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Dedicated to Max Karoubi, who started me on this project by encouraging me to read the
remarkable article [8]

Abstract

Let R be a ring. In a previous paper [11] we found a new description for
the category K.R-Proj/; it is equivalent to the Verdier quotient K.R-Flat/=S, for
some suitable S�K.R-Flat/. In this article we show that the quotient map from
K.R-Flat/ to K.R-Flat/=S always has a right adjoint. This gives a new, fully
faithful embedding of K.R-Proj/ into K.R-Flat/. Its virtue is that it generalizes to
nonaffine schemes.

0. Introduction

Let R be a ring, let K.R-Flat/ be the homotopy category of cochain com-
plexes of flat R-modules, and let K.R-Proj/ be the homotopy category of cochain
complexes of projective R-modules. In [11] we found a novel, new description
of K.R-Proj/; it is equivalent to the Verdier quotient K.R-Flat/=S, where the full
subcategory S � K.R-Flat/ has many equivalent characterizations, six of which
may be found in [11, Fact 2.14].

Let j � be the Verdier quotient map from K.R-Flat/ to the category K.R-Proj/
Š K.R-Flat/=S. By the construction of [11] it is clear that j � has a left adjoint
j
Š
W K.R-Proj/ �! K.R-Flat/; the functor j

Š
is nothing other than the obvious

inclusion. The key theorem of this article says:

THEOREM 0.1. The functor j � also has a right adjoint j� W K.R-Proj/ �!
K.R-Flat/.

The research was partly supported by the Australian Research Council. The final versions of the
article were written while the author was visiting the CRM in Barcelona for six months; many thanks
to the CRM for its hospitality and congenial working environment. The visit to the CRM was partly
supported by a sabbatical grant from the Spanish Ministry of Education (grant number SAB2006-
0135).
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Remark 0.2. Several comments are in order.
(i) The functor j� is fully faithful; any adjoint, right or left, of a Verdier quotient

map must be fully faithful. It follows that j� gives a nonobvious embedding
of K.R-Proj/ into K.R-Flat/.

(ii) It so happens that the right adjoint j� can be generalized to nonaffine schemes,
while the left adjoint j

Š
does not exist in general; j

Š
is an affine phenom-

enon, which seems to depend on the existence of enough projectives. In
the introduction to [11] we explained that the motivation, for studying the
new description of K.R-Proj/, came from the idea that it might generalize
to the global, nonaffine framework. This program was carried out in Daniel
Murfet’s Ph.D. thesis. It turns out that the existence of the adjoint j� is key to
his approach; it is the main tool which allows him to reduce global problems
to affine ones.

(iii) Special cases of Theorem 0.1 were known. If R is left noetherian and right
coherent, and if a dualizing complex exists for R, then there is a discussion of
the existence of j� in the closing paragraphs of [11, �2]. If R is commutative,
noetherian and of finite Krull dimension, the existence of j� follows easily
from [4, Th. 4.6].

(iv) The relation with dualizing complexes is perhaps the most intriguing. We
mentioned it already in (iii), and in [11, �2]; the functor j� can be constructed
using a dualizing complex. But now we know it to exist unconditionally, even
when there is no dualizing complex for R. Some consequences of this are
discussed at the end of [11, �2]; let us only remind the reader of one of them.

Suppose R is left noetherian and right coherent, and let I be a dualizing
complex. It turns out that the unit of adjunction R �! j�j

�R is nothing
other than the natural map R �!Hom.I;I/. The curious aspect is that, by
Theorem 0.1, the map R �! j�j

�R exists unconditionally, even for rings R
where there is no dualizing complex.

Theorem 0.1 is our main result. But there is one other theorem that perhaps
deserves mention.

THEOREM 0.3. The inclusion of K.R-Flat/ into K.R-Mod/ has a right adjoint.
Here K.R-Mod/ is the homotopy category of all cochain complexes of R-modules.

