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Abstract

Let k be any global field of characteristic not 2. We construct a k-variety X
such that X.k/ is empty, but for which the emptiness cannot be explained by the
Brauer-Manin obstruction or even by the Brauer-Manin obstruction applied to finite
étale covers.

1. Introduction

1.1. Background. Call a variety nice if it is smooth, projective, and geomet-
rically integral. (See ��2 and 3 for further terminology used here.) Let X be a nice
variety over a global field k. If X has a k-point, then X has a kv-point for every
place v of k; i.e., the set X.A/ of adelic points is nonempty. The converse, known
as the Hasse principle, does not always hold, as has been known at least since the
1940s: it can fail for genus-1 curves, for instance [Lin40], [Rei42]. Manin [Man71]
showed that the Brauer group of X can often explain failures of the Hasse principle:
one can define a subset X.A/Br of X.A/ that contains X.k/, and X.A/Br can be
empty even when X.A/ is nonempty.

Conditional results [SW95], [Poo01] predicted that this Brauer-Manin obstruc-
tion was insufficient to explain all failures of the Hasse principle. But the insuf-
ficiency was proved only in 1999, when a ground-breaking paper of Skoroboga-
tov [Sko99] constructed a variety for which one could prove X.A/Br ¤ ∅ and
X.k/D∅. He showed that for a bielliptic surface X , the set X.A/et;Br obtained by
applying the Brauer-Manin obstruction to finite étale covers of X could be empty
even when X.A/Br was not.

1.2. Our result. We give a construction to show that even this combination
of finite étale descent and the Brauer-Manin obstruction is insufficient to explain
all failures of the Hasse principle. Combining our result with a result announced
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in [Dem09] shows that even the general “descent obstruction” cannot explain the
nonexistence of rational points on our examples; see Remark 8.3. Our argument
does not use [Sko99], so it also gives a new approach to constructing varieties
for which the Brauer-Manin obstruction is insufficient to explain the failure of the
Hasse principle.

The idea behind our construction can be described in a few lines, though the
details will occupy the rest of the paper. Start with a nice curve C such that C.k/
is finite and nonempty. Construct a nice k-variety X with a morphism ˇWX ! C

such that
(i) For each c 2 C.k/, the fiber Xc WD ˇ�1.c/ violates the Hasse principle.

(ii) Every finite étale cover of X arises from a finite étale cover of C .

(iii) The map ˇ induces an isomorphism BrC
�
! BrX , and this remains true after

base extension by any finite étale morphism C 0! C .
Properties (ii) and (iii) imply thatX.A/et;Br is the inverse image under ˇ ofC.A/et;Br,
which contains the nonempty set C.k/. Then by (i), we have X.A/et;Br ¤ ∅ but
X.k/D∅.

Our X will be a 3-fold, and the general fiber of ˇ will be a Châtelet surface
(a kind of conic bundle over P1).

1.3. Commentary. Suppose, in addition, that the Jacobian J of C is such
that the Mordell-Weil group J.k/ and the Shafarevich-Tate group X.J / are both
finite. (For instance, these hypotheses are known to hold if C is any elliptic curve
over Q of analytic rank 0.) Then C.A/Br is essentially (ignoring some technical-
ities regarding the connected components at archimedean places) equal to C.k/.
(Scharaschkin and Skorobogatov independently observed that this follows from
the comparison of the Cassels-Tate pairing with the Brauer evaluation pairing in
[Man71]; see [Sko01, �6.2] for related results, and [Sto07, Th. 8.6] for a significant
generalization.) Thus X.A/Br is essentially a subset of

S
c2C.k/Xc.A/.

Also, Xc.A/Br D ∅ for each c 2 C.k/ (all failures of the Hasse principle
for Châtelet surfaces are explained by the Brauer-Manin obstruction [CTSSD87a],
[CTSSD87b]). But the elements of BrXc used to obstruct k-points on the fiber Xc
do not extend to elements of BrX , so it does not follow that X.A/Br is empty.

