/
N D j'�ih'�j

˝k i.e. y .k/N .xkI x0k/D
kY

jD1

'�.xj /'�.x
0
j / :

Therefore, since k z N � y N k � "=.3kJ .k/k/ by (8.15) and since k' � '�k �
"=.32kkJ .k/k/, we have

(8.16)
ˇ̌̌
Tr J .k/

�
z
.k/
N � j'ih'j

˝k
� ˇ̌̌

�

ˇ̌̌
Tr J .k/

�
z
.k/
N � j'�ih'�j

˝k
� ˇ̌̌
C

ˇ̌̌
Tr J .k/

�
j'�ih'�j

˝k
� j'ih'j˝k

� ˇ̌̌
� 2kJ .k/k k z N � y N kC 2kkJ

.k/
k k' �'�k � "

for N sufficiently large (for arbitrary �; " > 0 small enough). This proves (8.10).
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It remains to prove (8.15). To this end, we set  N;� WD '˝k� ˝ �
.N�k/
N , and

we expand the operator „ � y„ D �.�HN =N/ � �.� yHN =N/ using the Helffer-
Sjöstrand functional calculus (see, for example, [4]). Let z� be an almost analytic
extension of the smooth function � of order three (that is j@z z�.z/j � C jyj3, for
y D Imz near zero): for example we can take z�.z D xC iy/ WD Œ�.x/C iy�0.x/C
�00.x/.iy/2=2C �000.x/.iy/3=6��.x; y/, where � 2 C10 .R

2/ and �.x; y/ D 1 for
z D xC iy in some complex neighborhood of the support of �. Then

.„� y„/ N;� D�
1

�

Z
dx dy @ Nz z�.z/

 
1

z� .�HN =N/
�

1

z� .� yHN =N/

!
 N;�

(8.17)

D�
�

N�

Z
dx dy @ Nz z�.z/

1

z� .�HN =N/
.HN � yHN /

1

z� .� yHN =N/
 N;� :

Taking the norm we obtain

(8.18) k.„� y„/ N;�k �
C�

N

Z
dx dy

j@ Nz z�.z/j

jyj

�

 1

z� .�HN =N/
.HN � yHN /

1

z� .� yHN =N/
 N;�

 :
Notice that the operator

(8.19) HN � yHN D�

kX
jD1

�j C
X

i�k;i<j�N

VN .xi � xj /

is positive, hence .HN � yHN /1=2 exists. By using kAB k2 � kAk2h ;B�B i, 1

z� .�HN =N/
.HN � yHN /

1

z� .� yHN =N/
 N;�

2(8.20)

�

.HN � yHN /1=2 1

jz� .�HN =N/j2
.HN � yHN /

1=2


�

*
 N;�;

1

Nz� .� yHN =N/
.HN � yHN /

1

z� .� yHN =N/
 N;�

+
:

Moreover (since kBA2Bk D kAB2Ak � kAC 2Ak for positive operators A;B;C
with B2 � C 2),.HN � yHN /1=2 1

jz� .�HN =N/j2
.HN � yHN /

1=2
(8.21)

D

 1

jz� .�HN =N/j
.HN � yHN /

1

jz� .�HN =N/j


�

 1

jz� .�HN =N/j
HN

1

jz� .�HN =N/j

� CN

jyj2�
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for z in the support of z�, where we used the spectral theorem in the last step. On
the other hand, the second factor on the right-hand side of (8.20) can be bounded byD

 N;�;
1

Nz� .� yHN =N/
.HN � yHN /

1

z� .� yHN =N/
 N;�

E
� k

D
 N;�;

1

Nz� .� yHN =N/
.��1C kVN .x1� x2/

CNVN .x1� xkC1//
1

z� .� yHN =N/
 N;�

E
:

Here we used the fact that  N;� is symmetric with respect to permutations of
the first k and the last N � k variables, and that the operator yHN preserves this
property. Since NVN .x1 � xkC1/ � CkV kL1.1 ��1/

2, and kVN .x1 � x2/ �
CkV kL1.1��1/

2 (see (6.47)) we findD
 N;�;

1

Nz� .� yHN =N/
.HN � yHN /

1

z� .� yHN =N/
 N;�

E
(8.22)

� k
D
 N;�

1

Nz� .�HN =N/

�
��1C .1��1/

2
� 1

z� .�HN =N/
 N;�

E
� C k jyj�2k'�k

2
H2

because �1 commutes with yHN (recall that  N;� D '˝k� ˝ �
.N�k/
N ). From (8.18),

(8.20), (8.21) and (8.22) we find that k.„� y„/ N;�k � Ck;"N�1=2 for a constant
Ck;" depending on k and " (through the norm k'�kH2) but independent of �, for
� small enough. This implies that

(8.23)
 „

�
'˝k� ˝ �

.N�k/
N

�
k„

�
'˝k� ˝ �

.N�k/
N

�
k

�

y„
�
'˝k� ˝ �

.N�k/
N

�
k y„

�
'˝k� ˝ �

.N�k/
N

�
k


�

2

k„
�
'˝k� ˝ �

.N�k/
N

�
k

k.„� y„/ N;�k� 4 k.„� y„/ N;�k�
"

6kJ .k/k

for N large enough (and assuming that " > 0 and � > 0 are small enough, indepen-
dently of N ). Here we used that (by (8.3), (8.8), and (8.11))

k„
�
'˝k� ˝ �

.N�k/
N

�
k � k N k�k„ N � N k�k„

�
 N �'

˝k
˝ �

.N�k/
N

�
k

� k„
�
'˝k˝ �

.N�k/
N �'˝k� ˝ �

.N�k/
N

�
k

� 1�C�1=2� o.1/�
"

32kJ .k/k
� 1=2

(8.24)

for �; " small enough and for N large enough. From (8.23) and (8.13) we obtain
(8.15). This completes the proof of part iii). �
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9. Proof of Proposition 5.3

This section is devoted to the proof the Proposition 5.3. Let us recall the
definition of the cutoff functions

‚
.n/

k
D‚

.n/

k
.x/D exp

�
�
2n

`"

X
i�k

X
j¤i

h.xi � xj /
�

from (5.32) with the function h defined in (5.29). We introduce the notation hij D
h.xi � xj / and we also adopt the convention that hi i D 0 for any i 2 N. Moreover
we recall that Dk WD r1 : : :rk :

Proof of Proposition 5.3. We prove (5.33) by induction over k. For k D 1 we
clearly have

(9.1) h ; .HN CN/ i �N

Z
jr1  j

2
C
N.N � 1/

2

Z
VN .x1� x2/j j

2:

For kD 2 we have, from (5.9), (5.16) (but keeping the term on the sixth line, which
was neglected, because of its positivity, in the last inequality in (5.16)), (5.17), and
(5.18) we find, for � small enough (recall the definition of � in (2.7)),

(9.2) h ; .HN CN/2 i � h ;H 2
N i �N.N � 1/h ; h1h2 iCN h ; h

2
1 i

�N.N � 1/.1� c�/

Z
.1�w12/

2
jr1r2�12j

2

C
N.N � 1/.N � 2/

2

Z
.1�w12/

2 VN .x2� x3/jr1�12j
2
CN

Z
jh1 j

2

where hi , for i D 1; : : : ; N , was defined in (5.8). From the last term we get

(9.3)
Z
jh1 j

2
�

Z
�
.2/
1 jh1 j

2
�

Z
�
.2/
1 �1S �1 

C
1

2

X
j�2

Z
�
.2/
1

�
�1S VN .x1� xj / C h:c:

�
;

where h.c. denotes the hermitian conjugate. The last term is exponentially small
in N because on the support of the potential VN .x1� xj / the point x1 is close to
xj (on the length scale N�1) and this makes the factor � .2/1 exponentially small.
Hence we find (with the notation rj1 WD @x.j /

