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Abstract

We study the phenomena of energy concentration for the critical O(3) sigma
model, also known as the wave map flow from R?>*! Minkowski space into the
sphere S%. We establish rigorously and constructively existence of a set of smooth
initial data resulting in a dynamic finite time formation of singularities. The con-
struction and analysis are done in the context of the k-equivariant symmetry re-
duction, and we restrict to maps with homotopy class k = 4. The concentration
mechanism we uncover is essentially due to a resonant self-focusing (shrinking) of
a corresponding harmonic map. We show that the phenomenon is generic (e.g. in
certain Sobolev spaces) in that it persists under small perturbations of initial data,
while the resulting blowup is bounded by a log-modified self-similar asymptotic.

1. Introduction

One of the simplest nontrivial models of Quantum Field Theory is based on
the (2 4+ 1)-dimensional Lorentz invariant O(3) classical o-model. It is a nonlinear
scalar field Lagrangian theory for a map ® : R2T! — S2 C R3 with the Lagrangian
density:

1) i[@]:%aaqmaﬁqm“ﬂ,
where mgyg is the Minkowski metric on R?>*1. Evolution of the nonlinear scalar
field ® is described by the Euler-Lagrange equations:
2) O00=—-® (0P 0,D) .

Equation (2) belongs to the more general class of “wave-map” problems, in
which ® is a map from Minkowski space R>*! to a Riemannian manifold (A, g).
The map @ is a solution of the Euler-Lagrange equations:

3) D3, ® =0,
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corresponding to the Lagrangian density:

1 . .
) L[P] = 5 gij Do P 0p ! m*
Here {®'} denote local coordinates on .i(, which in turn (under the map) depend
on the Minkowski variables {x%}y—0,1,2. D is the pullback of the Levi-Civita
connection to the (trivial) bundle ®*(7.AL). In terms of the local coordinates {®*}
this pull-back connection acting on sections of ®*(7.t) reads:

—k —k .
) Do =3 + Ty, Ty = I} (®)3a ',

where Fl.kj is the Christoffel symbol in the coordinates {®'}. The wave-map equa-
tion (3) then has the intrinsic form:

(6) 0% 0o @* = —TF (©) 1°®' 05 D/ .

The goal of this paper is to establish and rigorously analyze a catastrophic
instability in the (2 + 1)-dimensional O(3) o-model represented by equation (2).
We will exhibit a spontaneous and monotonic self-focusing mechanism responsible
for a dynamic formation of singularities for a rather large and stable set of initial
data. This will be done through an entirely explicit and constructive! description
of this phenomena. Our basic result is as follows:

THEOREM 1.1. For every 0 < ¢ < 1 and 4 < k there exists a set of smooth
initial data (®g, o) € (S%, TS?) with energy E = 4wk + €2 (i.e. the Dirichlet
energy defined below) and a finite time T** = T**(®g, ®o), such that the corre-
sponding solution ®(t, x) of problem (2) remains smooth on the interval [0, T**)
and develops a singularity at T**. More specifically, there exists a (smooth) de-
composition ® = ® + R, such that as t — T** we have that for any large 0 < M ,
an L™ bound of the form?:

M | In(T** —1¢)]
(7N s S osup [V S — o —
(T** —1) CeR2 T** _¢
as well as a uniform bound on the energy of the remainder:
®) E[®R] < €2.

Furthermore, sufficiently small equivariant perturbations of (®g, Cbo) also lead to
blowup with the bounds (7)—(8).

The problem of a finite time breakdown of solutions of the problem (2) has
been a subject of intense study. From a purely analytical perspective, the context

IThis is in contrast to some of the examples of the focusing nonlinear Schrédinger and wave
equations, where a finite time blowup can be shown by nonconstructive arguments (see [13] and
[24]). See, however, the work of Martel/Merle [27] on the critical KdV problem for an example of a
constructive finite time blowup mechanism.

2More precise asymptotic behavior in terms of the energy concentration will be given below,
including both upper and lower bounds.
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is the global regularity theory for the general wave-map equations (3), where it is
suspected that the formulation of singularities is ultimately tied to certain convexity
properties of the target manifold Jd.

From a more physical or gauge theoretic perspective and in a specific context
of the O(3) model, the issue of possible singularity development is thought to be
connected to the incompleteness of a certain moduli space which characterizes the
associated static solutions and provides an approximation for the dynamical evo-
lution through the so called geodesic hypothesis. Due to its analytic and physical
interest, equation (2) has also been a popular subject of numerical and heuristic
studies which all universally pointed in the direction of singularity formation.

Before proceeding with a more detailed description of our main result, we
believe it is useful to give a more thorough description of these various points of
view. This begins with a discussion of the static solutions of (2); that is, harmonic
maps into the sphere. Historically, one of the primary motivating factors of interest
in the O(3) o-model was due to the richness of the set of its static solutions. An
ingenious procedure of Belavin and Polyakov [1] allows one to find these solutions
in a given homotopy class characterized by the topological degree:

k:H/Rzé*(dAgz),

as solutions of the first order “Bogomol’nyi equations” (see [4]). To realize this,
one factors the energy functional:

©) Vo] = 1/ V,d-Vy® dx,
2 R2
which is the potential part of the Dirichlet type energy:
(10)  E[®](x) = % /2 (0/P-0,P+ Vi ®- VD) dx =T[P](¢) + V[P](2),
R
associated with the action of the Lagrangian (1):

(11) /RH] P[®] dx dr :—/R (T[@]—V[CD])(I) dr.

Using the notation ¢;; for the antisymmetric tensor on two indices, this factoriza-
tion reads:

(12) V[@]z%/2[(aiCD:i:eidixaqu)-(aqu:l:eij@xE)j(D)] dx
R

+1 / £ d. (3, x ;D) dx
2 RZ

:411/ (i@ £,7 ®x ;@) (0 ke 0x ;)] dx * 4rk,
R2
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from which it is more or less immediate that an absolute minimum of the energy
functional V' [®] in a given topological sector k£ must be a solution of the equation:

(13) 0;®+e,  dxd;®=0.

In terms of complex coordinates on R2 and S2, the identities (13) are seen to be
nothing other than the Cauchy-Riemann and conjugate Cauchy-Riemann equations
(this is a general phenomena, see [15]). Therefore, the moduli space M}, of static
energy minimizing solutions of (2) in a homotopy sector k£ can be identified with
the rational maps (in z or Z using complex variables) I : C — C with degree k. Of
particular importance to us will be the k-equivariant static solutions (of positive
polarity) which are defined via the relation / (e92) = %% [ (z). We will label such
solutions by [ k and refer to them as solitons.

Having uncovered the structure of the space of static minimizing solutions,
one is then led to the “geodesic” ansatz alluded to above for the approximate dynam-
ics of time-dependent solutions (see also [26]). To understand this, the first thing
to notice is that minimizers of the variational problem (9) are highly degenerate.
Specifically, they are invariant under the full conformal group of linear fractional
transformations acting on C. If one restricts to k-equivariant solutions, then most
of this symmetry is lost, and the only remaining degree of freedom which fixes the
energy (9) is the scaling transformations:

(14) 1%, x) — I¥(t,x) = I%(At, Ax).

Based on this, one would expect that the path of least resistance according to the
action (11) would be for (symmetric) solutions close to the family of static solutions
to “slide” along the moduli space M}, via the transformations (14). That is, for a
fully dynamic solution ® sufficiently close to some I*, i.e. E[®] = 4k + €2,
there should be a splitting? as follows:

(15) ®(t, x) = I*(A(r)x) + {small error},

and the goal is to understand the lower-dimensional dynamics of the parameter
A(?). Plugging the ansatz (15) in the action (11) yields the following effective
Lagrangian* for A(¢):

12
(16) LIA@) = ‘Gkﬁ(t) + 4k + {small error},

3This is very similar to what is done in the modulational theory of dispersive solitons, and we
will expound on this in much more detail in the sequel.

41t must be kept in mind that this calculation is purely heuristic as the original Lagrangian (1)
itself is only a formal way to derive the equations (2).
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where A = % and where the normalization constant €, is given by the explicit
integral (note that this is only finite for 2 < k):

@ = — L / 1o, 1% |12 dx.
2 R2

Here || - ||? is the norm on R3. The effective dynamics generated by (16) are now
given by the formula:

d? ,,_ d (A
(17) -5 1)=E(ﬁ)={small error}.

If one were to ignore the contribution on the right-hand side of this last equation,
then the evolution generated by (16) would imply that dynamically the soliton
radius collapses as a linear function of time or equivalently that A ~ (T** —¢)~!
for some fixed 7**. In this sense, the moduli space My, is said to be incomplete.

While the above scenario is appealing for its simple geometric and physical
motivation, it has been rigorously known for some time that it cannot be quite
correct. This is due to the fundamental regularity results of Shatah and Tahvildar-
Zadeh [30]-[32] (see also [9], [10]) which rule out the existence of purely (i.e.
linear) self-similar collapse:

THEOREM 1.2 (Regularity theory for symmetric wave-maps). Let ® be an
equivariant solution to equation (2) with smooth Cauchy data. There exists an
& > 0 with the following property: let T* be any time such that this solution is C*°
for all times 0 <t < T™* and such that the following condition holds:

* Forany 0 <t < T* the energy content Eg|[®P(t)] inside the ball B(t) cen-
tered at the origin r = 0 is such that lim; 7+ Eg)[®(t)] < & whenever

B =(T*—1)-0(1).

Then the wave-map ® extends past T* as a C*® solution. That is, if the energy
E[®(t)] concentrates at most at a (linear) self-similar rate up to time T™, then the
solution cannot break down at time T™*.

This theorem shows that the error terms on the right-hand side of (17) cannot
be ignored and that any complete theory of how A(¢) should evolve must take them
into account. In fact, the above result leaves the question of breakdown in finite
time for equation (2) open to a much wider range of possibilities because while it
gives a necessary lower bound on any possible blowup rate for A(¢), it does not
give any upper bound in case collapse might occur.

At this point we should further mention that the general wave-map equations
(3) have also been studied intensely from an analytic perspective. For the static case
of (3), we point out the references [16] and Chapter 8 of [18] and the references
therein. In the case of dynamic solutions and the Cauchy problem, the only general
understanding of the equations (3) that is yet available is for the local theory (see
[19]) and the small data scale invariant (global) results of [36] (in the Besov case)
and [35], [21], and [37] for the case of small energy. Large data global regularity
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has been conjectured in the case of a hyperbolic space H? target, while singularity
formation has been expected for the O(3) o-model for some time. We explain this
more in a moment. We point out to the reader that this is in stark contrast to what
is known for the parabolic analog of (3) (i.e. the harmonic map heat flow), where
the global regularity theory at all energy levels is much better understood (see [12],
(71, [8D.

However, in the case where the dynamic solutions of (3) possess a large
amount of symmetry, there has been considerable progress toward our understand-
ing of the general Cauchy problem in the case of arbitrarily large initial data. The
global regularity question was first handled in the work of Shatah/Tahvildar-Zadeh
(see [30]-[32]) and Christodoulou/Tahvildar-Zadeh (see [9], [10]), where the con-
text is spherical symmetry or more generally k-equivariance. There is also the
important and closely related work of Struwe (see [33], [34]), where breakdown
is studied in the general (symmetric) case including maps into S%. From all these
works, it is known that if the target manifold Jl is “geodesically convex,” then
symmetric solutions to (3) cannot break down in finite time. Furthermore, this
behavior has been shown to be stable under small rough perturbations in the recent
work of [22]. Finally, it is known in general (i.e. without geodesic convexity) that
if a symmetric solution to (3) does break down in finite time, then the singularity
formation must be tied to the existence of a static solution to (3) and, in fact, will
rescale to a nontrivial harmonic map in the limit.

While the works mentioned above furnish a great deal of understanding, they
also leave completely open the issue of whether or not singularities do in fact form
in the specific case of dynamic solutions to equation (2). The most convincing
evidence to date that breakdown does occur in finite time is the analytic work of
R. Cote [11] on strong asymptotic instability in the energy space and the many
numerical studies that have been performed (see for example [3], [17], [23], [25],
and [29]). We mention here that the work [25] suggests a universal log-modified
self-similar behavior similar to (7).

In this work we show that singularities will form in finite time for the critical
0(3) o-model in such a way that the stable dynamics is bounded by a log-modified
self-similar collapse that is not so far> from what is predicted by (17). One of the
major points of this paper is to uncover the precise analytic mechanism which is
responsible for this upper bound.

Before closing this subsection, let us make several remarks. The first is that
the O(3) o-model also enjoys many analogies with other more complicated field
theories such as the (4 4+ 1) Yang-Mills and the (34 1) Yang-Mills-Higgs equations.
For this reason, it has been an important testing ground for ideas concerning the
structural behavior of these more complicated models. We would like mention here
the work of Bizon, Ovchinnikov, and Sigal for the case of Yang-Mills instantons [2],

51n terms of power law type behavior.
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which proposes a collapse scenario for the critical (4 4 1)-dimensional Yang-Mills
equations similar to what we deal with here. The reader will see that some of our
methods are inspired by certain calculations performed in that paper.

Secondly, existence of finite time blowup solutions had been known for some
time in the case of a super-critical higher-dimensional wave map problem with
Minkowski space R*T! with n > 2 as a base and a rotationally symmetric Rie-
mannian manifold Al as a target manifold. The construction of blowup solutions
is based on the existence of k-equivariant self-similar solutions of finite energy for
the higher-dimensional wave map problem. Such solutions have been exhibited in
the work of Shatah (see [31]) for the R3*1 — S3 problem. This was later extended
to other target manifolds in [32] and higher dimensions n > 4 in [6]. In the latter
work it was also shown that for n > 7 self-similar blowup

can occur even in the case when the target manifold is negatively curved.