1.4. Outline of the paper. Section 2 introduces some basic notation. Section 3
recalls some cohomological obstructions to rational points, and discusses how they
relate to one another. Our X , a Châtelet surface bundle over C , will be constructed
as a conic bundle over C �P1; Section 4 describes the type of conic bundle we need,
and Section 5 computes the Brauer group of this conic bundle. The Brauer group
calculations involve some group cohomology lemmas, which have been relegated
to an appendix. Section 6 constructs the particular X , and Sections 7 and 8 compute
X.A/Br and X.A/et;Br, respectively.
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2. Notation

Given a field k, we fix a separable closure Nk of k and define Gk WDGal. Nk=k/.
For any k-variety V , define xV WD V �k Nk. For any integral variety V , let �.V / be
the function field. If D is a divisor on a nice variety V , let ŒD� be its class in PicV .

An algebraic group over k is a smooth group scheme of finite type over k.
Suppose that G is an algebraic group over k and X is a k-variety. Let H 1.X;G/

be the cohomology set defined using Čech 1-cocycles for the étale topology. There
is an injection

fisomorphism classes of torsors over X under Gg ,!H 1.X;G/I

descent theory shows that this is a bijection, at least if G is affine. If G is commu-
tative, then for any i 2 Z�0 define H i .X;G/ as the usual étale cohomology group;
this is compatible with the Čech cocycle definition when i D 1. Let BrX be the
cohomological Brauer group H 2.X;Gm/.

By a global field we mean either a finite extension of Q or the function field
of a nice curve over a finite field. If k is a global field, let A be its adèle ring.

3. Cohomological obstructions to rational points

Let k be a global field. Let X be a k-variety.

3.1. Brauer-Manin obstruction. (See [Sko01, �5.2]; there it is assumed that
k is a number field and X is smooth and geometrically integral, but the definitions
and statements we use in this section do not require these extra hypotheses.) There
is an evaluation pairing

BrX �X.A/!Q=Z;

and X.A/Br is defined as the set of elements of X.A/ that pair with every element of
BrX to give 0. The reciprocity law for Br k implies X.k/�X.A/Br. In particular,
if X.A/¤∅ but X.A/Br D∅, then X violates the Hasse principle.

3.2. Descent obstruction. (See [Sko01, �5.3].) If G is a (not necessarily con-
nected) linear algebraic group over k, and f WY !X is a right torsor under G, then
any 1-cocycle � 2 Z1.k;G/ gives rise to a “twisted” right torsor f � WY � ! X

under a twisted form G� of G. Moreover, the isomorphism type of the torsor
depends only on the cohomology class Œ�� 2H 1.k;G/. It is not hard to show that

(1) X.k/D
[

Œ��2H1.k;G/

f � .Y � .k//:

Therefore X.k/ is contained in the set

X.A/f WD
[

Œ��2H1.k;G/

f � .Y � .A//:



2160 BJORN POONEN

Define
X.A/descent

WD

\
X.A/f

where the intersection is taken over all linear algebraic groups G and all right
torsors Y ! X under G. If X.A/descent D ∅, then we say that there is a descent
obstruction to the existence of a rational point.

3.3. Brauer-Manin obstruction applied to étale covers. For reasons that will
be clearer in Section 3.4, it is interesting to combine descent for torsors under finite
étale group schemes with the Brauer-Manin obstruction. Define

X.A/et;Br
WD

\
G finite
f WY!X

[
Œ��2H1.k;G/

f � .Y � .A/Br/;

where the intersection is taken over all finite étale group schemes G over k and all
right torsors f WY !X under G. We have X.k/�X.A/et;Br �X.A/Br, where the
first inclusion follows from (1), and the second follows from taking G D f1g and
Y DX in the definition of X.A/et;Br.

3.4. Comparisons. LetX.A/connected be defined in the same way asX.A/descent,
but using only connected linear algebraic groups instead of all linear algebraic
groups. Harari [Har02, Th. 2(2)] showed that X.A/Br � X.A/connected for any
geometrically integral variety X over a number field k. In other words, the Brauer-
Manin obstruction is strong enough to subsume all descent obstructions from con-
nected linear algebraic groups. Also, an arbitrary linear algebraic group is an
extension of a finite étale group scheme by a connected linear algebraic group,
so one might ask:

Question 3.1. Does X.A/et;Br�X.A/descent hold for every nice variety X over
a number field?

This does not seem to follow formally from Harari’s result. But, in response to
an early draft of this paper, Demarche has announced a positive answer [Dem09],
and Skorobogatov has proved the opposite inclusion [Sko09, Cor. 1.2] by gen-
eralizing the proof of [Sto07, Prop. 5.17]. Combining these results shows that
X.A/et;Br DX.A/descent for any nice variety X over a number field.