1

where x1 D .x
.1/
1 ; x

.2/
1 ; x

.3/
1 / 2 R3),

(9.4)Z
�
.2/
1 jh1 j

2
�

Z
�
.2/
1 jr

2
1 j

2
C

Z 3X
i;jD1

n
.ri1�

.2/
1 /.r

j
1
S /ri1r

j
1 C h:c:

o

C

Z 3X
i;jD1

r
i
1r

j
1 �

.2/
1 r

i
1
S r

j
1 � o.N /

�Z
�
.1/
1 jr1 j

2
C

Z
j j2

�



338 LÁSZLÓ ERDŐS, BENJAMIN SCHLEIN, and HORNG-TZER YAU

by using jr1�
.2/
1 j � C`

�1�
.1/
1 from Lemma A.1, part iii). From parts ii) and iv)

of the same lemma we also haveˇ̌̌
r1�

.2/
1

ˇ̌̌2
�
.2/
1

� C`�2�
.1/
1 and

ˇ̌̌
r
2
1�
.2/
1

ˇ̌̌
� C`�2�

.1/
1 ;(9.5)

and therefore we obtain

3X
i;jD1

ˇ̌̌̌Z
.ri1�

.2/
1 /.r

j
1
S /ri1r

j
1 

ˇ̌̌̌
� ˛

Z
�
.2/
1 jr

2
1 j

2
C˛�1

Z
jr1�

.2/
1 j

2

�
.2/
1

jr1 j
2

� o.1/

Z
�
.2/
1 jr

2
1 j

2
C o.N /

Z
�
.1/
1 jr1 j

2 ;

(9.6)

where we used that N`2 � 1 (and an appropriate choice of the parameter ˛).
Analogously

(9.7)
3X

i;jD1

Z ˇ̌̌
r
i
1r

j
1 �

.2/
1 r

i
1
S r

j
1 

ˇ̌̌
� o.N /

Z
�
.1/
1 jr1 j

2 :

From (9.2)–(9.7), we find

(9.8) h ; .HN CN/2 i �N 2.1� c�� o.1//

Z
.1�w12/

2
jr1r2�12j

2

C
N 3

2
.1� o.1//

Z
.1�w12/

2 VN .x2� x3/jr1�12j
2

CN.1�o.1//

Z
�
.2/
1 jr

2
1 j

2
�o.N 2/

�Z
�
.1/
1 jr1 j

2
C

Z
�
.1/
1 j j

2

�
:

Next we apply Lemma 9.4 (with n D 0) to replace, in the first and second
term on the right-hand side of the last equation, �12 by  . We find

(9.9) h ; .HN CN/2 i �N 2.1� c�� o.1//

Z
�
.2/
1 jr1r2 j

2

C
N 3

2
.1�o.1//

Z
�
.2/
1 VN .x2�x3/jr1 j

2
CN.1�o.1//

Z
�
.2/
1 jr

2
1 j

2

�o.N 2/

Z n
�
.1/
1 jr1 j

2
C �

.1/
1 j j

2
CNVN .x1� x2/j j

2
o
:

By (9.1) we have

(9.10) o.N 2/

Z n
�
.1/
1 jr1 j

2
C �

.1/
1 j j

2
CNVN .x1� x2/j j

2
o

� o.N /h ; .HN CN/ i � o.1/h ; .HN CN/
2 i :
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Hence, from (9.9), we obtain

(9.11) .1C o.1//h ; .HN CN/
2 i �N 2.1� c�� o.1//

Z
�
.2/
1 jr1r2 j

2

C
N 3

2
.1�o.1//

Z
�
.2/
1 VN .x2�x3/jr1 j

2
CN.1�o.1//

Z
�
.2/
1 jr

2
1 j

2 :

It follows that, for � small enough, there exists C0 > 0 such that we have

(9.12) h ; .HN CN/2 i � C 20N
2

Z
�
.2/
1 jr1r2 j

2

CC 20N
3

Z
�
.2/
1 VN .x2� x3/jr1 j

2
CC 20N

Z
�
.2/
1 jr

2
1 j

2

if N is large enough.
We assume now that (5.33) is correct for all k � nC 1 and we prove if for

k D nC 2, assuming n � 1. To this end we note that, for N � N0.n/, using the
induction hypothesis we have

h ; .HN CN/
nC2 i � hHN ; .HN CN/

nHN i(9.13)

� C n0N
n

Z
‚
.n/
n�1 jDnHN j

2

� C n0N
n

Z
‚.nC2/n jDnHN j

2

where we used that 1 � � .n/i � �
.nC2/
i for every i D 1; : : : ; n. We write HN DPN

jD1 h
.n/
j , with

(9.14)

h
.n/
j D

�
��j C

1
2

P
i>n;i¤j VN .xi � xj / if j > n

��j C
1
2

P
i�n VN .xi � xj /C

P
i>n VN .xi � xj / if j � n :

Then we have

h ; .HN CN/
nC2 i � C n0N

n
X
i;j>n

Z
‚.nC2/n Dnh

.n/
i
S Dnh

.n/
j  

CC n0N
n

� X
i�n<j

Z
‚.nC2/n Dnh

.n/
i
S Dnh

.n/
j  C h:c:

�

CC n0N
n
X
i;j�n

Z
‚.nC2/n Dnh

.n/
i
S Dnh

.n/
j  :

(9.15)

The last term on the right-hand side (where i; j � n) is positive and therefore
it can be neglected. In the first term on the right-hand side. we can neglect all
terms where i D j (because they are all positive). Therefore we obtain
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(9.16) h ; .HNCN/nC2 i �C n0N
n

X
i;j>n;i¤j

Z
‚.nC2/n Dn h

.n/
i
S Dn h

.n/
j  

CC n0N
n
X
i�n<j

Z
‚.nC2/n

n
Dnh

.n/
i
S Dnh

.n/
j  C h:c:

o
:

In Proposition 9.1 below we give a lower bound for the first term in (9.16), while
Proposition 9.5 estimates the second term. Combining these two estimates, we find
that, for � small enough (independently of N and n) and for N large enough,

(9.17) h ; .HN CN/nC2 i

� C n0N
nC2.1� c�� o.1//

Z
‚
.nC2/
nC1 jDnC2 j

2

CC n0N
nC1.1� o.1//

Z
‚
.nC2/
nC1 jr1DnC1  j

2

C
C n0N

nC3

2
.1�o.1//

Z
‚
.nC2/
nC1 VN .xnC2�xnC3/ jDnC1 j

2
��n. / ;

where the error �n. / is given by

�n. /D o.N
nC3/

Z
‚.nC1/n VN .xnC1� xnC2/ jDn  j

2(9.18)

C o.N nC1/

�Z
‚.nC1/n jr1Dn j

2
C

Z
‚
.n/
n�1jr1Dn�1 j

2

�
C o.N nC2/

�Z
‚.nC1/n jDnC1 j

2
C

Z
‚
.n/
n�1jDn j

2

C

Z
‚
.n�1/
n�2 jDn�1 j

2
C

Z
‚
.n�2/
n�3 jDn�2 j

2

�
:

Now we use the induction hypothesis, equation (5.33), with k D n� 1; n; nC 1 to
bound the negative contributions. For example, (5.33) with k D nC 1 implies that

o.N nC3/

Z
‚.nC1/n VN .xnC1� xnC2/ jDn  j

2

� o.N /h ; .HN CN/
nC1 i � o.1/h ; .HN CN/

nC2 i

because HN � 0. The other terms in (9.18) are treated similarly. It follows that

.1C o.1// h ; .HN CN/
nC2 i

� C n0N
nC2.1� c�� o.1//

Z
‚
.nC2/
nC1 jDnC2 j

2

CC n0N
nC1.1� o.1//

Z
‚
.nC2/
nC1 jr1DnC1  j

2

C
C n0N

nC3

2
.1� o.1//

Z
‚
.nC2/
nC1 VN .xnC2� xnC3/ jDnC1 j

2 :
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Therefore, if � and C0 are small enough (independently of n), we are able to find
N0.nC 2; C0/ > N0.n; C0/ such that

h ; .HN CN/
nC2 i � C nC20 N nC2

Z
‚
.nC2/
nC1 jDnC2 j

2

(9.19)

C C nC20 N nC1

Z
‚
.nC2/
nC1 jr1DnC1  j

2

C C nC20 N nC3

Z
‚
.nC2/
nC1 VN .xnC2� xnC3/ jDnC1 j

2:

�

In the rest of this section we will state and prove Propositions 9.1 and 9.5 used
in (9.16). Both proofs will be divided into several lemmas.