Thirdly, an interesting issue that we would like to draw to the readers attention
is that the k-equivariant heat flow corresponding to the instance of (2) we study here
is known to be globally regular (it is expected that the corresponding Schrédinger
flow is also globally regular). That is, for the equivariant maps into the sphere S?
with the homotopy index k > 1, the harmonic map heat flow does not break down
in finite time [14]. The reason why finite time breakdown can occur in the wave
flow analog of this problem is essentially due to the second order nature of the
equations. See Remark 1.7 below for more thorough discussion.

Lastly, we point out that our work is essentially independent of previous tech-
niques used for wave-maps, although we find it extremely useful to keep in mind
that the self-similar blowup is a priori ruled out by Theorem 1.2. However, we
do refer to that result for the statement of “small energy implies regularity,” which
underlies much of what we do in the sequel. We again stress that the fundamental
structure we rely on in this paper is the “quasi-integrable” and “super-symmetric”
aspects of the static (elliptic) case of equation (2). Specifically, the fact that such
solutions may be constructed by solving the first order Bogomol’nyi equations, as
opposed to the full second order Euler-Lagrange equations. These aspects enter
prominently into our analysis of the time-dependent problem.

In the remainder of this section, we will give a detailed discussion of the
symmetry reduction we use in this work, as well as two separate statements of our
main theorem.

1.1. Symmetric reduction of the problem and the statement of the main theo-
rem. As we have already mentioned, we will restrict our study of the system (2)
by enforcing some fairly rigid® symmetry and “size” assumptions. As seen in
the introduction, the class of solutions one has access to under these restrictions

61t would be extremely interesting to remove these in some way. For example, by either studying
large initial deviations from an equivariant soliton or by studying small nonequivariant perturbations
of an equivariant soliton.
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already exhibits some interesting and striking phenomena and, in many ways, is
still quite far from being understood. We now give an alternative derivation of
the symmetry assumption we use here. This corresponds to solutions behaving
rigidly with respect to rotations on the base manifold R>*!. That is, we require
that along some fixed time-line (¢,0) € R*>*1, a rotation of 27 corresponds to a
rotation of 2k on the sphere S? about some fixed axis. This type of symmetry
dictates a more or less canonical set of coordinates on the target, which is simply
polar coordinates centered about the axis of rotation. We write this in the usual
way in terms of two angles:

(18) (B!, d?} = (¢, 0), g = ds? = d¢? + sin*(¢)db?,

where we restrict 0 < ¢ < w and 0 < 6 < 27, with ¢ = 7, 0 the respective north
and south poles of the rotation axis.

With this choice of coordinates, our symmetry assumption boils down to the
simple relation # = k® where (¢, r, ®) are polar coordinate on the base R>*! and
we mod with respect to 2. In this case, the only remaining degree of freedom is
given by the quantity ¢ which can only depend on the variables (¢, 7). Because all
of the Christoffel symbols F?} vanish except in the case i = j = 6, where we have

by a simple calculation Fg’e = —%j—d)(sin2 ¢), the general system (6) reduces to
the single equation:

1 in(2
(19) 02+ (92 + 0, )p =k S“;( ) kent

r r

where we implicitly enforce the boundary conditions ¢ (0) = 0 and ¢ (co0) = 7.

Before we continue, it is useful for us to record here the formula for the
Lagrangian density (4) under this k-equivariant symmetry reduction and in terms
of the local coordinates on the sphere (¢, 0):

2
@) S = 5|07+ 00 + 5 (1 —eosp|.

In this notation the conserved energy (10) becomes:

k2
oy Egl=x [ 002+ @07+ st @)] rar
R
The statement of our main theorem is now the following:

THEOREM 1.3 (Finite time energy concentration for wave-maps). Consider
the full wave-map (6) with S? target under the equivariant restriction to (19). Then
for any integer 4 < k and for any sufficiently small constant 0 < ¢y < 1 with the
property that for any & < cg, we can find a set of smooth (in the sense of the full
map on R*TY) Cauchy data:

$(0) =5, 3:9(0) = @5,
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with energy size E[¢p®] = 4wk + &2 such that this solution collapses at a finite
time T**. More specifically, this solution collapses at a rate bounded by a “log-
modified self-similar” dynamic in the sense that there exists a universal time inde-
pendent profile ¢, and a real parameter 0 < A(t), such that:

(22) E [gb(l, r)— gk ()Lr)] <g?

and such that for any 0 < M and times sufficiently close to T**, one has the bound:
M L /| In(T** —1¢)]

23 —— <At) L ¢ ————.

(23) (T** _ [) ( ) o (T** _ I)

Finally, this type of blowup is stable within the class of initial data in the sense that
there exists a weighted Sobolev space H®™ (see (30) for a definition), such that
the coe ball about (¢, ¢(8)) in H*™ also leads to collapse with the same universal
profile ¢k and the same bound (23).

1.2. The family of static solutions and a modulational version of Theorem 1.3.
As we have mentioned previously, it is well known from the work of Struwe (see
again [33]) that any blowup of the form described in Theorem 1.3 must in fact
be a “bubbling off” of a static solution to equation (19). That is, after rescaling
the solution ¢ (¢) as described in Theorem 1.3, the resulting profile should be a
solution to (19). In the sequel, we will actually take the converse approach and
give an explicit construction of such bubbling off solutions. This will be done in a
way which is generally consistent with the decomposition (15) of the introduction.
Our method also naturally shows that this process is reached from a generic (in the
symmetric sense) set of initial data and that it enjoys a certain universality which
is embodied by the blowup rate (23).

To get things started, we derive the formula for the energy minimizer of the
(full) action (20). This is just a recalculation of lines (12) in the current notation.
Completing the square in the spatial terms in the energy (21), we can write it as:

(24)
Elpl=n /R+ |:(8,¢)2 + (8,(;5 — l; sin(¢))2:| rdr +2m /000 k sin(¢)o,¢ dr,

= fR . [(a,qs)z T (a,¢—l;sin(¢))2] rdr + dk.

Thus, one has the universal lower bound 4k7 < E[¢], which can be reached if
we can find a function /¥ with the property that 7%(0) = 0 and /¥ (c0) = 7 and
which satisfies the following equations:

(25) A
ro 1% =k sin(lk).
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We shall refer to the solution /¥ as the harmonic map soliton. A direct calculation
reveals that the function 7% is given by the explicit formula:

(26) I*(r) = 2tan~ 1 (5).
We also denote:
27) I(r):=1%(r),  J(r):=rd 1(r).

Note that since the equations (25) are homogeneous, the general solution 7 is only
defined up to a rescaling, as we have already mentioned on line (14) above. Now,
in terms of these objects we can state the following more technical and precise
version of Theorem 1.3, which is what we shall actually prove in the sequel:

THEOREM 1.4 (Modulational version of the main theorem). Consider the re-
duced wave-map (19) with 4 < k. Suppose we are given a pair of sufficiently small
positive constants €, co with & < C% and an initial data set of the form”:

(28) $0) =1 +ug, 09:¢(0)= ” J ||L2(rdr) J + go,

where:

/ uog-J rdr =0,
R+

and obeys the smallness condition:

(29) I (o, g0) 1321 < c3e?,

where we have set:

(30) | (0. g0) 1372
i 2
_Z/ (143 ’[(a g0)* + (gO) + (@ uo)? +—(8’r”2°) }rdr.

Then we have that the following is true: there exists a continuous time-dependent
parameter A(t) with A(0) = 1, such that the solution ¢ to (19) with initial data (28)
splits into the sum:

31 o(t,r)=1A@)r)+u(t,r),
where the “remainder” term u satisfies the bounds:
)
(32) / |:(8,u)2 + (3,u)? + —2] rdr < &2,
Rt r

for all times the solution exists. Furthermore, there exists a finite time T** such
that lim; 7+ A(t) — oo. Finally, this parameter obeys the following bounds for

"Note that our choice of initial data already requires 2 < k as for k = 1 we have that ||J || L2(rdr)
= 00.
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times t sufficiently close to T**:

M 1 IIn(T* —1)]
(33) mﬁk(l)$co W

Remark 1.5. The lower bound in the blowup rate (33) follows easily from the
orbital stability bound (32) and Theorem 1.2. Therefore, in the sequel we shall
concentrate on establishing blowup with the upper bound on line (33). The reader

1

should note, however, that the presence of the extra small constant cg, which may
g0 to zero with ¢, indicates that the true blowup rate is even closer to self-similar
than the /| In(T** —t)| correction. We will return to this delicate issue in a later
work.

Remark 1.6. The extra decay provided by the bounds (29) is not essential to
what we do here and the result also holds in the space H?-0. It is assumed here
as a convenience that will simplify the exposition. However, the extra regularity
afforded to us in the norm (30) will be used in a crucial way. We also remark
that the norm (30) is consistent with smoothness of the derivative of the initial
data when considered as map from R? into the pullback bundle U, cga+1 % (T S?).
This is a consequence of some simple calculations involving the frame Christoffel
symbols (5).

Remark 1.7. As we have already mentioned, the blowup mechanism we ex-
hibit here is ignited by a spectral phenomenon. The choice of initial data (28)
guarantees that the time derivative of the wave-map ¢ has a “strong” projection
onto the “ground state” J(r) of equation (19) linearized around the soliton /(7).
This is precisely the coefficient in a Riccati equation for the scaling parameter A(¢)
(see formula (63) below). The Riccati equation generates the first self-similar epoch
of collapse which lasts on the time interval of size ~ ¢~! and, as the projection
of the time derivative d;¢ on the “ground state” J, of the modulated soliton /)
goes to zero, is eventually replaced by a more violent accelerated regime leading
to the blowup. For this initial phenomenon to take place, it is crucial that the
linearized ground state J is an L?(rdr) function and that the projection of the
time derivative of ¢ on the ground state J is initially nontrivial. That is, one of
the main things which makes our analysis possible is that the first order® field
quantities (¢ — I, d;¢) cannot be both orthogonal to the eigenfunction of (19)
linearized around /(Ar) (unless one restricts the initial data to a co-dimension one
submanifold).

In this regard there are some interesting open questions connected with the
value of the homotopy index. For k = 2 the linearized ground state is still in
L?, so it is likely that an adaptation of our methods is possible. This is important
because it is this case which is most closely related to Yang-Mills (see the next

8That is, in this notation the second order wave (19) can be written as a first order system.
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remark). For the unit homotopy class, k = 1, the situation appears to be more
complicated. In this case the linearized ground state just misses L2 by a log. The
major open problem here seems to be whether there is complete instability of the
kind stated in Theorem 1.3 or if small enough perturbations (in some space) are
asymptotically stable, with blowup occurring as some kind of “critical phenomena”
depending delicately on the size of the perturbation. Another interesting thing is
that in the case of k = 1, there are some numerical simulations which seem to
indicate that the blowup, while taking place, occurs at an algebraically different
rate from (33) (see again [3]). On the other hand, there are further numerical and
heuristic results (see [25]) which suggest the validity of the log-modified behavior
even in this case (k = 1). We believe that both the k = 1,2 cases of (a possible
analog of) Theorem 1.3 deserve further serious investigation in terms of numerics,
heuristics, and theory.

Remark 1.8. Another important issue is that in the case of the critical Yang-
Mills, heuristic arguments as well as numerical evidence point to blowup with
a modified self-similar asymptotic of the same form as (33) (see again [2]). In
fact, the spherically symmetric reduction of the (4 + 1)-dimensional Yang-Mills
equations is very closely connected with the homotopy k = 2 case for the O(3)
o-model. This strongly suggests that the methods we develop here will transfer
to the case of the Yang-Mills model as well, and this will be the subject of a
forthcoming work of the authors.

1.3. A few more calculations. Before continuing on, we list here some simple
formulas involving the unit solitons /% which will be of particular importance to
us in the sequel:

G4 rd,I% =k sin(1%) _p cos(I¥) = 1-r
T 42 N
k 3k 2k 4k
r“—r 1—6r<*+r
35 sin2lFy=4—— | cos@IFy=—"~_"°
(33) ( ) (1-|—r2k)2 ( ) (1+r2k)2

Also, in the sequel we will refer to any specific instance of k as simply I, and we
remind the reader that we are assuming 4 < k.

1.4. Vanishing of the wave-map. We end this section by recording and prov-
ing a simple geometric lemma which will be of central importance to us throughout
the sequel. We will show that a wave-map ® together with its derivative vanish at
the origin » = 0 when computed in the pair of local coordinates (18) and (r, ®).

LEMMA 1.9 (Admissibility condition for the wave-map ®). Let ® be a smooth
k-equivariant function from the plane R? into the sphere S%. Then if2 < k,

(36) 0,0| <Cpr. O0<r<l.
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Remark 1.10. Note that the condition 2 < k for estimate (36) is crucial, as the
formula (26) shows for unit homotopy class instanton /1.

Proof of estimate (36). Our first step is to establish that d,¢ is continuous and
vanishes at r = 0.