4. Conic bundles

In this section, k is any field of characteristic not 2. Let B be a nice k-variety.
Let L be a line sheaf on B . Let E be the rank-3 vector sheaf O˚O˚L on B . Let
a 2 k� and let s 2 �.B;L˝2/ be a nonzero global section. The zero locus of

1˚ .�a/˚ .�s/ 2 �.B;O˚O˚L˝2/� �.B;Sym2 E/
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in PE is a projective geometrically integral scheme X with a morphism ˛WX ! B .
If U is a dense open subscheme of B with a trivialization LjU 'OU and we identify
sjU with an element of �.U;OU /, then the affine scheme defined by y2�az2D sjU
in A2U is a dense open subscheme of X . Therefore we call X the conic bundle
given by y2 � az2 D s. In the special case where B D P1, L D O.2/, and the
homogeneous form s 2 �.P1;O.4// is separable, X is called the Châtelet surface
given by y2� az2 D s.x/, where s.x/ 2 kŒx� denotes a dehomogenization of s.

Returning to the general case, we let Z be the subscheme s D 0 of B . Call Z
the degeneracy locus of the conic bundle. Each fiber of ˛ above a point of B �Z
is a smooth plane conic, and each fiber above a geometric point of Z is a union
of two projective lines crossing transversely at a point. A local calculation shows
that if Z is smooth over k, then X is smooth over k.

LEMMA 4.1. The generic fiber xX� of xX ! xB is isomorphic to P1
�. xB/

.

Proof. It is a smooth plane conic, and it has a rational point since a is a square
in Nk � �. xB/. �

5. Brauer group of conic bundles
The calculations of this section are similar to well-known calculations that

have been done for conic bundles over P1; see [Sko01, �7.1], for instance.

LEMMA 5.1. Let X ! B be as in Section 4. If the degeneracy locus Z is nice,

then the homomorphism H 1.k;Pic xB/
˛�

!H 1.k;Pic xX/ is an isomorphism.

Proof. We compute Pic xX in the following paragraphs by constructing a com-
mutative diagram of Gk-modules

(2) 0 // Z
�1 // zZ2

�2 //

�1
��

zZ2
�3 //

�2

��

Z //

deg

0

0 // Z
�1 // Pic xB˚ zZ2

�2 // Pic xX
�3 // Pic xX� // 0

with exact rows.
Let zZ2 be the induced module IndGkGk.pa/ Z: as a group it is Z2, and an element

� 2Gk acts on an element of it either trivially or by interchanging the coordinates,
according to whether � fixes

p
a or not.

Call a divisor of xX vertical if it is supported on prime divisors lying above
prime divisors of xB , and horizontal otherwise. The fiber of ˛ above the generic
point of xZ consists of two intersecting copies of P1

�. xZ/
, so ˛�1. xZ/ is a union of

two prime divisors F1 and F2 of xX .
Choose L 2DivB with ŒL�DL. Since Z is the zero locus of s 2 �.B;L˝2/,

the divisorZ�2L is the divisor of some function g2�.B/�. LetU WDB�supp.L/.
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Then X has an open subscheme X 0 given by y2� aD gt2 in the affine space A2U
with coordinates t and y. The restrictions of F1 and F2 in DivX 0 are given by
y�
p
aD gD 0 and yC

p
aD gD 0; we may assume that the former is F1. The

Zariski closures in xX of the divisors given by y�
p
aD t D 0 and yC

p
aD t D 0

are horizontal; call them H1 and H2. We choose a function f 2 �. xX/� that on
the generic fiber induces an isomorphism xX�! P1

�. xB/
(the usual parametrization

of a conic); explicitly, we take

f WD
y �
p
a

t
D

gt

yC
p
a
:

A straightforward calculation shows that the divisor of f on xX is

(3) .f /DH1�H2CF1�˛
�L:

Bottom row: Define �1 by �1.1/ D .�2L; .1; 1//. Define �2.M; .m; n// D
˛�MCmŒF1�CnŒF2�. Let �3 be restriction. Each �i is Gk-equivariant. Given a
prime divisor D on xX� , its Zariski closure in xX restricts to give D on xX� , so �3 is
surjective. The kernel of �3 is generated by the classes of vertical prime divisors
of xX ; in fact, there is exactly one above each prime divisor of xB except that above
xZ 2 Div xB we have F1; F2 2 Div xX . This proves exactness at Pic xX of the bottom
row. Since s 2 �.B;L˝2/, we have ŒZ�D 2L, and ŒF1�C ŒF2�D ˛�ŒZ�D 2˛�L.
Also, a rational function on xX with vertical divisor must be the pullback of a ratio-
nal function on xB . The previous two sentences prove exactness at Pic xB˚zZ2. Injec-
tivity of �1 is trivial, so this completes the proof that the bottom row of (2) is exact.