Remark 0.4. In Remark 3.3 we will see that the Flat Cover Conjecture follows
immediately from Theorem 0.3. The reader should not be too excited by this; we
use the Flat Cover Conjecture in the proof of Theorem 0.3.

For the uninitiated reader: the Flat Cover Conjecture was an open problem for
about twenty years until being proved, around 2000, by Eklof and Trlifaj [2] and
by Bican, El Bashir and Enochs [1]. There is a slightly more extended discussion,
of the history of the Flat Cover Conjecture, in Remark 2.10.
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1. A general adjunction lemma

The main theorem of this article asserts that the natural projection, from
K.R-Flat/ to its Verdier quotient K.R-Flat/=K.R-Proj/?, has a right adjoint. By
[10, Prop. 9.18] it suffices to show that the inclusion map i� W K.R-Proj/? �!
K.R-Flat/ has a right adjoint. We are therefore interested in general results, giv-
ing sufficient conditions for the inclusion of a triangulated subcategory to have a
right adjoint. Before stating the helpful little proposition we will use, we remind
ourselves of a couple of definitions.

Definition 1.1. Let T be a triangulated category, and let S � T be a full
subcategory. The subcategory S is called thick if it is a triangulated subcategory,
and if every direct summand of any object in S lies in S.

Definition 1.2. Let T be a category, and let S be a full subcategory. A mor-
phism s�! t is called an S-precover of t if s is an object in S, and every morphism
Ns �! t , with Ns 2 S, factors (not necessarily uniquely) through s �! t .

Remark 1.3. As the terminology might lead one to suspect, an S-precover is
a coarse version, the finer notion being an S-cover. Every S-cover is certainly an
S-precover. We do not need the refinement, and hence I will not explain it.

PROPOSITION 1.4. Let T be a triangulated category, and let S�T be a thick
subcategory. Assume further that

(i) Every object t 2 T admits an S-precover.
(ii) Every idempotent in T splits.

Then the inclusion F W S �! T has a right adjoint.

Proof. Let t be an object in T; we need to show that there exists an object
S 2 S and a morphism S �! t which is universal. This means that every other
morphism Ns�! t; Ns 2S must factor uniquely through S �! t . By hypothesis (i) we
may choose an S-precover f W s �! t ; every morphism Ns �! t factors through f ,
but not necessarily uniquely. We will show how to choose a direct summand S of
s for which the factorization is unique. The construction is as follows.

Complete f W s �! t to a triangle r
˛
�! s

f
�! t �! †r and then choose an

S-precover ˇ W s0 �! r . We have a pair of composable morphism s0
ˇ
�! r

˛
�! s,

which we may complete to a morphism of triangles

.�/

s0
˛ˇ
����! s

g
����! s00 ����! †s0

ˇ

??y 1

??y w

??y ??y†ˇ
r ����!

˛
s ����!

f
t ����! †r:
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We know that s0 and s belong to the thick subcategory S, and the top row of .�/,
being a triangle, teaches us that s00 must also be in S. Because f W s �! t is an
S-precover we know that the morphism w W s00 �! t must factor through it; we

can write w as a composite s00
h
�! s

f
�! t . Now let e W s �! s be the composite

s
g
�! s00

h
�! s.

The diagram .�/ informs us that f D wg, while the definition of h gives that
w D f h. Combining these, we have

(iii) f D f hg D fe.

Next observe that, if Ns is an object of S and some composite Ns
�
�! s

f
�! t vanishes,

then the map � must factor first through ˛ W r �! s, and then through the S-precover
ˇ W s0 �! r . The top row in the diagram .�/ tells us that Ns

�
�! s

g
�! s00 must vanish.

Therefore e�D hg�D 0. Summarizing:

(iv) If Ns belongs to S and the composite Ns
�
�! s

f
�! t vanishes, then so does

Ns
�
�! s

e
�! s.