First of all, notice that along any fixed radial line ® is constant and the vector-
field 0, is a continuous section of TR?. The same is true of the field %8@. Fur-
thermore, one has that:

. . 1
lim d, = — lim —0g.
0=0 =% r
r—=0 r—0

Therefore, by continuity we must have that:

lim | 90(3,) > = lim “a@(la@) 2.
r—0 r—0
where || - ||? refers to the metric (18). Computing both sides of this last equation,
we see that not only is d,¢ continuous (and hence bounded) on the interval [0, 1],
but that we also have:
k| sin
37) lim [9,¢] = lim SO
r—0 r—0 r
Using now the fact that ¢(0) = 0 to write ¢(r) = for dy¢(y) dy, upon substitution
of this integral into the right-hand side of (37) , we see from the fundamental
theorem of calculus and the condition 2 < k, that we must in fact have d,¢(0) = 0.
It remains to show that d,¢ vanishes uniformly (with nonuniform constant)
in r. To do this, we compute the Dirichlet energy:

. . 1 . . k2 .
€)= g [0,970, 07 + 060 00 @’ | = 13,417 + 5| sin(@) >
This is a C* function on R? which depends on the radial variable only. Further-
more, we have that e(¢)(0) = 0. Thus, it is necessary that:
le(p)| <Cr?  0<r<l,

for some constant that depends on ¢. In particular, we have the bound (36). [

2. Some notational conventions and an overview

In this section, we will first list some standard notational conventions that will
be useful throughout the sequel. We then give a quick technical overview of the
main result.

2.1. Some notation. Throughout this paper, we shall employ the standard no-
tation A < B to mean A < CB for two quantities A and B, where C is a fixed
constant. There is no uniformity in this notation for separate instances. That is,
separate occurrences of < on the same page will not necessarily imply C is the
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same for each. Another less standard notation which will be of great use is the
following:

Notation 2.1. For any pair of nonnegative integers 0 < m,n we will denote
by F™" any C*®°(R™) function which satisfies the following bounds:

rm
(1 + r)m+n ’
We will also use a shorthand notation for the case m = 0. Here we shall set
F" = FO97 5o that we have:

|(ro,)' F™"| < C;

C;
(I+r)n’
We also denote the A rescaling of these functions by F /{n M(ry = F™"(Ar) and

similarly for FJ'. Finally, let us remark that different instances of F;"" on any
line, or between lines, can mean separate functions.

‘(rar)iFn‘ <

This notation will occur so frequently in the sequel that it will be useful for
us to record here several instances which involve either time or space derivatives
or multiplication by powers of r. Collectively these are the following, where we
assume j € Z is such that —m < j in the first identity and 1 < m in the third:
(38)

jpmmn _ y—j pmtjn—j mmn _ yq—1pm,n mn __ m—1,n+1
P " =27 F) o WE =TV, 8 F" = AF) .

All of these are immediate from Notation 2.1 above.
Also, in the sequel we will in general use the A-subscript notation to denote
the A rescaling of a given function. For example, I, (r) = I(Ar).

2.2. An overview. As is perhaps already clear at this point, our method for
establishing Theorem 1.4 is to control directly a certain modulational equation for
the time-dependent scaling parameter A(¢) and to show that this evolves according
to a blowup ODE. Thus, in this sense our work is closely related in spirit to the
modulational stability approach originally pioneered by M. Weinstein (see [38])
and later sharpened by Buslaev and Perelman (see [5]) to study solitons dynamics
of the focusing nonlinear Schrodinger equation. The major difference, however,
is that we are actually trying to show that there is an extremely strong asymptotic
instability. This, of course, introduces a serious problem when one tries to control
the nonlinear (19) linearized around the modulated soliton /;. Nonetheless, we
begin by using the decomposition ¢ = I, + u from line (31) and then linearizing
(19) around 1, :

(39) FPu+ Hyu=—I) +Nw),

where the Hamiltonian is given by H) = —3% —r~19, + 0, (r) and the nonlinear
term N'(u) containing quadratic and higher order terms in u (also containing a
factor of r—2).
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Our first task, dealt with in Section 4, is to prove orbital stability of the modu-
lated soliton /; under the condition that the “radiation” part of the solution (i.e. u)
is orthogonal to the function J) = rd, I, which is the unique eigenfunction of the
Hamiltonian H. The latter is a consequence of the fact that I realizes an absolute
minimum of the energy (21) associated with the full nonlinear problem (19). The
orthogonality condition provides us with an ODE for the scaling parameter A (%),
which is coupled to the radiation term u:

(40) (W0 = @O ), ) = (M )2,

while the orbital stability statement will give us a very weak control of the remain-
der u:

(41) /+ [(a,¢)2 + (0,u)? + ];—iuz]rdr <.
R

Due to the coupling between the scaling parameter A(¢) and the radiation u, to
control A(?) to the extent that we can show A(#) — oo in finite time requires much
better control on the radiation term u. The usual procedure for dealing with this is
to scale out the modulational parameter A(¢) at each fixed time, so time independent
spectral methods can be used to control the linearized equation. This procedure
works well if one can prove that there is a slow limit of the parameter A(¢), but it
obviously causes a catastrophe if A(¢) grows rapidly. In this case, a truly nonlinear
approach is needed.

The reason why standard nonlinear estimates, for example the kind used to
prove orbital (Lyapunov) stability (i.e. (41) above ), are not sufficient to reach the
blowup time ~ ¢! is basically due to the fact that their application to the ODE
(40) is not truly scale invariant. That is, the use of fixed time estimates which
result from orbital stability analysis causes a loss (of scaling) when one integrates
over time. Such integrations seem unavoidable when analyzing (40). To overcome
this problem requires uncovering a nonlinear dispersion phenomenon® in equation
(39) for the radiation term u. That such a dispersive process indeed takes place
is in some sense the miracle of equation (39). More specifically, as the soliton
I, collapses it actually repels the excess radiation away from the origin. This
evacuation process only causes the soliton to collapse at a faster rate, and it is what
is ultimately responsible for the acceleration of self-similar behavior governed by
the left-hand side of the blowup rate (33).

One of the most interesting issues in this paper is the mechanism by which this
“repulsive” behavior of the linearized equations manifests itself mathematically.
This is where the “quasi-integrable” system aspect of the static version of (19)
comes in. As we have already discussed in the introduction, static solutions to

9 A nonlinear dispersion phenomenon (of a different nature) has been observed and used by Merle
and Raphael in their work [28] on the blowup
analysis for the critical focusing nonlinear Schrédinger equation.
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(19) are generated by the first order Bogomol’nyi (25). When one linearizes (19)
around these static solutions, the corresponding Hamiltonian H) splits as a product
of two first order operators which are adjoints of each other. That is:

Hy = A%A;,

where A is the linearization of (25). The reason why this splitting is so useful is
that the Hamiltonian H also possesses its super-symmetric companion:

H) = A; A},

with A} and A being the analogs of the creation and annihilation operators, and
H; and H; related to each other according to the remarkable intertwining relation:

(42) A H), = H)A;.

Such a splitting elucidates the nonnegativity of H, and identifies the function J},
which is the kernel of A, as the ground (vacuum) state of H,. In addition, the
intertwining property (42) allows us to simply conjugate the problem (39) to one
whose linear part involves the more manageable Hamiltonian H;:

43) 02 (Aau) + Hy(Agu) = —Ax(I)) + AN () + [0, Az ]u.

The Hamiltonian A}, which is obtained from H;, by the process of “removing” its
ground state, is of the explicit form H L= —8% —r~19, 4+ V;.(r) and involves a
space-time repulsive time-dependent potential. This means that for problem (43)
one may proceed via purely physical space methods, and there is no difficulty in
handling extremely violent growth of the scaling parameter A(¢#). What we can do
is to establish quite strong (i.e. scale invariant) integrated and fixed time energy
estimates (i.e. so called Morawetz type estimates), while keeping precise track of
the influence of the source terms on the right-hand side of (43) involving the scaling
parameter A. To undo the conjugation procedure embodied in (43), we only need
to use the fact that u is orthogonal to the kernel of A, because through a little
elementary functional analysis, this allows one to turn our Morawetz estimates
into ones involving only the term u (as opposed to A, u). Once these estimates are
established, it is possible to show, through a somewhat lengthy calculation, that
after a long self-similar epoch where CoA ~ g9A2, the modulation ODE for A?)
enters another monotonic regime where it takes the final form:

. t 14
Cod(r) ~ s0A2(1) — A2(1) /0 0(%@))(1&

It is this ODE which leads to the blowup

and also gives the tight upper bounds in (33). The reader should compare this
last formula to the blowup ODE for modulated Yang-Mills instantons derived in
[2] through heuristic arguments.
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We now turn to the details of all of this. As is common in this type of work,
many of our assumptions will be bootstrapped. We shall follow the outline:

¢ In Section 3 we discuss the Hamiltonians H) and H A

e In Section 4 we derive the basic ODE for the scaling parameter A(¢) and prove
the orbital stability statement.

e In Section 5, assuming certain estimates on the “radiation” part of the solution,
we obtain a much refined closed form (i.e. without explicit dependence on
the u) of the modulation ODE, establish its monotonic and algebraic proper-
ties, and prove blowup along with an explicit rate bound.

e In Section 6, assuming the monotonic properties of the scaling parameter A(¢),
we prove the integrated space-time and fixed time bounds for the radiation by
making use of the conjugated Hamiltonian H .

e In Appendix A we give some further explicit computations needed in the anal-
ysis of the blowup ODE.

¢ In Appendix B we establish some general coercive properties for the class of
first order operators related to A}.
3. The linearized equations and a basic spectral calculation

Our purpose here is to derive and record certain calculations involving the
linearization of equation (19) around a time-dependent modulation of the soliton
I(A(t)r). That is, we decompose the full solution as:

(44) o(t,r)=1A@)r)+ul(t,r).
This yields the following set of formulas for (19) linearized around 7 :
(45) FPu+ Hyu=—I) + Nu),

where we have set:

k?sin(21;) k2 cos(21}) 1 .
5 (1 —=cos(2u)) + — <u 5 sm(2u)).

Here H) is the linearized Hamiltonian:

Nu) =

2
(46) Hy=—9>— %a, + ’;—2 cos(21;) = A% A;,
where the first order operators A, A* are given by:
47 Ay =—0, + écos(lk), Ay =0, + % + é cos(1y).

The spectrum of Hj, defined as a self-adjoint operator on L2(rdr) and obtained
by taking the closure of C® (R™) in the graph norm of H), is easily computed via
the factorization (46) or via the knowledge that the ground state I of the (static
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form of the) (19) is unique. There is a unique eigenfunction, which has zero energy,
and it is given by the formula:

(48) Jy=ro,I; =ksin(l)).
In particular, Jj solves the first order “linearized Bogomol’nyi equation”:
(49) Ay J) =0.

The absolutely continuous spectrum fills the half-line [0, 00).
Of primary importance for use here will be the conjugate operator formed by
A, A3, the super-symmetric companion H of H,

2
~ o 1 k“+1 2k
(50) H;L—A)LAA——ar—;ar—l-r—z—l-r—zCOS(IA)

1
= =07 — 0, + Va.(r).

Recall that the Hamiltonians H) and H », are related via an intertwining relation
(42). As opposed to Hj, the spectrum of H 5, has only an absolutely continuous
component filling [0, co). What is more important is that while in our application
the Hamiltonian A 2 Will be time-dependent, it has a remarkable structure which
allows one to prove strong local energy decay estimates even if the parameter A(¢)
grows in an unconstrained fashion. The needed properties follow from entirely

elementary calculations and are as follows:

k—1)2
(51) Vy= ( 5 ) , (Positive),
r
2k2+1) 4k 2k2
— arVA = % + r—3 COS(I)L) + r—3 smz(IA)
2(k —1)* .
(52) z—— (Space-Repulsive),
r
o2k, . :
53) -0,V = T2 sin“(1,), (Time-Repulsive).
r

We conclude this section by refining the decomposition (44). This will be
extremely important for us in the sequel, and it will ultimately lead us to the pre-
cise asymptotic (33). What we will need to do is further decompose the radiation
term as:

u=wo+w,

where the “leading term” wy is meant solely to eliminate the term 7, on the right-
hand side of (45), while at the same retaining the orthogonality relation:

(54) (wo, J3) = 0.
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The equation we use to generate wo is (the reason for this will become apparent in
the sequel):

(55) Ax(Hywo) = Hy(Ajwo) = —Ax (D).

To further the computation, we use the fact that A J), = 0 to write:

. A2 A2
Ax(1y) = IA)Lat(rarI/l) = ﬁAx rop(Jy) = A—ZAA(J +7r0d-J),.

Therefore, by peeling off the common factor of A, from both sides of (55), it

suffices to solve:
/'\2
Hywo = _/\_2('] +7rd,J),.

We now use the ansatz wo = A2A~#[K(Ar) — yJ; ], where y is a normalization
constant which will be chosen as to satisfy (54). Eliminating common factors and
rescaling the spatial variable, we find that:

Hi(K)=—(J +rd;J),

from which a direct computation shows that K(r) = éJ (r) is the desired solution.
Therefore, we have that:

12
(56) wo(t,r) = 25 (1) (aJa(r) +b(2J)z),
where the coefficients are given by the explicit formulas:
1 2 —2 1
(57) a——Z(J,(r J)>'”J||L2(rdr)’ b_é_l'

Before ending this section, let us translate the abstract function notation on
line (38) into some specific bounds which will be used many times in the sequel.
These are a consequence of simple explicit formulas and the restriction 4 < k:

(58a) wo = A2ATHFP + F?), 3i(wo) = AMATHEF + F?)
+ AT (F 4+ FP),
(58b)  |Jal < Fy 90 S AATVES,
27,1 < (1A +A2272) FH4,
(58¢)  9:(Ay) = AF;”, 07 (A S (A1 + 22271 Fl?,

A)L(Fin’n) — /\F;n—l,n+1.

