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Abstract

We show here that an infinite sequence of homotopy 4-spheres constructed by
Cappell-Shaneson are all diffeomorphic to S4. This generalizes previous results of
Akbulut-Kirby and Gompf.

0. Introduction

Thirty-three years ago in [CS76] Cappell and Shaneson defined a sequence
of homotopy spheres †m, m 2 Z, as the 2-fold covers of homotopy RP4’s (which
are known to be exotic when mD 0 and mD 4). They asked whether †m are S4

or exotic copies of S4. †m is obtained first by taking the mapping torus of the
punctured 3-torus T 3

0 with the diffeomorphism induced by the following matrix

Am D

0@ 0 1 0

0 1 1

1 0 mC 1

1A
and then by gluing it to a S2 �B2 with the nontrivial diffeomorphism of S2 �S1

along their common boundaries. In [AK79] it was shown that †0 is obtained from
S4 by a “Gluck construction” (i.e. by removing a tubular neighborhood of a knotted
S2 in S4 and then regluing it by the nontrivial diffeomorphism of S2 � S1). In
[AK79] it was mistakenly claimed that †0 is S4, since at the time we overlooked
checking if the gluing diffeomorphism of S2 � S1 is trivial or not (it turned out
it was in fact nontrivial; this was pointed out in [AR84]). Then it took about six
years to cancel all the 3-handles of an handlebody of †0, by turning it upside down
[AK85], which resulted in a very symmetric handlebody picture of †0 in Figure 28
of [AK85], which is equivalent to Figure 1 (mD 0 case) below.
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Figure 1. †m

Then in [Gom91a], this handlebody of †0 was shown to be diffeomorphic to
S4. In [Gom91b], it was shown that the handlebody of Figure 1 similarly describes
†m, for the cases m¤ 0 (see also the discussion in [FGMW09]). In this paper we
will show that the rest of all homotopy spheres †m are standard (i.e. m¤ 0 case).

THEOREM 1. †m is diffeomorphic to S4, for each m 2 Z.

1. The proof

We first describe a specific diffeomorphism identifying the boundaries @†m�

S3. We do this by first surgering the interior of †m by replacing the two copies of
S1 �B3 with B2 �S2 (surgery); i.e., we replace the two dotted circles with the
zero-framed circles. We then isotope the “long” zero framed circle of Figure 1 to
the small circle of Figure 2, and then surger this zero-framed handle (changing the
corresponding S2 �B2 with B3 �S1). This gives the second picture of Figure 2.
Next, we blow down the 2-handle corresponding to the C1-framed unknot in the
picture ([Kir78]) and get the last picture of Figure 2, which is just the 2-handle
corresponding to the �1-framed unknot in the picture; i.e., it is the punctured SCP2

with boundary S3.
Observe that the diffeomorphism @†m � S

3 shows that the ˛ and the ˇ cir-
cles on the boundary (Figure 3) are isotopic to each other; each are just 1-framed
unknots in S3. Hence by attaching a �1-framed 2-handle to either ˛, or to ˇ, we
obtain S1 �S2, and then we can cancel it immediately with a 3-handle; i.e., we
have diffeomorphisms of the handlebodies (the second and the third handlebodies
have 3-handles):

†m �†mC˛
�1
�†mCˇ

�1

Now if we attach �1-framed 2-handle to †m along ˇ, by sliding the other
2-handle going through it, as shown in Figure 4, we see that it becomes just †m�1

with a 2-handle attached to ˛ with �1 framing; i.e.,

†mCˇ
�1
�†m�1C˛

�1

Hence we have †m �†m�1 � � � �†0 � S
4. �
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Remark 1. The Cappell-Shaneson examples come from the self-diffeomor-
phisms of T 3

0 induced by a more general family of matrices A up to obvious
equivalences [CS76]; there are finitely many such A for each trace (and only one
for each trace between �4 and 9 [AR84]). So it was natural to consider this repre-
sentative family †m induced by the matrices Am. Presumably there are some more
matrices to consider, but historically authors have been focusing on this sequence
Am ([Gom91a], [Gom91b], [FGMW09]). To adapt the proof here to other matrices,
one has to first construct the handlebody pictures corresponding to Figure 1, which
we have not attempted here. But technique here is not specific to Cappell-Shaneson
problem, it is about constructing some hard to see diffeomorphisms between 4-di-
mensional handlebodies. In general, beyond guessing, a useful way to locate such
pairs of f˛; ˇg curves is to turn the handlebodies upside down, a technique often
used in other similar problems; see e.g., [Akb99], [Akb02], [Akb08].
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