From (iii) we know that f .1� e/D 0. Applying (iv), with �D 1� e, we conclude
that e.1� e/D 0, that is

(v) The map e W s �! s is idempotent; that is e2 D e.

By (ii) we know that idempotents in T split; the map e W s �! s has a factorization
s

u
�! S

v
�! s with uv being the identity 1S W S �! S . By (i) we know that S�T

is thick, meaning that S must be an object in S. I assert:

(vi) Let e D vu be a splitting as above. The composite f v W S �! t has the
property that any morphism Ns �! t , Ns 2 S factors uniquely through f v.

It remains to prove (vi).
Suppose we are given a morphism � W Ns �! t , Ns 2 S. Let us first prove the

existence of a factorization. Because f W s �! t is a precover the map � must

factor as Ns
�
�! s

f
�! t . Now observe

� D f�

D fe� by (iii)
D f vu� because e D vu; see (vi)

and we have factored � through f v.
It remains to prove the uniqueness. Suppose � W Ns �! S is such that the

composite f v� vanishes. By (iv) we have that ev� D 0. Writing e D vu this
becomes vuv� D 0, hence certainly uvuv� D 0. But uv D 1; we conclude that
� D 0. �
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2. The existence of S-precovers

We want to apply Proposition 1.4 to the inclusion of K.R-Proj/? into K.R-Flat/.
To do this, we must prove that the hypotheses of Proposition 1.4 are satisfied.
Most of these hypotheses are quite easy; the nontrivial one is that every object
in K.R-Flat/ has a K.R-Proj/?-precover. This section is devoted to the proof.

Remark 2.1. By its very nature, the notation K.R-Proj/? is relative. When
we have a subcategory K.R-Proj/�K.R-Flat/, we can speak about the orthogonal;
we remind the reader that K.R-Proj/? is the full subcategory of all objects Y 2
K.R-Flat/ so that Hom.X; Y / vanishes for every X 2 K.R-Proj/. The notation
K.R-Proj/? assumes that we know which Y ’s are permissible; we must be given
the ambient category where we are embedding K.R-Proj/. If we embed K.R-Proj/
in the larger category K.R-Mod/, then the orthogonal could be expected to be much
larger.

Notation 2.2. For the rest of this article, let us agree that S will be the orthog-
onal of K.R-Proj/�K.R-Flat/; it is the category which, until now, we have been
referring to simply as K.R-Proj/?. By [11, Th. 8.6], we know that the objects in
the category S are the complexes Z of flat R-modules, which satisfy either of the
equivalent conditions:

(i) Z is a filtered direct limit of contractible complexes of finitely generated,
projective R-modules.

(ii) Z is an acyclic complex of flat R-modules

� � � ����! Zi�1
@i�1

����! Zi
@i

����! ZiC1
@iC1

����! ZiC2 ����! � � �

where the images I i of the maps @i WZi �!ZiC1 are all flat R-modules.

We want to show that every object in K.R-Flat/ admits an S-precover; see
Definition 1.2 for what constitutes an S-precover. We will actually prove a stronger
assertion, showing that every object in the larger category K.R-Mod/ admits an
S-precover. To give the proof, it is helpful to consider an auxiliary ring. Out of
the ring R we will now construct a ring S D S.R/.

Notation 2.3. Let R be a ring. We wish to consider the R-algebra of the quiver

: : :
@i�2

// �i�1

@i�1

// �i

@i

// �
iC1

@iC1

// �
iC2

@iC2

// � � �

with the relation that @iC1@i D 0. That is, we let S be the free R-module with
basis f1; @i ; ej g, with i; j 2 Z. We make it into an algebra by declaring that R
commutes with all the basis elements. The relations among the basis elements
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assert first that 1 is the identity element, that is

1@i D @i1D @i ; 1ej D ej 1D ej ; 1 � 1D 1:

Next they say that the ej are orthogonal idempotents; that is

eiej D 0 if i ¤ j; eiei D ei :

The @i multiply by the following rules

@i@j D 0; eiC1@i D @iei D @i

and finally

ej @i D 0 unless j D i C 1; @iej D 0 unless j D i:

Remark 2.4. If Z is a complex of R-modules

� � � ����! Zi�1 ����! Zi ����! ZiC1 ����! � � � ;

then it is obvious that

inc.Z/ D

1M
iD�1

Zi

is, in a natural way, a module over the algebra S . We have a fully faithful functor
from the category of complexes of R-modules, which we will denote C.R-Mod/,
to the category of S-modules, which we have been denoting S -Mod. That is, we
have an inclusion functor

inc W C.R-Mod/ ����! S -Mod:

This functor has a right adjoint, which we will denote

C W S -Mod ����! C.R-Mod/I

the functor C takes the S -module M to the complex

� � �
@i�2

����! ei�1M
@i�1

����! eiM
@i

����! eiC1M
@iC1

����! � � � :

We will study the functors inc and C a little.

LEMMA 2.5. The functor C W S -Mod �! C.R-Mod/ is exact and preserves
colimits.

Proof. Suppose

0 ����! L ����! M ����! N ����! 0

is a short exact sequence in S -Mod. Then its two direct summands

0 ����! eiL ����! eiM ����! eiN ����! 0

0 ����! .1� ei /L ����! .1� ei /M ����! .1� ei /N ����! 0



SOME ADJOINTS IN HOMOTOPY CATEGORIES 2149

must both be exact. In particular, the top row is exact, for every integer i . This
means that

0 ����! C.L/ ����! C.M/ ����! C.N/ ����! 0

is a short exact sequence of complexes.
As for the assertion about colimits, in view of the right exactness of C it

suffices to consider coproducts. Let fM
�
; � 2ƒg be a family of S -modules. Then

ei

(M
�2ƒ

M�

)
D

M
�2ƒ

eiM�;

and the lemma follows. �

LEMMA 2.6. Let P be a projective S-module. Then the complex C.P / is a
contractible complex of projective R-modules.

Proof. Because P is projective, there exists an S -module Q so that P ˚Q is
free. Since

C.P ˚Q/D C.P /˚C.Q/;

it suffices to show that C.P˚Q/ is a contractible complex of projectiveR-modules.
Thus we are reduced to the case where P is free.

Any free module is a coproduct of free modules of rank 1; since the functor
C respects coproducts, we are reduced to the case where P is free and of rank 1.
But in this case we know C.P / explicitly; it is the coproduct of all the suspensions
of the complex

� � � ����! 0 ����! R
1

����! R ����! 0 ����! � � �

which is clearly a contractible complex of projective R-modules. �

LEMMA 2.7. Let Z be a contractible complex of projective R-modules. Then
inc.Z/ is a projective S -module.

Proof. The complex Z, being a contractible complex of projectives, decom-
poses as a coproduct of complexes

� � � ����! 0 ����! P
1

����! P ����! 0 ����! � � �

with P a projective R-module. The functor inc has a right adjoint, and therefore
respects coproducts. It suffices therefore to prove the Lemma in the special case,
where Z is of the form

� � � ����! 0 ����! P
1

����! P ����! 0 ����! � � �

as above.
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Next observe that P is projective, and hence there exists a Q with P ˚Q
free. Let Z0 be the complex

� � � ����! 0 ����! Q
1

����! Q ����! 0 ����! � � � :

We observe that inc.Z˚Z0/D inc.Z/˚ inc.Z0/, and it therefore suffices to prove
inc.Z˚Z0/ projective. We may therefore assume that Z is a complex

� � � ����! 0 ����! P
1

����! P ����! 0 ����! � � �

with P free. But then Z is a coproduct of complexes

� � � ����! 0 ����! R
1

����! R ����! 0 ����! � � �

and it suffices to consider the case where Z is a complex as above. But now we
observe that the ring S decomposes, as a left S -module, into the direct sum