We note here that we are assuming 1 < m for the last identity on line (58c).

4. Orbital stability

We now begin with the first step in our proof of Theorem 1.4. This is to show
that one can make a rough decomposition of the full wave-map ¢ into a bulk piece
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which is a rescaled soliton, plus a small remainder which we can estimate in a
certain energy space. Of particular importance to us will be that we can construct
this decomposition in such a way as to retain a certain orthogonality between the
bulk piece and the small “radiation term.” Of course, this is precisely the modu-
lational approach to orbital stability first pioneered by M. Weinstein in his study
of the nonlinear Schrodinger equation (see [38]). What we intend to prove is the
following:

LEMMA 4.1 (Orbital stability with orthogonal decomposition). Suppose that
¢ is a solution to the problem (19), and suppose that initially the Cauchy data for
¢ decomposes as:

(59) ¢(0) =1, +uo,  3:¢(0) = do.

Assume that the energy satisfies E[¢] = 4wk + €2, with & chosen small enough.
Then as long as the solution ¢ exists, there is a time-dependent parameter 0 <
A(t) < oo, with A(0) = Ao and the property that the following conditions hold for
all times of existence provided that they hold initially:

(60) Folil = [ @07+ @+ 52| rar 2,
RT r
(61) 0= (u(), Jaq@))-

Here u is defined by the relation u = ¢ — I;. In addition we have that:

A
(62) ﬁ} Se.

Finally, we remark that (conversely) the full wave map ® is C up to any time T
as long as A(t) < oo and (60) holds true for any t € [0, T1].

Proof of Lemma 4.1. The proof essentially reduces to defining an appropri-
ate equation for the evolution of A(¢), basic existence and uniqueness theory of
ODEs, followed by the coercive estimate (162) proved in Appendix B. We note
here that the last remark of Lemma 4.1 follows from the local “small energy implies
regularity” statement for symmetric wave-maps and is, for instance, contained in
Theorem 1.2.

We will use here the following observation: notice that if A — coor A — 0
on some time interval such that (60) holds, then the full wave-map ® must break
down also on that time interval because its energy concentrates at 7 = 0 or r = 00
respectively (in fact, by finite speed of propagation it cannot happen that A — 0 in
finite time, so any “blowup ” of this type must occur at ¢ = 00).

Now, for a strictly positive real valued function of time A(¢), we define the
equation:

63) i(z(l, J)+ (¢(r1r),ra,1)) = —(¢s. J1)A>.



SINGULARITIES IN THE CRITICAL O(3) o-MODEL 207

Notice that as long as the wave-map ¢ exists and is smooth, this equation is of
the form (A, HA = B(A, 1) for two C! functions (A, ) of the variables o, 8. We
now construct A(¢) from (63) via a simple bootstrapping procedure. Our goal is to
provide a strict lower bound for |«| so that we may simply apply the usual existence
theory to (63) which then produces A(¢).

First of all, notice that a simple calculation involving the identity:

(I,ro,J)y=-=2(1,J)—(J,J)
shows that the bound (60) initially implies that:
lae(X0,0) + (J. J)| < Ce,

for some, possibly large, constant C which we choose in a moment. Therefore, by
continuity there exists a small time 7 such that the solution ¢ exists and is regular
on [0, 7*], and a solution A(z) to equation (63) exists, is contained in (0, co), and
obeys the bounds:

(64) le(A(2). 1) + (J. J)| < 2Ce.

The heart of the matter is now the following: we will show that if 7* is any time
such that the above holds (i.e. existence for ¢ and A and the bound (64)), then we
must also necessarily have the conditions (61) and (60), as well as the following
improvement of (64):

(65) la(A(1), 1) + (J. J)| < Ce.

By continuing this process, we will have shown that on any time interval [0, 7]
such that the solution ¢ exists and is regular, there is a continuous solution of (63)
A(t) € (0, 00) such that A(0) = Ay and (60)—(62) holds (assuming, of course, that
these conditions hold initially).

We now show that existence and (64) imply (60) and (61), and that these two
together imply the improved bound (65). Everything rests on the orthogonality
condition (61). We define u = ¢ — [ and use a few simple integration by parts to
compute that:

d A
Ew’ ) = (ug, Jy) + XW’ (rorJ)a)
A

FE
=0,

(27, 0)+@071), r8r0)) + (90 )

where the last line follows from the assumption that A solves (63). Therefore, since
(61) holds initially, it holds on [0, 7" *].

It remains to show (60) and that this bound implies (65). In fact, given the
form of «, this latter implication is immediate from (60) and the Cauchy-Schwartz
inequality, where the sufficiently large constant C is chosen according to the im-
plicit constant appearing on line (60).
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Thus, we have reduced things to proving that, assuming that orthogonality
condition (61) holds, (60) also holds with a fixed implicit constant which does not
depend on the size of A or C. This is where the condition E[¢] — E[I;] = &2
enters. Notice that this equality follows from the conservation of energy and our
assumption E[¢] = 4wk + 2. Computing the energy difference and using line
(24), we have that:

2= /R+ |:(8,¢)2 + (0,9 — é sin(¢))2i| rdr

T /R+ |:(8,¢)2 + (8,u—§cos([k)u)2] rdr —m Ry (u),

where we are defining higher order integrated nonlinearity:

2 2
Ry(u) = /I;ﬁ (8r¢—]§sin(¢)) ra’r—/RJr (Bru—écos(lk)u) rdr.

Now, using the first coercive bound (162) of Appendix B we have the estimate:
(66) Eofu] &%+ | ).

Finally, using the simple algebraic formula for the difference of squares, using
equation (25), and writing the first few terms in the Taylor series for sin(/) + u),
we easily have the nonlinear bound:

2
67) IR, ()| 5/ (|a,u|+M).(“_) vdr
Rt r r

< (Eo[u])%,

where the last line follows from Cauchy-Schwartz and the Poincaré type estimate:

3 2 3
(68) u(r)|? < 2([ (0,1)> rdr) : (/ v rdr) .
R+ R+ 12

The bounds (66)—(67) taken together show that we may conclude (60) for & small
enough and some universal implicit constant (e.g. this can be shown through an-
other continuity argument). Having established (60) and (65) we can easily show
from (63) that:

2] se

This concludes our demonstration of Lemma 4.1. O

5. The effective evolution and the main blowup argument

We now begin in earnest the proof of the main Theorem 1.4. This centers
around computing a more effective form of the modulation ODE (63). This will be
followed by an ODE analysis giving the desired blowup together with its asymp-
totic profile. The main technical result of this section is the following:
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PROPOSITION 5.1 (Refined structure for the modulation equation (63)). Con-
sider the scaling parameter A(t) which is defined through Lemma 4.1 and equation
(63). Suppose that the initial data (59) is given according to Theorem 1.4. Then on

a time interval where A(t) € (0,00) and t € [0, %], the scaling parameter A(t)
satisfies a first order ODE:
t

(69) (Co—e1(1))A(t) = eoA>(t) — A%(2) / €(s) ds.

0
Here Co = (J, J), and €¢, £1(t) and €(t) obey the conditions (g is fixed):
(70) g0 — —| S coe,

g
(71) ler(@)| Se,
1 .

(72) [€(t)] S coe® +¢g sup A*AT7(s).

0o<s<t

Here ¢, cg are the small constants from line (29). In addition, one has the following
“structure bounds” for the acceleration of A(t):

. /'\2 1 /'\2 )'&4
(73) At) — 270) < Ccq T(t) +C (6082 + sup

oss<t A7

(s)) A2
We remark that the constant C is universal, i.e. independent of co and ¢.

Remark 5.2. The reason the explicit constant C appears in estimate (73) is
merely a notational convenience. The bound (73) will be one of our main boot-
strapping assumptions in the sequel.

The remainder of this section is divided into two parts. First, we will show
that the identities and estimates (69)—(73) imply that the parameter A(¢) goes to
infinity at some time 7** € [0, e74] as long as ¢ is chosen small enough. We then
establish the bounds (33) on the asymptotic rate of A(¢) as t — T**. Finally, in the
last subsection we state the “Main Estimate” (a certain fixed time energy estimate)
of our paper, and we use it to derive all of the assumptions (69)—(73). This main
technical estimate will be the subject of the final section of the paper.

5.1. Proof of the blowup and the universal bound for A(t). Using equation
(69), as well as the assumptions (70)—(73), we now show that A must blowup
in finite time. The basic idea is the following: without the contribution of the
integral on the right-hand side of (69), the desired blowup would occur in finite
time ~ Coso_1 in a self-similar Riccati fashion. Therefore, the only problem is
that one must guarantee the integral term (which adds a negative!® contribution,
creating a delay effect) does not interfere to the extent that A is driven to zero too
quickly before the blowup can occur. The fact that a priori (i.e. again by Theorem
1.2) at any supposed blowup time one must have that A2 = 0 indicates a very

10 That the contribution is overall a negative one follows from Theorem 1.2.
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delicate balancing between the two main terms on right-hand side of (69). This
constitutes one of the main technical difficulties in this paper and why many of
the estimates which appear in the sequel are so involved. To establish the needed
control, we will first show that the initial self-similar behavior, approximated by
the ODE Cod = A2, forces A(?) into a different monotonic regime, where in
particular, the terms 441~7 dominate the error estimate for € (i.e. (72)). At that
point, blowup is assured. Our last task is then to analyze the balance of the integral
and &g terms on the right-hand side of (69) and to derive the precise blowup bounds
(33) from this. Along the way, we will show that all of this can be accomplished
before the time interval [0, e~#] expires, so that we still have access to all of the
structure included in Proposition 5.1.

We now proceed with the details outlined above. The first main thing is to
control the size of the interval where one cannot guarantee good bounds on €(s).
The key is to show that 14177 becomes monotonic soon enough and with enough
force to cover the constant coe? which is lost on line (73). Luckily it is not hard
to show that these two things happen at essentially the same time. Computing the
time derivative and then using the identity (73) we have:

d (A*\ A5 L )2 A3
74 —| == (0]
(74) T ()ﬂ) Y (c0 3 + co&? +Oililit /\7(5")))&5
We now let T be the first time such that:
. 1
(75) A*AT(Ty) = Cegé?,

for some large constant C which is larger than twice the implicit constants in (72).
First, we argue that such a time must occur.

If such a time does not occur, then if ¢g is chosen small enough (we remind
the reader that this is done by simply choosing initial data according to (29) and
does not affect the size of constants in estimates like (72)), one sees immediately
from (72) and (69) that the following bound holds for all times:

A 1 ! )
(76) ﬁ(t) > Eso —/0 Ccoseyds,

where C is fixed and independent of cg, €. A simple argument, which we leave to
the reader, shows that if 1(0) = 1, then this last inequality implies that A — oo at
some finite time 7** < 4Cype,, 1" and that in addition:

pe 0> o
forall ¢ € [O T**). In that case, however, we would also have that:
4
k7 (z) = ()L2 (t)) A(t) = (E) A(t) —> o0 as t— T,

which shows that in fact the time T defined above must occur. What is more, a
simple analysis of the previous argument shows that this time must also satisfy the
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conditions:

(77) To < 4Coey!, AIA2(Ty) = ——e0.
4Co

Notice it is also clear that for all times ¢ € [0, Ty], we have @) >0.
Now, by a direct application of the orbital stability bound (62), we have that
for any time where the solution exists, there is the bound:
At A2
S0 52250,
Applying this on the right-hand side of (74), we see that for all # > Ty and as long
as A*A77(t) = Ccoe?, we have that:
d (i* e
—| = () = (1=Ccs)—(t) > 0.
4 (57) 0= a-cariso
By bootstrapping this argument, we see that AT s monotonically increasing
for all times ¢t = Ty.
Before continuing, with the proof of blowup, we pause for a moment to up-
grade the bound (75). This will be used in a crucial way in the sequel (see the

proof of Proposition 6.3 in §6). We claim that there exists a time 7* = To + O(1)
such that the following improvement of (75) is valid:

(78) AMAT(T*) = coe.

Again by contradiction, if this were not the case by (69), the definition (75) of Ty,
and the time bounds (77), we would have a bound of the form:

* s /tc s> !
— = —&E0 — Co€ S = ——&o,
A2 4Co 0 Jry T T 8G, °

for times T* = Tp + O(1) as long as ¢p < 1. Integrating this and again applying
(75) as well as the orbital stability bounds (62) to the term A~ (Tp), we arrive at
the inequality:

1 1
t—T < < erlg2
( O)EONA(TO) oS coe
2

Using the condition that & < ¢y, we see that such a bound must expire in t — T =
O(1) time. Finally, notice that by using the time bounds (77), the definition of Ty
(75), the definition of T* (78), as well as the relation T* = Ty + O(1), we may
integrate the quantity 427 over [0, T*] to obtain:

T* 54
(79) [O T ds <

We now return to the main thread of the blowup argument. So far we have
achieved the following. There exists a time Ty such that for Ty < ¢ we have:

e A*177(¢) is a monotonically increasing function.



212 IGOR RODNIANSKI and JACOB STERBENZ

. 1
c M7ty = C g 2, where C is at least twice the implicit constant in the
bound (72).

e The time Ty is associated with the bounds (77).