Similarly to the H 2
N -energy estimate from Proposition 3.1, the key idea in

Proposition 9.1 is that h
.n/
i  can be conveniently estimated by the derivatives of

�ij , where �ij is given by the relation  D .1�wij /�ij . The estimates of all errors
are done in terms of �ij and its derivatives. Finally, Lemma 9.4 will show how to
go back from the estimates on �ij to estimates involving  with a cutoff supported
on a bigger set.

PROPOSITION 9.1. Suppose � is small enough and ` � N�1=2. For i D
1; : : : ; N , let h

.n/
i be defined as in (9.14). Then

(9.20) C n0N
n

X
i;j>n;i¤j

Z
‚.nC2/n Dn h

.n/
i
S Dn h

.n/
j  

� C n0N
nC2.1� c�� o.1//

Z
‚
.nC2/
nC1 jDnC2 j

2

C
C n0N

nC3

2
.1�o.1//

Z
‚
.nC2/
nC1 VN .xnC2�xnC3/ jDnC1 j

2
��n. /

where the error term �n. / has been defined in (9.18).

Proof. For any i ¤ j , i; j > n, we write  D .1�wij /�ij . Then we have,
similarly to (5.13),

.1�wij /
�1h

.n/
i

�
.1�wij /�ij

�
D��i�ij C 2

rwij

1�wij
ri�ij(9.21)

C
1

2

X
m>n;m¤i;j

VN .xi � xm/�ij

D Li�ij C
1

2

X
m>n;m¤i;j

VN .xi � xm/�ij



342 LÁSZLÓ ERDŐS, BENJAMIN SCHLEIN, and HORNG-TZER YAU

where the differential operator Li WD ��i C 2
rwij

1�wij
ri is such that

(9.22)
Z
.1�wij /

2.Li�/�D

Z
.1�wij /

2�.Li�/D

Z
.1�wij /

2
ri�ri�:

Note that the operator Li also depends on the choice of the index j . Analogously,
we have

.1�wij /
�1h

.n/
j

�
.1�wij /�ij

�
D Lj�ij C

1

2

X
m>n;m¤i;j

VN .xj � xm/�ij

with Lj D��j C 2
rwji

1�wij
rj . Note that Dn commutes with Li , Lj and 1�wij if

i; j > n. The left-hand side of (9.20) is thus given by

C n0N
n

X
i;j>n;i¤j

Z
.1�wij /

2 ‚.nC2/n

�Dn

240@Li C 1
2

X
m>n;m¤i;j

VN .xm� xi /

1A �ij

35
�Dn

240@Lj C 1
2

X
r>n;r¤i;j

VN .xj � xr/

1A �ij

35
� C n0N

n
X

i;j>n;i¤j

Z
.1�wij /

2 ‚.nC2/n LiDn �ij LjDn �ij

C
C n0N

n

2

X
i;j>n;i¤j

X
r>n; r¤i;j

Z
.1�wij /

2

�‚.nC2/n VN .xj � xr/ LiDn �ij Dn�ij C h:c: ;

because of the positivity of the potential. Proposition 9.1 now follows from Lem-
mas 9.2 and 9.3, where we consider separately the two terms on the right-hand side
of the last equation. �

LEMMA 9.2. Suppose the assumptions of Proposition 9.1 are satisfied. Then
we have

(9.23) C n0N
n

X
i;j>n;i¤j

Z
.1�wij /

2 ‚.nC2/n Li Dn �ij Lj Dn �ij

� C n0N
nC2 .1� c�� o.1//

Z
‚
.nC2/
nC1 jDnC2 j

2

�o.N nC2/

�Z
‚.nC1/n jDnC1  j

2
C

Z
‚
.n/
n�1 jDn j

2

�
:
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Proof. By the symmetry (9.22) we have

(9.24) C n0N
n

X
i;j>n;i¤j

Z
.1�wij /

2 ‚.nC2/n LiDn �ij LjDn �ij

D C n0N
n

X
i;j>n;i¤j

Z
.1�wij /

2

�
‚.nC2/n riDn �ij riLjDn �ij

Cri‚
.nC2/
n riDn �ij LjDn �ij

�
D C n0N
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i;j>n;i¤j

Z
.1�wij /

2

�
‚.nC2/n jrjriDn �ij j

2

Crj‚
.nC2/
n riDn �ij rjriDn �ij Cri‚

.nC2/
n rjriDn �ij rjDn �ij

Crirj‚
.nC2/
n riDn �ij rjDn �ijC‚

.nC2/
n riDn �ij Œri ; Lj �Dn �ij

�
:

To bound the second and third terms on the right-hand side of (9.24), we note that,
by part iii) of Lemma A.1,

(9.25)
ˇ̌̌
rj‚

.nC2/
n

ˇ̌̌
� C`�1

 
2nC2

`"

nX
mD1

hmj

!
‚.nC2/n :

Therefore the second term on the right-hand side of (9.24) can be bounded by

(9.26)
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2

for some ˛ > 0. Next we use that �ij D  .1�wij /�1. Since i; j > n, we have

riDn
�
 .1�wij /

�1
�
Driwij .1�wij /

�2Dn C .1�wij /
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and thus
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� 2
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2
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2
C 2jriDn j

2 :
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Therefore the second term on the right-hand side of (9.26) is bounded by

(9.28)
X
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.1�wij /
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�
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� 1
2
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jDn j

2

�
where we used Hardy inequality and the fact that i ¤ j and i > n. Using a bound
similar to (9.25), and part ii) of Lemma A.1, we can continue this estimate

(9.29)
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�
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2

)
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because of the permutation symmetry of  . From (9.26) we find

(9.30)
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2
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� o.N 2/

�Z
.1�wnC1;nC2/

2 ‚.nC2/n jDnC2 �nC1;nC2j
2

C

Z
‚.nC1/n jDnC1 j

2
C

Z
‚
.n/
n�1 jDn j

2

�

for an appropriate choice of ˛ (using that N`2� 1). In the last term we also used
that � .n/n � 1.

The third term on the right-hand side of (9.24), being the hermitian conjugate
of the second term can be bounded exactly in the same way.

Now we consider the fourth term on the right-hand side of (9.24). To this end
we use that, since i ¤ j , and i; j > n, we have, by Lemma A.1, part v),

(9.31)
ˇ̌̌
rirj ‚
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n

ˇ̌̌
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�
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mD1

hmj

��
2nC2

`"

nX
mD1

hmi

�
‚.nC2/n :

Therefore

(9.32)
X
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2
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2
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Z
‚
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2

�
;

where in the second line we used (2.51) and a Schwarz inequality, in the third line
we used the bound (9.29), while in the last line we used N`2� 1.

Next we consider the last term on the right-hand side of (9.24). To this end
we note that, by (5.3) and (5.5),

ˇ̌̌̌�
ri ;
rwj i

1�wij

�ˇ̌̌̌
�

ˇ̌
r2wj i

ˇ̌
1�wij

C

�
rwj i

1�wij

�2
� c�

1

jxi � xj j2

assuming that � is small enough. Therefore, the terms in the sum on the last line
of (9.24) can be bounded by using Hardy inequality as
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(9.33)
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2 :

Next we sum over i; j > n (i ¤ j ); to control the contribution originating from the
second term on the right-hand side of the last equation we use (9.29). We obtain

(9.34)
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2

�
:

Inserting (9.30), (9.32), and (9.34) into the right side of (9.24) it follows that

C n0N
n

X
i;j>n;i¤j

Z
.1�wij /

2 ‚.nC2/n LiDn �ij LjDn �ij

� C n0N
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Z
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2
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�Z
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2
C

Z
‚
.n/
n�1 jDn j

2

�
:

(9.35)

Lemma 9.2 now follows from (9.41) in Lemma 9.4 below that shows how to replace
estimates involving the function �ij D .1�wij /�1 with estimates on  . �



DERIVATION OF THE GROSS-PITAEVSKII EQUATION 347

LEMMA 9.3. Suppose the assumptions of Proposition 9.1 are satisfied. Then
we have

(9.36)
C n0N

n

2
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X
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Z
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2 :

Proof. Using (9.22), we find
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o
:

(9.37)

Using (9.25) (with j replaced by i ), the second term in the curly bracket can
be bounded by

X
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2:
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Since i; j > n, and  D .1�wij /�ij , the second term can be estimated as

C`�2˛�1
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2 ;

(9.39)

because of the permutation symmetry of  and ‚.nC1/n . From (9.39) and (9.38),
it follows that

(9.40)
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2

where we used that N`2� 1 and we made a suitable choice of the parameter ˛.
Inserting this bound into (9.37), using the permutation symmetry, and (9.42) from
Lemma 9.4, the lemma follows easily. �

The next lemma, showing how to replace estimates on �ij with estimates
on  , has already been used in the previous proofs.