S D Sei ˚S.1� ei /:

The module Sei is therefore projective, and the reader can easily check that it
agrees with inc.Z/, in the special case where Z is the complex

� � � ����! 0 ����! R
1

����! R ����! 0 ����! � � �

with the nonzero modules in dimensions i and i C 1. �

PROPOSITION 2.8. If an S -module M is flat, then the complex C.M/ belongs
to the category S of Notation 2.2. If a complex Z belongs to S, then the S -module
inc.Z/ is flat.

Proof. If M is a flat S -module, then M is a filtered direct limit of finitely gen-
erated projective S -modules F�. Lemma 2.6 tells us that the complexes C.F�/ are
contractible complexes of projective R-modules, and Lemma 2.5 asserts that the
functor C respects colimits. Hence C.M/ is a filtered direct limit of the complexes
C.F�/, each of which is a contractible complex of projectives. By [11, Th. 8.6]
we conclude that C.M/ lies in the subcategory S.

Suppose now that Z is an object of S. From [11, Th. 8.6] we know that Z is a
filtered colimit of contractible complexes Z� of projectives. Lemma 2.7 says that
each inc.Z�/ is a projective S-module. Since the functor inc has a right adjoint,
it respects colimits; we have that inc.Z/ is a filtered direct limit of the projective
S -modules inc.Z�/. Hence inc.Z/ must be flat. �

LEMMA 2.9. Every object in the category K.R-Mod/ has an S-precover,
where S�K.R-Mod/ is the category of Notation 2.2.

Proof. Let Z be any object in the category K.R-Mod/; that is, Z is any
complex of R-modules. Then inc.Z/ is a module over the ring S . By [1] we
know that inc.Z/ has a flat precover. Let us choose one; we select a flat precover
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F �! inc.Z/. I assert that the map C.F / �! C
�
inc.Z/

�
Š Z is an S-precover

for the complex Z.
Observe first of all that F is flat, and Proposition 2.8 therefore tells us that

C.F / belongs to the category S. The map C.F / �! Z therefore is an object in
the category S=Z. We need to prove it a precover.

Suppose therefore that we are given some chain map X �! Z, with X an
object of S. Proposition 2.8 tells us that inc.X/ is a flat S-module, and hence the
map inc.X/ �! inc.Z/ is a map from the flat S-module inc.X/ to the S-module
inc.Z/. It must therefore factor through the flat precover F �! inc.Z/. In the
category S -Mod we have a factorization

inc.X/ ����! F ����! inc.Z/:

Applying the functor C , and noting that C ı fincg is naturally isomorphic to the
identity, we deduce a factorization

X ����! C.F / ����! Z;

as required. �

Remark 2.10. In the proof of Lemma 2.9 we appealed to the fact that every
module has a flat precover; this may be found in [1]. This result has a long history.
It was first conjectured by Enochs [3]; Enochs pointed out that the existence of a
flat precover implies the existence of a flat cover (whatever that means); remember
that, in Remark 1.3, we decided not to worry about flat covers in this article. Enochs
then conjectured that every module should always have a flat cover or, equivalently,
a flat precover. The problem took almost twenty years to solve; the article [1]
contains two proofs of the fact. One proof, due to Enochs, relies on a result of
Eklof and Trlifaj [2]. The second proof is different and was produced, at about the
same time, by Bican and El Bashir.

Since then there has been another approach to the Flat Cover Conjecture, by
way of model category methods; see Hovey [7] and Gillespie [5], [6].