We are now at the point where blowup with the rate bounds (33) is assured. From
the above conditions, we have that for all times ¢ = Ty:

1.
(80) E<cgata

Writing:
t

y(t) = —e0 + /O %(s) ds.

we have that A1 ™2 ~ —y. Differentiating y and using the bound (80) we see that:

134 1}
y 2 3.2
VRozs Ty

By dividing through by —y3 and integrating both sides of this last inequality over
the interval [Ty, t1], we arrive at the estimate (we may assume that 0 < —y through-
out this argument as will become apparent on the next line):

1 <
y2(t1) ~ y2(To)
1
<e 2+l In(Mn)),

Te3 In (1) — ¢ In (A(Tp))

where to obtain the last inequality, we have used the second bound on line (77) as
well as the fact that 1 < A(7Tp). We now recast this last expression in terms of A:

1 A
(81) < ().

\/8_2 + CO% In (A(t1))

Integrating this last line over time intervals past [0, To], we see that within O (e™!)

1
time we must have e2 < cg In (A(z)). Therefore, we are assured of the bound:

A% (1)

vV co% In (A(2))

inside of some interval [0, Ce™1], for a uniform constant C. This is a Ricatti type
inequality which easily implies that A(#) — oo in O(1) time starting with 1 < A at
the first time where it holds. Let us call the blowup time 7 **.

Finally, we need to recover the rate bounds (33). By Remark 1.5 we need
only establish the upper bound. From (81) we have the inequality:

_1 i
¢t < vln(/\(t))ﬁ(t),

2278 < < A@), 0<8<1,
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for times ¢ sufficiently close to 7**. Making the substitution A(z) = es” and
integrating from ¢ to the blowup time, we have the estimate:

c(;%(T** —1) <2 /m s2e=5% ds
= —m + /oo e ds
A7) VI@O)
Vin@@) o
A7) A(1)/In(A (1))

_ VG

S0

where the last line above follows from the well known asymptotics of the error
function. The above identity easily implies that as ¢ — 7**, one has the bound:

[ In(T** —1)]

1
MO 5 6

This establishes the upper bound in (33).

5.2. Derivation of the main ODE and its structure. We now derive the ODE
(69) as well as all of the accompanying structural assumptions (70)—(73). This will
require a certain fixed time energy estimate which is the main technical estimate of
the paper and will be proved in the following section. We start by recomputing the
modulation (63) using the splitting ¢ = I, + u. Differentiating the orthogonality
relation (61) with respect to time, we have the simple identity:

(82) (I3, J3) = (¢, J2) + (u, Jp).

Differentiating one more time and rearranging things with a little help from the
equation ¢;; + Hyu = N(u), we have that:

(83) (Ir. J2) = 200su, J3) + (u, J3) + (N(u), J;)

(84) =20, (u, J3) — (u, Jp) + (N (), Jp),

where N(u) denotes the nonlinearity:

k2 sin(213) k2 cos(21}) 1.
85 Nu)= —H2 (1—cos2u)) + ————- (u -3 s1n(2u))
2sin(21 ~
= —k sz( %) ‘u? + N(u).
r
Notice that:
3
~ u
(86) R < M7

r2
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Next, a short computation shows that we have the identity (recall the definition of
J, from line (27)):

(12 12) = (% 22 ) ) = CO%(;"—Z)A—I,

where we have set (J, J) = Cy. Therefore, from these last two lines as well as the
identities (83)—(84), we have our two main structural equations:

12
(87) A —2% = Cyt (2(eu, Jp) + (u, J3) + (N(u), J3)) A3,
d /A : . .
(88) Coa(ﬁ):28,[(u,J;L))L]—Z(u,J;L)/\—(u,JA)/\+(N(u),J,l))L.

The first (87) is sufficient for us to prove the bound (73). The second (88) will yield
(69) upon integration. Doing this over a time interval [0, z], we have the identity
(recall that A(0) = 1):

A )
(89) COﬁ(Z)_zw(Z‘)’JA(t))A(I)
i 4

. t A
= 1(0)(Co — 2(u(0). rdrJ)) —f (C*ﬁ(s) +%;(s)) ds,
0
where we define the constant Cy as follows:

2 2
(90) Cy = — k2< (@it ligr /1) sin(21,) - J,1>

+ 22 (ady + 502002 (rop)2) = A3{rdy (aly+b(20)5) . (79, ),).

In Appendix A, it will be shown that Cyx = 0. This indicates that the precise rate
of blowup in the inequality (33) is quite delicate. We will return to this in a later
work.

The error term €(s) is given by the expression:

2
O1) € =2(w, Jy)A+ (w, J)A + <wo, (A —2%)(rarj)k>
- <w sin(215) - J,1>)L — (N, J)A.

Here the terms wg, w refer to the decomposition on line (56) above. We list this
here again for the convenience of the reader:

12
(92) u:F(aJA+b(r2J)A)+w:wo+w,

where the constants a, b are derived on lines (57). Notice that the constant Cs
defined by (90) arises from the expression (and a few integrations by parts):
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CiA*A™7 = 2(wo, J3)A + (wo, J3)A
2w 2 iz
—< 2. sin(213) - J3)2 = {wo (A Pl )(r8 J)A>

Before commencing with the proof of estimates (72) and (73), let us first
derive from (89) the identity (69) and also the conditions (70)—(71). First of all,
notice that from the orbital stability bounds (60), we have that:

. A _
[(u. 3)A| < L Y llL2gary 1 20- Da | L2rar
5 EA—Z.
Therefore, we may define €1 on the left-hand side of line (69) as ¢ = 2k3i_l(u, J3)
and we have (71).

Similarly, at the initial time, the identity (82) gives the relation (we are assum-
ing A(0) = 1):

AO)(J, J) = {$:(0), J) + A(0) (u(0), 73, J ).

Substituting into this last relation the initial data (28) and using the smallness con-
dition (29), we easily have that:

3(0)(Co —2(u(0). rdrJ)) = % + O(coe),

which gives the condition (70). Finally, notice that this last line also implies the
initial expansion:

: I3
i(0) = ot 0(coe).

Plugging this into the first term on the right-hand side of formula (87) and using
the bounds (29) on our chosen initial data (28) to estimate the remaining terms, we
see that (73) holds for the initial time ¢ = 0.

It remains for us to derive the bounds (72) and (73) from the identities (91)
and (87) respectively. This will be done through a bootstrapping process and the
use of a special energy estimate for the function w appearing in those expressions.
This brings us to the main technical estimate of our paper which is the following:

PROPOSITION 5.3 (Main technical estimate). Let u = wg + w be the decom-
position from line (92). Next, let us assume that estimate (73) holds with constant
2C; that is:

(93) @) — 2—(t) <2Cc¢} —(t)+2C(cos + sup 7 (s))k2
0<ss<t

Then as long as the parameter A(t) is monotonically nondecreasing, one has the
following fixed time energy type estimate for t € [0, e~4]:
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(%94)

8 2 4
/ LA - [(LA;Lw)er s ](z) rdr S G e s ()
R

1+ 78 r2 o<s<t A’

Here the implicit constant depends on C from line (93) above, but is independent of
& and c from line (29). Also, the operator A, is defined on line (47) above. Lastly,
L = 0; 4 0, is the outgoing null derivative.

Remark 5.4. Observe that by a direct application of estimate (163) of Appen-
dix B that the bound on line (94) implies:

5 ,,,2 14
1A% w ) A
(95) /I;Jrk 1—|-r8r_4(t) rdrScos +8021;2t )L_7(S)

This will be used many times in the sequel.
We now prove the bounds (72) and (73). This will be done separately and in

reverse order. To prove the second estimate (73), it will suffice for us to demonstrate
the following set of estimates:

LEMMA 5.5 (Estimates for (73)). Assuming the bootstrapping estimate (93)
and the results of Proposition 5.3, one has the following estimates where the im-
plicit constant depends on line (94):

a3 < AR b Mo\
(96) ‘(8,u, I ‘ R o + ¢ (cos +021¥2t ﬁ(s)))t ,

. . 12
(97) (u, )2 =n()A+ ma(0) 7

j2 j#
3 2 2.2 2

(98) (). )27 £ 625 + (coe Hoilﬁtﬁ(s))k :
where we also have the bounds!:
(99) 1] < e, In2] < e.

In particular, for e2 < co small enough, we have that (73) holds.

Proof of estimate (96). This is the most involved of the above three estimates.
To prove this, we begin by isolating the explicit piece involving wg from the ex-
pansion (92). Thus, our first task is to prove that:

: 22
(100) [(9rwo, J)A®| S &2
To do this we will employ the bootstrapping assumption (93). We will also use the
abstract function notation replacements from lines (58). Doing this, we see from

1 The implicit constants in (99) depend only on the orbital stability bound (60) and thus are
independent of the bootstrap constant C.
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lines (58a) and (58b) that we may write:

101 d A3 = A4 73 (F2 Fy A2 F2, F}
Notice that from the bootstrapping assumption (93) and estimate (62), as well as
the monotonicity of A, we have that:

i <i2Aty2c (6082 + sup 141—7@))/\2

0o<s<t
<A 223 <203
Therefore, plugging this into line (101) and using that |(F,12 Ff)| < 172, we have
the bound (using again (62)):
(9rwo, J)AP] S A*A™5 4+ 6227071
<&
This establishes (100) and, therefore, (96) for the wg portion of u.
We shall now prove that:
i 2 1 i

. 3N 1
(102) [(Bew, J)A3] S ed o+ e (c052+ sup
A oss<t A7

(s))z\z.

The complication in this estimate stems from the fact that the energy estimate (94)
does not provide control of the time derivative of w. In addition, (102) is a fixed
time estimate and, therefore, it is not amenable to the procedure of integrating out
the time-derivative as was done on the line (88) above. However, we will be able
to exploit a structure of the inner product in this expression and convert the d;w
into L A, w derivative, which appears in (94). First of all, we write this as:

(0;w, J3) = AN d,w, rd, Jy).
We now employ the following identity:
A (rJy) =205 +2r0, Jy + 14, J;,
along with the conditions 4 J) = 0 and (w, J}) = 0 to write:
(B0, 70,J3) = 3 (00w, AL(T0)) = B, J3) = 30, Aqw, (1)) ;)37
A Bl DA A (w70 ).

Therefore, to show estimate (102) we will establish the following bounds:

: 3(2 1 14
(103) }(B,A;Lw,(rJ),x)ML]§c6‘7+c3 (cosz+ sup ﬁ(s))kz,
0<s<t

: i2 A
(104) }([AA, d¢]w, (rJ),\)ML‘ < 827 + (0382 +¢& sup ﬁ(s))kz,

o<s<t
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. i2 '
(105) (w,rd,JR)A?A| S 2= + (c382+s sup —(s))x2
A oss<t A7

We prove these three estimates in order. By the triangle inequality we have that:
(106) (@ Azw. (r))2)| S [(LAxw. (rD)p)] + [(9r Azw. (r])2)]-

To estimate the left-hand side of (103) involving the first term in the last, sum we
write:

(107)  [(LAzw, (rJ)3)AA]
SN2+ 2 LA | 2 gan |+ 2 3 FY 26an)
ST AE AN A+ LA L2 ant
<c0x2/\ +c04||)rf(xr) S(1+ %) 2LAAw||iz(rdr))L2

1 .
<cg kz/\ +cq (6082 + sup k4)t_7)/\2.

0<s<t

In the last line above we have used the assumption ¢ < c%.

To conclude estimate (103), it remains to bound the second term on the right-
hand side of (106). To do this we see that a simple calculation involving the notation
on lines (38) and (58b) above allows us to write (3, + 7~ 1)(rJ); = AFf. This
leads us to the estimate:

(108) (3 Azw, (r))AL| = [(Azw, F)AA?|
: 3 _1 _ 1 _3
SN AN A+ Aaw | 2gany | A+ )20 3 FH 3l 2¢ar)

3
S i 4 e AT O A+ ) E T A w g 22

[=FNY

. 1 .
cd A2AT e (coe? + sup A*ATT)AZ

0<s<t

<

~

This completes our proof of estimate (103).

To finish the proof of (96) we need to establish the estimates (104)—(105)
above. As we shall see, the proof of (105), with a minor exception, follows almost
verbatim from the estimates we will use for (104). Therefore, we now concentrate
on (104). A simple computation shows that we may write the commutator as
[A),0¢] = —0¢(Ay), which from line (58c¢) is a multiplication operator given by a
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function of the form A F f . Thus, we compute that:

|([A. 8w, (r))AA| S [(w, FL?)A%A
NS B | ] s _ 8§ o 8
SAAT2AT2AN 2+ )7 2r 2w p2gary 1A+ 1) 2022 F )3 2000
. . 1
< i2r3. (6382 +¢& sup 141_7(s))2
oss<t

<A 4 (cge? + e sup A*AT7(5))A?
0ss<t
<22 4 (c2e® +e sup A*ATT(s))A%,

0<s<t

where we used that A1 2 < ¢ and (95).

The proof of the bound (105) is very similar to what was done above. To set
things up in terms of the previous steps, we simply use the notation on line (58b)
and the Cauchy-Schwartz inequality to write:

[(w., rd, J3)A%A |
TP I | s _8 _ L |
SAAT2AT2AN A+ 1) 7wl 2gar | A+ 2022 FH5 I 2¢ar)
The steps are now identical to what was done in the previous due to the bound:
FI | _
(109) I (A+1)2? 2 F; 2gan S A7

This concludes our proof of estimate (96). O

Proof of the identity (97) and the bounds (99). This follows from the orbital
stability bound (60) and the Cauchy-Schwartz inequality. Specifically, a short cal-
culation shows that:

(u, o)A = (u, (rd, D) )ANE = (u, (ro, J) ) A4 + (u, ((r0,)2 T ) ) A%A.