LEMMA 9.4. Suppose the assumptions of Proposition 5.3 are satisfied. Recall
that �ij is defined by  D .1�wij /�ij .

i) For n� 0, we haveZ
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�
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ii) For n� 0, we haveZ
.1�wnC1;nC2/
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Proof. In order to prove part i) we start by noticing that
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Using that �nC1;nC2 D .1�wnC1;nC2/�1  , we find
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and thus, from (5.3) bounds
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The second term can be bounded byZ
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� ˛
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where in the last inequality we used that, by Lemma 5.1, jrwnC1;nC2j � CN .
Moreover we used that rw.x/D a=jxj for jxj>R=N (with R such that suppV �
fx 2 R3 W jxj �Rg), and that R=N � ` for N large enough. Using that
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Since N`2� 1, we find
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As for the third term on the right-hand side of (9.44), we proceed as follows.
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where we used the bounds for jrwj and jr2wj from (5.4) and that w.x/D a=jxj
for jxj � ` since `�R=N . Using (9.46) to bound the last term, we obtain

(9.49)
Z
‚
.nC2/
nC1

�
jrwnC1;nC2j

2
Cjr

2wnC1;nC2j
�
jDnC2 j jDn j

� ˛

Z
‚
.nC2/
nC1 jDnC2 j

2
CC˛�1a2`�4

Z
‚.nC2/n

1

jxnC1� xnC2j2
jDn j

2

CC˛�1N 4e�C`
�"

Z
‚
.n/
n�1 jDn j

2:

To bound the second term on the right-hand side, we apply Hardy inequality. We
have
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Since N`2� 1, it follows from (9.49) thatZ
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Part i) of Lemma 9.4 follows now from (9.44), (9.47) and from last equation.
In order to prove part ii) we rewrite the left-hand side of (9.42) as follows.Z
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we find

(9.52)
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The last term can be controlled by using (5.4) and that w.x/D a=jxj for jxj> `�
R=N by

(9.53)
Z
‚
.nC2/
nC1 jrwnC1;nC2j

2 VN .xnC2� xnC3/ jDn j
2

� CN 2

Z
‚
.nC2/
nC1 �.jxnC1� xnC2j � `/ VN .xnC2� xnC3/ jDn j

2

CCa2
Z
‚
.nC2/
nC1

�.jxnC1� xnC2j � `/

jxnC1� xnC2j4
VN .xnC2� xnC3/ jDn j

2

� CN 2e�C`
�"

Z
‚
.nC1/
nC1 VN .xnC2� xnC3/ jDn j

2

CCa2`�4
Z
‚
.nC2/
nC1 VN .xnC2� xnC3/ jDn j

2

� o.1/

Z
‚
.nC1/
nC1 VN .xnC2� xnC3/ jDn j

2 :

From (9.51), we have
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2

� .1� o.1//

Z
‚
.nC2/
nC1 VN .xnC2� xnC3/ jDnC1 j

2

� o.1/

Z
‚.nC1/n VN .xnC1� xnC2/ jDn j

2 :

In the last term we used ‚.nC1/nC1 � ‚
.nC1/
n , the permutation symmetry of  and

we shifted the indices nC 2; nC 3! nC 1; nC 2 �

PROPOSITION 9.5. Suppose N`2� 1. Let h
.n/
i be defined as in (9.14). Then,

if N is large enough (depending on n),

(9.55) C n0N
n
X
i�n<j

Z
‚.nC2/n Dnh

.n/
i
S Dnh

.n/
j  C h:c:

� C n0N
nC1.1� o.1//

Z
‚
.nC2/
nC1 jr1DnC1  j

2
��n. / ;

where the error term �n. / has been defined in (9.18).
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Proof. We rewrite the left-hand side of (9.55) as

(9.56) C n0N
n
X
i�n<j

Z
‚.nC2/n Dnh

.n/
i
S Dnh

.n/
j  C h:c:

D C n0N
n
X
i�n<j

Z
‚.nC2/n Dn�i S Dn�j  

�
C n0N

n

2

X
i�n<j

X
m>n;m¤j

Z
‚.nC2/n VN .xj � xm/ Dn�i S Dn  

�C n0N
n
X
i�n<j

X
r¤i

�r

Z
‚.nC2/n Dn.VN .xi � xr/ S / Dn�j  

C
C n0N

n

4

X
i�n<j

X
r¤i

�r
X

m>n;m¤j

Z
‚.nC2/n

�Dn .VN .xi � xr/ S / Dn.VN .xj � xm/  /C h:c:

with �r D 1 if r > n, and �r D 1=2 if r � n (recall the definition of h
.n/
i , for

i � n, in (9.14)). The terms on the last two lines are easy to bound because the
potential VN .xi � xr/ forces the particle i to be close (on the length scale N�1)
to the particle r . But then the factor � .nC2/i in ‚.nC2/n makes this contribution
exponentially small. More precisely, for i � n, we have the bound

(9.57)
�
r
˛‚.nC2/n

�
jr
ˇVN .xi � xr/j � e

�C`�"

‚.nC1/n

for ˛ D 0; 1, ˇ D 0; 1; 2, and for all N large enough. It is therefore easy to prove
that

C n0N
n
X
i�n<j

Z
‚.nC2/n Dnh

.n/
i
S Dnh

.n/
j  C h:c:

D C n0N
n
X
i�n<j

Z
‚.nC2/n Dn�i S Dn�j  

�
C n0N

n

2

X
i�n<j

X
m>n;m¤j

Z
‚.nC2/n VN .xj � xm/ Dn�i S Dn  C h:c:

�O
�
e�C`

�"
� Z n

‚.nC1/n jDnC1 j
2
C‚

.n/
n�1jDn j

2
C‚

.n�1/
n�2 jDn�1 j

2

C‚
.n�2/
n�3 jDn�2 j

2
o
:

Proposition 9.5 now follows from Lemmas 9.6 and 9.7 below, where we handle the
first and, respectively, the second term on the right-hand side of the last equation.

�
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LEMMA 9.6. Suppose the assumptions of Proposition 9.5 are satisfied. Then
we have

(9.58) C n0N
n
X
i�n<j

Z
‚.nC2/n Dn�i S Dn�j  C h:c:

� C n0N
nC1.1� o.1//

Z
‚
.nC2/
nC1 jr1DnC1  j

2

� o.N nC2/

Z
‚.nC1/n jDnC1 j

2
� o.N nC1/

Z
‚.nC1/n jr1Dn j

2 :

Proof. Integration by parts leads to

(9.59)
X
i�n<j

Z
‚.nC2/n Dn�i S Dn�j  C h:c:

D

X
i�n<j

Z
‚.nC2/n jrirjDn  j

2
C

X
i�n<j

Z
ri‚

.nC2/
n rirjDn S rjDn  

C

X
i�n<j

Z
rj‚

.nC2/
n riDn S rirjDn  

C

X
i�n<j

Z
rirj‚

.nC2/
n riDn S rjDn  C h:c:

The second term on the right-hand side of the last equation can be bounded by

(9.60)
X
i�n<j

ˇ̌̌ Z
ri‚

.nC2/
n rirjDn S rjDn  

ˇ̌̌

� ˛
X
i�n<j

Z
jri‚

.nC2/
n j2

‚
.nC2/
n

jrjDn  j
2
C˛�1

X
i�n<j

Z
‚.nC2/n jrirjDn  j

2

for some ˛ > 0. Next we use that, by Lemma A.1, part iv),

X
i�n

jri‚
.nC2/
n j2

‚
.nC2/
n

� C`�2‚.nC1/n

and therefore, since N`2� 1,

(9.61)
X
i�n<j

ˇ̌̌ Z
ri‚

.nC2/
n rirjDn S rjDn  

ˇ̌̌
� ˛C`�2

X
j>n

Z
‚.nC1/n jrjDn  j

2
C˛�1

X
i�n<j

Z
‚.nC2/n jrirjDn  j

2

� o.N 2/

Z
‚.nC1/n jDnC1  j

2
C o.1/

X
i�n<j

Z
‚.nC2/n jrirjDn  j

2 :
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The estimate of the third term on the right-hand side of (9.59) is almost identical
to the second term;