Top row: Define

�1.m/D .m;m/

�2.m; n/D .n�m;m�n/

�3.m; n/DmCn:

These maps are Gk-equivariant and they make the top row of (2) exact.

Vertical maps: By Lemma 4.1, we have an isomorphism degWPic xX� ' Z of
Gk-modules; this defines the rightmost vertical map in (2). Define

�1.m; n/D .�.mCn/L; .m; n//

�2.m; n/DmŒH1�CnŒH2�:

These too are Gk-equivariant.
Commutativity of the first square is immediate from the definitions. Commu-

tativity of the second square follows from (3). Commutativity of the third square
follows since H1 and H2 each meet the generic fiber xX� in a single �. xB/-rational
point. This completes the construction of (2).
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We now take cohomology by applying results of Appendix A. Because of the
vertical isomorphisms at the left and right ends of (2), the two rows define the same
class � 2H 2.Gk;Z/. We haveH 0.Gk; zZ

2/DZ�.1; 1/, and Shapiro’s lemma yields

(4) H 1.Gk; zZ
2/DH 1.Gk.

p
a/;Z/D 0;

so Lemma A.1 implies � ¤ 0. We are almost ready to apply Lemma A.2 to the
bottom row of (2), but first we must check the splitting hypotheses. After restricting
from Gk to Gk.pa/, the injection �1 is split by the projection Pic xB˚Z2! Z onto
the last factor, and the surjection �3 is split by the map sending a positive generator
of Pic xX� to ŒH1� 2 Pic xX . Now Lemma A.2 yields an isomorphism

H 1.Gk;Pic xB˚ zZ2/!H 1.Gk;Pic xX/

and the first group equals H 1.Gk;Pic xB/ by (4). �

LEMMA 5.2. If W and Y are nice k-varieties, and W is birational to Y �P1,
then the homomorphism BrY ! BrW induced by the composition WÜ Y �P1

! Y is an isomorphism.

Proof. Use the birational invariance of the Brauer group and the isomorphism
Br.Y �P1/' BrY . �

LEMMA 5.3. Let X ! B be as in Section 4. If Br xB D 0, then Br xX D 0.

Proof. Apply Lemmas 4.1 and 5.2. �

PROPOSITION 5.4. Let X ! B be as in Section 4. Suppose in addition that

� k is a global field (still of characteristic not 2),

� the degeneracy locus Z is nice,

� Br xB D 0, and

� X.A/¤∅.

Then ˛�WBrB! BrX is an isomorphism.

Proof. The Hochschild-Serre spectral sequence yields an exact sequence

Br k! ker
�
BrX ! Br xX

�
!H 1.k;Pic xX/!H 3.k;Gm/:

Since Br k!
L
v Br kv is injective and X.A/ ¤ ∅, the homomorphism Br k!

BrX is injective. By Lemma 5.3, we have Br xX D 0. Finally, H 3.k;Gm/ D 0.
Thus we obtain a short exact sequence, the second row of

0 // Br k // BrB //

��

H 1.k;Pic xB/

��

// 0

0 // Br k // BrX // H 1.k;Pic xX/ // 0:
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The first row is obtained in the same way, and the vertical maps are induced by ˛.
The result now follows from Lemma 5.1. �

Remark 5.5. In response to an earlier draft of this paper, Colliot-Thélène has
found an alternative proof of Proposition 5.4; see [CT09, Prop. 2.1]. This proof,
which is a little shorter and works in slightly greater generality, compares BrX and
BrB using residue maps instead of going through H 1.k;Pic xX/ and H 1.k;Pic xB/.