We leave the details of application of the Cauchy-Schwartz and the estimate (60)
to the reader. O

Proof of estimate (98). By invoking the explicit formula (85) and the decom-
position (92), it suffices to show the two estimates:

(110) <—r2 IR e
w? 3 2.2 A4 2
(111) <r—2,JA>)t < (608 —i—eozliztﬁ(s))k .

The proof of (110) is a simple and direct calculation involving definition (56) and
estimate (62). We leave the details to the reader.
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The proof of the second estimate (111) follows almost immediately from (95).
To see this, we compute that:

w? 3 2 4-% 3 B JT)
r_zv-]k AT A ”/\ 2(Ar)2(1+r)"2r w||L2(rdr)

5. 58
A +r)2 P2 FY; e
5(03824—8 sup /'\41_7(s))12.

0<s<t

This completes our proof of estimates (98). O

Having now completed our proof of estimate (96)—(98), our last task in the
section is to establish the structure estimate (72) for the function € defined on line
(91). To do this it clearly suffices to add together the following set of estimates for
the individual terms on the right-hand side of (91):

LEMMA 5.6 (Estimates for (72)). Assuming the bootstrapping estimate (93)
and the results of Proposition 5.3, one has the following estimates where the im-
plicit constant depends on line (94):

. 1 A4

(112) ‘(w,J;L)/\} §c082+c§ sup —(s),
o<s<t A7
. 1 a4

(113) [(w, J3)A| S coe® +¢3 sup =(s).
o<s<t A7
Lz , ;4

(114) ‘<w0,(/\—27)(r8rJ);L>)§cos 65 S 370),
w-Qwo +w) . 5 1 L4

(115) Kr—z,mn(zu)h)x)scoe +eg S 570),
~ 1 14

(116) ‘(N(u),];t)/\} 50082+c3 sup —(s).
o<s<t A7

The proof of estimates (112)—(116) is similar to the proof of the estimates
in Lemma 5.5 above. We will always follow the three-step strategy: 1) distribute
correct powers of r and (1 + r) inside the inner product; 2) apply the Cauchy-
Schwartz inequality; 3) refer to estimates (60), (62), (94)—(95), and (73). We will
be a bit more terse here than before and leave some of the details to the reader.
Each proof will be written out under an individual heading.

Proof of estimates (112). We start with estimate (112). Using our abstract
notation from line (58b), we have that:
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[(w, J2)A]
104 —32 _1 3 _8 9 8 o 8 4
SAATZ[AT 22+ ) 2rw [ 2gary | A +1) 27 2F ) | L2¢rar)

. . 1
<SI2A3 (B +e sup AATT(s))?

Oss<t

1 .
<coe®+cd sup A4 77(s).
0ss<t

We remark here that this and similar estimates (below) are the source of our restric-
tion 4 < k on the homotopy class in Theorem 1.3. Notice that one cannot arrive
at the desired bound by simply applying the orbital stability estimate (60). It is
crucial that we use (95) here, and this causes more weights to be placed on rd, J}.
It is likely that one can lower the value of k in these arguments through a more
careful analysis. We will not pursue this here. O

Proof of estimate (113). This is similar to the proof of (112). Notice that from
estimate (73) we have the following bound:

A <202+ sup A2A71(s).

Oss<t

Therefore, using the notation form line (58b) we have the chain of inequalities:

(w, J)A| <& (w, FHA%|+ sup A2A71(s)- [(w, F})|
0

<s<t

. : 1
<&+ sup )Lz/\_%(s)-(cgsz—i-s sup A*A77(s))2

0<s<t oss<t

1 .
<coe®+cg sup A*AT(s).
0O<s<t

Notice that we have again used the condition ¢ < cg on this last line. O

Proof of estimate (114). This will follow by a direct application of estimate
(73) and definition (56). Notice that (73) and (62) taken together imply that:

. . 1 .
A —222271 < e2A% +¢2 sup AZAT(s).

0<s<t

Therefore, a simple computation again using (62) shows that:

[(wo. (A —2A2A71)(ra, 1)) S A2A76 - (222 +c§ sup AZA71(s))

0<s<t

1 .
<e*+ ¢y sup A477(s),
0<s<t

which is enough to imply (114) since ¢ < cé. U
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Proof of estimate (115). The left-hand side of this estimate can be bounded
by the inequality:

’<w2+|wo|-|w|

_1 3 _s _
72 ’F/{t>/\) SIAT2@Ar)2 (1 +r)"2r 2w”iZ(rdr)

18 s _ 1.8 s _
+ A2 2A 4+ )" 2r P woll2gary - 1AT2ZAN) 2+ 1) 7 2r 2w || 22 g

Estimate (115) now follows directly from (95) applied to the terms involving w in
this last line above and the following bound which is a consequence of the explicit
identity (56) (or the notation on line (58a)):

(117) 127231+ 1) 732w [l 2ar) < 42073
This concludes the proof of estimate (115). O

Proof of the inequality (116). To do this, we first note that by the inequality
(86) and the orbital stability estimate (60), used in conjunction with the Poincaré
type estimate (68) as well as the notation from line (58b), we have that:

~, _1 3 _8 _
(R A S e 1A a0 A+ 8 2u 2,

By adding together estimate (117) and the corresponding bound (95) for w in the
decomposition ¥ = wg + w, we have the single estimate for u:

1 8 P .
IA"2(Ar)2(14+7r)"2r2u ||2Lz(rdr) <cde® + sup A*AT7(s).
0<s<t
Substituting this into the right-hand side of the previous line, we obtain the desired
bound (116). This completes our proof of Lemma 5.6. O

6. Space-time bounds and the proof of the Main Estimate

In this final section of the paper, we prove our main technical estimate (94).
The crucial role in this will be played by the remarkable factorization property of
the linearized Hamiltonian (46)which allows us to introduce the “conjugate” Hamil-
tonian (50). This new Hamiltonian H ., possesses the striking properties (51)—(53)
which are ultimately responsible for very strong estimates, proved dynamically and
by means of simple yet quite precise physical space methods for the correspond-
ing Cauchy problem (97 + Hj))w = F . The key is the physical-space repulsive
properties of the operator (50) which lead to the desired estimates independent of
how violently the scaling parameter A grows, so long as this growth is monotonic.
This stands in stark contrast to the usual procedure in asymptotic stability analysis
which attempts to estimate the linearized operator through nondynamic spectral
analysis (see e.g. [5], [20]). Such a procedure is not as natural in the present context
which represents a truly nonlinear situation not directly amenable to the standard
perturbative techniques. From this point of view, the analysis we present here is
close in spirit to the work of Merle-Raphael on the blowup for the critical NLS [28].
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We again remind the reader that it is the precise form of the nonlinear (19),
embodied by the first order Bogomol’'nyi (25), that is the indispensable structure.

The first thing we will need here for the proof of (94) is a space-time estimate
for general solutions to the conjugated linearized equation (50). For us this will
take the form of a weighted L? inequality involving integration over both space
and time variables. These are commonly referred to as Morawetz estimates, and
they have a rich history in both linear and nonlinear analysis of the dispersive
properties of wave equations. The estimate we use here is based on the following
energy, defined for sufficiently smooth and well decaying functions ¥ on R*:

A 2
(18) El.n) = s /R . rlf +” [(Lw)z w2]<s)rdr

—1 (A”)g 2 ()”’)(g Wz
+/t fR+ [(1+8>2 L? + 755 (@) raras.

where 0 < § < 1 is a small fixed constant which will measure a loss in certain time
integrations which appear in the sequel. Here we have set L = d; + d,. The main
estimate we will use is contained in the following:

PROPOSITION 6.1 (Morawetz estimate for H 2). Consider the time-dependent
Hamiltonian H). Let \r be a smooth function on [tg, t1] X (0, 00), satisfying the
following uniform bounds:

(119) Ul < Cyyr, 19:9| + 10, ¥| < Cy ), 0<r<l,
while decaying sufficiently rapidly at r = oo. Furthermore, suppose that:
(120) Py + Hyy =0,G+ H.

Then, if one has the pointwise inequalities 0 < A and J.2~2 < e for all times tg <
s < 11, one also has the following estimate:

(121)
1
Es[y](to. t1) S87° [/ / AT A [(0,6)2 + €2(AG)? + H] (s) rdr ds
to R+
+ su At (lr) M2 g2 (s) rdr + Eg[¥] (2o, to)
tosfs)tl R+ 1+7r 14,8 8 0,0

which holds with an implicit constant independent of A and 6.

Remark 6.2. The constant 0 < § < 1 will signify a small loss in time when we
attempt to apply (121) in the proof of (94). This is ultimately why we are restricted
to the time interval [0, e~#] in the statement of 5.3 and hence in Proposition 5.1.
We also remark here that this small loss in time can in fact be avoided through a
somewhat more careful analysis involving the precise form of the equation for A
given on line (69).
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Proof of estimate (121). Notice that all of the weights in the inequality are
time translation invariant. Therefore, we may normalize the discussion to 79 = 0.
We begin by conjugating equation (120) by ra. Therefore, we denote the new
variable:

V=riy.
We note here that the decay 1} at the origin (~ r%) will be sufficient to perform the
integration by parts to follow. We also observe that 9,1 and 9,1 may be assumed
to be bounded at r = 0.

Next, recall that the original (super-symmetric conjugate) Hamiltonian has
the form:

= =02 =10, + V2(r).
We define the one-dimensional Hamiltonian:

1/ + Vi(r).

=02~
Then a quick computation shows that equation (120) becomes:
(122) P2V + 9,0 = r2(3;G + H).

The multiplier we use is the following:

§
_ r _ 1
X =2 1+8—L:A 1+6 1— L
1478 ( 1+r5)

Multiplying equation (122) by the quantity X 1; and integrating the resulting ex-
pression over the interval [0, ¢] x (0, c0), we have the identity:

8
(123) // A1 (“) [L(Lw)z-i—(V,x—lr_z)L(w)z]drdt

Ar)8 _
=/o /R+ WS (LIG) +0,(G) + H) LGP ridr .

Here L. = d; — 0, is the incoming null derivative. We integrate by parts on the
left-hand side of this last expression, using the following lower bounds for terms
involving the potential:

k2 1 _2 k2
Cr—ZZ(VA—Zr )Zcr—z,
§ 5§ 1.2
B _1 (Ar) 1, _1 (Ar) k_
L[A 1+r5(VA 4" )]ZM 1+r8r3°

which follow from (51)—(53), the condition 4 < k, and the positivity of A Applying
a couple of Cauchy-Schwartz inequalities to the last two terms on the right-hand
side of (123) and using the positivity condition A = 0, we then we arrive at the



SINGULARITIES IN THE CRITICAL O(3) 0-MODEL 225
bound:

(124) /erl()_‘:) |:(Llﬂ)2 kz‘” :|(t)dr

-1 (Ar)? oY)
+8/ /R+ T ————(Ly)“ drds

+ k2/ k_l (Ar)g (W)z
0 JRT 1—|—r3 r3

drds
! -1 r8 2 2\ 24y )%
([ [, ot @er+m?) 2ards
21 ()W)S Li)? :
([ L oy s
)
+fR+ A 1(1) [(Lw)%rkz‘/’ :|(O) dr

fa ) _
1 ) 1
i /0 /R+ A 1+ 79 L(G)-L(y) r2drds.

It remains to deal with the last integral on the right-hand side of the above expres-

sion. To do this, we integrate by parts with respect to the incoming derivative L
Employing the pointwise bound:

L (A8
‘L(k 1+ 2) S

) 4 O

ot
A2 1—|—r3 1+798

(Ar)° Py (Ar)° 3
D (1+ré)r

and using equation (122) together with the upper bound |V, | < r~

(Ar)S
125 A1
( ) / R+ 147

2 we have that:

L(G) L) r2dr ds

1

(/ LA l(xr)é’[ +82(AG)2+H2](s)r2drds)
R

1 (Ar)‘S 2 (kr)5 (V)? :
([ [ are s S o)

ré r3
A 8 t A 8
——f/ —l(r) 8(G2)rdrds—/ PR
R+ R+ 1+r5

(Ar)° : (Ar)° :
+<02§1; A 11+ G*(s) rdr) .(Oiligt,/ﬂ%'*‘k ! S(Ll/f) (s) dr) :

GH rdrds
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Integrating by parts one more time in the term involving 9, (G)? above, again using
the fact that A = 0, and using also the following fixed time Poincaré type estimate:

aze) [ atnterars [ AT’ @,67 rar
Rt R+

we add together estimates (124)—(126) and take the sup over different times to
achieve the bound:

(127)
E5[710.0) < 5—1[ / t [ 7100 [@0:67 +2667 + 1) ) rdr ds
0 JRt+
+ sup AT (Ar) G (s) rdr+[E5[1p](O O)]
o<s<t Jrt+ 1

where we define the one-dimensional energy analogous to (118):

E<[Ur A
BWI0.0= e, /R+ *_11( J:) [(LWH«” |y ar
- (Ar)8 ~ (Ar )8 72
/./[R-i— 1 (1+ 8)2 (LY)* + k2 e ](S)drds

Finally, to complete the proof, we use the expansion:
1~ 1 -1
r 2Ly =Ly + Er v,

and the fact that 4 < k to bound the energy E(g from above and below by Eg. This
completes our proof of estimate (121). O

We now turn to the proof of (94). The precise statement of what we need to
show is the following:

PROPOSITION 6.3 (Energy estimates for the quantity w). Let u = wg + w be
the decomposition of u given on line (92), where u itself is part of the decomposi-
tion (44) of the full field ¢. In particular u solves equation (45). Suppose also that
the initial conditions for ¢ are given as to satisfy (28)—(29) and that u obeys the
extra decay estimate (147) (this will be proved shortly). Furthermore, assume that
the main assumptions of Proposition 5.3 hold; in particular, we have that (93) and
X = 0. Then the following estimate holds for t € [0, 8_4]2

(128) Es[A,w](0,7) <871 (c(z)sz +¢& sup (s))
o<s<t A’

The implicit constant depends on C from line (93) but is independent of the size of
co, &, or §. In particular, for a fixed 0 < § << 1 we have that estimate (94) holds.