(9.62)
X
i�n<j

ˇ̌̌ Z
rj ‚

.nC2/
n riDn S rirjDn  

ˇ̌̌

� ˛
X
i�n<j

Z
jrj ‚

.nC2/
n j2

‚
.nC2/
n

jriDn j
2
C˛�1

X
i�n<j

Z
‚.nC2/n jrirjDn  j

2

� C˛`�2
X
i�n

Z
‚.nC1/n jriDn j

2
C˛�1

X
i�n<j

Z
‚.nC2/n jrirjDn  j

2

� o.N /

Z
‚.nC1/n jr1Dn j

2
C o.1/

X
i�n<j

Z
‚.nC2/n jrirjDn  j

2 :

Finally, to bound the fourth term on the right-hand side of (9.59), we use that, by
Lemma A.1, part vi),
(9.63)X
j>n

jrjri ‚
.nC2/
n j �C`�2‚.nC1/n and

X
i�n

jrjri ‚
.nC2/
n j �C`�2‚.nC1/n :

This implies that

(9.64)
X
i�n<j

ˇ̌̌ Z
rjri ‚

.nC2/
n riDn S rjDn  

ˇ̌̌
� C

X
i�n

Z X
j>n

jrirj‚
.nC2/
n jjriDn j

2

C

X
j>n

Z X
i�n

jrirj .‚
.nC2/
n /j jrj Dn  j

2

� o.N /

Z
‚.nC1/n jr1Dn j

2
C o.N 2/

Z
‚.nC1/n jDnC1 j

2 :

Lemma 9.6 now follows from (9.59), (9.61), (9.62) and (9.64). �

LEMMA 9.7. Suppose the assumptions of Proposition 9.5 are satisfied. Then
we have, for N large enough (depending on n),

(9.65) �
C n0N

n

2

X
i�n<j

X
m>n;m¤j

Z
‚.nC2/n VN .xj � xm/ Dn�i S Dn  C h:c:

� �o.N nC3/

Z
‚.nC1/n VN .xnC1� xnC2/ jDn  j

2 :
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Proof. We have

(9.66) �
X
i�n<j

X
m>n;m¤j

Z
‚.nC2/n VN .xj � xm/ Dn�i S Dn  C h:c:

D

X
i�n<j

X
m>n;m¤j

Z
‚.nC2/n VN .xm� xj /jriDn  j

2

C

X
i�n<j

X
m>n;m¤j

Z
ri ‚

.nC2/
n VN .xj �xm/riDn S Dn  Ch:c:

The second term can be bounded by

(9.67)
ˇ̌̌ X
i�n<j

X
m>n;m¤j

Z
ri ‚

.nC2/
n VN .xj � xm/riDn S Dn  C h:c:

ˇ̌̌

� ˛
X
i�n<j

X
m>n;m¤j

Z
jri‚

.nC2/
n j2

‚
.nC2/
n

VN .xj � xm/ jDn  j
2

C˛�1
X
i�n<j

X
m>n;m¤j

Z
‚.nC2/n VN .xj � xm/ jriDn  j

2 :

Since, by Lemma A.1, part iv),

(9.68)
X
i�n

jri ‚
.nC2/
n j2

‚
.nC2/
n

� C`�2‚.nC1/n ;

using the permutation symmetry and optimizing ˛, we obtain

(9.69)
ˇ̌̌ X
i�n<j

X
m>n;m¤j

Z
ri ‚

.nC2/
n VN .xj � xm/riDn S Dn  C h:c:

ˇ̌̌
� o.N 3/

Z
‚.nC1/n VN .xnC1� xnC2/ jDn  j

2

C o.1/
X
i�n<j

X
m>n;m¤j

Z
‚.nC2/n VN .xj � xm/ jriDn  j

2 :

Inserting the last bound in (9.66), we conclude the proof of Lemma 9.7. �

Appendix A. Properties of the cutoff function � .n/i

Recall that the cutoff functions ‚.n/
k
D ‚

.n/

k
.x/ defined for k D 1; : : : ; N

and n 2 N, in equation (5.32). In the following lemma we collect some of their
important properties which were used in the energy estimate, Proposition 5.3.

LEMMA A.1. i) The functions ‚.n/
k

are monotonic in both parameters, that
is for any n; k 2 N,

‚
.n/

kC1
�‚

.n/

k
� 1 ; ‚

.nC1/

k
�‚

.n/

k
� 1 :
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Moreover, ‚.n/
k

is permutation symmetric in the first k and the last N � k
variables.

ii) We have, for any n 2 N, k D 1; : : : ; N ,

(A.1)

0@2n
`"

kX
iD1

NX
j¤i

hij

1Am‚.n/
k
� Cm ‚

.n�1/

k
:

iii) For every k D 1; : : : ; N , n 2 N, we have

jri‚
.n/

k
j � C`�1

 
2n

`"

NX
rD1

hri

!
‚
.n/

k
� C`�1‚

.n�1/

k
if i � k(A.2)

jri‚
.n/

k
j � C`�1

0@2n
`"

kX
rD1

hri

1A‚.n/
k
� C`�1‚

.n�1/

k
if i > k :

iv) For every k D 1; : : : ; N , n 2 N we have

NX
jD1

ˇ̌̌
rj‚

.n/

k

ˇ̌̌2
‚
.n/

k

� C`�2‚
.n�1/

k
:(A.3)

v) For every fixed k D 1; : : : ; N and n 2 N we haveˇ̌̌
rirj‚

.n/

k

ˇ̌̌
� C`�2

0@2n
`"

kX
mD1

hmj

1A0@2n
`"

kX
rD1

hri

1A‚.n/
k

(A.4)

� C`�2 ‚
.n�1/

k
; if i ¤ j and i; j > k;ˇ̌̌

rirj‚
.n/

k

ˇ̌̌
� C`�2 ‚

.n�1/

k
; for any i; j :

vi) For every fixed k D 1; : : : ; N and n 2 N we haveX
i;j

ˇ̌̌
rirj‚

.n/

k

ˇ̌̌
� C`�2‚

.n�1/

k
:(A.5)

Proof. Part i) follows trivially from the definition of � .n/i . Part ii) follows
from xme�x � Cme

�x=2 for every real x. To prove part iii), we observe that, for
i > k

(A.6) ri‚
.n/

k
D�

0@2n
`"

kX
rD1

rhir

1A exp

0@�2n
`"

kX
rD1

X
j¤r

hjr

1A :

Since jrh.x/j � C`�1h.x/, we obtain

(A.7)
ˇ̌̌
ri‚

.n/

k

ˇ̌̌
� C`�1

0@2n
`"

kX
rD1

hir

1A exp

0@�2n
`"

kX
rD1

X
j¤r

hjr

1A :
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Similarly, for i � k, we have

(A.8) ri‚
.n/

k
D�

 
2n

`"

NX
rD1

rhir.1C �r/

!
exp

0@�2n
`"

kX
rD1

X
j¤r

hjr

1A
with �r D 0 if r > k and �r D 1 if r � k. Therefore, in this case

(A.9)
ˇ̌̌
ri‚

.n/

k

ˇ̌̌
� C`�1

 
2n

`"

NX
rD1

hir

!
exp

 
�
2n

`"

NX
rD1

X
j¤r

hjr

!
:

Equations (A.7) and (A.9), together with part ii), prove (A.2).
As for part iv), we have, from (A.7),

NX
jDkC1

ˇ̌̌
rj‚

.n/

k

ˇ̌̌2
‚
.n/

k

� C`�2
NX

jDkC1

 
2n

`"

kX
rD1

hjr

!2
exp

 
�
2n

`"

kX
rD1

X
j¤r

hjr

!(A.10)