3. Adjoints to inclusions of K.R-Proj/?

Let the notation be as in Notation 2.2. We remind the reader; we have inclu-
sions of categories K.R-Proj/ � K.R-Flat/ � K.R-Mod/. The category S was
defined to be the orthogonal category to the inclusion K.R-Proj/ � K.R-Flat/.
That is, the objects are all the objects Y in K.R-Flat/, so that Hom.X; Y /D 0 for
all X 2K.R-Proj/. We arrive now at the main theorem of this article:

THEOREM 3.1. The inclusions of S, into either of the categories K.R-Flat/
and K.R-Mod/, have right adjoints.

Proof. The idea is to apply Proposition 1.4. The categories S, K.R-Flat/ and
K.R-Mod/ all have coproducts; hence [10, Prop. 1.6.8] shows that idempotents
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split in all three categories. It follows that S is equivalent to a thick subcategory,
of either K.R-Flat/ or K.R-Mod/.

To prove the existence of an adjoint it therefore suffices to show that every
object in K.R-Mod/ admits an S-precover. The statement that every object in
K.R-Flat/� K.R-Mod/ has a flat precover is weaker; there are fewer objects in
the smaller category K.R-Flat/. The existence of S-precovers in K.R-Mod/ was
verified in Lemma 2.9. �

Combining Theorem 3.1 with [10, Th. 9.18], we deduce that the projection
j � W K.R-Flat/ �! K.R-Flat/=S has a right adjoint j�. That is we have proved
Theorem 0.1. In the introduction we promised the reader another result; it is time
to deliver.

THEOREM 3.2. Let R be a ring. The inclusion K.R-Flat/�!K.R-Mod/ has
a right adjoint.

Proof. The subcategory K.R-Proj/�K.R-Mod/ is a localizing subcategory,
and from [11, Cor. 5.10] we know that it satisfies Brown representability. There-
fore, by [10, Th. 8.4.4], the inclusion has a right adjoint. From the formalism of
Bousfield localizations (see, for example, [10, Prop. 9.1.8]) we deduce that every
object Y in K.R-Mod/ admits a triangle

X ����! Y ����! Z ����! †X;

with X 2K.R-Proj/ and Z orthogonal to K.R-Proj/.
Here is where our notation could begin to haunt us. I could say that Z belongs

to K.R-Proj/?, meaning that Z is an object in K.R-Mod/, and Hom.A;Z/D 0
for all A 2 K.R-Proj/. This notation has a problem, as we already discussed in
Remark 2.1. Until now, whenever we wrote K.R-Proj/?, what we meant was the
category of all Z 2 K.R-Flat/, satisfying the orthogonality condition. Now we
are permitting Z to lie in the larger category K.R-Mod/. For this proof we will
therefore avoid the notation K.R-Proj/?.

Anyway, let us return to our triangle X �! Y �! Z �! †X above. The
object Z belongs to K.R-Mod/, and happens to be orthogonal to K.R-Proj/. The-
orem 3.1 tells us that the inclusion S �!K.R-Mod/ has a right adjoint. Just by
virtue of the fact that Z belongs to K.R-Mod/, there is a distinguished triangle

S ����! Z ����! W ����! †S;

with S in S and W orthogonal to S. Now note that S is an object of S, which
was the orthogonal of the inclusion K.R-Proj/ �! K.R-Flat/; this means that
Hom.A; S/ D 0 for all objects A 2 K.R-Proj/. We have, for all objects A 2
K.R-Proj/, that

Hom.A; S/ D 0 D Hom.A;Z/I
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from the distinguished triangle S�!Z�!W �!†S we conclude that Hom.A;W /
must also vanish. That is, for any object A 2K.R-Proj/ and for any object B 2 S,
we have that

Hom.A;W / D 0 D Hom.B;W /:

But now recall [11, Prop. 8.1]; it says that the inclusion j
Š
W K.R-Proj/ �!

K.R-Flat/ has a right adjoint. It follows that every object F 2K.R-Flat/ admits a
distinguished triangle

A ����! F ����! B ����! †A;

with A 2 K.R-Proj/ and B 2 S. We know that Hom.A;W /D 0D Hom.B;W /;
from the triangle we conclude that Hom.F;W / vanishes, for every F 2K.R-Flat/.