SINGULARITIES IN THE CRITICAL O(3) 0-MODEL 227

Proof of estimate (128). The first order of business is to reduce the proof to
simpler bounds. In the sequel, we will only show that:

14
(129)  EslApwlto,n) S8 (EslArwllio.t0) +6% +¢ sup  Z5(s)).

to<s<n A’
for all time intervals [fo, 71] inside the regular interval [0, T**), where again T**
is the blowup time, provided that one also has the inequality:

131 i4
(130) /\—7(s) ds <e.
to

We claim that along with the bootstrapping assumption (93) and the analysis done
in Section 5.1, this is enough to establish (128).

To verify this claim, first notice that if we are in the time interval [0, T*]
where T* is defined as on line (78), then we automatically have (130) on account
of (79). Therefore, we may work inside intervals of the form [T, ], and we are
only trying to establish:

14
(131) Es[Apw)(T™,1) S 87 5 (0).

Notice that we are using the monotonicity of A41~7 established in Section 5.1. We
now claim that (131) easily follows from (129) and the bootstrapping assumption
(93). Indeed, let [t;_1, tx] be any interval where equality in (130) holds. Then we
have:

o . ) )4

(132) / —In(A*A7 7y ds = / —ds Z 8_3/ ds=¢2

Tk—1 ds Tk—1 A Tk—1 A7
Here we have used the bootstrapping bound (93) in the simple form |/\ —242)1 | <
A22~1, which holds as long as we are in the region past [0, 7*] (in particular, one
has access to a lower bound consistent with (78) which allows one to uniformize
the right-hand side of (93)). Notice that we have also used the orbital stability
bound (62) several times in deriving the inequalities. Integrating the inequality
(132) we see that:

i 4 i 4

(133) %(rk_l) Se 2%(%),
on any time interval [t;_1, fx] past [0, T*] where (130) also holds. It is now a
simple matter to derive (131) from (129). We first decompose the interval [T*,¢]
into a finite collection of N subintervals [t;_1, fz] where equality in (130) holds.'?
On each of these intervals, we have estimate (129). By repeatedly using the bound

120 the last interval there may be a strict inequality in (130), but this single interval may also
be estimated with (129), and the answer may then be directly added into the final bound.
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(133), each of these estimates may be inductively expanded to yield:

k

_ s7lc A4
Es[Apw](tg—1,7%) <8 1CX:(
i=0

A4
'Sﬁ(fk) < W g /\_7(0’

§7IN\i
CC1 )l

where C1 ~ e is some incredibly large constant that beats the (uniform) implicit
constant C§~! appearing in estimates (129). Summing this last line over 0 <k < N,
we have the bound (131).

We now prove (129) under the additional assumption that (130) also holds.
We start by providing the general setup and then reduce the proof to a number of
separate estimates to be dealt with under their own boldfaced headings. We first
record the equation for w. Recall that the purpose of the decomposition (92) is
to eliminate the main source term A A(i)L) on the right-hand side of (45), obtained
after applying A, . Therefore, we have that:

A [07w + Hyw] = —A (o) + AaN (u).

To put things in the form where estimate (121) can be used, we commute the
A; operator with 3% on the left-hand side of this last equation which yields the
expression:

(134)
W + HpW = —A; (o) + [97, Ax]w + 41N (u)
= 0;(A)0:(wo) — 3¢ (A20¢ (wo)) + 207 (3 (A3) - w) — 97 (Az) - w + AN (u)
=M +0;M+0;R1 + Ry + R3,

>

where we have set W = A w. The M terms above constitute the “main source’
which feeds the quantity W through the wave-flow of the Hamiltonian H 2. By
contrast, the R terms on line (134) are for the most part “errors” which will be
reabsorbed back onto the left-hand side of estimate (128). This is where the limits
on the time interval and the decay estimate (147) will come into play. We now turn
to the details of all of this.

To estimate the terms M; and M> via the general bound (121), we will show
the following four estimates:

5] /'\4
(135) / / ATV AN M P(s) rPdrds <& +e sup ==(s),
to R+

to<s<t; A7

t A4
(136) / / k_l()tr)8|8rM2|2(s) r2drds <e’+e sup =(s),
to R+

7
to<s<t; A

131 A4
(137) / / AT IAML 2 (s) r2drds &3 +6 sup  Z=(s).
to R+

7
to<s<t; A

Ar)S A%
(138) sup / At A P s) rdr < e sup 2 (s).
R+ +

to<s<f; 1478 to<s<t; A
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Recall we are assuming that ¢ < c%, so these estimates will be enough to generate
the right-hand side of (128) for the M terms.

We shall estimate the R terms on line (134) in a nonlinear fashion. Specifically,
we will bound them in terms of a small constant times the energy on the left-hand
side of (128), plus one term involving the nonlinearity N applied to wo which fits
into the pattern of the right-hand side of (135)—(138) above. What we propose to
show is the following:

t
(139) / f A1) 19, RyP(s) r2dr ds < €2Es[W(to. 11),
to JRT

151
(140) [/ ATV AR AR 2 (s) r2dr ds < e2Eg[W](to, 1),
to Rt

A ]
(141) sup f A‘l(—r)guellz(s) rdr < e*Es[W](to, 1),
to<s<t; JRT 1+r
151
(142) [ / A7 AR | R2|(s) r2dr ds < 2Eg[W](to, 1),
to JRT
51 14
(143) / / )k_l()tr)8|R3|2(s) r2drds <e sup - (s)
1o JR+ to<s<t; A

+ 1825 [W](to. 11).

Using the conditions ¢ is sufficiently small and that t; < &4, all of the esti-
mates added together will imply estimate (128) for the R terms on line (134) above.

We now turn to the details of the proofs of estimates (135)—(138) and (139)—
(143). We will do each of these separately and in order.

In what follows, we will consistently use the following “identities” which are
in accordance with our notation from Section 2.1:

(Ar) F' = Fp9, (1+r)F < Fr3,
where the second “inequality” holds provided that A > 1.
Proof of estimate (135). Here and throughout the sequel we will rely heav-

ily on the abstract function notation from lines (58) above. Multiplying together
estimates from lines (58a) and (58c), we have that:

18: (428, (wo)| 5 (A4A75 + [XA22~4) F.

To resolve the second term above which contains the expression A, we do the
following. Notice that the orbital stability bound AA~2 < & and the bootstrapping
estimate (93) give the rough pointwise bound:

(144) A S A2 4 (2 +A%T)A2
S A2 46202,
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Therefore, substituting this estimate back into the previous line we have that:
19 (A3 (wo)| < (4277 +6242272) F}.

Using this last line we can now estimate:

(L.H.S.)(135)§/ / A4A S 4 e2420- )Ffrzdrds

. O,
s/ A3 14(s) ds+s4/ A*A78(s) ds
to to

. I,
< sup )L4/\_7(s)-/ A7) ds
o

to<s<t)
. o,
+e* sup A3k_6(s)-/ AAT2(s) ds
tosSs<t) to

<e& sup A7)+ 6.

to<s<ty

To obtain the last line, we have used both estimate (130), the bound (62), and the
assumption that A > 1.

Proof of estimate (136). This is very similar to the analysis above, with an
addition of a small twist. First of all, by combining lines (58a), (58c), (38), and
then (144), we have the abstract notational bound:

10, (420 (wo))| < ( A3A3 4 AjAa- )
< (18a 420 .
Substituting this into the left-hand side of (136), we have the chain of inequalities:

(LHS)(136)<f f A A —|—82/\) F} r2drds

n

5/ A0AT10(5) ds+84/ AZA4(s) ds
to

o

o, . oo,
< AMAT0s) ds +&* sup ALT2(s) - / AAT2(s) ds

to to<s<ty to

LS
< AA710s) ds + &°.

to
We now need to do a little work, because the first term on the right-hand side of
this last line above is not manifestly of the correct form. To correct it, we first
integrate by parts with respect to time which yields the identity:

oo, . .
/ AAT10 g = X3A72(1) — A2 A2 (1)
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o o,
+1o/ A6y ~10 ds—S/ A2 ds.
to to

Now, using the bootstrapping assumption (93) as well as estimate (62), this last
expression leads to the following nonlinear bound:
t

1. .
A7) ds+e sup A*AT(s)

) to<s<ty

o, 1
(145) / 26710 ds < e
to

| . .
+ €2+ sup A*A77)-A*A77(s) ds

to to<-<s

1 o, . o,
<cd MAT0s) ds+e sup A*AT7(s) + €2 / AMA77(s) ds
to

to tosSSsS<Iy
L PP S 40 —7 3
1 _ _
< ¢ APAT(s)ds+¢e sup ATAT(s)+ ¢,
to to<s<tq

In the first inequality above, we have used (73) and the monotonicity established in
Section 5 (this works as long as T* < f¢, whereas in the other case we may as well
assume that /o = 0). Notice also that in the last two lines above we made several
uses of the assumption (130).

Proof of estimate (137). This is virtually identical to the proof of (136). An-
other simple calculation using lines (58a), (58c), and then (144) gives us:

[A(A20: (wo))| 5 (A2272 +111A22) 7
< (a4 2A) .
Substituting this into the left-hand side of (137), the proof follows verbatim from
the calculations done in the previous paragraph.

Proof of estimate (138). Once again using lines (58a), (58c), and then (144)
we have that:

|(420: (wo))| < (P}r“ n |}L|m—3)F3
< (A4 e2ia )R
Plugging this last line into the left-hand side of (138) and simply using the bound

(62), we arrive at the chain of inequalities:

. . 2
(LH.S.)(138) < sup / rl(x3/\—4+82u—1) F rdr
R+

to<s<ty

< sup AOATI gt sup AZA3

~

to<s<h to<s<ty
<& sup A*ATT 465,
Io<s<h

This concludes our proof of the first list of estimates (135)—(138) above.
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We now turn our attention to the proofs of estimates (139)—(143).

Proof of (139). We first provide a pointwise bound for the term 9, R; from
line (134) above. This involves a simple application of the abstract notation (58c),
the rules from line (38), and the decomposition:

drw=—W+ ];cos(l,x)'w.
Together, these give us the following estimate:
19, (3:(45) -w)| < (|Arw| + |AW|) ES.

Plugging this identity in the left-hand side of (139) leads us to the estimates (also

using (62)):
n
/[ A7V Ar)3 18, Ry |? r2dr ds
to

/‘l‘l (A )8 |:_2 + W2:| ((”44_},6)1:12)}L rdr dt

to

2/[ AL Ly
to JRT (1+r)8 re ri

i /tI/ A1 ()Lr)‘g W—Zrdrdt
to R+ (1+r)8 r3

< &% Es[W(t0. 11).

A
™

To obtain the second to last line above, we have used the comparison estimate (164)
from Appendix B on the term involving w.

Proof of estimate (140). This is virtually identical to the proof of (139) in the
previous paragraph. A simple calculation using the notation from lines (58) and
line (38) gives us the bound:

IA(3:(42) - w)| S AA|w] F.
The proof now follows line for line from the calculations performed above.

Proof of estimate (141). We again use the formulas on line (58c) which give
us:
|(9:(A4;) - w)| < Aw] Fy.
Substituting this last line in the left-hand side of (141), we have the following chain
of inequalities where the second to last line involves the bound (164):

A 12 () w2
wp [ A CE R s sup [l S (R, rar
toss<n Jrt 14718 to<s<t; Jr+t A2 1+78 r

Ar)8 2
<& sup / A” 1_4r) 3 w4 rdr dt
to<s<t; JRT (1 +7)
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Ar)S w2
<& sup / A~ 1_4r) 5 2 rdr dt
to<s<t; JRt+ (1 + }’) r

< &% Es[W](t0, 11).

Proof of estimate (142). We estimate the R, term from the line (134). By
using the second derivative identity from line (58c), estimate (144), and then the
bound (62), we have the following pointwise estimate:

102(42) - w| < (A2A71 4+ £2A2) F) - [w)
< 8213FZ-|w|.

We now substitute this estimate into the left-hand side of (142) which allows us to
estimate:

31 n
/ / AV AR Ry r2dr ds < 84/ / M)l |wl?- Fi* r2dr ds
to JRT to JRT

1 w2
584/ / )Fl(kr)‘s—s-(r6F14)A rdr ds
8 2
<e¢ / / 1 A7 w rdr ds
to JRT (1+r)5 I’S
1 8 2
Se / / LA W ds
R+ (1—|—r)5 7‘3

< &t Es[W](t0, 11).

Proof of estimate (143). First of all, using the formula for the nonlinearity
N'(u) given on line (85) and making use of the formula (47) for the operator A as
well as the formula (56) for wg, we easily have the pointwise bound:

(ful + wol) -Jw] (] + [wol) - [IW]

44,5
(146) | AN )| SA*ATSF] + 3 "

We will deal with the first term on the right-hand side above by itself. The other
two terms can be handled together.