� C`�2

 
2n

`"

NX
jDkC1

kX
rD1

hjr

!2
exp

 
�
2n

`"

kX
rD1

X
j¤r

hjr

!
� C`�2‚

.n�1/

k

by part ii) of this lemma. The contribution to (A.3) from terms with j � k can be
controlled similarly, using (A.9). The proof of parts v) and vi) is based on simple
explicit computations and the same bounds used for parts iii) and iv). �

Appendix B. Example of an initial data

In this section, we denote by .1 � !.x// the ground state solution of the
Neumann problem�

��C
1

2
VN .x/

�
.1�!.x//D e`.1�!.x//

on the ball fx W jxj � `g with the normalization condition !.x/D 0 if jxj D `. We
extend !.x/D 0 for all x 2R3 with jxj> `. We will choose ` such that a� `� 1.
Recall that aD a0=N is the scattering length of the potential VN .x/DN 2V.Nx/.
Assuming that V � 0 is smooth spherical symmetric and compactly supported, we
have, from Lemma A.2 in [8], the following properties of e` and !.x/.

i) If a=` is small enough, then

(B.1) e` D 3a`
�3.1C o.a=`// :

ii) There exists c0 > 0 such that c0 � 1�!.x/� 1 for all x 2 R3. Moreover

(B.2) j!.x/j � Ca
1.jxj � `/
jxjC a

and jr!.x/j � Ca
1.jxj � `/
.jxjC a/2

:
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We define the N -body wave function

WN .x/ WD
NY
i<j

.1�!.xi � xj // :

For mD 1; : : : ; N , we also define

W
Œm�
N .xmC1; : : : ; xN / WD

NY
m<i<j

.1�!.xi � xj //:

LEMMA B.1. Define

 N .x/D
WN .x/

QN
jD1 '.xj /

kWN .x/
QN
jD1 '.xj /k

for any ' 2H 1.R3/ with k'kL2 D 1. Then, if a� `� 1, we have

(B.3) h N ;HN N i � CN

and, for any fixed k,

(B.4) lim
N!1

k N �'
˝k
˝ �

.N�k/
N k D 0 ;

where

�
.N�k/
N .xkC1; : : : ; xN / WD

Q
k<i<j .1�!.xi � xj //

QN
jDkC1 '.xj /

k
Q
k<i<j .1�!.xi � xj //

QN
jDkC1 '.xj /k

:

Proof. Let �N .x/ WD
QN
jD1 '.xj /, and, for mD 1; : : : ; N ,

�
Œm�
N .xmC1; : : : ; xN / WD

NY
j>m

'.xj /:

We start by noticing that

(B.5) .1� o.1//
W Œ1�

N �
Œ1�
N

2 � WN �N2 � W Œ1�
N �

Œ1�
N

2 :
Here kW Œ1�

N �
Œ1�
N k is the norm on L2.R3.N�1//. The upper bound in (B.5) is clear

since 1�! � 1 and k'k D 1. To prove the lower bound, we note that, by (B.2),
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and using the notation !ij D !.xi � xj /,

kWN �N k
2
D

Z
dx

NY
i<j

.1�!ij /
2
j�N .x/j2

D

Z
dx

NY
1<i<j

.1�!ij /
2
j�N .x/j2

�

Z
dx

0@1� NY
jD2

.1�!1;j /
2

1A NY
1<i<j

.1�!ij /
2
j�N .x/j2

� k'k2kW
Œ1�
N �

Œ1�
N k

2
� 2

NX
jD1

Z
dx!1;j

h
W
Œ1�
N .x2; : : : ; xN /

i2
j�N .x/j2

� kW
Œ1�
N �

Œ1�
N k

2
�CNa

Z
dx

1.jx1� xj j � `/
jx1� xj j

h
W
Œ1�
N .x2; : : : ; xN /

i2
j�N .x/j2

� .1�CNa`k'k2
H1/kW

Œ1�
N �

Œ1�
N k

2

using that 1.jx1� xj j � `/� `jx1� xj j�1, and then applying a Hardy inequality
in the variable x1. This proves (B.5), because `� 1. Analogously, we can prove
that

(B.6) .1� ok.1//
W Œk�

N �
Œk�
N

2 � WN �N2 � W Œk�
N �

Œk�
N

2
where ok.1/! 0 as N !1, for every fixed k � 1, and where kW Œk�

N �
Œk�
N k is the

norm on L2.R3.N�k//.
Next we prove (B.4). To this end we remark that, by (B.6),

(B.7)
 WN�N

kWN�N k
�

WN�N

kW
Œk�
N �Œk�k

� ˇ̌̌ kWN�N k
kW

Œk�
N �Œk�k

� 1
ˇ̌̌
! 0

as N !1. Moreover, since

'˝k˝ �
.N�k/
N D

W
Œk�
N �N

kW
Œk�
N �

Œk�
N k

;

we observe from (B.7) and (B.6) that

(B.8) lim sup
N!1

k N �'
˝k
˝ �

.N�k/
N k

2
� lim sup

N!1

.WN �W Œk�
N /�N

2
kW

Œk�
N �

Œk�
N k

2
:
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Now we have.WN �W Œk�
N /�N

2
D

Z
dx

0@1� Y
i<j<k;i<k<j

.1�!ij /
2

1A�W Œk�
N .xkC1; : : : ; xN /

�2 NY
jD1

j'.xj /j
2

� C
X
i<k

NX
jD1

Z
dx!ij

�
W
Œk�
N .xkC1; : : : ; xN /

�2 NY
jD1

j'.xj /j
2

� CNka`k'k2
H1kW

Œk�
N �

Œk�
N k

2

by using (B.2) and Sobolev inequality in xi (see Lemma 6.4, part i)). By (B.8) and
`� 1, this proves (B.4).

Finally, we prove (B.3). To this end we observe that

(B.9)
1

WN
HN .WN�N /D

NX
jD1

Lj�N C e`

NX
j¤m

1.jxm� xj j � `/�N

�

NX
iD1

NX
j;m¤i;j¤m

r!ij

1�!ij
�
r!im

1�!im
�N

where

Lj D��j C 2
X
m¤j

r!jm

1�!jm
� rj :

Note thatZ
W 2
N �N Lj N D

Z
W 2
N Lj�N  N D

Z
W 2
N rj�N rj N :

From (B.9) we find, by using (B.1), WN �W
Œk�
N and by applying the Sobolev type

inequalities of Lemma 6.4 and the permutational symmetries,

(B.10) hWN�N ;HNWN�N i

D

NX
jD1

Z
W 2
N jrj�N j

2
Ce`

NX
j¤m

Z
dxW 2

N .x/1.jxj�xmj�`/j�N .x/j
2

�

NX
iD1

NX
j;m¤i;j¤m

Z
W 2
N

r!ij

1�!ij
�
r!im

1�!im
j�N j

2

� N k'k2
H1

W Œ1�
N �

Œ1�
N

2CCN.N � 1/ak'k4H1

W Œ2�
N �Œ2�

2
CCN.N � 1/.N � 2/a2 k'k4

H1

W Œ3�
N �Œ3�

2
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for any " > 0. From (B.6), and since `� 1, we have

(B.11)
D WN�N
kWN�N k

;HN
WN�N

kWN�N k

E
� CN

which completes the proof of (B.3). �

Appendix C. Trapped condensates

In this Appendix we show that Theorem 2.2 can be applied to the ground
state of interacting Bose-Hamiltonians with a trap. Recall the definition of the
Hamiltonian HN without a trap from (2.1), and define

H
trap
N DHN C

NX
jD1

Vext.xj /D

NX
jD1

�
��j CVext.xj /

�
C

NX
i<j

VN .xi � xj /

with a smooth trapping potential Vext� 0 satisfying limjxj!1 Vext.x/D1 : Denote
by  trap

N the positive normalized ground state vector of H trap
N . The corresponding

Gross-Pitaevskii energy functional is given by

E
trap
GP .�/D

Z
dx

�
jr�.x/j2CVext.x/j�.x/j

2
C 4�a0j�.x/j

4
�

and we denote by �trap
GP the L2-normalized, positive minimizer of E

trap
GP . As proven

in [16], the ground state energy per particle is given by minimum value of E
trap
GP as

N !1,

(C.1)
1

N
h 

trap
N ;H

trap
N  

trap
N i ! E

trap
GP .�

trap
GP /;

and the one-particle marginal density  .1/N;trap associated with  trap
N satisfies  .1/N;trap!

j�
trap
GP ih�

trap
GP j (with convergence in the trace-norm). From (C.1), h trap

N ;H
trap
N  

trap
N i�

CN and since HN �H
trap
N , we obtain that  trap

N satisfies (2.17). The goal of this
section is to prove in Proposition C.2 below that  trap

N satisfies the asymptotic
factorization property (2.18). From Theorem 2.2 we therefore immediately obtain
the following corollary:

COROLLARY C.1. Suppose V satisfies the same conditions as in Theorem 2.2.
Let  N;t be the solution of the Schrödinger equation without a trap, i@t N;t D
HN N;t , but with initial data given by the trapped ground state,  N;0 WD  

trap
N .