We have constructed two distinguished triangles in the category K.R-Mod/,
namely X �! Y �!Z �!†X and S �!Z �!W �!†S . That is, we have
two composable morphisms Y �!Z �!W , and we know how to complete each
to a triangle. The octahedral lemma gives us two more distinguished triangles

F ����! Y ����! W ����! †F

X ����! F ����! S ����! †X:

In the second of these we know that X 2 K.R-Proj/ � K.R-Flat/ and S 2 S �

K.R-Flat/, and hence the entire triangle must lie in the category K.R-Flat/. Thus
F lies in K.R-Flat/, while W is orthogonal to K.R-Flat/. The existence of the
distinguished triangle F �! Y �! W �! †F , for every Y 2 K.R-Mod/, es-
tablishes that the inclusion K.R-Flat/ �!K.R-Mod/ has a right adjoint; see [10,
Th. 9.1.13]. �

Remark 3.3. Theorem 3.2 tells us that the inclusion I WK.R-Flat/!K.R-Mod/
has a right adjoint J WK.R-Mod/ �!K.R-Flat/. Let us see what this means in a
special case.

Let M be any R-module, and consider the complex AD A.M/ below

� � � ����! 0 ����! M ����! 0 ����! � � � :

The existence of a right adjoint to the inclusion I gives us a morphism, in the
category K.R-Mod/, of the form "A W IJA �! A. That is, we have a chain map

� � � ����! Z�1 ����! Z0 ����! Z1 ����! � � �??y �

??y ??y
� � � ����! 0 ����! M ����! 0 ����! � � � ;

where the complex Z D IJA is a complex of flat R-modules. Furthermore, given
any map ' W F �! M , with F a flat R-module, we have a factorization of '
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through chain maps of complexes

� � � ����! 0 ����! F ����! 0 ����! � � �??y ??y ??y
� � � ����! Z�1 ����! Z0 ����! Z1 ����! � � �??y �

??y ??y
� � � ����! 0 ����! M ����! 0 ����! � � � :

This factorization, in the homotopy category, happens to be unique up to homo-
topy, but we do not care. What is important is that ' W F �!M factors through
� WZ0 �!M . The map � WZ0 �!M is a flat precover for M .

In other words, from the existence of the right adjoint to the inclusion I W
K.R-Flat/ �!K.R-Mod/, one deduces in a few lines that flat precovers exist. At
the moment this is no great discovery; to prove the existence of a right adjoint
we used the existence of flat precovers, for an associated ring S . See the proof of
Lemma 2.9.

Remark 3.4. The main theorem in this article is Theorem 0.1, and in Remark
0.2(ii) we mentioned that it has a generalization to schemes. This goes as follows.

Let X be a quasicompact, separated scheme, and let K.Flat=X/ be the ho-
motopy category of all chain complexes of flat, quasicoherent OX -modules. Let
S�K.Flat=X/ be the subcategory of chain complexes as in Notation 2.2(ii); the
reader should be cautioned that, on nonaffine schemes X , conditions (i) and (ii)
of Notation 2.2 are not in general equivalent. In his thesis [9] Murfet defines the
functor j � WK.Flat=X/ �!Km.Proj=X/ to be the Verdier quotient map

j � W K.Flat=X/ ����! K.Flat=X/
S

+ Km.Proj=X/:

When X D Spec.R/ is affine we know that Km.Proj=X/ is naturally isomorphic
to K.R-Proj/. Murfet’s thesis explores the category Km.Proj=X/ and shows that,
even on nonaffine X , this category has many of the good properties of K.R-Proj/.

The precise assertion of Remark 0.2(ii) is that the functor j � WK.Flat=X/�!
Km.Proj=X/ always has a right adjoint; the proof may be found in [9, Th. 3.16].
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