We now substitute the first term on the right-hand side of (146) for R3 on the
left-hand side of (143). Doing this we are left with estimating:

1 . o,
AT ON 2 r2drds < | ABATM(s) ds
A
to R+ to

. o,
< sup A*A77(s)- f A4 77(s) ds
o

to<S<f

<Se sup 141_7(s).

to<s<h

This proves estimate (143) for the wg portion of Rj3.
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It remains to deal with (143) for the last two terms on the right-hand side of
(146). Upon substitution of these into the right-hand side of (143) we have that:

1 2 W2
[ o) [+ 2] r2aras
to R+ r r

151 (/\7‘)8 wz W2
< A7t — 4+ — (1 8 2 2\ rdrd
N/;O /R+ (1+r)8|:r5+r3] (I+r) (|u| +|wo|)r rds

151 /\ 8 2 WZ
< sup (1+r)8|u|2+82)~[ [ A1 (4r) 5 |:w_5+_3] rdrds
r to JRT (1 —|—r) r r
to<s<tq

151 8 2
<18e? / / A1 @ry” W° rdrds
to JRT (1 + r)(S r

< 1362 Eg[W](to. 11).

Notice that in the above estimates we have made crucial use of the special pointwise
estimate (147) proved below. This is the only place in the paper which requires
the extra decay of the initial data. This completes our proof of estimate (143), and
thus our proof of Proposition 6.3. O

6.1. A simple decay estimate. In this subsection we will prove the rough de-
cay estimate:

(147) sup (1+r)8[ul? <862
r

That is, our aim is to show that the reduced field quantity u enjoys some amount
of pointwise decay outside of a sufficiently large cone centered at the space-time
origint =0 and r = 0.

LEMMA 6.4 (Decay of u at space-like infinity). Let u = ¢ — I be the reduced
field quantity as defined in Lemma 4.1 which in addition satisfies the initial condi-
tions of Theorem 1.4. In particular, u is a solution to equation (45) with initial data
(28)—(29) and obeys the estimate (60) on the time interval [0, T'| where ¢ exists and
remains smooth. Then u also obeys the following stronger energy type estimate for
any time t € [0, T], for which in addition A = 1:

k2
(148) / r? |:(8t¢)2 + (3,u)? + —2u2:| rdr < 2.
2t<r r

Remark 6.5. To transform estimate (148) into an L° bound can be done
in an elementary way by applying the Poincaré type estimate (68) to the quan-
tity r x3:<ru and then using the bound (148) to estimate the resulting right-hand
side. Here y3;<, is a smooth cutoff onto the region where 3¢ < r which satis-
fies the homogeneity bound | th@l < r~!. Therefore, we arrive at the estimate:
supz,<, '|u| < &. By combining this with the pointwise bound |u| < & which holds
everywhere, we easily have (147) whenever 6 < 1.
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Proof of estimate (148). The proof is an integration by parts argument with
a certain multiplier. We denote by «(y) a smooth increasing function, supported
where 10 < y, satisfying o’ < 3y and the homogeneity bound y~lo < «’. The
desired result will now follow from computing the left-hand side of the identity:

t
(149) / /+ [07¢ + Hyu —N(u)] 0:¢-a(r —25) rdr ds =0,
0 JR

where N'(u) = R.H.S.(45). Also, we will write the Hamiltonian from line (46) as
H) = —032—r"19, + Q;. Notice that we have Q; = ck?r~2 on the support of
a(r —2s).

Using the factorization (46) as well as the fact that A) (f 2) = 0, thanks to
(48)-(49), we may transform (149) into the identity:

1 t

150) =3 [ [0t +@? + 0507 -a rar

0
t
= /0 /R+ [(3:4)* + 0:p0ru + (0,u)> + Qpu?]-o(r —25) rdr ds

t . 1 [t .
—k/ / zcos(I)L)I,x~o/ra’rafs——/ Oju*-ardrds
o Jr+ T 0 JRt

2
t
—// Nw) s - rdr ds
0 JRt
=T+ T2+ T3+ Ty

The proof will be complete once we show that the terms on the right-hand side of
this last expression are either nonnegative or are bounded in absolute value by C 2.
In fact, it is more or less immediate that we have:

(151) |T>| < &2, Ty + T3+ Ty =0.

The first estimate above is a consequence of the Cauchy-Schwartz inequality, the
orbital stability bound (60), and the following fixed time estimate valid for 1 < A:

I 15 -o ||L2(rdr) < e

This last line uses our assumptions that 4 < k and 1 < A. Specifically, the ODE
bound (62) |;\/\_1| < eA (from (62) above) and a simple calculation, using the
assumption that 1 < A and involving lines (48) and (34), give us the bound |1 -/| <
Irf| <e(1+r)73.

The second bound on line (151) will follow from the estimate |75 + T4| < 7.
The desired result is then a consequence of the homogeneity property of o and
bounds:

|ue]

. 1
|N(u)|§g—2, |Qk|§8—3-
r r
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The first bound above is a simple consequence of the orbital stability estimate (60)
together with (68). The second bound follows again from the estimate |i)L_1| Sed
of (62) and the explicit formulas on lines (34)—(35).

The estimate (148) now follows from the form of the left-hand side of (150)
and the smallness condition (60). O

Appendix A. Computation of the constant C,

The purpose of the appendix is to derive an explicit formula Cx = 0 for the
special constant C, which appeared on line (90). Here we have written J = J;
according to previous notation. In what follows we shall also denote I = I =1 k.
Rescaling we have that:

Co =T+ T+ T;,

where:
(aJ + ber)2
)

T, = <aJ +br2J, ra,J>,

T = — k2( , sin(21) - J>,
T3 = — (ra, (aJ +br2J), rarJ>.

Recall that the constants a and b are given on line (57). Using now the identity
sin(27) = 2sin(1) cos(/) as well as (48) and (25), we have that:

(152) T, = —k2/ (aJ +br2J)* 9, (sin*(1)) dr
R+
= — / (a+br2)2 J28r(J2) dr
R+
=2ab J4 rdr+2b2/ J4 r3dr.
Rt Rt

To obtain the last line above, we have used the expansion J* = k2J? sin?([1), the
Pythagorean identity, and the definitions of a, b.
We now move on the term 7, above. Here we have directly that:

(153) T, :/ (aJ +br2J)d, J r2dr
R+

1
=—a/ J2rdr —2b J? r3dr=——/ J2 r3dr.
Rt Rt 4 Jr+
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Finally, we compute that:
(154)

T3 =— a/ (ro,J)? rdr < —bf (rd,J)? ridr < —Zb/ Jo,J ridr
R+ R+ R+
= —akZ/ J?cos2(I) rdr
R+

S—bk2/ J2cos?(I) r3dr +4b J? r3dr
Rt Rt

=a/ JYrdr+b J*r3dr +4b J? r3dr.
R+ R+ R+
We now add together equations (152)—(154) into the single formula:
3 3
(155) C*:—a/ J*rdr + =b J4r3dr+3b J? r3dr.
2 R+ 2 R+ R+

It remains to compute the first two integrals in this last expression.

/ J*rdr = —k[ rdr(cos(1))J? rdr
Rt Rt

=2k cos(1)J? rdr +2k2/ cos?(1)J? rdr
Rt R+

:k2/ rar(sinz(l)) rdr+2k2/ J? rdr—Z/ J* rdr
R+ R+ R

+
= (2k? -2) J2 rdr —2/ J4 rdr.
R+ R+

An almost identical calculation also shows that:

/ J* r3dr=(2k2—5)/ J? r3dr—2/ J4r3dr.
Rt Rt R+

Therefore, recalling the definition of @ and b, these last two calculations together
give:
1
a/ J4rdr +b J4r3dr=—=b J? r3dr.
R+ R+ 3 R+
Inserting the last line into (155) and using that b = %, we have Cy = 0 as desired.

Appendix B. A general functional analysis lemma

In this appendix, we prove a general form of a coercive estimate we need
throughout the paper. This turns out to be more expedient, because the required
structure is simply a matter of compactness and weak convergence in various
weighted Sobolev spaces. The general result which we propose to prove here is
the following:

LEMMA B.1 (Coercive bounds for first order operators). Let By be a sequence
of first order differential operators with real smooth (but not necessarily bounded!)
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coefficients on the half line (0, 00), continuously indexed (in the weighted L? space
defined by the left-hand side of (156) below) by £ € [0, 1] and such that the follow-
ing sub-coercivity holds for some continuously indexed (for functions in the norm
(157)) function | f¢| <r 277101 4 r)~2° witho > 0:

B 2 ar 2 2
(156) /R+ (Bev) rafr=/R+ [( V) +h‘r2+v + foy?] rdr,

rY rY

for any real valued function \ with finite norm:

8r 2 2
(157) ||W||§€y=/R+ (O Y Jrar

rY r2ty

Here O < y is a fixed parameter, and 0 < C < hy is some strictly positive function.
Then there exists a universal constant, uniform in £, such that the following bound
holds:

B 2
(158) 11 < | BAY g
R+ r
for any real #Y function \ which also satisfies:
(159) v-JEmyrdr =0,
R+

for some positive weight function O < my. Here the function J  is the (nontrivial)
“ground-state” given by By Jt =0, and we are assuming my Jte (#Y)* depends
continuously on £.

Proof of Lemma B.1. The proof is based on a contradiction argument centered
around weak convergence. Suppose that estimate (158) was not true. Then there
would exist a sequence of v, and £, such that:

2
(160) f M rdr < cp || ¥n 150,
R+ r

where ¢, — 0 is some sequence of constants. We assume that this sequence is
normalized so that || ¥, ||%» = 1. The space #" is a Hilbert space (with an ob-
vious scalar product) defined as a closure of C§°(R+ ) functions in the #” norm.
Therefore, we can choose a subsequence v, which converges weakly in #” to
Yoo € #Y. Furthermore, we may assume (by perhaps taking another subsequence)
that £,, — {« for some { € [0,1]. We now use V¥, and £, to denote this
subsequence. Also, note that by Cauchy-Schwartz the unit normalization implies
that || Yoo [l9er < 1.

By the continuity of the J ¢ and the uniform boundedness of the v/,,, we have
from the identity (159) that the limiting function satisfies:

(161) Yoo J° my_ rdr =0.
R+
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Therefore, since the “ground-state” J = is unique (it satisfies a first order ODE)
and the measure my__ rdr is strictly positive on (0, c0), we will have a contradiction
if we can establish that ¥/« is nontrivial. This contradiction would come from
again invoking uniform boundedness and the continuity of the operators By which

implies that:
/ —(BZ‘”W")Z rdr — 0,
R+ rv
so that ¥ is a weak solution of By _¥/oo = 0 and, hence, a smooth solution via
ODE regularity, thus violating uniqueness as (161) implies Yoo # 8J boo for any
constant § # 0.

To show that ¥« is nontrivial, we make crucial use of the sub-coercivity
condition (156). By the unit normalization, the universal lower bound on /g, and
the assumption of (160), we have that there exists a universal lower bound to the
limit:

T 2
0 > nli)nolo /R+ Je, ¥y rdr.
Therefore, we shall have that ¥/« is not everywhere zero if we can show that the
sequence fy, Y2 converges strongly in L!(rdr). This in turn follows from the
universal bounds on and continuity of f; and the fact that ¥, converges strongly
in the weighted space:

[, ey =
Rt y.0

This latter strong convergence is provided via uniform boundedness and the com-
pact inclusion #? € &3, , whenever 0 < 0. O

In practice, we will only need two special cases of equation Lemma B.1 above.
The first case is where By = A and y = 0, where A is the first order operator
from line (47) above. The second cases are when we set £ = A~ with 1 < A and:

By=(1+ ()L_lr))_% Ap (1+ (k_lr))%,

where in this case we set ¥ = (1+(A~1r)) "3 u, as well as J¢ = (1+ (k_lr))_%Jl.
Finally, in this case we set my = (1 + ()L_lr))s. We apply this to y =2 —6 and
y=3-—6.

In all of these cases we leave it to the reader to prove that the condition (156)
holds (the continuity is obvious). This is a simple matter of integration by parts,
the fact that 4 < k (notice that this works for our range of y, which is the main
thing to check here), and also that we have chosen § <« 1. However, we do call
the reader’s attention to an important and perhaps subtle point. In order for the
integration by parts to work, it is necessary to show that a boundary term of the form
lim, .o 7 ~¥ 2 vanishes for any function ¥ in the space %?. This follows from
the finiteness of that norm and the fact that the Poincaré type estimate (68) above
applied to rT% Y implies that this function is continuous on the closed interval [0, 1].
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This latter fact is perhaps a bit subtle, and it is crucial for showing r_%w vanishes
at r = 0 via the finiteness of the weighted L2 norm (no derivative) contained in
Y. Again, we leave the reader to check the details of all this.

Now, applying the above result in these two cases and rescaling by A, we have
that:

LEMMA B.2 (Applied version of Lemma B.1). Suppose that 4 < k and A),
is the operator defined on line (47). Then if u is a function which satisfies the
admissibility condition of Lemma 1.9, and is such that the energy from line (60) is
finite, and such that the orthogonality relation holds:

/ u-Jyrdr =0,
R+

then one has the following universal bounds whenever § < 1 is small enough (and
1 < A in the last two cases):

2
(162) f+ [(aru)2+%] rdrs/+ (Azu)? rdr,
R R
(Ar)S u? (A (Azu)?
e Joo o= [
(Ar)’ u? (Ar)¥ (Azu)?
(164) /R+ —(1+r)8r—5rdrsz+ s R
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