For k D 1; : : : ; N , let  .k/N;t be the one-particle marginal density associated with
 N;t . Then, for every t 2 R, and k � 1,

(C.2) 
.k/
N;t ! j't ih't j

˝k as N !1

in the weak* topology of L1.L2.R3k//. Here 't is the solution to the Gross-
Pitaevskii equation i@t't D��'t C 8�a0j't j2't with initial data 'tD0 D �

trap
GP .
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PROPOSITION C.2. For any fixed k D 1; 2; : : :, there exists a sequence of
normalized wave functions, �.N�k/N 2 L2.R3.N�k//, N > k, such that trap

N � Œ�
trap
GP �
˝k
˝ �

.N�k/
N

! 0 as N !1:

We will prove this proposition only for k D 1, the proof for arbitrary k � 1
can be obtained similarly. For brevity, we set �N D �

.N�1/
N . For the proof, we

make use of the following three lemmas.

LEMMA C.3. There exists a constant C > 0 independent of R;N such that

(C.3) k1.jx1j>R/ 
trap
N k � Ce

�R

where 1.s > �/ denotes the characteristic function of the interval Œ�;1/.

LEMMA C.4. We have �trap
GP .x/ > 0 for all x 2 R3. Moreover,

k.1��/�
trap
GP k<1; h�

trap
GP ; Vext.x/�

trap
GP i<1

and there exists a constant C > 0 such that

k1.jxj>R/�trap
GP k � Ce

�R

for all R > 0.

LEMMA C.5. For fixed R > 0, N 2 N define z�R;N 2 L2.R3.N�1// by

z�R;N .xN�1/D
1R

jx1j<R
dx1 j�

trap
GP .x1/j

2

Z
jx1j<R

dx1 j�
trap
GP .x1/j

2  
trap
N .x1; xN�1/
�

trap
GP .x1/

;

where xN�1 D .x2; : : : ; xN /. Then we have
(C.4)Z

dxN�1
Z
jx1j<R

dx1
ˇ̌̌
 

trap
N .x1; xN�1/��

trap
GP .x1/

z�R;N .xN�1/
ˇ̌̌2
� cR dN ;

where cR < 1 is independent of N and dN is independent of R and satisfies
dN ! 0 as N !1.

Using these three lemmas we can prove Proposition C.2.

Proof of Proposition C.2 for k D 1.. Using the notation introduced in Lemma
C.5 we have

(C.5) k 
trap
N ��

trap
GP ˝

z�R;N k
2

D

Z
dxN�1

Z
dx1 j 

trap
N .x1; xN�1/��

trap
GP .x1/

z�R;N .xN�1/j2

D

Z
dxN�1

Z
jx1j<R

dx1 j 
trap
N .x/��trap

GP .x1/
z�R;N .xN�1/j2

C

Z
dxN�1

Z
jx1j�R

dx1 j 
trap
N .x/��trap

GP .x1/
z�R;N .xN�1/j2

� cR dN CCe
�R



364 LÁSZLÓ ERDŐS, BENJAMIN SCHLEIN, and HORNG-TZER YAU

where we used Lemma C.5 to bound the term on the second line, and Lemmas C.3
and C.4 to bound the term on the third line. Equation (C.5) implies that trap

N ��
trap
GP ˝

z�R;N

kz�R;N k

D
 trap

N �
�

trap
GP ˝

z�R;N

k�
trap
GP ˝

z�R;N k

(C.6)

�
2 k 

trap
N ��

trap
GP ˝

z�R;N k

1�k 
trap
N ��

trap
GP ˝

z�R;N k
:

Now choose a sequence RN such that RN !1 and cRN
dN ! 0 as N !1.

Then, taking �N D z�RN ;N =k
z�RN ;N k, we clearly have k�N k D 1 for all N , and, by

(C.5) and (C.6),

k 
trap
N ��

trap
GP ˝ �N k! 0 as N !1 : �

We still have to prove Lemmas C.3, C.4 and C.5. Lemma C.4 is a standard
result which follows from the fact that �trap

GP is the solution of the elliptic nonlinear
eigenvalue equation

(C.7) ���
trap
GP CVext�

trap
GP C 8�a0j�

trap
GP j

2�
trap
GP D ��

trap
GP

with some constant �. Lemma C.5 has been proven in [16], more precisely, it
follows from equation (13) of [16] by noticing that the two terms in the parenthesis
in this equation converge to zero, uniformly in R, because of equation (7) and
Lemma 1 in [16]. It only remains to prove Lemma C.3. To this end we use the
following two lemmas.

LEMMA C.6. Let � 2 C1.R/ with �.s/ D 0 if s < 1 and �.s/ D 1 if s > 2,
and let f 2 C 1.R/ be a monotonically increasing function with supx jf

0.x/j<1.
Then we have, for R > 0 large enough,

�.jx1j=R/
�
H

trap
N � jf 0.jx1j/j

2
�EN

�
�.jx1j=R/� �.jx1j=R/

2;

where EN denotes the ground state energy of H trap
N .

Proof. Define

zH
trap
N�1 D

NX
jD2

�
��j CVext.xj /

�
C

NX
2�i<j

VN .xi � xj /

and let zEN�1 D inf �. zH trap
N�1/. Moreover, we define z trap

N�1 2 L
2.R3.N�1// to be

the positive normalized ground state of zH trap
N�1. Then we have, since ��1 � 0 and

VN .x/� 0,

(C.8) �.jx1j=R/
�
H

trap
N � jf 0.jx1j/j

2
�EN

�
�.jx1j=R/

� �.jx1j=R/
�
zH

trap
N�1CVext.x1/� jf

0.jx1j/j
2
�EN

�
�.jx1j=R/

� �.jx1j=R/
2
�
Vext.x1/�C � .EN � zEN�1/

�
;
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where we used the assumption jf 0j �C . Next we remark that there exists a constant
C > 0 such that

EN � zEN�1CC for all N :

In fact (using the symmetry of the wave function),

EN � h�
trap
GP ˝

z 
trap
N�1;HN �

trap
GP ˝

z 
trap
N�1i(C.9)

D zEN�1Ch�
trap
GP ; .��1CVext.x1// �

trap
GP i

C h�
trap
GP ˝

z 
trap
N�1; .N � 1/N

2V.N.x1� x2//�
trap
GP ˝

z 
trap
N�1i

� zEN�1CC k.1��/�
trap
GP k

2
CC h�

trap
GP ; Vext.x1/�

trap
GP i

� zEN�1CC

where we used the operator inequality W.x1 � x2/ � CkW kL1.1 � �1/
2 and

Lemma C.4. Since limjxj!1 Vext.x/D1, the lemma now follows from (C.8). �

LEMMA C.7. Suppose that f; � are as in Lemma C.6. Then we have, for R
large enough,

(C.10) kef .jx1j/�.jx1j=R/ 
trap
N k � CR

for some constant CR depending on R but not on N .