6. Construction

From now on, k is a global field of characteristic not 2. Fix a 2 k�, and fix
relatively prime separable degree-4 polynomials P1.x/; P0.x/ 2 kŒx� such that
the (nice) Châtelet surface V1 given by

y2� az2 D P1.x/

over k satisfies V1.A/¤∅ but V1.k/D∅. (Such Châtelet surfaces exist over
any global field k of characteristic not 2; see [Poo09, Prop. 5.1 and �11]. If k DQ,
then one may use the original example from [Isk71], with a WD �1 and P1.x/ WD
.x2�2/.3�x2/.) Let QP1.w; x/ and QP0.w; x/ be the homogenizations of P1 and
P0. Define L WD O.1; 2/ on P1 �P1 and define

s1 WD u
2 QP1.w; x/C v

2 QP0.w; x/ 2 �.P
1
�P1;L˝2/;

where the two copies of P1 have homogeneous coordinates .u; v/ and .w; x/, re-
spectively. Let Z1 � P1 �P1 be the zero locus of s1. Let F � P1 be the (finite)
branch locus of the first projection Z1! P1.

Let ˛1WV! P1 � P1 be the conic bundle given by y2 � az2 D s1, in the
terminology of Section 4. Composing ˛1 with the first projection P1 �P1! P1

yields a morphism ˇ1WV! P1 whose fiber above 1 WD .1 W 0/ is the Châtelet
surface V1 defined earlier.

Let C be a nice curve over k such that C.k/ is finite and nonempty. Choose a
dominant morphism 
 WC ! P1, étale above F , such that 
.C.k//D f1g. Define
the fiber product X WD V�P1 C and morphisms ˛ and ˇ as in the diagram

X

˛

��

ˇ||

// V

˛1
��

ˇ1
||

C �P1
.
;1/ //

1st

��

P1 �P1

1st

��
C


 // P1:

Each map labeled 1st is the first projection. Define B WDC �P1 and s WD .
; 1/�s1 2
�.B; .
; 1/�O.2; 4//. Thus X

˛
! B can alternatively be described as the conic

bundle given by y2� az2 D s. Its degeneracy locus Z is .
; 1/�Z1 � B .
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7. No Brauer-Manin obstruction

We continue with the notation of Section 6.

LEMMA 7.1. The curve Z is nice.

Proof. Since P0.x/ and P1.x/ are separable and have no common factor, a
short calculation shows that Z1 is smooth over k. We have Z DZ1 �P1 C . Since
Z1 and C are smooth over k and the branch loci of Z1 ! P1 and C ! P1 do
not intersect, Z is smooth too. Since Z1 is ample on P1 �P1 and 
 is finite, Z is
ample on C �P1. Therefore, Z is geometrically connected by [Har77, Cor. III.7.9].
Since Z is also smooth, it is geometrically integral. �

Lemma 7.1 and the sentence before Lemma 4.1 imply that the 3-fold X is nice.

THEOREM 7.2. We have X.k/D∅, but X.A/Br contains V1.A/�C.k/ and
hence is nonempty.

Proof. Since 
.C.k// D f1g and V1.k/ D ∅, we have X.k/ D ∅. We
have Br xB D Br. xC � P1/ D Br xC D 0, by Lemma 5.2 and [Gro68, Cor. 5.8].
Also, X.A/ contains V1.A/�C.k/, so X.A/¤∅. Thus Proposition 5.4 implies
that BrB! BrX is an isomorphism. Composing with the isomorphism BrC !
BrB of Lemma 5.2 shows that ˇ�WBrC ! BrX is an isomorphism. Hence, if
ˇAWX.A/! C.A/ is the map induced by ˇ, then

X.A/Br
D ˇ�1A .C.A/Br/� ˇ�1A .C.k//D V1.A/�C.k/: �

8. No Brauer-Manin obstruction applied to étale covers

We continue with the notation of Section 6; in particular, X is the nice 3-fold
defined there. For any variety V , let Et.V / be the category of finite étale covers
of V .

LEMMA 8.1. The morphism X ! C induces an equivalence of categories
Et.C /! Et.X/.

Proof. The geometric fibers of X ! B D C �P1 are isomorphic to either
P1 or two copies of P1 crossing at a point, so they have no nontrivial finite étale
covers. Therefore [SGA1, IX.6.8] applies to show that Et.C �P1/! Et.X/ is an
equivalence of categories. The same argument applies to Et.C /! Et.C �P1/. �

THEOREM 8.2. The set X.A/et;Br contains V1.A/�C.k/ and hence is non-
empty.