Proof. We compute

ef .jx1j.H
trap
N �EN /e

�f .jx1j/

DH
trap
N � jf 0.jx1j/j

2
�EN C i

�
p1 �

x1

jx1j
f 0.jx1j/Cf

0.jx1j/
x1

jx1j
�p1

�
;

with p1 D�ir1. Therefore, for R large enough,

(C.11) Re
D
ef .jx1j/�.jx1j=R/ 

trap
N ;

ef .jx1j/
�
H

trap
N �EN

�
e�f .jx1j/ef .jx1j/�.jx1j=R/ 

trap
N

E
D

D
ef .jx1j/ 

trap
N �.jx1j=R/;�

H
trap
N � jf 0.jx1j/j

2
�EN

�
�.jx1j=R/e

f .jx1j/ 
trap
N

E
� kef .jx1j/�.jx1j=R/ 

trap
N k

2

where we used Lemma C.6. On the other hand

(C.12) Re
D
ef .jx1j/�.jx1j=R/ 

trap
N ;

ef .jx1j/
�
H

trap
N �EN

�
e�f .jx1j/ef .jx1j/�.jx1j=R/ 

trap
N

E
� kef .jx1j/�.jx1j=R/ 

trap
N k

ef .jx1j/
�
H

trap
N �EN

�
�.jx1j=R/ 

trap
N


� kef .jx1j/�.jx1j=R/ 

trap
N k

ef .jx1j/
h
H

trap
N ; �.jx1j=R/

i
 

trap
N
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because .H trap
N �EN / 

trap
N D 0. Combining (C.11) and (C.12) we obtain that, for

R large enough,

kef .jx1j/�.jx1j=R/ 
trap
N k �

ef .jx1j/
h
HN ; �.jx1j=R/

i
 

trap
N

 :
Next we note that

ŒHN ; �.jx1j=R/�

D�2iR�1�0.jx1j=R/
x1

jx1j
� r1CR

�2�00.jx1j=R/CR
�1�

0.jx1j=R/

jx1j
:

Since f is monotone increasing, we see thatef .jx1j/�0.jx1j=R/
x1

jx1j

� Cef .2R/;(C.13) ef .jx1j/
�0.jx1j=R/

jx1j

� CR�1ef .2R/
and ef .jx1j/�00.jx1j=R/

� Cef .2R/:
The energy estimate (C.1) and VN � 0 imply that kr1 

trap
N k � C uniformly in N .

From these estimates the lemma follows. �

Proof of Lemma C.3. Suppose � is as in Lemmas C.6 and C.7. For a fixed R0
large enough, we have, by Lemma C.7,

kejx1j 
trap
N k � ke

jx1j�.jx1j=R0/ 
trap
N kCke

jx1j .1��.jx1j=R0//  
trap
N k � C:

Therefore,

k1.jx1j>R/ 
trap
N k � ke

�jx1j1.jx1j>R/ejx1j 
trap
N k � Ce

�R: �

Appendix D. Properties of the one-body scattering solution 1�w.x/

In this section we prove parts i) and iii) of Lemma 5.1.

LEMMA D.1. Suppose that V � 0 is smooth, spherical symmetric with com-
pact support and with scattering length a0. Let

(D.1) �D sup
r�0

r2V.r/C

Z 1
0

dr r V .r/;

and suppose '0.x/ is the solution of

(D.2)
�
��C

1

2
V

�
'0 D 0 with '0! 1 as jxj !1 :

i) There exists C0 > 0, depending on V , such that C0 � '0.x/� 1 for all x 2R3.
Moreover there exists a universal constant c such that

(D.3) 1� c� � '0.x/� 1 for all x 2 R3 :
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ii) There exists a universal constant c > 0 such that

(D.4) jr'0.x/j � c
a0

jxj2
; jr'0.x/j � c

�

jxj
and jr

2'0.x/j � c
�

jxj2
:

Moreover there are constant C1; C2, depending on the potential V , such that

(D.5) jr'0.x/j � C1 jr
2'0j � C2:

Proof. Let R be such that suppV � fx 2 R3 W jxj �Rg, and let a0 denote the
scattering length of V . Then we fix zR >R such that a0= zR �min .�; 1=2/, with �
defined in (D.1).

In order to prove part i), we observe that, for jxj � zR, '0.x/ D 1� a0=jxj.
Hence

(D.6)
1

2
� '0.x/� 1; and 1� � � '0.x/� 1 ; for jxj � zR :

Next, by Harnack principle the ratio between the supremum and the infimum of
'0 in a given ball is bounded: therefore '0 is bounded away from zero in the
ball jxj � zR and thus there exists C0 > 0 such that '0.x/ � C0 for all x 2 R3.
Moreover, by the maximum principle, and since, from (D.2), ��'0 � 0, it follows
that '0.x/�1, for all x 2R3. To prove (D.3) for jxj� zR, we write '0.x/Dm.r/=r ,
with r D jxj. Then m0. zR/D 1, and, from (D.2),

(D.7) �m00.r/C
1

2
V.r/m.r/D 0 :

Since 0 < '0.x/� 1, it follows that m.0/D 0 and 0 < m.r/=r � 1. Therefore, for
r < zR,

m0.r/Dm0. zR/�

Z zR
r

ds m00.s/D 1�
1

2

Z zR
r

ds s V .s/
m.s/

s
(D.8)

� 1� c

Z 1
0

ds s V .s/� 1� c�

and

(D.9) m.r/D
Z r

0

ds m0.s/� r.1�c�/ ) '0.r/D
m.r/

r
�1�c� for all r < zR :

The last equation, together with (D.6), implies (D.3).
Next we prove ii). For jxj � zR, we have '0.x/D 1� a0=jxj and thus

(D.10) jr'0.x/j �
a0

jxj2
�

a0

zRjxj
�
�

jxj
; for jxj � zR;
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by definition of zR. Next, for jxj < zR, we write '0.x/ D m.r/=r , with r D jxj.
Then

jr'0.x/j D
ˇ̌̌m0.r/r �m.r/

r2

ˇ̌̌
(D.11)

D

ˇ̌̌1
r

Z r

0

ds m00.s/�
1

r2

Z r

0

ds
Z s

0

d� m00.�/
ˇ̌̌

D
1

r2

Z r

0

d� � m00.�/ ;

because m00.�/� 0. From (D.7) we obtain

jr'0.x/j �
1

2r2

Z r

0

d� �2V.�/
m.�/

�
� c

a0

jxj2
;(D.12)

because 8�a0 D
R
V.x/'0.x/ (see Lemma 5.1), part iv). Moreover, again from

(D.11) and (D.7), we have

(D.13) jr'0.x/j �
1

2r2

Z r

0

d� �2V.�/
m.�/

�
� c

sup��0 �
2 V.�/

r
� c

�

r
:

Together with (D.10) we obtain the first two inequalities in (D.4). From (D.10) and
from the first inequality in (D.13), it also follows that there exists C1, depending
on the bounded potential V , such that jr'0.x/j � C1. To prove the second bounds
in (D.4) and (D.5), we note that

(D.14) jr
2'0.x/j �

a0

jxj3
�

�

jxj2
for jxj> zR;

by the definition of zR. For jxj � zR, we have (expanding m.r/ and m0.r/ and using
that m.0/D 0)

jr
2'0.x/j �

ˇ̌̌m00.r/
r
� 2

m0.r/

r2
C 2

m.r/

r3

ˇ̌̌
(D.15)

D

ˇ̌̌1
2
V.r/

m.r/

r
C
2

r3

Z r

0

ds s2 V.s/
m.s/

s

ˇ̌̌
� c

�
sups�0 s

2V.s/
�

r2
� c

�

r2
:

The last equation, together with (D.14), implies the third bound in (D.4). Moreover,
from (D.14) and the second line in (D.15), it also follows that there exists C2,
depending on the bounded potential V , such that jr2'0.x/j � C2. �

Proof of Lemma 5.1, parts i) and iii). By scaling 1�w.x/D '0.Nx/, with
'0 defined in Lemma D.1. Therefore part i) of Lemma 5.1 follows immediately
by part i) of Lemma D.1, and part iii) of Lemma 5.1 follows from (D.4) and (D.5).

�
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[8] L. ERDŐS, B. SCHLEIN, and H.-T. YAU, Derivation of the Gross-Pitaevskii hierarchy for
the dynamics of Bose-Einstein condensate, Comm. Pure Appl. Math. 59 (2006), 1659–1741.
MR 2007k:82070

[9] , Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of
many-body systems, Invent. Math. 167 (2007), 515–614. MR 2007m:81258 Zbl 1122.82018
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