Proof. Let G be a finite étale group scheme over k, and let f WY ! X be a
right torsor under G. Lemma 8.1 implies that f arises from a right torsor hWC!C
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under G. In other words, we have a cartesian square

Y
f //

b
��

X

ˇ

��
C

h // C:

For any � 2 Z1.k;G/ with C� .k/ ¤ ∅, the twisted morphism b� WY � ! C� is
just like ˇWX ! C , since in Section 6 we could have replaced 
 with the com-

position D ,! C�
h�

! C


! P1 for any connected component D of C� containing

a k-point; thus Y � .A/Br contains V1.A/ � C� .k/ and f � .Y � .A/Br/ contains
V1.A/�h.C

� .k//. Taking the union over all such � , and applying the analogue
of (1) for hWC! C , we see that[

Œ��2H1.k;G/

f � .Y � .A/Br/

contains V1.A/�C.k/. Finally, intersect over all G and all f WY !X . �

Remark 8.3. Suppose that k is a number field. As mentioned in Section 3.4,
Demarche has announced a proof that X.A/et;Br �X.A/descent holds for every nice
k-variety X [Dem09]. Assuming this, Theorem 8.2 implies that X.A/descent is
nonempty for our X , and in particular that even the descent obstruction is insuffi-
cient to explain all failures of the Hasse principle.

Remark 8.4. It is not true that ˇ induces an isomorphism

H 1.C;G/!H 1.X;G/

for every linear algebraic group G. It fails for G D Gm, for instance, as pointed
out to me by Colliot-Thélène: the composition PicC ! PicX ! PicX� ' Z is
zero but PicX! PicX� is nonzero. So the proof of Theorem 8.2 does not directly
generalize to prove X.A/descent ¤∅.

Remark 8.5. In [CT99] it is conjectured that for every nice variety over a num-
ber field, the Brauer-Manin obstruction is the only obstruction to the existence of a
zero-cycle of degree 1. In response to an early draft of this paper, Colliot-Thélène
has verified this conjecture for the 3-folds X we constructed [CT09, Th. 3.1].

Appendix A. Group cohomology

In this section, G is a profinite group and

(5) 0! Z! A
�
! B! Z! 0
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is an exact sequence of discrete G-modules, with G acting trivially on each copy
of Z. Let C D �.A/. Split (5) into short exact sequences

0! Z! A! C ! 0

0! C ! B! Z! 0:

Take cohomology and use H 1.G;Z/ D Homconts.G;Z/ D 0 to obtain exact se-
quences

0!H 1.G;A/!H 1.G; C /
ı2
!H 2.G;Z/(6)

H 0.G;B/! Z
ı1
!H 1.G; C /!H 1.G;B/! 0:

Let � D ı2.ı1.1// 2H 2.G;Z/. (Thus � is the class of the 2-extension (5).)

LEMMA A.1. If H 0.G;B/! Z is not surjective and H 1.G;A/ D 0, then
� ¤ 0.

Proof. Nonsurjectivity of H 0.G;B/!Z implies ı1.1/¤ 0, and H 1.G;A/D

0 implies that ı2 is injective. Thus � ¤ 0. �

LEMMA A.2. If � ¤ 0, and the injection Z ! A and the surjection B !
Z are both split after restriction to an index-2 open subgroup H of G, then the
homomorphism H 1.G;A/!H 1.G;B/ induced by � is an isomorphism.

Proof. Let I be the image of ı2 in H 2.G;Z/' Homconts.G;Q=Z/. Let J be
the image of ı1. The splitting of the injection implies that

I � ker .Homconts.G;Q=Z/! Homconts.H;Q=Z//' Hom.G=H;Q=Z/;

so #I � 2. The splitting of the surjection implies that 2J D 0, but J is cyclic, so

#J � 2. Since � ¤ 0, the composition Z
ı1
! H 1.G; C /

ı2
! H 2.G;Z/ is nonzero,

so the induced map J ! I is nonzero. Therefore #I D #J D 2 and J ! I is an
isomorphism. In particular, H 1.G; C /'H 1.G;A/˚J , and (6) then yields

0! J !H 1.G;A/˚J !H 1.G;B/! 0;

with J mapping identically to 0˚J . Thus the map H 1.G;A/!H 1.G;B/ is an
isomorphism. �
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